
Brauer, Jorg and King, Andy (2010) Automatic Abstraction for Intervals
using Boolean Formulae. In: Cousot, Radhia and Martel, Matthieu, eds.
Static Analysis Symposium. Lecture Notes in Computer Science, 6337
. Springer-Verlag, pp. 182-196. ISBN 978-3-642-15768-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/30633/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.cs.kent.ac.uk/pubs/2010/3015

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/30633/
http://www.cs.kent.ac.uk/pubs/2010/3015
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Automatic Abstraction for Intervals using
Boolean Formulae

Jörg Brauer1 and Andy King2

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Portcullis Computer Security, Pinner, UK

Abstract. Traditionally, transfer functions have been manually designed
for each operation in a program. Recently, however, there has been grow-
ing interest in computing transfer functions, motivated by the desire to
reason about sequences of operations that constitute basic blocks. This
paper focuses on deriving transfer functions for intervals — possibly the
most widely used numeric domain — and shows how they can be com-
puted from Boolean formulae which are derived through bit-blasting.
This approach is entirely automatic, avoids complicated elimination algo-
rithms, and provides a systematic way of handling wrap-arounds (integer
overflows and underflows) which arise in machine arithmetic.

1 Introduction

The key idea in abstract interpretation [6] is to simulate the execution of each
concrete operation g : C → C in a program with an abstract analogue f : D → D
where C and D are domains of concrete values and descriptions. Each abstract
operation f is designed to faithfully model its concrete counterpart g in the sense
that if d ∈ D describes a concrete value c ∈ C, sometimes written relationally
as d ∝ c [17], then the result of applying g to c is described by the action of ap-
plying f to d, that is, f(d) ∝ g(c). Even for a fixed set of abstractions, there are
typically many ways of designing the abstract operations. Ideally the abstract
operations should compute abstractions that are as descriptive, that is, as accu-
rate as possible, though there is usually interplay with accuracy and complexity,
which is one reason why the literature is so rich. Normally the abstract opera-
tions are manually designed up front, prior to the analysis itself, but there are
distinct advantages in synthesising the abstract operations from their concrete
versions as part of the analysis itself, in a fully automatic way.

1.1 The drive for automatic abstraction

One reason for automation stems from operations that arise in sequences that
are known as blocks. Suppose that such a sequence is formed of n concrete
operations g1, g2, . . . , gn, and each operation gi has its own abstract counterpart
fi, henceforth referred to as its transfer function. Suppose too that the input to
the sequence c ∈ C is described by an input abstraction d ∈ D, that is, d ∝ c.

Then the result of applying the n concrete operations to the input (one after
another) is described by applying the composition of the n transfer functions to
the abstract input, that is, fn(. . . f2(f1(d))) ∝ gn(. . . g2(g1(c))). However, a more
accurate result can be obtained by deriving a single transfer function f for the
block gn ◦ . . . ◦ g2 ◦ g1 as a whole, designed so that f(d) ∝ gn(. . . g2(g1(c))). The
value of this approach has been demonstrated for linear congruences [11] in the
context of verifying bit-twiddling code [14]. Since blocks are program dependent,
such an approach relies on automation rather than human intervention.

Another compelling reason for automation is the complexity of the concrete
operations themselves. Even a simple concrete operation, such as increment by
one, is complicated by the finite nature of computer arithmetic: if increment
is applied to the largest integer that can be stored in a word, then the result
is the smallest integer that is representable. As the transfer function needs to
faithfully simulate concrete increment, then the corner case inevitably manifests
itself (if not in the transfer function itself then elsewhere [29]). The problem of
deriving transfer functions for low-level instructions, such as those of the x86,
is particularly acute [2] since these operations not only update registers and
memory locations, but also side effect status flags. Automatic abstraction offers
a way to potentially tame this complexity.

1.2 Specifying extreme values with universal quantifiers

Monniaux [20] recently addressed the vexing question of automatic abstraction
by focussing on template domains [28] which include, most notably, intervals
[7]. He showed that if the concrete operations are specified as piecewise linear
functions, then it is possible to derive transfer functions for blocks. The transfer
functions relate the values of variables on entry to a block to their values on exit.
To illustrate, suppose the variables x, y and z occur in a block and consider the
maximum value of x on exit from the block. Monniaux shows how quantification
can be used to specify the maximal output value of x in terms of the extreme
values that x, y and z can take on entry to the block. The specification states
that: the maximal output value of x is an upper bound on all the output values
of x that are feasible for the values of x, y and z that fall within their input
ranges. It also asserts that: the maximal output value of x is smaller than any
other upper bound on the output value of x. These requirements are naturally
formulated with universal quantification. Universal quantifier elimination is then
used to find a direct linear relationship between the maximal value of x on exit
and the ranges of x, y and z on entry; it is direct in that intermediate variables
that occur in the specification are removed. This construction is ingenious but
no polynomial elimination algorithm is known for piecewise systems, or is ever
likely to exist [3]. Indeed, this computational bottleneck remains a problem [21].

1.3 Finessing universal quantifiers with Boolean formulae

This paper suggests that as an alternative to operating over piecewise linear
systems one can instead express the semantics of a basic block with a Boolean

2

formula; an idea that is familar in model checking where it is colloquially referred
to as bit-blasting. Since Boolean formulae are more expressive than piecewise
linear formulae, one would expect universal quantifier elimination to be just as
difficult for Boolean formulae (or even harder since they are discrete). However,
this is not so. To illustrate, consider ∀x.f where f = (x ∨ ¬y) ∧ (¬x ∨ y ∨ ¬z).
Then ∀x.f = f [x 7→ 0] ∧ f [x 7→ 1] = (¬y) ∧ (y ∨ ¬z). Observe that ∀x.f can be
obtained directly from f by removing the x and ¬x literals from all the clauses
of f . This is no coincidence and holds for any formula f presented in CNF not
containing a vacuous clause that includes both x and ¬x [15]. This suggests
the following four step method for automatically deriving transfer functions for
intervals (and related domains [18, 19]): First, use bit-vector logic to represent
the semantics of a block as a single CNF formula fblock (an excellent tutorial on
flattening bit-vector logic into propositional logic is given in [15, Chap. 6]). Thus
each n-bit integer variable is represented as a separate vector of n propositional
variables. Second, apply the specification of Monniaux [20, Sect. 3.2] to express
the maximal value (or conversely the minimal value) of an output bit-vector in
terms of the ranges on the input bit-vectors. This gives a propositional formula
fspec which is essentially fblock augmented with universal quantifiers. Third, the
universal quantifiers are removed from fspec to obtain fsimp – a simplification of
fspec. Thus although universal qualification is a hinderance for linear piecewise
functions, it is actually helps in a propositional formulation. Of course, fsimp is
just a formula and does not prescribe how to compute a transfer function. How-
ever, a transfer function can be extracted from fsimp by abstracting fsimp with
linear affine equations [13] which directly relate the output ranges to the input
ranges. This fourth step (which is analogous to that proposed for abstracting for-
mulae with congruences [14]) is the final step in the construction. Overall, this
new approach to computing transfer functions confers the following advantages:

– it is amenable to instructions whose semantics is presented as Boolean for-
mulae. The force of this is that propositional encodings are readily available
for instructions, due to the rise in popularity of SAT-based model checking.
Moreover, it is not obvious how to express the semantics of some (bit-level)
instructions with piecewise linear functions;

– it avoids the computational problems associated with eliminating variables
from piecewise linear systems;

– it distills transfer functions from Boolean formulae that are action systems
of guarded updates. The guards are systems of octagonal constraints [19]. A
guard tests whether a particular behaviour can arise, for example, whether an
operation wraps, and the update revises the ranges accordingly. One guarded
update might be applicable when an operation underflows and another when
it overflows, thus a transfer function is a system of guarded updates. The
updates are expressed with affine equations that specify how the extreme
values of variables at the end of the block relate to their extreme values on
entry into the block. The guards that are derived are optimal (for the class
of octagons) as are the update operations (for the class of affine equalities).
Once derived, a transfer function is evaluated using linear programming.

3

2 Worked Examples

The ethos of our approach is to express the semantics of a block in the com-
putational domain of Boolean formulae. This concrete domain is rich enough to
allow the extreme values (ranges) of variables to be specified in a way that is
analogous to that of Monniaux [20]. However, in contrast to Monniaux, univer-
sal quantifier elimination is performed in the concrete setting, which is attrac-
tive computationally. Abstraction is then applied to synthesise guarded updates
from quantifier-free formulae. Thus, the approach of Monniaux is abstraction
then elimination, whereas ours is elimination then abstraction. We illustrate the
power of this transposition by deriving transfer functions for some illustrative
blocks of ATmega16 8-bit microcontroller instructions [1].

2.1 Deriving a transfer function for a block

Consider deriving a transfer function for the sequence of instructions EOR R0 R1;
EOR R1 R0; EOR R0 R1 that constitutes a block. An instruction EOR R0 R1 stores
the exclusive-or of registers R0 and R1 in R0. The operands are unsigned. To spec-
ify the semantics of the block, let r0 and r1 denote 8-bit vectors of propositional
variables that will be used to represent the symbolic initial values of R0 and R1,
and likewise let r0′ and r1′ be bit-vectors of propositional variables that denote
their final values. Furthermore, let x[i] denote the ith element of the bit-vector x
where x[0] is the low bit. By introducing a bit-vector y to denote the intermedi-
ate value of R0 (which is akin to applying static single assigment) the semantics
of the block can be stated propositionally as:

ϕ(y) = (∧7
i=0y[i]↔ r0[i]⊕ r1[i]) ∧

(∧7
i=0r1

′[i]↔ y[i]⊕ r1[i]) ∧ (∧7
i=0r0

′[i]↔ y[i]⊕ r1′[i])

where ⊕ denotes exclusive-or. Such formulae can be derived algorithmically by
composing formulae [5, 14] – one formula for each instruction in the sequence.

The formula ϕ(y) specifies the relationship between the inputs r0 and r1
and the outputs r0′ and r1′, but not a relationship between their ranges. This
has to be derived. To do so, let the bit-vectors r0` and r0u (resp. r1` and
r1u) denote the minimal and maximal values for r0 (resp. r1). To express these
ranges in propositional logic, define the formula:

x ≤ y = (x[7] ∧ ¬y[7]) ∨ (∨6
j=0(¬x[j] ∧ y[j] ∧ (∧7

k=j+1x[k]↔ y[k])))

and for abbreviation let x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z). Moreover, let
φ = (r0` ≤ r0 ≤ r0u) ∧ (r1` ≤ r1 ≤ r1u) to express the requirement that
r0 and r1 are confined to their ranges. With r0 and r1 in range, let r0?` and
r0?u denote the resulting extreme values for r0′. This amounts to requiring that,
firstly, r0?` and r0?u are respectively lower and upper bounds on the range of
r0′. Secondly, any other lower and upper bounds on r0′, say, r0′` and r0′u, are
respectively less or equal to and greater or equal to r0?` and r0?u. Analogous

4

requirements hold for the extreme values r1?` and r1?u of r1′. We impose the
first requirement with the formula θ(y) = ∀r0 : ∀r1 : ∀r0′ : ∀r1′ : θ′(y) where:

θ′(y) = (φ ∧ ϕ(y))⇒ (r0?` ≤ r0′ ≤ r0?u ∧ r1?` ≤ r1′ ≤ r1?u)

A quantifier-free version of θ(y) is then obtained by putting θ′(y) into CNF using
standard transformations [25]. This introduces fresh variables, denoted y′, and
thus we write the CNF formula as θ′′(y,y′). The intermediate variables of y and
y′ (which are existentially quantified) are then removed by repeatedly applying
resolution [15]. Those literals that involve variables in r0, r1, r0′ and r1′ are
then simply struck out to obtain the desired quantifier-free model θ(y,y′).

The second requirement is enforced by introducing other lower and upper
bounds on r0′ and r1′, namely, r0′` and r0′u, and r1′` and r1′u. The requirement
is formally stipulated as:

ψ(z) = ∀r0′` : ∀r0′u : ∀r1′` : ∀r1′u : ∀r0 : ∀r1 : ∀r0′ : ∀r1′ : ψ′(z)

where:

ψ′(z) = ((φ ∧ ϕ(z))⇒ (r0′` ≤ r0′ ≤ r0′u ∧ r1′` ≤ r1′ ≤ r1′u))⇒ κ

and κ = r0′` ≤ r0?` ∧ r0?u ≤ r0′u ∧ r1′` ≤ r1?` ∧ r1?u ≤ r1′u. As before, we
derive a quantifier-free version of ψ(z), namely ψ(z, z′), where z′ are the fresh
variables introduced in CNF conversion. To avoid accidental variable coupling
between θ(y,y′) and ψ(z, z′) we apply renaming (if necessary) to ensure that
(var(y) ∪ var(y′)) ∩ (var(z) ∪ var(z′)) = ∅ where var(o) denotes the set of
propositional variables in the object o.

