
Shen, Kish, Santos Costa, Vitor and King, Andy (1999) Distance: a New
Metric for Controlling Granularity for Parallel Execution. Journal of Functional
and Logic Programming, 1999 . pp. 1-23. ISSN 1080-5230.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37585/ The University of Kent's Academic Repository KAR

The version of record is available from
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/S99-01/S99-01.html

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Special Issue 1; This is a special issue of selected papers from the Workshop on Parallelism and Implementation Technology for

(Constraint) Logic Programming Languages.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37585/
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/S99-01/S99-01.html
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Shen, Kish and Santos Costa, Vitor and King, Andy (1999) Distance: a New Metric for Controlling
Granularity for Parallel Execution. Journal of Functional and Logic Programming, 1999 . pp.
1-23. ISSN 1080-5230.

DOI

Link to record in KAR

http://kar.kent.ac.uk/37585/

Document Version

UNSPECIFIED

Distance: a New Metric for Controlling Granularity for Parallel

Execution

Kish Shen

IC-Parc

Imperial College

London SW7 2AZ, U.K.

k.shen@icparc.ic.ac.uk

Vı́tor Santos Costa

FCUP & LIACC

Universidade do Porto

4150 Porto, Portugal

vsc@ncc.up.pt

Andy King

Computing Laboratory

University of Kent at Canterbury

CT2 7NF, U.K.

A.M.King@ukc.ac.uk

Abstract

Granularity control is a method to improve parallel execution performance by limiting excessive paral-

lelism. The general idea is that if the gain obtained by executing a task in parallel is less than the overheads

required to support parallel execution, then the task is better executed sequentially. Traditionally, in logic pro-

gramming, task size is estimated from the sequential time-complexity of evaluating the task. Tasks are only

executed in parallel if task size exceeds a pre-determined threshold.

We argue in this paper that the estimation of complexity on its own is not an ideal metric for improving

the performance of parallel programs through granularity control. We present a new metric for measuring

granularity, based on a notion of distance. We present some initial results with two very simple methods of

using this metric for granularity control. We then discuss how more sophisticated granularity control methods

can be devised using the new metric.

1 Introduction

Granularity control is a method to improve parallel execution performance by limiting excessive parallelism. The

general idea is that if the gain obtained by executing a task in parallel is less than the overheads required to

support parallel execution, then the task is better executed sequentially [9]. Granularity control has been recently

applied to Prolog/Logic Programming [26, 12, 11] and to Functional Programming [10]. In logic programming,

a “task” is considered to be a goal or an alternative to be executed in parallel, and “useful work” the amount

of computation performed to solve the goal or try the alternative. Granularity control in these systems boils

down to a two-phase process. First, a global analysis system calculates at compile-time the time-complexity of a

potentially parallel goal, generally approximated by the number of reductions performed to solve the goal1. At

run-time, a pre-determined threshold for time-complexity controls whether a task is to run in parallel or not: if the

task’s time-complexity is less than the threshold, it will not be executed in parallel. Results for small benchmark

type programs have shown that these methods can and do increase performance of parallel logic programming

systems. The main motivation for controlling grain size is to reduce overheads so that the overall execution time

for a program will decrease.

A key assumption of the complexity-based approach is that there is a linear relationship between a task’s

complexity and the amount of overheads it incurs. In other words, one assumes there is a threshold complexity

The work described in this paper was carried out while this author was at University of Manchester, Manchester M13 9PL, U.K.
1Or more precisely, an upper or lower bound on the goal’s complexity, In [12, 11], a relationship between the inputs and the bound is

derived for recursive goals, and this is used at run-time to determine the time-complexity.

1

which would induce a critical amount of overheads, below which it is not profitable to execute tasks in parallel.

We shall now examine how valid such an assumption is.

Direct parallel task execution overheads correspond to the cost of creating and maintaining a parallel task.

These overheads usually include the cost of scheduling the task for parallel execution, the cost of initialising

the new parallel task, and hardware related costs such as interprocess communication and locking. Up to a first

approximation, direct overheads are either fixed, such as publishing a task, or proportional to task size, such as the

interprocess communication overheads, and are therefore proportional to the goal’s time complexity for sizeable

tasks.

Quantitatively, we assume that for a sequential execution, the time taken to execute a particular piece of

computation (), is proportional to the amount of work performed (), say, as measured in number of reductions:

In a parallel computation, if we assume that the same piece of computation was spawned to run in parallel, then

the direct parallel overheads, , for the task can be approximated as:

where measures the fixed overheads, such as the overheads in creating and completing the task, and are

the overheads incurred during execution. With the traditional view, the execution time for a task is given by

the sequential time plus the direct parallel overheads, i.e.

(1)

Thus, there is an approximately linear relationship between and . With complexity-based approaches,

the assumption is that there is a threshold which corresponds to a for which it is not profitable to run a task

in parallel2. Note that in many systems, as long as there is parallel execution, and given the same configuration

(same number of processors, same machine, etc.), The probably do not vary (on average) greatly from

program to program, i.e. and are constants across a large number of programs. Thus, a “universal” threshold

can be set for a given parallel Prolog system and a given configuration. Lastly note that it is not necessary to

determine what the various constants are individually if a threshold is to be used – all we need to know is that

the threshold itself can be regarded as a constant for a given configuration, and experimentally determine this

constant. Of course, the constant would need to be derived individually for each configuration.

However, in many parallel systems, including most parallel logic programming systems, tasks can and do

create other potentially parallel tasks dynamically. Sub-task creation adds to the available parallelism, but it

also adds to total overheads, which are not measured by the direct parallel task execution overheads. Instead,

these new overheads should be considered a separate class, the indirect parallel execution overheads. Indirect

overheads can contribute significantly to the total overhead. Indeed, and as shall be discussed later, experimental

results from [11] strongly suggest that, at least for those two configurations and programs studied, the major

factor for the increase in performance of the programs with granularity control is avoiding largely superfluous

parallel work which the system does not have the resources to exploit.

In contrast to direct overheads, indirect overheads may not be very dependent on the size of the task being

executed in parallel and, in addition, may vary greatly from programs to programs. With the consideration of

subtask creations, the total overheads, (assuming no thresholding), is + , where is the indirect par-

allel overheads, which consists of subtask creations (and perhaps other overheads as well, as shall be considered

later). can now be approximated as:

(2)

2More precisely, the sizes of other tasks that are running in parallel may have to be considered as well. See [12] for an example.

2

where is the (average) cost of subtask creation and spawning, and is the number of times subtasks were

created by this task. does not have a direct relationship with , and is highly program dependent. We thus

believe that using task size () alone in general is not sufficient to capture the full complexities of overheads in

parallel execution. We would instead prefer a more robust metric, one that is generally applicable, and could apply

to cases where it is hard to estimate time-complexity, and to cases where work creation is unevenly balanced.

time complexity of goal

Figure 1: Sequential Execution of a Task

Towards this goal, we propose in this work a different metric for measuring “granularity”, the distance met-

ric, defined as the amount of work performed between successive points at which major parallel overheads are

incurred. Figure 1 illustrates a task executing sequentially, without any overheads.

time complexity + direect parallel
task execution overheads

start and termination oveheads

Figure 2: Conventional View of Grain-Size in Task Execution

Figure 2 shows the conventional view of granularity. The same task is executed in parallel, with initialisation

and termination overheads explicit. Moreover, the task itself takes somewhat longer to execute due to run-time

parallel overheads. Together these form the direct parallel execution overheads.

Figure 3 shows the situation assuming dynamic creation of parallel work. Overheads arise at several points

in the execution. These overheads add to the cost of executing the task in parallel, and are unfortunately unac-

counted for by the conventional view of granularity control. Note that in the general case the creation points (

in equation 2) occur at irregular intervals. Figure 3 also shows the new distance metric. The metric measures

the distance (or amount of work performed) between major fixed parallel overhead points, e.g. the start and end

of tasks (where large fixed overheads can occur as modelled in equation 1), and subtask creation events (where

a particular occurs in equation 2). Between such points, the amount of overheads incurred does have a (ap-

proximately) linear relationship with , and in fact, it is approximately proportional to , because of the

component in equations 1 and 2. The other components of these equations do not figure in this view because we

are measuring between points where they occur. The key insight is that in order to minimise the overheads

we would like to reduce the number of task creation points, and that to do so we should increase the distance

between the points that create work.

