J. LOGIC PROGRAMMING 1993:12:1-199 1

PAIR-SHARING OVER RATIONAL TREES

ANDY KING

> Sharing information is useful in specialising, optimising and parallelising
logic programs and thus sharing analysis is an important topic of both ab-
stract interpretation and logic programming. Sharing analyses infer which
pairs of program variables can never be bound to terms that contain a com-
mon variable. We generalise a classic pair sharing analysis from Herbrand
unification to trace sharing over rational tree constraints. This is useful for
reasoning about programs written in SICStus and Prolog-III because these
languages use rational tree unification as the default equation solver. <

1. Introduction

Sharing analyses infer which program variables can never be bound to terms that
contain a common variable. Variable pairs which do not share are said to be
unaliased or independent. Independence information can be used, among other
things, to optimise backtracking [2]; specialise unification [17]; and eliminate run-
time checks in and-parallelisation [15]. Sharing analyses often additionally trace
linearity [3, 13, 16]. Linearity relates to the number of times a variable occurs in
a term. A term is linear if it does not contain multiple occurrences of a variable,
otherwise it is non-linear. The significance of linearity is that the unification of
linear terms yields only restricted forms of sharing. Thus, with linearity informa-
tion, worse case transitive sharing does not need to be assumed [3]. One key result
of [3] is lemma 2.2 which details some conditions on sharing that follow from the
unification of linear terms. One case of the lemma can be stated as follows:

Lemma 1.1. Suppose 0 € mgu({s = t}), x(s) = 2 and x(¢) = 1. If var(f(z)) N
var(6(y)) # O then either x & var(s) or y & var(s). |
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The lemma can be interpreted as saying that if a most general unifier (mgu) 6 exists
for the equation s = ¢, s is a non-linear term, ¢ is a linear term, and the variables
x and y share under 6, then z and y are not both in s. Unfortunately, as has been
pointed out before [7, 13], this lemma is subtly wrong as is illustrated by putting
s = f(z,z,y) and t = f(x,y,z). One mgu is the substitution § = {y — z,z — z}
for which var(8(z)) = {z} = var(6(y)) but = € var(s) and y € var(s).

It is important to understand, however, that the sharing analysis algorithm of
[3] is not fundamentally flawed. Indeed, Dams [7] proposes a revision of lemma 2.2,
with a proof sketch, that appears to be correct. Our work extends this unpublished
result to show how (a reformulation of) the sharing algorithm of [3] is safe for
rational tree unification [5, 11, 12] (and Herbrand unification without the occur-
check). We also make the following contributions:

o We show how the notions of groundness, sharing and linearity can be straight-
forwardly lifted to rational tree constraints by using substitutions over in-
finite trees [6, 9]. For example, to decide which variables share under
0={z— f(z,y,2),y — g(y)}, we examine the limit of the sequence 6, § 08,
fofob, .. .where o denotes composition. The substitution {z — s,y — t}
is the limit where ¢t = g(g(g(...))) and s = f(z,t, f(2,¢, f(2,¢,...))). Since ¢
contains no variables, y is ground and neither z or z share with y. Further-
more, x and z share, z is linear, but z is non-linear.

e We show how sharing relates to alternating paths [16]. Specifically, we show
that if a rational tree solver takes as input an equation set E and produces
as output E’, and if there exists an alternating path in E' between two
variables x and y, then there exists an alternating path between z and y in
E. This result leads to a revision and a generalisation of lemma 2.2 of [3].
Thus, alternating paths turn out to be an important device for establishing
the correctness of pair-sharing.

e We generalise the concretisation map for pair sharing [3] to substitutions
in rational solved form. Since correctness is defined by concretisation, it is
imperative that the map puts a sensible interpretation on sharing abstrac-
tions. In particular it must coincide with the classic map for idempotent
substitutions. We show this is so. Correctness is then established for pair
sharing and its product with a (parameterised) groundness analysis.

Generalising pair sharing to rational trees is more than an exercise in aesthetics
because Prolog-IIT and SICStus Prolog use rational tree unification as the default
solver. Specifically, our work enables programs that manipulate infinite trees to be
safely analysed for, say, parallelisation. (In fact, the was the main motivation for
the work.) More generally, without a deep knowledge of a Prolog-III or SICStus
program, it is difficult to determine whether or not it uses rational trees. Hence,
for safety, a sharing analysis must be conservative in the sense that it assumes that
rational trees may be used.

The exposition is structured as follows. Section 2 describes the notation and
preliminary definitions which will be used throughout. It also introduces the idea of
using limits and establishes some of its properties. Linearity is formally introduced
in section 3 and its relationship with the alternating paths [16] is explained. In
section 4, the focus is first on abstracting data and in particular the concretisation



map. Secondly, an abstract analog for unification is defined and proved correct.
Finally, sections 5 and 6 present the related work and the conclusions.

2. Preliminaries

2.1. Finite, infinite and rational trees

In the sequel, wherever possible, we follow the notation of [6]. Let the pair (F, g)
be a ranked alphabet consisting of a set F and a map o : F' — N which defines the
rank of any symbol f € F. A tree over (F, g) is a partial map ¢ : N* — F such that
its domain is non-empty and prefix-closed, that is, dom(t) # 0 and if «, 8 € N* and
a.f € dom(t) then a € dom(t) where . denotes concatenation. The empty sequence
is denoted ¢ and |a| denotes the length of the sequence a, for example, |e| = 0 and
|1.2.3] = 3. Furthermore, we require the following condition on ¢ and g: if t(a) = f
and i € {1,...,0(f)} then a.i € dom(t). Let M*°(F) denote the set of trees over
F. We assume that F' includes a constant ¢, that is, o(c) = 0. A tree t € M*°(F)
is finite iff dom(t) is finite, otherwise it is infinite. We denote the set of finite trees
by M(F). Let occ(f,t) denote the set of occurrences of f in ¢, that is, oce(f,t) =
{a € dom(t) | t(a) = f}. The set of sub-trees of ¢, sub(t), is defined by sub(t) =
{\B.t(a.f) | @ € dom(t)}. A tree t is rational iff sub(t) is finite.

Example 2.1. The leftmost, centre and rightmost trees, denoted t;, t. and t, re-
spectively, are all infinite since dom(tl) = {¢,1,2,2.1,2.2,.. .} is infinite and

dom(t;) C dom(t.) and dom(t;) C dom(t,). The trlangles represent sub-trees.
The trees t; and t. are rational since sub(t;) = {Ae.a, t;} and sub(t.) = {\a.t.(2.a)

t.} whereas t, is not because sub(t,) = {t,, Aa.t,(2.a), Aa.t,-(2. 2 a) .}

2.2. Substitutions over trees

Let X denote a (denumerable) set of symbols of rank 0 such that FNX = 0.
X is interpreted as a universe of variables. Let M (F,X) = M*(F U X) and
M(F,X)= M(FUX). If t € M>°(F, X) we define var(t) = {v € X | occ(v,t) # (Z)}
The size of a finite tree t € M (F, X) is defined by: size(z) = 1ifz € X, size(c) =
if o(c) = 0, and size(f(t1,...,tn)) =14+ > size(t;) if o(f) =n e N.