Finally, the relationship between the bounds r0`, r0u, r1` and r1u and the
extrema r0?` , r0

?
u, r1?` and r1?u, is specified with the conjunction:

fsimp = θ(y,y′) ∧ ψ(z, z′)

The formula fsimp is free from universal quantifiers and, moreover, we can ab-
stract it using affine equations [13] to discover linear relationships between the
variables of S = {r0?` , r0?u, r1?` , r1?u, r0`, r0u, r1`, r1u} as desired. We regard
this abstraction operation, denoted αaff(fsimp, S), as a blackbox and defer pre-
sentation of the details to the following section. However, to state the outcome,
let 〈x〉 =

∑7
i=0 2ix[i] where x is an 8-bit vector of propositional variables. Then

αaff(fsimp, S) =
{
〈r0?` 〉 = 〈r1`〉 ∧ 〈r0?u〉 = 〈r1u〉 ∧
〈r1?` 〉 = 〈r0`〉 ∧ 〈r1?u〉 = 〈r0u〉

This shows that the ranges of R0 and R1 are swapped. Indeed, the sequence of
EOR instructions is a common idiom for exchanging the contents of two registers
without employing a third. The resulting transfer function can be realised with
four updates. For this example, it is difficult to see how range analysis can be
usefully performed without deriving a transfer function at this level of granular-
ity. Furthermore, it is not clear how such a transfer function could be derived
from a system of piecewise linear functions [20] since such systems cannot express
exclusive-or constraints.

5

2.2 Deriving a transfer function for an operation with many modes

As a second example, consider computing a transfer function for the single oper-
ation ADD R0 R1 which calculates the sum of R0 and R1 and stores the result in
R0. We assume that the operands are signed and to interpret the value of such
a vector let 〈〈x〉〉 = (

∑6
i=0 2ix[i])− 27x[7] where x[7] is read as the sign bit. The

ADD R0 R1 instruction is interesting because it is an exemplar of an instruction
that can operate in one of three modes: it overflows (the sum exceeds 127); it
underflows (the sum is strictly less than -128); or it neither overflows nor under-
flows (it is exact). The semantics in these respective modes, can be expressed
with three Boolean formulae that are defined as follows:

ϕO(c) = ϕ(c) ∧ (¬r0[7] ∧ ¬r1[7] ∧ r0′[7])
ϕU (c) = ϕ(c) ∧ (r0[7] ∧ r1[7] ∧ ¬r0′[7])
ϕE(c) = ϕ(c) ∧ (¬r0[7] ∨ ¬r1[7] ∨ r0′[7]) ∧ (r0[7] ∨ r1[7] ∨ ¬r0′[7])

where c is a bit-vector that represents the intermediate carry bits and:

ϕ(c) =
(∧7

i=0 r0
′[i]↔ r0[i]⊕ r1[i]⊕ c[i]

)
∧

¬c[0] ∧
(∧6

i=0 c[i+ 1]↔ (r0[i] ∧ r1[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1[i] ∧ c[i])
)

It is important to appreciate that the formulae that model an instruction need
to be prescribed just once for each instruction. Thus, the complexity is barely
more than that of bit-blasting.

The transfer functions for multi-modal operations are formulated as action
systems of guarded updates. Given a system of input intervals, which defines a
hypercube, the guards test whether an update is applicable and, if so, the corre-
sponding update is applied. The update maps the input intervals to the resulting
output intervals. An update is applicable if interval and guard constraints are
simultaneously satisfiable. The guards are formulated as octagonal constraints
[19] over the inputs to the (trivial) block, namely, S′ = {r0, r1}. Guards are
derived with an abstraction operator, denoted αoct(ϕi(c), S′), which discovers
the octagonal inequalities that hold in the formula ϕi(c) between the variables of
S′. This abstraction can be calculated automatically, though for reasons of con-
tinuity we defer the details until the following section. Applying this abstraction
to the three ϕi(c) formulae yields the guards:

αoct(ϕO(c), S′) =
{

128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 254 ∧
1 ≤ 〈〈r0〉〉 ≤ 127 ∧ 1 ≤ 〈〈r1〉〉 ≤ 127

αoct(ϕU (c), S′) =
{
−256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129 ∧
−128 ≤ 〈〈r0〉〉 ≤ −1 ∧ −128 ≤ 〈〈r1〉〉 ≤ −1

αoct(ϕE(c), S′) =
{
−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127 ∧
−128 ≤ 〈〈r0〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127

Guards are computed using perfect integers (the detail of which is explained
in the following section) rather than modulo 256. Hence the linear inequality

6

〈〈r0〉〉+〈〈r1〉〉 ≤ 254 which follows from the positivity requirements on 〈〈r0〉〉 and
〈〈r1〉〉, namely, 1 ≤ 〈〈r0〉〉 ≤ 127 and 1 ≤ 〈〈r1〉〉 ≤ 127.

An affine update is computed for each mode ϕi(c) from the Boolean formula
fi,simp = θi(c, c′) ∧ ψi(d,d′) where θi(c, c′) and ψi(d,d′) are quantifier-free for-
mulae derived from ϕi(c) in an analogous way to before. As before, we desire
affine relationships over S = {r0?` , r0?u, r1?` , r1?u, r0`, r0u, r1`, r1u}, hence we
calculate αaff(fi,simp, S) which yields:

αaff(fO,simp, S) =

 〈〈r0
?
` 〉〉 = 〈〈r0`〉〉 + 〈〈r1`〉〉 − 256 ∧

〈〈r0?u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 − 256 ∧
〈〈r1?` 〉〉 = 〈〈r1`〉〉 ∧ 〈〈r1?u〉〉 = 〈〈r1u〉〉

αaff(fU,simp, S) =

 〈〈r0
?
` 〉〉 = 〈〈r0`〉〉 + 〈〈r1`〉〉 + 256 ∧

〈〈r0?u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 + 256 ∧
〈〈r1?` 〉〉 = 〈〈r1`〉〉 ∧ 〈〈r1?u〉〉 = 〈〈r1u〉〉

αaff(fE,simp, S) =

 〈〈r0
?
` 〉〉 = 〈〈r0`〉〉 + 〈〈r1`〉〉 ∧

〈〈r0?u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 ∧
〈〈r1?` 〉〉 = 〈〈r1`〉〉 ∧ 〈〈r1?u〉〉 = 〈〈r1u〉〉

When coupled with the guards, this gives an action system of three guarded
updates reflecting the three distinct modes of operation.

