
Jonathan, Martin and King, Andy (2006) Control Generation by Program
Transformation. Fundamenta informaticae, 69 (1-2). pp. 179-218. ISSN
0169-2968.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37531/ The University of Kent's Academic Repository KAR

The version of record is available from
http://iospress.metapress.com/content/dg3x9l3ljw4p9a2j/?p=80a3bd845c2448a3a715e89f4ae6906c&pi=6

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/37531/
http://iospress.metapress.com/content/dg3x9l3ljw4p9a2j/?p=80a3bd845c2448a3a715e89f4ae6906c&pi=6
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Fundamenta Informaticae 66 (2005) 1–40 1
IOS Press

Control Generation by Program Transformation

Andy King and Jonathan C. Martin∗

University of Kent, UK
a.m.king@kent.ac.uk

Abstract. The objective of control generation in logic programming is to derive a computation rule
for a program that is efficient and yet does not compromise program correctness. Progress in solving
this fundamental problem in logic programming has been slow and, to date, only partial solutions
have been proposed. Previously proposed schemes are either inefficient, incomplete (incorrect) or
difficult to apply for programs consisting of many components (the scheme is not modular). This
paper shows how the control generation problem can be tackled by program transformation. The
transformation relies on information about the depths of derivations to derive delay declarations
which orchestrate the control. To prove correctness of the transformation, the notion of semi-delay
recurrency is introduced, which generalises previous ideas in the termination literature for reasoning
about logic programs with delay declarations. In contrast to previous work, semi-delay recurrency
does not require an atom to be completely resolved before another is selected for reduction. This
enhancement permits the transformation to introduce control which is flexible and relatively efficient.

Keywords: logic programming, program transformation, control generation

1. Introduction
A logic program can be considered as consisting of a logic component and a control component [22].
Although the meaning of the program is largely defined by its logical specification, choosing the right
control mechanism is crucial in obtaining a correct and efficient program. One of the most popular ways
of defining control is via suspension mechanisms which delay the selection of an atom in a goal until
some condition is satisfied [9, 32]. Delays have been applied to, among other things, handle negation
[13], delay non-linear constraints [21], support coroutining [40], improve search by rescheduling tests
[12], implement concurrency protocols [39] and induce termination [33]. In general, delay mechanisms

Address for correspondence: Andy King, Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
∗The authors gratefully acknowledge Nuffield grant SCI/180/94/G which funded their collaboration

2 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

are used to define dynamic selection rules with the two main aims of enhancing performance through
coroutining or expressiveness whilst ensuring termination. However, reasoning about logic programs
with delay is notoriously difficult and often completeness, and hence program correctness, is inadver-
tently sacrificed by the programmer in the quest for improved efficiency or generality.

Consider, for example, the Prolog program that is listed below:

inorder(nil,[]).
inorder(tree(L,V,R), I) :- inorder(L, LI), inorder(R, RI), append(LI, [V|RI], I).

append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Declaratively, the program defines the relation that the second argument (a list) is an in-order traversal
of the first argument (a tree). With leftmost selection – the default computational rule of Prolog – the
goal inorder(tree(nil, a, tree(nil, b, nil)), L) will terminate and bind L to [a, b]. The goal inorder(T, [a, b])
will also return an answer, namely, T = tree(nil, a, tree(nil, b, nil)). One subtlety, however, is that this
goal has another answer, namely, T = tree(tree(nil, a, nil), b, nil) yet a request to compute this answer
results in a diverging computation. Thus inorder existentially terminates (it finds one answer) but it does
not universally terminate (it does not enumerate all the answers) [14]. The program can be enhanced
by adding the delay declaration :− block append(−, ?,−) which asserts that an append atom cannot be
selected until either its first or third argument is instantiated to a non-variable term. (Note that since the
syntax and semantics of delay declarations have not been standardised [16], for purposes of exposition
the paper adopts the block declarations of SICStus [37] since these can be simulated with, say, the
DELAY declarations of Gödel [19] and the wait declarations of MU-Prolog [32].) This block declaration,
however, is not by itself sufficient for universal termination in both modes. In addition, the body atoms
of inorder have to be reordered to obtain:

inorder(nil,[]).
inorder(tree(L,V,R), I) :- append(LI, [V|RI], I), inorder(L, LI), inorder(R, RI).

:- block append(-, ?, -).
append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Then both goals inorder(tree(nil, a, tree(nil, b, nil)), L) and inorder(T, [a, b]) universally terminate (at
least with a computation rule that invokes a suspended goal as soon as its delay condition is satisfied
[37]). This program illustrates an unsatisfactory feature of logic programming: although the declarative
behaviour of inorder is transparent, its operational behaviour is opaque because of the control. The
program also illustrates that delay declarations can be applied to obtain completeness and correctness.
The problem is how to add delays systematically; the challenge is how to add delays automatically.

The seminal paper on logic and control [22] has been interpreted by many as setting an agenda for
logic programming: control generation [8, 20, 24, 33, 34, 42]. The objective of control generation in logic
programming is to derive a computation rule for a program that is efficient and yet does not compromise
completeness, hence universal termination. Progress in solving this fundamental problem has been slow,
despite recent advances on termination checking in the context of sophisticated control [6, 35]. However,

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 3

crucial insight into this problem is given by Naish [32] within a discussion on the desirable properties of
computation rules. Naish writes,

“There is a slightly more subtle rule [computation rule tactic] which applies more to goals
which have solutions . . .Although the success branches of a tree are fixed, the number and
length of the other branches are not. The rule, therefore, is to avoid the creation of unneces-
sary failure (and infinite) branches”.

Martin and King [28] introduce a program transformation which applies this tactic to generate a control
component from the logic component that prunes out infinite branches. Specifically, if the maximum
depth of the SLD-tree needed to solve a given goal can be determined, then by only searching to that
depth, the goal will be completely solved. Hence all the answers will be obtained, in a finite number of
steps, thereby enforcing termination without compromising completeness.

Pedreschi and Ruggieri [34] apply the same tactic with a similar transformation. This latter transfor-
mation adds a counter that is decremented on each resolution step. Once the counter reaches zero, the
derivation is failed. The success of the transformation is predicated on being able to find an upper bound
on the depth of all the successful, finite SLD-trees. By way of contrast, the transformation advocated
by Martin and King [28] introduces not one but possibly many counters; one counter is used for each
recursive loop in the program to control how many times it is traversed. One advantage of this approach
is that it gives finer control on the depth to which the search space is probed, thereby improving effi-
ciency. Moreover, it is easier to compute an upper bound on how many times a loop is traversed than
find an upper bound on the total depth of the SLD-tree. The issue here is one of modularity [2]. Ideally a
termination argument or dually, a construction that enforces termination, should be modular in the sense
that it should be derived in a bottom-up fashion by considering, in turn, each of the strongly connected
components (SCCs) in the predicate dependency graph. The problem that complicates the derivation of
the level mappings [29] which underpin termination analysis is the same problem that complicates the
derivation of a depth bound in control generation. In both cases, it is necessary to consider not only the
recursive behaviour of those predicates in the top-level SCC, but those predicates (sub-computations)
that are invoked from within it. The modularity problem in termination analysis is to synthesise a level
mapping which ensures that each call to a sub-computation is bounded. The modularity problem in con-
trol generation is to infer a depth bound such that each sub-computation falls within the bound. The
approach to control generation proposed in this paper alleviates much of this problem.

Since this paper draws together a number of threads in the termination and control generation litera-
ture, as well as extending preliminary work on this topic [28], we summarise its contributions:

• The paper explains how the control generation problem can be tackled by program transformation.
It also shows that the performance of a program developed with control generation can compare
favourably with that of a logically equivalent program equipped with ad hoc delay declarations.

• The paper explains how control generation can be tackled in a modular fashion.

• The paper formally argues the correctness of the transformation. Since it introduces delays to or-
chestrate the control, the correctness proof is non-trivial. In fact, the argument is formulated in
terms of a new class of logic program – the class of semi-delay recurrent program (which was
originally sketched in [28]) – which refines the concept of delay recurrency [26, 27]. Delay re-
currency was proposed for proving termination of logic programs with delay. Delay recurrency is

4 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

sufficient for termination provided the program is executed under local selection whilst satisfying
the delay conditions. However, under local selection, the selected atom is completely resolved,
that is, those atoms it directly and indirectly introduces are also resolved, before any other atom
is selected [43]. As Marchiori and Teusink [27] concede, this bars coroutining. By way of con-
trast, semi-delay recurrent programs permit coroutining and thereby provide a foundation for more
flexible and more efficient control generation. Moreover, semi-delay recurrent programs can be
directly implemented in systems such as SICStus Prolog [37] which implement the scheduling
tactic that suspended goals should be invoked as soon as their delay conditions as satisfied [12].

• Finally, to make the ideas more accessible to a general program transformation audience, the paper
reviews the problems that arise in control generation. It surveys some of the proposed solutions as
well as their short-comings.

The review constitutes section 2. Section 3 illustrates the transformation tactic with a familiar ex-
ample program. Section 4 summaries the key ideas in delay recurrency [27], before moving on to refine
these concepts to introduce the class of semi-delay recurrent logic. Section 5 presents a formal develop-
ment of the proposed transformation, including the correctness results. The transformed programs are by
construction semi-delay recurrent and hence termination is guaranteed. Section 6 discusses automation
and appraises of the performance and practicality of this transformational approach to control generation.
Finally, section 7 presents the concluding discussion.

2. Issues of dynamism in control generation
The presence of delayed goals in a computation significantly complicates the termination behaviour of a
logic program. This section reviews the subtleties which can arise when delays are used to induce termi-
nation, explaining why there is room for improving the solutions that have been previously proposed.

2.1. The issue of local boundedness

Consider the append program introduced previously, complete with a block declaration which delays the
selection of an append atom until either the first or third arguments are non-variable:

:- block append(-, ?, -).
append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Although the block declaration is intended to assist termination, it is not sufficient to ensure that all
append goals terminate. As Naish [33] points out, the goal append([X|Xs], Ys, Xs) satisfies the condition
in the declaration and therefore does not suspend, yet its derivation is an infinite one. The derivation is
infinite since unifying the goal with the head of the second clause will instantiate Xs to [X|Zs] so the
sub-goal append(Xs, Ys, Zs) is then an instance of the initial goal.

Termination can only be guaranteed for all goals by strengthening the condition in the delay declara-
tion. This is where the trade-off between efficiency, termination and non-suspension takes place. Ideally,
the delay declarations would be as weak as possible since strengthening a delay declaration amounts to
inspecting more sub-terms of a goal which in turn decreases efficiency. On the other hand, the delay

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 5

condition should be strong enough to bar the resolution of goals which have infinite derivations. Yet, if
the delay condition is too strong, goals may suspend which actually possess finite derivations. Thus one
of the main problems in generating control is that of finding a suitable delay condition for a predicate
that suspends those goals that have an infinite derivation, yet does not suspend goals which possess finite
derivations. Moreover, the delay condition for a predicate should ideally be inexpensive to check. This
trade-off primarily relates atomic goals – a call to a predicate and those it invokes – rather than the in-
teraction between the sub-goals of a goal which shape how a search tree is traversed. The trade-off thus
relates to local effects rather than global interactions. In particular, the trade-off relates to the degree of
instantiation that arguments of an atomic goal require, or adopting terminology more in tune with the
termination literature [14], whether the arguments of the goal are bounded with respect to some level
mapping. This simply means that every instance of the goal is of fixed size where size is defined by a
level mapping that maps goals to natural numbers. Thus, henceforth, this trade-off in control generation
will be referred to as the local boundedness issue. There have been several attempts at addressing this
problem, each of which will be discussed below with reference to the append program.

2.1.1. On using linearity

Lüttringhaus-Kappel [24] observed that for atomic goals, linearity is a property that is often sufficient
for termination. Linearity relates to the number of times variables occur within a goal: a goal is non-
linear if at least one variable occurs multiply within the goal; otherwise it is linear. Thus the goal
append([X|Xs], Ys, Xs) is non-linear because the first and third arguments both contain the variable Xs.
Delaying the goal append([X|Xs], Ys, Xs) until it is linear is equivalent to delaying the goal until Xs is
instantiated to a term that contains no variables. This would indeed prevent looping. However, checking
for linearity requires all the sub-terms within the arguments of a goal to be completely traversed and
is therefore potentially expensive. Moreover, there is little prospect of applying abstract interpretation
techniques to detecting linearity at compile-time since these analysis techniques rely on the control being
predetermined. More significantly still, delaying a goal until it is linear would suspend goals with finite
derivations such as append([X, X], Ys, Zs). Thus linearity would be potentially expensive to enforce and
would additionally suspend goals that have finite derivations.

2.1.2. On using rigidity

Mesnard [30] proposes generating control by delaying goals until their arguments are bound to rigid
terms. A term is rigid with respect to a norm – a function that assigns a size to the term – if its size
cannot change even when the variables within the term are further instantiated. For example, a term
is rigid with respect to the list-length norm if the term is a list of determinate length. Mesnard [30]
infers that append will terminate if called when its first or third arguments are rigid with respect to the
list-length norm. Hence, calls to append are blocked until this rigidity property holds. This promising
tactic successfully enforces termination but at the price of traversing (at least) one list on each call to
the predicate. In fact, the check is only performed on the initial call [30], but no justification for this
refinement is given. Thus the issues with this approach are primarily those of efficiency and correctness.

6 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

2.1.3. On using modes

Naish [33] proposes solving the problem of the goal append([X|Xs], Ys, Xs)with the use of modes which
flag the fact that output should not feed back into the input. The mode system that Naish advocates is
unusual in that modes are usually specifications on single procedures rather than conjunctions (a notable
exception being the mode system of IC-Prolog which applied a form of mode to specify eager consumers
and lazy producers [12]). However, although modes may form a good basis for solving this problem,
they have not been shown to be satisfactory for reasoning about another termination problem, that of
speculative output bindings. This is discussed below.

2.2. The issue of global boundedness

Even when finite derivations exist, delay conditions alone are not, in general, sufficient to ensure termi-
nation. Infinite computations may arise as a result of so-called speculative output bindings [33], which
can arise from global interactions between the sub-goals of a goal due to dynamic selection. The effect
that they have on termination is the focus of interest here and henceforth this issue will be referred to as
the global boundedness issue. To illustrate the problem caused by speculative output bindings consider
the qsort program listed in figure 1. The delay declarations on leq and gr postpone the tests X ≤ Y
and X > Y so as to avoid instantiation errors. The declarations on qsort, part and append, on the other
hand, are an attempt to enrich the program so that it can be used in reverse mode, for example, with the
call qsort(X, [1, 2, 3]). The declarations for qsort, part and append serve to illustrate the issue of global
boundedness. The issue is illustrated by augmenting the program with the clause:

append(Xs, [|Xs], Xs) :- fail.

The declarative semantics of the program are completely unchanged by the addition of this clause and
one would hope that the new program would produce exactly the same set of answers as the original. But
this is not the case as the goal qsort(X, [1, 2, 3]) illustrates. Following resolution with the second clause
of qsort, the only goal that can be selected is append(Ls, [X|Bs], [1, 2, 3]). When this is unified with the
above clause, both Ls and Bs are bound to the list [1, 2, 3]. These bindings are speculative because if the
sub-goal fail were to be selected, then they would be retracted. As a result of these speculative output
bindings the previously suspended sub-goals qsort(L, Ls) and qsort(B, Bs) can resume before the fail is
selected. The net result is an infinite derivation due to recurring sub-goals of the form qsort(X, [1, 2, 3]).
The problem is that bindings are made before failure is detected and no matter how stringent the delay
conditions, loops of this kind cannot generally be avoided without regard for the computation as a whole.

