
The Two Variable Per Inequality Abstract Domain†

Axel Simon (axel.simon@ens.fr)
École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France‡

Andy King (a.m.king@kent.ac.uk)
University of Kent, Canterbury, CT2 7NF, United Kingdom

Jacob M. Howe (jacob@soi.city.ac.uk)
City University London, EC1V 0HB, United Kingdom

Abstract. This article presents the Two Variable Per Inequality abstract domain
(TVPI domain for short). This so-called weakly-relational domain is able to express
systems of linear inequalities where each inequality has at most two variables. The
domain represents a sweet-point in the performance-cost tradeoff between the faster
Octagon domain and the more expressive domain of general convex polyhedra.
In particular, we detail techniques to closely approximate integral TVPI systems,
thereby finessing the problem of excessively growing coefficients, yielding – to our
knowledge – the only relational domain that combines linear relations with arbitrary
coefficients and strongly polynomial performance.

Keywords: polyhedral analysis, integer programming, abstract interpretation

Static analysis methods have evolved from inferring prerequisite in-
variants for compiler optimisations to tools in their own right that are
able to prove the absence of run-time errors of software. The abstract
interpretation framework [21] provides a way of constructing and jus-
tifying program analyses. The key idea is to simulate each operation
in a program with an abstract analog that operates on a description
of the program state, rather than the state itself. The descriptions are
chosen to trace a property of interest, for instance, an interval that en-
closes all possible values of a variable would be of value when reasoning
about array bounds. These descriptions constitute what is known as an
abstract domain. An abstract domain is usually presented as a lattice
〈D,v,t,u〉 and the analysis itself is formulated as a set of recursive
equations over D. The recursive equations are solved iteratively, until
a fixpoint is reached which is detected using the ordering predicate
v. Each equation expresses how a program statement transforms the
state at one program point to the state at another. Equations may
be recursive because of loops in the program. The meet u and join

† This paper is a revised extract of the first author’s PhD thesis [65], which, in
turn, extends [72].

‡ New address: Technische Universität München, Lehrstuhl für Informatik 2,
Boltzmannstraße 3, 85748 Garching, Germany (axel.simon@in.tum.de).

c© 2010 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

tvpi-rev.tex; 27/10/2010; 10:46; p.1

2

1

5

1 5 10

x1

x215

P P

1

5

1 5 10

x1

x215

P121 2

7 7

Figure 1. Calculating the convex hull P12 = P1 tP P2 of planar polyhedra using the
generator representation

t operators arise when modelling control flow. For example, the state
at the beginning of the then-branch of an if-then-else construct can
be expressed as the meet of the condition with the state immediately
before the conditional. Dually, the join operation t summarises the
two states from the then- and else-branch into a single state. Some
lattices contain infinite ascending chains of the form d1 < d2 < . . .
where di ∈ D which can be generated during a fixpoint computation.
In this case widening is required to induce termination [24].

Research into abstract domains revolves around the trade-off be-
tween the expressiveness of the domain and the cost of its operations.
This is no more so than for numeric abstract domains. For instance,
the domain of convex polyhedra [25] provides the ability to infer lin-
ear relationships between any number of variables. However, common
implementations of convex polyhedra [6, 10, 32, 44] suffer from scal-
ability problems that relate to the calculation of the join operation
which corresponds to the convex hull in the context of polyhedra.
The classic approach to calculating the convex hull of two polyhedra
is to convert the half-space representation using inequalities into the
generator representation consisting of vertices, rays and lines. Vertices
are points in the polyhedron that cannot be represented by a convex
combination of other points. Rays and lines are vectors that repre-
sent unidirectional and bidirectional trajectories, respectively, towards
which the polyhedron extends to infinity. The convex hull of two input
polyhedra can be calculated by converting both polyhedra into their
generator representation, joining their sets of vertices, rays and lines
and converting these three sets back into the half-space representation.
In order to illustrate the problems using this approach, consider Fig. 1.
Here, the shown polyhedra P1 = [[{1 ≤ x1 ≤ 7, 2 ≤ x2 ≤ 8}]] and
P2 = [[{1 ≤ x1 ≤ 7, 10 ≤ x2 ≤ 16}]] contain neither rays nor lines as
they are both bounded. The set of vertices are shown as crosses. These
vertices are included in the resulting convex hull P12 = P1tPP2 which is

tvpi-rev.tex; 27/10/2010; 10:46; p.2

3

1

5

1 5 10

x1

x215

P' P'

1

5

1 5 10

x1

x215

P'121 2

7 7

Figure 2. Calculating the convex hull P ′
12 = P ′

1tP P ′
2 of three dimensional polyhedra

using the generator representation

shown in the right graph of the figure. A similar example in three dimen-
sions is shown in Fig. 2 which depicts the convex hull P ′

12 = P ′
1 tP P ′

2

of the polyhedra P ′
1 = [[{1 ≤ x1 ≤ 7, 2 ≤ x2 ≤ 8, 0 ≤ x3 ≤ 3}]]

and P ′
2 = [[{1 ≤ x1 ≤ 7, 10 ≤ x2 ≤ 16, 0 ≤ x3 ≤ 3}]]. While in

the two-dimensional case each input polyhedron can be described by
four inequalities or, equivalently, four vertices, each input in the three-
dimensional case is described by six inequalities or, equivalently, eight
vertices. In general, calculating the convex hull of two d-dimensional hy-
percubes requires 2d inequalities to represent each input polyhedron or,
equivalently, 2d vertices. Thus, even though input and output polyhedra
can be described by a small number of inequalities, the intermediate
representation using generators can be exponential.