To illustrate an application of the derived transfers function, suppose 〈〈r0〉〉
and 〈〈r1〉〉 are clamped to fall within given input range. Moreover, suppose the
range is expressed as the following system of inequalities:

r =
{
〈〈r0`〉〉 = −2 ∧ 〈〈r0u〉〉 = 5 ∧ 〈〈r0`〉〉 ≤ 〈〈r0〉〉 ≤ 〈〈r0u〉〉
〈〈r1`〉〉 = 1 ∧ 〈〈r1u〉〉 = 126 ∧ 〈〈r1`〉〉 ≤ 〈〈r1〉〉 ≤ 〈〈r1u〉〉

In addition to bound the extreme output values let:

r′ =
{
−128 ≤ 〈〈r0?` 〉〉 ≤ 127 ∧ −128 ≤ 〈〈r0?u〉〉 ≤ 127 ∧
−128 ≤ 〈〈r1?` 〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1?u〉〉 ≤ 127

Now consider the overflow mode. Observe that the output value of 〈〈r0?` 〉〉
can be found by solving a linear programming problem that minimises 〈〈r0?` 〉〉
subject to the linear system r ∧αoct(ϕO(c), S′)∧αaff(fO,simp, S)∧ r′. This gives
〈〈r0?` 〉〉 = −128. By solving three more linear programming problems we can
likewise deduce 〈〈r0?u〉〉 = −125, 〈〈r1?` 〉〉 = 1 and 〈〈r1?u〉〉 = 126. When repeating
this process for the underflow mode, we find that the system r∧αoct(ϕU (c), S′)∧
αaff(fU,simp, S)∧ r′ is infeasible, hence this guarded update is not applicable for
the given input range. However, the final mode is applicable (like the first) and
gives the extrema: 〈〈r0?` 〉〉 = −1, 〈〈r0?u〉〉 = 127, 〈〈r1?` 〉〉 = 1 and 〈〈r1?u〉〉 = 126.
More generally, evaluating a system of m guarded updates for a block that
involves n variables will require at most 2mn linear programs to be solved.

The overall result is obtained by merging the results from different modes,
and there is no reason why power sets could not be deployed to summarise the
final value of 〈〈r0〉〉 as [−128,−125] ∪ [−1, 127] (with the understanding that
adjacent and overlapping intervals are merged for compactness).

7

2.3 Deriving a transfer function for a block with many modes

Consider the following non-trivial sequence of instructions:

1: INC R0; 2: MOV R1, R0; 3: LSL R1;
4: SBC R1, R1; 5: EOR R0, R1; 6: SUB R0, R1;

INC R0 increments R0; MOV R1, R0 copies the contents of R0 into R1; LSL R1
leftshifts R1 by one bit position setting the carry to the sign; SBC R1, R1 sub-
tracts R1, summed with the carry, from R1 and stores the result in R1; and
SUB R0, R1 subtracts R1 from R0 without considering the carry. (The net effect
of instructions 3 and 4 is to set all the lower bits of R1 to its sign bit, so that R1
contains either 0 or -1.)

Analogous to before, the sequence is bit-blasted using additional bit-vectors
w, x, y, and z to represent intermediate values of registers: w for the value of
R0 immediately after instruction 1 (and the value of R1 after instruction 2); x
for the value of R0 after instruction 5; y for the negation of R1 after instruction 5
which is then used in the following subtraction; and z for the carry bits that are
also used in subtract. With some simplification (needed to make the presentation
accessible) the semantics of the block can be expressed as:

ϕ(w,x,y, z) =



(
∧7
i=0w[i]↔ (r0[i]⊕ ∧i−1

j=0r0[j])
)

∧(
∧7
i=0r1

′[i]↔ w[7]
)

∧(
∧7
i=0x[i]↔ (w[i]⊕ r1′[i])

)
∧(

∧7
i=0y[i]↔ (¬r1′[i]⊕ ∧i−1

j=0¬r1′[j])
)

∧
(¬z[0]) ∧(
∧6
i=0z[i+ 1]↔ (x[i] ∧ y[i]) ∨ (x[i] ∧ z[i]) ∨ (y[i] ∧ z[i])

)
∧(

∧7
i=0r0

′[i]↔ x[i]⊕ y[i]⊕ z[i]
)

For brevity, let vector u denote the concatenation of the vectors w, x, y and z
so as to write ϕ(u) for ϕ(w,x,y, z).

For the increment, there are two modes of operation depending on whether
it overflows or not. These can be expressed by: µO = (¬r0[7])∧ (∧6

i=0r0[i]) and
µE = ¬µO respectively. For the leftshift, there are two modes depending on
whether it overflows or not, as defined by the formulae ηO = w[7] and ηE = ¬ηE
respectively. For subtraction, there are again three modes according to whether
it overflows or underflows or does neither. These modes can be expressed as:
νU = (¬r0′[7]∧x[7]∧y[7]), νO = (r0′[7]∧¬x[7]∧¬y[7]) and νE = (¬ν1)∧(¬ν2).
All other instructions in the block are unimodal; indeed they neither overflow nor
underflow [1]. This gives twelve different mode combinations overall. However,
the following formulae are unsatisfiable:

µO ∧ ηO ∧ νO ∧ ϕ(u) µO ∧ ηO ∧ νE ∧ ϕ(u) µO ∧ ηE ∧ νU ∧ ϕ(u)
µO ∧ ηE ∧ νO ∧ ϕ(u) µO ∧ ηE ∧ νE ∧ ϕ(u) µE ∧ ηO ∧ νU ∧ ϕ(u)
µE ∧ ηO ∧ νO ∧ ϕ(u) µE ∧ ηE ∧ νU ∧ ϕ(u) µE ∧ ηE ∧ νO ∧ ϕ(u)

indicating these mode combinations are not feasible. Henceforth, only three
combinations needed to be considered when synthesising the action system.

8

Hence let ϕ1(u) = µO ∧ ηO ∧ νU ∧ ϕ(u), ϕ2(u) = µE ∧ ηO ∧ νE ∧ ϕ(u) and
ϕ3(u) = µE ∧ ηE ∧ νE ∧ ϕ(u). The inputs to the block are S′ = {r0, r1} and
calculating guards for these combinations gives:

αoct(ϕ1(v), S′) = 127 ≤ 〈〈r0〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127
αoct(ϕ2(v), S′) = −128 ≤ 〈〈r0〉〉 ≤ −2 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127
αoct(ϕ3(v), S′) = −1 ≤ 〈〈r0〉〉 ≤ 126 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127

Note that all three guards impose vacuous constraints on 〈〈r1〉〉. This is because
R1 is written before it is read (which could be inferred prior to deriving the
transfer functions though this is not strictly necessary).