A substitution is a (total) map 6 : X — M (F, X) such that dom(f) = {z € X |
0(x) # x} is finite. We define cod(f) = U{var(f(z)) | = € dom(#)}. A substitution
f can be represented as a finite set of pairs {z — 6(z) | = € dom(8)}. The set of
substitutions is denoted Sub and the identity €. If § € Sub and t € M>®(F, X),



then 0(t) is the tree defined by:

O(z)(a)ifz e X AP €oce(z,t)
0(t)(a) = ANa=g.a Ad edom(f(z))
t(a) else if a € dom(t)

For brevity, we write (z, ) for t(a) where 6(x) = ¢t. An equation e is a pair (s = t)
where s,t € M(F,X). A finite set of equations is denoted E and Egn denotes the
set of finite sets of equations. We also define 8(E) = {6(s) = 6(¢) | (s =t) € E}.
The map egn : Sub — Eqn is defined by: egn() = {x =t | (z —t) € 6}.

If Y C X, then projection onto Y, 3Y'4, is defined by: 3Y.6 = 3(X \ Y).0 where
(FY.0)(z) =z if z € Y and (IY.0)(z) = 6(z) otherwise. Composition 6 o} of two
substitutions is defined so that: (6 o 9¥)(x) = 6(V¥(x)) for all x € X. Composition
induces the (more general than) relation < defined by: 8 < 4 if there exists § € Sub
such that ¥ = d o f. A renaming is a substitution p € Sub that has an inverse,
that is, there exists p~! € Sub such that p=! o p = e. The set of renamings is
denoted Rename. A substitution 6 is idempotent if § o § = 0; is circular if it has
the form {x1 — o, ..., &, — x1} where n > 2; and is in rational solved form if it
has no circular subset. A substitution 6 is stable [9] iff for all € X there exists
m € N such that either 0™ (z) ¢ X or §™(xz) = ™+ (z). The subset of Sub in
rational solved form is denoted RSub. An equation set F is in rational solved form
ifft £ = eqn(d) and § € RSub. The following lemma shows that RSub coincides
with the set of stable substitutions.

Lemma 2.1. 0 is stable iff € is in rational solved form. |

Proor. Iffisnot in rational solved form, then 8 includes {z; > zo, ..., z, — z1}
so that 6™ (z;) € X and 6™ (x1) # ™1 (xy) for all m € N. For the other direction,
suppose § = {zy — t1, ..., , —> t,} is in rational solved form. Observe that if
6" (z) € X then 0*(x) = 71 (z). Thus 6 is stable. |

The set of unifiers of E, unify(E), is defined by: unify(E) = {§ € Sub |
V(s =t) € E.6(s) = 0(t)}. The set of mgu’s, mgu(E), is defined by: mgu(E) =
{0 € unify(E) | V9 € unify(E).0 < 9}. Courcelle [6, Theorem 4.9.2] shows that
mgu’s are unique up to renaming, that is, if 8,9 € mgu(E) then 6 = p o ¥ where
p € Rename, dom(p) C cod(¥) and cod(p) C cod(f). The mapping solve specifies
a simple rational tree unification algorithm [5, 12].

Definition 2.1. The mapping solve : Eqn — p(Eqn) is defined by: solve(E) =
{E'" | E~* E'NE'" # fail N E' o E"} where * is transitive closure and the
relation Eqn ~ Eqn U {fail} is the least binary relation defined by:

Lo {f(51,.-80) = f(t1,. . tn)YUE~ {s1 =t1,..., 80 = tn} U E;
2. {f(s1,--- 8m) = g(t1,...,tn) Y UE ~ fail if f # g;

3. {x=z}UE~ E;

4. {t=a}UE~{z=t}UEift¢X;

5. {=y}UE~ {x =y} Up(E) if € var(E) and p = {z — y};



6. {r=s,2=t}UE~ {z=s,s=t}UFE if z # s and size(s) < size(t). I

Example 2.2. 1In the following example, for clarity, we annotate ~» with the trans-
formation rule numbers of definition 2.1: {z =y, f(f(z)) =z, y = f(f(f(v)))}
~t e =y, e = f(f@), y = FUFWN} ~° {z =y, y = fF(f), y =
FEF@NY ~° {z =y, y = f(fv), F(fW) = FFFWN}T ~' {z =y,
y=f(f), fly) = F(F)} ~' {z =y, y = F(fW), y = fy)} ~° {z =y,
F) = W),y =f) ~ {z =9,y = f)}. I

Notice that solve operates on sets of equations rather than multisets. (This simpli-
fies lemma 3.1.) Observe also that if E’ € solve(E) then there exists § € RSub such
that eqn(d) = E’. The transformation rules of definition 2.1 terminate, preserve
equivalence and also return a rational solved form:

Theorem 2.1. [5,12] mgu(E) = mgu(eqn(f)) and 6 € RSub if eqn(8) € solve(E). |

To build towards defining the concepts of groundness, sharing and linearity for
substitutions in rational solved form, we introduce limits:

Definition 2.2. Let {t, | n € N} C M>(F,X). Then t = lim,,_,« t,, iff for all
k € N there exists | € N such that t(a) = tp(«) for all m > 1 and |a| < k.
Furthermore, if {6, | n € N} C Sub then lim,,_, o 0, = Az. limy 00 O (). |

Note that lim,,_,, 8, does not necessarily exist even for an increasing chain 6; <
;11 as is illustrated by putting 02;—1 = {x — y} and 02; = {y — z} where i € N.
However, lim,,—, o, 8™ exists iff 8 is stable [9]. The following lemma establishes that
lim,, o, 6™ is a mgu of egn(#) and follows from a result by Intrigila and Venturini
7Zilli [9]. Henceforth 8°° abbreviates lim, o, 6™.

Lemma 2.2. 0 € mgu(eqn(d)) if 8 € RSub. |

Proor. Let 8 € RSub where 8 = {z1 — t1,...,Zy > t,n}. Then 6(z;) = t; (so 6
is a matching [9]) and 6 is stable. Put 7 = € in the proof of Theorem 2.1 of [9] and
then 0% = lim,,_, o (7 0 8)" € mgu(egn(9)). |

Ezample 2.3. Observe that if 0; = {z — f(y,2),y — ¢}, 6 = {z — f(z,y)},
0s ={z+— f(z,y),y — g(y)}, then 8,605,685 € RSub and

={z = fle,2),y=c}t 05°={aw— f(f(f(--,9),9),9)}

05° ={x = f(F(--,9(9(--))),9(9(--)))sy = g(g(--))}
Note that 6;°° € mgu(egn(6;)) and that 6;> are idempotent. |

The following lemma shows that idempotency is no coincidence.

