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ABSTRACT  

Glomerular disease is characterised by morphological changes in podocyte cells 

accompanied by inflammation and fibrosis. Thymosin-β4 regulates cell morphology, 

inflammation and fibrosis in several organs and administration of exogenous thymosin-β4 

improves animal models of unilateral ureteral obstruction and diabetic nephropathy. 

However, the role of endogenous thymosin-β4 in the kidney is unknown. We demonstrate 

thymosin-β4 is expressed prominently in podocytes of developing and adult mouse 

glomeruli. Global loss of thymosin-β4 did not affect healthy glomeruli, but accelerated the 

severity of immune-mediated nephrotoxic nephritis with worse renal function, peri-glomerular 

inflammation and fibrosis. Lack of thymosin-β4 in nephrotoxic nephritis led to the 

redistribution of podocytes from the glomerular tuft towards the Bowman’s capsule 

suggesting a role for thymosin-β4 in the migration of these cells. Thymosin-β4 knock-down 

in cultured podocytes also increased migration in a wound-healing assay; accompanied by 

F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin-

β4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow 

disease progression. 

 

Keywords: cytoskeleton, fibrosis, glomerulus, inflammation, podocyte 
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INTRODUCTION 

End-stage renal failure is a devastating condition, requiring life-long dialysis and 

transplantation and a risk factor for all-cause mortality and cardiovascular disease.1 Many 

cases are due to disruption of the glomerular filtration barrier, consisting of epithelial 

podocytes, endothelium, mesangium and glomerular basement membrane.2 Podocytes have 

a unique shape maintained by a complex cytoskeleton,3 with branched foot process 

extensions which abut each other at slit diaphragms. During glomerular injury, podocyte 

architecture is perturbed resulting in defective filtration and proteinuria2-4 often with 

inflammatory components characterised by leukocyte infiltration followed by 

glomerulosclerosis and tubulointerstitial fibrosis.5 

 

Thymosin-β4 (Tmsbx4) is a naturally-occurring peptide. It is the major G-actin sequestering 

protein in mammalian cells6 with critical roles in maintaining the cell cytoskeleton. In animal 

models, exogenous Tmsbx4 has beneficial effects in diverse pathologies including 

myocardial infarction,7 stroke,8 dry eye9 and inflammatory lung disease;10 and there are 

clinical trials assessing Tmsbx4 treatment in wound healing and cardioprotection.11 The 

utility of Tmsbx4 in these pathologies has been attributed to modulation of several cellular 

functions including cell motility,12 differentiation,13 survival,14 angiogenesis,15 inflammation16 

and fibrosis.10  

 

Recent studies investigated exogenous Tmsbx4 as a treatment for kidney disease.17 

Tmsbx4 reduced renal tubulointerstitial fibrosis following unilateral ureteral obstruction 

(UUO) in mice, potentially through decreasing plasminogen activator inhibitor-1 (PAI-1) 

expression and dampening transforming growth factor-β1 signalling.18 In KK Cg-Ay/J mice, a 

model of type II diabetes mellitus, daily Tmsbx4 treatment for three months reduced 

albuminuria and attenuated renal pathology.19 Furthermore, N-acetyl-seryl-aspartyl-lysyl-

proline (AcSDKP), the N-terminal tetrapeptide generated by Tmsbx4 cleavage20 has 
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beneficial effects on fibrosis and inflammation in UUO, remnant kidneys, diabetic 

nephropathy and glomerulonephritis.18, 21-23 

 

Tmsbx4 transcripts are detectable by in-situ hybridisation in developing and adult glomeruli24 

with strong expression in podocytes.24, 25 Furthermore, in rat remnant kidneys, proteomic 

analysis of laser-capture dissected glomeruli demonstrated significantly increased Tmsbx4 in 

sclerotic versus normal glomeruli.26 Despite such evidence of expression and beneficial 

renal effects, the functional importance of endogenous Tmsbx4 in the kidney during health 

and disease is completely unknown.  

 

In this study, we confirmed Tmsbx4 is highly expressed in the kidney glomerulus, 

predominately in podocytes. Using global Tmsbx4 knock-out mice27 we demonstrated that 

endogenous Tmsbx4 was dispensable in healthy glomeruli. Furthermore, in an experimental 

model of glomerular damage, lack of Tmsbx4 worsened disease progression by (i) 

enhancing podocyte migration facilitating their redistribution from glomerular tuft to 

Bowman’s capsule, and (ii) increasing peri-glomerular inflammation and interstitial fibrosis. 

Thus we provide the first evidence that endogenous Tmsbx4 is critical in the progression of 

glomerular disease. 
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RESULTS 

Tmsb4x is expressed in mouse glomerular podocytes  

Tmsb4x mRNA levels were assessed in spleen, liver, heart and the whole kidney of healthy 

adult mice. The highest transcript levels were found in the spleen with approximately 10 

times less Tmsb4x in the kidney (Figure 1A). Using Dynabead perfusion28 we isolated 

glomeruli and found Tmsb4x levels were significantly enriched in glomeruli compared with 

the rest of the kidney (Figure 1A). In-situ hybridisation detected Tmsb4x expression in 

immature glomeruli of embryonic day (E)16.5 developing kidneys, predominately in 

podocytes (Figure 1B-C). The protein expression of Tmsb4x was also assessed by 

immunohistochemistry and we found strong localisation in glomerular podocytes at E18 

(Figure 1D). This expression pattern was maintained in one-week-old postnatal (Figure 1E) 

and eight-week-old adult kidneys (Figure 1F). Tmsb4x podocyte expression was further 

confirmed by co-localisation of Tmsb4x with nephrin (Nphs1), a slit diaphragm component29 

(Figure 1G-I) and nestin, an intermediate filament protein expressed in mature podocytes30 

(Supplementary Figure 1A-C). In contrast, Tmsbx4 did not co-localise with the pan-

endothelial marker, Cd31 (Supplementary Figure 1D-F). 