3

distances

time complexity + direct & indirect parallel
task execution overheads

parallel work creation
overheads

Figure 3: Dynamic Creation Of Parallel Work

The intuition is that once we found the metric for which overheads can be expressed as a simple relationship

with the amount of work perform, we can then use this distance metric as a thresholding tactic. To justify this

intuition, we present a more formal argument based on a simple cost model. The cost model has an overhead for

creating parallelism, called , and an overhead of scheduling, starting and communicating with a remote process,

called . If parallel tasks, for example, are created at the same program point, and these tasks have execution

times of respectively, then (provided there are sufficient free processors) the overall parallel execution

time is

Note that the first task is executed locally and thus does not incur an additional overhead of . This cost model can

be refined because each of the parallel tasks will themselves have (internally) parallel overheads. These overheads

stem from . We shall suppose that these overheads occur, on average, at a distances of apart in the

tasks. In other words, task has a cumulative overhead of . Factoring these additional overheads into the

overall parallel execution time, the following criteria is obtained. This criteria must be satisfied for worthwhile

parallelisation:

Put simply, the inequality says that the parallel execution should not be slower than sequential execution. Now let

. Note that this inequality cannot hold as and hence there exists such that for all

. Put another way, a cannot be arbitrarily small and thus we must ensure that the distance between overheads

be above a certain threshold. This justifies thresholding.

There are several important considerations when using distance as a metric for granularity control. Firstly, if

the creation of parallel work occurs at irregular intervals directed by the program, then the individual distances

between such creation points can vary considerably. We will therefore try to maximise the average distance over

the whole program (or over parts of the program in which granularity control is applied).

Clearly, one could maximise distance by never creating work. A second principle, that we will call the load-

balancing principle, is that in order to to achieve the best execution time for a particular configuration, the amount

of parallelism produced should be just sufficient to keep the processors in the system busy, and doing useful work,

while average distance is maximised.

Note that the two goals are conflicting: the less tasks we create, the less parallelism is available, hence the

harder it is to keep all processors busy. An optimal configuration will depend on a large number of factors, many

4

of which cannot be known with high precision before runtime (for example, the ideal amount of parallelism

can vary for different queries to the same program [11]). In addition, different sources of parallelism (such as

different or-parallel nodes in or-parallel Prologs or different and-parallel conjunctions in and-parallel systems)

can lead to very different amounts of parallelism. The point is that for a given average distance, the amount of

parallelism that is available can differ significantly, depending on which actual sources are removed. In other

words, to increase distance we would like to first remove the “worst” sources of parallelism, that is, those that

lead to the least amount of parallelism, first.

This ideal is almost certainly impossible to achieve in practice, but a system which seeks to perform close to

the ideal would require both run-time and compile-time controls. On the one hand, the “worth” of a particular

source of parallelism is only available after the execution of the particular task, not before, when the granularity

control system actually needs it. On the other hand, it is impossible to determine at compile-time what the

ideal amount of parallelism should be, because the query (and indeed the load and even the configuration of the

parallel system) is usually unknown. Thus, a good granularity control system should try to determine at run-time

the actual amount of parallelism that should be made available, guided by information generated by compile-time

analysis as to the best sources of parallelism to make available.

Such a sophisticated system has not yet been designed. In this work we concentrate on validating the useful-

ness of distance as a metric for granularity. To do so, we will consider two simple schemes, one compile-time and

the other run-time. These strategies simply try to increase the distance between individual sources of parallelism

by increasing average distance.

The paper is organised as follows. Section 2 discusses the basic concepts of independent and dependent

and-parallelism in logic programming systems. Section 3 presents in detail the novel run-time and compile-time

granularity control methods, describing their performance for selected benchmarks. Section 4 compares the two

methods with each other and with traditional methods. Section 5 analyses some possible improvements and

discusses performance of these methods for the DDAS dependent and-parallel system. Lastly, we present some

conclusions and suggest future work.

2 And-Parallelism

The previous discussion on granularity applies to any parallel system in which creation of parallel work incurs

overheads. For example, in a conventional parallel programming environment, the parallel work creation over-

heads might correspond to the creation of a (lightweight) process or to sending an array to another processor.

With parallel Prolog, for traditional or-parallel systems such as Aurora [13], Muse [1] and PEPSys [2], a task

corresponds to the execution of a new alternative, and the overhead for creating parallel work corresponds to

the overhead for creating an or-node which allows or-parallelism to be exploited (sometimes referred to as a

branch-node). Thus, “distance” in this case is the distance between successive or-parallel nodes.

For concreteness, we shall mainly discuss the distance metric in the context of goal-level independent and-

parallel (IAP) systems for now on. Examples of such systems are &-Prolog [7] and &ACE [14]. Work on

granularity control has been shown to be particularly effective for IAP systems, and it is indeed for these systems

that previous granularity systems have been originally developed. We chose a stable implementation of an IAP

system (the IAP component of DASWAM [20]) designed by one of us. The system’s stability and portability

allowed us to perform extensive and repeated timing experiments on several different multi-processors, thus

giving the additional benefit of observing the effect of granularity control on several different machines.

We next give a brief overview of IAP as exploited in DASWAM. We refer the reader to [6, 16] for more

details. DASWAM is a prototype parallel implementation of the DDAS [16] parallel Prolog execution model.

DDAS is an extension of the IAP scheme first proposed by DeGroot [4] and extended by Hermenegildo [6]. In

terms of actual implementations (e.g. [8, 24, 14]), this scheme is possibly the most successful among various IAP

5

scheme proposed. The notation for declaring IAP evolved through several syntactic changes. The syntax used in

this paper follows &-Prolog’s if-then-else notation, as presented by Hermenegildo and Greene [8].

In IAP schemes, parallelism is exploited by running independent sub-goals in parallel. In strict IAP schemes,

sub-goals are considered independent if they do not share variables. Non-strict IAP schemes allow the same

variable to occur in the same goal if the goals do not communicate through the variable. In &-Prolog, sources

of IAP parallelism are indicated by annotations known as Conditional Graph Expressions (CGEs). These anno-

tations can either be generated as part of the compilation process, or be provided by the programmer. Note that

the annotations are used only to indicate where parallelism should be exploited, not how. The CGEs corresponds

directly to the sources of parallelism discussed in the last section.

In a CGE, if two consecutive body goals are to be run in parallel, this is indicated by a ‘&’ instead of Pro-

log’s standard ‘,’, now reserved for sequential conjunction. For example, in the following quick-sort program

fragment,

qsort([X|L],R-R0) :-
partition(L,X,L1,L2),
(qsort(L1,R-[X|R1]) &
qsort(L2,R1-R0)

).
qsort([],R0-R0).

there is a CGE enclosing the two qsort/2 goals, with the & indicating that these two goals can be run in

parallel. The partition/4 goal, which occurs before the CGE, is not run in parallel. It is executed first, as

in sequential Prolog, and when it is successful, the two qsort goals are run in parallel. These two goals can

recursively execute the first clause of qsort/2, thus introducing more CGEs and sources of parallelism.

The DDAS model extends the IAP scheme to allow goals with dependencies to execute in parallel. In the

previous example, the partition/4 goal, partitions the incoming list L into two lists (L1,L2), which are then

sorted by the two qsort goals. The partition/4 goal shares the variables L1 and L2with the qsort goals,

and cannot be run in parallel with these two goals in an IAP scheme. The DDAS model extends IAP by exploiting

dependent and-parallelism (DAP) [16]. This allows body goals with dependencies to be run in parallel, so in the

quick-sort example all three body goals inside the CGE can be run in parallel.

The design of the DDAS model and of its DASWAM implementation is discussed in detail by Shen [17, 18].

In order to describe dependent and-parallelism, DDAS expands the CGE notation to describe dependent goals

that can run in parallel and share variables. Such dependencies are indicated via the dep annotation. This will

cause the execution to synchronise at the level of unification to ensure correct behaviour. The quick-sort example

can be annotated as:

qsort([X|L],R-R0) :-
(dep([L1,L2]) ->

partition(L,X,L1,L2) &
qsort(L1,R-[X|R1]) &
qsort(L2,R1-R0)

).
qsort([],R0-R0).

Note that IAP is an instance of DDAS where the goals run in parallel just so happen to have no dependencies.

In particular, the DASWAM implementation behaves very similarly to an IAP implementation if no DAP is

exploited. DASWAM can thus be used to study the distance metric in IAP. In this paper, DASWAM is used

mostly in such a context, but we also briefly examine the implications of using the distance metric in DAP in

section 5.1.

6

A detailed initial evaluation of the DASWAM system was presented by Shen [19]. On IAP programs,

DASWAM (without granularity control) has an overhead between 1.5 to 2.5 over the original sequential WAM

implementation the DASWAM was based on.3 As a result, and even without granularity control, performance

improvements were obtained for all programs over sequential execution, including the modestly parallel Pentium

Pro machines. As shall be shown, the distance metric enabled us to improve parallel performance further.