Lemma 2.3. 0 is idempotent if 8 € RSub. |

ProOF. For a contradiction let z € dom(08°°) N cod(6>°). Then = € dom(#). Also
there exists y € dom(0°°) and a € dom(0°°(y)) such that 8°°(y, o) = z. Hence there
exists | € N such that 6™ (y,«) = x for all | < m. This contradicts = € dom(),
hence 8 is idempotent.



3. Alternating paths and Linearity

Sendergaard [16] first connected alternating paths with linearity, and there are
echos of his alternating paths approach in the abstract unification algorithm of [3].
Furthermore, Dams [7] used alternating paths to repair lemma 2.2 of [3]. We develop
this work (by not requiring that unifiers are computed by Herbrand unification)
and show how alternating paths can be used to reason about the restricted forms
of sharing that arise in rational tree constraint solving.

An alternating path is defined over an equation set E. Distinct occurrences of
variables in E are interpreted as the nodes of the graph. The graph has an edge (of
type one) between two variables occurrences if the variables are on opposite sides of
an equation in E. The graph has an edge (of type two) linking two distinct variable
occurrences if the variables coincide. An alternating path is a sequence of edges of
alternating type. This idea is formalised below:

Definition 3.1. If E € Eqn, then the binary relations —g, ~g C (E x N*)2 are the
least symmetric relations such that:

o (e,l.a1)—p(e,2.az)ife€ E,e(l.ag) € X and e(2.a3) € X

o (e1,a1) ~g (ea, ) if e1,e2 € E, e1(a1) = ea(as) € X and (e; # ey or

a1 # az).

where e(1.a) = s(a) and e(2.a)) = t(a) ife = (s = t). A sequence (e1,a1).(e1,51) ...
(en, an){en, Bn) € APathg iff {e;,a;) —p {e;, ;) for all 1 < i < n and (e;, 3;) ~g
(€i41,41) for all 1 < i < n where n € N. |

Ezample 3.1. Let Ey = {e} wheree = (f(z,y, 2) = f(u,u,v)) and E» = {e1,e2,e3}
where e; = (z = u),ez = (y = u) and e3 = (z = v). Observe (e, 1.1) —g, (e, 2.2),
(€,2.2) ~p, (e,2.1)and (e,2.1)—g, (e, 1.2) and thus (e, 1.1).{e, 2.2) .{e,2.1) .{e, 1.2)
€ APathg, where e(1.1) = = and e(1.2) = y so there exists an alternating path
between x and y in E;. Note also that (e1,1).(e1,2).(e2,2).(e2,1) € APathg,
with e; (1) = z and es(1) = y so the same is true for E». Note that By ~» Ey. |

One key result on alternating paths is that the iterative process of transforming an
equation set E into a rational solved form E’, cannot create new alternating paths.
Specifically, if there exists an alternating path in E’ whose ends points connect
the variables z and y, then the same must be true of E. This is illustrated in
example 3.1 and formalised in lemma 3.1.

Lemma 3.1. If E ~ E' and {(e;',01")...{en', Bm') € APathp, then there exists
(e1,1) ... (en,Bn) € APathp with ei(a;) = e;'(a1’) and e,(8n) = em' (Bm')- |

To aid the proof of correctness, we introduce the concept of variable multiplicity:

Definition 3.2. The (multiplicity) map x : M*°(F,V) — {0, 1,2} is defined by:
x(t) = max({0} U {x(z,t) | = € var(t)}) where x(z,t) = min({2, |occ(z,t)[}). |

If x(t) =0, t is ground; if x(¢t) = 1, t is linear; and if x(¢) = 2, t is non-linear. The
singleton set {0} simply ensures that x(t) is well-defined when ¢ is ground.



PrOOF. (for lemma 3.1) Suppose E ~ E' and a' = (ei’,a1")...{(en',Bn') €
APathg:. Since E' # fail, rules 1 and 3-6 of definition 2.1 only need be con-
sidered:

1.

Suppose E = {e} UE" and E' = {s1 = t1, ..., sg = tr} UE" where
e=(f(s1,.--,8¢) = f(t1,...,tx)). Construct a from a' by replacing each
pair of the form (s; = t;,j.a) with (e, j.i.a) where j € {1,2}. Observe that
a € APathg and that a satisfies the two end point properties.

Suppose E = {x = z} U E'. Immediate since APathg C APathg.

Suppose E = {t = 2z} UE" and E' = {z = t} U E". Construct a from o
by replacing pairs of the form (¢t = z,1.a) and (¢t = z,2.a) with (z =t,2.a)
and {(x = t, 1.a) respectively. Note that a € APathg and that a satisfies the
desired properties.

Suppose E = {z =y} U E" and E' = {z =y} U p(E") where p = {z — y}.
Construct @ = (e1,a1) ... (e, Bn) from a' by replacing the pairs (p(e), a)
with (e,a) where e € E'. Observe that adjacent pairs in a of the form
(ei, ;). (eq, B;) satisty (e;, ;) —g (e;,8:). If e1 = (x = y) or (e; € E" and
e1(a1) # x), then e (1) = e1’(aq’). Otherwise, if e; € E” and e (o) =z,
then replace a with (z =y,2).(z =y, 1).a so that e;(a1) = e1'(a;'). An
analogous construction can be used to obtain e, (a,) = e,/ (') = y. Now
consider the adjacent pairs (e;, 3;).(€i+1,@it1). lfe; = (z =y) = €1, (x =
y,B:) ~g (x = y,a;11) then B; # a;11, which contradicts x(z = y) = 1.
Thus there are three cases to consider:

e Now consider ¢; = (z = y) and e;31 € E”. Since z & var(p(ei+1)),
ﬂi = 2 and either €it+1 Oéi+1) =T Or €41 (ai—i-l) =Y.
— Suppose e;11(ait1) =y. Then (x =y,2) ~g (€it1, ®it1)-
— Suppose e;r1(@ir1) = x. Observe @' = ...(x = y,1).{z = y,2).
(p(€i+1),@ixr1) - ... Assume that o' = ...{e;—1', ﬂi_1’>.<£€ = y,1).
(z =y,2).(p(€i+1), @iy1) ... Since x(z =y) =1, ;1" # (x = y)
and thus e;_1' = p(e) where e € E"”. Hence & var(e;—1') which
contradicts {e; 1',Bi-1') ~p (x = y,1). Thus i = 1 and hence
a = (x =y, 1){x = y,2).(p(e2),as).{p(e2),Ba2) .... Remove the
first two pairs from a to give a = (ea, a2).{e2, B2) ... to ensure that
the end point property (z = y)(1) = ea(a2) holds.
e Now consider ¢; € E"” and e;11 = (x = y). Analogous to the previous
case.
e Now consider e;,e;11 € E".