As before, the updates are computed for each ϕi(u) from three formulae
fi,simp = θi(u,u′) ∧ ψi(v,v′) where θi(u,u′) and ψi(v,v′) are quantifier-free and
derived from ϕi(u) as previously. Hence we calculate affine relationships over
S = {r0?` , r0?u, r1?` , r1?u, r0`, r0u, r1`, r1u} which yields:

αaff(f1,simp, S) = 〈〈r0〉〉` = 127 ∧ 〈〈r0〉〉u = 127 ∧
〈〈r0〉〉?` = −128 ∧ 〈〈r0〉〉?u = −128

αaff(f2,simp, S) = 〈〈r0〉〉?` = −〈〈r0〉〉u − 1 ∧ 〈〈r0〉〉?u = −〈〈r0〉〉` − 1
αaff(f3,simp, S) = 〈〈r0〉〉?` = 〈〈r0〉〉` + 1 ∧ 〈〈r0〉〉?u = 〈〈r0〉〉u + 1

Note that no affine constraints are inferred for r1?` and r1?u reflecting that R1 is
used merely to store an intermediate value (though combining affine equations
with congruences [14] would preserve some information pertaining to the final
value of R1). Note how ranges are swapped for the second mode since in this
circumstance R0 is negative. From the resulting action system, it can be seen
that the block overwrites R0 with the absolute value of (R0+ 1) subject to wrap
around (128 = −128 mod 256). To the best of our knowledge, no other approach
can derive a useful transfer function for a block such as this.

3 Abstracting Boolean Formulae

This section shows how to construct octagonal and affine abstractions of a given
Boolean formula ϕ(v) defined over a set of bit-vectors S = {x1, . . . ,xn} of
size k and a single bit-vector v that identifies any intermediate variables. For
presentational purposes, we focus on deriving abstractions that relate the values
of 〈〈x1〉〉, . . . , 〈〈xn〉〉, though the construction for unsigned values is analogous.

3.1 Abstracting Boolean Formulae with Octagonal Inequalities

Let λ, µ ∈ {−1, 0, 1} and 1 ≤ i ≤ j ≤ n be fixed and consider the derivation of
an octagonal inequality λ〈〈xi〉〉 + µ〈〈xj〉〉 ≤ c? where c? ∈ Z. Since k is fixed it
follows −2k ≤ λ〈〈xi〉〉 + µ〈〈xj〉〉 ≤ 2k, hence the problem reduces to finding the
least −2k ≤ c? ≤ 2k such that if ϕ(v) holds then λ〈〈xi〉〉+µ〈〈xj〉〉 ≤ c? also holds.
To this end, let c? denote a bit-vector of size k + 2 and suppose φλ,µ,xi,xj

(u) is
a propositional encoding of λ〈〈xi〉〉 + µ〈〈xj〉〉 ≤ c? where the sum is calculated

9

to a width of k + 2 bits and ≤ is encoded as in Sect. 2.1, likewise operating on
vectors of size k + 2. In this formulation, the vector v denotes the intermediate
variables required for addition and negation. Since xi and xj are k-bit this
construction avoids wraps, hence φλ,µ,xi,xj (v) holds iff λ〈〈xi〉〉 + µ〈〈xj〉〉 ≤ c?

holds. Likewise, suppose that φ′λ,µ,xi,xj
(v′) is a propositional formula that holds

iff λ〈〈xi〉〉+µ〈〈xj〉〉 ≤ c′ holds where c′ is k+2 bit-vector distinct from c?. Finally,
let κ denote a Boolean formula that holds iff c? ≤ c′ holds.

Single inequalities With the formulae φλ,µ,xi,xj (v) and φ′λ,µ,xi,xj
(v′) thus de-

fined, we can apply universal quantification to specify the least c? as the unique
value 〈〈c?〉〉 which satisfies θλ,µ,xi,xj

(u,v) ∧ ψλ,µ,xi,xj
(u′,v′) where:

θλ,µ,xi,xj
(u,v) = ∀xi : ∀xj : (ϕ(u)⇒ φλ,µ,xi,xj

(v))

ψλ,µ,xi,xj
(u′,v′) = ∀xi : ∀xj : ∀c′ : ((ϕ(u′)⇒ φ′λ,µ,xi,xj

(v′))⇒ κ)

and u and u′ are renamed apart so as to avoid cross-coupling. More generally,
the octagonal abstraction of ϕ(v) over the set S is given by:

αoct(ϕ(v), S) =

∧λ〈〈xi〉〉+ µ〈〈xj〉〉 ≤ 〈〈c?〉〉

∣∣∣∣∣∣
∃λ, µ ∈ {−1, 0, 1} ∧
∃1 ≤ i ≤ j ≤ n ∧
θλ,µ,xi,xj

(u,v) ∧ ψλ,µ,xi,xj
(u′,v′) holds


Note that in λ〈〈xi〉〉+µ〈〈xj〉〉 ≤ 〈〈c?〉〉 the symbols 〈〈xi〉〉 and 〈〈xj〉〉 denote variables
whereas 〈〈c?〉〉 is a value that is fixed by the formula θλ,µ,i,j(u,v)∧ψλ,µ,i,j(u′,v′).
Of course, as previously explained, quantifier-free versions of θλ,µ,i,j(u,v) and
ψλ,µ,i,j(u′,v′) can be obtained through CNF conversion and clause simplifica-
tion, hence αoct(ϕ(v), S) can be computed as well as specified. The resulting
octagonal abstraction is closed (though this is not necessary in our setting).

Many inequalities Interestingly, many inequalities can be derived in a single call
to the solver. Let {(y1, z1), . . . , (ym, zm)} ⊆ S2 and {(λ1, µ1), . . . , (λm, µm)} ⊆
{−1, 0, 1}2, and consider the problem of finding the set {c?1, . . . , c?m}⊆ [−2k, 2k−1]
of least values such that if ϕ(v) holds then λi〈〈yi〉〉 + µi〈〈zi〉〉 ≤ c?i holds. This
problem can be formulated in an analogous way to before using bit-vectors
c?1, . . . , c

?
m and c′1, . . . , c

′
m all of size k + 2. Furthermore, let κi be a proposi-

tional formula that holds iff c?i ≤ c′i holds. Then the problem of simultaneously
finding all the c?i amounts to solving θ(u,v1, . . . ,vm)∧ψ(u′,v′1, . . . ,v

′
m) where:

θ(u,v1, . . . ,vm) = ∀y1 : ∀z1 : . . . : ∀yk : ∀zk : (ϕ(u)⇒
∧m
k=1 φλk,µk,yk,zk

(vk))

ψ(u,v′1, . . . ,v
′
m) = ∀y1 : ∀z1 : . . . : ∀yk : ∀zk :

∀c′1 : . . . : ∀c′m : ((ϕ(u′)⇒
∧m
k=1 φ

′
λk,µk,yk,zk

(v′k))⇒
∧m
k=1 κk)

Notice that θ(u,v1, . . . ,vm) ∧ ψ(u′,v′1, . . . ,v
′
m) involves one copy of ϕ(u) and

another of ϕ(u′) rather than m copies of both.

