
Computer Science at Kent

Angelic Nondeterminism and
Unifying Theories of Programming
(Extended Version)

Ana Cavalcanti and Jim Woodcock

Technical Report No. 13-04
June 2004

Copyright c© 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Angelic Nondeterminism and
Unifying Theories of Programming

(Extended Version)

Ana Cavalcanti and Jim Woodcock

Computing Laboratory
University of Kent

Abstract. Hoare and He have proposed unifying theories of program-
ming (UTP): a model of alphabetised relations expressed as predicates,
which provides support for program development in a number of pro-
gramming paradigms. Their objective is the unification of languages and
techniques, so that developers can benefit from results of works that
were, until then, conflicting in their approach. They consider fundamen-
tal programming concepts like nondeterminism, specification as pre and
postcondition pairs, and concurrency; however, they leave the study of
many constructs open. In this report, we investigate the possibility of
unifying angelic nondeterminism into the UTP. We consider its general
relational setting, and the more restricted setting of designs, which is the
basis for all the models considered by Hoare and He. We study isomorphic
models based on relations between sets of states and on predicate trans-
formers. We conclude that the introduction of angelic nondeterminism
requires a more elaborate relational framework. We proceed to propose
the unification of a model of binary multirelations, which is isomorphic
to the monotonic predicate transformers model and can express angelic
and demonic nondeterminism.

Keywords. semantics, refinement, relations, predicate transformers.

1 Introduction

Angelic nondeterminism is a specification and programming concept that is typi-
cally available in unified languages of refinement calculi [17, 4], and in concurrent
constraint programming languages [14]. In program development techniques, it
is reflected in choice constructs in which the choice is not arbitrary, but made
to guarantee success, if possible. In programming languages, it is reflected in
the use of backtracking in exhaustive searches. The work in [15] explores angelic
nondeterminism in a language for definition of proof tactics.

In contrast, demonic nondeterminism is related to an arbitrary choice con-
struct that provides no guarantees; success is still a possibility, but it does not
influence the choice. Demonic choice is commonly used to model abstraction and
information hiding. In this case, choice is used in a specification to explicitly in-
dicate options that are left open to the programmer.

In [10], Gardiner and Morgan identify angelic choice with the least upper
bound in the lattice of monotonic predicate transformers. In [18], they use this
construct to define logical constants, which are pervasive in refinement tech-
niques, and are sometimes named logical, auxiliary, or angelic variables. The
logical constants play a fundamental rôle in the formalisation of data refinement
of recursive programs, and, more importantly, they are used in calculational
simulation rules for specification statements and guarded commands.

In Morgan’s refinement calculus [17], logical constants are at the heart of the
formalisation of initial variables, which are used in specification statements: they
appear in postconditions to refer to values of variables before the execution of
the program. Furthermore, in that technique, logical constants are central to the
stepwise calculational development of sequences and loops.

Back and von Wright’s work on refinement [4] has also explored the use
of angelic nondeterminism. They have extensively studied the set of monotonic
predicate transformer as a lattice with the refinement ordering. They have identi-
fied interesting sublattices, in which choice can be either angelic or demonic, and
a complete base language, which can describe any monotonic predicate trans-
former [1, 2]. More recently, they have suggested the use of angelic nondetermin-
ism to model user interactions with a system, and game-like situations.

Morgan’s refinement calculus has been extended and adapted to handle Z
specifications [24]; the resulting calculus is called ZRC [7]. It is incorporated
in Circus [22], a combination of Z and CSP [20] that supports refinement of
state-rich, reactive programs. The design of Circus follows the recent trend to
combine notations to provide more powerful support for program design. It has
been successfully applied in a number of case studies, and has a refinement
theory and strategy that supports decomposition of the state and behaviour of
centralised systems [21, 5].

Departing from standard work in refinement calculi, the semantics of Circus is
Hoare and He’s unifying theories of programming (UTP) [13]. This is a relational
model for program development that is used to link constructs available in several
programming paradigms: imperative, concurrent, logical, and others.

In the UTP, a program is modelled as an alphabetised relation, represented
as a predicate over a number of observational variables. Each observational vari-
able records information relevant to characterise the behaviour of a program.
For example, program variables are observational variables, and for a reactive
program, we also have an observational variable tr that records the sequence of
its interactions with the environment. In the predicate model, the undecorated
name of a variable refers to its value before the execution of the program, and
the dashed name refers to its value in a subsequent observation. Here, we are
only concerned with observation after termination.

Hoare and He introduce a general theory of relations as a model for a simple
imperative language. Later, an observational variable ok is introduced; it is used
to characterise a theory for a particular form of relation: designs. These corre-
spond to pre and postcondition pairs, and are taken as the basis for the study of
total correctness. Additional observational variables are added further ahead to

capture constructs like communication and concurrency. At the core of the work
is the notion of refinement, which is captured as implication in all theories.

By providing an integrated framework for the study of state and reactive
aspects of a program, the UTP has proved to be very adequate as a basis for
the Circus model. Nevertheless, logical constants and, more generally, angelic
nondeterminism are not considered. Since in Circus we adopt Morgan’s calcu-
lational refinement style, we have pursued the possibility of modelling angelic
nondeterminism in the UTP.

Angelic nondeterminism has been extensively studied in the context of weak-
est precondition semantics. Moreover, there are results on the relationship be-
tween relational and predicate transformer models, using a view of relations as
sets of pairs of states, and of predicates as sets of states [11, 6]. Consequently,
firstly we consider a set-based relational model that we prove isomorphic to the
UTP model. This alternative model is rather simple, and its connection to the
UTP is trivial. Surprisingly, however, it is useful in clarifying some of the re-
strictions of the UTP discussed by Hoare and He. We use it to explain that the
theory of designs encompasses more programs than those usually considered in
the theories of total correctness. Based on this observation, we suggest that one
of the healthiness conditions that characterise a design is not necessary.

Secondly, we propose a predicate transformer model, which we prove isomor-
phic to the set-based relational model, and, consequently, to the UTP model.
A study of the properties of the predicate transformer model shows that an-
gelic nondeterminism cannot be directly represented in the theory of designs.
This negative result could only be obtained using a model that can be used
to reason about angelic nondeterminism; predicate transformers was an obvious
choice. An alternative model is presented; it is based on the binary multirelations
introduced in [19].

In the next section, we present an overview of the unifying theories of pro-
gramming; we concentrate our description on the general approach to relations,
and on the theory of designs. In Section 3, we consider the set-based isomorphic
relational model; in Section 4 we present the predicate transformer model, and
explain that angelic nondeterminism is not immediately available in the UTP.
Binary multirelations are considered in Section 5. Finally, in Section 6 we present
our conclusions and directions for future work.

2 Unifying theories of programming

The objective of Hoare and He’s unifying theories of programming is to study
and compare programming paradigms. The main concern is with program devel-
opment; in the framework of the UTP, it should be possible to take advantage
of different techniques and approaches whenever convenient.

In the general theory of relations of the UTP, a relation is regarded as a
pair (αP ,P), where αP is a set of names of observational variables, and P is a
predicate. The set of variables is the alphabet of the relation; it contains both the

set inαP of undashed names of the observational variables, and the set outαP

of dashed names. The free variables of P must be contained in αP .
In an homogenous relation, outαP = inα′P , where inα′P is the set obtained

by dashing all the variables in inαP . This means that the observations made
before the program starts are the same made at a later stage.

As an example, we present the model of an assignment x := e, assuming that
the observational variables are x , y , and z .

x := e =̂ (x ′ = e ∧ y ′ = y ∧ z ′ = z)

The alphabet is { x , y , z , x ′, y ′, z ′ }. The assignment sets the final value of x ,
which is represented by x ′, to e; all the other variables are unchanged.

The program II skips: it does not change the observational variables.

II =̂ (v ′ = v)

We write v ′ = v as an abbreviation for a conjunction of equalities that state
that the final value of each variable is equal to its initial value.

A sequence P ; Q is defined simply as relational composition.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) provided outαP = inα′Q = {v ′}

The notation P(v ′) emphasises that P may have free occurrences of observational
variables v ′; the later reference to P(v0) refers to the predicate obtained by
substituting v0 for the free occurrences of v ′ in P . Similarly, for Q(v) and Q(v0).

Nondeterministic choice is demonic.

P u Q =̂ P ∨ Q

It behaves like either P or Q , independently of the possibilities of success.
The set of relations with a particular alphabet is a complete lattice, with order

⇐; this is the refinement ordering in this setting. More formally, the program
denoted by P is refined by that denoted by Q when [Q ⇒ P]. As a matter of fact,
P and Q can be either programs (assignments, sequence, choices, and others)
or any relation used to specify a program; they are all relations. For simplicity,
we are ignoring alphabets, which must be the same for P and Q . The square
brackets denote universal quantification over all the alphabet.

The least upper bound uS of a set S of relations is defined algebraically.