While circumventing this exponential blow-up is possible by approx-
imating the convex hull operation [69], the most compelling example
of large-scale program analysis that uses a relational domain [11] is
based on a sub-class of polyhedra, namely the Octagon domain [47].
The Octagon domain [47] only allows linear inequalities of the form
±x ± y ≤ c where c ∈ Q and thereby scales to hundreds of thousand
lines of code. However, for certain applications like string buffer analysis
[67, 70], the expressiveness of these inequalities is insufficient. Further-
more, analysers such as Astrée use auxiliary domains to recover from
the precision loss that occurs when using only Octagons. For example,
the byte offset b when accessing an integer array at index i is b = 4i
which needs to be expressed as an adjunct to the Octagon domain.
Not only does this approach require a second domain, it also requires
an accompanying substitution strategy that, for instance, replaces each
occurrence of 4i with b [48].

This article presents the theory and the practical design of the Two
Variable Per Inequality (TVPI) domain in which inequalities take on
the form ax + by ≤ c where a, b, c ∈ Z. This domain can thus express
arbitrary linear relationships between any two program variables. The

tvpi-rev.tex; 27/10/2010; 10:46; p.3

4

TVPI domain thus addresses the need for two communicating domains,
for instance, to argue about byte offsets into arrays, leading to an
overall simpler analysis design. The central idea of the TVPI domain
is to replace operations on n-dimensional polyhedra by operations on
planar polyhedra. Specifically, given a system of TVPI inequalities I,
two inequalities ax+by ≤ c, dx+ez ≤ f ∈ I can be combined to obtain
ae z−bd y ≤ af −cd if a > 0 and d < 0. Adding this so-called resultant
to the original system, removing redundant inequalities and repeating
this process leads to a so-called closed system after a finite number of
steps. The key observation is that the join of two closed TVPI systems
can be broken down to calculating the planar convex hull for each pair
of variables. Thus, instead of running the general convex hull algorithm
for n-dimensional polyhedra, an O(n log(n)) planar convex hull algo-
rithm [68] is run for n(n − 1)/2 pairs of variables. On the contrary,
implementing the meet operation, that is, adding new inequalities to
the system, must close the TVPI system again by calculating resultants.

Another challenge in using a polyhedral domain is the inference of a
fixpoint in finite time. While widening ensures that a loop fixpoint is ap-
proximated by a finite number of inequalities [25], it has been observed
that coefficients of inequalities can grow excessively which compromises
the practicality of an analysis [69]. Assuming that variables in the pro-
gram are integral, the polyhedron describing the program state can be
shrunk around the contained integral points without compromising cor-
rectness, resulting in a so-called Z-polyhedron in which every extreme
point is integral. In practice, the coefficients of these extreme points
are limited by the maximal range of the program variables, thereby
also limiting the coefficients of inequalities describing the polyhedron.
However, since calculating a Z-polyhedron from a given TVPI polyhe-
dron is NP-complete [42], we present an approximation that is precise
in practice but retains the strongly polynomial performance.

In summary, this article describes the design and implementation of
the TVPI domain, thereby presenting the following novelties:

− a complete set of domain operations for planar polyhedra consist-
ing of an O(n log(n)) convex hull algorithm, a redundancy removal
algorithm for the meet operation, a linear entailment check and a
linear programming function to query variable bounds;

− a practical implementation of the TVPI domain including an in-
cremental closure algorithm and an implementation as a reduced
product between intervals and TVPI inequalities;

− a refinement of the TVPI domain that shrinks each planar poly-
hedron around the contained integral points. The ensuing limit

tvpi-rev.tex; 27/10/2010; 10:46; p.4

5

on the size of coefficients in the inequalities guarantees a strongly
polynomial performance of all domain operations.

After presenting basic notation used in this article, Sections 2–4
describe each of the three aspects above in turn. Section 5 demonstrates
the expressiveness of the TVPI domain and Section 6 concludes.

1. The Domain of Convex Polyhedra

1.1. The Lattice of Convex Spaces

A polyhedral analysis expresses numeric constraints over the set of
abstract variables X . For the sake of this section, let ~x denote the
vector of all variables in X , thereby imposing an order on X . Let LinR

denote the set of linear expressions of the form ~a · ~x where ~a ∈ R|X |

and let IneqR denote the set of linear inequalities ~a ·~x ≤ c where c ∈ R.
For simplicity, let e.g. 6x3 ≤ x1 + 5 abbreviate 〈−1, 0, 6, 0, . . . 0〉 · ~x ≤ 5
and let e.g. x2 = 7 abbreviate the two opposing inequalities x2 ≤ 7
and x2 ≥ 7, the latter being an abbreviation of −x2 ≤ −7. As the
analysis only infers integral properties, the notation e1 < e2 is used to
abbreviate e1 ≤ e2−1. Each inequality ~a ·~x ≤ c ∈ IneqR induces a half-
space [[~a ·~x ≤ c]] = {~x ∈ R|X | | ~a ·~x ≤ c}. A set of inequalities I ⊆ IneqR

induces a closed, convex space [[I]] =
⋂

ι∈I [[ι]]. Let S = {[[I]] | I ⊆
IneqR} denote the set of all convex spaces and S = S1 gS2 denote the
topological closure of the convex hull of S1, S2 ∈ S, that is, the smallest
closed, convex space S such that S1 ⊆ S and S2 ⊆ S. Together with
inclusion ⊆ and intersection ∩, S forms a complete lattice 〈S,⊆, g ,∩〉.

