University of

"1l Kent Academic Repository

Heaton, Andrew, Abo-Zaed, Mohammad, King, Andy and Micheal, Codish
(2000) A Simple Polynomial Groundness Analysis for Logic Programs.
Journal of Logic Programming, 45 (1-3). pp. 143-156. ISSN 0743-1066.

Downloaded from
https://kar.kent.ac.uk/37583/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/S0743-1066(00)00006-6

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37583/
https://doi.org/10.1016/S0743-1066(00)00006-6
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

J. LOGIC PROGRAMMING 1993:12:1-199

1

A SIMPLE POLYNOMIAL GROUNDNESS
ANALYSIS FOR LOGIC PROGRAMS

ANDY HEATON, MUHAMED ABO-ZAED,
MICHAEL CODISH AND ANDY KING

The domain of positive Boolean functions, Pos, is by now well established
for the analysis of the variable dependencies that arise within logic pro-
grams. Analyses based on Pos that use binary decision diagrams have
been shown to be efficient for a wide range of practical programs. However,
independent of the representation, a Pos analysis can never come with any
efficiency guarantees because of its potential exponential behaviour. This
paper considers groundness analysis based on a simple subdomain of Pos
and compares its precision with that of Pos. <

1. Introduction

Many analyses for logic programs use Boolean functions to express dependencies
between program variables. The most commonly used are the class of positive
propositional formulae and its subclass of definite formulae, denoted Pos and Def
respectively [1]. Numerous independent implementations have indicated that pro-
gram analyses based on Pos and Def formulae are accurate and well suited to the
analysis of logic programs, concurrent logic programs, constraint logic programs
and deductive databases [1, 2, 6, 7, 9, 10, 11, 14, 21]. One of the best known appli-
cations of this type of analysis involves reasoning about groundness dependencies

Address correspondence to Andy Heaton, School of Computer Studies, University of Leeds,
LS29JT, UK, heaton@scs.leeds.ac.uk, or Muhamed Abo-Zaed, Department of Mathematics and
Computer Science, Ben-Gurion University, PoB 653, Beer-Sheba, Israel, abozaed@cs.bgu.ac.il,
or Michael Codish, Department of Computer Science and Software Engineering, The Univer-
sity of Melbourne, Parkville 3052, Australia, mcodish@cs.bgu.ac.il, or Andy King, Computing
Laboratory, University of Kent at Canterbury, Canterbury, CT2 7NF, UK, a.m.kingQukc.ac.uk.

THE JOURNAL OF LOGIC PROGRAMMING

(©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066,/93/$3.50

in logic programs. For example, in this context the definite formula z A (y < 2) is
interpreted to describe a program state in which z is definitely bound to a ground
term and there exists a grounding dependency such that whenever z becomes bound
to a ground term then so does y.

A variety of techniques have been devised to represent, maintain and manipulate
various classes of propositional formulae for program analyses. Worth mentioning
are: (1) the use of binary decision diagrams (BDD’s) and their variants, such as
reduced order binary decision diagrams (ROBDD’s) [2, 7, 12, 20], which lead to
fast Pos analyses for many benchmarks; (2) the use of dual Blake canonical form
(DBCF) for Def [1]; and (3) the use of a set of possibly non-ground atoms over the
alphabet {true, false} to represent the truth table of a formula [6]. The first two
techniques give very compact representations of Boolean functions with efficient,
although complex, operations. The third technique is naive — its main attraction
is the simplicity in which it can be implemented.

None of these techniques, however, come with any efficiency guarantees. This
is not surprising considering the underlying complexity of the abstract domains.
Each iteration of an analysis involves a test for equivalence to determine if a fixed
point has been reached. For Pos, the equivalence problem is co-NP complete [1,
Section 4]. Hence, for all practical purposes either the representation will be of ex-
ponential size or the test for equivalence will take exponential time. Moreover, both
Def and Pos contain chains which are exponential in the arity of the predicates
being analysed. A series of pathological input programs for Pos based groundness
analysis are presented in [5]. These include programs for which the worst-case ex-
ponential number of iterations is encountered (for any representation) as well as
programs for which exponentially large BDD’s are generated. Furthermore, Pos
analysis of some real benchmarks, like the Aquarius Prolog compiler, is problem-
atic without (a space) widening because of high arity predicates that arise from
extended definite clause grammars [12, 13]. In short, although the empirical eval-
uation results for Pos and Def presented in [1, 2, 6, 12, 21] suggest that analyses
based on Pos and Def are efficient for many programs, both Pos and Def can
never come with any performance guarantees and, occasionally, their performance
is unacceptable. In more pragmatic terms, the problem is that a cautious compiler
vendor is unlikely to adopt an analysis unless it comes with scalability guarantees.

In this paper our aim is to accelerate groundness analysis without losing too much
precision in practice. Our approach is to restrain the size of the representation of
the Pos formulae so as to put a reasonable bound both on the maximum number of
iterations in an analysis as well as on the cost of a test for equivalence. We consider
groundness analysis based on a linear subdomain of Pos. Namely, a domain in
which the longest chain is linear (in the number of variables), and the size of a
(call or answer pattern) description is linear (in the number of variables). Also the
domain can be implemented with polynomial time complexity in the size of the
input program. The subdomain of Pos which we consider consists of conjunctions
of variables and equivalences between variables.