— Suppose €;(8;) = eir1(aiy1). Since (p(es), Bi) ~pr (pleir1), diy1),
p(e;) # pleiy1) or B; # a;r1. Thus e; # e;y1 or B; # a;41 and
hence (e;, 8i) ~E (€i+1,Qit1)-

— Suppose €;(8;) = x and e;y1(a;r1) = y. Observe that (e;, ;) ~g
(x = y,1) —g (x = y,2) ~g {(ei+1,;+1) and therefore insert
(x =y,1).(xr = y,2) between {e;, 8;) and {e;y1, ;1) in a.

— Suppose €;(8;) = y and e;+1(a;+1) = x. Analogous to the previous
case.



6. Suppose E ={z =s,2 =t} UE" and E' = {& = s,s = t} U E". Without
loss of generality (z =t) ¢ E". Construct a from a’ by replacing:

(a) (z=s,a;).(x =s,2.a).(s =t,1.a).({s = t,Lit1) with (z = t,q;).(x = ¢, Bit1);
(b) (s=t,a;).(s=t 1.a).(z=s,2.0).(r =s,[ir1) with (z = t, ;) .(x = t, Bi11);

and, if (a) and (b) are not applicable, then replacing:

(¢) (s=t,a;).(s=tp;) with (z=¢t2.a).(z=¢t1)(z=s1).(x =s5,2.0)
where a; = 2.« and 3; = 1.3;

(d) (s=t,a;).(s=1t,0;) with (z =s5,2.a).(x =s,1).(x =1t,1).(x =¢,2.05)
where a; = l.a and 3; = 2.5.

In (a), if {e;—1,B8i—1) ~g {(x = s,q;), then «; = 1 necessarily and e;—1 #
(x = t) since (x = t) € E" so that (e;_1,8i—1) ~g (z = t,a;). Similarly
(x =1t,8i11) ~p (€iy2, aiyo) if (s =1t,Bi11) ~pr (€iy2,@iy2). An analogous
argument can be applied for substitution (b). In (c), if (e;—1,8i—1) ~pg
(s = t,a;), then a; = 2.a necessarily and e;—1 # (z = t) since (z = t) ¢
E" so that {(e;—1,8i—1) ~g {x = t,a;). Furthermore, if (s = ¢,8;) ~pg
(ei+1,;r1), then since (¢) is applied rather than (b), it follows that e;11 #
(z = s) or aj+1 # 2.8 and hence (z = 5,2.8) ~g (€i+1,@;+1). An analogous
argument can be applied for substitution (d). Thus all the adjacent pairs
<6i,ﬂi>.<€i+1,ai+1> of a satisfy <€i;ﬂi> ~E (ei+1,ai+1>. Observe also that
(ei, ;) — g {e;, B;) for pairs (e;, a;).{e;, B;) of a. |

Lemma 3.2 explains where the end points of an alternating path can occur for
simple equation sets of the form {s = t}. It is prelude to the main result in this
section, proposition 3.1.

Lemma 3.2. If (e,a1) ... (e, Bn) € APathy.y where e = (s = t) then:

ay =laand 3, =20 or a;=2.q,B,=20Fand x(s) =2 or

ar =2.«aand B, =18 or «a;=1la,B,=10and x(t) =2 |
PROOF. By induction on n. The base case (e, a1).(e, 31) € APathy.y is immediate
so let (e,a1) ... (e, Bn).(e,any1).(e, Bny1) € APathg,, where e = (s = t). By the
inductive hypothesis there are 4 cases to consider:

e Suppose a1 = l.a and 8, = 2.8. If apr1 = 1.a' then 8,41 = 2.8" and so the
result follows. Otherwise a, 1 = 2.a" and by the definition of ~¢., o' # 3
so that x(¢) = 2. Note that 3,411 = 1.8’ so again the result follows.

e Suppose a; = 2. and 3, = 1.4. Similar to the previous case.

e Suppose a = 2.a, B, = 2.0 and x(s) = 2. If a, 41 = L.a' then 8,41 = 2.0
and the result follows since x(s) = 2. Else ap+1 = 2.a' and thus 8,41 = 1.5".

e Suppose o = l.a, 3, = 1.6 and x(¢) = 2. Similar to the previous case. |

Ezample 3.2. Recall E; = {e} of example 3.1 where e = (f(z,y,2) = f(u,u,v)).
Since x(f(z,y,2)) = 1, then by lemma 3.2 no alternating paths exists between



w and v in Ey. A corollary of this and lemma 3.1 is that no alternating paths
exist between u and v in Ey of example 3.1 since E; ~ Es.

Proposition 3.1 details the forms of sharing that can arise in 6 € mgu({s = t}).
Although the lemma is similar to another stated in [7], our proof does not require
that 6 is computed by Herbrand unification. This is a crucial difference.

Proposition 3.1. If 0 € mgu({s = t}), z # y and var(0(z)) Nvar(8(y)) # O then:

x € var(s) and y € var(t) or xz,y € var(t) and x(s)
(

( 2 or
x € var(t) and y € var(s) or z,y € var(s) and x(t)

2

ProoF. Let 6 € mgu({s = t}) such that var(6(z)) Nvar(f(y)) # 0. Let E =
eqn(V¥) € solve({s = t}). By lemma 2.2, 9° € mgu(E) and by theorem 2.1,
mgu({s = t}) = mgu(E) so that § € mgu(E) and thus there exists p € Rename
such that po# = ¥°°. Thus var(9>°(z)) Nvar(¥>(y)) # 0.

e Suppose z € dom(9*) and y & dom(9¥°°). Thus there exists @ € dom (9> (x))
such that ¥*°(z,a) = y. Hence there exist a minimum m € N such that
9™ (x,a) = y. Therefore there exists e’ = (x = t1), e’ = (x2 = ta), ...,
em' = (Tm =tm) € eqn(¥) = E where t1(81) = za, ..., tm—1(Bm—-1) = Tm,
tm(Bm) = y. Hence (e1’,1).{e1',2.61) ... (em', 1){en,2.0:m) € APathg
where e1'(1) = = and e,,'(2.6,) = y. Thus, by lemma 3.1, there exists
(e1,01) ... {en,Bn) € APathy,—sy with e;(a1) = = and e,(3,) = y. The
result then follows by lemma 3.2.

e Suppose z € dom(9>°) and y € dom(¥°>°). Analogous to the previous case.