1.2. The Lattice of Convex Polyhedra

Given this lattice, the solution of a set of semantic equations that
describe the behaviour of a program can be expressed as a fixpoint
calculation. However, the lattice contains infinite ascending chains that
converge on infinite sets of inequalities or on inequalities with irrational
coefficients. Let Lin denote the set of linear expressions of the form ~a ·~x
where ~a ∈ Z|X | and let Ineq denote inequalities e ≤ c where e ∈ Lin and
c ∈ Z. Each inequality ~a · ~x ≤ c ∈ Ineq induces a half-space [[~a · ~x ≤ c]]
= {~x ∈ Q|X | | ~a · ~x ≤ c}. Define Poly = {[[I]] | I ∈ Ineq ∧ |I| ∈ N}
to be the set of convex polyhedra. In order to ensure that the fixpoint
computation only converges on elements in Poly rather than on states
in S ⊃ Poly , a widening operator ∇ : Poly × Poly → Poly with the
following properties must be inserted into every loop of the semantic

tvpi-rev.tex; 27/10/2010; 10:46; p.5

6

1

5

1 5 8

x

x

1

2

1

5

1 5 8

x

x

1

2

1

5

1 5 8

x

x

1

2

PP

P'

1

5

1 5 8

x

x

1

2

1 2P

P'1 2P'

❶ ❷

❸ ❹

Figure 3. Example to show that Z-polyhedra are not closed under intersection.
Integral points are shown as crosses and the half-spaces [[x ≤ 4]] and [[x ≥ 6]] are
indicated by vertical lines with arrows pointing towards the feasible space

equations where Q denotes the previous and P the current state that
includes Q [24, 25]:

1. ∀P,Q ∈ Poly . P ⊆ P∇Q

2. ∀P,Q ∈ Poly . Q ⊆ P∇Q

3. for all increasing chains P0 ⊆ P1 ⊆ . . ., the increasing chain defined
by R0 = P0 and Ri+1 = Ri∇Pi+1 is ultimately stable.

In order to reflect the restriction of Poly to finitely representable
state spaces in the operations on Poly , we use tP for g , further-
more uP for ∩ and vP for ⊆, yielding the lattice of convex polyhedra
〈Poly ,vP ,tP ,uP 〉. This lattice is incomplete as neither the join nor
meet of an arbitrary number of polyhedra is necessarily a polyhedron.

tvpi-rev.tex; 27/10/2010; 10:46; p.6

7

1.3. The Lattice of Z-Polyhedra

Widening not only restricts the fixpoint calculation to elements of Poly
but in fact ensures that the number of inequalities remains computa-
tionally tractable. In contrast, the size of coefficients may still grow
beyond manageable sizes as a result of applying the tP operation.
One possible approach for dealing with inequalities with very large
coefficients and constants is to merely discard them during the analysis
[69], thereby incurring a precision loss that is difficult to understand
and anticipate when interpreting the results of an analysis. A more
semantic approach can be taken when all variables of interest are in-
tegral, which makes it possible to restrict the domain of Poly further
to the set of convex spaces over Z. These so-called Z-polyhedra can
be characterised by the fact that all their vertices, that is, all extreme
points of the convex space, have integral coordinates. As a consequence,
the inequalities that define Z-polyhedra have coefficients whose size is
bounded by the coordinates of the vertices they connect. In particular,
by equating polyhedra that contain the same set of integral points, it
is possible to define a lattice of Z-polyhedra 〈Poly≡Z,vZ

P ,tZ
P ,uZ

P 〉. If
each equivalence class is represented by its smallest polyhedron it is
possible to put vZ

P = vP and tZ
P = tP . However, the meet operation

uP is not closed for Z-polyhedra. In order to illustrate this, consider
Fig. 1.3. The state space P ∈ Poly≡Z over x1, x2 in the first graph is
transformed by evaluating the conditional x2 6= 5 which is implemented
by calculating P ′ = (P uP [[x ≤ 4]]) tP (P uP [[x ≥ 6]]). Observe that
the input P as well as the two half-spaces [[x ≤ 4]] and [[x ≥ 6]] are
Z-polyhedra. The second graph shows the two intermediate results
P1 = P uP [[x ≤ 4]] and P2 = P uP [[x ≥ 6]] which both have two
non-integral vertices. As a consequence, the join of P1 and P2, shown
as third graph, has non-integral vertices as well and is therefore not a
Z-polyhedron. However, if the intermediate results were shrunk around
the contained integral point sets, as illustrated in the fourth graph, all
vertices of the intermediate results would be integral and the join would
be a Z-polyhedron, too. However, for general, n-dimensional polyhedra,
the number of inequalities necessary to represent a Z-polyhedron can
grow exponentially with respect to a polyhedron over Q that contains
the same integral points [58, Chap. 23]. Thus, no efficient algorithm ex-
ists to implement the uP -operation on Z-polyhedra. However, in order
to limit the growth of coefficients, Sect. 4 presents efficient techniques
to approximate the uZ

P -operation. In anticipation of this section, we
define all operations that query the value of a polyhedron to return
integral bounds.

tvpi-rev.tex; 27/10/2010; 10:46; p.7

8

Given the basic operations on polyhedra, the next section proposes
implementations for them in the context of planar polyhedra.