2.2.1. On using local selection rules

To remedy this problem, Marchiori and Teusink [26, 27] propose the use of a local selection rule. Such
a rule only selects atoms from those that are most recently introduced in a derivation [43]. This ensures
that any atom selected from a goal is completely resolved before any other atom in the goal is selected.
The effect in the above example is that the append sub-goals would be fully resolved, hence fail would
be selected before the qsort sub-goals are reawakened. This would prevent an infinite loop, but at the
expense of not allowing any form of coroutining. This is a severe restriction since coroutining is a useful
programming tactic within logic programming.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 7

:- block qsort(-, -).
qsort([], []).
qsort([X|Xs], Ys) :- part(Xs, X, L, B), qsort(L, Ls), qsort(B, Bs), append(Ls, [X|Bs], Ys).
:- block part(-, ?, -, ?), part(-, ?, ?, -).
part([], , [], []).
part([X|Xs], Y, [X|Ls], Bs) :- leq(X, Y), part(Xs, Y, Ls, Bs).
part([X|Xs], Y, Ls, [X|Bs]) :- gt(X, Y), part(Xs, Y, Ls, Bs).
:- block append(-, ?, -).
append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
:- block leq(-, ?), leq(?, -).
leq(X, Y) :- X ≤ Y.
:- block gt(-, ?), gt(?, -).
gt(X, Y) :- X > Y.

Figure 1. The quicksort algorithm expressed in Prolog

Local selection is also applied in the control generation work of Hoarau and Mesnard [20]. This
work builds on the termination inference methods developed by Mesnard and his colleagues [31] and
infers initial modes for a query that, if satisfied, ensure that a logic program left-terminates. The chief
advance described in [20] is that the paper additionally infers how goals can be statically reordered so as
to obtain termination with leftmost selection. Of course, leftmost selection, prohibits coroutining.

2.2.2. On delaying output unification

Naish [33] proposes finessing the problem of speculative output bindings by postponing output unifica-
tion. In the case of the above example, the clause could be rewritten to:

append(Xs, Ys, Zs) :- fail, Ys = [|Xs], Zs = Xs.

This transformation presupposes left-to-right scheduling as the default. The intended effect of the trans-
formation is that no output bindings should be made until the computation is known to succeed. This
tactic restricts coroutining since the act of postponing an output binding will inevitably postpone the
activation of any goal waiting on that binding.

3. Worked example

This paper shows how program transformation can be applied to solve both the local and the global
boundedness problem. The transformation introduces delay declarations that realise rigidity checks.
These solve the local boundedness problem in the first instance by ensuring that the initial goal is
bounded; sufficiently instantiated to assure termination. Boundedness of subsequent goals is ensured by
depth counters that are introduced by the transformation so as to eliminate subsequent rigidity checks.

8 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

:- block msort(-, -).
msort([], []).
msort([X], [X]).
msort([X, Y|Xs], S) :- split(Xs, L1, L2), msort([X|L1], S1), msort([Y|L2], S2), merge(S1, S2, S).
:- block split(-, -, -).
split([], [], []).
split([X|L], [X|L1], L2) :- split(L, L2, L1).
:- block merge(-, ?, -), merge(?, -, -).
merge([], Ys, Ys).
merge(Xs, [], Xs).
merge([X|Xs], [Y|Ys], [X|Zs]) :- leq(X, Y), merge(Xs, [Y|Ys], Zs).
merge([X|Xs], [Y|Ys], [Y|Zs]) :- gt(X, Y), merge([X|Xs], Ys, Zs).

Figure 2. The mergesort algorithm expressed in Prolog

The global boundedness problem is also neatly solved. The depth counters ensure that the search space is
finite, so even though speculative output bindings may still occur, they cannot lead to infinite derivations.
Moreover, the global boundedness problem is overcome without grossly impeding coroutining.

To illustrate the approach, consider the mergesort program listed in figure 2, assuming the pred-
icates append, leq and gt are defined as in figure 1. The delay declarations are an attempt to en-
hance the program so that it can be additionally used in reverse; the query msort(L, [1, 2, 3]) should in
principle terminate and systematically enumerate the solutions L = [1, 2, 3], L = [1, 3, 2], L = [2, 1, 3],
L = [2, 3, 1], L = [3, 1, 2] and L = [3, 2, 1] though not necessarily in that order. The delay declaration
:− block merge(−, ?,−), merge(?,−,−) asserts that a call to merge should block until (1) its first or
third arguments are instantiated and (2) its second or third arguments are instantiated. This is equivalent
to blocking until (1) the first and second arguments are both instantiated or (2) the third argument is
instantiated. A reversal of merge would genuinely be useful because permutation generation frequently
arises in solving constraint satisfaction problems. For example, figure 3 illustrates how a magic square
program might be constructed in terms of msort. The cells of the square are constrained to be unique
digits. The delay declaration on sum asserts that it cannot be invoked until its first, second and third
arguments are all instantiated to non-variable terms.

The attempt at reversing mergesort given in figure 2 is not completely na ı̈ve. For instance, split will
terminate if any of its arguments are bound to a rigid list (a list of predetermined length whose elements
are not necessarily fixed). This is reflected in the delay declaration which asserts that split should block
until any of its arguments are bound to a non-variable term. In fact a query such as msort(L, [1, 2, 3])
does enumerate all its solutions; the problem is that it loops after doing so. This problem stems from
the fact that msort([X|L1], S1) and msort([Y|L2], S2) can further instantiate L1 and L2, which in turn
enables split(Xs, L1, L2) to be activated to instantiate Xs to a list of 2 elements, so that L is of length 4.
This process can continue without bound.

The mergesort program can be transformed into a version where termination is guaranteed for all
goals. In particular, for a goal of the form msort(L1, L2), where L1 or L2 are lists of numbers, then
the computation cannot reduce to a state which contains a sub-goal that suspends indefinitely. More-

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 9

magic(Square) :-
Square = [A, B, C, D, E, F, G, H, I],
sum(A, B, C, Sum), sum(D, E, F, Sum), sum(G, H, I, Sum), sum(A, D, G, Sum),
sum(B, E, H, Sum), sum(C, F, I, Sum), sum(A, E, I, Sum), sum(G, E, C, Sum),
msort([| Square], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

:- block sum(-, ?, ?, ?), sum(?, -, ?, ?), sum(?, ?, -, ?).
sum(A, B, C, Sum) :- Sum is A + B + C.

Figure 3. Magic square generation using mergesort

over, if it succeeds, then the set of answers produced is complete with respect to the declarative seman-
tics. The transformed program is shown in figure 4. Each recursive predicate in the original program,
namelymsort, split andmerge, is augmented by another predicate, namelymsort depth, split depth and
merge depth, which computes a depth bound for that predicate. In addition, each predicate is replaced
with an instrumented version, distinguished with the sdr suffix, which keeps track of the depth of the
recursive calls. The auxiliary predicates that support the transformation are given separately in figure 5.

More precisely, the predicate msort depth(L1, L2, D) calculates the lengths of the lists L1 and L2
with the predicate list length. The list length(L, S, D) predicate traverses the spline of the list L, blocking
whenever a variable is encountered. Once L is rigid, S is bound to the length of L. This predicate uses
an accumulator so that no more one pass is required over L. In fact, if D is instantiated before the pass is
completed, then the pass can be aborted (see the penultimate paragraph of this section).

Once L1 or L2 are found to be rigid, the auxiliary predicate msort aux calculates an upper bound D
on the number of times thatmsort sdr can call itself. Because of its divide-and-conquer nature,msort can
call itself precisely #log2(l)$ times where l is the length of L1, or equivalently, L2. OnceD is instantiated
to this value, the call to msort sdr(L, S, D) can proceed. The purpose of the last argument is to ensure
finiteness of the subsequent computation. The key point is that D is an upper bound on the number of
recursive calls to msort in any successful derivation. Thus, by failing any derivation that exceeds this
bound, termination is guaranteed without losing completeness. Observe that the depth bound for msort
is only required to bound the depth of the predicates within the SCC for msort. Indeed, #log2(l)$ does
not bound the depth of the sub-computations for split and merge. Thus depth bounds can be calculated
in an entirely modular fashion by considering each SCC in isolation. Note too that the delay declarations
supplied in figure 2 are not relevant to either the transformation or the calculation of the depth bound.

For split, a depth bound on the number of recursive calls can be calculated as soon as either the first,
second or third argument is rigid. This is because the depth bound is only required to be an upper bound.
For instance, observe that if split is called with the third argument of length 2, and the call succeeds,
then the first argument must be of length 4 or 5. Hence the number of recursive calls is either 4 or 5.
Either way, 2l + 1 is an upper bound on the depth where l is the length of the third argument. Similarly,
2l is an upper bound on the depth where l is the length of the second argument. The calculation of
an exact depth bound would require the rigidity of both the second and third arguments, which would
unnecessarily impede the execution of split. In the case of merge, a depth bound can be calculated as
soon as either the first two arguments are rigid, or the third argument is rigid, but not earlier. In the
case of msort, less precise upper bound could be applied in msort aux to save distinguishing two cases
by modifying the second clause to D is integer(ceiling(log(D1 + 1)/log(2))), which is sufficient for

10 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

msort(L, S) :- msort depth(L, S, D), msort sdr(L, S, D).
:- block msort sdr(?, ?, -).
msort sdr([], [],).
msort sdr([X], [X],).
msort sdr([X, Y | Xs], S, D) :- 1 ≤ D, D1 is D - 1,

split(Xs, L1, L2), msort sdr([X|L1], S1, D1), msort sdr([X|L2], S2, D1), merge(S1, S2, S).
split(L, L1, L2) :- split depth(L, L1, L2, D), split sdr(L, L1, L2, D).
:- block split sdr(?, ?, ?, -).
split sdr([], [], [],).
split sdr([X | L], [X | L1], L2, D) :- 1 ≤ D, D1 is D - 1, split sdr(L, L2, L1, D1).
merge(L1, L2, L) :- merge depth(L1, L2, L, D), merge sdr(L1, L2, L, D).
:- block merge sdr(?, ?, ?, -).
merge sdr([], Ys, Ys,).
merge sdr(Xs, [], Xs,).
merge sdr([X|Xs], [Y|Ys], [X|Zs], D) :- 1 ≤ D, D1 is D - 1,

leq(X, Y), merge sdr(Xs, [Y|Ys], Zs, D1).
merge sdr([X|Xs], [Y|Ys], [Y|Zs], D) :- 1 ≤ D, D1 is D - 1,

gt(X, Y), merge sdr([X|Xs], Ys, Zs, D1).
Figure 4. Control generation transformation applied to the mergesort program

avoiding a problematic zero logarithm. Alternatively puttingD = D1would avoid a logarithm altogether.
This illustrates a trade-off latent in the transformation: the tighter the bound, the earlier an otherwise
non-terminating derivation is failed; yet this advantage has to be weighted against the disadvantages of
manipulating a tighter bound. The extent to which bounds can derived automatically (and thus the extent
to which the transformation can be automated) depends on the particular form of the bound. Bounds
that can be expressed as systems of linear inequations, for example, can be discovered by applying
program analysis techniques in conjunction with program transformation techniques (as is explained in
section 6.1). The key point is that the transformation is parameterised by the depth bounds and possibility
of substituting one bound with a more tractable, albeit weaker, bound provides a route to automation.

To ensure termination, the computation rule is required to select each test 1 ≤ D before any other
body atom. Any system implementing left-to-right selection rule (with delay) will satisfy this require-
ment. Thus termination is enforced with delays without resorting to a local computation rule [27].
Observe too that list length predicate has 3 rather than 2 arguments. This is to save traversing lists
unnecessarily. In the predicate msort depth, for example, if the call list length(L, D1, D) instantiates
D1, then msort aux(D1, D2, D) will bind D so that the length of S is inconsequential. Hence list length
terminates immediately if its third argument is instantiated.

Interestingly, the transformation yields a completely reversible mergesort program that possesses un-
expected, though useful, computational properties. For instance, the query msort(L, [1, 2, 2]) produces
the 3 solutions: L = [1, 2, 2], L = [2, 1, 2] and L = [2, 2, 1] without producing any solution multiply. The
reversal of msort is thus a combination generator rather than a permutation generator. A combination

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 11

msort depth(L, S, D) :- list length(L, D1, D), list length(S, D2, D), msort aux(D1, D2, D).
split depth(L, L1, L2, D) :-

list length(L, S, D), list length(L1, S1, D), list length(L2, S2, D), split aux(S, S1, S2, D).
merge depth(L1, L2, L, D) :-

list length(L1, S1, D), list length(L2, S2, D), list length(L, S, D), merge aux(S1, S2, S, D).
:- block msort aux(-, -, ?).
msort aux(D1, D2, D) :- D1 = D2, D1 = 0, !, D = 0.
msort aux(D1, D2, D) :- D1 = D2, D is integer(ceiling(log(D1) / log(2))).
:- block split aux(-, -, -, ?).
split aux(S, , , D) :- nonvar(S), !, D = S.
split aux(, S1, , D) :- nonvar(S1), !, D is 2 * S1.
split aux(, , S2, D) :- D is 2 * S2 + 1.
:- block merge aux(-, ?, -, ?), merge aux(?, -, -, ?).
merge aux(S1, S2, , D) :- nonvar(S1), nonvar(S2), !, D is S1 + S2 - 1.
merge aux(, , S, D) :- D is S - 1.
list length(L, S, D) :- list length(L, 0, S, D).
:- block list length(-, ?, ?, -).
list length(, , , D) :- nonvar(D), !.
list length([], S, S,).
list length([|L], Acc, S, D) :- Acc1 is Acc + 1, list length(L, Acc1, S, D).

Figure 5. Auxiliary predicates supporting the transformation

generator would be difficult to program directly without some notion of state to filter out replicated solu-
tions. Incidentally, with the version msort listed in figure 4, magic(Square) finds two solutions, namely
Square = [6, 1, 8, 7, 5, 3, 2, 9, 4] and Square = [3, 8, 1, 2, 4, 6, 7, 0, 5] (the other solutions are reflections).
In the first case the rows, columns and diagonals all sum to 15 and in the other case they all sum to 12.

4. Theoretical foundations

To provide a sound theoretical basis for termination of delay logic programs, it is natural to build on the
preceding theoretical foundations established for logic programs. Only definite programs (programs that
exclude negation) are considered in this study.

4.1. Level mappings, norms and boundedness

The fundamental idea underlying all termination proofs is to define an order on the goals that can occur
within a derivation. Given a program P and goal G0, the finiteness of derivation G0, G1, G2, . . . is in
principle straightforward to demonstrate: it is sufficient to construct a well-founded order < such that
Gi+1 < Gi for all i ≥ 0. The problem is to find such an order. To simplify the problem, it is convenient
to define the order on abstractions of goals rather than on the goals themselves. Thus the order < is

12 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

defined such that G′ < G holds iff A(G′) < A(G) holds where A is an abstraction function. For
example, A might be defined to map each goal G to a multiset of natural numbers, where each atom in
G maps to a single number in the multiset. The approach leads to the concept of a level mapping [11].

Definition 4.1. Let P be a program. A level mapping for P is a function |.| : BP → N from the
Herbrand base of P to the set of natural numbers N. For an atom A ∈ BP , |A| denotes the level of A.

The reader is referred to Lloyd [23] for the standard definitions of the Herbrand universe, Herbrand
base, Herbrand interpretation, Herbrand model, clauses, substitutions, unifiers, most general unifiers,
resolvents, derivations, etc. Since a level mapping is defined over the Herbrand base, it is not defined for
non-ground atoms. However, the concept can be straightforwardly lifted [5].

Definition 4.2. An atom A is bounded wrt a level mapping |.| if |.| is bounded on the set [A] of variable
free instances of A. If A is bounded then |[A]| denotes the maximum that |.| takes on [A].

The importance of boundedness cannot be over stressed. Since goals which are ground cannot be used
to compute values, they are the exception rather than the norm in logic programming. Thus practical
termination proofs must deal with non-ground goals and boundedness provides the basis for this.

Example 4.1. Let P be the program:

p(a, X) :- p(b, X).
p(b, a).
p(b, b).

The function |.| : {p(a, a), p(a, b), p(b, a), p(b, b)} → N defined by |p(a, a)| = 34, |p(a, b)| = 12,
|p(b, a)| = 0 and |p(b, b)| = 27 is a level mapping for P . The atom p(a, X) is bounded wrt |.| since
[p(a, X)] = {p(a, a), p(a, b)} andmax({|p(a, a)|, |p(a, b)|}) =max({34, 12}) = 34.

Level mappings are usually defined in terms of norms. A norm is a mapping from terms to natural
numbers which provides some measure of the size of a term.