10

Timings The time required to bit-blast the blocks in Sect. 2 and then eliminate
the universal quantifiers were essentially non-measurable. The time required to
prove unsatisfiability or compute the guards for the various mode combinations
varied between 0.1s and 0.6s. Octagons were derived one inequality at a time
(rather than several together) using the Sat4J solver [16] on 2.6GHz MacBook
Pro. Incremental SAT solving would speedup the generation of octagons, as the
intermediate results used to derive one inequality could be used to infer another.

3.2 Abstracting Boolean Formulae with Affine Equalities

Affine equations [13, 22] are related to congruences [11, 23]; indeed the former
is a special case of the latter where the modulo is 0. This suggests adapting
an abstraction technique for formulae that discovers congruence relationships
between the propositional variables of a given formula [14]. In our setting, the
problem is different. It is that of computing an affine abstraction of a formula
ϕ(v) defined over a set of bit-vectors S. As before, we do not aspire to derive
relationships that involve intermediate variables v and we assume each xi is
signed.

Algorithm Figure 1 gives an algorithm for computing αaff(ϕ(v), S). In what fol-
lows, the n-ary vector x is defined as x = (〈〈x1〉〉, . . . , 〈〈xn〉〉). Affine equations
over S are represented with an augmented rational matrix [A | b] that we inter-
pret as defining the set {x ∈ [−2k−1, 2k−1]n | Ax = b}. The algorithm relies on
a propositional encoding for an affine disequality constraint (c1, . . . , cn) · x 6= b
where c1, . . . , cn, b ∈ Q. To see that such an encoding is possible assume, with-
out loss of generality, that the disequality is integral and b is non-negative.
Then rewrite the disequality as (c+1 , . . . , c

+
n) · x 6= b + (c−1 , . . . , c

−
n) · x where

(c+1 , . . . , c
+
n), (c−1 , . . . , c

−
n) ∈ Nn and N = {i ∈ Z | 0 ≤ i}. Let c+ =

∑n
i=1 c

+
i and

c− =
∑n
i=1 c

−
i . Since each 〈〈xj〉〉 ∈ [−2k−1, 2k−1 − 1] it follows that computing

the sums (c+1 , . . . , c
+
n) · x and b + (c−1 , . . . , c

−
n) · x with a signed 1 + dlog2(1 +

max(2kc+, b+2kc−))e bit representation is sufficient to avoid wraps, allowing the
disequality to be modelled exactly as a formula. In the algorithm, this formula
is denoted φ(w) where w is a vector of temporary variables used for carry bits
and intermediate sums.

Apart from φ(w), the abstraction algorithm is essentially the same as that
proposed for congruences [14] (with a proof of correctness carrying over too). The
algorithm starts with an unsatisfiable constraint 0 · x = 1 which is successively
relaxed by merging it with a series of affine systems that are derived by SAT
(or SMT) solving. The truth assignment θ is considered to be a mapping θ :
var(ϕ(v)∧φ(w))→ {0, 1} which, when applied to a k-bit vector of variables such
as xj , yields a binary vector. Such a binary vector can then be interpreted as a
signed number to give a value in the range [−2k−1, 2k−1−1]. This construction is
applied in lines 5-8 to find a vector (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉) ∈ [−2k−1, 2k−1−1]n

which satisfies both the disequality (a1, . . . , an) · x 6= b and the formula ϕ(v).
The algorithm is formulated in terms of some auxiliary functions: row(M , i)

extracts row i from the matrix M where the first row is taken to be row 1 (rather

11

(1) function affine(ϕ(v), {x1, . . . ,xn})
(2) [A | b] := [0, . . . , 0 | 1];
(3) i := 0; r := 1;
(4) while i < r do
(5) (a1, . . . , an, b) := row([A | b], r − i);
(6) let φ(w) hold iff (a1, . . . , an) · x 6= b holds;
(7) if ϕ(v) ∧ φ(w) has a satisfying truth assignment θ
(8) [A′ | b′] := [A | b] taff [Id | (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉)T];
(9) [A | b] := triangular([A′ | b′]);
(10) r := number of rows([A | b]);
(11) else i := i + 1;
(12) endwhile
(13) return [A | b]

Fig. 1. Calculating the affine closure of the Boolean formula ϕ(v)

than 0); triangular(M) puts M into an upper triangular form using Gaussian
elimination; and number of rows(M) returns the number of rows in M .

The rows of [A | b] are considered in reverse order. Each iteration of the
loop tests whether there exists a truth assignment of ϕ(v) that also satisfies
the φ(w) formula constructed from row r − i. If not, then every model of ϕ(v)
satisfies the affine equality (a1, . . . , an) · x = b represented by row r − i. Hence
the equality constitutes a description of the formula. The counter i is then in-
cremented to examine a row which, thus far, has not been considered. Con-
versely, if the instance is satisfiable, then the solution is represented as a matrix
[Id | (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉)T] which is merged with [A|b]. Merge is an O(n3)
operation [13] that yields a new summary [A′|b′] that enlarges [A|b] with the
freshly found solution. The next iteration of the loop will either relax [A|b] by
finding another solution, or verify that the row now describes ϕ(v). Triangular
form ensures that all rows beneath the one under consideration will never be
effected by the merge. At most n iterations are required since the affine systems
enumerated by the algorithm constitute an ascending chain over n variables [13].

Example Consider ϕ(w,x) which is an encoding of 〈〈z〉〉 = 2(〈〈v〉〉 + 1) + 〈〈y〉〉
subject to the additional constraints that−32 ≤ 〈〈v〉〉 ≤ 31 and−32 ≤ 〈〈y〉〉 ≤ 31:

ϕ(w,x) =


(¬w[0]) ∧

(
∧6
i=0w[i+ 1]↔ (v[i]⊕ ∧i−1

j=0v[j])
)

∧
(¬x[0]) ∧(
∧6
i=0x[i+ 1]↔ (w[i] ∧ x[i]) ∨ (w[i] ∧ y[i]) ∨ (x[i] ∧ y[i])

)
∧(

∧7
i=0z[i]↔ w[i]⊕ x[i]⊕ y[i]

)
∧

((v[7]↔ v[6]) ∧ (v[6]↔ v[5])) ∧ ((y[7]↔ y[6]) ∧ (y[6]↔ y[5]))

Suppose x1 = v, x2 = y and x3 = z. The solutions that are found in each
iteration are given in the left hand column. The [A|b] and [A′|b] are immediately
left and right of the equality. The arrow indicates the row under consideration.
The unsatisfiable case is first encountered in the final iteration. The algorithm
returns [2, 1,−1 | −2] and thus recovers 2〈〈v〉〉+ 〈〈y〉〉 − 〈〈z〉〉 = −2 from ϕ(v).