As an implementation vehicle we apply the simple technique described in [6]
for Pos. In each iteration of the analysis (an abstraction of) each clause body is
solved, in all possible ways, to infer a new description of the clause head. In our
domain, each predicate is described by a single Prolog fact, so the evaluation is
deterministic. This results in an analysis that scales smoothly.

2. Groundness Analysis Based on Pos

We follow the convention of identifying a truth assignment with the set of vari-
ables that it maps to true. For brevity, we introduce the map modelx (f) = {M C
X | om(f) = true} where ¢y is the truth assignment ¢y = {x — true | z €
MyuU{z — false |z € X \ M}. For example, if X = {z,y} then modelx(z A y)
= {{z,y}} and modelx (z vV y) = {{z},{y},{z,y}}. The set of positive Boolean
functions over X is denoted Posyx. Recall that a Boolean function f is positive
if X € modelx(f). Hence x Ay, v Vy € Posx but -z ¢ Posx. The complete
lattice Posx = Posx U {false} is ordered by entailment |= which is itself defined
by fi |= fo if and only if modelx (f;) C modelx(f2) where fi, fo € Pos%. The
bottom and top elements of Posx are false and true. A chain is a set in which
no pairs of elements are incomparable. The abstract domain Posx is formally
defined in [8, 17]. The interested reader can find additional details on analyses
with Posx in [1, 2, 6, 7, 8, 10, 17, 21]. Let us recall briefly the implementation
technique for groundness dependencies that is described in [6]. In this approach, a
given logic program is first abstracted in such a way that the concrete semantics
of the abstract program corresponds to the required groundness analysis. Figure 1
illustrates a Prolog program which rotates the elements of a list and its correspond-
ing abstraction for groundness dependencies. An atom of the form iff (z,[y, z])
specifies the formula = <> y A z with the intended interpretation that z is ground
if and only if y and z are. Consequently, a unification of the form z = [y|z] in the
concrete program is replaced by iff (z,[y, z]) in the abstract program. Similarly,
a unification of the form z = [] in the concrete program can simply be replaced
by iff (z,[]) which specifies that x is definitely bound to a ground term. For the
purpose of this paper it is sufficient to understand that the problem of analyzing
the concrete program (on the left part of Figure 1) is reduced to the problem of
computing the concrete semantics of the abstract program (in the middle and on
the right). For additional details of why this is so, refer to [6, 8, 17].

Concrete rotate

Abstract rotate

Auziliary predicates

rotate(zs,ys) :-
append (as,bs,xs),
append (bs,as,ys) .

append (xs,ys,zs) :-
rxs=1],
ys = zs.

append (xs,ys,zs) :-
xs = [z|zsl],
zs = [z|zs1],
append (xsl,ys,zsl) .

rotate(zs,ys) :-
append (as,bs,xs),
append (bs,as,ys) .

append (xs,ys,zs) :-
iff(zs,[],
iff (ys,[zs]) .

append (xs,ys,zs) :-
iff(zs,[z,zs1]),
iff (zs,[z, zs1]),
append (xsl,ys,zsl) .

iff (true,[]).

iff (true, [truelxzs]) :-
iff (true,xs).

iff(false,zs) :-—
member (false,zs) .

FIGURE 1. Corresponding concrete and abstract programs.

The concrete (bottom-up) semantics of a logic program (with a finite minimal

model) is easily computed using simple meta-interpreters such as those described in
[4, 6]. The basic idea is to perform iterations in which we solve clause bodies using
the facts derived so far to derive new instances of clause heads. The last iteration
is the first one in which no new head instances are derived. Applying this approach
to the abstract rotate program from Figure 1 gives the following atoms:

rotate(z,x). append(true,true,true).
append(false,y,false).
append(x,false,false).

which are interpreted as representing the propositional formula 1 <> x2 and (z1 A
x2) <> x3 for the atoms rotate(x1,x2) and append(x1, z2, x3) respectively. This
illustrates a goal-independent analysis. Goal-dependent analyses are supported by
applying Magic sets or similar techniques (see e.g. [6]). The simple, naive scheme
described above provides the basis for various more efficient implementations based
on semi-naive evaluation, strongly connected components, and other optimisation
techniques. For further details and examples of meta-interpreters in Prolog which
perform this type of evaluation see [4, 6].

The inefficiency of the above strategy stems both from the representation, as well
as from the evaluation mechanism. Consider a single clause h < by,...,b, in an
iteration of the evaluation. Each call in the body might match a number of atoms
(corresponding to disjuncts in a disjunctive normal form) which is exponential in
the arity of the call. Solving the clause body in all possible ways is thus also
exponential.

Sophisticated techniques such as those based on BDD’s [1] give a more compact
representation of Boolean functions although this is achieved at the cost of more
complex operations. However, as we have noted, for all practical purposes any Pos
based analysis is inherently exponential.