e Suppose z € dom(9>°) and y € dom(9>°). A minimal (m,n) € N? exists
(in the lexicographical ordering) with z € var(¥™(z)) N var(9”(y)) since
var(¥°(z)) Nvar(¥=(y)) # 0. Thus there exists ;' = (z = t1), ex’ = (2 =

ta), s em' = (Tm =tm), 1" = (y =51), " = (2= 52), ..., " = (yn =
sp) € eqn(¥) = E with t1(81) = 2, ..., tm-1(Bm-1) = Tm, tm(Bm) = 2,
s1(81) = y2, -+ $n—1(Bn=1") = Un, sn(Bn') = 2. Since {(m,n) is minimal,

em' # ey’ and thus (e;',1)...{(em',2.0m)-(en",2.0:") ... (e1"",1) € APathgp
where e;'(1) = z and e;”(1) = y. Continue with lemmas 3.1 and 3.2 as
above. |

It is important to realise that proposition 3.1 does not make any statement about
how the mgu is computed: it might be computed by Herbrand unification (with
or without the occur-check), or a version of solve adapted to multisets, or even a
nearly-linear, memoising rational tree algorithm [11]. In fact, Herbrand unification
can just be regarded as an incomplete implementation of rational tree unification:
it computes an mgu iff it terminates. By building on this result we establish cor-
rectness for pair-sharing across a range of Prolog implementations. The following
example shows how the proposition can be used to reason about the absence of
sharing. This is the main application of the result.

Ezample 3.3. Let 6, € mgu({f(z,y)

= f(u,v)}), 92 € mgu({x = f(a:,y,z)})
and 93 € mgu({f(ﬂ:,l“,y) = f(mayyz)})

Since x(f(z,y)) = x(f(u,v)) = 1,
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proposition 3.1 ensures var(6;(z)) Nvar(61(y)) = O = var(6: (u)) Nvar(6; (v)).
It also predicts that var(f2(y)) Nwvar(f2(z)) = 0. Observe that var(fz(x)) N
var(fs(y)) # 0, but unlike lemma 2.2 of [3], the proposition does not predict

that x & var(f(z,y,2)) or y & var(f(z,y, 2))- |

4. Pair-sharing

Analyses can be used in isolation, but an increasing trend is to combine domains
to improve accuracy [4]. In our treatment, we assume that pair-sharing will be
used with a groundness domain, say Def or Pos [1]. Thus, unlike the Sgndergaard
domain [3, 16], our pair-sharing domain, P.S, does not capture or propagate ground-
ness. We simply assume that a rich groundness domain can be projected onto a
simple groundness domain, G (that is isomorphic to Con [14]). PS and G are
defined below in terms of a finite set of program variables V C X.

Definition 4.1. Gy = p(V), PSy = p({{z,y} | z,y € V}). I

(Gv,C,N,U) and (PSy, C,N,U) are finite lattices which respectively have maximal
ascending chains of length n + 1 and §(n”® +n + 2) where |V| = n. For example, if
V ={z,y} and n = 2, then PSy contains the maximal chain @, {{z}}, {{z}, {v}},
{{z},{z,y},{y}} of length (2% + 2+ 2) = 4. Concretisation maps are introduced
to explain how groundness and sharing descriptions can be interpreted as sets of
substitutions in rational solved form.

Definition 4.2. The concretisation maps 7 : Gy — p(RSub) and v : PSy —
p(RSub) are defined by: v (U) = {# € RSub | Yu € U.var(§>*(u)) = 0} and
V5 (7) = {0 € RSub | av (%) C 7} where

_ (u # v Avar(8(w)) Nvar(8(v)) £ 0) V
w®={ma v 2GS }

Abstraction maps aff : p(RSub) — Gy and ol : p(RSub) — PSy can be induced
from the concretisation maps v : Gy — p(RSub) and v : PSy — p(RSub) in
the usual way. If 6 is idempotent and 8 € v (U) N~ (z) then var((u)) = ( for all
u € U and ay (f) C 7. Thus +{ and 4% are backward compatible in the sense that
they coincide with the classic concretisation maps [3] for idempotent substitutions.

Ezample 4.1. Let V. = {z,y,z} and consider again 6,602,605 € RSub of
example 2.3. Then ay (02°) = {{z, z}}, av () = {{z,y}, {z}} and ay (65°) = 0
so that 0,02,03 € A&5({{z,y},{z,2},{y}}). Note that 61,6 € +¢({y}),
0y € 4G ({,y}) and 1. 0,05 € 1 (L{z,yh, {9}, i

To avoid making worst-case assumptions about aliasing, we need to recognise when
linear terms participate in abstract unification. Thus, to conservatively calculate
the variable multiplicity of a term ¢ in the context of a set of substitutions repre-
sented by 7, we introduce an abstract multiplicity map x.
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Definition 4.3. The map x : M(F,V) x PSy — {0,1,2} is defined by:

0 ifx(t)=0
) 2 elseif x(t) =2
x(t,m) = 2 else if Ju,v € var(t).{u,v} €w
1 otherwise |

The following lemma explains how ¢ and 7 can be inspected to make an inference
about the linearity of 8°°(¢). Note how & is used to ground those variables of ¢ that
U records as ground.

Lemma 4.1. x(8°(t)) < x(x(t),7) if 0€1F(U)NyE5 (7) and k={u+s clu e U}. |

ProoF. Let 6 € ¥4(U)NE%(n) and put & = {u > ¢ | u € U}. Since 0 € A (U),
f € RSub and thus, by lemma 2.2, > exists.

e Suppose x(k(t),7) = 0. Since var(k(t)) = 0, var(t) C U and therefore
Yu € var(t).var(0> (u)) = 0 so that x(8>°(t)) = 0.

e Suppose x(k(t),7) = 1 and, for a contradiction, that x(6*°(t)) = 2.

— Suppose there exists u € var(t) such that var(6°°(u)) # 0 and x(u,t) =
2. Thus v ¢ U so that u & dom(k) so that x(x(t)) = 2 which contradicts
x(k(t),m) =1.

— Suppose there exist u, v € var(t) such that var(8°°(u)) # 0, var(0°°(v)) #
¢ and u # v. Therefore {u,v} € m and since v ¢ U and v ¢ U,
u,v € var(k(t)) which is a contradiction.

— Suppose there exists u € var(t) such that x(6*°(u)) =2. Thus {u} €7
and u € var(k(t)) which is a contradiction.

e Suppose x(k(t),7) = 2. The result is immediate. |

The operator mguy (s,t,7), defined below, constitutes the basis for our sharing
analysis. It solves the equation s = ¢ in the presence of the abstract substitution
7w returning the composition of the unifier with 7. Since s, ¢ and 7 are finite,
mguy (s,t, ) is finitely computable, and thus the definition can be interpreted as
a sharing analysis algorithm.