[P ⇐ uS] =̂ ([P ⇐ X] for all X in S)

The bottom of this lattice is the program ⊥, which is called abort.

⊥ =̂ true

Incidentally, the top element is false; it is written > and called miracle.
Recursion is modelled using least fixed points. If F (X) is a relation, in which

X is used as a recursion variable, the recursive program is written µ X • F (X).
This is the least fixed point of the function F .

Hoare and He point out what they regard as an infelicity of this model.
The recursive program µX • X is supposed to model an infinite loop; it is
actually equivalent to ⊥ or true. Nonetheless, the sequence (µX • X) ; x ′ = 3
is equivalent to x ′ = 3, even though it should not really be possible to recover
from a program that does not terminate.

As a solution to this supposed paradox, Hoare and He investigate the pos-
sibility of modelling recursion using strongest fixed points. This, however, does
not solve the problem. In this case µX • X is false, but falseuP = P . In other
words, if µX • X is a non-terminating loop, choice entails the exclusion of any
non-terminating options; it is angelic in the sense that it guarantees termination
whenever possible. This, however, is not the intended meaning.

The solution proposed by Hoare and He is the introduction of an extra
boolean observational variable ok to record termination. If ok has value true, it
means that the program has started; if ok ′ has value true, then the program has
terminated. In this new theory, relations take the form of designs P ` Q .

(P ` Q) =̂ (ok ∧ P) ⇒ (ok ′ ∧ Q)

The predicates P and Q are not supposed to refer to ok and ok ′; they are the
program’s pre and postcondition. If the design has started and P holds, then it
terminates and establishes Q .

In this new theory, assignment and skip are redefined. Below, y and y ′ stand
for the observational variables other than x and x ′.

x := e =̂ true ` x ′ = e ∧ y ′ = y

II =̂ true ` v ′ = v

The new definitions use designs to take ok and ok ′ into account.
Four healthiness conditions on relations R are regarded of interest in the

theory of designs; they are summarised in Table 1. Healthiness condition H1

states that any restrictions on the behaviour of R only need to hold if it has
started. The second healthiness condition states that R cannot require non-
termination: if it holds when ok ′ is false, then it also holds when ok ′ is true.
Together, H1 and H2 characterised the relations that can be expressed as a
design: a predicate is H1 and H2 if and only if it is a design.

H1 R = (ok ⇒ R) No predictions before startup

H2 [R[false/ok ′] ⇒ R[true/ok ′]] Non-termination is not required

H3 R = R ; II Preconditions do not use dashes

H4 R ; true = true Feasibility

Table 1. UTP Healthiness conditions

The healthiness conditions H3 and H4 are expressed as equations between
programming constructs. Results presented in [13] clarify that H3 designs can be

expressed using preconditions that do not refer to dashed observational variables,
and that H4 designs model feasible or implementable programs.

A more detailed introductory account of the UTP’s relational theory and
designs can be found in [23]. In the next section, we consider an alternative
set-based model for them.

3 Set-based model

The set-based relational model that we propose is a set of pairs of states. A state
associates names (of observational variables) to their values. The sets Name, of
valid variable names, and Value, of all possible values, are left unspecified. For
an alphabet A, we define the set SA of all states on A as the set of records
with a component for each variable in A. Each such state can be regarded as an
observation of the behaviour of a program in which the value of all the variables
of the alphabet is considered.

A relation, like a UTP predicate, is a pair (αR,R), where αR is the alphabet
of the relation, and R is a relation between the elements of SinαR and SoutαR.
Such a relation models a program by associating an observation of an initial
state with an observation of a possible final state.

For example, the model for an assignment x := 3 with alphabet { x , y , x ′, y ′ }
is the set below.

{ s : S{ x ,y }; s ′ : S{ x ′,y′ } | s ′.x ′ = 3 ∧ s ′.y ′ = s.y } (1)

We use the “.” to denote component selection, and also function application
later on. The model for abort is the universal relation: P Sinα × Soutα; we use
inα and outα to denote alphabets of undashed and dashed names, and omit the
predicate P and the relation R when it is not relevant.

Partiality is used to model miracles. If a particular initial state is not in the
domain of the relation, then it is miraculous at that state: it can achieve any
required result. In particular, the model of miracle, which is the predicate false

in the UTP setting, is the empty relation.
Standard work on relational semantics [12] singles out a special state to

indicate non-termination; this is not the case in our model. If an initial state is
associated with all possible final states, then we cannot say whether the final
state is simply arbitrary or we have a possibility of non-termination. In standard
relational semantics, the model for abort that we presented above is actually the
model for a program that always terminates, but whose final state is arbitrary.

In summary, the above relational model is not elaborate enough to capture
non-termination. We prove in the sequel that the first general predicate-based
relational model of the UTP is isomorphic to our set-based model. It is an
immediate consequence of this result, that the UTP model is also not able to
capture non-termination.

We define a pair of functions p2sb and sb2p. The first transforms a UTP
relation into a set-based relation; the second is its inverse: it transforms a set-
based relation into a UTP relation.

Definition 1.

p2sb.(αP ,P) =̂ (αP , { s : SinαP ; s ′ : SoutαP | P [s, s ′/inαP , outαP] })

sb2p.(αR,R) =̂ (αR,∃ s : SinαR, s
′ : SoutαR • (s, s ′) ∈ R ∧

(
∧

x : inαR • x = s.x) ∧ (
∧

x : outαR • x = s ′.x))

Both p2sb and sb2p do not change the alphabet of the relations.
The set-based relation defined by p2sb for a predicative relation P is formed

by pairs of states s and s ′ such that P holds when the observational variables
take the values associated to them by s and s ′. The predicate P [s/A] is obtained
by replacing x with s.x , for all x in A. For example, p2sb.({ x , y , x ′, y ′ }, x := 3)
is the pair formed by the alphabet { x , y , x ′, y ′ } itself and the relation in (1).

The predicate defined by sb2p for a relation R is an existential quantification
over pairs of states s and s ′ in R. For each such pair, we have a conjunction of
equalities that require that each observational variable takes the value mapped in
the corresponding initial or final state. Since alphabets are finite, the conjunction
is finite as well. As an example, we consider the application of sb2p to the pair
formed by { x , y , x ′, y ′ } and the relation in (1). The result is a pair formed by
the same alphabet and the predicate below.

∃ s : S{ x ,y }, s
′ : S{ x ′,y′ } •

(s, s ′) ∈ { s : S{ x ,y }; s ′ : S{ x ′,y′ } | s ′.x ′ = 3 ∧ s ′.y ′ = s.y } ∧
x = s.x ∧ y = s.y ∧ x ′ = s ′.x ′ ∧ y ′ = s ′.y ′

= ∃ s : S{ x ,y }, s
′ : S{ x ′,y′ } •

s ′.x ′ = 3 ∧ s ′.y ′ = s.y ∧ x = s.x ∧ y = s.y ∧ x ′ = s ′.x ′ ∧ y ′ = s ′.y ′
[property of sets]

= ∃ s : S{ x ,y }, s
′ : S{ x ′,y′ } •

s ′.x ′ = 3 ∧ s ′.y ′ = s.y ∧ x = s.x ∧ y = s.y ∧ x ′ = 3 ∧ y ′ = y

[property of equality]

= (∃ s : S{ x ,y }, s
′ : S{ x ′,y′ } • s ′.x ′ = 3 ∧ s ′.y ′ = s.y ∧ x = s.x ∧ y = s.y) ∧

x ′ = 3 ∧ y ′ = y [predicate calculus]

= (x ′ = 3 ∧ y ′ = y) [equality of records and one-point rule]

= (x := 3) [UTP general model of assignment]

This is the result to be expected, since we have already pointed out that the
relation in (1) is the model for the assignment x := 3.

The theorem below shows that p2sb and sb2p establish an isomorphism be-
tween the UTP predicative relations and our set-based relational model.

Theorem 1. For a set-based relation (αR,R), and a UTP relation (αP ,P), we

have p2sb.(sb2p.(αR,R)) = (αR,R) and sb2p.(p2sb.(αP ,P)) = (αP ,P).

Proof. The alphabets are maintained by both p2sb and sb2p, so they are largely

ignored in the proof below, where we regard these functions as acting on predi-
cates and on sets of pairs of states, instead of on pairs. We also omit the types
of state variables s and s ′ as they can be inferred from the context. We adopt
the same approach in subsequent proofs.