3 The New Granularity Control Methods

We next discuss and compare the two basic methods for increasing grain-size as estimated by measuring distances

between points of creation of work. The first method uses a simple source-to-source transformation to increase

distance between CGEs. The second uses a run-time counter to estimate the distance between CGEs. We believe

that these simple methods demonstrate the utility of the distance metric:

the distance metric can be applied in circumstances where the time-complexity measure breaks down;

although compile-time analysis will enhance the utility of the distance metric, the simple run-time scheme

(which does not need any compile-time support) demonstrates the feasibility of run-time controls, and can

reduce the reliance on the precision of compile-time techniques.

3.1 The Compile-Time Method

This method applies at compile-time sequential variants of parallel procedures such that the distance between

two parallel CGEs is guaranteed to always exceed a given threshold at run-time.

The algorithm considers every procedure with parallel CGEs. The transformation is applied to an initial

CGE in procedure , receives a minimal distance , and works over an initially empty list of sub-goals ,

representing the sub-goals that may be at a distance less than :

1. Initialise by setting the list of sub-goals to the calls in the CGE.

2. Terminate if the list is empty.

3. Extract a sub-goal from list and find the defining procedure . If the distance through from a CGE

in to the original CGE is smaller than , then create a new version of , say , otherwise go to step 2.

To obtain procedure , transform all CGEs whose distance is smaller than in sequential conjunctions.

Replace the original invocation of sub-goal by a call to . Last, add the sub-goals in the transformed

CGEs to the list and go to step 2.

Note that after applying the algorithm to one will obtain new procedures , that must also be considered

by the algorithm. The new procedure differs from the original procedure in that it always contain strictly

less CGEs than . The algorithm therefore can only create a finite number of new procedures, and thus must

terminate.

In this work we shall use a particularly simple application of this algorithm: the alternate transformation. In

this transformation the metric we use is the number of parent goals, and the threshold distance is two. In other

words: sub-goals of a CGE cannot create CGEs. For recursive procedures this results in an alternation between

parallel and sequential procedures.

We give an example application of th is method to the Boyer benchmark as ported to Prolog by Tick [23].

Note that the Boyer program has significant amounts of (non-strict) IAP. Most of the parallelism arises from

parallel execution of term rewrite rule, that is a part of the rewrite args procedure:

3Many of the programs studied here have very low granularity and unusually high parallel overheads, thus making them suitable for

granularity control. Most typical programs will have lower parallel overheads.

7

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
(rewrite(OldArg,MidArg0)
&

rewrite_args(N1,Old,Mid)),
MidArg0 = MidArg.

Experience has shown that this program has very small granularity by the distance measure, because succes-

sive CGEs occur very close together at run-time.4 This results in a very significant overhead for running Boyer

with the parallel annotation on a single worker versus running it without annotations – on the DASWAM running

on the Sequent, it is 43% slower, the largest such overhead for any IAP program examined in [20]. Moreover,

the program is not suitable for the granularity control based on time-complexity analysis as described in [12, 11],

because of the difficulties of deriving a relationship between input arguments and the complexity. The distance

metric, however, suggests a very simple way to increase the distance, by performing a source-to-source transfor-

mation on the program such that and-parallelism is only generated for every second call to rewrite args/3:5

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
(rewrite1(OldArg,MidArg0)
&
rewrite_args1(N1,Old,Mid)),
MidArg0 = MidArg.

rewrite_args1(0,_,_) :- !.
rewrite_args1(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
N1 is N-1,
rewrite(OldArg,MidArg),
rewrite_args(N1,Old,Mid).

This simple transformation reduces the number of CGEs allocated by half, regardless of what query is run.

We shall discuss in the next section in some more detail how to generalise this transformation.

3.1.1 Evaluation

To evaluate the impact of the alternating method we experimented with the original and the transformed program

in several parallel machines. The results are shown in Table 1. The ‘#w’ column shows the number of workers for

each row. We have results for ‘ideal’, giving the ‘ideal’ amount of parallelism as obtained from the DASWAM

simulator [20]; ‘seq’, giving results for a 10 processor Sequent Symmetry with 25MHz 80386, running Dynix;

‘sun’, giving results for a 10 processor SPARCcenter-2000 running Solaris; ‘chal’ for a 10 processor Silicon

4In this case, the distance can be very simply determined by tracing a possible execution and counting the number of unifications

between CGEs.
5The modification to rewrite1/2 is not shown to avoid cluttering the presentation; but much the same transformation is performed

there.

8

Graphics Challenge running IRIX; and ‘pc’ for a 4 processor PC with 200MHz Pentium Pros, running Linux.

The ‘(g)’ column indicates cases with granularity control, and the ‘(no-g)’ without. All times are in seconds.

The timings measure the duration from the start of query execution to the production of the (only) solution, and

are the best of at least 5 executions. DASWAM is compiled with gcc (except for the Challenge, where it was

compiled with MIPS’ cc, because that resulted in faster code), with optimisation turned on. Note the extremely

low speedup obtained for 2 workers on the Challenge for the granularity controlled case: this problem seems to

be isolated to 2 workers on some programs (note for example the problem does not occur for the non-controlled

case) on this particular machine; another SGI Challenge that we have access to (with 4 slower processors) does

not appear to have this problem. Note also that the SPARCcenter has a performance problem in that the cache for

some of the processors are not correctly implemented, which effectively renders these processors slower than the

rest. Thus results obtained here (and throughout the rest of this paper) with higher number of processors can be

expected to be lower than the predicted speedups.

#w ideal seq sun chal pc

(no-g) (g) (no-g) (g) (no-g) (g) (no-g) (g) (no-g) (g)

1 – – 97.092 (1.00) 81.409 (1.00) 10.951 (1.00) 9.034 (1.00) 6.189 (1.00) 5.051 (1.00) 2.494 (1.00) 2.025 (1.00)

2 1.99 1.98 49.178 (1.97) 41.039 (1.98) 6.039 (1.81) 4.787 (1.89) 3.588 (1.73) 4.389 (1.15) 1.354 (1.84) 1.074 (1.89)

3 2.98 2.93 32.624 (2.98) 27.970 (2.91) 4.329 (2.53) 3.466 (2.61) 2.514 (2.46) 1.955 (2.58) 0.971 (2.57) 0.777 (2.63)

4 3.95 3.85 24.624 (3.94) 21.316 (3.82) 3.276 (3.34) 2.862 (3.16) 1.959 (3.16) 1.547 (3.27) 0.799 (3.12) 0.608 (3.33)

5 4.92 4.74 19.954 (4.86) 17.427 (4.67) 2.804 (3.91) 2.251 (4.01) 1.641 (3.77) 1.312 (3.85)

6 5.87 5.58 16.697 (5.81) 14.863 (5.48) 2.426 (4.51) 1.978 (4.57) 1.436 (4.31) 1.151 (4.39)

7 6.82 6.39 14.474 (6.71) 13.095 (6.22) 2.088 (5.25) 1.811 (4.99) 1.285 (4.82) 1.064 (4.75)

8 7.76 7.16 12.846 (7.56) 11.640 (6.99) 1.997 (5.48) 1.660 (5.44) 1.187 (5.21) 0.976 (5.18)

9 8.69 7.86 11.537 (8.42) 10.661 (7.64) 1.823 (6.01) 1.574 (5.74) 1.112 (5.57) 0.928 (5.44)

10 9.60 8.58 10.528 (9.22) 9.929 (8.20) 1.732 (6.32) 1.537 (5.88) 1.020 (6.07) 0.894 (5.65)

Table 1: Compile-time granularity control results for Boyer

Granularity control is effective if it gives better performances than the non-granularity controlled program.

The ideal columns show that, as expected, granularity control reduces the amount of available parallelism. Thus,

in the absence of overheads, performance should be better without granularity control. Instead, the results show

that this form of granularity control gives better execution times, and is indeed effective in all cases. The main

component that leads to the increased performance is clearly the removal of parallel creation overheads, as shown

by the difference in performances for the one worker cases. Even so, and for all systems except the Sequent,

the speedup (which is relative to their respective 1 worker case) is better for the lower number of workers for

the granularity controlled cases. Even for the Sequent, the agreement with the ideal parallelism is better for the

controlled case. The good speedups show that the granularity control was able not only to remove the parallel

creation overheads (cost of allocating CGEs), but also some direct parallel task execution overheads, especially

for the faster machines.

The major weakness of this method is that the reduction in parallelism can become quite significant with

larger number of workers. It should be possible to achieve better performance if a more selective way to remove

CGEs is found, but this would need some form of analysis (at compile-time) to determine the ‘worth’ of the

CGEs. Additionally, this purely compile-time transformation does not take into account run-time situations: for

example, with smaller number of workers, better results can be achieved by producing less CGEs.