Example 4.2. The list-length norm |.|list-length : UP → N and the term-size norm |.|term-size : UP → N
from the Herbrand universe to the natural numbers can be defined by

|t|list-length =

{
1 + |t2|list-length if t = [t1|t2]
0 otherwise

|f(t1, . . . , tn)|term-size = 1 +
n∑

i=1

|ti|term-size

Then, for example, |[a, b, f(a)]|list-length = 3 and |f(a, g(b))|term-size = 1 + |a|term-size + |g(b)|term-size =
1 + 1 + 1 + |b|term-size = 4.

4.2. Atom selection

In the classic level mapping based approaches to termination [1, 5], a fundamental requirement is that
only bounded atoms are selected. The reason is that, in general, when unbounded atoms are selected for
resolution, it becomes more difficult to reason about the termination of the subsequent computation. This

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 13

approach can still be applied when considering flexible computation rules. Moreover, delay declarations
provide a mechanism to control this directly by delaying atoms until they become bounded. This idea is
formally captured in the following definition which is due to Marchiori and Teusink [26, 27].

Definition 4.3. A delay declaration for a predicate p is safe wrt a level mapping |.| if for every atom A
with predicate symbol p, if A satisfies its delay declaration, then A is bounded wrt |.|.

4.3. Covers

To determine whether or not an atom is bounded when it is selected, requires a consideration of the
atoms that have been (partially) resolved before the selection of the atom. The following definitions
of cover, originally proposed by Marchiori and Teusink [26, 27], capture this idea. Note that in the
following definition, vars(o) denotes the set of variables within the syntactic object o; body(c) is the set
of body atoms occurring in a clause c; and dom(θ) is the set of variables which constitute the domain of
a substitution θ.

Definition 4.4. Let c = H:−B1, . . . , Bn be a clause and |.| a level mapping. Let A ∈ body(c) and
D ⊆ body(c) such that A)∈ D. ThenD is a direct cover for A wrt |.| in c, if there exists a substitution θ
such that:

• θ(A) is bounded wrt |.| and

• dom(θ) ⊆ vars(H) ∪ vars(D).

A direct cover D for A is minimal if no proper subset of D is a direct cover for A. The set of minimal
direct covers of A wrt |.| in c is denoted by mdcovers|.|,c(A).

Intuitively, a direct cover of an atom A in a clause c is a subset D of the body atoms of c such that for
some instantiation θ of the variables in D, θ(A) is bounded. Note that a body atom may have zero, one
or more (minimal) direct covers. In particular, an atom A will have no direct cover when, in order for A
to become bounded, it is necessary to instantiate a variable of A which does not occur elsewhere in the
clause. On the other hand, the atom A will have the empty set as its only minimal cover if A is bounded
whenever the head of the clause is ground.

Example 4.3. Consider the quicksort program listed in figure 1 and the level mapping |.| defined by:

|qsort(x, y)| = y′ + 1 |part(w, x, y, z)| = y′ + z′ |append(x, y, z)| = z′

where y′ = |y|list-length and z′ = |z|list-length. Then

mdcovers|.|,c(part(Xs, X, L, B)) = {{qsort(L, Ls), qsort(B, Bs)}}
mdcovers|.|,c(qsort(L, Ls)) = {{append(Ls, [X|Bs], Ys)}}
mdcovers|.|,c(qsort(B, Bs)) = {{append(Ls, [X|Bs], Ys)}}

mdcovers|.|,c(append(Ls, [X|Bs], Ys)) = {∅}

where c is the second clause of qsort. Note that mdcovers|.|,c(append(Ls, [X|Bs], Ys)) = {∅} because
Ys ∈ vars(qsort([X|Xs], Ys)). In this example each atom has exactly one minimal direct cover.

14 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

Marchiori and Teusink [27] explain the idea of cover in terms of “potential activators”. Suppose that each
predicate of the quicksort program is equipped with a delay declaration that is safe wrt the level mapping
|.| of example 4.3. Then the goal qsort(L, Ls) can only be selected when qsort(L, Ls) is bounded wrt
|.|, that is, when Ls is instantiated to a rigid list. Resolution of append(Ls, [X|Bs], Ys) can potentially
activate this goal by instantiating Ls thereby making qsort(L, Ls) selectable. The (minimal) direct cover
codifies this potential producer-consumer relationship among the body atoms of a clause. It can also
express multiple producer-single consumer relationships. The goal part(Xs, X, L, B) is only selectable
if it is bounded wrt |.|, or equivalently, when L and B are instantiated to lists of fixed length. The goals
qsort(L, Ls) and qsort(B, Bs) are potential activators for part(Xs, X, L, B) since, when combined, they
can potentially instantiate L and B to rigid lists. Note, however, that although (minimal) direct cover
encapsulates the idea of potential activation, it misses the idea that activators themselves need to be
activated. This iterative application of potential activation leads to the concept of cover.

Definition 4.5. Let c = H:−B1, . . . , Bn be a clause and |.| a level mapping. Let A ∈ body(c) and
C ⊆ body(c) such that A)∈ C. Then C is a cover for A wrt |.| in c, if 〈A, C〉 is an element of the least
set S such that:

• 〈A, ∅〉 ∈ S if ∅ ∈ mdcovers|.|,c(A) or

• 〈A, C〉 ∈ S if A)∈ C, {A1, . . . , Ak} ∈ mdcovers|.|,c(A), 〈Ai, Ci〉 ∈ S for all i ∈ [1, k] and
C = ∪k

i=1{Ai} ∪ Ci.

The set of covers of A wrt |.| in c is denoted by covers|.|,c(A).

Interestingly, although the cover relation is a kind of closure of the direct cover relation, it is not a
transitive one; a direct cover of an atom is not necessarily a cover of that atom. This is illustrated by
part(Xs, X, L, B). The minimum direct cover specifies that this goal can only be activated by qsort(L, Ls)
and qsort(B, Bs). However, these can only be activated by append(Ls, [X|Bs], Ys). Hence the two
qsort(L, Ls) and qsort(B, Bs) do not qualify as cover for part(Xs, X, L, B); part(Xs, X, L, B) can only
be activated once append(Ls, [X|Bs], Ys) has activated both qsort(L, Ls) and qsort(B, Bs).

Example 4.4. Consider the program qsort, the level mapping |.| and clause c of example 4.3, and the
set S as defined in definition 4.5. Then

• Since ∅ ∈ mdcovers|.|,c(append(Ls, [X|Bs], Ys)) it follows 〈append(Ls, [X|Bs], Ys), ∅〉 ∈ S;

• Since {append(Ls, [X|Bs], Ys)} ∈ mdcovers|.|,c(qsort(L, Ls)) and 〈append(Ls, [X|Bs], Ys), ∅〉∈ S
then 〈qsort(L, Ls), C〉 ∈ S where C = {append(Ls, [X|Bs], Ys)} ∪ ∅;

• It follows similarly that 〈qsort(B, Bs), {append(Ls, [X|Bs], Ys)}〉 ∈ S;

• Finally 〈part(Xs, X, L, B), C〉 ∈ S where C = ({qsort(L, Ls)} ∪ {append(Ls, [X|Bs], Ys)}) ∪
({qsort(B, Bs)} ∪ {append(Ls, [X|Bs], Ys)}) because

– {qsort(L, Ls), qsort(B, Bs)} ∈ mdcovers|.|,c(part(Xs, X, L, B)) and
– 〈qsort(L, Ls), {append(Ls, [X|Bs], Ys)}〉 ∈ S and
– 〈qsort(B, Bs), {append(Ls, [X|Bs], Ys)}〉 ∈ S.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 15

Hence covers|.|,c(part(Xs, X, L, B)) = {{qsort(L, Ls), qsort(B, Bs), append(Ls, [X|Bs], Ys)}}
covers|.|,c(qsort(L, Ls)) = {{append(Ls, [X|Bs], Ys)}}
covers|.|,c(qsort(B, Bs)) = {{append(Ls, [X|Bs], Ys)}}

covers|.|,c(append(Ls, [X|Bs], Ys)) = {∅}

4.4. Delay recurrency

Using the notion of cover, Marchiori and Teusink [26, 27] introduced the class of delay recurrent pro-
grams. It was intended that programs lying within this class would be terminating under a dynamic
selection rule.

Definition 4.6. Let P be a program, |.| a level mapping and I an interpretation for P . A clause
c = H:−B1, . . . , Bn is delay recurrent wrt |.| and I iff

• I is a model for c and

• for all i ∈ [1, n], for every cover C ∈ covers|.|,c(Bi) and for every grounding substitution θ for c
such that I |= θ(C), it follows that |θ(H)| > |θ(Bi)|.

A program P is delay recurrent wrt |.| and I iff every clause of P is delay recurrent wrt |.| and I .

To be precise, definition 4.6 differs from that in [26, 27] since the original contains some slight redun-
dancy/ambiguity. The above definition, however, reflects the intentions of Marchiori and Teusink [25].

Example 4.5. Let |.| be the level mapping of example 4.3 and I the interpretation

{qsort(x, y) | |x|list-length = |y|list-length} ∪
{part(x, w, y, z) | |x|list-length = |y|list-length + |z|list-length} ∪
{append(x, y, z) | |z|list-length = |x|list-length + |y|list-length}

and consider the second clause of qsort dubbed c. To check that I is a model for c let θ = {X .→ t1,
Xs .→ t2, Ys .→ t3, L .→ t4, B .→ t5, Ls .→ t6, Bs .→ t7} be a grounding substitution for c such that
I |= {part(t2, t1, t4, t5), qsort(t4, t6), qsort(t5, t7), append(t6, [t1|t7], t3)}. I is a model for c because

|[t1|t2]|list-length = 1 + |t2|list-length = 1 + (|t4|list-length + |t5|list-length)
= 1 + (|t6|list-length + |t7|list-length)
= |t6|list-length + |[t1|t7]|list-length = |t3|list-length

Now consider the body atom part(Xs, X, L, B) and let C ∈ covers|.|,c(part(Xs, X, L, B)). It follows
that C = {qsort(L, Ls), qsort(B, Bs), append(Ls, [X|Bs], Ys)}. Consider again θ as it is a grounding
substitution for c and suppose I |= {qsort(t4, t6), qsort(t5, t7), append(t6, [t1|t7], t3)}. Then

|qsort([t1|t2], t3)| = |t3|list-length + 1 = (|t6|list-length + |t7|list-length + 1) + 1
= (|t4|list-length + |t5|list-length + 1) + 1
> |t4|list-length + |t5|list-length = |part(t2, t1, t4, t5)|

It is straightforward to check that condition 2 of definition 4.6 holds for every other body atom of c.
Hence c is delay recurrent wrt |.| and I .

16 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

The intention behind the definition of delay recurrency is that a delay recurrent program P , when
augmented with a set of safe delay declarations for the predicates of P , only admits finite derivations.
The delay declarations handle the local boundedness issue, but there is still the global boundedness
issue to consider. Suppose C is a cover for an atom B in a delay recurrent clause, and θ is a partial
answer substitution forC such that θ(B) is bounded (note that θ may not necessarily be a correct answer
substitution since the atoms in C have not yet been fully resolved). At this point θ speculatively binds
the variables of B since it is not yet known whether or not there exists some substitution σ such that
I |= σ(θ(C)). If θ(B) is selected at this point an infinite computation may arise since there is no
guarantee that the level of the head is greater than the level of θ(B). Instead, by fully resolving each atom
inC such that a correct answer substitution θ is obtained, θ(B) can be selected safely since I |= σ(θ(C))
for all σ, whence by condition 2 of delay recurrency, the level of θ(B) is less than the level of the head.
Full resolution ofC can be achieved by using a local selection rule. To reiterate, a local selection rule only
selects the most recently introduced atoms in a derivation and thus completely resolves sub-computations
before proceeding with the main computation [43]. The notion is formally defined below.

Definition 4.7. For a goal G = A1, . . . , Am the ith atom of G is Ai. Let G0, G1, G2, . . . , Gk, . . . be a
derivation. The age of the ith atom in Gk, denoted ageGk

(i), is defined as follows:

• If G0 = A1, . . . , Am, then ageG0
(i) = 0 for all i ∈ [1, m];

• If Gk = A1, . . . , Am and Gk+1 = θ(A1, . . . , As−1, B1, . . . , Bn, As+1, . . . , Am), then

ageGk+1
(i) =






ageGk
(i) + 1 for all i ∈ [1, s − 1]

0 for all i ∈ [s, s + n − 1]
ageGk

(i − n + 1) + 1 for all i ∈ [s + n, n + m − 1]

For a goalG = A1, . . . , Am, an atomAi is introduced inG if ageG(A) = 0. An atomAi is most recently
introduced in G iff ageG(i) ≤ ageG(j) for all j ∈ [1, m].

Definition 4.8. A derivation G0, G1, G2, . . . , Gk, . . . applies local selection iff whenever an atom Ai is
selected for resolution from Gk then Ai is most recently introduced in Gk.

Definition 4.9. A derivation G0, G1, G2, . . . , Gk, . . . satisfies the delay declarations of P iff whenever
an atom Ai is selected for resolution from Gk then Ai satisfies the delay declarations of P .

The main result regarding delay recurrent programs [26, 27] can now be stated:

Theorem 4.1. Let P be a program with a delay declaration for each predicate in P . Let |.| be a level
mapping and I an interpretation. Suppose that

• P is delay recurrent wrt |.| and I , and

• the delay declarations for P are safe wrt |.|

Then every derivation that satisfies the delay declarations of P , whilst applying local selection, is finite.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 17

4.5. Semi-delay recurrency

Marchiori and Teusink [26, 27] noticed that boundedness of atoms could be enforced by using delay
declarations but did not fully exploit this fact. Their definition requires a decrease in the level mapping
from the head to the non-recursive body atoms, when in fact the boundedness of selected atoms is al-
ready guaranteed by safe delay declarations. To relax this restriction, notion of predicate dependency is
introduced to distinguish between recursive and non-recursive body atoms.

Definition 4.10. Let p, q ∈ Π where Π is the set of predicate symbols in a logic program P . Then p
directly-depends-on q iff p(t1, . . . , tk):−B1, . . . , Bn ∈ P and Bi = q(s1, . . . , sl) for some i ∈ [1, n].
The depends-on relation, denoted/, is defined as the reflexive, transitive closure of the directly-depends-
on relation. If p / q and q / p then p and q are mutually dependent and this is denoted by p 0 q.

Example 4.6. Returning to the quicksort program listed in figure 1, qsort / part, qsort / append,
part / leq, part / gt, qsort / leq and qsort / gt. For this program, p 0 q iff p = q.

The following new definition will prove useful for defining a large class of terminating programs
which permit coroutining. In what follows rel(A) denotes the predicate symbol of the atom A.

Definition 4.11. Let |.| be a level mapping and I an interpretation for a program P . A clause
c = H:−B1, . . . , Bn is semi-delay recurrent wrt |.| and I iff

• I is a model for c and

• for all i ∈ [1, n] such that rel(H) 0 rel(Bi), for every cover C ∈ covers|.|,c(Bi) and for every
grounding substitution θ for c such that I |= θ(C), it follows that |θ(H)| > |θ(Bi)|.

A program P is semi-delay recurrent wrt |.| and I iff every clause of P is semi-delay recurrent wrt |.|
and I .

Observe in this definition that there is no restriction placed on the relation between the level of the head
of the clause and the level of the non-recursive body atoms.

Example 4.7. Let I be the interpretation and |.| the level mapping of example 4.5. As before, I is a
model for the second clause c of the qsort predicate. Now rel(qsort([X|Xs], Ys)) 0 rel(qsort(L, Ls)) and
rel(qsort([X|Xs], Ys)) 0 rel(qsort(B, Bs)). Then

covers|.|,c(qsort(L, Ls)) = {{append(Ls, [X|Bs], Ys)}}
covers|.|,c(qsort(B, Bs)) = {{append(Ls, [X|Bs], Ys)}}

Let θ = {X .→ t1, Xs .→ t2, Ys .→ t3, L .→ t4, B .→ t5, Ls .→ t6, Bs .→ t7} be a grounding substitution
for c such that I |= {append(t6, [t1|t7], t3)}. Then

|qsort([t1|t2], t3)| = |t3|list-length + 1
= (|t6|list-length + |t7|list-length + 1) + 1
> |t6|list-length + 1
= |qsort(t4, t6)|

|qsort([t1|t2], t3)| = |t3|list-length + 1
> |t7|list-length + 1
= |qsort(t5, t7)|

Hence c is semi-delay recurrent wrt |.| and I .