3. Simplifying Pos

We propose a simple subdomain of Pos for which the representation of formu-
lae is linear in the size of the program, as is the maximum number of itera-
tions in an analysis. Formulae in this domain consist of conjunctions of variables
and equivalences between variables. For example, (z1 ¢ z2) A 23 A (z1 <> T4).
We call this class of formulae EPos. Like Pos, EPos is ordered by [=. It is
interesting to note that EPos is only slightly richer than its subdomain Con
[15, 18] which consists of conjunctions of variables. However, as we shall see,
EPos gives much greater precision than C'on for groundness analysis of logic pro-
grams. Moreover, it shares with Con the important property that its longest
chain has linear length. The proof of this result relies on the observation that
an EPos formula over X can be represented as a non-ground tuple. For example,
if X ={x1,...,25}, then t = (x,true, x1, x4, true) represents (z; <> x3) A T2 A T5.
Similarly, (true, xa, x3, T2, x2) encodes x1 A (x2 <> T4) A (T4 <> x5).

Lemma 3.1. Let X be a set of n variables. The longest chain in the lattice EPos% =
EPosx U {false} has length n + 2.

Proor. Let X = {z1,22,...,z,}, then any function f in EPosx can be rep-
resented as an n-tuple ¢t such that f has 2¢ models where d is the number of
distinct variables in ¢. For example with n = 5, if f = (z; ¢ x3) A 2 A x5,
then f is encoded by (x1,true,x1,xq,true) which has 2 distinct variables and
modelx (f) = {{z2, x5}, {x1, T2, 23,5}, {T2, Ta, x5}, {@1, 20,23, 24,25} I f = f
and f' £ f, then modelsx (f) C modelsx(f') and hence f' has more models than
f. This implies that the tuple representation of f' contains more distinct variables

than that of f. Since d is bounded by n, a chain in EPosx can, at most, contain
n + 1 functions so that the length of a chain in EPos% is bounded by n + 2. A
chain of length n 4 2 is obtained as false, 1 Ao A .. . ATy, To ANZZA ... ANZp, -+,
Ty, true.

As a consequence, we obtain the following theorem:

Theorem 3.1. The number of iterations required to obtain a fixpoint in a (univari-
ant) analysis based on the EPos domain is linear in the sum of the arities of the
predicate symbols that occur in the program.

Note that a univariant analysis maintains one success pattern (or one call and
answer pattern) per predicate [22].

PROOF. Suppose a program contains predicates py, . .., p, of arity a1, ...,a,. The
database of success patterns is a tuple (fi, ..., f,) of formulae for p, ..., p, respec-
tively. The ordering for tuples is standard and defined as follows: (fi,..., f.) E
(s Y ff i B Ao, fu |E fu- Therefore the length of the longest chain
of EPos tuples is Y (a; + 2) and hence, a univariant EPos analysis will take a
linear number of iterations to reach the fixpoint. Similarly, the number of iterations
for an analysis deriving call and answer patterns is no more than 2- " | (a; +2).

The fact that a formula can be represented by a non-ground tuple turns out
to be important for adapting the implementation technique of [6]. It enables, for
example, the call pattern pair (a, f) where a = p(x1, x2, 23, %4,25) and f = (z1 <
x2) A xg A (1 <> x4) to be succinctly represented by a single non-ground atom,
namely, p(z1,z,true,z1,z5). We consider three analysis strategies for adapting
the implementation technique of [6] to EPos. These differ in the way that the
iff/2 atoms are handled:

Non-deterministic iff /2 atoms: The first strategy is based on the technique de-
scribed in [6]. Each user defined predicate is represented as an EPos formula
by a single non-ground atom. The iff/2 atoms, however, are described in
Pos using the iff/2 (auxiliary) predicate of Figure 1. This analysis turns
out to lose little precision in comparison with Pos. As a consequence of the
non-determinism in the iff/2 atoms, each clause in the program may have
many solutions. These solutions are combined by a least upper bound op-
eration in EPos. Specifically, a new (Pos) description is combined with an
existing (EPos) description by computing the most general subsumer of the
two. The non-determinism in this approach is a source of inefficiency. In the
following we refer to this strategy as EPosy (N stands for nondeterministic).

Deterministic iff /2 atoms: The second approach avoids the inefficiency of the
first by solving the iff/2 atoms deterministically. Namely, only when they
have a single solution. This can be achieved using code such as that given in
Figure 2 (for 4 variables). The first clause in Figure 2 is for the case when
w has the value true. Then z,y and z are all instantiated to true. The
next three clauses are for the cases when w does not have the value true,
but at least two of z,y, z do. Aliasing information can be deduced in these
cases. The final clause is for the case where no deterministic information
can be deduced. The iff/2 atom is ignored in this instance. This type of

analysis turns out to be very efficient as the entire clause body is solved
deterministically. However, ignoring the non-deterministic iff/2 atoms is a
source of imprecision. In the following we refer to this strategy as EPosp
(D is for deterministic).

Deterministic iff /2 atoms with local iteration: The third strategy is intended as
a compromise between the precision of the first and the efficiency of the
second. It is based on the observation that solving the iff/2 atoms in
the right order can reduce the number of ignored atoms, and thus improve
precision.