The example for Boyer transformed the program to create and not create CGEs alternately, thus reducing the

number of CGEs generated at run-time by about half and duplicating average distance. One advantage of this

method is that, in many cases, the distance between CGEs can be easier to determine than the time-complexity

of a goal: e.g. if no recursive goals are executed sequentially between successive CGEs, as is the case for every

example program in [11] except quick-sort, then the distance can simply be calculated by counting the number

of resolutions between successive CGEs, and this can be performed at compile-time. As we are interested in

9

average distances, then even for quick-sort, we can see that the partition goal, which is run sequentially between

successive CGEs will generally have a relatively high complexity, and thus make average distances large (it

will only be small when the input list is very small). In general, we would expect that this method could be

improved by compile time analysis. Such work could be used to estimate average distance between CGEs and

thus approximate the number of CGEs that should be sequentialised in order to improve distance up to a desired

factor. The number of sequentialised CGEs can be controlled to some extent by changing the way the program is

transformed. However, in this work, our interest is to study the effectiveness of distance as a granularity control

metric, and not to propose the most effective control methods based on the metric. Thus, to start with we would

like to examine how well we can perform with the simplest compile-time heuristic, and we will not consider

the issue of the actual compile-time transformation in more detail, except to note that the simple transformation

presented here can be readily improved upon.

3.2 The Run-Time Method

The second granularity control method uses a simple counter in order to decide whether a CGE should be al-

located or not. The counter measures the work done since the last CGE was allocated. If its value is below

a pre-determined threshold, then the new CGE would not be allocated, and the goals in the CGE will be run

sequentially instead. Conceptually, this method can be thought of as:

(above_threshold(Counter) -> reset(Counter), g1(...) & ... gn(...)
; g1(...), ... gn(...))

In other words, if the condition above threshold is fulfilled, reset the counter back to zero and execute in

parallel. Otherwise, execute the goals sequentially. We first discuss implementation issues, and then give a brief

performance analysis.

3.2.1 Implementation Issues

We implemented the above conceptual model at the abstract machine level in order to minimise overheads. Within

the abstract machine, the natural unit to count is the number of abstract machine instructions executed. In addition,

the system takes advantage of the fact that, in DASWAM, the code for making calls within a CGE is very similar

to the sequential code6. We generate the same code for the parallel and sequential execution, thus removing a

potential source of overhead. The parallelised code differs from traditional WAM code mainly in the addition of

allocate pcall, push goal, and par proceed instructions. Briefly, the allocate pcall instruction

creates a new CGE, the push goal instruction creates the parallel goals in the new CGE, and par proceed is

executed when a goal in a parallel execution completes. It informs the parallel scheduler the goal has completed

and performs the necessary operations on the CGE.

One method to sequentialise CGE execution is through Prolog source level constructs such as if-then-else as

presented above. Instead, in order to accomplish this with minimal impact on performance, we added two new

abstract machine instructions, skip par if and gran par proceed. The instructions are designed to allow

the same piece of code to be executed both for parallel and sequential CGEs. We demonstrate their application

through the granularity controlled code for the CGE in Boyer’s program (see section 3.1):

(rewrite(OldArg,MidArg0) &
rewrite_args(N1,Old,Mid))

6See [15, 19], for details of DASWAM’s instruction set.

10

skip_par_if(label(_1),5,2) ;CGE has 2 and-goals.
allocate_pcall(2,1,6)
push_goal(label(_1388),1,0,0)

label(_1): ;skip here if sequentialised
put_y_value(5,0)
put_y_value(0,1)
call(rewrite/2,5) ;rewrite_args(OldArg,MidArg0)
gran_par_proceed(label(_1386),0) ;no-op if sequentialised

label(_1388):
put_y_value(2,0)
put_y_value(3,1)
put_y_value(4,2)
call(rewrite_args/3,2) ;rewrite_args(N1,Old,Mid))
gran_par_proceed(label(_1386),1) ;no-op if sequentialised

label(_1386):
put_y_value(0,0)
get_y_value(1,0)
deallocate
execute(true/0)

The two new instructions are:

skip par if(Label, Threshold, N): this instruction causes execution to branch to Label if

the counter is below Threshold, so that the following code will be executed sequentially. The Label
should follow the allocate pcall and push goal instructions. N is the number of and-goals in the

CGE, and is used to determine the number of gran par proceed instructions to skip for the execution

of code in this (sequentialised) CGE.

gran par proceed(Label,N): This instruction replaces the par proceed instruction, and has ex-

actly the same arguments. The difference is that this instruction first checks whether it is inside a sequen-

tialised CGE or not, and if so, skips the execution of the rest of the instruction. The extra functionality

of this instruction could be incorporated into par proceed but, we preferred to keep two instructions

in order not to incur the overhead of determining if the CGE is sequentialised or not in non-granularity

controlled code.

The following method is used to determine if a gran par proceed is in a sequentialised CGE7 or not. First,

each and-goal in the parallel conjunction implements a new counter (PS)8 which is initialised to 0. The counter is

stored in the Parcall marker, the data-structure that describes a new and-parallel task [18]. If the skip par if
instruction decides that the CGE immediately following is to be sequentialised, then the number of and-goals

in that CGE (N) is added to the PS counter of the current (i.e. the last allocated) CGE slot that represents the

current task. In this sequentialised execution, no new Parcall marker will be allocated, and the procedure calls

in the sequentialised CGE still have the previous Parcall marker as the current Parcall marker. Later, when the

execution returns from the call and enters the gran par proceed instruction, the same Parcall marker will

again be current. The PS counter is checked to see if it is zero. If so, the CGE has not been sequentialised,

and the normal parallel proceed actions take place. Otherwise, the counter is decremented, and the next

instruction is executed. This method allows for multiple successive CGEs to be sequentialised, as the PS counter

is simply incremented by the appropriate amount each time.

7Recall that this notion of sequentialisation is different from the traditional granularity control: it only applies to the immediate CGE.

Subsequent CGEs can still be executed in parallel.
8In fact in the actual implementation, the counter reuses a location in the slot that would not be used until the CGE has completed,

thus introducing no extra memory overheads.

11

The instruction threshold counter is implemented as a new worker register. The current DASWAM implemen-

tation already keeps the count of the total number of instructions executed by a worker in a DASWAM register,

hence this new register needs only record the instruction count at the last parallel CGE or, if a new task is started

on a worker, the instruction count at the start of work. The value of the register is then used together with the

instruction count to calculate if a CGE should be sequentialised or not.

3.2.2 Overheads

The run-time scheme introduces some overhead to the execution. One always has to update the threshold counter

at each CGE, and to initialise the PS counters for each slot in the CGE. When granularity control is used,

the extra cost also includes the execution of the skip par if instruction, and the check performed at each

gran par proceed instruction. We would expect these overheads to be reasonably small.

prog. ng orig ng g(0)

Boyer 6195.6 6239.2 6331.8

fib(23) 1917.2 1859.0 1956.6

hanoi(16) 2839.6 2661.0 2773.4

Orsim 7676.6 7747.0 7758.4

Table 2: Comparison of Execution times (ms) for Scheme

To study the impact of the run-time scheme’s overheads, we compared the execution times for several pro-

grams on the original and the run-time schemes. The programs chosen for this study are benchmarks taken from

[11], except for Boyer and Orsim. Orsim is an application program developed by one of us [22, 21] to study

or-parallelism. All the programs except for Orsim have small distances between CGEs (see section 4), and so

the run-time scheme’s overheads should show up most clearly. The results are shown in Table 2, where ng orig

column represents the single processor execution times for the original scheme; ng represents the timings for

a scheme where dynamic granularity control enabled but not actually used in CGE code; and g(0) represents

timings under a scheme where dynamic granularity control enabled code being generated, but not actually se-

quentialising CGEs. The latter is obtained by the use of a zero threshold so that all CGEs are parallelised. Note

that this represents the maximum overheads that would be incurred by the scheme. Execution times were ob-

tained on a SGI Challenge. DASWAM was compiled with the MIPS C compiler, under the same optimisation

level as before (-O2). The timings are the mean of 5 executions.

The overheads are quite reasonable. In fact, other factors, such as what other tasks the machines was per-

forming while these results where obtained, may have more significant effect on the performance, such that the

performance of g(0) is actually measured to be slightly faster than ng orig in hanoi(16). The biggest overhead is

just 2.2% for g(0) over ng orig for Boyer, suggesting that, even for programs where an unusually high overhead

for the run-time scheme is expected, it is still not significant.

Another possible source of overhead of this scheme is that the code for parallel conjunctions may not be

as optimised as the equivalent sequential code. There are differences in terms of register allocation, and of

instructions semantics, as unlike the sequential code, the parallel code cannot assume that an environment variable

has been initialised by a previous call in the CGE, because it cannot be assumed that the call would be executed

first. The most important difference is the loss of last call optimisation. This is most severe in non-strict IAP

code like Boyer, where parallelisation forces an additional unification at the end of the CGE but, the programs in

Table 2 are also highly tail recursive, and thus the results suggest that this source overhead is still relatively small.