18 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

It would be straightforward to prove that theorem 4.1 still holds if the program is replaced by one
which is semi-delay recurrent, but a more significant result can be obtained. Observe that a local selection
rule is used to ensure that a cover of an atom is completely resolved before the atom itself is selected.
Notice, however, that for semi-delay recurrency, it is only necessary for the covers of the mutually
recursive atoms to be resolved completely. This means that, following the resolution of these covers, an
arbitrary amount of coroutining may take place amongst the remaining atoms of the clause.

To formalise a selection rule based on this idea, the notion of covering is lifted from the clause level
to the goal level. A covering of a recursive atom A in a goal G, is the set of atoms in G which have yet
to be resolved before A can be safely selected. An atom A may have more than one covering, though it
is only necessary to fully resolve the atoms of one of them before the selection of A. Coverings of atoms
will change during the course of a derivation as new atoms are introduced and others are fully resolved.

Definition 4.12. Let G0, G1, G2, . . . be a derivation and |.| a level mapping. A covering C for an atom
A in a goal Gl wrt |.|, denoted C ∈ covers|.|,Gl

(A), is defined as follows:

• Suppose G0 = A1, . . . , Am. Then ∅ ∈ covers|.|,G0
(Ai) for all i ∈ [1, m].

• Suppose Gl+1 = θ(A1, . . . , As−1, B1, . . . , Bn, As+1, . . . , Am) is the resolvent derived from
Gl = A1, . . . , As, . . . , Am and c = H:−B1, . . . , Bn, where As is the selected atom in Gl and
θ ∈ mgu(H, As). Then

– for all i ∈ [1, n],
∗ if rel(H) 0 rel(Bi) and C ∈ covers|.|,c(Bi) then θ(C) ∈ covers|.|,Gl+1

(θ(Bi));
∗ if rel(H))0 rel(Bi) then ∅ ∈ covers|.|,Gl+1

(θ(Bi)).
– for all i ∈ [1, m], if i)= s, C ⊆ {A1, . . . , Ai−1, Ai+1, . . . , Am} and C ∈ covers|.|,Gl

(Ai)
then

∗ if As ∈ C then θ(C) \ {θ(As)} ∪ θ({B1, . . . , Bn}) ∈ covers|.|,Gl+1
(θ(Ai));

∗ if As)∈ C then θ(C) ∈ covers|.|,Gl+1
(θ(Ai)).

Definition 4.13. Let |.| be a level mapping. A derivation G0, G1, G2, . . . , Gk, . . . applies semi-local
selection wrt |.| iff whenever an atom Ai is selected for resolution from Gk then ∅ ∈ covers|.|,Gk

(Ai).

Observe that, if an atom is selectable under a local selection rule, then it is selectable under a semi-local
selection rule. The main result can now be stated:

Theorem 4.2. Let P be a program with a delay declaration for each predicate in P . Let |.| be a level
mapping and I an interpretation. Suppose that

• P is semi-delay recurrent wrt |.| and I

• The delay declarations for P are safe wrt |.|

Then every derivation that satisfies the delay declarations of P , whilst applying semi-local selection wrt
|.|, is finite.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 19

The termination argument is constructed in terms of a multiset ordering that is specific to the program.
The multiset ordering≺mul is itself formulated in terms of an ordering≺ on Π×N. The binary relation
≺ is defined 〈p, m〉 ≺ 〈q, n〉 iff (p 0 q and m < n) or (p)0 q and q / p). In the following definition,
the brackets {{ and }} denote the delimitators of a multiset, for example, {{〈p, m〉}} denotes the multiset
that only contains the single pair 〈p, m〉. The multiset ordering is defined by s1 ≺mul s2 iff there exists
〈p1, m1〉, . . . , 〈pk, mk〉 ∈ s1 and 〈p, m〉 ∈ s2 such that s1 = (s2/{{〈p, m〉}})∪{{〈p1, m1〉, . . . , 〈pk, mk〉}}
and 〈pi, mi〉 ≺ 〈p, m〉 for all i ∈ [1, k] . Since Π is finite and N is well-ordered, it follows that ≺ is
well-ordered, hence≺mul is well-ordered [41]. It then remains to specify a mapping from each goal of a
derivation to multiset such that a decrease can be observed between multisets of consecutive goals. Such
a mapping is given below:

Definition 4.14. Let G0, G1, G2, . . . be a derivation, |.| be a level mapping, I an interpretation and
Gk = A1, . . . , An be a goal. For all i ∈ [1, n] define

|[Gk]iI | =





|θ(Ai)| + 1

∣∣∣∣∣∣∣

θ is a grounding substitution for Gk ∧
C ∈ covers|.|,Gk

(Ai) ∧
I |= θ(C)






Furthermore, if the set |[G]iI | is finite for each i ∈ [1, n] then define

|[G]I | = {{〈rel(A1), max |[G]1I |〉, . . . , 〈rel(An), max |[G]nI |〉}}

where max ∅ = 0 and max{n1, . . . , nk} = ni where ni ≥ nj for all j ∈ [1, k]. (Note that the multiset
|[G]I | is well-defined if and only if each set |[G]iI | is finite.)

Lemma 4.1. Let |.| be a level mapping and let G0, G1, G2, . . . , Gk, Gk+1 be a (partial) derivation that
satisfies the delay declarations of P , whilst applying semi-local selection wrt |.|. Let I be an interpreta-
tion for program P and suppose P is semi-delay recurrent wrt |.| and I . Then if |[Gk]I | is well-defined
it follows that |[Gk+1]I | is well-defined and |[Gk+1]I | ≺mul |[Gk]I |.

Proof:
For brevity, let G = Gk and G′ = Gk+1. Then G′ = θ(A1, . . . , As−1, B1, . . . , Bn, As+1, . . . , Am) is
the resolvent derived from G = A1, . . . , As, . . . , Am and c = H:−B1, . . . , Bn where As is the selected
atom in G and θ ∈ mgu(As, H). Suppose that |[Gk]I | is well-defined.

• To show 〈rel(θ(Bi)), max |[G′]s+i−1
I |〉 ≺ 〈rel(As), max |[G]sI |〉 for all i ∈ [1, n]. Let i ∈ [1, n].

If rel(Bi))0 rel(H) 0 rel(As) then rel(Bi) / rel(As) and the result follows. Now suppose
rel(Bi) 0 rel(H). By definition 4.13, ∅ ∈ covers|.|,G(As). By definition 4.14 it follows that
max |[G]sI | = max {|σ(As)| + 1 | σ is a grounding substitution for G }. Since the derivation sat-
isfies the delay declarations of P , As is bounded wrt |.|, hence max |[G]sI | = |[As]| + 1, whence
|[As]| ≥ |[θ(As)]| = |[θ(H)]|. Thusmax |[G]sI | > |[θ(H)]|. By definition 4.14 it follows that

|[G′]s+i−1
I | = |[θ(A1, . . . , As−1, B1, . . . , Bn, As+1, . . . , Am)]s+i−1

I |

=





|σ(θ(Bi))| + 1

∣∣∣∣∣∣∣

σ is a grounding substitution for G′ ∧
D ∈ covers|.|,G′(θ(Bi)) ∧
I |= σ(D)






20 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

– Suppose |[G′]s+i−1
I |)= ∅. Then there exists (1) a grounding substitution σ for G′ and

(2) a cover D ∈ covers|.|,G′(θ(Bi)) such that (3) I |= σ(D) and (4) |σ(θ(Bi))| + 1 =
max |[G′]s+i−1

I |. From (2) it follows that there exists a cover C ∈ covers|.|,c(Bi) such that
D = θ(C), hence by (3), I |= σ(θ(C)). By (1), σ ◦ θ is a grounding substitution for
B1, . . . , Bn. Let κ be a grounding substitution for σ(θ(H)). Then κ◦σ◦θ is a grounding sub-
stitution for c such that I |= κ(σ(θ(C))) since κ(σ(θ(C))) = σ(θ(C)). Hence, by the semi-
delay recurrency of c, |κ(σ(θ(H))| > |κ(σ(θ(Bi))| = |σ(θ(Bi))|. Thus max |[G′]s+i−1

I | ≤
|κ(σ(θ(H)))| = |[κ(σ(θ(H)))]| ≤ |[θ(H)]|. It follows max |[G]sI | > max |G′|s+i−1

I , hence
|G′|s+i−1

I is finite.
– Suppose |[G′]s+i−1

I | = ∅. Then |[G′]s+i−1
I | is trivially finite. Moreovermax |[G′]s+i−1

I | = 0.
Butmax |[G]sI | > 0 somax |[G]sI | > max |[G′]s+i−1

I |.

• To show 〈rel(θ(Ai)), max |[G′]iI |〉 6 〈rel(Ai), max |[G]iI |〉 for all i ∈ [1, s− 1]. Let i ∈ [1, s− 1].

– Suppose |[G′]iI |)= ∅. Then there exists (5) a grounding substitution σ for G′ and (6) a cover-
ing D ∈ covers|.|,G′(θ(Ai)) such that (7) I |= σ(D) and (8) |σ(θ(Ai))| + 1 = max |[G′]iI |.
By (6) it follows that there exists a C ⊆ {A1, . . . , Ai−1, Ai+1, . . . , Am} such that C ∈
covers|.|,G(Ai) and either:
∗ As ∈ C andD = θ(C) \ {θ(As)} ∪ θ({B1, . . . , Bn}) or
∗ As)∈ C andD = θ(C).

In the first case, by (7) I |= σ(θ(C) \ {θ(As)} ∪ θ({B1, . . . , Bn}) and consequently, since
I is a model for c, I |= σ(θ(C) \ {θ(As)} ∪ {θ(H)}). But then I |= σ(θ(C)) because
θ(H) = θ(As). In the second case, by (7), I |= σ(θ(C)).
By (1) σ ◦ θ is a grounding substitution forA1, . . . , As−1, As+1, . . . , Am. Let κ be a ground-
ing substitution for σ(θ(As)). Then κ ◦ σ ◦ θ is a grounding substitution for G such that
I |= κ(σ(θ(C))) since κ(σ(θ(C))) = σ(θ(C)). Hence |κ(σ(θ(Ai)))| + 1 ∈ |[G]iI | and as a
resultmax |[G′]iI | ≤ max |[G]iI |, hence |[G′]iI | is finite.

– Suppose |[G′]iI | = ∅. Then |[G′]iI | is trivially finite. Moreovermax |[G′]iI | = 0 ≤ max|[G]iI |.

• To show 〈rel(θ(Ai)), max |[G′]i+n−1
I |〉 6 〈rel(Ai), max |[G]iI |〉 for all i ∈ [s + 1, m]. This is

analogous to the previous case.

Thus |[G′]I | is well-defined and |[G′]I | ≺mul |[G]I | as required. 78

The proof of theorem 4.2 then follows as immediately consequence of lemma 4.1 since ≺mul is well-
ordered. This completes the termination argument for semi-delay recurrent programs.

5. The transformation: termination, soundness and completeness
The force of theorem 4.2 is that it provides a way of developing a program transformation for deriving
a correct and reasonably efficient program from a logical specification. The idea is to transform a given
program into one which is semi-delay recurrent, but with equivalent declarative semantics. Then, by
adding safe delay declarations, a program is obtained which terminates for all goals using semi-local
selection.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 21

The transformation is defined at two levels: a transformation that separately acts on each clause in
the original program, to yield a clause that is semi-delay recurrent; and a transformation that is applied
to each predicate in the original program, to produce an additional new clause. The clause-level transfor-
mation replaces each clause defining a predicate p ∈ Π, with another defining a predicate psdr ∈ Πsdr.
The predicate-level transformation, when acting on a predicate p, introduces a clause that defines p in
terms of psdr and an auxiliary predicate pdepth ∈ Πdepth. The symbol sets Π, Πsdr and Πdepth are re-
quired to be disjoint, that is, Π ∩ Πsdr = Π ∩ Πdepth = Πsdr ∩ Πdepth = ∅. In order to define the
transformation, it is convenient to represent depth counters (numbers) as successor terms, that is, encode
0, 1, 2 and arbitrary k by the terms 0, succ(0), succ(succ(0)) and succk(0). Using this representation,
the clause-level semi-delay recurrent (SDR) transformation is defined as follows:

Definition 5.1. If c = H :− B1, . . . , Bn ∈ P then sdr(c) = psdr($t, d) :− B′, B′
1, . . . , B

′
n where

B′ =

{
true if ∧n

i=1 H)0 Bi

d = succ(d′) otherwise
B′

i =

{
Bi ifH)0 Bi

psdr
i ($ti, d′) otherwise

H = p($t), Bi = pi($ti) and the variables d, d′ are fresh, that is, {d, d′} ∩ vars(c) = ∅.

The predicate true always succeeds; it is a no-operation that is used to simplify the transformation. The
unification d = succ(d′) decrements d to obtain d′. It succeeds only if d equals or exceeds succ(0).
For purposes of efficiency, this operation is actually realised as two separate operations: a test and a
decrement operating on conventional integers. The predicate-level transformation is defined by:

Definition 5.2. If p ∈ Π then sdr(p) = p(x1, . . . , xk) :− pdepth(x1, . . . , xk, d), psdr(x1, . . . , xk, d)
where the variables x1, . . . , xk, d are distinct and k is the arity of p.

Together, the sdr transformation defines the set of clauses P sdr = {sdr(c) | c ∈ P} ∪ {sdr(p) | p ∈
Π}. The transformation is completed by augmenting P sdr with a set of clauses P depth that specify the
predicates within Πdepth. The intuition is that each predicate pdepth(x1, . . . , xk, d) calculates a bound
d, from the arguments x1, . . . , xk, that controls the depth to which the predicate psdr is searched. For
the program P sdr ∪ P depth to yield finite derivations under semi-local selection, the clauses of Πdepth

are required to be semi-delay recurrent. The termination issue is consider further in section 5.1. For the
program P sdr ∪ P depth to be correct relative to P , it must preserve each answer that P can produce (it
must be complete relative to P) whilst not introducing additional answers (it must be sound relative to
P). These correctness issues are addressed in section 5.2; in particular the section specifies criteria on the
predicates of P depth that ensure completeness (soundness follows almost immediately). The remainder
of this section illustrates the transformation.

Example 5.1. Consider again the quicksort program of figure 1, denoting the ith clauses of predicates
qsort and append by qsorti and appendi respectively. Then

sdr(qsort1) = qsortsdr([], [], D) :− true.

sdr(qsort2) = qsortsdr([X|Xs], Ys, D) :− D = succ(D1),
part(Xs, X, L, B), qsortsdr(L, Ls, D1), qsortsdr(B, Bs, D1), append(Ls, [X|Bs], Ys)

sdr(append1) = appendsdr([], X, X, D) :− true.

sdr(append2) = appendsdr([X|Xs], Ys, [X|Zs], D) :− D = succ(D1), appendsdr(Xs, Ys, Zs, D1).

22 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

and sdr(qsort) = qsort(X, Y) :− qsortdepth(X, Y, D), qsortsdr(X, Y, D)
sdr(append) = append(X, Y, Z) :− appenddepth(X, Y, Z, D), appendsdr(X, Y, Z, D)

5.1. The termination issue

The following theorem addresses the termination issue, by showing that the semi-delay recurrency of
P depth is sufficient to ensure that P sdr ∪ P depth is also semi-delay recurrent. The value of this result is
that theorem 4.2 guarantees that the program P sdr ∪P depth will yield finite derivations under semi-local
selection, providing that it is equipped with delay declarations that are safe.

Theorem 5.1. Let I be a model of P sdr ∪P depth and suppose P depth is semi-delay recurrent wrt a level
mapping |.|1 and I . Then P sdr ∪ P depth is semi-delay recurrent wrt |.|2 and I where

|psdr($t, t′)|2 = |t′|term-size |p($t)|2 = 0 |pdepth($t, t′)|2 = |pdepth($t, t′)|1

Thus the program P sdr ∪ P depth will be terminating for all goals under semi-local selection if, for each
predicate, a delay declaration is added which is safe wrt |.|2. In fact, since the goals p($t) are always
bounded wrt |.|2, delay declarations need only be supplied for the psdr and pdepth predicates.