 

Lack of endogenous Tmsb4x has no effect on healthy glomeruli  

We examined mice with a global loss of Tmsb4x27 to assess the importance of endogenous 

Tmsb4x in healthy glomeruli. As Tmsb4x is mapped to the X chromosome,31 we crossed 

hemizygous null male mice (Tmsb4x-/y) with heterozygous Tmsb4x+/- adult females (Figure 

2A). We found no lethal developmental abnormalities with the offspring conforming to 

Mendelian ratios (Supplementary Table 1). Tmsb4x-/y mice had similar albumin excretion 

(Figure 2B) and blood urea nitrogen (BUN) levels (Figure 2C) as male wild-type Tmsb4x+/y 

mice at the ages of 1, 3 and 6 months. There was no difference in body weight at 1 

(Tmsb4x+/y=23.8±0.7g; Tmsb4x-/y=23.4±0.4g), 3 (Tmsb4x+/y=30.0±0.5g; Tmsb4x-

/y=29.2±0.7g), or 6 months of age (Tmsb4x+/y=35.8±1.0g; Tmsb4x-/y=35.3±1.6g). Using semi-

quantitative analysis of light microscopy images, we found no differences in glomerular 
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morphology between six-month-old Tmsb4x+/y and Tmsb4x-/y mice (Figure 2D-F). This was 

confirmed by transmission electron microscopy with normal foot process architecture, 

laminar structure of the basement membrane and the presence of endothelial fenestrae in 

both Tmsb4x+/y and Tmsb4x-/y mice (Figure 2G-H). We demonstrated the loss of Tmsb4x 

protein in glomeruli of Tmsb4x-/y mice compared with Tmsb4x+/y (Figure 2I-J); along with 

undetectable Tmsb4x mRNA levels in whole kidneys (Figure 2K). We examined whether 

there was any compensation for the lack of Tmsb4x by other β-thymosins, but found no 

changes in the renal mRNA levels of Tmsb10, Tmsb15a, Tmsb15b and Tmsb15l (Figure 2L-

O). We also assessed mRNA levels of genes involved in actin polymerisation and found no 

differences in profilin (Pfn)-1 and -2 and destrin (Dstn) between Tmsb4x-/y and Tmsb4x+/y 

mice (Supplementary Figure 2A-C). In contrast, cofilin 1 (Cfl1) mRNA levels were 

significantly increased in Tmsb4x-/y kidneys by approximately 30% compared with Tmsb4x+/y 

mice (Supplementary Figure 2D). We specifically examined Cfl1 mRNA levels in podocytes 

and found no change following knockdown of endogenous Tmsb4x by small interfering RNA 

(siRNA) (Supplementary Figure 2E). Furthermore, there was no difference in Cfl1 mRNA 

levels in primary podocytes isolated from Tmsb4x-/y and Tmsb4x+/y mice (Supplementary 

Figure 2F). Finally, the mRNA levels of genes important for podocyte function, (Nphs1, 

Nphs2, Synpo, Cd2ap and Wt1) were unchanged between Tmsb4x-/y and Tmsb4x+/y kidneys 

(Supplementary Figure 3A-E). 

 

Lack of endogenous Tmsbx4 worsens renal function and glomerular injury in NTS 

nephritis  

Our results suggest lack of Tmsbx4 does not affect the function and morphology of healthy 

glomeruli. Therefore, we investigated whether Tmsbx4 has a role in glomerular disease. We 

utilised the NTS nephritis model, which replicates some of the pathological features of 

human crescentic glomerulonephritis.32 NTS nephritis involves the injury of intrinsic 

glomerular cells, including podocytes, as well as leukocyte infiltration, glomerulosclerosis 

and tubulointerstitial fibrosis;33 processes in which Tmsbx4 has been implicated.10, 16 We 
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predicted that lack of global Tmsbx4 may exacerbate NTS nephritis severity and examined 

this in three month old Tmsb4x-/y and Tmsb4x+/y mice (Figure 3A). Albuminuria and 

albumin/creatinine ratio was significantly increased in Tmsb4x+/y mice twenty-one days after 

NTS administration compared with the levels prior to immunisation (p<0.001 in both cases, 

Figure 3B-C). Strikingly, both albuminuria and albumin/creatinine ratio was further enhanced 

by approximately 5- and 7-fold respectively when NTS was injected to Tmsb4x-/y compared 

with Tmsb4x+/y mice (p<0.01 in both cases, Figure 3B-C). Administration of NTS to Tmsb4x-

/y mice also significantly elevated plasma creatinine (p<0.01, Figure 3D), impaired creatinine 

clearance (p<0.01; Figure 3E) and raised BUN (p<0.05, Figure 3F) compared with 

Tmsb4x+/y mice with nephrotoxic nephritis. We found no difference in Tmsb4x levels in whole 

kidneys obtained from Tmsb4x+/y mice without disease or administered NTS 

(Supplementary Figure 4A). Furthermore, in kidney biopsies obtained from patients with 

either rapidly progressive glomerulonephritis (RPGN) or lupus nephritis (SLE), there was no 

change in glomerular or tubulointerstitial TMSB4X mRNA levels compared with living donor 

(LD) control kidneys (Supplementary Figure 4B-C). 

 

Seven days after NTS administration, we observed mild glomerular injury in Tmsb4x-/y and 

Tmsb4x+/y mice with some glomeruli containing hyaline deposits, increased mesangial matrix 

and occasional adhesion of the glomerular tuft to Bowman’s capsule (Supplementary 

Figure 5A-C). After twenty-one days, there was a range of abnormalities in Tmsb4x-/y and 

Tmsb4x+/y mice injected with NTS including collapse of capillary loops, segmental or global 

glomerulosclerosis, adhesion of the tuft to Bowman’s capsule and glomerular epithelial 

hyperplasia lesions, a feature of early crescent formation in this model.34 Semi-quantitative 

histological scoring (Supplementary Figure 6A-E) by two blinded observers revealed that 

Tmsb4x+/y mice injected with NTS had significantly raised mean glomerular score compared 

with Tmsb4x+/y mice without disease (p<0.001, Figure 3G-J). Glomeruli of Tmsb4x-/y 

administered NTS had an even higher glomerular mean score which was significantly 

greater than Tmsb4x+/y mice with nephrotoxic nephritis (p<0.05). This was associated with 
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an increased proportion of sclerotic glomeruli and incidence of epithelial hyperplasia lesions 

in Tmsb4x-/y compared with Tmsb4x+/y mice administered NTS (Supplementary Figure 6F). 