One interesting application of this new scheme is in executing sequentialised CGEs in other situations, such

as when a CGE condition fails. The scheme avoids the cost of the relatively more expensive if-then-else construct,

12

for which most compilers need to generate extra procedure calls for the then and else parts.

Lastly, one should note that in parallel execution the number of CGEs that will be sequentialised is non-

determinate. This is due to the fact that the threshold is counted from the start of a new and-goal. Given that

which goals are selected first to execute in parallel is non-determinate, the calculations of distance can vary, and

the number of sequentialised CGEs can vary. Our results suggest that this variation is relatively small, and that

as more tasks are actually executed in parallel, the number of sequentialised CGE would increase slightly.

3.2.3 Performance

Table 3 shows the results of using the runtime method on Boyer, with the threshold set at 64, 80, 96, 112

and 128 abstract machine instructions. These particular thresholds were chosen because the implementation

of skip par if allowed the threshold to be set in increments of 16 units only. Again, the results are the best

timings of at least 5 runs. The system was run on the 10 processor SGI Challenge. The numbers in brackets in

the 1 worker case are the number of CGEs in each of the 1 worker case. The bracketed numbers in the other cases

are the speedups relative to their respective 1 worker case.

#w no gran 64 80 96 112 128

1 6189 (94056) 5456 (48511) 5370 (44104) 5040 (32230) 4961 (32092) 4868 (29127)

3 2514 (2.46) 2158 (2.53) 2099 (2.56) 1920 (2.63) 1887 (2.63) 1902 (2.56)

4 1959 (3.16) 1717 (3.18) 1651 (3.25) 1514 (3.33) 1548 (3.20) 1664 (2.93)

5 1641 (3.77) 1492 (3.66) 1444 (3.72) 1301 (3.87) 1340 (3.70) 1406 (3.46)

6 1436 (4.31) 1347 (4.05) 1292 (4.16) 1168 (4.32) 1185 (4.19) 1286 (3.79)

7 1285 (4.82) 1242 (4.39) 1190 (4.51) 1067 (4.72) 1083 (4.58) 1204 (4.04)

Table 3: Run-time granularity control for Boyer

As the machine was loaded at the time the experiments were performed, no results were gathered beyond 7

workers, because the system did not have the resources to allow DASWAM to utilise these processors. Indeed,

it is not clear how much impact the load has on the presented results. The results for no gran, the case with no

granularity, is taken from the experiment with the compile-time method presented in Table 1, when the machine

was not busy. The results for 2 workers are not included because of the same problem as discussed previously.

Even on a loaded machine, the results shows that the granularity control can improve the performance. Base

speed (performance on one worker) improves, as one would expect. Speedups are quite close to the one processor

version. Interestingly, the improvements becomes greater with higher thresholds until 112, probably indicating

that direct parallel execution overheads were being reduced9. At even higher thresholds, the reduction in over-

heads cannot compensate for the lost in parallelism, especially for larger number of workers.

#w no gran 96

1 7893 (2100) 8034 (2100)

2 4062 (1.94) 4074 (1.97)

4 2035 (3.88) 2063 (3.89)

8 1053 (7.50) 1060 (7.58)

10 835 (9.45) 859 (9.35)

Table 4: Run-time granularity control for Orsim

9The speedups are better for the no granularity controlled case probably because they were obtained when the machine was not loaded.

13

Table 4 shows a worst-case program for traditional granularity analysis. The program is Orsim [22, 21]. This

is quite a complex program that is very difficult to analyse. The program has quite high granularity, hence does

not need granularity control. We obtained the results on a the SGI Challenge when it was lightly loaded. Times

are in milliseconds, and are again the best of at least 5 timings. One advantage of the run-time method is that it

does not require any analysis, and the overhead of using it is very small, so that in this case where no CGEs are

sequentialised, the performance of the program with granularity control is quite close to the original performance.

4 Discussion

The average distance between CGEs is a good metric to explain the effectiveness of granularity analysis on Boyer,

and other programs as studied in [11]. Table 5 shows the average distances for these programs with no granularity

control as a function of abstract machine instructions: i.e. the average number of instructions executed per CGE.

prog inst CGE av. distance

Boyer 5106759 94056 54.3

hanoi(10) 47083 1023 46.0

hanoi(16) 3014635 65535 46.0

Fib(17) 95593 2583 37.0

Fib(19) 250290 6764 37.0

qs(300) 55452 300 184.9

qs(3200) 823168 3200 257.2

Orsim 9069226 1200 7557.7

Table 5: Average distances

Table 5 clearly show that all the programs except quick-sort and Orsim have very small average distances:

there are only about 3 to 5 unifications between each CGE (using the approximation that each unification is

approximately made up from about 10 abstract machine instructions). We would expect that granularity control

in these cases would be very effective in reducing the parallel overheads. On the other hand, we would expect that

granularity control to be less effective for quick-sort. This is indeed the case from experimental results [12, 11].

The reason that quick-sort, running in IAP, has a large average distance is because the partition predicate is

executed between successive CGEs:

qsort([], Rest, Rest).
qsort([X|Unsorted], Sorted, Rest) :-

partition(Unsorted, X, Smaller, Larger),
(qsort(Smaller, Sorted, [X|Sorted1]) &
qsort(Larger, Sorted2, Rest)),

Sorted2 = Sorted1.

The partition predicate is recursive and does not contain any CGEs. Analysis should be able to determine that

it is likely that this predicate will perform a significant amount of work, thus making the distance between CGEs

large on average. Such an analysis would decide not to add compile-time granularity control in this case.

It is interesting to compare the new methods with complexity-based approaches. Tables 6, 7 and 8 show

the effect of the using granularity controls on qs(3200), hanoi(16), and fib(23) respectively. The programs are

taken from [11], with 23 used as the parameter for Fib to get results that would take over a second to execute on

the Challenge. The results are again in milliseconds, the best of at least 5 executions. The qs(3200) query was

14

performed on the 10 processor Sequent, while hanoi(16) and fib(23) were performed on the SGI Challenge. We

present the compile-time and run-time control methods, along with the traditional complexity threshold methods.

The results for the complexity threshold method of qs(3200) are taken from [11], and are average timings, rather

than the best times, but in the context of these experiments, the differences from best times are small. For the

run-time control method, thresholds of 64, 80 and 96 abstract machine instructions were used, with the addition

of a 112 threshold for fib(23). These are shown in the column with the threshold as the headings. The ‘compile-

time’ columns are for the program transformed to call CGE only on alternate recursive calls, which reduces the

CGEs by half in qs(3200) and fib(23), and by two-thirds for hanoi(16). The reduction is two-thirds for hanoi(16)

because many of the calls terminates in the base case, and generate no CGEs. The results for the complexity

method are show in the columns with headings of size(X), where X is the size threshold, measured in resolution

steps.

The programs have quite different characteristics. As explained before, qs(3200) has a high average distance,

and relatively low parallelism. The hanoi(16) and fib(23) queries have very low average distances and significant

parallelism. The size of the two goals that are run in parallel in a CGE are identical for hanoi(16), but are slightly

less well balance for fib(23), where one goal is about 60% larger than the other. Another difference is that

CGEs occurs regularly and at constant distances for hanoi(16) and fib(23), but irregularly for quick-sort. Note

that although the compile-time transformation was applied to quick-sort, in an actual system, no control would

be applied because as discussed in section 3.1, the analysis would have concluded that the average distance is

sufficiently large and the query does not need granularity control. The results are presented here mainly to show

the effect of an inappropriate application of the method.

We shall first discuss and compare the results obtained from the two new methods, and then compare them to

the more traditional complexity-based approach.