Proof:
Let 0 be the mutual dependence relation induced from P sdr ∪ P depth. Since P depth is semi-delay
recurrent wrt |.|1 and I , it remains to consider each c ∈ P sdr:

• Suppose c = p($x) :− pdepth($x, d), psdr($x, d). Then c is semi-delay recurrent wrt |.|2 and I since
p)0 pdepth and p)0 psdr.

• Suppose c = psdr($t, d) :− true, B1, . . . , Bn and p)0 rel(B1), . . . , p)0 rel(Bn). Then again c is
trivially semi-delay recurrent wrt |.|2 and I .

• Suppose c = psdr($t, d) :− d = succ(d′), B′
1, . . . , B

′
n. Let i ∈ [1, n] such that B′

i = psdr
i ($t, d′),

that is, p 0 pi. Then mdcovers|.|2,c(B′
i) = {d = succ(d′)} and mdcovers|.|2,c(d = succ(d′)) =

{∅}, hence covers|.|2,c(B′
i) = {d = succ(d′)}. Let θ be a grounding substitution for c such

that I |= θ(d = succ(d′)). Hence θ(d) = θ(succ(d′)), thus |θ(psdr($t, d))|2 = |θ(d)|term-size =
|θ(succ(d′))|term-size = 1 + |θ(d′)|term-size > |θ(d′)|term-size = |θ(psdr

i ($t, d′))|2.
78

The proof of theorem 5.1 exploits the property that d = succ(d′) is the only cover of each recursive body
atom B′

i = psdr
i ($t, d′) occurring within the body of a clause defining psdr. Thus, once d = succ(d′) is

resolved, then the remaining goals B ′
1, . . . , B

′
n can be scheduled in any order. Thus coroutining can be

liberally applied.
The main consequence of theorem 5.1 is that a program can be transformed into another that is

semi-delay recurrent and whose semantics are equivalent in a sense which will be examined shortly.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 23

5.2. The issues of soundness and completeness

The transformation is completed by providing clauses P depth for the predicates Πdepth. These clauses
compute depth bounds on the subsequent computation, for example, the rôle of the qsortdepth predicate
is to establish a bound on the depth of the recursive calls to qsortsdr. The bound needs to be large enough
to enable the search space to be probed to sufficient depth to find all the answers to a query. For example,
the goal qsort([1, 2, 3], L) will fail if qsortdepth([1, 2, 3], L, D) instantiates D to succ(0), since more than
one recursive call to the predicate qsortsdr is required to find the unique answer L = [1, 2, 3]. On the
other hand, the goal qsort([1, 2, 3], L)will not produce an incorrect answer. Thus the depth bound effects
the completeness of the transformation rather than soundness. Nevertheless, to ensure that completeness
is preserved, the definition of qsortdepth needs to be suitably constrained. The constraint manifests itself
as a condition for completeness in the equivalence theorem that is stated below.

Theorem 5.2. Let I and J be minimal models for P and P sdr ∪ P depth.

• Then if J |= p($t) and p ∈ Π it follows that I |= p($t) (soundness of the transformation).

• Suppose that whenever J |= psdr($t, succj(0)) and J)|= psdr($t, succj−1(0)) there exists k ≥ 0 such
that J |= pdepth($t, succj+k(0)). Then if I |= p($t) it follows that J |= p($t) (completeness of the
transformation).

The criteria for completeness is a statement about the relative sizes of the depth parameters of p sdr and
pdepth. The condition J)|= psdr($t, succj−1(0)) ensures that j is minimal, that is, no smaller j exists such
that J |= psdr($t, succj(0)). The theorem does not require these depth parameters to coincide; instead it
is sufficient for the depth parameter of pdepth to match or exceed that of psdr. This is a useful result from
a practical point of view since upper bounds are easier to compute than exact bounds.

In order to reason about the equivalence of the minimal models I and J , and in particular prove theo-
rem 5.2, the standard TP [23] is introduced since its iterative formulation provides a way of constructing
an inductive equivalence argument.

Definition 5.3.

TP (I) =





θ(H)

∣∣∣∣∣∣∣

c = H:−B1, . . . , Bn ∈ P ∧
θ is a grounding substitution for c ∧
θ(B1), . . . , θ(Bn) ∈ I






The soundness argument is, in fact, more involved than the completeness argument. Since P sdr ∪P depth

defines intermediate predicates Πsdr that do not appear in P , if T k
P (∅) |= p($t) it does not necessarily

follow that T k
P sdr∪P depth(∅) |= p($t); in general, a larger value k ′ > k is required for T k′

P sdr∪P depth(∅) |=
p($t). To construct an inductive hypothesis for soundness, and specifically define k ′ in terms of k, it is
necessary to reason about the relative positions (or level) of predicates with the call graph hierarchy of
P . This requirement leads to the following definition.

Definition 5.4. Suppose that 0 and / are the relations over Π = {p1, . . . , pn} induced from P . Then
define level(pi) = min{li | 〈l1, . . . , ln〉 ∈ level(Π)} where

level(Π) =

{
〈l1, . . . , ln〉 ∈ Nn

∣∣∣∣∣
pj 0 pk → lj = lk ∧
pj)0 pk ∧ pj / pk → lj > lk

}

24 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

Example 5.2. Returning to the quicksort program of figure 1 and example 4.6, Π = {qsort, part,
append, leq, gt} and using the notation in definition 5.4,

level(Π) =
{
〈l1, . . . , l5〉 ∈ N5 | l1 > l2 ∧ l1 > l3 ∧ l1 > l4 ∧ l1 > l5 ∧ l2 > l4 ∧ l2 > l5

}

hence level(leq) = 1, level(gt) = 1, level(append) = 1, level(part) = 2 and level(qsort) = 3.

The proof for theorem 5.2 (which follows immediately after that of lemma 5.2) is constructed in three
stages. Firstly, lemma 5.1 states a monotonicity condition on psdr (its proof is straightforward and
thus is not included). Secondly, lemma 5.1 is then used with the level machinery to argue a form of
equivalence between TP and TP sdr∪P depth . This gives lemma 5.2. Thirdly, the equivalence result of
lemma 5.2 is then used to establish theorem 5.2 in conjunction with the property that the minimal model
of a program P coincides with the limit of TP . Interestingly, this final stage of proof requires that
the clauses defined in P depth to not invoke any predicates defined within P sdr, which is a reasonable
requirement. This construction completes the argument that the declarative semantics of the original and
transformed programs (restricted to the predicates defined in the original program) coincide.

Lemma 5.1. If T k
P sdr∪P depth(∅) |= psdr($t, d) then T k

P sdr∪P depth(∅) |= psdr($t, succ(d)) for all p ∈ Π and
for all k ≥ 0.

Lemma 5.2. Let J and M be minimal models for P sdr ∪ P depth and P depth. Suppose that whenever
J |= psdr($t, succj(0)) and J)|= psdr($t, succj−1(0)) there exists l ≥ 0 such that J |= pdepth($t, succj+l(0)).

• Then if T k
P (∅) |= p($t) it follows that

– T k+level(p)
P sdr (M) |= psdr($t, succl(0)) for some l ≥ 0;

– T k+level(p)+1
P sdr (M) |= p($t)

• Then if T k
P sdr(M) |= psdr($t, succl(0)), p($t) for some l ≥ 0 it follows that T k

P (∅) |= p($t).

Proof:
Consider the first case, as the second is straightforward. Proof by induction. Suppose T k

P (∅) |= p($t).

• To show that T k+level(p)
P sdr (M) |= psdr($t, succl(0)) for some l ≥ 0. Since T k

P (∅) = ∅ the result
vacuously holds for k = 0. Thus consider k ≥ 1. Suppose T k

P (∅) |= p($t). Then a ground-
ing substitution θ exists for a clause c = H :− B1, . . . , Bn ∈ P such that θ(H) = p($t) and
θ(B1), . . . , θ(Bn) ∈ T k−1

P (∅). SupposeH = p($s) and Bi = pi($si).

– Suppose sdr(c) = psdr($s, d):−d = succ(d′), B′
1, . . . , B

′
n. Let I ={i ∈ [1, n] |pi 0 p}.

∗ Consider i ∈ I . By induction it follows that T (k−1)+level(p)
P sdr (M) |= psdr

i (θ($si), di) for
some di = succli(0) since level(pi) = level(p). Since I)= ∅, put l = max({li | i ∈ J})
and define σ = θ ∪ {d = succ(succl(0)), d′ .→ succl(0)}. By lemma 5.1 it follows that
T (k−1)+level(p)

P sdr (M) |= σ(psdr
i ($si, d′)).

∗ Consider i ∈ [1, n] \ I . By induction it follows that T (k−1)+level(pi)+1
P sdr (M) |= pi(θ($si)).

But level(pi) < level(p) hence T (k−1)+level(p)
P sdr (M) |= pi(σ($si)).

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 25

Because θ is a grounding substitution for c, it follows that σ is a grounding substitution for
sdr(c). Hence T k+level(p)

P sdr (M) |= σ(psdr($s, d)) = psdr($t, succl+1(0)) as required.

– Suppose sdr(c) = psdr($s, d):−true, B′
1, . . . , B

′
n. The argument is a simplified version of the

previous case.

• To show T k+level(p)+1
P sdr (M) |= p($t). Recall that c = p($x):−pdepth($x, d), psdr($x, d) ∈ P sdr. By the

preceding argument there exists a minimal l ≥ 0 such that T k+level(p)
P sdr (M) |= psdr($t, succl(0)).

Now there exists k ≥ 0 such thatM |= pdepth($t, succk+l(0))). By lemma 5.1, T k+level(p)
P sdr (M) |=

psdr($t, succk+l(0))). A grounding substitution θ for c exists such that θ($x) = $t and θ(d) =
succk+l(0). Hence T k+level(p)+1

P sdr (M) |= p($t) as required.
78

Proof:
Let I , J andM be minimal models for P , P sdr ∪ P depth and P depth.

• Suppose J |= p($t). There exists k ≥ 0 such that T k
P sdr∪P depth(∅) |= p($t) and because P depth

is not defined using P sdr, it follows that T k
P sdr(M) |= p($t). Since T k

P sdr(M) |= p($t) it follows
T k

P sdr(M) |= psdr($t, succl(0)) for some l ≥ 0. Whence T k
P (∅) |= p($t) by lemma 5.2. But

I ⊇ T k
P (∅) hence the result follows.

• Suppose I |= p($t). There exists k ≥ 0 such that T k
P (∅) |= p($t), whence T k+level(p)+1

P sdr (M) |= p($t)
by lemma 5.2. But J ⊇ T k+level(p)+1

P sdr∪P depth (∅) = T k+level(p)+1
P sdr (M) again since the predicates in P depth

are not defined in terms of P sdr. The result then follows.
78

The astute reader will notice that although the transformed program is semi-delay recurrent, there
is no guarantee that an arbitrary query to the program will not suspend. However, it has recently been
shown [17] that, given a logic program with delay declarations, it is possible to infer classes of goal that
do not lead to suspensions. The reader is referred to [17, section 8.3] which reports (among other things)
that the transformed version of mergesort will not suspend for msort(L, S) when L or S are ground.

6. The transformation: automation and efficiency

The development of the transformation, thus far, has focussed on the issues of termination, soundness and
completeness. This section shows how program analysis, when augmented with program transformation,
can be used to infer bounds on the depths of search trees. This relieves the programmer from much of the
burden of applying the transformation. This section also examines the efficiency of the resulting code.

6.1. Automating the discovery of depth bounds

The construction of P sdr is straightforward to automate. Automatically synthesising definitions for
P depth is more challenging: theorem 5.2 asserts that although soundness of the transformation follows

26 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

immediately, for completeness the P depth predicates need to be defined so as to provide a bound on the
depth of a search tree. Computing such a bound cannot be achieved in general since it is well-known from
computability theory that there are partial recursive functions which cannot be extended to total recursive
functions. The problem of computing a bound is analogous to the problem of checking termination of a
given program and goal; although the problem is unsolvable in the general case, many specific cases are
susceptible to automation [14].

One well-established technique in termination checking is argument size analysis [4, 15] that infers
size relationships between the arguments of predicates. In this context, argument size relationships are
used to observe a decrease between the size of arguments in the head and the size of the arguments in the
body. This analysis cannot be applied directly to P sdr to infer a relationship of the form d ≤

∑k
i=1 ci|ti|

for each predicate psdr(t1, . . . , tk, d) where |.| is a norm and c1, . . . , ck ∈ R is a set of coefficients. In
fact no such invariant holds for P sdr no matter how P depth is defined. By lemma 5.1 it follows that if J is
the minimal model of P sdr∪P depth and J |= p($t, d) then J |= p($t, succ(d)). The subtlety is that it is not
the syntactic form of the d ≤

∑k
i=1 ci|ti| inequality that is inappropriate for ensuring completeness, it is

its interpretation. To satisfy the completeness criteria of theorem 5.2 it is sufficient to infer an invariant
d ≤

∑k
i=1 ci|ti| that holds in the sense that if J |= psdr($t, succd(0)) and J)|= psdr($t, succd−1(0)) then

d ≤
∑k

i=1 ci|ti|. Fortunately such invariants can be inferred automatically by applying argument size
analysis to a transformation of P , named P min, that is engineered solely for the purpose of deducing
these invariants. The presentation of this approach is structured in four phases: section 6.1.1 defines the
transformation that yields P min; section 6.1.2 explains the precise relationship between the programs
P depth and Pmin; section 6.1.3 shows how this relationship can be exploited to infer bounds on the depth
of search trees; and section 6.1.4 explains how P depth can be constructed from depth bound invariants.

6.1.1. A transformation for discovering depth bounds

As with P sdr, the transformation that constructs P min is defined at two levels: a transformation that sep-
arately acts on each clause in the original program and a transformation that is applied to each predicate in
the original program, to produce an additional new clause. The clause-level transformation replaces each
clause defining a predicate p ∈ Π, with another defining a predicate pmin ∈ Πmin where Π∩Πmin = ∅.
This clause-level and predicate-level transformations are defined as follows:

Definition 6.1. If c = H :− B1, . . . , Bn ∈ P thenmin(c) = pmin($t, d) :− B′, B′
1, . . . , B

′
n where

B′ =

{
d = 0 if ∧n

i=1 H)0 Bi

max(d1, . . . , dn, d′), d = succ(d′) otherwise
B′

i =

{
Bi, di = 0 ifH)0 Bi

pmin
i ($ti, di) otherwise

H = p($t), Bi = pi($ti), and the variables d, d′, di are fresh, that is, {d, d′, d1, . . . , dn} ∩ vars(c) = ∅.

Definition 6.2. If p ∈ Π then min(p) = p(x1, . . . , xk) :− pmin(x1, . . . , xk, d) where the variables
x1, . . . , xk, d are distinct and k is the arity of p.

For any given clause c ∈ P , the clausemin(c) can be considered to be an instrumented version of sdr(c)
that counts the minimal number of times that a loop has to be traversed to yield an answer. For any non-
recursive clause the loop count is zero. For any recursive clause, the loop count is exactly one plus the
maxima of the loop count of each of the recursive body atoms. Thus the transformation is formulated

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 27

max(x, x) :- true.
max(0, x2, x) :- max(x2, x).
max(x1, 0, x) :- max(x1, x).
max(succ(x1), succ(x2), succ(x)) :- max(x1, x2, x).
max(0, x2, x3, x) :- max(x2, x3, x).
max(x1, 0, x3, x) :- max(x1, x3, x).
max(x1, x2, 0, x) :- max(x1, x2, x).
max(succ(x1), succ(x2), succ(x3), succ(x)) :- max(x1, x2, x3, x).

Figure 6. The max predicates for arity 2, 3 and 4 cases; other cases are defined analogously

d(N, , 0) :- nat(N).
d(X, X, 1).
d(F*N, X, N*DF) :- nat(N), d(F, X, DF).
d(N*F, X, N*DF) :- nat(N), d(F, X, DF).
d(-F, X, -DF) :- d(F, X, DF).
d(X#succ(N), X, succ(N)*X#N) :- nat(N).
d(sin(X), X, cos(X)).
d(cos(X), X, -sin(X)).
d(F*G, X, DF*G+DG*F) :- d(F, X, DF), d(G, X, DG).
d(F/G, X, (DF*G-DG*F)/(G*G)) :- d(F, X, DF), d(G, X, DG).
d(F+G, X, DF+DG) :- d(F, X, DF), d(G, X, DG).
d(F-G, X, DF-DG) :- d(F, X, DF), d(G, X, DG).
nat(0).
nat(succ(N)) :- nat(N).