 

We examined whether the difference in disease severity between Tmsb4x-/y and Tmsb4x+/y 

mice with NTS could be due to a decrease in binding of the anti-glomerular antibody but 

found no difference in the amount of sheep IgG deposited within the glomerulus 

(Supplementary Figure 7A-C). We assessed whether lack of Tmsbx4 changes the humoral 

immune response to sheep IgG. NTS injection led to significantly increased production of 

circulating murine IgG1 and IgG2a, but not IgG2b or IgG3 against sheep IgG compared with 

Tmsb4x+/y mice without disease. However there was no difference in the plasma titres of any 

of the IgG subclasses between Tmsb4x-/y and Tmsb4x+/y mice administered NTS 

(Supplementary Figure 7D-G). 

 

Changes in podocyte distribution in Tmsb4x-/y glomeruli following NTS nephritis 

Following NTS nephritis, we found that Tmsbx4 still co-localised with Nphs1 (Figure 4A-C) 

and subsequently examined the effect a lack of Tmsbx4 had on podocytes in this model. 

Firstly, we quantified WT1+ podocyte numbers,35 in and outside of the glomerular tuft (Figure 

4D-F). The number of glomerular tuft WT1+ cells was unchanged in Tmsb4x+/y mice following 

NTS injection compared with mice without disease. However, NTS administration to Tmsb4x-

/y mice significantly reduced the number of WT1+ glomerular tuft cells compared with 

Tmsb4x+/y mice with nephrotoxic nephritis (p<0.001; Figure 4G). This finding persisted after 

normalising the WT1+ cell number to glomerular tuft area (p<0.05; Figure 4H). In contrast, 

there was an increased number of WT1+ cells outside the glomerular tuft in both Tmsb4x+/y 

and Tmsb4x-/y mice following NTS administration, this was more prominent and significantly 

different in the Tmsb4x-/y animals (p<0.05 compared with Tmsb4x+/y without disease; Figure 

4I). The total number of podocytes in the whole glomerulus did not differ between any of the 

groups (Figure 4J), suggesting that lack of Tmsb4x leads to podocyte redistribution from the 

glomerular tuft towards the Bowman’s capsule rather than affecting podocyte cell death. To 
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support this, we assessed podocyte apoptosis using terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL)36 in combination with WT1 staining (Supplementary 

Figure 8A-C). Administration of NTS increased the number of glomerular apoptotic cells 

compared with healthy mice and this effect was significant in Tmsb4+/y mice with glomerular 

disease (p<0.05; Supplementary Figure 8D). However, the number of TUNEL+/WT1+ cells 

was not significantly different between any of the groups (Supplementary Figure 8E). 

 

Lack of Tmsb4x induces migration and modulates the cytoskeleton of podocytes in 

vitro 

We postulated that the redistribution of podocytes in nephrotoxic nephritis may be due to 

changes in cell migration driven by lack of Tmsb4x. Therefore, we transfected cultured 

differentiated mouse podocytes37 with siRNA against Tmsb4x (Figure 5A): this resulted in 

>90% knockdown in Tmsb4x levels (Figure 5B; p<0.001). Knockdown of endogenous 

Tmsb4x did not affect podocyte viability (Figure 5C) but increased the number of cells that 

migrated into the wound area in a wound-healing assay (p<0.05; Figure 5D-E). Since the 

cytoskeleton is essential for cell movement,38 we visualised podocyte actin by phalloidin 

staining and classified the filament organisation as either cytoplasmic stress fibres (Figure 

5F) or cortical actin (Figure 5G). Knockdown of endogenous Tmsb4x significantly increased 

the percentage of cells with stress actin fibre organisation (p<0.001; Figure 5H). Finally, we 

assessed the effects of Tmsb4x knockdown on the activation of RhoA and Cdc42, which 

regulate actin dynamics and cell migration.39 There was increased RhoA activity in 

podocytes transfected with Tmsb4x siRNA compared to control siRNA (p<0.05; Figure 5I) 

whereas Cdc42 activity was unaffected (Figure 5J). 

 

Macrophage accumulation and increased fibrosis in Tmsb4x-/y glomeruli following 

NTS nephritis 

Tmsb4x is expressed in macrophages18, 40 and reduces inflammation in several disease 

settings.10, 16, 18, 41 As immune cell infiltration plays a critical role in the initiation and 
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progression of crescentic glomerulonephritis.42-44 We found expression of Tmsb4x in F4/80+ 

macrophages surrounding the glomeruli and occasionally within the glomerular tuft (Figure 

6A-C) and went on to examine the effect of Tmsb4x loss on glomerular inflammation in our 

experimental model.  

 

We measured the number of Cd3+ (T cells) and F4/80+ cells in Tmsb4x-/y and Tmsb4x+/y 

glomeruli. Twenty-one days after NTS injection there was a significant increase in Cd3+ cells 

in the glomerular tuft of Tmsb4x-/y mice compared with Tmsb4x+/y without disease (p<0.05) 

but no significant difference when comparing Tmsb4x-/y andTmsb4x+/y mice with nephrotoxic 

nephritis (Figure 6D-G). There was also no difference in the number of peri-glomerular Cd3+ 

cells between experimental groups (Figure 6H). Seven days following NTS administration, 

the number of F4/80+ glomerular tuft cells was similar in all experimental groups, but were 

significantly elevated in the peri-glomerular area of both NTS-injected Tmsb4x+/y and 

Tmsb4x-/y mice compared with healthy mice (p<0.01; Supplementary Figure 9A-B). The 

accumulation of F4/80+ cells persisted in Tmsb4x-/y mice twenty-one days after NTS 

administration, with increased numbers in both the glomerular tuft and peri-glomerular area 

compared with Tmsb4x+/y mice with or without disease (p<0.01, Figure 6I-M). mRNA levels 

of the pan-macrophage marker, Cd68, were also significantly higher twenty-one days 

following NTS injection in whole kidney homogenates obtained from Tmsb4x-/y compared 

with Tmsb4x+/y mice (Supplementary Figure 10A). Cd68 is expressed by all macrophages, 

but these comprise a diverse group which includes a broad spectrum of cellular phenotypes, 

often characterised as pro-inflammatory (M1-type) and tissue repair (M2-type) macrophages. 