12

(0, 0, 2)
[

0 0 0 1
]
taff

1 0 0 0
0 1 0 0
0 0 1 2

 =

1 0 0 0
0 1 0 0
0 0 1 2←


(−1, 0, 0)

1 0 0 0
0 1 0 0
0 0 1 2

 taff

1 0 0 −1
0 1 0 0
0 0 1 0

 =
[

2 0 −1 −2
0 1 0 0←

]

(0, 1, 3)
[

2 0 −1 −2
0 1 0 0

]
taff

1 0 0 0
0 1 0 1
0 0 1 3

 =
[

2 1 −1 −2←
]

Timings Computing affine abstractions for the feasible mode combinations in
the examples of the previous section took no longer than 0.4s per mode. Each
mode required no more than 5 SAT instances to be solved (which is considerably
fewer than that required for inferring bit-level congruences [14]) with the join
taking less than 5% of the overall runtime.

4 Applying Action Systems of Guarded Updates

Thus far we have derived transfer functions that are action systems of guarded
updates T = {(g1, u1), . . . , (gm, um)} where each guard gi is a system of octago-
nal constraints over a set of bit-vectors S′ = {xi | i ∈ [1, n]} and each update ui
is a system of affine constraints over S = {xi,`,xi,u,x′i,`,x′i,u | i ∈ [1, n]}. In this
section we show that the application of such an action system can be reduced to
linear programming. To do so, we continue working with the assumption that S
and S′ are all k-bit and represent signed objects.

Thus consider applying T to a system of interval constraints over S′ of the
form c =

∧n
i=1 `i ≤ 〈〈xi〉〉 ≤ ui where {`1, u1, . . . , `n, un} ⊆ [−2k−1, 2k−1 − 1].

In particular, consider the application of the guarded update (gk, uk). Suppose
gk =

∧p
i=1 λi · x ≤ di where x is the n-ary vector x = (〈〈x1〉〉, . . . , 〈〈xn〉〉) and

each n-ary coefficient vector λi ∈ {−1, 0, 1}n has no more than two non-zero
elements and di ∈ Z. Furthermore, denote

x` = (〈〈x1,`〉〉, . . . , 〈〈xn,`〉〉) xu = (〈〈x1,u〉〉, . . . , 〈〈xn,u〉〉)
x′` = (〈〈x′1,`〉〉, . . . , 〈〈x′n,`〉〉) x′u = (〈〈x′1,u〉〉, . . . , 〈〈x′n,u〉〉)

Then uk can be written as uk =
∧q
i=1 µi,` ·x`+µi,u ·xu+µ′i,` ·x′`+µ′i,u ·x′u = fi

where each n-ary vector µi,`,µi,u,µ′i,`,µ
′
i,u ∈ Zn and fi ∈ Z. To specify a linear

program, let ej denote the n-ary elementary vector (0, . . . , 0, 1, 0, . . . , 0) where
j − 1 zeros precede the one and n − j zeros follow it. Then the value of 〈〈x′j,`〉〉
for any j ∈ [1, n] can be found by minimising ej · x′` subject to:

P =



∧q
i=1 µi,` · x` + µi,u · xu + µ′i,` · x′` + µ′i,u · x′u = fi ∧∧n
i=1 ei · x` = `i ∧

∧n
i=1 ei · xu = ui ∧∧n

i=1 ei · x− ei · xu ≤ 0 ∧
∧n
i=1 ei · x` − ei · x ≤ 0 ∧∧n

i=1 ei · x′u ≤ 2k−1 − 1 ∧
∧n
i=1−ei · x′` ≤ 2k−1 ∧∧p

i=1 λi · x ≤ di

13

We let `′j denote this minima. Conversely let u′j denote the value found by
maximising ej · x′u subject to P . Note that although P is bounded, it is not
necessarily feasible, which will be detected when solving the linear program (the
first stage of two-phase simplex amounts of deciding feasibility by solving the
so-called auxiliary problem [4]).

If P is feasible, the system of intervals generated for (gk, uk) is given by∧n
j=1 `

′
j ≤ 〈〈xj〉〉 ≤ u′j . If infeasible, the unsatisfiable constraint ⊥ is output.

Merging the systems generated by all the guarded updates (using power sets of
intervals if desired) then gives the final output system of interval constraints.

Rationale The rationale for evaluating transfer functions with linear program-
ming is the same as that which motivated deriving transfer functions with SAT:
efficient solvers are readily (even freely) available for both. Moreover, although
linear solvers have suffered problems relating to floats, steady progress has been
made on both speeding up exact solvers [9] and deriving safe bounds on optima
[24]. Thus soundness is no longer an insurmountable problem. We do not offer
timings for evaluating transfer functions, partly because the focus of this paper
(reflecting that of others [14, 20, 26]) is on deriving them; and partly because the
linear programs that arise from the examples are trivial by industrial standards.

Linear programming versus closure Since the guards are octagonal one might
wonder whether linear programming could be replaced with a closure calculation
on octagons [19] that combines the interval constraints (which constitute a de-
generate form of octagon) with the guard, thereby refining the interval bounds.
These improved bounds could then be used to calculate the updates, without
using linear programming. To demonstrate why this approach is sub-optimal,
let c = (0 ≤ 〈〈r0〉〉 ≤ 1) ∧ (0 ≤ 〈〈r1〉〉 ≤ 1) and suppose the guard is the single
constraint g = 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 1. The closure of c ∧ g would not refine the
upper bounds on 〈〈r0〉〉 and 〈〈r1〉〉. Thus if these values were substituted into the
update 〈〈r0?u〉〉 = 〈〈r0u〉〉+〈〈r1u〉〉 then a maximal value of 2 would be derived for
〈〈r0?u〉〉. This is safe but observe that maximising 〈〈r0?u〉〉 subject to c∧g yields the
improved bound of 1, which illustrates why linear programming is preferable.