Figure 7. Symbolic differentiation in Prolog

in terms of a series of auxiliary predicates max(t1, t), max(t1, t2, t), . . . , max(t1, t2, . . . , tk, t), etc that
are defined to hold iff ti = succni(0), t = succn(0) and n = max {n1, . . . nk}. Definitions for these
predicated are listed in figure 6. These definitions constitute a set of clauses that henceforth will be
denoted as P max. Pmax is assumed to include max predicates of arity 2, . . . , k + 1 where k is the
maximum number of body atoms that occur in any clause of P . Moreover, the max predicate symbol
is required to be unique, that is, max)∈ Π and max)∈ {pmin | p ∈ Π}. The transformation min(p)
that operates on a predicate p merely introduces a clause that discards the count. Together, these two
transformation define the set of clauses P min = {min(c) | c ∈ P} ∪ {min(p) | p ∈ Π}.

Example 6.1. Suppose that P is the program listed in figure 7. P defines a predicate d(t1, t2, t3) that
differentiates a function t1 wrt t2 to obtain the derivative t3. The rules (clauses) in the program corre-
spond to rules of symbolic differentiation, for example, the ninth and tenth clauses of P respectively
implement the product and quotient rules. The operator # represents power, thus a query such as
d(x#succ(succ(0)), x, F) instantiates F to succ(succ(0)) ∗ x#succ(0). The predicate nat(t) holds iff

28 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

(1) d(X1, X2, X3) :- dmin(X1, X2, X3,).
(2) dmin(N, , 0, D) :- D = 0, nat(N).
(3) dmin(X, X, 1, D) :- D = 0.
(4) dmin(F*N, X, N*DF, D) :- D = succ(D1), nat(N), dmin(F, X, DF, D1).
(5) dmin(N*F, X, N*DF, D) :- D = succ(D1), nat(N), dmin(F, X, DF, D1).
(6) dmin(-F, X, -DF, D) :- D = succ(D1), dmin(F, X, DF, D1).
(7) dmin(X#succ(N), X, succ(N)*X#N, D) :- D = 0, nat(N).
(8) dmin(sin(X), X, cos(X), D) :- D = 0.
(9) dmin(cos(X), X, -sin(X), D) :- D = 0.
(10) dmin(F*G, X, DF*G+DG*F, D) :-

D = succ(D1), max(D2, D3, D1), dmin(F, X, DF, D2), dmin(G, X, DG, D3).
(11) dmin(F/G, X, (DF*G-DG*F)/(G*G), D) :-

D = succ(D1), max(D2, D3, D1), dmin(F, X, DF, D2), dmin(G, X, DG, D3).
(12) dmin(F+G, X, DF+DG, D) :-

D = succ(D1), max(D2, D3, D1), dmin(F, X, DF, D2), dmin(G, X, DG, D3).
(13) dmin(F-G, X, DF-DG, D) :-

D = succ(D1), max(D2, D3, D1), dmin(F, X, DF, D2), dmin(G, X, DG, D3).
(14) nat(X) :- natmin(X1,).
(15) natmin(0, D) :- D = 0.
(16) natmin(succ(N), D) :- D = succ(D1), natmin(N, D1).
(17) max(X, X).
(18) max(0, X2, X) :- max(X2, X).
(19) max(X1, 0, X3) :- max(X1, X).
(20) max(succ(X1), succ(X2), succ(X)) :- max(X1, X2, X).

Figure 8. Pmin ∪ Pmax for the symbolic differentiation program P

t is a natural number represented in successor notation; it is used to detect constants. The program
Pmin ∪Pmax is listed in figure 8. For purposes of presentation, this program is actually a slight special-
isation of P min ∪ Pmax. For instance, if c = d(F ∗ N, X, N ∗ DF):−nat(N), d(F, X, DF) then

min(c) =

{
dmin(F ∗ N, X, N ∗ DF, D):−

max(D1, D2, D3), D = succ(D3), nat(N), D1 = 0, dmin(F, X, DF, D2)

Sincemax(0, D2, D3) holds iffmax(D2, D3) holds iffD2 = D3 holds, thenmin(c) can be specialised to
the form given in figure 8. The desire for brevity explains the cascaded structure of the max predicates.

6.1.2. The relationship between the depth bounds in P sdr and Pmin

This section provides a bridging result that reinterprets the completeness criteria stated in theorem 5.2
in terms of requirements on the program P min ∪ Pmax. Before the key result, corollary 6.1, is given
and shown, a supporting lemma is stated. The lemma relates the program P min ∪ Pmax to the program
P sdr ∪ P depth subject to the condition that the predicates in P depth are vacuous, that is, they do not

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 29

impose any depth constraints. The lemma formalises the intuition that the counters in the program P min

compute the absolute minimal number of times that a loop has to be traversed to yield an answer (the
proof of the lemma is straightforward and thus is not included).

Lemma 6.1. Suppose J and K are minimal models for P sdr ∪ P depth and Pmin ∪ Pmax respectively
where P depth = {pdepth(x1, . . . , xk, d) | p ∈ Π}. Let p ∈ Π then

• K |= p($t) iff J |= p($t);

• K |= pmin($t, d) iff d = succmin(L)(0) and L = {l ≥ 0 | J |= psdr($t, succl(0))})= ∅.

Corollary 6.1. Let I andK be minimal models for P and P min ∪ Pmax respectively. Suppose that for
each p ∈ Π there exist functions f1, . . . , fm ∈ Un

P → N such that ifK |= pmin($t, succk(0)) then

k ≤ f1($t), . . . , k ≤ fm($t)

Suppose P depth is defined so that if J is the minimal model of P sdr ∪ P depth then if J |= pdepth($t, d)
then d = succk(0) andmin{f1($t), . . . , fm($t)}≤k. Then it follows that if I |= p($t) then J |= p($t).

Proof:
Suppose J |= psdr($t, succj(0)) and J)|= psdr($t, succj−1(0)). By lemma 6.1, K |= pmin($t, succj(0)).
But if J |= pdepth($t, d) then d = succl(0) and j ≤ min{f1($t), . . . , fm($t)} ≤ l, hence there exists
k = l − j ≥ 0 such that J |= pdepth($t, succj+k(0)) and the result follows by theorem 5.2. 78

The significance of corollary 6.1 is that it provides a condition for completeness that is formulated in
terms of P min ∪Pmax. In particular, there is no reason why fi($t) cannot take the form ;b+

∑n
i=1 ci|ti|<

where b, ci ∈ Q and |.| is a norm. Bounds of this form can be extracted from P min∪Pmax by argument-
size analysis. The corollary also provides a specification for P depth; for completeness it is sufficient to
realise pdepth so that if pdepth($t, succk(0)) holds then k is clamped below by min{f1($t), . . . , fm($t)}.

6.1.3. Extracting depth bounds from P min

The corollary reduces the problem of inferring depth bounds for P sdr to the problem of deducing
argument-size relationships on the minimal model of P min ∪Pmax. The established approach to finding
such invariants [4, 15] involves characterising the minimal model of a CLP(R) program. The CLP(R)
program is derived from the P min ∪Pmax program in such a way that the minimal model of the former,
say L, describes the minimal model of the latter, say K. This notion of description is a formal concept:
L describes K with respect to some norm |.| if whenever K |= p($t) it follows that L |= p(|$t|) where
|〈t1, . . . , tn〉| = 〈|t1|, . . . , |tn|〉. The value of this concept is that it ensures that any invariant on L can be
safely reinterpreted as a size invariant on K. For example, if $c·$n ≤ b for all L |= p($n) then it follows
that $c·|$t| ≤ b for allK |= p($t). This is convenient because L is a simpler computational domain thanK.
If L |= p($n) then $n is merely a vector of numbers, however if K |= p($t) then $t is a vector of terms of
arbitrary depth.

The CLP(R) program has to be derived so as to ensure that L describesK. This derivation proceeds
by replacing each syntactic equation t1 = t2 in the P min∪Pmax program with a linear equation $c·$x = b
in the CLP(R) program. The equation $c·$x = b describes t1 = t2 wrt |.| iff whenever θ is a grounding
substitution for t1 = t2 such that θ(t1) = θ(t2) then $c·|θ($x)| = b.

30 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

(1) d(A, B, C) :- dmin(A, B, C, D), 1≤A, 1≤B, 1≤C, 1≤D.
(2) dmin(A, B, C, D) :- C=1, D=1, nat(A), 1≤A, 1≤B, 1≤D, 1≤C.
(3) dmin(A, B, C, D) :- A=B, C=1, D=1, 1≤A, 1≤D, 1≤B, 1≤C.
(4) dmin(A, B, C, D) :- A=1+E+F, C=1+F+G, D=1+H, nat(F), dmin(E, B, G, H),

1≤E, 1≤F, 1≤B, 1≤G, 1≤D, 1≤H, 1≤A, 1≤C.
(5) dmin(A, B, C, D) :- A=1+E+F, C=1+E+G, D=1+H, nat(E), dmin(F, B, G, H),

1≤E, 1≤F, 1≤B, 1≤G, 1≤D, 1≤H, 1≤A, 1≤C.
(6) dmin(A, B, C, D) :- A=1+E, C=1+F, D=1+G, dmin(E, B, F, G), 1≤E, . . . , 1≤C.
(7) dmin(A, B, C, D) :- A=2+B+E, C=3+B+2*E, D=1, nat(E), 1≤B, . . . , 1≤C.
(8) dmin(A, B, C, D) :- A=1+B, C=1+B, D=1, 1≤B, 1≤D, 1≤A, 1≤C.
(9) dmin(A, B, C, D) :- A=1+B, C=2+B, D=1, 1≤B, 1≤D, 1≤A, 1≤C.
(10) dmin(A, B, C, D) :- A=1+E+F, C=3+E+F+G+H, D=1+I, max(J, K, I),

dmin(E, B, G, J), dmin(F, B, H, K), 1≤E, . . . , 1≤C.
(11) dmin(A, B, C, D) :- A=1+E+F, C=5+E+3*F+G+H, D=1+I, max(J, K, I),

dmin(E, B, G, J), dmin(F, B, H, K), 1≤E, . . . , 1≤C.
(12) dmin(A, B, C, D) :- A=1+E+F, C=1+G+H, D=1+I, max(J, K, I),

dmin(E, B, G, J), dmin(F, B, H, K), 1≤E, . . . , 1≤C.

(14) nat(A) :- natmin(B, C), 1≤A, 1≤B, 1≤C.
(15) natmin(A, B) :- A=1, B=1, 1≤B, 1≤A.
(16) natmin(A, B) :- A=1+C, B=1+D, natmin(C, D), 1≤C, . . . , 1≤A.

(17) max(A, B) :- A=B, 1≤A, 1≤B.
(18) max(A, B, C) :- A=1, max(B, C), 1≤B, 1≤C, 1≤A.
(19) max(A, B, C) :- B=1, max(A, C), 1≤A, 1≤C, 1≤B.
(20) max(A, B, C) :- A=1+D, B=1+E, C=1+F, max(D, E, F), 1≤D, . . . , 1≤C.

Figure 9. Term-size description of Pmin ∪ Pmax

Example 6.2. The linear equation C = 3 + X + 2 ∗ N describes C = succ(N) ∗ X#N wrt the term size
norm |.|term-size. To see this, let θ be a grounding substitution of the syntactic equation. Then θ(C) =
succ(θ(N))∗θ(X)#θ(N), hence |θ(C)|term-size = |succ(θ(N))∗θ(X)#θ(N)|term-size = 3+|θ(X)|term-size+
2|θ(N)|term-size. The linear equation expresses the relative sizes of the any ground instance of the variables
C, X and N that satisfies the syntactic equation.

The concept of description can be lifted from equations to clauses by augmenting the concept with
normalisation, that is, the process of replacing of terms that arise in head and body atom arguments
with fresh variables. Thus a clause c describes p($t):−p1($t1) . . . , pn($tn) wrt a norm |.| iff c takes the
form p($x):−e, e1, . . . , en, p1($t1) . . . , pn($tn) where $x and $xi are vectors of fresh variables and the linear
equations e and ei describe the syntactic equations $x = $t and $xi = $ti wrt the norm |.|. A program P1

describes another P2 wrt a norm |.| iff for each clause c2 ∈ P2 there exists a clause c1 ∈ P1 such that c1

describes c2 wrt the norm |.|.

Example 6.3. The program listed in figure 9 describes the program P min∪Pmax wrt the term-size norm

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 31

|.|term-size. Notice that each clause c is augmented with inequalities 1 ≤ y1, . . . , 1 ≤ ym that assert the
positivity of the variables y1, . . . , ym that occur in the clause. These inequalities do not alter the meaning
of the program because if θ is a grounding substitution for c then 1 ≤ |θ(yi)|term-size for each variable
yi. The inequalities are traditionally included to make the program less sensitive to the precision loss
that can arise in fixpoint computation. Note, too, that clause 12 in figure 9 describes clause 12 and 13
in figure 8. The clauses differ only in the names of functor symbols and term-size description does not
preserve information about the particular functors that occur in syntactic equations.

Let EqnX denote the set of linear equalities and inequalities defined over a finite set of variablesX .
Each element of EqnX takes the form of either $c1 ·$y = b1 or $c2 ·$y ≤ b2 where |$ci| = |$y|, bi ∈ Z and the
elements of $ci and $y are drawn from Z and X respectively. The set of integer solutions for $c1 ·$y = b1,
$c2 ·$y ≤ b2 and any linear system E ⊆ EqnX are formally defined as follows:

Definition 6.3. Suppose $x = 〈x1, . . . , xn〉 and $y = 〈y1, . . . , ym〉. Then

soln!x($c·$y ≤ b) =

{
〈r1, . . . , rn〉 ∈ Zn

∣∣∣∣∣
$c·〈r′1, . . . , r′m〉 ≤ b ∧
ri = r′j for all xi = yj

}

The set soln!x($c·$y = b) is defined analogously and soln!x(E) = ∩e∈Esoln!x(e).

Two linear systemsE1, E2 ⊆ EqnX are partially ordered by the subset relation on their solution sets,
that is, E1 |= E2 iff soln!x(E1) ⊆ soln!x(E2) where var($x) = X . One subtlety of using (finite) linear
systems as a computational domain is that infinite ascending chains can arise. Consider, for example,
the sequence of linear systems E1, E2 . . . where Ei = {〈1〉.〈y〉 = 0, 〈−1〉.〈x〉 ≤ 0, 〈1〉.〈x〉 ≤ i}.
Each Ei is a finite set that defines a line i units long that is rooted at the origin and runs parallel to the
x axis. This sequence forms a chain since Ei |= Ei+1 and Ei+1)|= Ei (each Ei+1 is strictly larger
than its predecessor). A monotonic operator over a domain that admits only finite chains is guaranteed
to reach a fixpoint in a finite number of steps and thus terminate. Termination of such an operator,
however, may be compromised if the domain contains infinite chains. In the case of EqnX , the simplest
way to enforce converge is to work within a sub-domain that contains only finite chains. One such
sub-domain is constructed from finite sets of inequalities drawn from MonoX = {x ≤ 0, 0 ≤ x, x ≤
y, x + y ≤ z, x ≤ y + z | x, y, z ∈ X}. MonoX is so named because it resembles the monotonic
domain that is used for observing termination in Datalog programs [7]. If E1, E2 ⊆ EqnX then E1

and E2 can both be described using MonoY by applying the operation E1 ∨Y E2 that is defined by
E1 ∨Y E2 = {e ∈ MonoY |E1 |= {e} ∧ E2 |= {e}}. (This operation that conservatively describes two
abstractions with another is called merge [18]). The system E1 ∨Y E2 is finite if Y is finite.