First, we consider the relation p2sb.(sb2p.R).

p2sb.(sb2p.R)

= { s, s ′ | (sb2p.R)[s, s ′/inα, outα] } [definition of p2sb]

= { s, s ′ | (∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inαP • x = s.x) ∧
(
∧

x : outα • x = s ′.x))[s, s ′/inα, outα] }

[definition of sb2p]

= { s, s ′ | ∃ s1, s2 • (s1, s2) ∈ R ∧
(
∧

x : inα • s.x = s1.x) ∧ (
∧

x : outα • s ′.x = s2.x) }
[property of substitution]

= { s, s ′ | ∃ s1, s2 • (s1, s2) ∈ R ∧ s = s1 ∧ s ′ = s2 } [equality of records]

= { s, s ′ | (s, s ′) ∈ R } [one-point rule]

= R [property of sets]

Now, we consider the predicate sb2p.(p2sb.P). In the proof below, we use P [A/s]
to denote the substitution in P of x for s.x , for all x in A.

sb2p.(p2sb.P)

= ∃ s, s ′ • (s, s ′) ∈ p2sb.P ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)

[definition of sb2p]

= ∃ s, s ′ • (s, s ′) ∈ { s, s ′ | P [s, s ′/inαP , outα] } ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)
[definition of p2sb]

= ∃ s, s ′ • P [s, s ′/inα, outα] ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)
[property of sets]

= P [s, s ′/inα, outα][inα, outα/s, s ′] [equality of records and one-point rule]

= P [s and s ′ are fresh names and property of substitution]

2

This theorem confirms that the general UTP model for relations is not able to
capture non-termination. This may not seem very obvious from the predicate-
based model, but it is a straightforward observation in the context of the set-
based model. What we have is a model of terminating programs.

Hoare and He pointed out a paradox in the fact that, if the alphabet is
{ x , x ′ }, then (µX • X); x := 3 is equivalent to x := 3. This is not really a

paradox: the bottom of the lattice ⊥ is not really an aborting program; it is the
program that terminates, but gives an arbitrary value to x . If, in sequence, we
assign 3 to x , then the arbitrariness of (µX • X) is irrelevant. Their model is
quite sensible, for terminating programs.

Their attempt to solve the supposed paradox by giving a strongest fixed
point semantics to recursion was always doomed to fail. The model is simply not
elaborate enough. By the way, in that study, they seem ready to accept the law
> = P ; >, which states that, if we follow any program by a miracle, then we
get a miracle. This is only acceptable if we are indeed dealing with terminating
programs. If P does not terminate, then P ; > is never going to be miraculous.
This is actually a law of the simple relational model that we do not want to
preserve in a model that handles non-terminating programs.

Our main point, at this stage, is that the study of the set-based model can
be insightful. We, therefore, proceed by considering the set-based relations that
correspond to designs, the more elaborate relations that Hoare and He accept
as the basis for their further work.

The alphabet of designs includes the variables ok and ok ′; therefore, these
variables are also part of the alphabet of the corresponding set-based relations.
Moreover, in Table 1, we have presented healthiness conditions that have been
considered of interest by Hoare and He. In Table 2, we present corresponding
healthiness conditions for our set-based relations R.

SBH1 ∀ s, s ′ | s.ok = false • (s, s ′) ∈ R

SBH2 ∀ s, s ′ | (s, s ′) ∈ R ∧ s ′.ok ′ = false • (s, s ′ ⊕ {ok ′ 7→ true}) ∈ R

SBH3 ∀ s | (∃ s ′ • s ′.ok ′ = false ∧ (s, s ′) ∈ R) • ∀ s ′ • (s, s ′) ∈ R

Table 2. Set-based healthiness conditions

The healthiness condition SBH1 requires that all initial states s for which
s.ok is false are in the domain of R, and are related to all possible final states.
This means that a state in which the program has not started is not miraculous
and leads to no controlled behaviour.

In relations that are SBH2-healthy, if an initial state s is related to a final
state s ′ for which s ′.ok ′ is false, then s is also related to s ′ ⊕{ok ′ 7→ true}. This
is the same state as s ′, except only that the value of ok ′ is true. This means
that if it is possible not to terminate from s, it is also possible to terminate. It
is interesting to note, however, that even if it is possible for R not to terminate,
its behaviour may not be completely arbitrary, since it is not required that R

relates s to all possible final states. This is what is required by SBH3.

The theorems below establish that H1 designs correspond to SBH1 relations,
and H2 designs correspond to SBH2 relations. A consequence of these results is
that SBH1 and SBH2 characterise a set-based theory of designs.

Theorem 2. For every UTP relation (αP ,P) that satisfies H1, p2sb.(αP ,P)
satisfies SBH1. Conversely, for every set-based relation (αR,R) that satisfies

SBH1, sb2p.(αR,R) satisfies H1.

Proof. First, we consider a predicate P that satisfies H1.

p2sb.P

= { s, s ′ | P [s, s ′/inα, outα] } [definition of p2sb]

= { s, s ′ | (ok ⇒ P)[s, s ′/inα, outα] } [H1]

= { s, s ′ | s.ok = false ∨ P [s, s ′/inα, outα] }

[predicate calculus and substitution]

= { s, s ′ | s.ok = false } ∪ { s, s ′ | P [s, s ′/inαP , outα] } [property of sets]

= { s, s ′ | s.ok = false } ∪ p2sb.P [definition of p2sb]

Now, we consider a SBH1-healthy relation.

sb2p.R

= ∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)

[definition of sb2p.R]

= ∃ s, s ′ • (s, s ′) ∈ { s, s ′ | s.ok = false } ∪ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)
[SBH1]

= (∃ s, s ′ • (s, s ′) ∈ { s, s ′ | s.ok = false } ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)) ∨
(∃ s, s ′ • (s, s ′) ∈ R ∧ (

∧
x : inα • x = s.x) ∧ (

∧
x : outα • x = s ′.x))

[property of sets and predicate calculus]

= (∃ s, s ′ • (s, s ′) ∈ { s, s ′ | s.ok = false } ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)) ∨
sb2p.R

[definition of sb2p]

= (∃ s, s ′ • s.ok = false ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)) ∨

sb2p.R [property of sets]

= (∃ s, s ′ • ¬ ok ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x)) ∨ sb2p.R

[ok ∈ inα and property of equality]

= ¬ ok ∨ sb2p.R [equality of records and one-point rule]

= ok ⇒ sb2p.R [predicate calculus]

2

Theorem 3. For every UTP relation (αP ,P) that satisfies H2, p2sb.(αP ,P)
satisfies SBH2. Conversely, for every set-based relation (αR,R) that satisfies

SBH2, sb2p.(αR,R) satisfies H2.

Proof. We first consider a predicate P that satisfies H2, and states s and s ′ such
that s ′.ok ′ = false.

(s, s ′) ∈ p2sb.P

⇒ P [s, s ′/inα, outα] [definition of p2sb]

= P [s ′.ok ′/ok ′][s, s ′/inα, outα] [property of substitution]

= P [false/ok ′][s, s ′/inα, outα] [assumption]

⇒ P [true/ok ′][s, s ′/inα, outα] [H2]

= P [s, s ′ ⊕ { ok ′ 7→ true }/inα, outα] [property of substitution]

⇒ (s, s ′ ⊕ { ok ′ 7→ true }) ∈ p2sb.P [definition of p2sb]

Secondly, we consider an SBH2-healthy relation R.

(sb2p.R)[false/ok ′]

= (∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x))[false/ok ′]
[definition of sb2p.R]

= ∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα \ { ok ′ } • x = s ′.x) ∧ s ′.ok ′ = false

[property of substitution]

⇒ ∃ s, s ′ • (s, s ′ ⊕ { ok ′ 7→ true }) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα \ { ok ′ } • x = s ′.x)
[SBH2 and predicate calculus]

= ∃ s, s ′ • (s, s ′ ⊕ { ok ′ 7→ true }) ∈ R ∧
(
∧

x : inα • x = s.x) ∧
(
∧

x : outα \ { ok ′ } • x = (s ′ ⊕ { ok ′ 7→ true }).x) ∧
(s ′ ⊕ { ok ′ 7→ true }).ok ′ = true

[properties of records]

⇒ ∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα \ { ok ′ } • x = s ′.x) ∧ s ′.ok ′ = true

[predicate calculus]

= (∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (
∧

x : outα • x = s ′.x))[true/ok ′]
[property of substitution]

= (sb2p.R)[true/ok ′] [definition of sb2p]

2

We observe that Hoare and He point out that non-H3 designs include designs

whose preconditions include dashed observational variables. As such, it is not
possible for a user of the program to guarantee that its precondition is going to
be satisfied. We give the design x ′ 6= 2 ` true as an example; it is equivalent
to ok ⇒ x ′ = 2 ∨ ok ′. This is a program that, if started, then it may either
terminate and assign an arbitrary value to x , or set the value of x to 2, in which
case it is not required to terminate. The user cannot prevent the program from
setting x to 2 and failing to terminate; this is a rather bizarre situation.

Consequently, Hoare and He imply that we should work with H3 designs.
The healthiness condition SBH3 expresses the relevant restriction in the set-
based model. It requires that, if an initial state s is related to a non-terminating
state s ′, then it is related to all possible states. The theorem below formalises
the correspondence with H3.