#w no gran 64 80 96 compile-time size(64) size(256)

1 13486 (3200) 13377 (2462) 13298 (2093) 13232 (1724) 13035 (1601) 14084 (2093) 13197 (557)

2 7453 (1.81) 7399 (1.81) 7376 (1.80) 7364 (1.80) 8151 (1.60) 7701 (1.83) 7338 (2.77)

4 4818 (2.80) 4767 (2.83) 4762 (2.79) 4818 (2.75) 7091 (1.83) 4926 (2.86) 4772 (2.77)

9 3722 (3.62) 3699 (3.62) 3703 (3.59) 3698 (3.58) 6988 (1.87) 3767 (3.74) 3742 (3.53)

Table 6: Granularity control for qs(3200) on Sequent

#w no gran 64 80 96 compile-time size(16) size(256)

1 2745 (65535) 2325 (34952) 2190 (26760) 2073 (21536) 1857 (21845) 1646 (8191) 1374 (256)

2 1671 (1.64) 1276 (1.82) 1176 (1.86) 1097 (1.89) 1012 (1.83) 836 (1.97) 676 (2.03)

4 939 (2.92) 703 (3.31) 637 (3.44) 591 (3.51) 542 (3.43) 434 (3.79) 338 (4.07)

9 567 (4.84) 376 (6.18) 337 (6.50) 313 (6.62) 278 (6.68) 201 (8.19) 157 (8.75)

Table 7: Granularity control for hanoi(16) on SGI Challenge

#w no gran 64 80 96 112 compile-time size(16) size(1024)

1 1939 (46367) 1578 (20735) 1355 (14674) 1303 (13928) 1255 (11577) 1586 (23184) 1379 (10945) 945 (232)

2 1190 (1.63) 820 (1.92) 732 (1.85) 710 (1.84) 685 (1.83) 870 (1.82) 722 (1.91) 474 (1.99)

4 671 (2.89) 446 (3.54) 391 (3.47) 387 (3.37) 364 (3.45) 463 (3.43) 376 (3.67) 235 (4.02)

9 405 (4.79) 254 (6.21) 265 (5.11) 282 (4.62) 298 (4.21) 251 (6.32) 179 (7.70) 107 (8.83)

Table 8: Granularity control for fib(23) on SGI Challenge

15

4.1 Run-Time versus Compile-Time Methods

Table 6 shows the results for quick-sort. The run-time control removes some CGEs resulting in slight improve-

ment in execution times for one worker. These differences are not very significant, because the original average

distance was relatively large. In addition, and because in this benchmark CGEs occurs between recursive parti-

tions of the list, each successive CGE distance must be smaller than the last (because smaller and smaller lists are

partitioned). Sequentialising CGEs with small distances therefore removes those CGEs that result in small tasks,

and does not significantly affect the available parallelism, and so the speedups were only reduced very slightly.

When compared to no gran, the slight reduction of speedups with run-time control tends to cancel out the slight

decrease in overhead, but nevertheless, small improvements were still being obtained up to the 9 workers.

On the other hand, the compile-time approach shows that an inappropriate application of the CGE removal

transformation can have negative impact on the performance10 . In fact, the speedup was greatly reduced, and

the parallel performance is significantly worse than the other cases. Another point illustrated by the results is

the importance of removing the right CGEs. Whereas the number of CGEs for the 96 run-time threshold case is

only slightly more than the compile-time transformation case, the speedup obtained from the 96 threshold case

is significantly better, because only the CGEs that produced the least parallelism were removed. A final point to

note about the results is that the one worker case for the compile-time transformation are noticeably better than

the other cases. We believe this is because the compile-time transformation carries no run-time overheads as the

parallelism is removed at compile-time.

Table 7 shows results for the hanoi(16) query. Both compile-time and run-time methods were effective in

increasing execution efficiency and, in fact, their improvements are quite significant. Part of this can be attributed

to the use of the Challenge, which is a much faster machine than the Sequent, and therefore where the parallel

execution overheads are more significant.11 The compile-time method is more effective in this case, because

again there is less overhead to pay for using the compile-time control.

The results for the Fib benchmark, as shown in Table 8, are similar to the ones for Hanoi, although the increase

in performance is somewhat less, and the reduction in speedups is more marked, especially when the distance

threshold is set high. The result is that the best run-time method performance for 9 workers is obtained for the

lowest threshold value of 64, although the performance is better in the higher thresholds for smaller number of

workers. The compile-time method removes slightly less CGEs than the 64 threshold case. Performance in terms

of speedups and actual exaction times are similar, although again the performance on one worker is slightly better

in the compile-time method, even though it retains somewhat more parallel CGEs. At least in this case where

CGEs occurs regularly, neither the compile-time or run-time methods are better at removing the “right” CGEs.

4.1.1 Determining suitable thresholds

As already stated, our interest in this paper is to use the two methods presented here as a guide to further de-

velopments of methods based on the distance metric, and as such we are not interested in developing these two

methods as actual fielded methods. However, if we were to field either methods, we would need to determine

the appropriate threshold for a particular system, at a particular configuration (machine and number of workers

used). More systematic results would be needed for a particular system than what we presented here, but it can

be seen already that the thresholds would be about 100 abstract machine instructions (or about 10 unifications)

for most configurations – less for Sequent because it has relatively less significant parallel overheads; and larger

when a small number of workers are used in any machine.

10While we do not believe any analyser that is developed would make the incorrect decision in the quick-sort case, we cannot be sure

it will always perform correctly, especially in more complex programs.
11This can be seen by the lower speedups obtained by programs on this machine compared to the Sequent, especially for low granularity

programs. The speedup differences are much less marked for large granularity programs such as Orsim, or the granularity controlled

executions.

16

4.2 Distance-Based versus Complexity-Based Methods

We have seen choosing the “right” CGEs can have very profound impact on how many CGEs that can be removed

without decreasing parallel speedups. The results obtained for the time-complexity granularity method illustrates

this point even more dramatically: there has been a great reduction in the number of parallel CGEs in all three

programs (but most especially for Hanoi), but the resulting speedups are not greatly affected. Our previous

results [11] on using complexity analysis for granularity control illustrates this point for a larger set of programs

and query sizes.

size fib(17) fib(19) hanoi(10) hanoi(16) qs(300) qs(3000)

0 2583 (8.37) 6764 (8.66) 47083 (8.28) 65535 (8.93) 300 (3.34) 3200 (3.62)

16 986 (8.40) 4180 (8.74) 127 (8.17) 8191 (8.95) 124 (3.32) 2093 (3.74)

64 376 (8.53) 986 (8.72) 31 (7.69) 2047 (8.94) 63 (3.20) 557 (3.53)

256 88 (8.38) 232 (8.65) 7 (7.63) 511 (8.98)

1024 20 (6.79) 54 (8.07) 1 (2.02) 127 (8.59)

Table 9: Number of CGEs with complexity granularity control

Table 9 shows the number of CGEs remaining after performing the granularity control with the various gran-

ularity thresholds for the various programs. The mean speedup obtained for 9 workers on a Sequent Symmetry

is shown in brackets. The results again show that although the number of CGEs was drastically reduced, in most

cases the available parallelism is not greatly reduced. This is because the CGEs that are removed are the ones

that do not contribute much extra parallelism at the relatively small number of workers used. However, results

for the hanoi(10) query show that this is not always the case: if the parallelism is constrained to be less than

what the processor resource can exploit, there can be a dramatic effect on the speedup. This again illustrates the

importance of run-time considerations. As the query a program will run with cannot in general be determined at

compile-time, run-time information is needed to ensure good performances in these cases.

The reason for the much better performance of the complexity-based method than the two distance methods

for the Hanoi and Fib benchmarks can be attributed to the great reduction in CGEs with granularity control. These

two programs are ideal for the complexity method because the and-goals in the CGEs are highly recursive and

the two goals in each CGE would both lead to significant parallelism if they are sufficiently large. In addition, the

distances between successive CGEs are very small. Thus, using even small complexity thresholds, a very large

number of CGEs are removed, and those are precisely the CGEs which lead to least parallelism. Very few CGEs

are needed to keep the workers busy, because the parallel tasks are large and well balanced in size.

These conditions are arguably not usual for application programs, such as Orsim, where the average distance

is very large, and the parallel tasks are not as well balanced. Another example where the average distance is

relatively large is Quick-sort. In this case, although the proportion of CGE removed is about the same as Fib, this

does not result in great reduction of overheads with respect to the time spent on performing useful work. Thus,

the complexity granularity control is not very effective in this case. Quick-sort still has relatively well balanced

amount of work performed by the goals, and again the CGEs that lead to the least parallelism are removed. With

programs which are less balanced, the complexity-based control can be even less suitable. Consider:

a(0) :- !.
a(X) :- X1 is X - 1,

(a(X1) & b).

b.

17

In this example, the distance metric would show that the program has very low granularity (and probably

should not be parallelised), but the complexity method could execute a(X) in parallel with b for sufficiently

large X, even though this would probably not result in great speedups. It is possible, in the complexity method, to

measure the complexities of both goals (as proposed in [12]), and only execute in parallel if both goals are above

a threshold. Unfortunately, this solution still has problems. First, our example is an extreme case of a situation

where parallel tasks may have very different amounts of work. In general, the removal of CGEs in such cases

will be less ideal than for Hanoi and Fib. Hence, more CGEs will be needed to keep the load balanced, resulting

in less dramatic improvements. Second, the run-time cost of doing multiple thresholding tests per CGE will be

even more expensive than performing a single threshold test. The parallelisation conditions will also be more

complex, especially with more than two goals in a CGE.