To capture linear invariants between the arguments of predicates, it is necessary to lift the |= ordering
to atoms paired with linear systems as follows 〈p($x1), E1〉 |= 〈p($x2), E2〉 iff soln!x1(E1) ⊆ soln!x2(E2).
Observe that two pairs 〈p($x1), E1〉 and 〈p($x2), E2〉 that differ syntactically may express the same invari-
ants, that is, 〈p($x1), E1〉 |= 〈p($x2), E2〉 and 〈p($x2), E2〉 |= 〈p($x1), E1〉. To express invariants between
argument positions it is thus necessary to construct sets of syntactically different but equivalence pairs.
(This is more than an aesthetic predilection since this construction simplifies the way formal arguments
are matched against actual arguments.) Formally, equivalence is defined by 〈p($x1), E1〉 ≡ 〈p($x2), E2〉
iff 〈p($x1), E1〉 |= 〈p($x2), E2〉 and 〈p($x2), E2〉 |= 〈p($x1), E1〉 which, in turn, induces a notion of equiv-
alence class. To simultaneously record the invariants that hold on different predicates, the ordering is

32 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

3 ! 8 ! 9 !15 !16
"
14#7#2#17#19

"
18 !20 ! 4,5,6,10,11,12 ! 1

! "# $$
! "# $#

! "# $#

Figure 10. The SCCs of Pmin ∪ Pmax (and its term-size description)

further extended to sets of equivalence classes that contain exactly one class [〈p($x), E〉]≡ for each p ∈ Π
by defining I1 |= I2 iff 〈p($x), E1〉 |= 〈p($x), E2〉 whenever [〈p($x), E1〉]≡ ∈ I1 and [〈p($x), E2〉]≡ ∈ I2.
Infinite chains can be avoided under this ordering by ensuring that the sets only contain equivalence
classes of the form [〈p($x), E〉]≡ where E ⊆ Monovar(!x). Under this assumption, the sets of equivalence
classes constitute a finite lattice; finiteness follows because Π is finite and each p ∈ Π has finite arity.
The bottom element of this structure is given by ⊥ = {[〈p($x), false〉]≡ | p ∈ Π} where false denotes
any unsatisfiable system, that is, soln!x(false) = ∅. Sets of equivalence classes provide a computation
domain for the following operator that is designed to discover invariants in CLP(R) programs:

Definition 6.4.

TCLP
c (I) =





[〈p($x), F ∨var(!x) F ′〉]≡

∣∣∣∣∣∣∣

c = p($x):−E, p1($x1), . . . , pn($xn) ∧
[〈pi($xi), Ei〉]≡ ∈ I ∧ [〈p($x), F 〉]≡ ∈ I ∧
F ′ = E ∪ (∪n

i=1Ei)






The operator is defined for individual CLP(R) clauses of the form p($x):−E, p1($x1), . . . , pn($xn) where
E is any finite linear system. The ∨var(!x) operation ensures that any computed equivalence class has
a representative member [〈p($x), E〉] satisfying the requirement E ⊆ Monovar(!x). This operator can
be lifted to the level of a program P = {c1, . . . , cn} by defining TCLP

P (I) = In+1 where I1 = I
and Ii+1 = TCLP

ci
(Ii). Since TCLP

P is monotonic it follows that the least fixpoint lfp(T CLP
P) exists

and since TCLP
P is continuous it follows that lfp(T CLP

P) can be computed as the limit of the sequence
Ik+1 = TCLP

P (Ik) where I1 = ⊥. The following proposition explains the way in which the least fixpoint
faithfully describes the minimal model of the original program. The proof is not given since it can be
constructed straightforwardly by adapting proofs that have been reported elsewhere [3, 18].

Proposition 6.1. Suppose a CLP(R) program P1 describes a program P2 wrt a norm |.|. If K is the
minimal model of P2 andK |= p($t) then [〈p($x), E〉]≡ ∈ lfp(TCLP

P1
) and |$t| ∈ soln!x(E).

The way TCLP
P in which is formulated in terms of T CLP

ci
provides a route towards efficient fixpoint

computation. Observe that if a set of clausesP = {c1, . . . , cn} is ordered so that each c1, . . . , ck−1 do not
depend on ck, that is, c1)/ ck, . . . , ck−1)/ ck, then the fixpoint calculation reduces to Ik+1 = TCLP

ck
(Ik)

where I1 = ⊥. More generally, P can be partitioned into a set of SCCs {S1, . . . , Sm}. If the set is
ordered so that ck−1)/ ck for all ck ∈ Sk and for all ck−1 ∈ ∪k−1

i=1 Si then lfp(TCLP
P) = Jm+1 where

Jk+1 is a limit calculated for each individual Sk and J1 = ⊥. The limit Jk+1 is, in turn, defined by
Ii+1 = TCLP

Sk
(Ii) where I1 = Jk. Moreover, if Sk = {ck} and ck)/ ck then Jk+1 = TCLP

ck
(Jk).

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 33

k p(!x) F ′ (truncated) F ∨var(!x) F ′

3 dmin(A, B, C, D) A≤B+D, B≤A, C≤A, A≤B, D≤C, C≤D A≤B+D, B≤A, C≤A, A≤B, D≤C, C≤D
8 dmin(A, B, C, D) A≤C+D, B+D≤A, A≤B+D, B+D≤C, C≤B+D, D≤B A≤B+D, B≤A, C≤A, D≤B, D≤C
9 dmin(A, B, C, D) A≤C+D, B+D≤A, A≤B+D, A+D≤C, C≤A+D, C≤A+B A≤B+D, C≤A+D, B≤A, D≤B, D≤C
15 natmin(A, B) 0≤A, 0≤B, A≤B, B≤A 0≤A, 0≤B, A≤B, B≤A
16 natmin(A, B) 0≤A, 0≤B, A≤B, B≤A 0≤A, 0≤B, A≤B, B≤A
16 natmin(A, B) 0≤A, 0≤B, A≤B, B≤A 0≤A, 0≤B, A≤B, B≤A
14 nat(A) 0≤A 0≤A
7 dmin(A, B, C, D) B+D≤A, A+D≤C, D≤B, 0≤D A≤B+C, B≤A, D≤B, D≤C, 0≤D
2 dmin(A, B, C, D) C≤A, C≤B, D≤C, C≤D, 0≤D D≤A, D≤B, D≤C, 0≤D
17 max(A, B) 0≤A, 0≤B, A≤B, B≤A 0≤A, 0≤B, A≤B, B≤A
19 max(A, B, C) A≤B+C, B≤A, C≤A, A≤C A≤B+C, B≤A, C≤A, A≤C
18 max(A, B, C) B≤A+C, A≤B, C≤B, B≤C C≤A+B, A≤C, B≤C
20 max(A, B, C) C≤A+B, A≤C, B≤C C≤A+B, A≤C, B≤C
20 max(A, B, C) C≤A+B, A≤C, B≤C C≤A+B, A≤C, B≤C
4 dmin(A, B, C, D) D≤A, D≤C, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
5 dmin(A, B, C, D) D≤A, D≤C, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
6 dmin(A, B, C, D) D≤A, D≤C, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
10 dmin(A, B, C, D) A+D≤C, D≤A, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
11 dmin(A, B, C, D) A+D≤C, D≤A, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
12 dmin(A, B, C, D) D≤A, D≤C, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
4 dmin(A, B, C, D) D≤A, D≤C, 0≤D, 0≤B D≤A, D≤C, 0≤D, 0≤B
1 d(A, B, C) 0≤A, 0≤B, 0≤C 0≤A, 0≤B, 0≤C

Figure 11. Fixpoint computation for the term-size description of Pmin ∪ Pmax

Example 6.4. Figure 10 presents the 14 SCCs of the program P min ∪ Pmax (and its description). The
SCCs are {3}, {8}, . . . , {4,5,6,10,11,12}, {1}. There are just 3 non-trivial SCCs: one the contains
clause 16, another that contains clause 20 and another that contains clauses 4, 5, 6, 10, 11 and 12. The
forward arrows in figure 10 denote a total ordering on the Sk such that ck−1)/ ck for all ck ∈ Sk and for
all ck−1 ∈ ∪k−1

i=1 Si. The back arrows indicate where iteration is required in the fixpoint calculation.

Example 6.5. Figure 11 presents the fixpoint calculation for the description of P min ∪ Pmax given in
figure 9. Iteration commences with I1 = ⊥. The first column specifies the clause number k used to
calculate Ii+1 = TCLP

ck
(Ii). The second and third columns give the atom p($x) and the linear system that

is F ′ obtained by evaluating the clause ck with Ii. For brevity only those inequalities and equalities of
F ′ that relate to $x are listed (the truncated version of F ′ formally corresponds to the projection of F ′

onto $x). The third column gives F ∨var(!x) F ′. The horizontal bars delineate the start and finish of the
iterative sub-calculations for the 3 SCCs. Note that to check stability for the clauses {4,5,6,10,11,12}, it
is not necessary reevaluate the entire SCC. If the clauses are visited in the same order, it is sufficient to
observe that a clause does not alter the iterate on reevaluation. Observe theD ≤ A andD ≤ C invariants
inferred for dmin and that B ≤ A is inferred for natmin.

34 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

Example 6.6. Whether an invariant can be discovered depends on its particular syntactic form. This
is illustrated by the quicksort and mergesort programs listed in figures 1 and 2. It is only when the
inequalities ofMonoX are enriched to include constants of 1, 0 or -1 that the following can be inferred:

〈qsortmin(A, B, C), {1 ≤ C, A ≤ B ≤ A, C ≤ A, C ≤ B}〉
〈partmin(A, B, C, D, E), {1 + A ≤ C + D, E ≤ A, 1 ≤ D, 1 ≤ C, 1 ≤ E, 1 ≤ B}〉
〈appendmin(A, B, C, D), {D ≤ A, D ≤ C, 1 + C ≤ A + B ≤ 1 + C, 1 ≤ B, 1 ≤ D}〉

〈msortmin(A, B, C), {1 ≤ C, A ≤ B, B ≤ A, C ≤ A}〉
〈mergemin(A, B, C, D), {1 ≤ A, 1 ≤ B, 1 ≤ D, D ≤ C, 1 + C ≤ A + B ≤ 1 + C}〉
〈splitmin(A, B, C, D), {1 ≤ C, 1 ≤ D, D ≤ B, D ≤ 1 + C, B + C ≤ 1 + A ≤ B + C}〉

Richer classes of invariant could be inferred by augmenting or replacing MonoX with systems of
inequalities with arbitrary coefficients that involve two variables [38], or arbitrary affine equations [15]
or arbitrary systems of linear inequations [4]. In fact there is no reason why the depth bounds have to
be linear and another route towards automation is offered by recent work on inferring non-linear loop
invariants [36]. In this context, an invariant is a conjunction of polynomial equalities: the values that
variables can take at a program point is described by the roots of polynomials over those variables. For
example, the abstraction 〈x + y, y(y + 1)〉 represents those sets of points in 2-dimensional space that
satisfy both x+y = 0 and y(y+1) = 0, namely, the points 〈0, 0〉 and 〈1,−1〉. The elegance of the scheme
is that merge coincides with the intersection of polynomial ideals. Since loops can entail an unbounded
number of merges, the ideals occurring within loops can contain polynomials of arbitrary degree. A
(widening) operator is thus introduced to enforce converge. An implementation of the method suggests
that interesting invariants can be calculated in an automatic way for non-trivial programs. Moreover,
there seems no reason why this method cannot be adapted to infer non-linear argument size relationships.

The invariants given above for the differentiation, quicksort and mergesort programs were derived
automatically. The main components of this system are a polyhedral library (800 LOC) that implements
the operations on linear systems; an abstracter unit (800 LOC) that computes a description of a program
wrt either |.|term-size or |.|list-length; and a meta-interpreter (150 LOC) that calculates the fixpoint. The
polyhedral library uses the CLP(Q) library of SICStus 3 to decide E |= {$c·$x ≤ b} where E is a linear
system. This decision procedure is required to detect stability and also compute E1 ∨Y E2. The CLP(Q)
library is useful since E |= {$c·$x ≤ b} holds iff E ∪ {(−$c)·$x ≤ −(b + 1)} is unsatisfiable (whenever $c,
$x and b are integral). For further implementation details, the reader is refereed to the sources that can be
downloaded from the homepage of the first author.

6.1.4. Synthesising P depth from depth bounds

Not all the invariants inferred by the T CLP
P operator yield depth bounds: some may not involve the depth

bound and others may not bound it from above. To illustrate exactly how P depth can be constructed from
the inferred invariants suppose [〈pmin($x), E〉]≡ ∈ lfp(TCLP

P) where P describes P min ∪ Pmax wrt the
term size norm |.|term-size and consider $c·$y ≤ b ∈ E. Without loss of generality it is sufficient to consider
$c′ ·$x ≤ b where soln!x($c′ ·$x ≤ b) = soln!x($c ·$y ≤ b). The invariant $c′ ·$x ≤ b provides an upper bound
on the depth iff 0 < c′n where n is the arity of pmin. It then follows that xn ≤ (b −

∑n−1
i)=1 c′ixi)/c′n.

By proposition 6.1 it follows that if K is the minimal model of P min ∪ Pmax and K |= p($t) then

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 35

d depth(F, X, R, D) :- term size(F, D1, D), term size(R, D2, D), d aux(D1, D2, D).
:- block d aux(-, -, ?).
d aux(D1, D2, D) :- nonvar(D1) -> D is D1 - 1; D is D2 - 1.
nat depth(N, D) :- term size(N, D, D).
term size(Term, Size, D) :- term size(Term, 0, Size, D).
:- block term size(-, ?, ?, -), term size(?, -, ?, -).
term size(Term, Acc, Size, D) :-

nonvar(D) -> true; Term =.. [| Args], Acc1 is Acc + 1, term sizes(Args, Acc1, Size, D).
term sizes([], Size, Size,).
term sizes([Arg | Args], Acc, Size, D) :-

term size(Arg, Acc, NewAcc, D), term sizes(Args, NewAcc, Size, D).
Figure 12. Term size predicates

|tn|term-size ≤ (b −
∑n−1

i)=1 c′i|xi|term-size)/c′n. By the construction of P min ∪ Pmax, tk = succd(0), hence
|succd(0)|term-size = 1+d and therefore d ≤ f(t1, . . . , tn−1) = ;(b−

∑n−1
i)=1 c′i|ti|term-size)/c′n<−1 which

gives a function f compliant with the completeness requirements of corollary 6.1.

Example 6.7. Returning to the differentiation program, from figure 11 consider the pairs 〈natmin($x), E1〉
and 〈dmin($y), E2〉 where $x = 〈A, B〉, $y = 〈A, B, C, D〉 and

E1 =

{
〈−1, 0〉 ·$x ≤ 0, 〈0,−1〉 ·$x ≤ 0,

〈1,−1〉 ·$x ≤ 0, 〈−1, 1〉 ·$x ≤ 0

}
E2 =

{
〈−1, 0, 0, 1〉 ·$y ≤ 0, 〈0, 0,−1, 1〉 ·$y ≤ 0,

〈0, 0, 0,−1〉 ·$y ≤ 0, 〈0,−1, 0, 0〉 ·$y ≤ 0

}

For E1 the last inequality gives f(t) = ;(0− (−1|t|term-size))/1<− 1 = |t|term-size− 1 and for E2 the first
and second inequalities yield f1(t1, t2, t2) = |t1|term-size − 1 and f2(t1, t2, t3) = |t3|term-size − 1.

The paradox of corollary 6.1 is that it specifies a sufficient condition for completeness on P depth in
terms of its minimal model (which is variable-free) and functions f1, . . . , fm that operate over tuples of
terms drawn from the Herbrand universe (which are also variable-free). However, this does not preclude
a predicate pdepth($t, d) instantiating d before $t is entirely ground. This is because it is sufficient to delay
pdepth untilmin{f1($t), . . . , fm($t)} is bounded on the set of variable-free instances of $t. By corollary 6.1
it only necessary to ensuremin{f1($t), . . . , fm($t)} ≤ d, hence d can be instantiated to this bound.

Example 6.8. In the case of dmin(t1, t2, t3), the function min{f1(t1, t2, t3), f2(t1, t2, t3)} is bounded
on the set of variable-free instances of 〈t1, t2, t3〉 when either t1 or t3 are ground. Figure 12 lists code
for ddepth based on this tactic. In the case of natdepth, although f(t) = |t|term-size − 1, the defini-
tion of the predicate is simplified by assigning d = |t|term-size. With these predicates thus defined,
it is possible to invoke d in reverse mode to perform symbolic integration. For example, the query
d(F, x, (−(sin(x)) ∗ sin(x) − cos(x) ∗ cos(x))/(sin(x) ∗ sin(x))) will instantiate F to cos(x)/sin(x).