Theorem 4. For every UTP relation (αP ,P) that satisfies H3, p2sb.(αP ,P)
satisfies SBH3. Conversely, for every set-based relation (αR,R) that satisfies

SBH3, sb2p.(αR,R) satisfies H3.

Proof. In the proof that p2sb.P is SBH3-healthy, we assume that the alphabet
is composed of variables v , v ′, ok and ok ′.

p2sb.P(v ′, ok ′)

= { s, s ′ | P(v ′, ok ′)[s, s ′/inα, outα] } [definition of p2sb]

= { s, s ′ | (P(v ′, ok ′); II)[s, s ′/inα, outα] } [H3]

= { s, s ′ | (P(v ′, ok ′); (ok ⇒ v ′ = v ∧ ok ′))[s, s ′/inα, outα] }

[definition of II]

= { s, s ′ | ∃ v0, ok0 • P(v0, ok0)[s/inα] ∧ (ok0 ⇒ s ′.v ′ = v0 ∧ s ′.ok ′ = true) }

[definition of ; and property of substitution]

= { s, s ′ | ∃ v0, ok0 • P(v0, ok0)[s/inα] ∧
(ok0 ⇒ s ′.v ′ = v0 ∧ ok0 = s ′.ok ′ ∧ s ′.ok ′ = true) }

[property of equality]

= { s, s ′ | (∃ v0, ok0 • P(v0, ok0)[s/inα] ∧ ¬ ok0) ∨
(∃ v0, ok0 • P(v0, ok0)[s/inα] ∧

s ′.v ′ = v0 ∧ ok0 = s ′.ok ′ ∧ s ′.ok ′ = true) }

[predicate calculus]

= { s, s ′ | (∃ v0, ok0 • P(v0, ok0)[s/inα] ∧ ¬ ok0) ∨
P(v0, ok0)[s, s

′/inα, { v0, ok0 }] ∧ s ′.ok ′ = true }
[one-point rule]

= { s, s ′ | (∃ v0, ok0 • P(v0, ok0)[s/inα] ∧ ¬ ok0) ∨
P [s, s ′/inα, outα] ∧ s ′.ok ′ = true }

[v0 and ok0 are fresh and property of substitution]

= { s, s ′ | (∃ s ′ • P [s, s ′/inα, outα] ∧ s ′.ok ′ = false) ∨
P [s, s ′/inα, outα] ∧ s ′.ok ′ = true }

[equality of records and predicate calculus]

= { s, s ′ | ∃ s ′ • P [s, s ′/inα, outα] ∧ s ′.ok ′ = false }∪
{ s, s ′ | P [s, s ′/inα, outα] ∧ s ′.ok ′ = true }

[property of sets]

= { s, s ′ | ∃ s ′ • (s, s ′) ∈ p2sb.P ∧ s ′.ok ′ = false }∪
{ s, s ′ | (s, s ′) ∈ p2sb.P ∧ s ′.ok ′ = true }

[definition of p2sb]

(sb2p.R); II

= (∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x ′ : outα • x ′ = s ′.x ′));

II [definition of sb2p]

= (∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x ′ : outα • x ′ = s ′.x ′));

(ok ⇒ (
∧

x ′ : outα • x ′ = x) ∧ ok ′) [definition of II]

= ∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧
(s ′.ok ′ = true ⇒ (

∧
x ′ : outα • x ′ = s ′.x ′) ∧ ok ′)

[definition of ; and one-point rule]

= ∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧
(s ′.ok ′ = true ⇒ (

∧
x ′ : outα • x ′ = s ′.x ′) ∧ s ′.ok ′ = true)

[property of equality]

= ∃ s, s ′ • (s, s ′) ∈ R ∧
(
∧

x : inα • x = s.x) ∧ (s ′.ok ′ = false ∨ (
∧

x ′ : outα • x ′ = s ′.x ′))
[predicate calculus]

= (∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ s ′.ok ′ = false) ∨
(∃ s, s ′ • (s, s ′) ∈ R ∧ (

∧
x : inα • x = s.x) ∧ (

∧
x ′ : outα • x ′ = s ′.x ′))

[predicate calculus]

= ∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x ′ : outα • x ′ = s ′.x ′))

[SBH3 and predicate calculus]

The details of the justification of the last step are as follows; we prove that the
second disjunct follows from the first.

∃ s, s ′ • (s, s ′) ∈ R ∧ s ′.ok ′ = false

⇒ ∃ s • ∀ s ′ • (s, s ′) ∈ R [SBH3]

⇒ ∃ s, s ′ • (
∧

x ′ : outα • s ′.x ′ = x ′) ∧ (s, s ′) ∈ R

[predicate calculus, equality of records, and one-point rule]

We can finally conclude the proof as follows.

∃ s, s ′ • (s, s ′) ∈ R ∧ (
∧

x : inα • x = s.x) ∧ (
∧

x ′ : outα • x ′ = s ′.x ′))

= sb2p.R [definition of sb2p]

2

We believe that it is not difficult to observe that SBH3 relations are neces-
sarily SBH2. If the initial state s is related to all possible final states, then it
is also related to s ′ ⊕ {ok ′ 7→ true}. This rather obvious result seems to be not
so clear in the predicate setting. It means that, at least for the purpose of the
study of total correctness of sequential programs, Hoare and He did not need
to consider four healthiness condition, but only three of them: H1, H3, and H4.
Out of curiosity, we present below, in the setting of UTP relations, a proof of
the fact that H3 designs are also H2.

Theorem 5. If a UTP relation (αP ,P) satisfies H3, then it also satisfies H2.

Proof.

P(v ′, ok ′)[false/ok ′]

= (P(v ′, ok ′) ; II)[false/ok ′] [H3]

= (∃ v0, ok0 • P(v0, ok0) ∧ (ok0 ⇒ v0 = v ′ ∧ ok ′))[false/ok ′]

[definitions of II and ;]

= ∃ v0, ok0 • P(v0, ok0) ∧ (ok0 ⇒ v0 = v ′ ∧ false)) [property of substitution]

= ∃ v0, ok0 • P(v0, ok0) ∧ ¬ ok0 [predicate calculus]

⇒ (∃ v0, ok0 • P(v0, ok0) ∧ ¬ ok0) ∨ (∃ v0, ok0 • P(v0, ok0) ∧ v0 = v ′)

[predicate calculus]

= ∃ v0, ok0 • P(v0, ok0) ∧ (¬ ok0 ∨ v0 = v ′) [predicate calculus]

= ∃ v0, ok0 • P(v0, ok0) ∧ (ok0 ⇒ v0 = v ′) [predicate calculus]

= (P(v ′, ok ′) ; II)[true/ok ′] [definition of ; and II]

= P(v ′, ok ′)[true/ok ′] [H3]

2

It may well be the case that non-H3 designs are important for the modelling of
more sophisticated programming paradigms that include sequential programs.
We leave this for further investigation.

The healthiness condition H4 requires feasibility. It is not of paramount con-
cern for us, as miracles are quite an important part of Morgan’s refinement
calculus and ZRC. We, therefore, ignore it in our study. In the next section, we
explore an alternative model for UTP relations and designs.

4 Predicate transformers

In the model of predicate transformers, we regard predicates as sets of states.
The model is composed of pairs (αPT ,PT), where αPT is the alphabet of the
transformer, and PT is a total monotonic function from P SoutαPT to P SinαPT .
A program is modelled by its weakest precondition transformer [8].

Isomorphisms between predicate transformers and set-based relational mod-
els have already been studied [11]. The isomorphism that we propose here is
similar to that in [6]. We define functions sb2pt and pt2sb; the first transforms
a set-based relation into a weakest precondition, and the second transforms a
weakest precondition back into a set-based relation. For simplicity, we ignore
alphabets, which, strictly speaking, should be maintained by both functions.

Definition 2.

sb2pt .R.ψ =̂ dom(R −B ψ)

pt2sb.PT = { s : SinαPT ; s ′ : SoutαPT | s ∈ PT .{ s ′ } }

In the definition of sb2pt , ψ is a postcondition, or rather, a set of states, which
is given as argument to the transformer sb2pt .R. The relation R −B ψ models all
executions of R that do not lead to a final state that satisfies ψ. In dom(R −Bψ),
we have all initial states in which it is possible not to achieve ψ. The complement
contains all initial states in which we are guaranteed to reach a final state that
satisfies ψ: the required weakest precondition.

The relation pt2sb.PT associates an initial state s to a final state s ′ if s is
not in the weakest precondition that guarantees that PT does not establish s ′.
Since it is not guaranteed that PT will not establish s ′, then it is possible that
it will. The possibility is captured in the relation.

Since the general set-based relations can only model terminating programs,
we cannot expect an isomorphism between them and the whole set of predicate
transformers. In fact, we prove that they are isomorphic to the set of universally
conjunctive predicate transformers PT : those that satisfy the property below.