2. Planar Polyhedra

This section presents operations on planar, that is, two-dimensional
polyhedra which are later lifted to sets of inequalities that contain at
most two variables but with arbitrary coefficients, thereby extending
the abstract domain of Octagons. We show that all domain operations
on planar polyhedra can be implemented efficiently, thereby providing
a basis for an efficient lifting to arbitrary dimensions. The key obser-
vation for implementing efficient algorithms is that inequalities in two
dimensions can be sorted by angle. The section therefore commences by
presenting basic properties of inequalities in planar space. The notation
introduced here is then used to define the various domain operations
on planar polyhedra.

2.1. Operations on Inequalities

In this section we shall present some basic concepts from the literature
about planar inequalities [59]. For the sake of this section, let X =
{x, y} denote the set of polyhedral variables that correspond to the
axes of the two-dimensional Euclidian space. Observe that the vector
〈a, b〉 is orthogonal to the line ax + by = c and points away from the
induced half-space [[ax + by ≤ c]]. This vector induces an ordering on
half-spaces via the orientation mapping θ. This map θ : Ineq → [0, 2π)
is defined such that θ(ax + by ≤ c) = ψ where cos(ψ) = a/

√
a2 + b2

and sin(ψ) = b/
√
a2 + b2. The mapping θ corresponds to the counter-

clockwise angle which the half-space of x ≤ 0 has to be turned through
to coincide with that of ax + by ≤ c as illustrated in Fig. 4. In the
context of this work, θ is mainly used to compare the orientation of
two half-spaces which is key to sorting a set of inequalities. For the
sake of efficiency and numeric stability, it is desirable to implement
this comparator without recourse to trigonometric functions [59]. To
this end, define the function class : Ineq → {1, 2, . . . , 8} which classifies
an inequality according to its angle as shown in Fig. 5. It is defined by:

class(ax+ by ≤ c) =


7− sign(b) : a < 0

1 : a = 0 ∧ b ≤ 0
5 : a = 0 ∧ b > 0

3 + sign(b) : a > 0

tvpi-rev.tex; 27/10/2010; 10:46; p.8

9

x

y

x≤0

θ

Figure 4. The angle of a planar inequality is measured relative to x ≤ 0

x

y

x≤5

y≤5

-x≤5

-y≤5 x+y≤7-x+
y≤
7

-x-y≤7 x-y
≤7

❶

❷
❸

❹

❺

❻
❼

❽

Figure 5. Classifying planar inequalities by their angle

Here sign : Z → {−1, 0, 1} is the function that returns −1 if the
given number is negative, 1 if it is positive and zero otherwise. A com-
parison between the angles of ι1 ≡ a1x+b1x ≤ c1 and ι2 ≡ a2x+b2x ≤
c2 can now be implemented as follows:

θ(ι1) ≤ θ(ι2) ⇐⇒ class(ι1) ≤ class(ι2) ∨
class(ι1) = class(ι2) ∧ a1b2 ≤ a2b1

Furthermore, define the angular difference ι1]ι2 between two in-
equalities ι1 and ι2 as the counter-clockwise angle between θ(ι1) and
θ(ι2). More precisely ι1]ι2 = (θ(ι2) − θ(ι1)) mod 2π. This function is
used to test if two inequalities are less than π apart. As above, this test
can be implemented without recourse to trigonometric functions.

2.1.1. Entailment between Single Inequalities
A recurring function is the test if two inequalities define a sub-space of
another inequality. In fact, this test is a building block of the upcoming
domain operation which applies this test to compare consecutive ele-
ments of a sorted sequence of inequalities and thereby infer information
on an inequality with respect to the whole sequence.

We give a definition of the test in the form of a case distinction on
the coefficients of the involved inequalities. Let ιi ≡ aix + biy ≤ ci for
i = 1, 2 and ι ≡ ax+ by ≤ c. Assume ι1]ι2 ≤ π, otherwise exchange ι1
and ι2. We define the following predicates which are explained below:

tvpi-rev.tex; 27/10/2010; 10:46; p.9

10

{ι1} v ι ⇐⇒



false if a1b− ab1 6= 0
false else if a1a < 0
false else if b1b < 0
a
a1
c1 ≤ c else if a1 6= 0

b
b1
c1 ≤ c else if b1 6= 0

(c < 0 ∧ a = 0 ∧ b = 0)⇒ c1 < 0 otherwise

{ι1, ι2} v ι ⇐⇒


{ι1} v ι ∨ {ι2} v ι if d = a1b2 − a2b1 = 0
false else if λ1 = (ab2 − a2b)/d < 0
false else if λ2 = (a1b− ab1)/d < 0
λ1c1 + λ2c2 ≤ c otherwise

Intuitively, the predicate {ι1} v ι holds iff [[ι1]] ⊆ [[ι]] and, analogously,
{ι1, ι2} v ι holds iff [[{ι1, ι2}]] ⊆ [[ι]]. The reasoning behind the above
definitions is as follows.

Inclusion between two single inequalities never holds if they are not
parallel, that is, if the determinant of their coefficients a1b − ab1 is
non-zero. Furthermore, the inclusion cannot hold if ι1 and ι are anti-
parallel, which is the case if the coefficients for x have different signs.
Similarly for y. Otherwise, the intersection points with the y-axis of ι1
and ι are calculated and compared. In particular, the subset relation
{x | a1x ≤ c1} ⊆ {x | ax ≤ c} implies that x ≤ c

a if x ≤ c1
a1

, assuming
that a1 > 0 and a > 0. The latter is equivalent to c1

a1
≤ c

a and since
a is positive, a

a1
c1 ≤ c follows. Now assume a1 < 0 and a < 0. From

x ≥ c
a if x ≥ c1

a1
follows c1

a1
≥ c

a . Multiplying by a < 0 yields a
a1
c1 ≤ c.