In general, consider equation 2 again:

(3)

An effect of thresholding is to prevent the creation of CGEs below the threshold, and this would generally have the

effect of reducing , thus reducing the parallel overhead . However, as discussed previously, the number and

the actual temporal distribution of subtask creation events (, creation of CGEs) are highly program dependent,

using alone for thresholding does not give very good control over , the effect is highly program dependent,

and thus choosing a universal threshold for a particular system is very difficult.

The run-time overheads for performing complexity granularity control can also be a factor, like in Quick-

sort. Here the run-time distance control method performs better because the overheads are lower – testing the

size threshold of the input list in the complexity method is much more expensive. Even for the Hanoi and Fib

programs, where the system just checks a numeric value against the threshold, the cost for the complexity-based

method is still higher than either of the two new methods. The point is brought home clearly comparing the 112

run-time case and the 16 complexity case for fib(23). Both remove about the same number of CGEs, but the

execution time for the run-time method case is faster for 1 worker.

A different problem with using the complexity threshold is that it relies on being able to derive a relationship

between the input arguments’ sizes and the resulting complexity. Such a relationship does not always exist, as

in Boyer, and in cases where it does, it may not always be easy to derive. Even where it can be estimated, we

have seen it might require relatively large run-time overheads to determine the size parameter, as in the case for

quick-sort, where the length of the input list is the norm, and thus determining the size would require some sort

of run-time test on the length of lists, which is relatively expensive.

5 Improvements and Extensions

The quick-sort example showed a situation where the compile-time method (when applied blindly) performed

worse than the run-time method because it removed “good” CGEs. There are cases where the run-time method

can also remove “good” CGEs. As an example, consider the case where, early in the execution, a program creates

several pieces of parallel work of significant size in quick succession, and then stops creating parallel work. In

this case (which does occur in the bt cluster benchmark first used by Andorra-I [25]), the actual distances between

each CGE will be short, but the average distance (defined as the ratio of total work per number of CGEs) would

be much larger. The CGEs should therefore not be sequentialised.

This situation illustrates a weakness of any purely run-time scheme. These methods cannot look ahead into

what may happen further into the execution. In this case, when and where new CGEs will be created, and

how much parallelism they might provide. Of course, more sophisticated systems than the very simple counter

method can be designed, for example, systems which takes into account if the workers are currently busy or

not; and heuristics based on execution history to try and anticipate future behaviour [5]. For example, a more

18

sophisticated run-time scheme can only start to sequentialise CGEs when all the workers are busy and the distance

is below the threshold. However, and as we have seen even for the simple scheme presented here, any run-time

scheme does carry some overheads: the more sophisticated the scheme, the more expensive the overhead. In the

end, run-time systems will always suffer from not having specific information about the execution still to come.

This information can only be provided by compile-time analysis. On the other hand, a compile-time only method

cannot take into account run-time conditions such as the load of the machine, and furthermore there will probably

always be programs that cannot be analysed.

The ideal distance also needs to be adjusted for different parallel systems and machines, as system architecture

would affect the relative importance of various sources of overheads. In fact, distributed network systems, where

Debray et al. [3] have recently shown some promising results with complexity-based granularity control, would

require larger average distances than shared-memory machines in order to obtain performance improvements.

Moreover, the penalty for parallelising the “wrong” CGE may be very high, suggesting that they may require

more sophisticated distance granularity control schemes than the two we presented here. We believe that the

notion of distance, under the appropriate granularity control scheme, will be a suitable method for granularity

control: equation 2 still holds for such systems – between points where distance is measured, the overheads, to a

first approximation, still have a simple relationship to the amount of work performed.

5.1 Dependent And-parallelism

As already stated, the distance metric can be readily applied to or-parallelism, and indeed to any parallel system

where the parallel work creation introduces overheads. However, in cases where the parallel execution entails

additional overheads to those considered so far in this paper, the situation may be more complex. In some cases,

they can simply be taken into account as additional sources of indirect parallel execution overheads, and thus

taken into account when calculating the distance.

Consider the case of dependent and-parallelism (DAP), specifically DDAS [15] as exploited by DASWAM.

In this implementation, costs are associated with variables being dependent and with suspensions, among others.

These can be expected to have different implications on the distance metric: suspension can be considered as an

additional source of indirect parallel overhead, and thus distance should be measured to when a suspension occurs.

However, suspension is dynamic and varies from run to run of a program even with the same configuration, thus

a statistical approach would probably be needed to adequately account for it. As for dependent variables, which

can be accessed throughout the parallel execution, should be considered as part of the direct parallel overhead.

However, a complication now arises because this new source of overhead breaks an important assumption about

direct parallel overheads as expressed in equation 1, that is, is no longer a constant that does not vary from

program to program, or even within the same program. With dependent variables, more dependent variables

are likely to lead to higher overheads, i.e. depends on the number of dependent variables present during a

particular parallel execution. Thus, we can no longer simply use the amount of work performed between points

where distance is measured (in equation 1) as indicating the time-complexity, but need to take the number of

dependent variable into account: the more dependent variables there are in a particular part of a parallel execution,

the higher the direct parallel overhead (i.e. a larger in equation 1). However, between points where distance

would be measured, it is still reasonable to assume that the overhead would be approximately proportional to

the amount of work done, and equation 2 can be modified by splitting the of equation 2 into two different

components:

for the whole task, and thus the overhead would be for each portion of task between points where

distance is measured, where represents the same original proportional overheads, while is a factor that is

dependent on the number of dependent variables found in that portion of the task.

19

Thus, the distance measure becomes more complex in a DAP setting than in previously considered situations.

It should certainly be possible to devise schemes which make use of this more complex distance measure but,

even the original distance measure may be helpful in a DAP setting, because increasing the amount of work

performed between CGEs would also reduce the number of dependent variables and suspension, in addition to

reducing the overhead of creating parallel work.

#w no gran pred. 96 240 compile-time pred.

1 6286 (6400) – 6221 (5662) 5709 (3448) 4586 (3205) –

2 3177 (1.98) 1.99 3017 (2.06) 2713 (2.10) 2335 (1.96) 1.98

4 1654 (3.80) 3.91 1725 (3.61) 1661 (3.44) 1560 (2.94) 3.22

8 974 (6.45) 7.45 1350 (4.61) 1396 (4.09) 1401 (3.27) 4.15

1 9956 (10099) – 9775 (9900) 9058 (7732) 6989 (5050) –

2 5112 (1.95) 2.00 3985 (2.45) 3742 (2.42) 3566 (1.96) 1.98

4 2715 (3.67) 3.99 2903 (3.37) 2717 (3.33) 2700 (2.59) 3.44

8 1404 (7.09) 7.97 2986 (3.27) 3004 (3.02) 3020 (2.31) 3.44

Table 10: Granularity control for DAP qs(6400)(top) and pascal(200), on Sun SPARCcenter

To see how well the simple original distance measure would work for DAP programs, we applied the run-

time and compile-time granularity control to two DAP programs. Table 10 show the results, the two ‘pred.’

columns give the predicted speedups for their respective configurations (no gran and compile-time) as obtained

on the DASWAM simulator; no pred. figures are given for the run-time results because the simulator had not been

extended for the run-time control scheme.

The two programs chosen showed quite high DAP overheads during studies of DASWAM performance [19].

They are: a DAP version of quick-sort12 , sorting a 6400 element list, and Pascal(200), generating in this case the

coefficients for the 200 row of the so-called Pascal’s triangle. Compared to the IAP programs for which gran-

ularity control was effective, the initial (i.e. before granularity control) average distances (measured in abstract

machine instructions) are quite high: 281 for Pascal, and 307 for quick-sort. The results are again the best of at

least 5 runs, in milliseconds, on the Sun SPARCcenter. Thresholds of 96 and 240 instructions were used for the

run-time method. The 240 threshold was chosen because in the quick-sort case, it sequentialised approximately

half the CGEs as in the compile-time method.

Perhaps the most striking result is that the granularity control greatly reduces the available parallelism, much

more so than might be expected from the IAP experience.13 In particular, the number of sequentialised CGE

should be quite small for the 96 run-time threshold, but the reduction in speedups were still significant at 8 work-

ers. The predicted speedups for the compile-time cases, which is significantly less than the predicted speedups

for the non-controlled cases, show that the reduction in speedup is due mostly to the great reduction in paral-

lelism, rather than some performance problem with DASWAM. This was somewhat unexpected, and we think

the likely reason is that the sequentialisation of even some CGEs causes the delay of the production of bindings

for dependent variables, thus causing longer suspensions and hence loss of parallelism. This suggest that simply

measuring the distance (however defined) may be insufficient, if some of the overheads have other effects other

than introducing extra overheads to the execution (in this case, suspension causes computation to stall).