5 Related Work

The problem of computing transfer functions for numeric domains is as old as
the field itself, and the seminal paper on polyhedral analysis discusses different
ways to realise a transfer function for x := x × y [8, Sect. 4.2.1]. Granger [10]
lamented the difficulty of handcrafting best transformers for congruences, but
it took more than a decade before it was noticed that they can always be con-
structed for domains that satisfy the ascending chain condition [27]. The idea
is to reformulate each application of a best transformer as a series of calls to a
decision procedure such as a theorem prover. This differs from our work which
aspires to evaluate a transfer function without a complicated decision procedure.

Contemporaneously it was observed that best transformers can be computed
for intervals using BDDs [26]. The authors observe that if g : [0, 28 − 1] →

14

[0, 28 − 1] is a unary operation on an unsigned byte, then its best transformer
f : D → D on D = {∅} ∪ {[`, u] | 0 ≤ ` ≤ u < 28} can be defined through
interval subdivision. If ` = u then f([`, u]) = g(`) whereas if ` < u then
f([`, u]) = f([`,m−1])tf([m,u]) where m = bu/2nc2n and n = blog2(u−`+1)c.
Binary operations can likewise be decomposed. The 8-bit inputs, ` and u, can be
represented as 8-bit vectors, as can the 8-bit outputs, so as to represent f with
a BDD. This permits caching to be applied when f is computed, which reduces
the time needed to compute a best transformer to approximately one day for
each 8-bit operation. The approach does not scale to wider words nor to blocks.

Our work builds on that of Monniaux [20] who showed how transfer func-
tions can be derived for operations over real-valued variables. His approach relies
on universal quantifier elimination algorithm which is problematic for piecewise
linear functions. Universal quantifier elimination also arises in work on inferring
template constraints [12]. There the authors employ Farkas’ lemma to trans-
form universal quantification to existential quantification, albeit at the cost of
compromising completeness (Farkas’ lemma prevents integral reasoning).

The problem of handling limited precision arithmetic is discussed in [29].
Existing approaches are to: verify that no overflows arise using perfect numbers;
revise the concretisation map to reflect truncation [29]; or deploy congruences
[14, 23] where the modulo is a power of two. Our work suggests handling wraps
in the generation of the transfer functions, which we think is natural.

6 Concluding Discussion

This paper advocates deriving transfer functions from Boolean formulae since
the elimination of universal quantifiers is trivial in this domain. Boolean formulae
are natural candidates for expressing arithmetic, logical and bitwise operations,
allowing transfer functions to be derived for blocks of code that would otherwise
only be amenable to the coarsest of approximation. The paper shows how to
distill transfer functions that are action systems of guarded updates, where the
guards are octagonal inequalities and the updates are linear affine equalities. This
formulation enables the application of a transfer function for a basic block to be
reduced to a series of linear programming problems. Although we have illustrated
the approach using octagons, there is no reason why richer classes of template
constraints [28] could not be deployed to express the guards. Moreover, linear
affine equalities could be substituted with polynomial equalities of degree at most
d [22], say, and correspondingly linear programming replaced with non-linear
programming. Thus the ideas presented in the paper generalise quite naturally.
Finally, the approach will only become more attractive as linear solvers and SAT
solvers continue to improve both in terms of efficiency and scalability.

Acknowledgements We particularly thank David Monniaux for discussions at
VMCAI 2010 in Madrid that motivated writing up the ideas in this paper. We
thank Professor Stefan Kowalewski for his financial support that was necessary
to initiate our collaboration. This work was also supported, in part, by a Royal
Society industrial secondment and a Royal Society travel grant.

15

References

1. Atmel Corporation. The Atmel 8-bit AVR Microcontroller with 16K Bytes of In-
system Programmable Flash, 2009. www.atmel.com/atmel/acrobat/doc2466.pdf.

2. G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute. PhD
thesis, Computer Sciences Department, University of Wisconsin, Madison, Wis-
consin, USA, August 2007.

3. V. Chandru and J.-L. Lassez. Qualitative Theorem Proving in Linear Con-
straints. In Verification: Theory and Practice, volume 2772 of LNCS, pages 395–
406. Springer, 2003.

4. V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

5. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

6. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252. ACM Press, 1977.

7. P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Nar-
rowing Approaches to Abstract Interpretation. In PLILP, volume 631 of LNCS,
pages 269–295. Springer, 1992.

8. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL, pages 84–97. ACM Press, 1978.

9. J. Edmonds and J.-F. Manrras. Note sur les Q-matrices d’Edmonds. Recherche
Opérationnella, 32(2):203–209, 1997.

10. P. Granger. Static Analysis of Arithmetical Congruences. International Journal
of Computer Mathematics, 30(13):165–190, 1989.

11. P. Granger. Static Analyses of Congruence Properties on Rational Numbers. In
SAS, volume 1302 of LNCS, pages 278–292, 1997.

12. S. Gulwani, S. Srivastava, and R. Venkatesan. Program Analysis as Constraint
Solving. In PLDI, pages 281–292. ACM Press, 2008.

13. M. Karr. Affine Relationships among Variables of a Program. Acta Informatica,
6:133–151, 1976.

14. A. King and H. Søndergaard. Automatic Abstraction for Congruences. In VMCAI,
volume 5944 of LNCS, pages 197–213. Springer, 2010.

15. D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.

16. D. Le Berre. SAT4J: Bringing the power of SAT technology to the Java platform,
2010. http://www.sat4j.org/.

17. K. Marriott. Frameworks for Abstract Interpretation. Acta Informatica, 30(2):103–
129, 1993.

18. A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices.
In PADO, volume 2053 of LNCS, pages 155–172. Springer, 2001.

19. A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

20. D. Monniaux. Automatic Modular Abstractions for Linear Constraints. In POPL,
pages 140–151. ACM Press, 2009.

21. D. Monniaux. Personal communication with Monniaux at VMCAI, January 2010.

22. M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In ICALP, volume
3142 of LNCS, pages 1016–1028. Springer, 2004.

23. M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. ACM Trans. Pro-
gram. Lang. Syst., 29(5), August 2007.

16

24. A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Linear
Programming. Math. Program., 99(2):283–296, 2004.

25. D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Transla-
tion. Journal of Symbolic Computation, 2(3):293–304, September 1986.

26. J. Regehr and A. Reid. HOIST: A System for Automatically Deriving Static
Analyzers for Embedded Systems. ACM SIGOPS Operating Systems Review,
38(5):133–143, 2004.

27. T. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation of the Best Trans-
former. In VMCAI, volume 2937 of LNCS, pages 252–266. Springer, 2004.

28. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint based linear relations
analysis. In SAS, volume 3148 of LNCS, pages 53–68. Springer, 2004.

29. A. Simon and A. King. Taming the Wrapping of Integer Arithmetic. In SAS,
volume 4634 of LNCS, pages 121–136. Springer, 2007.

17