In case a1 = 0 but b1 6= 0, the intersection points with the x-axis can
be calculated and compared. If b1 = 0, too, then ι1 is tautologous or
unsatisfiable which is handled by the implication.

The second test {ι1, ι2} v ι reduces to the first test whenever ι1 and
ι2 are parallel, that is, if the determinant a1b2−a2b1 is zero. Otherwise,
a linear combination of ι1 and ι2 is calculated, yielding an inequality
that is parallel to ι. Specifically, λ1 and λ2 are calculated such that
λ1a1 + λ2a2 = a and λ1b1 + λ2b2 = b. If either λ1 or λ2 is negative,
the resulting half-space of the parallel inequality faces the opposite
direction and the inequality ι is not entailed. If both λ1 and λ2 are
positive, entailment can be determined by comparing the constant of
the parallel inequality, namely λ1c1 + λ2c2, with the constant of ι.

Due to the ability to sort inequalities by angle, this constant-time
entailment check between three inequalities can be lifted to a linear-
time entailment check between two planar polyhedra, as presented in
the next section.

tvpi-rev.tex; 27/10/2010; 10:46; p.10

11

P1
P2

x

y ι1

ι2

ι

P1
P2

x

yι

Figure 6. The entailment check P1 vP P2 reduces to entailment checks {ι1, ι2} v ι
by testing each inequality ι of P2 with respect to some ι1, ι2 of P1

2.2. Operations on Sets of Inequalities

In the sequel we present operations on planar polyhedra that exploit
the fact that inequalities can be sorted by angle. Given this order on
inequalities, entailment, redundancy removal, the convex hull and a
linear programming algorithm can all be implemented efficiently.

2.2.1. Entailment Check
By traversing the inequalities so that their angles are increasing, a
linear-time entailment check between two planar polyhedra can be im-
plemented. Consider the task of checking whether P1 vP P2, that is, if
P1 ⊆ P2 holds. It is sufficient to show that each inequality ι that defines
a facet of P2 contains the polyhedron P1 as shown on the left of Fig. 6.
Specifically, it is sufficient to find the two adjacent inequalities ι1, ι2 of
P1 that are angle-wise no larger and strictly larger than ι and ensure
that {ι1, ι2} v ι. All inequalities in P1 which are not tested in this way
will only make the inner polyhedron P1 smaller and, hence, cannot
affect the outcome of the entailment check. Algorithm 1 formalises this
idea. Here, the trivial cases of P1 = ∅ and P2 = ∅ are checked before
the inequalities that constitute the two polyhedra are extracted with
indices that increase with the angle. For each inequality ιi in the facet
list of P2, the inner loop in lines 12–15 finds two adjacent inequalities
ιl mod n, ιu mod n in P1 that enclose the inequality ιi angle-wise. If the
entailment {ιl mod n, ιu mod n} v ιi holds for all ιi and corresponding
ιl mod n, ιu mod n, then P2 is entailed by P1. Note that the total number
of times the inner loop iterates is |I2| where [[I2]] = P2. The whole
algorithm runs in O(|I1| + |I2|) where [[I1]] = P1 and is thereby linear
in the size of its input.

tvpi-rev.tex; 27/10/2010; 10:46; p.11

12

Algorithm 1 Checking entailment between planar polyhedra
procedure entails(P1, P2) where P1, P2 ∈ Poly
1: if P1 = ∅ then
2: return true
3: end if
4: if P2 = ∅ then
5: return false
6: end if
7: [[{ι0, . . . ιn−1}]]← P1 /*such that θ(ι0) ≤ θ(ι1) ≤ . . . ≤ θ(ιn−1)*/
8: [[{ι′0, . . . ι′m−1}]]← P2 /*such that θ(ι′0) ≤ θ(ι′1) ≤ . . . ≤ θ(ι′m−1)*/
9: u← 0

10: l← n− 1
11: for i ∈ [0,m− 1] do
12: while u < n ∧ θ(ιu) < θ(ι′i) do
13: l← u
14: u← u+ 1
15: end while
16: if {ιl mod n, ιu mod n} 6v ι′i then
17: return false
18: end if
19: end for
20: return true

A slightly more complicated iteration strategy is necessary to remove
redundant inequalities. This task is the topic of the next section.

2.2.2. Removing Redundancies
The meet operation uP on planar polyhedra amounts to conjoining two
sets of inequalities. This section presents an algorithm to remove redun-
dant inequalities from the resulting set of inequalities, thereby main-
taining a compact representation. Furthermore, redundancy removal
also detects when an inequality system has become unsatisfiability as
the result of the meet operation.

2.2.2.1. Principle. We define the function nonRedundant({ι1, . . . , ιm})
which takes a set of inequalities {ι1, . . . , ιm} that are sorted by angle.
We use the notation 〈ι1, . . . , ιm〉 to describe a sorted sequence of el-
ements which, in practice, may be implemented as a doubly linked
list. In this representation, assigning a sequence 〈ιm, ι1, . . . ιm−1〉 to I
is a constant-time operation that rotates the original sequence I =
〈ι1, . . . ιm〉 one position to the right.

tvpi-rev.tex; 27/10/2010; 10:46; p.12

13

x

y
ι1
ι2

ι3
ι4ι5

ι6

ι7

ι8

ι9

ι10

Figure 7. A chain of inequalities ι1, . . . ι4 that are non-redundant with respect to
their neighbours but which are redundant with respect to ι9 and ι5.