PT .(
⋂

{ i • ψi }) =
⋂

{ i • PT .ψi } (2)

The following theorems establish this result. First of all, we have that the range
of sb2pt is the set of universally conjunctive predicate transformers.

Theorem 6.

sb2pt .R.(
⋂
{ i • ψi }) =

⋂
{ i • sb2pt .R.ψi }

The proof of this result is similar to that of a corresponding result in [6].

Now, we have the theorem that establishes the isomorphism.

Theorem 7. For a set-based relation R, and a universally conjunctive predicate

transformer PT, we have sb2pt .(pt2sb.PT) = PT, and pt2sb.(sb2pt .R) = R.

Proof. A result similar to pt2sb.(sb2pt .R) = R is proved in [6]. The proof of
sb2pt .(pt2sb.PT) = PT requires universal conjunctivity and is presented below.

sb2pt .(pt2sb.PT).ψ

= dom(pt2sb.PT −B ψ) [definition of sb2pt]

= dom({ s, s ′ | s ∈ PT .{ s ′ } } −B ψ) [definition of pt2sb]

= { s | ∃ s ′ : ψ • s ∈ PT .{ s ′ } } [properties of −B and dom]

= { s | ∀ s ′ : ψ • s ∈ PT .{ s ′ } } [properties of sets and predicate calculus]

= { s | s ∈ { s ′ : ψ • PT .{ s ′ } } } [property of set intersection]

= { s | s ∈ PT .{ s ′ : ψ • { s ′ } } } [universal conjunctivity]

= { s | s ∈ PT .ψ } [property of sets]

= PT .ψ [property of sets]

2

Hoare and He define a weakest precondition operator, wp, for the UTP re-
lations. It is reassuring that it corresponds to our characterisation of weakest
preconditions.

For a relation Q , and a condition r , which is a relation whose alphabet does
not include dashed variables, Hoare and He have the following definition.

Q wp r =̂ ¬ (Q ; ¬ r)

The alphabet of r must be such that outαQ = inα′r .
To establish the relationship between wp and our predicate transformers, we

define functions c2sb and sb2c, which are similar to p2sb and sb2p; the difference
is that they act on sets of states, instead of on relations on states.

Definition 3.

c2sb.C =̂ { s : SinαC | C [s/αC] }

sb2c.SS =̂ ∃ s : SS • s ∈ SS ∧ (
∧

x : αSS • x = s.x)

The fact that c2sb and sb2c establish an isomorphism between sets of states

and UTP conditions can be proved in much the same way as we proved that
p2sb and sb2p establish an isomorphism between set-based and UTP relations.
It is an advantage of the predicate-based model that conditions and relations
are handled seamlessly.

Using c2sb and sb2c, we can establish the following result about wp, where
r ′ is the predicate that is obtained by dashing the free variables of r . This is a
postcondition, as its alphabet contains only dashed variables.

Theorem 8.

Q wp r = sb2c.(sb2pt .(p2sb.Q).(c2sb.r ′))

Proof.

sb2pt .(p2sb.Q).(c2sb.r ′)

= dom(p2sb.Q) −B c2sb.r ′ [definition of sb2pt]

= dom{ s, s ′ | Q [s, s ′/inαQ , outαQ] } −B c2sb.r ′ [definition of p2sb]

= dom{ s, s ′ | Q [s, s ′/inαQ , outαQ] } −B { s ′ | r ′[s ′/outαQ] }

[definition of c2sb]

= dom{ s, s ′ | Q [s, s ′/inαQ , outαQ] ∧ ¬ r ′[s ′/outαQ] } [property of −B]

= { s | ∃ s ′ • Q [s, s ′/inαQ , outαQ] ∧ ¬ r ′[s ′/outαQ] } [definition of dom]

= { s | ¬ ∃ s ′ • Q [s, s ′/inαQ , outαQ] ∧ ¬ r ′[s ′/outαQ] } [property of sets]

= { s | ¬ (∃ s ′ • Q [s ′/outαQ] ∧ ¬ r [s ′/inαQ])[s/inαQ] }

[property of substitution]

= { s | ¬ (∃ outα0Q • Q [outα0Q/outαQ] ∧ ¬ r [outα0Q/inαQ])[s/inαQ] }

[predicate calculus]

= { s | ¬ (Q ; ¬ r)[s/inαQ] } [definition of sequence]

= { s | (Q wp r)[s/inαQ] } [definition of wp]

= c2sb.(Q wp r) [definition of c2sb]

2

The above theorem states that, in order to calculate Q wp r , we can transform
Q into a set-based relation, and then into a predicate transformer, apply the
result to the set of states corresponding to r ′, and finally transform the resulting
weakest precondition into a condition. For conciseness, we omit the proof.

For our objectives the most important consequence of Theorem 7 is that UTP
relations cannot model angelic nondeterminism. Since we have an isomorphism
between UTP relations and set-based relations, and another between set-based
relations and universally conjunctive predicate transformers, then UTP relations
are isomorphic to universally conjunctive predicate transformers.

As already mentioned, the angelic choice operator in which we are interested
is the least upper bound of the lattice of monotonic predicate transformers.
In [3], Back and von Wright establish that joins in the lattice of universally
conjunctive predicate transformers are not preserved in the lattice of monotonic
predicate transformers. We need a relational model isomorphic to the monotonic
predicate transformers. We investigate, next, the set of predicate transformers
that correspond to UTP designs.

In this case, ok is in the alphabet of the states in a precondition, and ok ′ is in
the alphabet of the states in a postcondition. Table 3 gives healthiness conditions
over such predicate transformers PT . The first healthiness condition, PTH1 re-
quires that the weakest precondition for PT to establish ψ is included in the set
of initial states s for which s.ok is true. In other words, in order to guarantee a
postcondition, PT must start. The only exception is the postcondition SoutαPT ,
which imposes no restrictions whatsoever.

PTH1 PT .ψ ⊆ {s : SinαPT | s.ok = true} provided ψ 6= SoutαPT

PTH2 PT .ψ = PT .{s ′ : ψ | s ′ ⊕ {ok ′ 7→ true} ∈ ψ}

PTH3 PT .ψ = PT .{s ′ : ψ | s ′.ok ′ = true} provided ψ 6= SoutαPT

Table 3. Predicate transformers healthiness conditions

The healthiness condition PTH2 states that we can calculate PT .ψ by con-
sidering the subset of ψ formed by the states s ′ such that either s ′.ok ′ is true or
s ′⊕{ok ′ 7→ true} is in the set as well. This is because, if s ′.ok ′ is false and termi-
nation, or rather, s ′.ok ′ = true, is not acceptable, then PT cannot guarantee s ′,
as it cannot guarantee non-termination. For this reason, we may as well ignore
s ′ when determining the initial states that guarantee that one of the final states
in ψ is going to be achieved. It is interesting to observe that if ψ is SoutαPT ,
then the subset of ψ considered in PTH2 is SoutαPT itself.

Finally, the healthiness condition PTH3 states that, in calculating PT .ψ, we
can ignore all the states s ′ in ψ for which s ′.ok ′ is false. In other words, even
if we have both s ′ and s ′ ⊕ {ok ′ 7→ true} are in ψ, so that termination is not
required, if PT can guarantee either s ′ or s ′⊕{ok ′ 7→ true}, then it can guarantee
s ′ ⊕ {ok ′ 7→ true}. This is because the healthy predicate transformers do not
capture any relevant information if there is a possibility of non-termination.
Again, the postcondition SoutαPT is an exception.

As expected, PTH1, PTH2, and PTH3 correspond to H1, H2, and H3. We
prove this result below, using SBH1, SBH2, and SBH3.

Theorem 9. For every set-based relation R that satisfies SBH1, sb2pt .R satis-

fies PTH1. Conversely, for every predicate transformer PT that satisfies PTH1,

pt2sb.PT satisfies SBH1.

Proof. We consider a postcondition ψ 6= SoutαR.

sb2pt .R.ψ ∩ { s | s.ok = true }

= dom(R −B ψ) ∩ { s | s.ok = true } [definition of sb2pt]

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ } ∩ { s | s.ok = true }

[properties of −B, dom and sets, and predicate calculus]

= { s | (∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ) ∧ s.ok = true } [property of sets]

From the assumption, we can conclude that the second conjunct in this set
comprehension follows from the first; we prove this below.

(∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ) ∧ ψ 6= SoutαR

= (∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ) ∧ (∃ s ′ • s ′ /∈ ψ) [ψ ⊆ SoutαR]

= (∀ s ′ • s ′ /∈ ψ ⇒ (s, s ′) /∈ R) ∧ (∃ s ′ • s ′ /∈ ψ) [predicate calculus]

⇒ ∃ s ′ • (s, s ′) /∈ R [predicate calculus]

⇒ ∃ s ′ • s.ok 6= false [SBH1 and contraposition]

= (s.ok = true) [s.ok is boolean]

And so we reach our result.