The analyser iterates over the iff/2 atoms in the body of a clause checking
to see whether any iff/2 atoms that were not deterministic when they
were first encountered, can now be solved deterministically. Applying this
scheme, the evaluation of a clause body remains fully deterministic. In
addition, we also check to see if a clause body contains pairs of atoms of
the form iff(z,Y), iff(y,Y) in which z, y and (the list of variables) Y’
are not instantiated to ground terms. Here it can be inferred that z = y.
In the end, any remaining non-deterministic iff/2 atoms are ignored. Of
course the first technique may still be more precise since there may still
be collections of non-deterministic iff/2 atoms that contain information
(about the clause head) expressible in EPos. For instance if a clause body
contains the atoms iff (z,[w,y,z]), iff(y,[w,z]) in which w, z, y, z are
not instantiated, the third approach will not detect that these could have
been replaced by a single call of the form z = y and this information will be
lost. An EPos analysis that applies this third method is called EPosy, (L
stands for local iteration).

iff(w,[z,y,2]) :-w == true, !, £ = true, y = true, z = true.
iff (w,[z,y,2]) - x == true, y == true, !, w=z.
iff(w,[z,y,2]) - x == true, z == true, !, w=y.
iff(w,[z,y,2]) -y == true, z == true, !, w=rz.

iff(.,0).

FIGURE 2. Deterministically solving iff (w, [z,y, 2]).

Theorem 3.2. Analysis using F Posy, has polynomial time complexity in the space
required to store the input program.

Proor. Note that the space required to store a program P is a bound for: the sum
of the arities of the predicates in P, denoted ap; the maximal number of variables
in a clause of P, denoted vp; and the maximal number of atoms in the body of a
clause of P, denoted bp. By Theorem 3.1, the number of iterations in a EPosy,
analysis is linear in ap. Hence, it is sufficient to show that each of the following
operations have polynomial complexity bounds:

Rename: Let f and f' be FPos formulae equivalent up to renaming of variables.
Then a k-tuple encoding f can be renamed to a k-tuple encoding f' in
O(klog(k)) steps. Note that k < vp.

Join: The most general subsumer of two k-tuples that encode EPos formulae, can
be computed in O(klog(k)) time using Plotkin’s anti-unification algorithm
[19]. Observe that k < ap.

Equivalence check: The test for equivalence of EPos formulae over k variables
can be implemented in O(k) simple unifications (that do not involve com-
pound terms). Let f, f' € EPos be represented as tuples (t1,...,t) and

(t1',...,tx'). The equivalence check amounts to two tests: f | f' and
f" = f. Consider the test f |= f’ which can be implemented as follows: the
terms in ty,...,t; are considered in order from 1 to k. If ¢; is a variable it

is assigned the value 1, if £5 is a variable it is assigned the value 2 and so on.
After k steps the tuple representation of f is a ground tuple £. For exam-
ple, if f is represented as (z1,true, T, x4, true) then t = (1,true, 1,4, true).

Now, if £ and (t1’, ..., ;') are unifiable and this can be checked with k simple
unifications (that do not involve compound terms), then f = f'. Note that
k S ap.

Meet: Consider the meet operations to solve the body of a single (abstract) clause
of P consisting of r < vp variables and s < bp body atoms. First, consider
the iff/2 atoms in the clause body. It takes O(k?) steps to check if an
atom of the form iff (z,[y1,...,yx]) (kK < r) can be solved deterministically
and the evaluation strategy will reconsider an iff/2 atom at most s times.
Second, consider a call to a user-defined predicate p/k in the body of the
clause. It takes k (k < r) simple unifications (that do not involve compound
terms) to match the call with its current call or answer pattern.

4. Experimental Results

This section presents an experimental evaluation. We focus on the goal-dependent
groundness analysis of 76 Prolog and CLP(R) programs ranging in size from 2 to
over 4000 clauses. We summarise by saying:

e FEPosy is as precise as Pos on 62 of our 76 benchmark programs; and loses
less than 10% of the (ground argument) information on 73 programs.

e FPosy is as precise as FPosy and scales well.

Our experiments are based on an analyser coded in Prolog using induced Magic-
sets [4] and eager evaluation [23] to perform efficient goal-dependent bottom-up
evaluation. Induced magic is an interpreter based implementation technique that
avoids the transformation associated with Magic-sets (calls and answers are ex-
pressed directly within the interpreter) and also avoids much of the re-computation
that can arise in magic clause bodies. Eager evaluation involves an “almost semi-
naive” strategy which whenever a new head atom is derived invokes a recursive
procedure to ensure that every clause that has that atom in its body is re-evaluated.
One advantage is that there is no overhead in distinguishing old and new atoms.
The benchmarks and a simplified version of the analyser can be obtained from
http://www.cs.ukc.ac.uk/people/staff/amk. This distribution includes documen-
tation on how builtins and constraints are abstracted (since our precision results
may deviate from those reported by others if they abstract programs differently).

Tables 1 and 2 summarise the analysis times and precision results obtained for
EPosy and EPosy, together with those for Con and Pos. The benchmark pro-
grams are ordered according to the number of (distinct abstract) clauses they con-
tain. The Pos analyser is built on a ROBDD package coded by Armstrong and
Schachte [1]. The Con and Pos experiments are performed mainly for compar-
ing precision against EPosy and EPosy, and therefore the Pos analysis is not
widened [5, 12]. The pre-processing times are included in the abs column. The
fixpoint columns give the time, in seconds, to compute the fixpoint for each of the
four techniques. C, L, N and P abbreviate Con, EPosy, EPosy and Pos, re-
spectively. The precision columns give the total number of ground arguments in
the call and answer patterns (and exclude those ground arguments for predicates
introduced by normalising the program into definite clauses). The % prec columns
express the loss of precision relative to Pos. The analyser is coded in SICStus 3.5
and the experiments performed on a 270MHz Sun Ultra 5 with 128 MByte of RAM
running Solaris 2.6.