The key to removing redundant inequalities lies in the observation
that the inequality ιi is redundant if {ι(i−1) mod m, ι(i+1) mod m} v ιi.
Checking each inequality once against its neighbours is not sufficient
to determine that no such pair of inequalities exists since each time an
inequality is removed, the previously separate neighbours become adja-
cent which might make one of them redundant, too. This is illustrated
in Fig. 7. Here, the feasible space of the polyhedron is shown in grey
and, hence, the inequalities ι10, ι1, . . . ι4 are redundant. Consider a re-
dundancy removal function that starts checking each inequality from ι1
onwards. Since {ι10, ι2} 6v ι1, the inequality ι1 is non-redundant with re-
spect to its two neighbours and iteration proceeds to infer {ι1, ι3} 6v ι2,
{ι2, ι4} 6v ι3 and so forth. It is not until iteration ten when {ι9, ι1} v ι10
and ι10 is discarded. If iteration stops here, the redundant inequalities
ι1, . . . ι4 are not detected as such and an incorrect result is returned.
In a correct implementation, iteration has to proceed until a fixpoint is
reached, that is, until each inequality was found to be non-redundant.

2.2.2.2. Implementation. This strategy is implemented as Alg. 2. The
input inequalities are stored in I in increasing angular order. The
variable todo tracks the number of inequalities that still need to be
examined and is initially set to the size of the sequence I. Lines 4–
5 stop the loop short when the size of the system is so small that
there is no neighbour to test against, which, in turn, would lead to
the incorrect removal of the single remaining inequality. Otherwise,
|I| ≥ 2 and the conditional in line 8 tests if the first inequality in I is
redundant with respect to its two neighbours. In case ι1 is redundant,
lines 9–10 remove this inequality from I and the todo counter is reset
to enforce that every inequality in I is checked once more. Lines 12–13
deal with the case that ι1 is non-redundant in which case the sequence
I is rotated in order to check the next inequality. In this case the todo
counter is merely decremented with the effect that the loop eventually

tvpi-rev.tex; 27/10/2010; 10:46; p.13

14

Algorithm 2 Removal of redundant inequalities
procedure nonRedundant({ι1, . . . ιn}) where ιi ∈ Ineq
1: I ← 〈ι1, . . . ιn〉 /*θ(ι1) ≤ θ(ι2) ≤ . . . ≤ θ(ιn)*/
2: todo← |I|
3: while todo > 0 do
4: if |I| ≤ 1 then
5: return I
6: end if
7: 〈ι1, . . . ιm〉 ← I
8: if {ιm, ι2} v ι1 then
9: I ← 〈ιm, ι2, ι3, . . . ιm−1〉

10: todo← |I|
11: else
12: I ← 〈ι2, ι3, . . . ιm−1, ιm, ι1〉
13: todo← todo− 1
14: end if
15: end while
16: return I

stops when all remaining inequalities are non-redundant. With respect
to the running-time of the algorithm, observe that Fig. 6 constitutes the
worst-case scenario in which the loop iterates over a maximum chain
of inequalities until the last inequality ι10 is found to be redundant.
At this point, todo is repeatedly reset to |I| until ι4 is removed and
the loop iterates further until ι9, only to find that all inequalities are
non-redundant.

2.2.2.3. Complexity. The algorithm runs for at most two complete
iterations such that it is in O(n) where n is the number of input
inequalities. Note that the first inequality in the returned set I does not
necessarily have the smallest angle. Rather than sorting the resulting
set, it can be rotated until the smallest inequality is at the beginning
of the sequence.

2.2.2.4. Unsatisfiability. A special case arises when the input to the
nonRedundant function is an unsatisfiable set of inequalities. The al-
gorithms will terminate with either I = {ι0, ι1} where ι0]ι1 = π or
with I = {ι0, ι1, ι2} where ιi]ι(i+1) mod 3 < π. In the former case the
coefficients of the inequalities need to be compared in order to detect
that their intersection is empty. In the latter case, the boundaries of

tvpi-rev.tex; 27/10/2010; 10:46; p.14

15

the half-spaces [[ι0]] and [[ι1]] intersect in a point 〈vx, vy〉. The system is
unsatisfiable if 〈vx, vy〉 /∈ [[ι2]], i.e. if avx+bvy > c where ι2 ≡ ax+by ≤ c.

This completes the description of the redundancy removal algorithm
which forms the basis for the meet operation. We now proceed to define
the join operation, which turns out to be the most intricate.