{ s : SinαR | (∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ) ∧ s.ok = true }

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ } [from above]

= sb2pt .R.ψ [definition of sb2pt]

For the healthiness of pt2sb.PT , we have the following.

{ s, s ′ | s.ok = false } ⊆ pt2sb.PT

= { s, s ′ | s.ok = false } ⊆ { s, s ′ | s ∈ PT .{s ′} } [definition of pt2sb]

= ∀ s, s ′ • s.ok = false ⇒ s ∈ PT .{s ′} [property of sets]

= ∀ s, s ′ • s.ok = false ⇒ s /∈ PT .{s ′} [property of sets]

= ∀ s, s ′ • s.ok = false ⇒ s /∈ PT .{s ′} ∩ { s | s.ok = true } [PTH1]

= true [property of sets]

2

Theorem 10. For every set-based relation R that satisfies SBH2, sb2pt .R satis-

fies PTH2. Conversely, for every predicate transformer PT that satisfies PTH2,

pt2sb.PT satisfies SBH2.

Proof. To prove that pt2sb.PT is SBH2-healthy, we consider s and s ′ such that
(s, s ′) ∈ pt2sb.PT and s ′.ok ′ = false.

(s, s ′) ∈ pt2sb.PT

= s ∈ PT .{ s ′ } [definition of pt2sb]

= s /∈ PT .{ s ′ } [property of sets]

⇒ s /∈ PT .{ s ′, s ′ ⊕ {ok ′ 7→ true} } [monotonicity of PT]

= s /∈ PT .({ s ′, s ′ ⊕ {ok ′ 7→ true} } ∪ s ′)

[PTH2, s ′.ok ′ = false, and s ′ ⊕ {ok ′ 7→ true} /∈ { s ′, s ′ ⊕ {ok ′ 7→ true} }]

= s /∈ PT .{s ′ ⊕ {ok ′ 7→ true} } [property of sets]

= s ∈ PT .{s ′ ⊕ {ok ′ 7→ true} } [property of sets]

= (s, s ′ ⊕ {ok ′ 7→ true}) ∈ pt2sb.PT [definition of pt2sb]

For the healthiness of sb2pt .R, we proceed as follows.

sb2pt .R.ψ

= dom(R −B ψ) [definition of sb2pt]

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ } [properties of −B, dom, and sets]

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ ∧ s ′ ⊕ {ok ′ 7→ true} ∈ ψ }

The justification of the last step is that

∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ (3)

is equivalent to

∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ ∧ s ′ ⊕ {ok ′ 7→ true} ∈ ψ (4)

That (4) implies (3) is simple. To prove the implication in the other direction,
we assume that we have an s ′ such that (s, s ′) ∈ R. If s ′.ok ′ = true, then
s ′ ⊕ {ok ′ 7→ true} = s ′, which belongs to ψ. If, however, s ′.ok ′ = false, then, by
SBH2, (s, s ′ ⊕ {ok ′ 7→ true}) ∈ R. Therefore, by (3), s ′ ⊕ {ok ′ 7→ true} ∈ ψ as
well. We proceed as follows.

{ s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ ∧ s ′ ⊕ {ok ′ 7→ true} ∈ ψ }

= dom(R −B { s : ψ | s ′ ⊕ {ok ′ 7→ true} ∈ ψ })

[properties of −B, dom, and sets]

= sb2pt .R.{ s : ψ | s ′ ⊕ {ok ′ 7→ true} ∈ ψ } [definition of sb2pt]

2

Theorem 11. For every set-based relation R that satisfies SBH3, sb2pt .R satis-

fies PTH3. Conversely, for every predicate transformer PT that satisfies PTH3,

pt2sb.PT satisfies SBH3.

Proof. We consider a postcondition ψ 6= SoutαPT .

sb2pt .R.{ s ′ : ψ | s ′.ok ′ = true }

= domR −B { s ′ : ψ | s ′.ok ′ = true } [definition of sb2pt]

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ ∧ s ′.ok ′ = true }[properties of −B, dom, and sets]

= { s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ } [ψ 6= SoutαPT and SBH3]

The details of the last step are as follows. We need to prove that

∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ ∧ s ′.ok ′ = true (5)

is equivalent to
∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ (6)

Trivially, (5) implies (6). From (6) and ψ 6= SoutαPT , we deduce ∃ s ′ • (s, s ′) /∈ R.
Therefore, by SBH3 and contraposition, ¬ ∃ s ′ • (s, s ′) ∈ R ∧ s ′.ok ′ = false. So,
by predicate calculus, ∀ s ′ • (s, s ′) ∈ R ⇒ s ′.ok ′ = true. Consequently, we can
conclude (5).

{ s | ∀ s ′ • (s, s ′) ∈ R ⇒ s ′ ∈ ψ }

= sb2pt .R.ψ [definition of sb2pt]

For the converse, we consider an s ∈ SinαPT .

∃ s ′ • s ′.ok ′ = false ∧ (s, s ′) ∈ pt2sb.PT

= ∃ s ′ • s ′.ok ′ = false ∧ s ∈ PT .{s ′} [definition of pt2sb]

⇒ ∃ s ′ • s ∈ PT .{ s ′ | s ′.ok ′ = true } [s ′.ok ′ = false and PTH3]

= s /∈ PT .{ s ′ | s ′.ok ′ = true } [predicate calculus and property of sets]

We now consider a final state s ′′.

PT .{ s ′′ }

= PT .{ s ′ : s ′′ | s ′.ok ′ = true } [PTH3]

⊆ PT .{ s ′ | s ′.ok ′ = true } [monotonicity of PT]

So, from s /∈ PT .{ s ′ | s ′.ok ′ = true }, we conclude that s /∈ PT .{ s ′′ } either. So,
by the definition of pt2sb, we have (s, s ′′) ∈ pt2sb.PT , for all s ′′.

2

These healthiness conditions restrict the behaviour of the predicate transformers

for postconditions different from SoutαPT . This particular postcondition, how-
ever, is of special interest.

Universally conjunctive predicate transformers can only model terminating
programs; we can conclude this from our isomorphisms. In the context of stan-
dard predicate transformers wp we can justify this with the observation that
universal conjunctivity requires that (2) holds for empty { i • ψi }. In this case,
the intersection

⋂
{ i • ψi } is the universal set of final states, and the intersection⋂

{ i • wp.ψi } is the universal set of initial states. In words, for a postcondition
that does not impose any restrictions, any initial state should be satisfactory.
Nevertheless, the postcondition that does not impose any restriction still re-
quires termination. Therefore, universal conjunctivity requires that the program
always terminates.

In the context of predicate transformers that involve states on ok and ok ′,
however, the postcondition SoutαPT does not require termination: it accepts any
final state s ′, even those for which s ′.ok ′ = false. Similarly, the precondition
SinαPT does not even require the program to start.

Therefore, the universal conjunctivity of the predicate transformers corre-
sponding to designs does not imply that only terminating programs can be
modelled. Unfortunately, conjunctivity is still an issue: the predicate transform-
ers that are PTH1 and PTH2 healthy are conjunctive. As a consequence, they
cannot model angelic nondeterminism.

The relation between predicate transformers that involve ok and ok ′ and
standard predicate transformers is established by the functions ptok2wp and
wp2ptok that we present below. In their definitions, we use functions okt and
ok ′t , which set to true the ok and ok ′ components of all states in a given set;
dok and dok ′ remove these components of all states of a set.

Definition 4.

ptok2wp.PTOK .ψ =̂ dok .(PTOK .(ok ′t .ψ))

wp2ptok .WP .ψ =

{
Sinα, if ψ = Soutα

okt .(WP .(dok ′.{ s ′ : ψ | s ′.ok ′ = true })), if ψ 6= Soutα

The function ptok2wp converts one of our predicate transformers PTOK into
a standard weakest precondition. This is achieved by extending the alphabet
of the states of any postcondition ψ to include ok ′, and using PTOK . In all
states of the postcondition with extended alphabet, ok ′ is associated to true,
since, in the standard setting, the postconditions implicitly require termination.
The alphabet of the states of the resulting precondition includes ok , which is
eliminated. No information is lost in the case of healthy PTOK due to PTH1.

The function wp2ptok converts a standard precondition WP to a predicate
transformer on ok and ok ′. In its definition, the special postcondition Soutα is
singled out; the corresponding weakest precondition is Sinα. For other postcon-
ditions, we remove the states that require non-termination, reduce the alphabet
of the states in the resulting set, and apply WP . The result is a set of states
whose alphabet does not include ok ; we extend the alphabet and give the value
true to ok in all states.

It is not difficult to prove that ptok2wp and wp2ptok establish an isomorphism
between the set of conjunctive weakest preconditions and our healthy predicate
transformers. We have already seen that designs do not identify non-termination
with chaotic behaviour in which any final state is a possibility. This may give the
impression that they capture partial correctness, but this is not really the case.
Designs allow preconditions to refer to final states, and we have given an exam-
ple that this leads to programs of uncontrollable behaviour, and not to partial
specifications. When we consider H3-healthy designs, we get a model isomorphic
to standard weakest preconditions. In [9], different healthiness conditions that
lead to a theory of general correctness are proposed.