The precision results for the Con analysis reconfirm that this domain is not
expressive enough: Con loses precision wrt Pos on 49 of the 76 programs, and
for 16 of these Con loses 50% or more of the ground arguments inferred by Pos.
In contrast, EPosy loses precision on 14 programs, and from these it loses more
than 10% of the groundness information on 3 benchmarks. For the programs where
EPospy loses precision wrt to Pos, it is interesting to see the precision obtained
with other subdomains of Pos. The subdomains we consider are: (1) Def; (2) con-
junctions of variables and implications of the form = + y — a class of formulae that
we shall label Imp. We have implemented Def and Imp (abbreviated to D and I
in Table 4) analyses by restricting the call and answer patterns in our Pos analyser
to Def and Imp formulae, respectively. From Table 4 we conclude that EPosy
loses precision for append.pl, nandc.pl, mastermind.pl, Inprolog.pl, chat_parser.pl,
essln.pl, chat_80.pl and aqua_c.pl because it cannot track implications of the form
x + y across procedure boundaries. Precision is lost for rotate.pl, ime_v2-2-1.pl,
neural.pl, press.pl, rubik.pl, Inprolog.pl and aqua_c.pl because EPosy cannot ad-
equately trace implications such as x < Al;z; where n > 2. Finally, precision
is lost for rotate.pl and sim_v5-2.pl because FPosy cannot capture disjunctive
dependencies.

The use of EPosy, instead of EPosy is justified when observing that the same
precision results are obtained for all programs. Moreover, the timings for EPosy,
are sometimes considerably faster than those for EPosy with all but 3 programs
giving fixpoint times under one tenth of a second and the slowest analysis taking
1.83 seconds. Disabling local iteration, to obtain EPosp, has a disastrous impact
on precision collapsing the accuracy to near that of Con. We also conducted ex-
periments on goal-independent analysis. FEPosy loses precision on 21 of the 76
programs and for 8 of these the loss is more than 10% of the groundness argu-
ments. A complete set of goal-independent analysis times and precision results can
be found in the distribution.

For completeness, Table 4 gives a comparison of our EPosy, analysis against two
of the fastest Pos analysers that are described in the literature. The Pos analysis of
[12] is implemented in the SML-based GENA framework on a Sun 20 with 64 Mbytes
of memory. This analysis widens large BDDs by projecting formulae for large arity
predicates onto C'on. This shows up in the analysis time for aqua_c.pl. The domain
operations of the Pos analysis of [20] are coded in C while the framework itself is