2.2.3. Convex Hull
In 1972 Graham published the first efficient algorithm to compute the
convex hull of a set of points in planar space [29]. Since then numerous
improvements [1, 2, 3, 15, 41] and extensions to polytopes [53, 74] have
been proposed. An overview can be found in [54, 60]. Interestingly,
some of these improvements turned out to be incorrect [30, 74, 75]
which suggests that geometric algorithms are difficult to construct cor-
rectly. While the convex hull of polytopes (bounded polyhedra) can be
calculated straightforwardly by taking the convex hull of their extreme
points, calculating the convex hull of unbounded polyhedra, that is,
convex spaces containing rays and lines [54, 60], turns out to be more
subtle due to a large number of geometric configurations. Even for
planar polyhedra, the introduction of rays makes it necessary to handle
polyhedra such as a single half-space, a single ray, a single line, two fac-
ing (not coinciding) half-spaces, etc., all of which require special cases
in a point-based algorithm. The problem is exacerbated by the number
of ways these special polyhedra can be combined. In order to simplify
the correctness argument, we present a direct reduction of the convex
hull problem of planar polyhedra to the classic convex hull problem
for a set of points. The idea of the presented algorithm is to confine
vertices of the input polyhedra to a box and to use the rays to translate
these points outside the box. A linear pass around the convex hull of
all these points is then sufficient to determine the resulting polyhedron.
This approach inherits the time complexity of the underlying convex
hull algorithm, which is in O(n log n) [29]. Our algorithm follows the
standard tactic for calculating the convex hull of polyhedra that are
represented as sets of inequalities, namely to convert the input into
an intermediate ray and vertex representation. Two approaches to the
general (n-dimensional) conversion problem are the double description
method [49] (also known as the Chernikova algorithm [16, 43]) and
the vertex enumeration algorithm of Avis and Fukuda [4]. While our
approach is linear, the Chernikova method leads to a cubic time solution
for calculating the convex hull of planar polyhedra [43] whereas the
method of Avis and Fukuda is quadratic.

Before we detail the algorithm itself, we define a few auxiliary func-
tions. We then give an explanation in the context of an example in
which the join of a bounded polyhedron and a polyhedron with two

tvpi-rev.tex; 27/10/2010; 10:46; p.15

16

Algorithm 3 Calculating an inequality from two points
procedure connect(〈x1, y1〉, 〈x2, y2〉) where 〈xi, yi〉 ∈ Q2

return (y2 − y1)x+ (x1 − x2)y ≤ (y2 − y1)x1 + (x1 − x2)y1

Algorithm 4 Calculating the generators of a planar polyhedron
procedure extreme({ι0, . . . ιn−1}) where θ(ι0) ≤ θ(ι1) ≤ . . . θ(ιn−1)
1: 〈V,R〉 ← 〈∅, ∅〉
2: if n=1 then
3: ax+ by ≤ c← ι0
4: R← 〈−a/

√
a2 + b2,−b/

√
a2 + b2〉

5: end if
6: for i ∈ [0, n− 1] do
7: ax+ by ≤ c← ιi
8: dpre ← ι(i−1) mod n]ιi ≥ π ∨ n = 1
9: dpost ← ιi]ι(i+1) mod n ≥ π ∨ n = 1

10: if dpre then
11: R← R ∪ {〈b/

√
a2 + b2,−a/

√
a2 + b2〉}

12: end if
13: if dpost then
14: R← R ∪ {〈−b/

√
a2 + b2, a/

√
a2 + b2〉}

15: else
16: V ← V ∪ intersect(ιi, ι(i+1) mod n)
17: end if
18: if dpre ∧ dpost then
19: V ← V ∪ {v} where v ∈ {〈x, y〉 | ax+ by = c}
20: end if
21: end for
22: return 〈V,R〉

rays is calculated. A note on degenerate input polyhedra and their
treatment completes the description of the algorithm.

2.2.3.1. Auxiliary Functions The auxiliary function intersect(a1x +
b1y ≤ c1, a2x + b2y ≤ c2) calculates the set of intersection points
of the two lines a1x + b1y = c1 and a2x + b2y = c2. In practice, an
implementation of this function only needs to be partial since it is only
applied when the resulting set contains a single point. Algorithm 3
presents connect which generates an inequality from two points subject
to the following constraints: the half-space induced by connect(p1, p2)
has p1 and p2 on its boundary and, if p1, p2, p3 are sorted counter-

tvpi-rev.tex; 27/10/2010; 10:46; p.16

17

1

5

1 5

y

x

ι0

ι1

ι2

ι'0

ι'1
ι'2

ι'3

ι'4

ι'5

Figure 8. Calculate a square around the origin which includes all vertices

clockwise, then p3 is in the feasible space. The notation p1, p2 is used to
abbreviate connect(p1, p2). Furthermore, the predicate saturates(p, ι)
holds whenever the point p is on the boundary of the half-space defined
by the inequality ι, that is, saturates(〈x1, y1〉, ax+by ≤ c) iff ax1+by1 =
c. Moreover, the predicate inBox (s, p) holds whenever the point p is
strictly contained within a square of width 2s that is centred on the
origin. Specifically, inBox (s, 〈x, y〉) iff |x| < s ∧ |y| < s. Finally, let
scan(Q) denote the application of Graham’s algorithm to calculate the
convex hull of a sequence of points Q that is already ordered by angle.

2.2.3.2. A Typical Run of the Algorithm The algorithm divides into a
decomposition and a reconstruction phase. The hull function, presented
as Alg. 5, decomposes the input polyhedra into their corresponding ray
and vertex representations by calling the function extreme in lines 4
and 5 which is defined as Alg. 4. The remainder of the hull function
reconstructs a set of inequalities whose half-spaces enclose both sets
of rays and points. The algorithm requires the input polyhedra to be
non-redundant and sorted; its output is also non-redundant and sorted.