5 Binary multirelations

The set-based model of binary multirelations is composed of pairs (αBM ,BM),
where αBM is the alphabet, and BM is a relation between SinαBM and post-
conditions: elements of P SoutαBM . Intuitively, BM captures the behaviour of a
program by associating each initial state with all the postconditions that the
program can angelically choose to satisfy.

If a postcondition ψ can be satisfied, so can all postconditions weaker than
ψ. Therefore, we have the following healthiness condition.

BMH ∀ s, ψ1, ψ2 | (s, ψ1) ∈ BM ∧ ψ1 ⊆ ψ2 • (s, ψ2) ∈ BM

In [19], there is a proof that a similar model of binary multirelations is iso-
morphic to a model of monotonic predicate transformers. Here, we consider the
isomorphism characterised by the functions below.

Definition 5. bm2pt .BM .ψ = { s | (s, ψ) ∈ BM }

pt2bm.PT = { (s, ψ) | s ∈ PT .ψ }

The function bm2pt converts a binary multirelation to a weakest precondi-
tion: bm2pt .BM is guaranteed to establish a postcondition ψ in all initial states
s associated to ψ in BM ; in these states BM will angelically choose to establish
ψ if required. Conversely, the multirelation pt2bm.PT associates an initial state
s with all the postconditions that PT is guaranteed to establish from s.

It is not difficult to prove that bm2pt and pt2bm characterise an isomorphism
between predicate transformers and binary multirelations; moreover, monotonic
predicate transformers correspond to BMH-healthy multirelations.

Theorem 12. For monotonic P, pt2bm is BMH.

Proof. Let s, ψ1, and ψ2 be such that (s, ψ1) ∈ pt2bm.PT and ψ1 ⊆ ψ2.

(s, ψ1) ∈ pt2bm.PT

= s ∈ PT .ψ1 [definition of pt2bm and property of sets]

⇒ s ∈ PT .ψ2 [ψ1 ⊆ ψ2 ⇒ PT .ψ1 ⊆ PT .ψ2]

(s, ψ2) ∈ pt2bm.PT [definition of pt2bm and property of sets]

2

Theorem 13. For healthy BM, bm2pt .BM is monotonic.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

bm2pt .BM .ψ1

= { s | (s, ψ1) ∈ BM } [definition of bm2pt]

⊆ { s | (s, ψ1) ∈ BM } [(s, ψ1) ∈ BM ∧ ψ1 ⊆ ψ2 ⇒ (s, ψ2) ∈ BM]

= bm2pt .BM .ψ2 [definition of bm2pt]

2

What we need is a way of expressing multirelations as alphabetised predicates.
The solution lies in an appropriate choice of alphabet. We propose a view

of binary multirelations as a relation between a state on an alphabet inα and
a state on { dc′ }. The value of dc′ is the set of demonic choices available to
the program: a set of states on an alphabet outα. It is simple to establish an
isomorphism between this model and binary multirelations: the value of dc ′ is a
postcondition that can be guaranteed by the program. The function pt2r below
converts a predicate transformer to a relation with alphabet inα ∪ { dc ′ }.

Definition 6. pt2r .PT = { s : Sinα; s ′ : S{ dc′ } | s ∈ PT .(s ′.dc′) }

In this context, we can use the functions pt2r and sb2p (Definition 1) to calculate
the predicative relational rendering of predicate transformers.

For example, the predicate transformer abort maps all postconditions to the
empty set: it can never guarantee anything. In the UTP, it corresponds to false.

Theorem 14. sb2p.(pt2r .abort) = false.

Proof.

sb2p.(pt2r .abort)

= sb2p.{ s, s ′ | s ∈ abort .(s ′.dc′) } [definition of pt2r]

= sb2p.∅ [definition of abort]

= ∃ s, s ′ • (s, s ′) ∈ ∅ ∧ (
∧

x : inα • x = s.x) ∧ dc′ = s ′.dc′[definition of sb2p]

= false [property of sets]

2

Therefore, partiality models abortion. The miraculous program is true.

The healthiness condition PBMH is P ; dc ⊆ dc ′ = P . This requires that, if, after
executing P , we execute a program that enlarges dc ′, then the result could have
been obtained by P itself. This means that P characterises dc ′ not by defining
a particular value, but the smallest set of elements it should include.

An interesting example is a design P ` Q . Its definition as a predicate trans-
former is as follows.

(P ` Q).ψ = c2sb.P ∩ (∀x : outα • c ′2sb.Q ∪ ψ) † inα

The function c2sb transforms predicates P on undashed variables into sets of
states (see Definition 3) The function c ′2sb is similar, but handles predicates on
dashed variables.

c′2sb.C = { s ′ | C [s ′/inα] }

The universal quantification is defined for the set-based representation of predi-
cates as follows.

s ′ ∈ (∀x : outα • SS) ⇔ ∀ v • s ′ ⊕ { x : outα • x 7→ v } ∈ SS

Finally, the † operator extends the alphabet of the states in a set. In the defini-
tion of design, the alphabet of the states in the universal quantification is empty.
There is only one state on the empty alphabet: the empty state. If the quantifi-
cation holds, the set it defines contains the empty state; otherwise it defines the
empty set. Extending the alphabet is needed for the conjunction with c2sb.P .

s1 ∈ P † A ⇔ ∃ s2 •: P • A −C s1 = A −C s2

The state A −C s is obtained by removing all the components in A from s.
The following theorem establishes how designs can be characterised in the

UTP using binary multirelations.

Theorem 15. sb2p.(pt2r .(P ` Q)) = P ∧ { s ′ | Q } ⊆ dc′

Proof. We use the notation (θx : A • x 7→ v) to denote the state with compo-
nents x from an alphabet A, each of which has the value given by v .

sb2p.(pt2r .(P ` Q))

= sb2p.{ s, s ′ | s ∈ (P ` Q).(s ′.dc′) } [definition of pt2r]

= sb2p.{ s, s ′ | s ∈ c2sb.P ∩ (∀x : outα • c′2sb.Q ∪ s ′.dc′) † inα

[definition of P ` Q]

= ∃ s, s ′ • s ∈ c2sb.P ∩ (∀x : outα • c′2sb.Q ∪ s ′.dc′) † inα ∧
(
∧

x : inαR • x = s.x) ∧ s ′.dc′ = dc′

[definition of sb2p]

= ∃ s • s ∈ c2sb.P ∩ (∀x : outα • c′2sb.Q ∪ dc′) † inα ∧
(
∧

x : inαR • x = s.x)

[equality of records and one-point rule]

= (θx : inα • x 7→ x) ∈ c2sb.P ∩ (∀x : outα • c ′2sb.Q ∪ dc′) † inα

[equality of records and one-point rule]

= (θx : inα • x 7→ x) ∈ c2sb.P ∧

(θx : inα • x 7→ x) ∈ (∀x : outα • c′2sb.Q ∪ dc′) † inα [property of sets]

= (θx : inα • x 7→ x) ∈ {s | P [s/inα] } ∧

(θx : inα • x 7→ x) ∈ (∀x : outα • c′2sb.Q ∪ dc′) † inα [definition of c2sb]

= P ∧ (θx : inα • x 7→ x) ∈ (∀x : outα • c ′2sb.Q ∪ dc′) † inα

[property of sets and substitution]

= P ∧ ∃ s2 : (∀x : outα • c′2sb.Q ∪ dc′) •
inα−C (θx : inα • x 7→ x) = inα −C s2

[definition of †]

= P ∧ ∃ s2 • s2 ∈ (∀x : outα • c′2sb.Q ∪ dc′)

[∀x : outα • c′2sb.Q ∪ dc′ is either ∅ or contains the empty state]

= P ∧ ∃ s2 • ∀ v • s2 ⊕ { x : outα • x 7→ v } ∈ c′2sb.Q ∪ dc′ [definition of ∀]

= P ∧ ∃ s2 • ∀ v • (θ x : outα • x 7→ v) ∈ c′2sb.Q ∪ dc′

[s2 has no components]

= P ∧

∃ s2 • ∀ v • (θ x : outα • x 7→ v) /∈ c′2sb.Q ∨ (θ x : outα • x 7→ v) ∈ dc′

[property of sets]

= P ∧ ∃ s2 • ∀ v • (θ x : outα • x 7→ v) /∈ { s ′ | Q [s ′/outα] } ∨
(θ x : outα • x 7→ v) ∈ dc′

[definition of c′2sb]

= P ∧ ∃ s2 • ∀ v • ¬ Q [v/outα] ∨ (θ x : outα • x 7→ v) ∈ dc ′

[property of sets and substitution]

= P ∧ ∃ s2 • ∀ x : outα • Q ⇒ (θ x : outα • x 7→ x) ∈ dc ′

[predicate calculus]

= P ∧ s ′ | Q ⊆ dc′ [property of sets]

2

For P ` Q to terminate, P has to hold. In this case, Q characterises the demonic

choices available; healthiness requires that dc ′ is allowed to be any superset of
the set of states that satisfy Q . The proof that healthy binary multirelations
correspond to PBMH-healthy predicates is not difficult.