fixpoint time precision % prec
file size abs| C L N Pl C L N Pl CLN
append.pl 2 0.01{0.01 0.00 0.01 001 3 3 3 4| 252525
rotate.pl 3 0.01{0.00 0.01 0.00 0.00f 2 2 2 6| 676767
mortgage.clpr 4 0.01{0.00 0.00 0.03 0000 6 6 6 6/ 0 0 O
gsort.pl 6 0.01{0.00 0.00 0.00 0.01{ 10 11 11 11| 9 0 O
rev.pl 6 0.00[{0.01 0.00 0.00 0.01f 0 0 O Of 0 O O
queens.pl 9 0.00{0.00 0.00 0.00 001 2 3 3 333 0 0
zebra.pl 9 0.01/0.00 0.00 0.01 0.02| 11 19 19 19| 42 0 O
laplace.clpr 11 0.02{0.00 0.00 0.01 0.01f 0 0 O Of 0 O O
shape.pl 11 0.01{0.00 0.01 0.02 002 3 6 6 6/ 50 0 O
parity.pl 12 0.01|0.01 0.01 0.01 4651.95f 0 O O O O O O
treeorder.pl 12 0.00{0.00 0.00 0.01 0.01f 0 0 0 0 0 0 O
fastcolor.pl 13 0.02{0.00 0.01 0.00 0.01| 14 14 14 14 0 0 O
music.pl 13 0.01{0.00 0.02 6.02 003 2 2 2 2/ 0 0 O
serialize.pl 13 0.01/0.00 0.01 0.02 002 3 3 3 3] 0 0 O
crypt-wamcc.pl 19 0.01{0.00 0.01 0.00 0.04] 26 31 31 31|16 0 O
option.clpr 19 0.01/0.00 0.00 0.03 0.03] 42 42 42 42| 0 0 O
circuit.clpr 20 0.01|0.01 0.01 0.71 002, 3 3 3 3] 0 0 O
air.clpr 20 0.01/0.00 0.01 0.10 003 9 9 9 9, 0 0 O
dnof.clpr 23 0.02|0.00 0.01 0.00 0.01f 0 8 8 8100 O O
dcg.pl 23 0.02{0.00 0.01 0.00 0.01| 54 59 59 59| 8 0 O
hamiltonian.pl 23 0.01{0.00 0.00 0.01 0.01) 36 37 37 37 3 0 0
poly10.pl 29 0.02|0.00 0.00 0.00 0.01f 0 0 O 0 0 0 O
semi.pl 31 0.02|0.01 0.02 1.26 0.29] 23 28 28 28| 18 0 O
life.pl 32 0.02|0.00 0.00 0.01 0.02| 52 58 58 58| 10 0 0
ronp.pl 34 0.02{0.00 0.00 0.02 0.03| 10 10 10 10f 0 O O
rings-on-pegs.clpr 34 0.02]/0.01 0.01 0.04 0.04{ 11 11 11 11f 0 0 O
meta.pl 35 0.02(0.01 0.00 0.01 002y 0 1 1 1100 O O
browse.pl 36 0.02|0.01 0.01 0.01 0.02| 41 41 41 41| 0 0 O
gabriel.pl 38 0.02{0.00 0.00 0.02 0.03| 37 37 37 37 0 0 O
tsp.pl 38 0.03{0.01 0.01 0.01 0.05| 82 122 122 122 33 0 O
nandc.pl 40 0.03|0.01 0.01 0.02 0.03| 13 34 34 37| 66 8 8
csg.clpr 48 0.04(0.01 0.01 > 172800 0.07{ 12 12 - 12 0 0 -
disj_r.pl 48 0.02{0.01 0.01 0.01 0.04| 38 97 97 97/ 61 0 O
ga.pl 48 0.06/0.01 0.00 0.01 0.04|127 141 141 1411 10 0 O
critical.clpr 49 0.03{0.01 0.01 14462.05 0.04| 14 14 14 14 0 0 O
sccl.pl 52 0.04{0.01 0.00 0.02 0.12| 44 90 90 90| 51 0 O
mastermind.pl 59 0.04{0.01 0.01 0.02 0.10| 10 43 43 44| 77 2 2
ime_v2-2-1.pl 53 0.03|0.01 0.02 0.02 0.09| 77 100 100 101 24 1 1
robot.pl 53 0.04{0.01 0.01 0.00 0.02] 9 41 41 41|78 0 O
cs_r.pl 54 0.05/0.01 0.01 0.02 0.04| 36 149 149 149| 76 0 O
tictactoe.pl 56 0.05[0.01 0.01 0.01 0.04] 55 60 60 60 8 0 O
flatten.pl 56 0.04[0.01 0.02 0.05 0.09| 26 27 27 27| 4 0 O
dialog.pl 61 0.03|0.01 0.01 0.01 0.03] 46 70 70 70| 34 0 O
map.pl 66 0.02|0.02 0.01 0.01 0.07| 17 17 17 17(0 0 O
neural.pl 67 0.05{0.02 0.01 0.02 0.06| 85 121 121 123| 31 2 2
bridge.clpr 69 0.08{0.00 0.01 0.02 002 9 9 9 9, 0 0 0
conman.pl 71 0.04{0.00 0.00 0.00 002 6 6 6 6/ 0 0 O
kalah.pl 78 0.04|0.02 0.01 0.01 0.05| 91 199 199 199| 54 0 O
unify.pl 79 0.04]/0.01 0.01 0.06 0.091 69 70 70 70{ 1 0 O
nbody.pl 85 0.08{0.02 0.03 0.07 0.11| 87 113 113 113| 23 0 0

TABLE 1. Smaller benchmarks: Precision and Times

10

fixpoint time precision % prec

file size abs| C L N P C L N PIC L N
peep.pl 88 0.09(0.01 0.02 0.03 0.06 8§ 10 10 1020 0 O
boyer.pl 95 0.06|0.01 0.01 0.02 0.06 3 3 3 30 0 0
bryant.pl 95 0.07|0.02 0.04 022 015 94 99 99 99 5 0 O
sdda.pl 99 0.05{0.01 0.02 0.06 0.07 17 17 17 1710 0 O
read.pl 106 0.07(0.01 0.03 0.03 012 8 99 99 99|14 0 O
press.pl 109 0.07/0.03 0.04 0.10 0.18] 45 52 52 53|15 2 2
gplan.pl 109 0.07[0.03 0.02 0.02 0.09| 42 216 216 216(81 0 0
trs.pl 112 0.09(0.02 0.07 16626.17 0.68| 13 13 13 13| 0 0 O
reducer.pl 113 0.07[0.01 0.03 0.14 0.16] 36 41 41 41|12 0 O
simple_analyzer.pl 140 0.08]0.02 0.03 0.11 048] 88 8 89 89 1 0 O
dbqas.pl 146 0.09{0.01 0.01 0.06 0.06] 36 43 43 43|16 0 O
ann.pl 148 0.15]0.02 0.05 0.18 069 71 71 71 7110 0 O
asm.pl 175 0.13|0.03 0.03 0.04 014 8 90 90 90| 1 0 O
nand.pl 181 0.11|0.18 0.03 0.05 0.20| 123 402 402 402(69 0 O
rubik.pl 219 0.17{0.05 0.05 0.51 0.31| 158 171 171 179(12 4 4
Inprolog.pl 221 0.10(0.03 0.05 0.07 0.14| 54 110 110 143|62 23 23
ili.pl 225 0.12{0.03 0.05 0.27 0.25 4 4 4 40 0 0
sim.pl 250 0.18]0.04 0.07 1.22 0.75| 81 100 100 10019 0 O
strips.pl 261 0.16]0.01 0.01 0.02 0.14| 85 142 142 142(40 0 O
chat_parser.pl 281 0.23|0.14 0.16 0.58 0.82| 444 504 504 505(12 0 O
sim_v5-2.pl 288 0.16(0.07 0.04 0.03 0.20f 80 455 455 457|182 0 O
peval.pl 329 0.16(0.02 0.04 0.13 030] 28 28 28 28/ 0 0 O
aircraft.pl 397 0.45|1.76 0.09 0.15 0.57| 228 687 687 687|67 0 O
essln.pl 605 0.35{0.08 0.11 0.37 1.20| 126 174 174 178(29 2 2
chat_80.pl 888 0.83[0.29 0.40 2.79 3.39| 471 852 852 855(45 0 O
aqua-c.pl 4024 3.55|1.72 1.83 440.08 358.83|1148 1227 1227 1290(11 5 5