Definition 4.4.

(x €ewvar(s)ANz~uAv~yA y€cwvar(t))V
mguy (s, t,m) = tU {u,v} CV |(x,y € var(s) Nz ~uAv~yA x(t,7)=2)V
(r,y €var(t) Ao ~uAv=yAx(s,m)=2)

where u ~ v iff u = v or {u,v} € 7. |

Abstract unification algorithms usually operate on simple equations/bindings of
the form z = ¢. In our presentation, however, s can be a non-variable term. This
simplifies the analysis of some builtins. For example, to trace the effect of the call
sort([X, Y, Z], [U, U, V1) in the context of a description w, we just calcu-
late mguy (s,t,7) where s = [X, Y, Z] and t = [U, U, V]. This is because the
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call will reduce to the one of the unifications: [X, Y, Z] =¢, [X, Z, Y] =¢t, ...,
[z, X, Y] =t,[Z, Y, X] =tand all of these behaviours are traced by mguy (s, t, 7).
For an equation s = ¢, it can be more precise to iterate mguy over the equations
of solve({s = t}) rather than compute mguy (s,t,m) directly. Note also that our
mguy (s, t, ) is basically a composition of the o and soln maps of [3]. (This reduces
the number of operators that need to be implemented.)

To establish the correctness of abstract unification we state and prove two lem-
mas. Lemma 4.2 explains how sharing and composition of substitutions interact.
Note that d is not necessarily idempotent. Lemma 4.3 details how mgu’s for the
equation set E U eqn(f) relate to those of 6°°(F) (assuming the limit exists).

Lemma 4.2. If var(d o 0(u)) Nvar(d o 8(v)) # B and @ is idempotent, then either:
o wvar(f(uw)) Nvar(f(v)) # 0 or

e there exist z,y € wvar(f(u)) U var(f(v)) such that = # y, var(@(u))

var(6(z)) # 0, var(6(z)) Nvar(6(y)) # 0 and var(6(y)) Nvar(B(v)) # 0.

0
PROOF. Suppose var(d o 8(u)) Nwvar(d o 8(v)) # @ and var(8(u)) Nvar(8(v)) =
Note there exist z € var(8(u)), y € var((v)) such that var(d(x)) Nvar(d(y)) 75
and x # y. We need to show var(0(u)) Nvar(f(z)) # 0.

e Suppose z € cod(8).

— Suppose = u. Then var(f(u)) Nwvar(6(x)) = var(6(u)). The result
follows because z € var(6(u)).

— Suppose & # u. Since 6 is idempotent and x € cod(d), then x & dom(8).
Thus 6(z) = = and as = € wvar(6(u)), it follows that var(f(u)) N

var(6(z)) # 0.

e Suppose z & cod(f). Because z € var(f(u)), v = x and thus z € var(f(z)).
Hence var(6(u)) Nvar(6(z)) # 0.

It similarly follows that var(8(y)) Nvar(8(v)) # 0. |
The following example illustrates that two conditions of lemma 4.2 do not neces-
sarily follow if the idempotency of @ is relaxed.

Ezample 4.2. Suppose § = {z — f,u — z} and § = {v — z}. Then var(dof(u))N
var(d o B(v)) # O but var(8(u)) Nvar(@(v)) = § and var(8(u)) Nvar(@(z)) = 0. |

Lemma 4.8. §060% € mgu(E U egn(0)) if § € mgu(0*°(E)). |

ProOF. Let § € mgu(6*°(E)). Thus § 0 8 € unify(E). By lemma 2.2 8 ¢
mgu(egn(8)) so that 6 0 8> € unify(eqn(d)) and thus § o 8°° € uni fy(EUeqn(h)).
Let 9 € unify(EUeqn(#)). Thus 9 € unify(eqn(f)) and hence there exists ¢ € Sub
such that ¥ = ¢ 0 6°°. But ¢ € unify(0>°(E)U 0% (eqn(0))) = unify(0>°(E)) so it
follows that 6 < ¢ and thus 6 0 8> < ¢ 0 8 = 1§ as required. |

The following theorem establishes the correctness of abstract unification. Note that
U describes the state # immediately prior to solving the equation s = t.
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Theorem 4.1. mgu({s = t} U eqn(8)) C 7 (mguy (k(s),s(t),r)) if § € v (U) N
VS (m) and k = {u s c|u € U}.

PROOF. Suppose ¢ € mgu({s = t} Ueqn(f)) and § € v (U) N~v&%(x). Since
6 € RSub, 8> exists and let § € mgu({0°°(s) = 6°°(t)}). By lemma 4.3, 6 0 > €
mgu({s =t} Ueqn(#)) and there exists p € Rename such that ¢ = po o .

e Suppose var(p o § o 8°(u)) Nwar(p o § o §°(v)) # 0 where u # v. We
need to show {u,v} € mguy (k(s), k(t), 7). Since 8 is idempotent then by
lemma 4.2 there are 2 cases:

— Suppose var(0>(u)) Nvar(@>(v)) # B. Since § € v9(r), {u,v} € 7
and thus {u,v} € mguy (k(s), &(t), 7).

— Suppose there exist z',y’ € var(8°°(u)) Uvar(0>(v)) with =’ # ¢,
var(8%° (u)) Nwvar(@>®(x')) # 0, var(p o §(z")) Nwvar(p o d(y')) # 0 and
var(6%(y")) Nvar(*(v)) # 0. Because p € Rename, p is injective and
therefore var(d(z')) Nwar(d(y')) # 0. But § € mgu({0°°(s) = 0°°(¢)})
and so by proposition 3.1 there are 4 cases:

% Suppose 2’ € var(#*(s)) and y' € var(6°*°(t)). Since var(0*° (u)
var(6°°(z'")) # 0, there exists x € var(s) such that var(60° (u)
var(6% o #°°(z)) # @ and since > is idempotent, var(6> (u)
var(0*°(z)) # 0. Similarly there exists y € wvar(t) such tha
var(6(y)) Nwvar(0>®(v)) # 0. Because § € y%(r),  ~ u and
v ~ y, since § € Y (U), z,y ¢ U and thus = € var(k(s)) and
y € var(k(t)). Hence {u,v} € mguy (k(s), k(t), 7).

% Suppose y' € var(6*(s)) and =’ € var(#>(t)). Analogous to the
previous case.