We quantified the mRNA levels of M1 (Mcp1, Cd86) and M2 markers (Cd206, Arg1) and 

found all of these genes were significantly upregulated in Tmsb4x-/y mice compared with 

Tmsb4x+/y following NTS (Supplementary Figure 10B-E). This suggests that there is a 

global increase in macrophages in Tmsb4x-/y kidneys following NTS rather than a shift 

towards a M1 or M2 phenotype. 
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Finally, the increased accumulation of macrophages in the peri-glomerular area in Tmsb4x-/y 

mice with NTS was associated with increased peri-glomerular fibrosis as shown by 

increased staining for both collagen IV (Figure 7A-C) and alpha smooth muscle actin (α-

SMA) (Figure 7E-G) in sections from Tmsb4x-/y compared with Tmsb4x+/y mice injected with 

NTS along with increased whole kidney mRNA levels of Col4a1 (p<0.05; Figure 7D) and 

Acta2 (p<0.05; Figure 7H).  
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DISCUSSION 

In this study we found endogenous Tmsbx4 was not required to maintain glomerular 

structure and function in healthy adult mice. However, in an experimental model of NTS 

nephritis, glomerular disease was exacerbated in mice lacking Tmsbx4 accompanied by 

changes in the distribution of podocytes within the glomerulus, increased peri-glomerular 

macrophage accumulation and enhanced fibrosis. These findings provide the first evidence 

that endogenous Tmsbx4 modifies glomerular injury, likely having a protective role acting as 

a brake to slow disease progression. 

 

We showed that Tmsbx4 is expressed in developing and adult mouse glomeruli, 

predominantly localised to podocytes. Prior studies have also found Tmsbx4 in glomerular 

podocytes,25 but others have reported complete absence of Tmsbx4 in the glomeruli of 

human fetal and adult kidneys45 and rat kidneys.26 These discrepancies may be due to 

differences in the antibodies and fixation methods used.46 Importantly, we obtained similar 

results for both Tmsb4x mRNA and protein and confirmed the specificity of antibody staining 

using tissues from Tmsb4x-/y mice as an additional negative control.  

 

Given that Tmsbx4 plays a role in actin binding,6 we initially hypothesised that lack of 

endogenous Tmsbx4 might disrupt the highly-branched architecture of glomerular podocytes 

and impair renal function.3 However, lack of Tmsbx4 did not affect glomerular morphology or 

podocyte architecture of normal healthy mice in-vivo. We found upregulation of Cfn1, which 

severs actin filaments, in whole Tmsb4x-/y kidneys. This could partly compensate for the lack 

of Tmsb4x and maintain actin dynamics,47 however, Cfn1 was not specifically altered in 

podocytes lacking Tmsb4x thus making this unlikely. 

 

A significant finding of our study was that severity of glomerular disease induced by NTS 

was greater in Tmsb4x-/y mice compared with wild-type littermates. We postulate 

endogenous Tmsb4x has a protective role in the setting of NTS, a prediction supported by a 
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study showing exogenous administration of Ac-SDKP ameliorated rat glomerulonephritis.22 

However, we found whole mouse kidney Tmsb4x mRNA levels were unchanged with NTS 

nephritis and this was mirrored when we assessed TMSB4X mRNA levels in glomerular and 

tubulointerstitial extracts from human kidneys affected by RPGN or SLE. In contrast, a 

previous study in rat remnant kidneys where nephron loss results in focal segmental 

glomerulosclerosis showed Tmsbx4 protein levels were significantly increased in sclerotic 

versus normal glomeruli.26 The discrepancy between these findings may be due to the 

different renal injury models and time-points examined. 

 

There are likely to be multiple mechanisms by which lack of endogenous Tmsb4x results in 

increased glomerular injury in our experimental model. During nephrotoxic nephritis, 

podocytes switch from a terminally-differentiated cell to a migratory cell that forms bridges 

between the glomerular tuft and the Bowman’s capsule34 and populates glomerular 

crescents.30, 48 Lack of Tmsbx4 increased the number of glomeruli with adhesion of the tuft to 

the Bowman’s capsule and glomerular epithelial hyperplasia lesions, a feature of early 

crescent formation in this model.34 We also found there was a redistribution of podocytes 

from the glomerular tuft, where they contribute to filtration barrier integrity, towards the 

Bowman’s capsule. Our in-vitro data demonstrates that downregulation of endogenous 

Tmsbx4 in podocytes increases migration and we predict that this may promote their 

redistribution in the nephrotoxic nephritis model. The increased podocyte migration was 

associated with increased actin stress fibres and activation of RhoA, which has been linked 

to podocyte stress fibre formation.49, 50 Moreover, podocyte-specific overexpression of RhoA 

induces proteinuria50, 51 whereas RhoA inhibition improves renal injury in mouse models of 

nephrectomy52 and nephrotoxic nephritis53, demonstrating the functional importance of this 

pathway in glomerular function. Other studies have shown RhoA activation inhibits podocyte 

migration,54 but these experiments used a constitutively active form of RhoA permanently in 

the GTP-bound state. This would result in a high degree of RhoA activity which has been 

associated with inhibition of migration.55 In contrast, Tmsbx4 knockdown led to a 2-fold 
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upregulation of RhoA activity in podocytes. It has been postulated that this lesser degree of 

RhoA activation promotes contractile stress fibre formation facilitating cell detachment in 

migrating cells39 and enhancing lamellipodia formation driving cell motility.55 It has been 

previously reported that activation of other Rho GTPases, Cdc42 and Rac1, may increase 

podocyte migration.56 However, we found that downregulation of endogenous Tmsb4x did 

not affect Cdc42 activation in podocytes. Rac1 activity was not assessed in this study and it 

would be interesting to explore its involvement in the future. 