Nevertheless, both granularity control methods do reduce the parallel overheads on one worker, although the

reductions with the compile-time method are much more significant with smaller number of workers. At a run-

12In addition to the parallel execution of the two recursive calls to quick-sort, which give rise to IAP, the DAP version executes the

partition of the list in parallel as well.
13Note that the apparent super-linear speedups seen in the 2 workers cases of the run-time method is probably due to a greater number

of sequentialised CGEs for 2 workers compared to 1 worker, resulting in overall faster execution.

20

time threshold of 96 instructions, few CGEs are sequentialised, and the improvement in execution time is small

but, nevertheless, the parallelism is still reduced significantly with larger number of workers. The result is that

the improvement in performance with granularity control is unable to compensate for the decreased parallelism

with this larger number of workers. However, it should be noted that the reduction in overheads are much

more significant for the DAP case than the IAP case. For example, the DAP version of the quick-sort has the

same average distance between CGEs as the IAP version, but the reduction in parallel overhead is much more

significant. This is to be expected as DAP incurs significant extra overheads when compared to IAP.

In summary, the simple granularity control schemes were still effective in providing better performances for

smaller (4 or less in the examples) number of workers; but it is clear that additional factors need to be considered

in controlling granularity for DAP to achieve better performance. From the significant reduction of overheads, it

also seems likely that with the right method, DAP can benefit greatly, perhaps more than IAP, from granularity

control. Much more research is needed in this area.

6 Conclusions

In this paper, we presented a new metric — distances between sources of parallelism — for measuring granular-

ity, and explained how this metric can be used to control granularity to improve parallel execution performance.

We believe that this new metric is better able to account for why granularity control is more effective in some

programs than in others. We presented results for two very simple schemes that make use of this metric, one

run-time based and the other compile-time based. Results show that the new metric is quite promising. In fact,

we showed that the two distance based methods were able to obtain significant performance improvements for

a complex program that was hard to improve with traditional, complexity-based, systems. Initial results suggest

that even the simple run-time method can obtain surprisingly good performance for some of the benchmarks, even

though no consideration have been given to the “worth” of CGEs being sequentialised. On the other hand, better

performance requires compile-time analysis in order to remove the “correct” CGEs. This point was demonstrated

by the fact that a complexity-based system could outperform the new methods for benchmarks that create paral-

lelism regularly, frequently, and have well balanced parallel tasks, as in such cases it was able to greatly increase

the average distance through removing the “correct” CGEs.

We believe that in order to take full advantage of the distance metric, combined run-time and compile-time

granularity control will be needed. Hard problems are still open, such as how to best set thresholds, how to

more efficiently combine run-time and compile-time techniques, how to combine the complexity-based and the

distance based metrics, and how to use these principles to improve execution for other parallel systems. We are

actively researching ways to achieve these goals.

Finally, as discussed in the introduction, we believe that this metric has wider application than to parallel

Logic Programming systems. It applies to any parallel system that dynamically creates parallelism, and has a

cost associated with this.

Acknowledgements

The authors would like to acknowledge and thank for the contribution and support that Manuel V. Hermenegildo

and Pedro López-Garcı́a gave to this work, including the use of the SGI and Sun multiprocessors. We also thank

the anonymous referees of this paper for their helpful comments. Vı́tor Santos Costa has been supported by the

PRAXIS PROLOPPE project, the JNICT MELODIA project, and by the NATO MAPLE project.

21

References

[1] K. A. M. Ali and R. Karlsson. The Muse Approach to Or-Parallel Prolog. Technical Report SICS/R-90/R9009,

Swedish Institute of Computer Science, 1990.

[2] U. C. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J.-C. Syre, and H. Westphal. The

Parallel ECRC Prolog System PEPSys: An Overview and Evaluation Results. In Proceedings of the International

Conference on Fifth Generation Computer Systems 1988, Volume 3, pages 841–850, 1988.

[3] S. K. Debray, P. López-Garcı́a, and M. V. Hermenegildo. Lower Bound Cost Estimation for Logic Programs. In

J. Mašuszyński, editor, Logic Programming: Proceedings of the 1997 International Symposium, pages 291–306. The

MIT Press, 1997.

[4] D. DeGroot. Restricted And-Parallelism. In Proceedings of the International Conference on Fifth Generation Com-

puter Systems 1984, pages 471–478, 1984.

[5] I. Dutra. Strategies for Scheduling And and Or Work in Parallel Logic Programming Systems. In Logic Programming:

Proceedings of 1994 Internation Symposium. The MIT Press, 1994.

[6] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design and Efficient

Implementation of Logic Programs in Parallel. PhD thesis, The University of Texas At Austin, 1986.

[7] M. V. Hermenegildo and K. J. Green. &-Prolog and its Performance: Exploiting Independent And-Parallelism. In

D. H. D. Warren and P. Szeredi, editors, Logic Programming: Proceedings of the Seventh International Conference,

pages 253–268. The MIT Press, 1990.

[8] M. V. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-Parallelism. New Generation

Computing, 9(3,4):233–257, 1991.

[9] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, 1988.

[10] L. Huelsbergen, J. R. Larus, and A. Aiken. Using the Run-Time Sizes of Data Structures to Guide Parallel-Thread

Creation. In LFP’94. ACM Press, 1994.

[11] A. King, K. Shen, and F. Benoy. Lower-bound Time-complexity Analysis of Logic Programs. In J. Mašuszyński,

editor, Logic Programming: Proceedings of the 1997 International Symposium, pages 261–276. The MIT Press, 1997.

[12] P. López-Garcı́a, M. V. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based Control of Parallelism

in Logic Programs. Journal of Symbolic Computing, Special Issue on Parallel Symbolic Computation, 11(3–4):217–

242, 1996.

[13] E. L. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. Stevens, D. H. D. Warren, A. Calderwood, P. Szeredi,

S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and B. Hausman. The Aurora Or-Parallel Prolog System. In

Proceedings of the International Conference on Fifth Generation Computer Systems 1988, Vol. 3, pages 819–830.

Institute for New Generation Computer Technology, 1988.

[14] E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel Prolog System. In International

Parallel Processing Symposium. IEEE Computer Society Technical Committee on Parallel Processing, IEEE Computer

Society, April 1995.

[15] K. Shen. An Overview of DASWAM — An Implementation of DDAS. Technical Report CSTR-92-08, Computer

Science Department, University of Bristol, 1992.

[16] K. Shen. Exploiting And-parallelism in Prolog: the Dynamic Dependent And-parallel Scheme (DDAS). In Logic

Programming: Proceedings of the Joint International Conference and Symposium on Logic Programming, pages 717–

731. The MIT Press, 1992.

[17] K. Shen. Studies of And/Or Parallelism in Prolog. PhD thesis, Computer Laboratory, University of Cambridge, 1992.

[18] K. Shen. Implementing Dynamic Dependent And-parallelism. In Logic Programming: Proceedings of the Tenth

International Conference, pages 167–183. The MIT Press, 1993.

22

[19] K. Shen. Initial Results from the Parallel Implementation of DASWAM. In M. Maher, editor, Proceedings of the 1996

Joint International Conference and Symposium on Logic Programming. The MIT Press, 1996.

[20] K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. Journal of Logic Programming, 29(1–

3):245–293, Oct.–Dec. 1996.

[21] K. Shen and M. V. Hermenegildo. A Simulation Study of Or- and Independent And-parallelism. In V. Saraswat and

K. Ueda, editors, Logic Programming: Proceedings of 1991 International Symposium, pages 135–151. The MIT Press,

1991.

[22] K. Shen and D. H. D. Warren. A Simulation Study of the Argonne Model for Or-Parallel Execution of Prolog. In

Proceedings of the Fourth Symposium on Logic Programming. Computer Society Press of the IEEE, Sept. 1987.

[23] E. Tick. Memory Performance of Lisp and Prolog Programs. In E. Shapiro, editor, Third International Conference on

Logic Programming, pages 642–649. Springer-Verlag, 1986. Published as Lecture Notes in Computer Science 225.

[24] A. R. Verden. And-Parallel Implementation of Prolog on Distributed Memory Machines. PhD thesis, Department of

Electronics and Computer Science, University of Southampton, 1991.

[25] R. Yang, A. J. Beaumont, I. Dutra, V. Santos Costa, and D. H. D. Warren. Performance of the Compiler-based

Andorra-I System. Technical report, Department of Computer Science, University of Bristol, 1993.

[26] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry, and R. Sundararajan. Towards an Efficient Compile-

Time Granularity Analysis Algorithm. In Proceedings of the International Conference on Fifth Generation Computer

Systems 1992, Volume 2, pages 809–816. Institute for New Generation Computing, June 1992.

23