)N
)N
)N

-+

% Suppose z',y" € var(6*°(s)) and x(6°°(¢)) = 2. As in the previous
case but one, there exist z,y € wvar(s) such that var(8>(u)) N
var(6%°(z)) # 0 and var (8> (y))Nvar(8>° (v)) # 0. Thusz ~ u, v ~
y and z,y ¢ U and therefore z,y € var(k(s)). By lemma 4.1, 2 =
x(t,0%) < x(k(t),r) <2 and thus {u,v} € mguy (k(s), &(t), 7).

x Suppose z',y" € var(>(t)) and x(0>(s)) = 2. Analogous to the
previous case.

e Suppose x(podof>®(u)) =2. We need to show {u} € mguy (k(s), k(t), ).

— Suppose x (6 (u)) 2. Since 6 € &(m), {u} € 7 and therefore
{u} € mguy ((s), £(1), 7).

— Suppose x(0°°(u)) # 2. Then there exist z',y’ € var(6°(u)) such that
' # y' and var(p o §(z')) Nwvar(p o §(y')) # O so that var(é(z’)) N
var(§(y')) # 0 since p € Rename. Since § € mgu({0>=(s) = 0°°(t)}),
then by proposition 3.1 there are 4 cases:

*x Suppose ' € var(0*(s)) and y' € var(8*°(t)). Thus there ex-
ists € var(s) such that 2’ € var(6>°(z)) and thus var(0>(u)) N
var(6°°(z)) # 0. Similarly there exists y € var(t) with var(6=°(y))N
var(0*°(u)) # 0. Hence x ~ u and v ~ y and since z,y & U,
it follows that = € wvar(k(s)) and y € var(k(t)) so that {u} €
mguy (k(s), k(t), 7).
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* Suppose y' € var(6*(s)) and z' € var(#>(t)). Analogous to the
previous case.

% Suppose z',y" € var(6*°(s)) and x(6°°(¢)) = 2. As in the previous
case but one, there exist z,y € var(k(s)) such that var(6°(u)) N
var (6% (z)) # 0 and var(68>°(y))Nvar (8> (u)) # 0. As before, z ~ u
and u ~ y and x(x(t),7) = 2, and thus {u} € mguy (k(s), k(t), 7).

% Suppose z',y" € var(0>(t)) and x(6°°(s)) = 2. Analogous to the
previous case. |

Rather than apply abstract unification directly to a equation s = t, one tactic
for improving precision is to apply the abstract unification repeatedly to simpler
equations ey, ...,e, where {e1,...,e,} € solve({s = t}). We thus lift the abstract
unification to equation sets as follows:

Definition 4.5. The mapping mguy : Eqn x PSy — @(PSy) is defined by:
mguy (E,7) = {w | (E,7) ~* (0,w)} where ~» C (Eqn x PSy)? is the least
binary relation such that: ({s =t} U E, ) ~ (E,mguy(s,t,m)). |

We conjecture that w = ' if w,w' € mguy(E,w). The crucial point is that any
w € mguy (E, ) is safe and this is asserted below. Note again that U describes the
state @ prior to solving F.

Corollary 4.1. mgu(E U egn(9)) C v&5(w) if w € mguy (k(E),n), 8 € 44 (U) N
VS (m) and k = {u s c|u € U}.

Proor. By induction on the equations of E so let Ey = {s; = t1,...,8, = tx}
for 0 < k < m, put wp = 7 and wy, = mguy (k(sk), k(tr),wr—1) for 1 < k < n.
The inductive hypothesis is that mgu(Ey U eqn(8)) C 4&9(wi). Observe that
mgu(Ep U eqn(8)) = mgu(egn(9)) C vE%(wo). Now suppose mgu(Ej U eqn(f)) C
5 (wy) for 0 < k < n. We have to show mgu(Eg1 U eqn(f)) C 75 (wgi1). If
mgu(Ey, U egn(6)) = @ then mgu(Eg+1 Uegn(f)) = 0, and so the result follows.
Otherwise, let 8’ € mgu(Ej U eqn(f)). Note that 8’ € ¥¢(U). By theorem 4.1,
mgu({sp+1 = trr1} Ueqn(@)) C 1% (mguy (k(sk41), £(tke1),wr)) = 15 (Wht1).
Thus mgu(Egi1 U eqn(8)) = mgu({sp1 = tri1} Ueqn(8')) C %5 (ki)

So far, abstract unification has only used groundness information for the program
state immediately before E. A better tactic for both precision and efficiency is
to completely trace the grounding behaviour of E with Posy or Defy, say, and
then feed this information into the sharing analysis. To achieve a degree of domain
independence, we assume that this grounding effect of E is summarised with a Gy
abstraction. This information can then be used to prune sharing abstractions and
simplify E by grounding variables. Theorem 4.2 formalises this tactic. Before we
reach the theorem, however, we introduce a lemma that is needed in the proof of
the theorem.

Lemma 4.4. 3(dom(0) \ cod(8)).0 € mgu(6(E)) if § 0 8 € mgu(E). |
PROOF. Since §of € mgu(E), (§00)(s) = (§06)(t) for all (s =¢) € E and thus §(s’)
= §(t') for all (s' =t') € (F) so that § € unify((E)). But if x € dom(6) \ cod(9)
then z ¢ var(6(E)) so that I(dom(f) \ cod(8)).0 € unify(6(E)). Now let ¢ €
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unify(0(E)) and eqn(n) € solve(8(E)). By lemma 2.2, n°° € mgu(egn(n)) and
by theorem 2.1, mgu(8(E)) = mgu(eqn(n)) so that n°™ o 8 € unify(E) and since
dof € mgu(E) it follows that of < p>of. Thus I(dom(0)\cod(8)).0 < I(dom(0)\
cod(0)).n>°. By lemma 2.3, n°° is idempotent so that 3(dom(0) \ cod(#)).n> < n>
and thus it follows that I(dom(8) \ cod(#)).6 < n> < (.

Theorem 4.2. mgu(EUeqn(0)) C v&° (w) ifw € mguy (k(E), @), mgu(EUeqn(6)) C
VG (U), 8 € 1L (r), @ = {{u, v} € 7|{u,0} U £ 0} and & = {u— c|u € U}. |

PrOOF. Let 9 € mgu(E Ueqn(f)), 9 € v4(U), 0 € 4&%(r) and w = {{u,v} €
7 | {u,v} NU # 0}. Since 8 € v5(n), & € RSub and thus #> exists. Since
9 € unify(egn()) and, by lemma 2.2, 0 € mgu(egn(f)) then #° < . Thus there
exists ¢ € Sub such that ¢ 0 8> = . Because ¥ € unify(E), ¢ € unify(6<°(E))
so that mgu(6><(E)) # 0. Thus let § € mgu(8°°(E)) and put Y = {y € dom(d) |
var(d(y)) = 0}, ¢ = V.0 and ¢ = FY.6. Observe that § = ¢ o ¢ since cod(¢p) = §
and dom(¢) N dom(p) = B. Thus p o ¢ € mgu(f°(E)) and so by lemma 4.4,
A(dom() \ cod(9)).0 € mgu({¢p o °°(E)}). Furthermore I(dom(¢) \ cod(d)).¢
= ¢ since cod(¢) = B and dom(¢) N dom(p) = @. Since ¢ o 6% is idempotent,
¢ € mgu((¢ o §°)*°(E)) and so by lemma 4.3, p 0o p0 0™ = po (¢ of®)>® ¢
mgu(E U egn(¢ o 6°°)).