TABLE 2. Larger benchmarks: Precision and Times

precision % precision
file C L N I D P| C L N I D
append.pl 3 3 3 1 1 125 25 2 0 0
rotate.pl 2 2 2 2 3 6 | 67 67 67 67 50
nandc.pl 13 34 34 37 37 37 | 65 8 8 0 0
mastermind.pl 10 43 43 44 44 44 | 77 2 2 0 0
ime_v2-2-1.pl 77 100 100 100 101 101 | 24 1 1 1 0
neural.pl 85 121 121 121 123 123 | 31 2 2 2 0
press.pl 45 52 52 52 53 53 | 15 2 2 2 0
rubik.pl 158 171 171 171 179 179 | 12 4 4 4 0
Inprolog.pl 54 110 110 111 143 143 | 62 23 23 22 0
chat_parser.pl 444 504 504 505 505 505 | 12 0 0 0 0
sim_v5-2.pl 80 455 455 455 455 457 | 82 0 0 0 0
essln.pl 126 174 174 178 178 178 | 29 2 2 0 0
chat_80.pl 471 852 852 855 855 855 | 45 0 0 0 0
aquac.pl | 1148 1227 1227 1228 1290 1290 | 12 5 5 5 0

TABLE 3. Additional precision results for I'mp and Def

11

written in Prolog. It has been implemented and benchmarked on a Sun Ultra 5 with
a 270 MHz Sun UltraSparc processor and 320 Mbytes of memory. To match the
architecture of [12] as closely as possible, we have also timed our EPosj, analyser
on a Sun-20 with 64 MByte of memory that is equipped with a 50MHz processor.
Precise processor details are not given in [12] and, in fact, his machine could be as
much as two times as fast as ours. For ease of comparison, we repeat some of the
timings for our Sun Ultra 5 experiments.

Pos EPosy,
file | Sun 20 [12] Ultra 5 [20] | Sun 20 Ultra 5
peep.pl 0.06 0.02 0.07 0.02
boyer.pl 0.10 0.01 0.07 0.01
read.pl 0.16 0.06 0.12 0.03
press.pl 0.26 0.03 0.22 0.04
simple_analyzer.pl 0.07 0.18 0.03
ann.pl 0.19 0.03 0.16 0.05
nand.pl 0.33 0.10 0.13 0.03
sim.pl 0.24 0.32 0.07
chat_parser.pl 1.48 0.25 0.71 0.16
sim_v5-2.pl 0.18 0.15 0.04
peval.pl 0.04 0.20 0.04
chat_80.pl 4.31 0.66 1.84 0.40
aqua-c.pl 29.82 86.15 8.40 1.83

TABLE 4. Performance comparison

5. Discussion

We have presented a simplification of the Pos domain consisting of conjunctions
of variables and equivalences between variables. The implementation is based on
the technique of [6] and applies a simple local iteration technique to maintain a
deterministic evaluation when solving a clause body. The analyser comes with
polynomial performance guarantees and the core analyser (the meta-interpreter)
can be coded succinctly. In fact the main software development effort in imple-
menting the FPosy analyser was in elaborating the abstracter module to handle
builtins accurately and correctly.

For BDD based Pos analysers, widening is feasible and resulting analyses should
offer improved accuracy over EPosy without incurring excessive run times. The
operations of BDD’s, however, require much greater coding effort than those of
EPosy,. In principle, the Pos implementation of [6] can also be widened, trigger in
SICStus, say, with a timeout predicate. In practice, however, timeouts do not fit
well with the eager evaluation model of induced magic.

A limited form of polyvariance could be supported for, say libraries, by applying
EPosy, to each exported predicate with its anticipated call patterns (and a safe
approximation true). This would give a set of call and answer pattern pairs. A
suitable answer pattern for a call to an imported predicate could then be found
by matching the call to the most accurate, safe call pattern in the set of pairs.

12

The complexity result given by Theorem 3.2 is unaffected provided there is a fixed
bound to the number of call and answer pattern pairs permitted for each exported
predicate.