 

Tmsb4x is also expressed in macrophages,18, 40 including in our nephrotoxic nephritis model, 

but its precise function is yet to be determined. It could be postulated that loss of 

macrophage Tmsbx4 may regulate the actin cytoskeleton which has been implicated in both 

phenotypic polarisation57 and migration.58 In our study, loss of Tmsbx4 did not alter 

macrophage polarisation or the number of activated macrophages found in the glomerular 

area in the early stages of nephrotoxic nephritis. However the number of activated 

macrophages in the peri-glomerular area at the late stage of the disease was increased in 

Tmsb4x-/y mice suggesting a deficiency in the resolution of inflammation resulting in 

persistent macrophage accumulation. Macrophage accumulation may result from an 

absence of the Tmsb4x-derivative thymosin-β4-sulfoxide, which has been shown to disperse 

inflammatory macrophages at the injury site in zebrafish and mouse models of heart injury.59 

We also found that peri-glomerular fibrosis was enhanced in Tmsb4x-/y mice following NTS 

administration compared with wild-type mice. This may represent a secondary effect of 

enhanced inflammation and glomerular damage. However, prior studies have shown that 

Tmsbx4 can alter both PAI-1 and TGF-β1,18, 27 both of which are drivers of fibrosis and play 

important roles in the progression of nephrotoxic nephritis.60, 61 

 

In summary, we have provided the first evidence that lack of endogenous Tmsbx4 does not 

affect healthy glomeruli but exacerbates renal function impairment, peri-glomerular 

inflammation and fibrosis in the context of nephrotoxic nephritis. These findings suggest that 
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modulating Tmsbx4 could be a potential therapeutic target in immune-mediated glomerular 

disease. 
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METHODS 

Experimental animals and procedures 

C57Bl/6 hemizygous null male mice (Tmsb4x-/y) were bred with heterozygous Tmsb4x+/- 

adult females to generate male wild-type (Tmsb4x+/y) and null mice.27 For the induction of 

glomerular disease Tmsb4+/y and Tmsb4x-/y mice were pre-immunised by subcutaneous 

injection of sheep IgG (250μg) in complete Freund’s adjuvant, followed by intravenous 

administration of sheep NTS (250μl) five days later.62 All procedures were approved by the 

UK Home Office. 

 

Renal function 

Urine was collected from mice by housing them individually in metabolic cages. Blood 

samples were collected from the lateral saphenous vein. Albumin concentrations were 

measured by enzyme-linked immunosorbent assay28, 63 (Bethyl Laboratories, Montgomery, 

TX). Urinary and plasma creatinine concentration was measured using isotope dilution 

electrospray mass spectrometry.64 Creatinine clearance (μl/min per g of body weight) was 

derived from the formula urinary creatinine×urine volume×1440min−1×plasma 

creatinine−1×body weight (g)−1.63 BUN was assessed using a commercially available assay 

kit, validated in mice (BioAssay Systems, Hayward, CA).65 

 

Histological Analysis and Immunohistochemistry 

Kidneys were fixed in 4% paraformaldehyde, embedded in paraffin, 5μm sections cut and 

stained with periodic acid–Schiff reagent. 50 glomeruli/sample were scored by two blinded 

observers using the following system: 0=normal glomerular structure; 1=increased 

mesangial matrix deposition and hypercellularity, some loss of capillary loops; 2=increased 

matrix deposition and focal areas of sclerosis; 3=>50% of glomerulus sclerotic, very few 

capillary loops; 4=>75% of glomerulus sclerotic and presence of glomerular epithelial 

hyperplasia lesions (Supplementary Figure 5). An average score was obtained for each 

kidney.  



17 
 

Immunohistochemistry or immunofluorescence was performed66 using antibodies against 

Tmsb4x (A9520, Immundiagnostik, Bensheim, Germany), Collagen IV (ab19808, Abcam, 

Cambridge, UK), Cd3 (ab16669, Abcam), α-SMA (M0851, Dako, Ely, UK), F4/80 

(MCA497R, AbD Serotec, Oxford, UK), Nphs1 (GP-N2, Progen, Heidelberg, Germany), 

Nestin (NB100-1604, Novus Biologicals, Littleton, CO), WT1 (AP15857PU-S, Acris 

Antibodies, Herford, Germany), Cd31 (MA3105, Thermo Fisher Scientific, Waltham, MA) and 

Sheep IgG (A11016, Thermo Fisher Scientific). CD3+ and F4/80+ cells were counted in 50 

glomeruli/sample. To assess glomerular sheep IgG deposition, mean fluorescence intensity 

was measured using ImageJ67 (30 glomeruli/sample). The number of WT1+ cells found 

within or outside (in glomerular crescents or lining the Bowman’s capsule) the glomerular tuft 

was counted in 50 consecutive glomeruli/sample. To account for any changes in glomerular 

tuft area, the number of WT1+ cells in the glomerular tuft was normalised to the glomerular 

area (measured using ImageJ67) in 15 glomeruli/sample. Apoptosis was identified using 

TUNEL (Roche, Burgess Hill, UK). The number of TUNEL+ and WT1+/TUNEL+ cells was 

counted in 50 glomeruli/sample.  

 

Measurement of murine IgG subclasses specific for sheep IgG 

The titres of murine IgG subclasses specific for sheep IgG were measured by ELISA in 

plasma as described68 using alkaline phosphatase subclass-specific antibodies for IgG1, 

IgG2b and IgG3 (SouthernBiotech, Birmingham, AL) and IgG2a (Bethyl Laboratories). 

 

In-situ hybridisation  

In-situ hybridisation on paraffin sections was performed as described,27 using a digoxigenin-

labelled antisense riboprobe specific for the 3’UTR of Tmsb4x, alongside a sense control.  

 

Electron microscopy 



18 
 

For transmission electron microscopy, kidney cortex specimens (1mm3) were post-fixed in 

osmium tetroxide, dehydrated in acetone, and embedded in epoxy resin. Ultrathin sections 

were stained with uranyl-acetate and lead citrate and examined.  

 

Quantitative real-time PCR 

RNA was extracted from mouse whole kidney or glomerular extracts (isolated by 

Dynabeads28). 500ng was used to prepare cDNA (iScript kit, Bio-Rad, Hemel Hempstead, 

UK) and qRT-PCR performed as described28 with Hprt as a housekeeping gene. All 

measurements were performed in duplicate. Renal biopsies from patients with RPGN 

(n=12), SLE (n=12) and LD controls (n=7) were collected within the framework of the 

European Renal cDNA Bank - Kroener–Fresenius Biopsy Bank 69 after informed consent 

and local ethical approval. Unfixed tissue was transferred to RNase inhibitor and manually 

micro-dissected into glomerular and tubulointerstitial compartments. Total RNA was isolated 

and qRT-PCR performed as reported69 with 18S rRNA (Applied Biosystems) as the 

reference gene. Primer details are available on request. 

 

Cell culture 

Mouse podocytes37 were cultured as described70 and allowed to differentiate for 14 days. 