Angelic choice P t Q is characterised by disjunction.

Theorem 16. sb2p.(pt2r .(P t Q)) = sb2p.(pt2r .P) ∨ sb2p.(prt2.Q)

Proof.

sb2p.(pt2r .(P t Q))

= sb2p.{ s, s ′ | s ∈ (P t Q).(s ′.dc′) }

= sb2p.{ s, s ′ | s ∈ P .(s ′.dc′) ∪ Q .(s ′.dc′) }

= ∃ s, s ′ • s ∈ P .(s ′.dc′) ∪ Q .(s ′.dc′) ∧ (
∧

x : inαR • x = s.x) ∧ s ′.dc′ = dc′

[definition of sb2p]

= (∃ s, s ′ • s ∈ P .(s ′.dc′) ∧ (
∧

x : inαR • x = s.x) ∧ s ′.dc′ = dc′) ∨
(∃ s, s ′ • s ∈ Q .(s ′.dc′) ∧ (

∧
x : inαR • x = s.x) ∧ s ′.dc′ = dc′)

[property of sets and predicate calculus]

= sb2p.(pt2r .P) ∨ sb2p.(pt2r .Q) [definitions of pt2r and sb2p]

2

The program P t Q gives all the guarantees that can be provided by choosing
P , together with those that arise from the possibility of choosing Q . Demonic
choice is captured by conjunction; a postcondition is guaranteed by P uQ only
if both P and Q can guarantee it, so that the arbitrary choice is not a problem.

Sequential composition cannot correspond to relational composition because
the relations are not homogeneous. The definition of P ; Q uses the operator ∗

to lift Q to a predicate on dc and dc ′. It is inspired on a similar UTP operator
used in the treatment of logic programming, and is defined as follows.

Q∗ =̂ µX • dc′ = ∅ C dc = ∅ B var s • s ′ ∈ dc;
(v := s.v ; Q) t (dc := dc \ { s }; X)

end

The definition of P ; Q is P ; Q∗. After the execution of P , Q∗ recursively selects
a state in dc′ and executes Q . The program P CcBQ is a conditional: it executes
P if c holds, else it executes Q . A variable s is declared to hold a state in dc. The
observational variables are initialised as in s before Q is executed. The demonic
choice of all the outcomes of the executions of Q is the result of the sequence.

It is unavoidable that the definitions of some operators are more complicated
than those in the original UTP model. The refinement relation is not implication
anymore either. It is part of the philosophy of the UTP to study constructs and
concepts in isolation: we have provided a theory for angelic nondeterminism
which can be incorporated to the other theories as needed.

6 Conclusions

The central objective of Hoare and He’s unifying theories of programming [13] is
to formalise different programming paradigms within a common semantic frame-
work, so that they may be directly compared. In this way new compound pro-
gramming languages and refinement calculi may be developed. This ambitious
research programme has only just been started. An important question to ask
is: what are the theoretical limits to this investigation?

Angelic nondeterminism is a valuable theoretical and practical programming
paradigm: it plays an important rôle in the theory of refinement calculi; and it
is used as an abstraction in search-based and constraint-oriented programming,
hiding details of how particular strategies are implemented. The main contribu-
tions of this report are the formal demonstration that angelic nondeterminism
cannot be directly expressed within the UTP, as presented in [13], and in the
predicative account of binary multirelations that allows the unification of angelic
nondeterminism.

In Section 2, we describe Hoare and He’s semantic framework, the general
theory of alphabetised relations, presented in a predicative style. We give a brief
introduction to the subtheory of designs, where it is possible to observe both the
start of a program and also its termination, and we describe healthiness con-
ditions for that subtheory. Designs enable us to reason about total correctness,
and in Section 3, we give a set-based model for the relational calculus that brings
this fact sharply into focus.

We show that the theory of general relations is isomorphic to our set-based
model, which is clearly a model of terminating programs. Continuing in this
vein, we build a set-based model that is isomorphic to the subtheory of designs.
In doing so, we prove a modest but novel result that shows that one of Hoare
and He’s healthiness conditions is subsumed by another.

It is known that an isomorphism exists between certain predicate transform-
ers and relations, and in Section 4, we turn our attention to predicate trans-
formers, which we model as functions on sets of states. We show that there is an
isomorphism between our set-based relations and the subtheory of universally
conjunctive predicate transformers. The significance of this is the connection
that it establishes with a result due to Back and von Wright: the conjunctive
predicate transformer setting cannot capture angelic nondeterminism.

The subtheory of designs is interesting: although designs are merely relations,
the subtheory has a rich structure imposed by the special interpretation of the
observations ok and ok ′ and their associated healthiness conditions. This struc-
ture allows us to describe non-termination; but what else besides? Whenever we
introduce new observations, we must investigate the consequences. The point
here is this: can designs describe angelic nondeterminism? Our investigations
show that there is an isomorphism between designs and conjunctive predicate
transformers, so the answer is negative.

A relational model that can capture both angelic and demonic nondetermin-
ism is presented in [19]. We cast that model in the UTP predicative style, includ-
ing a healthiness condition and the refinement relation. This allows its use in

an integrated framework that covers, for instance, concurrency and higher-order
programming. We are going to use this model to extend the existing semantics
of our combined formalism [22], and prove refinement laws.

The work in [15] presents a functional semantics for a tactic language which
includes angelic nondeterminism. In that semantics, the semantics of angelic
choice is a list that contains all the options available to the angel. That language,
however, does not include demonic nondeterminism. In [16], the set-based model
of binary relations is used to support angelic and demonic nondeterminism in a
calculus for functional programs.

Acknowledgements

The authors are grateful to Will Harwood for extensive discussions, and to Car-
roll Morgan, who pointed out the work on binary multirelations.

References

1. R. J. R. Back and J. Wright. A Lattice-theoretical Basis for a Specification
Language. In J. L. A. van de Snepscheut, editor, Mathematics of Program Con-
struction: 375th Anniversary of the Groningen University, volume 375 of Lecture
Notes in Computer Science, pages 139 – 156, Groningen, The Netherlands, 1989.
Springer-Verlag.

2. R. J. R. Back and J. Wright. Duality in Specification Languages: A Lattice-
theoretical Approach. Acta Informatica, 27(7):583 – 625, 1990.

3. R. J. R. Back and J. Wright. Combining angels, demons and miracles in program
specifications. Theoretical Computer Science, 100:365 – 383, 1992.

4. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

5. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 – 3):146 – 181, 2003.

6. A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Semantics
for Z. The Computer Journal, 41(1):1 – 15, 1998.

7. A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3):267—289, 1999.

8. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
9. S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the Context

of General Correctness. In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish
Workshop in Formal Methods, BCS Electronic Workshops in Computing, Dublin,
Ireland, July 2001.

10. P. H. B. Gardiner and C. C. Morgan. Data Refinement of Predicate Transformers.
Theoretical Computer Science, 87:143 – 162, 1991.

11. W. H. Hesselink. Programs, Recursion and Unbounded Choice – Predicate Trans-
formation Semantics and Transformation Rules. Cambridge Tracts in Theoretical
Computer Science 27. Cambridge University Press, 1992.

12. C. A. R. Hoare and Jifeng He. The Weakest Prespecification. Technical Monograph
TM-PRG-44, Oxford University Computing Laboratory, Oxford – UK, 1985.

13. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

14. R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in
concurrent constraint programming. Technical report, Xerox Park, January 1991.

15. A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus.
Formal Aspects of Computing, 8(4):479–489, 1996.

16. C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling Nondeterminism. In
Mathematics of Program Construction, Lecture Notes in Computer Science, 2004.

17. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
18. C. C. Morgan and P. H. B. Gardiner. Data Refinement by Calculation. Acta

Informatica, 27(6):481—503, 1990.
19. I. Rewtizky. Binary Multirelations. In H. Swart, E. Orlowska, G. Schmidt, and

M. Roubens, editors, Theory and Application of Relational Structures as Knowledge
Instruments, volume 2929 of Lecture Notes in Computer Science, pages 256 – 271,
2003.

20. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

21. J. C. P. Woodcock and A. L. C. Cavalcanti. The steam boiler in a unified theory of
Z and CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001).
IEEE Press, 2001.

22. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184—203. Springer-Verlag, 2002.

23. J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs
in Unifying Theories of Programming. In IFM 2004: Integrated Formal Methods,
volume 2999 of Lecture Notes in Computer Science, pages 40 – 66. Springer-Verlag,
2004. Invited tutorial.

24. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