Work relating to our approach is presented in [2, 20] where a hybrid representa-
tion for Pos is considered. This BDD based representation, named GER, consists
of three components: a set of ground variables (G), a set of equivalent variables
(E), and an ROBDD for more complex dependencies (R). This enables a signif-
icant speed up in analysis times as the information in the G and E components
is used to reduce the size of the R component which in turn makes the ROBDD
operations less expensive. The information in our domain corresponds precisely
to that captured in the G and E components of this representation. Our analysis
technique differs in that we omit the ROBDD component altogether. Instead we
apply a simple local iteration technique. Note that the BDD based Pos analyser
used in the experimental results section does not use a GER represention.

Our local iteration technique has similarities with re-execution [16], which in
turn goes back to the repeat previous call strategy of [3]. However there are three
important differences in our approach compared to re-execution: (1) the iteration
involves only iff/2 predicates; (2) the iteration is local to the context of a single
(abstract) clause; and (3) each iff/2 atom will be solved at most once. While
iterating over the calls in a clause body, each call may be inspected more than
once to check if the call is deterministic, but calls are never solved more than once.
Hence, the precision of a EPosy, analysis never exceeds that of the corresponding
EPosy analysis. In practice, the EPosy, analyser maintains the same precision as
the EPosy analysis, but at a fraction of the cost. Also in [16], a mode analysis
with a Pattern domain is compared against an analysis with a domain that traces
ground, var and any modes, and also equivalences between variables.

Acknowledgements

We would like to thank Florence Benoy, Pat Hill and Cohavit Taboch for discus-
sions, Peter Schachte for help with the ROBDD comparison and Roberto Bagnara
and the other reviewers of this paper for their useful comments. This work was
funded, in part, by the UK ESPRC Grants GR/MO05645 and GR/MO8769 and
by the Israel Science Foundation. Much of the work was carried out while Andy
Heaton was visiting Ben-Gurion University.

REFERENCES

1. T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaard. Two Classes of
Boolean Functions for Dependency analysis. Science of Computer Programming,
31(1):3-45, 1998.

2. R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-
Based Implementations of Pos. In Proceedings of the Seventh International Confer-
ence on Algebraic Methodology and Software Technology, pages 471-485. Springer-
Verlag, 1999. LNCS 1548.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. The Journal of Logic Programming, 10(2):91-124, 1991.

4. M. Codish. Efficient Goal Directed Bottom-up Evaluation of Logic Programs. The
Journal of Logic Programming, 38(3):354-370, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

13

M. Codish. Worst-Case Groundness Analysis using Positive Boolean Functions.
The Journal of Logic Programming, 1999. (to appear).

M. Codish and B. Demoen. Analysing Logic Programs using “prop”-ositional Logic
Programs and a Magic Wand. The Journal of Logic Programming, 25(3):249-274,
1995.

M.-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. Efficient Bottom-up
Abstract Interpretation of Prolog by means of Constraint Solving over Finite Do-
mains. In Programming Language Implementation and Logic Programming, pages
75-91. Springer-Verlag, 1993. LNCS 714.

A. Cortesi, G. Filé, and W. Winsborough. Optimal Groundness Analysis using
Propositional Logic. The Journal of Logic Programming, 27(2):137-168, 1996.

P. Dart. On Derived Dependencies and Connected Databases. The Journal of
Logic Programming, 11(2):163-188, 1991.

S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical Program Anal-
ysis Using General Purpose Logic Programming Systems — A Case Study. In
Programming Language Design and Implementation, pages 117-126. ACM Press,
1996.

S. Debray and D. S. Warren. Automatic Mode Inference for Logic Programs. The
Journal of Logic Programming, 5:207-229, 1988.

C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-
tierung, Generierung. PhD thesis, Universitit des Saarlandes, 1997.

C. Fecht. Personal communication on Pos, DCG’s and large arity predicates.
November 1997.

M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM TOPLAS, 18(5):564-614, 1996.

N. Jones and H. Sgndergaard. A Semantics-based Framework for the Abstract
Interpretation of Prolog. In Abstract Interpretation of Declarative Languages, pages
123-142. Ellis Horwood Limited, 1987.

B. Le Charlier and P. Van Hentenryck. Reexecution in Abstract Interpretation of
Prolog. Acta Informatica, 32:209-253, 1995.

K. Marriott and H. Sgndergaard. Precise and Efficient Groundness Analysis for
Logic Programs. ACM Lett. Program. Lang. Syst., 2(4):181-196, 1993.

C. Mellish. Abstract Interpretation of Prolog Programs. In Third International
Conference on Logic Programming, pages 463-474. Springer, 1986. LNCS 225.

G. Plotkin. A Note on Inductive Generalisation. Machine Intelligence, 5:153-163,
1970.

P. Schachte. Precise and Efficient Static Analysis of Logic Programs. PhD the-
sis, Department of Computer Science, The University of Melbourne, Melbourne,
Australia, 1999.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the Domain
Prop. The Journal of Logic Programming, 23(3):237-278, 1995.

P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michel. The Impact of
Granularity in Abstract Interpretation of Prolog. In Proceedings of the Workshop
on Static Analysis, pages 1-14. Springer-Verlag, 1993. LNCS 724.

J. Wunderwald. Memoing Evaluation by Source-to-Source Transformation. In

Fifth International Workshop on Logic Program Synthesis and Transformation,
pages 17-32. Springer, 1995. LNCS 1048.