Cells were transfected with 10nM siRNA specific for Tmsb4x or with a non-targeting control 

(both from Santa Cruz Biotechnology, Dallas, TX) using the transfection reagent, 

Lipofectamine® RNAiMAX (Thermo Fisher Scientific) according to the manufacturer’s 

instructions.  

 

Cell viability was assessed 24, 48 and 72 hours post-transfection using the 

methyltetrazolium assay. To assess migration podocytes were plated to confluence and a 

scratch created using a pipette tip. Images (four fields/condition) were taken 0, 6 and 24 

hours later and the number of cells that migrated into the wound area counted. To visualise 

F-actin filaments 48 hours post-transfection podocytes were fixed in 4% paraformaldehyde, 
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4% sucrose and stained with AlexaFluor-594 phalloidin (Thermo Fisher Scientific). The 

arrangement of actin filaments (either cytoplasmic stress fibres or cortical actin) was 

assessed in thirty cells/condition. RhoA and Cdc42 activity were quantified in podocyte 

lysates by G-LISA® Small G-protein Activation Assays (Cytoskeleton, Denver, CO). 

 

Glomeruli from Tmsb4x+/y and Tmsb4x-/y mice were isolated by Dynabeads28 and cultured in 

Matrigel-coated plates (Corning, Tewksbury, MA) in DMEM:F12 with 10% FCS, 1% ITS, 

100μg/ml penicillin (Thermo Fisher Scientific). On day 7, when podocytes had grown out of 

the glomeruli, they were detached using trypsin-EDTA and separated from glomeruli using 

40μm cell strainers (Corning). Primary podocytes obtained with this method were >90% pure 

as judged by cell morphology and staining using podocyte (nephrin, nestin) markers. 

 

Statistical Methods 

All samples were assessed blinded to treatment. Data is presented as means±SEM and was 

analysed using GraphPad Prism (GraphPad Software, La Jolla, CA). When differences 

between two groups were evaluated data was analysed by t-test. When three or more 

groups were assessed one-way ANOVA with Bonferroni’s multiple comparison post-hoc 

tests was used. Data affected by two variables was analysed using two-way ANOVA with 

Bonferroni’s multiple comparison post-hoc tests. Statistical significance was accepted at 

p≤0.05.  
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FIGURE LEGENDS 

Figure 1. Tmsb4x expression in the mouse glomerulus.  

(A) Quantification of thymosin-β4 (Tmsb4x) mRNA levels in mouse adult spleen, liver, heart 

and kidney by qRT-PCR. Tmsb4x expression was also quantified in glomeruli-depleted 

[glom (-)] and glomeruli-enriched [glom (+)] kidney homogenates. The bars represent the 

mean of three samples ±SEM. (B-C) In situ hybridisation for Tmsb4x on E16.5 mouse kidney 

sections. Cells positive for Tmsb4x are indicated by arrows. (D-F) Immunohistochemistry for 

Tmsb4x in the mouse glomerulus at E18 (D), 1 week (E) and 8 weeks of age (F). Cells 

positive for Tmsb4x are indicated by arrows. (G-I) Representative pictures for Tmsb4x (G) 

and nephrin (Nphs1) (H) staining in the mouse adult wild-type glomerulus visualised by 

fluorescent microscopy. (I) Merged image showing Nphs1 (red) and Tmsb4x (green) 

staining; areas of co-localisation are indicated by arrows. Scale bar = 20μm; **p ≤ 0.01. 

 

Figure 2. Renal function and glomerular morphology in Tmsb4x+/y and Tmsb4x-/y mice.  

(A) Breeding scheme: Heterozygous female mice (Tmsb4x
+/-

) were bred with hemizygous 

null male mice (Tmsb4x
-/y

). Male wild-type (Tmsb4x
+/y

) and Tmsb4x
-/y 

mice were compared in 

all subsequent experiments. (B) Twenty-four hour albumin excretion in urine of Tmsb4x
+/y

 

(n=14-15) and Tmsb4x
-/y

 (n=9-10) mice collected at 1, 3, and 6 months of age. Data was log-

transformed before analysis. (C) Blood urea nitrogen (BUN) concentration in Tmsb4x
+/y

 (n=9-

15) and Tmsb4x
-/y

 mice (n=7-9) at 1, 3, and 6 months of age. Data was log-transformed 

before analysis. (D-E) Representative pictures of PAS staining of paraffin-embedded 

sections from Tmsb4x
+/y

 (D) and Tmsb4x
-/y

 (E) kidneys. Scale bar = 20µm. The glomerular 

score (F) was quantified as explained in the methods (Tmsb4x
+/y

: n=4; Tmsb4x
-/y

: n=5). (G-

H) Representative images of the glomerular architecture of Tmsb4x
+/y

 (G) and Tmsb4x
-/y

 (H) 

kidneys assessed by transmission electron microscopy. An average of five glomeruli was 

examined per animal (Tmsb4x+/y, n=4; Tmsb4x-/y, n=3). (I-J) Representative pictures of 
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immunohistochemistry for thymosin-β4 on paraffin-embedded sections from Tmsb4x
+/y

 (I) 

and Tmsb4x
-/y

 (J) kidneys from 6 month old mice. Thymosin-β4-positive cells are indicated 

by arrows. Note: non-specific staining in tubules in Tmsb4x+/y mice and Tmsb4x-/y mice. 

Quantification of Tmsb4x (K), Tmsb10 (L), Tmsb15a (M), Tmsb15b (N) and Tmsb15l (O) 

mRNA levels in whole kidney homogenates of Tmsb4x
+/y

 (n=8) and Tmsb4x
-/y

 (n=4) mice by 

qRT-PCR. Data is presented as mean±SEM. ***p ≤ 0.001. Scale bar = 20µm. 

 

Figure 3. Renal function in Tmsb4x
+/y

 and Tmsb4x
+/y

 mice following the induction of 

nephrotoxic nephritis.  

(A) Outline of experimental strategy. Twenty-four hour albumin excretion in urine (B), urinary 

albumin to urinary creatinine ratio (C), plasma creatinine concentration (D), creatinine 

clearance (E) and blood urea nitrogen concentration (F) of Tmsb4x
+/y

 and Tmsb4x
-/y

 mice. 