Let {u,v} € ay((¢ o 8°)>) where u # v. Because ¢ o 8> is idempotent,
var(¢ o 8 (u)) Nvar(¢ o 0°(v)) # 0. As cod(¢) = 0 it follows that var(6°(u)) N
var(0°(v)) # 0 and hence {u,v} € ay (). Similarly, if {u} € ay ((¢06°°)>°) then
{u} € ay(6>). Thus ¢ 0 8* € v&(x). By lemma 4.3, § 0 > € mgu(E U eqn(6))
so there exists p € Rename such that j 0§ = po . Let v € V. Observe that
var(¥(v)) = 0 iff var(p o ¥(v)) = 0 iff var(§ o 6°(v)) = @ iff var(¢ o 8°°(v)) = 0.
Thus ¢ 0 8 € 4&(U) and ¢ 0 0° € (). Hence, by corollary 4.1, mgu(E U
eqn(¢ o 0>)) C v&5(w) where w € mguy (k(E),w) and k = {u > ¢ | u € U}. Thus
popoh>® €% (w). However, popof> = §of> = pod and since p € Rename,
¥ € vE5(w) as required. |

Finally, we give a series of examples that illustrate, among other things, how theo-
rem 4.2 is applied, the value of linearity information, and the importance of propa-
gating groundness before tracing sharing. The final example shows that pair sharing
can infer useful (linearity) information even in the presence of infinite trees.

Ezample 4.3. Let V = {u,v,z,y} and consider the sharing at point () of the
query - @D x = £(y, y), £(u, v) = x @. The substitution at D is ; = ¢
so that Uy = 0 and m; = . Us = 0 describes the groundness at (2. To
calculate the sharing at 2, let mo € mguy (k(E),m ) where k = € and E =
{CE = f(yay)vf(uav) = HZ} Thus put my = mguv(w,f(y,y),mguv(f(u,v),x,m))
= {{U}, {uv ’U}, {Ua y}v {u7 CU}, {’U}, {Ua CU}, {Ua y}7 {.7:}, {'757 y}} Note that m =

mguv(f(u,v),a:,mguv(w,f(y,y),ﬂ'l)) and 0, = {.’IJ = f(yay)au =Y, = y} €
mgu(E Ueqn(6,)) C v%(m2) as predicted by theorem 4.2. |

Example 4.4. The query 7- @D x = £(y, z), f(u, v) = x ) illustrates the
value of tracing linearity. With V = {u,v,z,y,z} and 6; = ¢, U; = § and
71 = § and a groundness analysis will give Us = () so that kK = €. Thus the
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sharing at @ is described by m = mguv(z, f(y,z), mguy (f(u,v),z,m)) =
{{u, 2}, {u,y},{u, 2}, {v, 2}, {v,y}, {v, 2}, {2, y},{x, 2} }. Note that {u, v}, {z,y}
¢ mo and indeed var(fz(u)) Nwvar(@2(v)) = 0 = var(f2(x)) Nwvar(f2(y)) for all
02 € mgu({x = f(y,2), f(u,v) = x}). I

Ezample 4.5. The importance of tracing groundness before sharing is shown by
- Dx=1G,y,2), @y=c@. Let V = {x,9,2} and §; = e. Thus
T = ®> Up=Uz= § and Us = {y} If LERS mguv(n({x = f(yvyyz))y = c}))ﬂ—l)
and k = {y — ¢} then m3 = {{z,2}}. However, if the groundness and sharing
analyses are interleaved, then we obtain 7' = mguy({z = f(y,y,2)},m) =
{{z},{z,y},{z,2z}}. Furthermore, m3' = mguy(k({y = c¢}),w) where @w =
{{u,v} € mo' | {u,v}NU;s # 0} = {{z},{z,2}}. Thus w3’ = {{z},{=,2}} Whic}i

is strictly less precise than 3.

Exzample 4.6. Consider 7- (D x = £f(x, z), f(u, v) = x @. If §; = € then
b ={z = t,u—t v z} € mgu({z = f(z,2), f(u,v) = x}) where t =
F(f(f(...,2),2),2) is infinite. Let V = {u,v,z,y,2}. Uy =0, 7y =P and Uy =0
and hence m = mguy(f(u,v),z,mguy(z, f(z,2),m)) = {{u},{u,v}, {u,z},
{u, 2z}, {v}, {v,z},{v, 2}, {z}, {z, 2} }. Note that my is safe abstraction of f, since
O‘V(limn—mo 02”) = aV(02) = {{u}: {uvv}v {U,CE}, {uv Z}7 {an}a {’U, Z}7 {CU}, {.7;, Z}}

C my. Observe also that {z} & m. |

5. Related work

Set sharing [10] has also been proved safe for rational tree unification [8]. Among
other things, the paper [8] generalises the abstraction function for Sharing to equa-
tion sets in rational solved form. One key idea is to replace the occurrence map
of [10] with a map occ!(, z) that is defined as the limit of a sequence of sharing
sets ocep, (0, ). Correctness of abstract unification is established by introducing the
concept of variable-idempotence. A substitution # is said to be variable-idempotent
iff var(6(t)) = var(t) for all z — ¢ € 6. Any substitution § can be transformed
to a variable-idempotent substitution §’ that is equivalent when 6 and 6’ are in-
terpreted as equations. Sharing abstractions for 6 and €' coincide, so the proof of
correctness focuses primarily on variable-idempotent substitutions. Our tactic for
lifting pair-sharing to rational tree unification is slightly different. To abstract 6,
we simply apply the map ay to the idempotent substitution lim,, . 6™.

As we have already stated, Dams [7] proposes a revision of lemma 2.2 of [3] so
the pair sharing analysis of [3] for idempotent substitutions does not appear to be
incorrect. We take this correctness result further and argue that pair sharing is
correct for Herbrand unification without the occur-check and also for rational tree
unification.
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6. Conclusions

We have generalised pair sharing from Herbrand unification to constraint solving
over rational trees. In doing so we have: shown how substitutions over infinite
trees can be used to lift concretisation maps to substitutions in rational solved
form; strengthened the connection between linearity and alternating paths; and
finally proven correctness for pair sharing. Although theoretical, our work has
important practical applications since Prolog-IIT and SICStus Prolog use rational
tree unification as the default solver.
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