36 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

msort(L, S) :- msort depth(L, S, D), msort sdr(L, S, D).
msort depth(L, S, D) :- list length(L, D1, D), list length(S, D2, D), msort aux(D1, D2, D).
:- block msort aux(-, -, ?).
msort aux(D1, D2, D) :- D1 = D2, D = D1.
:- block msort sdr(?, ?, -).
msort sdr([], [],).
msort sdr([X], [X],).
msort sdr([X, Y | Xs], S, D) :- 1 ≤ D, D1 is D - 1,

split sdr(Xs, L1, L2, D),
msort sdr([X|L1], S1, D1), msort sdr([Y|L2], S2, D1), merge sdr(S1, S2, S, D).

%:- block split sdr(?, ?, ?, -).
split sdr([], [], [],).
split sdr([X | L], [X | L1], L2, D) :- 1 ≤ D, D1 is D - 1, split sdr(L, L2, L1, D1).
%:- block merge sdr(?, ?, ?, -).
merge sdr([], Ys, Ys,).
merge sdr(Xs, [], Xs,).
merge sdr([X|Xs], [Y|Ys], [X|Zs], D) :- 1 ≤ D, D1 is D - 1,

leq(X, Y), merge sdr(Xs, [Y|Ys], Zs, D1).
merge sdr([X|Xs], [Y|Ys], [Y|Zs], D) :- 1 ≤ D, D1 is D - 1,

gt(X, Y), merge sdr([X|Xs], Ys, Zs, D1).
Figure 13. Optimised version of the control generation transformation for the mergesort program

6.2. Efficiency

The essential idea behind the transformation is to ensure termination by delaying possibly non-terminating
goals until certain arguments become rigid. This section discusses the efficiency of this approach to con-
trol generation. Relative to the original program, the transformation induces additional overheads in
terms of synchronisation, depth checking and rigidity detection. We consider each of these overheads
in turn. Firstly, suspending and resuming a goal controlled via a block declaration is a constant time
operation in SICStus; indeed this operation is directly supported at the level of the abstract machine [10].
Secondly, the test against one and decrement operations both translate to single abstract machine instruc-
tions in SICStus 3 [10]. Thirdly, although the transformation introduces rigidity checks that are realised
with block declarations, it should be noted that block declarations, or more expensive devices such as a
synchronising meta-call [37], are likely to be used in any ad hoc attempt at specifying the control.

If efficiency is really a critical issue, then it should be noted that the use of depth bounds – which are
merely required to be upper bounds – offers scope for performance tuning. Returning to the mergesort
example, recall from section 3 that a depth of l where l is the length of the first and second arguments
of msort is a convenient upper bound on the depth since it avoids the calculation of a transcendental
function. However, recall also that split is depth bounded by the length of its first argument andmerge is
depth bounded by the sum of the length of its first and second arguments. It therefore follows that l also
bounds the depth of split and merge as well as that of msort. This observation enables rigidity checks

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 37

within split and merge to be eliminated and leads to the program given in figure 13. Furthermore, the
block declarations for split sdr andmerge sdr will always be satisfied and therefore can be removed (for
clarity they have been commented out). The optimised version of the program only performs rigidity
checking on the initial input; following the call to msort aux the program runs without synchronisation
checks and the only overhead is the decrementation and depth testing. The net result is that, with SICStus
3.8.5 on a 1GHz, 256MByte PC, the optimised program averages 75 msecs to sort 2048 random numbers.
The original program given in figure 2 averages 128 msecs on the same data set, whereas the unoptimised
transformed version of figure 4 takes 166 msecs.

Other sample programs are available from the homepage of the first author. The code qsort naive rep-
resents an attempt at making the classic quicksort algorithm reversible. This program averages 618 msecs
to sort 1024 random numbers but, alas, only produces one solution in reverse mode before looping. The
code qsort control generated by a naı̈ve application of the transformation averages 838 msecs on random
data, but is reversible. In reverse mode, it enumerates combinations in a similar fashion to mergesort,
when its second argument is instantiated to a list of ordered numbers.

The program nqueens control was obtained by a straightforward application of transformation to
the program nqueens naive. The nqueens naive program encodes the n-queens problem but is actually
buggy because its perm predicate – which is intended to encode a permutation generator – does not
universally terminate for some queries.

perm([], []).
perm([X | Xs], P) :- select(P, X, Rs), perm(Xs, Rs).

select([N | Ns], N, Ns).
select([N | Ns], S, [N | Rs]) :- select(Ns, S, Rs).

Specifically, perm([1, 2, 3], P) only produces one solution P = [1, 2, 3] before looping. However, the
generated program nqueens control terminates and takes 92 secs to count the number of solutions for
the n = 10 board instance. The code is guaranteed to terminate no matter what the ordering of the
original body goals, and in particular the perm(Range, Soln) and safe(Soln) goals in the clause:

nqueens(N, Soln):-
length(Range, N), length(Soln, N), range(Range, 1), perm(Range, Soln), safe(Soln).

can be reordered without compromising termination. The goal safe(Soln) checks that the board configu-
ration represented by the list Soln is safe whereas range(Range, 1) instantiates elements of the list Range
to consecutive numbers starting at 1. Since SICStus implements left-to-right scheduling by default, with
the proviso that suspended goals are invoked as soon as possible, this reordering introduces coroutining
between the goals safe(Soln) and perm(Range, Soln). In effect, bindings to the elements of the list Soln
are incrementally generated by perm(Range, Soln). As soon as Soln contains two elements, representing
two queens that can take one another, then Soln is an unsafe board configurations; it is unsafe no matter
how the elements of Soln are instantiated. By ordering safe(Soln) before perm(Range, Soln), the goal
safe(Soln) will check the safety of a new queen, relative to the existing queens, as soon as the queen is
added to the board. When the new queen is verified to be safe with respect to the existing queens, control
switches back from safe(Soln) to perm(Range, Soln) to add the next queen. This form of coroutining
improves search since unsafe configurations can be detected without necessarily adding all the queens to

38 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

the board. In fact, coroutining reduces the running time from 83 secs to 681 msecs for n = 10. It should
be noted that transformation does not choose a propitious goal ordering: it merely introduces coroutining
capability. In fact, since the transformation operates on pure logic programs, it must ignore any control
constructs that already exist in the program. For the purposes of a fair comparison, block declarations
were added to nqueens naive to mimic this coroutining behaviour. The termination problem was finessed
by observing that perm(P, [1, 2, 3]) does correctly enumerate permutations, hence the arguments in the
call perm(Range, Soln) were reversed to enforce termination. The resulting program requires 691 msecs
for n = 10, which is close to the speed of the transformed code. Finally, notice that the transformation
preserves goal ordering, hence if a tester precedes a generator in the original program, then coroutining
naturally arises in the transformed program. For example, in the case of a sort defined thus:

sort(X,Y) :- ordered(Y), permutation(X,Y).

the transformed programwill also coroutine, though the additional overheads will incur a 45% slowdown.
Experimental work can never be conclusive, but these results do suggest that the transformation

is not prohibitively expensive. Moreover, the resulting code is flexible. Since the transformation is
underpinned by semi-delay recurrency (rather than delay recurrency [27]) goals can be reordered to
introduce coroutining into the transformed code and thereby improve efficiency. The flexibility offered
by the use of upper bounds allows the performance to be tuned by choosing judicious upper bounds that
eliminate rigidity checks. However, even without these refinements, the transformation produces code
that is surprisingly efficient considering its generality.

7. Conclusions

The aim of control generation is to automatically derive a computation rule for a program that is reason-
ably efficient but does not compromise program correctness. The problem has been effectively tackled
by transforming a program into a semantically equivalent one, introducing safe delay declarations and
defining a flexible computation rule, which ensures that all goals for the transformed program terminate.
Furthermore, it has been shown that the answers computed by the transformed program are complete
with respect to the declarative semantics. This is significant.

Beyond the theoretical aspects of the work, its practicality has been demonstrated. In particular, it
has been shown how transformed programs can be straightforwardly implemented in a standard logic
programming system, and how such a program can be optimised to reduce the number of rigidity checks.
Furthermore, with the proposed transformation, the termination problems caused by speculative output
bindings are eliminated without the use of a local computation rule or other costly overhead. Moreover,
capability for coroutining can contribute to the efficiency of the generated code.

Acknowledgements We would like to thank Elena Marchiori for clarifying details of her work and En-
ric Rodrı́guez-Carbonell for checking our account of his work. Thanks are also due to Samir Genaim for
providing inorder, Axel Simon for help with simplex, and to the referees for their insightful comments.

Andy King, Jonathan C. Martin / Control Generation by Program Transformation 39

References
[1] Apt, K. R., Pedreschi, D.: Reasoning about Termination of Pure Prolog Programs, Information and Compu-

tation, 106(1), 1993, 109–157.

[2] Apt, K. R., Pedreschi, D.: Modular Termination Proofs for Logic and Pure Prolog programs, Advances in
Logic Programming Theory (G. Levi, Ed.), Oxford University Press, 1994, Also available as technical report
CS-R9316 from Centrum voor Wiskunde en Informatica, CWI, Amesterdam.

[3] Barbuti, R., Giacobazzi, R., Levi, G.: A General Framework for Semantics-Based Bottom-Up Abstract In-
terpretation of Logic Programs, ACM Transations on Programming Languages and Systems, 15(1), 1993,
133–181.

[4] Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R), Logic Programming Synthesis
and Transformation (J. P. Gallagher, Ed.), 1207, Springer-Verlag, 1996.

[5] Bezem, M.: Strong Termination of Logic Programs, The Journal of Logic Programming, 15(1&2), 1993,
79–97.

[6] Bossi, A., Etalle, S., Rossi, S., J.-G. Smaus: Semantics and Termination of Simply-Moded Logic Programs
with Dynamic Scheduling, ACM Transactions on Computational Logic, 15(3), 2004, 470–507.

[7] Brodsky, A., Sagiv, Y.: Inference of Monotonicity Constraints in Datalog Programs, Principles of Database
Systems, ACM Press, 1989.

[8] Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling Control, The Journal of Logic Programming,
6(1&2), 1989, 135–162.

[9] Carlsson, M.: Freeze, Indexing and Other Implementation Issues in the WAM, International Conference on
Logic Programming (J.-L. Lassez, Ed.), MIT Press, 1987.

[10] Carlsson, M.: Personal communications with Mats Carlsson on the SICStus abstract machine, 2002–2004.

[11] Cavedon, L.: Continuity, consistency, and completeness properties of logic programs, International Confer-
ence on Logic Programming (G. Levi, M. Martelli, Eds.), MIT Press, 1989.

[12] Clark, K. L., McCabe, F. G., Gregory, S.: IC-Prolog Language Features, Logic Programming (K. L. Clark,
S.-Å. Tärnlund, Eds.), Academic Press, 1982.

[13] Dahl, V.: Two Solutions for the Negation Problem, Workshop on Logic Programming (S.-Å. Tärnlund, Ed.),
1980.

[14] De Schreye, D., Decorte, S.: Termination of Logic Programs: The Never-Ending Story, The Journal of Logic
Programming, 19&20, 1994, 199–260.

[15] De Schreye, D., Verschaetse, K.: Deriving Linear Size Relations for Logic Programs by Abstract Interpreta-
tion, New Generation Computing, 13(2), 1995, 117–154.

[16] Deransart, P., Ed-Dbali, A., Cervoni, L.: Prolog: The Standard Reference Manual, Springer-Verlag, 1996.

[17] Genaim, S., King, A.: Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling,
Technical Report 20-04, Computing Laboratory, 2004, See http://www.cs.kent.ac.uk/pubs/2004/2008.

[18] Giacobazzi, R., Debray, S. K., Levi, G.: Generalized Semantics and Abstract Interpretation for Constraint
Logic Programs, The Journal of Logic Programming, 3(25), 1995, 191–248.

[19] Hill, P. M., Lloyd, J. W.: The Gödel Programming Language, MIT Press, 1994.

[20] Hoarau, S., Mesnard, F.: Inferring and Compiling Termination for Constraint Logic Programs, Logic-based
Program Synthesis and Transformation (P. Flener, Ed.), 1559, Springer-Verlag, 1998.

40 Andy King, Jonathan C. Martin / Control Generation by Program Transformation

[21] Jaffar, J., Michaylov, S., Stuckey, P. J., Yap, R. H. C.: The CLP(R) Language and System, ACM Transactions
on Programming Languages and Systems, 14(3), 1992, 339–395.

[22] Kowalski, R. A.: Algorithm = Logic + Control, Communications of the ACM, 22(7), 1979, 424–436.
[23] Lloyd, J.: Foundations of Logic Programming, Springer-Verlag, 1987.
[24] Lüttringhaus-Kappel, S.: Control Generation for Logic Programs, International Conference on Logic Pro-

gramming (D. S. Warren, Ed.), The MIT Press, 1993.
[25] Marchiori, E.: Personal communication between Jonathan Martin and Elena Marchiori, 1996.
[26] Marchiori, E., Teusink, F.: Termination of Logic Programs with Delay Declarations, International Logic

Programming Symposium (J. W. Lloyd, Ed.), MIT Press, 1995.
[27] Marchiori, E., Teusink, F.: Termination of Logic Programs with Delay Declarations, The Journal of Logic

Programming, 39(1–3), 1999, 95–124.
[28] Martin, J. C., King, A.: Generating Efficient, Terminating Logic Programs, Theory and Practice of Software

Development (M. Bidoit, M. Dauchet, Eds.), 1214, Springer-Verlag, 1997.
[29] Martin, J. C., King, A.: On the Inference of Natural Level Mappings, Program Development in Computa-

tional Logic (M. Bruynooghe, K.-K. Lau, Eds.), 3049, Springer-Verlag, 2004.
[30] Mesnard, F.: Towards Automatic Control for CLP(X) Programs, Logic Programming Synthesis and Trans-

formation (M. Proietti, Ed.), 1048, Springer-Verlag, 1995.
[31] Mesnard, F., Ruggieri, S.: On Proving Left Termination of Constraint Logic Programs, ACM Transactions

on Computational Logic, 4(2), 2003, 207–259.
[32] Naish, L.: Negation and Control in Logic Programs, Springer-Verlag, 1986.
[33] Naish, L.: Coroutining and the Construction of Terminating Logic Programs, Australian Computer Science

Communications, 15(1), 1993, 181–190.
[34] Pedreschi, D., Ruggieri, S.: Bounded Nondeterminism of Logic Programs, International Conference on

Logic Programming (D. De Schreye, Ed.), MIT Press, 1999.
[35] Pedreschi, D., Ruggieri, S., J.-G. Smaus: Classes of Terminating Logic Programs, Theory and Practice of

Logic Programming, 2(3), 2002, 369–418.
[36] Rodrı́guez-Carbonell, E., Kapur, D.: An Abstract Interpretation Approach for Automatic Generation of Poly-

nomial Invariants, Static Analysis Symposium (R. Giacobazzi, Ed.), 3148, Springer-Verlag, 2004.
[37] SICS: SICStus Prolog User’s Manual, 2005, See http://www.sics.se/sicstus.
[38] Simon, A., King, A., Howe, J. M.: Two Variables per Linear Inequality as an Abstract Domain, Logic Based

Program Synthesis and Tranformation (M. Leuschel, Ed.), 2664, Springer-Verlag, 2003.
[39] Takeuchi, A., Furukawa, K.: Bounded Buffer Communication in Concurrent Prolog, New Generation Com-

puting, 3(2), 1985, 145–155.
[40] van Emden, M. H., de Lucena Filho, G. J.: Predicate Logic as a Language for Parallel Programming, Logic

Programming (K. L. Clark, S.-Å. Tärnlund, Eds.), Academic Press, 1982.
[41] Van Leeuwen, J., Ed.: Handbook of Theoretical Computer Science: Volume B, Elsevier, 1990.
[42] Verschaetse, K., De Schreye, D., Bruynooghe, M.: Generation and Compilation of Efficient Computation

Rules, International Conference on Logic Programming (D. H. D. Warren, P. Szeredi, Eds.), MIT Press,
1990.

[43] Vieille, L.: Recursive Query Processing: The Power of Logic, Theoretical Computer Science, 69(1), 1989,
1–53.