Samples were collected prior to immunisation with Freund’s adjuvant (Tmsb4x
+/y

; control 

group) and 21 days after administration of nephrotoxic serum (Tmsb4x
+/y

 +NTS and Tmsb4x
-

/y

 +NTS); n=12 for each group. Data was log-transformed before analysis and is presented 

as mean±SEM. (G) Glomerular score was quantified as described in the methods in 

Tmsb4x
+/y

 (n=5), Tmsb4x
+/y

 +NTS (n=9) and Tmsb4x
-/y

 +NTS (n=6) mice. Data is presented 

as mean±SEM. Representative pictures of PAS staining in glomeruli from control mice 

(Tmsb4x
+/y

; H), and mice administered nephrotoxic serum (NTS) Tmsb4x
+/y

 +NTS (I) and 

Tmsb4x
-/y

 +NTS (J) are shown. Scale bar = 20μm. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.  

 

Figure 4. Podocyte assessment in Tmsb4x+/y andTmsb4x-/y mice following the 

induction of nephrotoxic nephritis.  

(A-C) Representative picture for nephrin (Nphs1; podocytes) (A) and Tmsb4x (B) staining in 

the mouse adult wild-type glomerulus 21 days after injection with nephrotoxic serum. Cells 

positive for both Nphs1 (green) and Tmsb4x (red) are indicated by arrows in the merged 
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picture (C). (D-F) Representative pictures of glomeruli from Tmsb4x
+/y

 (D), Tmsb4x
+/y

 +NTS 

(E) and Tmsb4x
-/y

 +NTS (F) mice stained for WT1. The glomerular tuft area is annotated by 

a dotted line. (G-J) Graphs showing the number of WT1-positive cells in the glomerular tuft 

(G), the number of WT1-positive cells in the glomerular tuft normalised to glomerular area 

(H), the number of WT1-positive cells in the area of the glomerulus surrounding the 

glomerular tuft (I) and the number of WT1-positive cells in the whole glomerulus (J). Cells 

were counted in 50 glomeruli per sample, except for D, where cells were counted and 

normalised to the glomerular area in 15 glomeruli per sample. Data is presented as 

mean±SEM. Tmsb4x
+/y

 (n=5), Tmsb4x
+/y

 +NTS (n=9) and Tmsb4x
-/y

 +NTS (n=6) mice. Scale 

bar = 20μm.  

 

Figure 5: Effects of downregulating endogenous Tmsb4x expression in podocytes in 

vitro. 

(A) Podocytes grown in vitro under permissive conditions were differentiated for 14 days 

before transfecting them with control siRNA or siRNA targeting Tmsb4x. (B) Quantification of 

Tmsb4x mRNA levels in podocytes 48 hours after transfection. (C) Cell viability following 

knockdown of endogenous Tmsb4x was assessed by MTT assay. (D) Podocyte migration 

following knockdown of endogenous Tmsb4x was assessed by a wound-healing assay and 

the number of cells that migrated into the wound area was counted. (E) Representative 

pictures of podocytes transfected with control or Tmsb4x siRNA 0, 6 and 24 hours after 

wound formation. (F-G) Representative pictures showing a podocyte with cytoplasmic stress 

fibre F-actin distribution (F) or cortical F-actin distribution (G). The percentage of cells with 

predominantly cytoplasmic stress fibres or cortical actin formation was quantified 48 hours 

after transfection (H). (I-J) Quantification of active RhoA (I) and active Cdc42 (J) 48 hours 

after transfection. All experiments were repeated three to four times and the data is 

presented as mean±SEM. *p ≤ 0.05, ***p ≤ 0.001. 
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Figure 6. Assessment of inflammation in nephrotoxic nephritis.  

(A-C) Representative picture for F4/80 (macrophages; A) and Tmsb4x staining (B). Cells 

positive for both F4/80 (green) and Tmsb4x (red) are shown in the merged picture (C) and 

are indicated by arrows. Images were taken by fluorescent microscopy. Scale bar = 20μm. 

(D-F) Representative pictures showing Cd3 (T-cell marker) staining in the glomerular tuft 

(arrows) and in the peri-glomerular area (arrowheads) of Tmsb4x
+/y

 controls (D) and 

Tmsb4x
+/y

 (E) and Tmsb4x
-/y

 (F) mice 21 days following administration of nephrotoxic serum 

(NTS). The number of Cd3+ cells in the glomerular tuft (G) and in the peri-glomerular area 

(H) was counted in 50 glomeruli per sample and the average number was calculated 

(Tmsb4x
+/y

, n=5, Tmsb4x
+/y

 +NTS, n=9, Tmsb4x
-/y

 +NTS, n=6). (I-K) Representative pictures 

showing F4/80 (activated macrophage marker) staining in the glomerular tuft (arrows) and 

the peri-glomerular area (arrowheads) of Tmsb4x
+/y

 controls (I) Tmsb4x
+/y

 +NTS (J) and 

Tmsb4x
-/y

 +NTS (K) mice. The number of F4/80+ cells in the glomerular tuft (L) and in the 

peri-glomerular area (M) was counted in 50 glomeruli per sample and the average number 

was calculated (Tmsb4x
+/y

, n=5, Tmsb4x
+/y

 +NTS, n=8, Tmsb4x
-/y

 +NTS, n=6). Data is 

presented as mean±SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Scale bar = 20µm. 

 

Figure 7. Assessment of fibrosis in nephrotoxic nephritis.  

(A-C) Representative images showing collagen IV staining in glomeruli of Tmsb4x
+/y

 (A) 

Tmsb4x
+/y

 +NTS (B) and Tmsb4x
-/y

 +NTS (C) mice. (N) Quantification of collagen IV 

(Col4a1) mRNA levels in whole kidney homogenates of Tmsb4x
+/y

 (n=8), Tmsb4x
+/y

 +NTS 

(n=9) and Tmsb4x
-/y

 +NTS (n=6) mice. (E-G) Representative pictures showing alpha smooth 

muscle actin (α-SMA) staining in glomeruli of Tmsb4x
+/y

 (E) Tmsb4x
+/y

 +NTS (F) and 

Tmsb4x
-/y

 +NTS (G) mice. (H) Quantification of alpha smooth muscle actin (Acta2) mRNA 

levels in whole kidney homogenates of Tmsb4x
+/y

 (n=8), Tmsb4x
+/y

 +NTS (n=8) and Tmsb4x
-
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/y

 +NTS (n=5) mice. Data is presented as mean±SEM. *p ≤ 0.05, **p ≤ 0.01. Scale bar = 

20µm. 
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Supplementary Table 1 Proportions of Tmsb4x+/-, Tmsb4x-/-, Tmsb4x+/y and Tmsb4x-/y mice 

born after crossing adult male Tmsb4x-/y mice with Tmsb4x+/- adult females. 

Genotype Tmsb4x+/- Tmsb4x-/- Tmsb4x+/y Tmsb4x-/y Total Χ2 P value 

Expected 25% 25% 25% 25%    

Observed 92 (28%) 74 (23%) 85 (26%) 76 (23%) 327 2.554 0.4657 
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Supplementary Figure 1. (A-C) Representative pictures for Nestin (A) and Tmsb4x (B) 

staining in the mouse adult wild-type glomerulus visualised by fluorescent microscopy. (C) 

Merged image showing Tmsb4x (red) and Nestin (green) staining; areas of co-localisation 

are indicated by arrows. (D-F) Representative pictures for Tmsb4x (D) and Cd31 (E) staining 

in the mouse adult wild-type glomerulus visualised by fluorescent microscopy. (F) Merged 

image showing Tmsb4x (green) and Cd31 (red) staining. Scale bar = 20μm.  
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Supplementary Figure 2. Quantification of profilin 1(Pfn1; A), profilin 2 (Pfn2; B), destrin 

(Dstn; C) and cofilin 1 (Cfl1; D) mRNA in whole kidney homogenates of Tmsb4x
+/y

 (n=8) and 

Tmsb4x
-/y

 (n=4) mice by qRT-PCR. Quantification of cofilin 1 (Cfl1) mRNA in podocytes 48 
hours after transfection with control siRNA or siRNA targeting Tmsb4x (E, n=4) and in 

podocytes isolated from Tmsb4x
+/y

 or Tmsb4x
-/y

 mice (F, n=6). Data is presented as 
mean±SEM. *p<0.05 
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Supplementary Figure 3. Quantification of nephrin (Nphs1; A), podocin (Nphs2; B), 
synaptopodin (Synpo; C), cd2 associated protein (Cd2ap; D) and wilms tumor 1 (Wt1; E) 

mRNA in whole kidney homogenates of Tmsb4x
+/y

 (n=8) and Tmsb4x
-/y

 (n=4) mice by qRT-
PCR. Data is presented as mean±SEM.  
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Supplementary Figure 4. (A) Quantification of Tmsb4x mRNA levels in whole 

kidney homogenates of Tmsb4x
+/y

 (n=8) and Tmsb4x/
+y

 +NTS (n=9) mice by qRT-
PCR. (B-C) Quantification of TMSB4X mRNA levels in homogenates from human 
glomeruli (B) or tubulointerstitium (C). LD, living donor; RPGN, rapidly progressive 
glomerulonephritis; SLE, Lupus nephritis. Data is presented as mean±SEM. 
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Supplementary Figure 5. Representative pictures of the histology observed 7 days after 
NTS administration showing a normal glomerulus (A), a glomerulus with hyaline deposits 
indicated by arrowheads (B) and a glomerulus with a bridge formed between the tuft and 
Bowman’s capsule indicated by an arrow (C). Scale bar = 20µm.  
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Supplementary Figure 6. (A-C) Representative pictures for the different scoring categories 
for glomerular injury showing (A) a normal glomerulus, score 0; (B) a glomerulus with 
increased mesangial matrix deposition and some loss of capillary loops, score 1; (C) a 
glomerulus with increased mesangial matrix deposition and focal areas of sclerosis, score 2; 
(D) a glomerulus with >50% sclerotic area and very few capillary loops, score 3 and (E) a 
sclerotic glomerulus with an epithelial hyperplastic lesion (*) and a bridge formed between 
the tuft and Bowman’s capsule  indicated by an arrow, score 4. Scale bar = 20µm. (F) 
Proportions of glomeruli in the different scoring categories of glomerular injury in Tmsb4x+/y 
(n=5), Tmsb4x+/y +NTS (n=9) and Tmsb4x-/y +NTS (n=6) mice. Bars represent the 
mean±SEM.  
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Supplementary Figure 7. (A-B) Representative pictures showing sheep IgG 

immunoreactivity in glomeruli of Tmsb4x
+/y

 (A) and Tmsb4x
-/y

 (B) mice injected with NTS. (C) 

Quantification of mean fluorescence in 30 glomeruli per sample (Tmsb4x
+/y

 +NTS, n=9; 

Tmsb4x
-/y

 +NTS, n=6). (D-G) Plasma titres of murine IgG subclasses (IgG1, D; IgG2a, E; 
IgG2b, F; IgG3, G) against Sheep IgG in control not immunised Tmsb4x+/y mice (n=5) and 
inTmsb4x+/y  (n=9) and Tmsb4x-/y  (n=6) mice 21 days after injection with nephrotoxic serum 
(+NTS). Data is presented as mean±SEM. Scale bar = 20µm, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 
0.001. 
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Supplementary Figure 8. (A-C) Representative picture showing staining for TUNEL and 
WT1 in the glomerulus. A TUNEL-positive podocyte is identified by an arrowhead (C). The 
number of TUNEL-positive cells (D) and TUNEL-positive WT-1 positive cells per glomerulus 

was counted in 50 glomeruli per sample and the average number was calculated (Tmsb4x
+/y

, 

n=4; Tmsb4x
+/y

 +NTS, n=9, Tmsb4x
-/y

 +NTS, n=6). Data is presented as mean±SEM. Scale 
bar = 20µm, *p ≤ 0.05. 
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Supplementary Figure 9. The number of F4/80+ cells in the glomerular tuft (A) and in the 
peri-glomerular area (B) 7 days following administration of nephrotoxic serum (NTS) was 

counted in 50 glomeruli per sample and the average number was calculated (Tmsb4x
+/y

, 

n=5, Tmsb4x
+/y

 +NTS, n=6, Tmsb4x
-/y

 +NTS, n=8). Data is presented as mean±SEM. **p ≤ 
0.01. 
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Supplementary Figure 10. Quantification of Cd68 (A), MCP-1 (B), Cd86 (C), Cd206 (D) 

and Arg1 (E) mRNA in whole kidney homogenates of Tmsb4x
+/y

 +NTS (n=9) and Tmsb4x
-/y

 
+NTS (n=6) mice. 
 