In order to illustrate the algorithm consider Fig. 8. The polyhe-
dron I = {ι0, ι1, ι2} and the polytope I ′ = {ι′0, . . . , ι′5} constitute the
input to the hull function. They are passed to the function extreme
at line 4 and 5. Note that we assume that the set of inequalities is
sorted by angle such that their indices increase with the angle. The

tvpi-rev.tex; 27/10/2010; 10:46; p.17

18

Algorithm 5 Calculating the convex hull of planar polyhedra
procedure hull(I1, I2) where Ii ⊆ Ineq satisfiable, non-redundant
1: if I1 = ∅ ∨ I2 = ∅ then
2: return ∅
3: end if
4: 〈P1, R1〉 ← extreme(I1)
5: 〈P2, R2〉 ← extreme(I2)
6: P ← P1 ∪ P2

7: R← R1 ∪R2 /*Note: |R| ≤ 8*/
8: s← 1 + max{|x0|, |y0| | 〈x0, y0〉 ∈ P}
9: Q← P

10: for 〈〈x0, y0〉, 〈a, b〉〉 ∈ P ×R do
11: Q← Q ∪ {〈x0 + 2

√
2sa, y0 + 2

√
2sb〉}

12: end for
13: if Q = {〈x1, y1〉} then /*result is zero dimensional (a point)*/
14: return {x ≤ x1, y ≤ y1,−x ≤ −x1,−y ≤ −y1}
15: end if
16: qp ← 〈

∑
〈x0,y0〉∈Q x0/|Q|,

∑
〈x0,y0〉∈Q y0/|Q|〉 /*qp is interior point*/

17: 〈q0, . . . , qn−1〉 ← sort(qp, Q) /*sort points by angle with qp*/
18: 〈qk0 , . . . , qkm−1〉 ← scan(〈q0, . . . , qn−1〉)
19: Ires ← ∅
20: for i ∈ [0,m− 1] do
21: 〈x1, y1〉 ← qki

22: 〈x2, y2〉 ← qk(i+1) mod m

23: ι← connect(〈x1, y1〉, 〈x2, y2〉) /*add ι if qki
or qki+1

is in box*/
24: add ← inBox (s, 〈x1, y1〉) ∨ inBox (s, 〈x2, y2〉) ∨m = 2
25: j ← (ki + 1) mod n
26: while ¬add∧j 6= ki+1 do /* ...or any point on ι is in the box*/
27: add ← saturates(qj , ι) ∧ inBox (s, qj)
28: j ← (j + 1) mod n
29: end while
30: if m = 2 ∧ inBox (s, 〈x1, y1〉) then
31: if y1 = y2 then
32: Ires ← Ires ∪ {sgn(x1 −x2)x ≤ sgn(x1−x2)x1}
33: else
34: Ires ← Ires ∪ {sgn(y1 − y2)y ≤ sgn(y1 − y2)y1}
35: end if
36: end if
37: if add then
38: Ires ← Ires ∪ {ι}
39: end if
40: end for
41: return Ires

tvpi-rev.tex; 27/10/2010; 10:46; p.18

19

1

5

1 5

y

x

Figure 9. Translate all vertices along the rays such that they lie outside the square

1

5

1 5

y

x

qk

qp

qk0
qk1

qk2
qk3

qk4

qk5
qk6

qk7

Figure 10. Calculate the convex hull of all points

loop at lines 6–22 of Alg. 4 examines the relationship of each inequal-
ity with its two angular neighbours. If dpost is false, the intersection
point intersect(ιi, ι(i+1) mod n) is a vertex which is added at line 16. In
the example, two vertices are created for I, namely v1 and v2 where
{v1} = intersect(ι0, ι1) and {v2} = intersect(ι1, ι2). Six vertices are
created for I ′. Conversely, if dpost is true, the intersection point is

tvpi-rev.tex; 27/10/2010; 10:46; p.19

20

1

5

1 5

y

x

qk4

qk5

qk6

qk7

Figure 11. The three inequalities qk4 , qk5 , qk5 , qk6 and qk6 , qk7 define a polyhedron
that includes the two polyhedra I = {ι0, ι1, ι2} and I ′ = {ι′0, . . . ι′5} from Fig. 8

degenerate, that is, either I contains a single inequality or the angular
difference between the current inequality and its successor is greater
than or equal to π. For instance, intersect(ι2, ι0) is degenerated and
thus it is not added to V . In case of degenerated intersection points,
dpre or dpost is true and rays are created at line 11 or 14, respectively.
The two rays along the boundaries of ιi and ι(i+1) mod n are generated
in loop iteration i when dpost is true and iteration (i+ 1) mod n when
dpre is true. In our example dpost is true for ι2, generating a ray along
the boundary of ι2 which recedes in the direction of the first quadrant,
whereas dpre is true for ι0 yielding a ray along ι0 which recedes towards
the second quadrant. No rays are created for the polytope I ′ because
dpost and dpre are false for all inequalities ι′0, . . . ι

′
5.

In general, both flags might true, e.g. for anti-parallel half-spaces.
In this case the inequality ιi cannot define a vertex and an arbitrary
point on the boundary of the half-space of ιi is created at line 19
to fix its representing rays in space. Another case not encountered in
this example arises when the polyhedron consists of a single half-space
(|I| = 1). In this case, line 4 creates a third ray to indicate on which side
the feasible space lies. Note that R never has more than four elements,
a case that arises when describing two facing half-spaces.

The remainder of the hull function is dedicated to the reconstruction
phase. The point and ray sets, returned by extreme, are merged at line
6 and 7. At line 8 the size of a square is calculated which includes
all points in P . The square has 〈s, s〉, 〈−s, s〉, 〈s,−s〉, 〈−s,−s〉 as its
corners. The square in the running example is depicted at all stages with
a dashed line. Fig. 9 shows how each point p ∈ P is then translated

tvpi-rev.tex; 27/10/2010; 10:46; p.20

21

1

5

1 5

y

x

ι0
ι1

ι'0ι'1

ι'2

Figure 12. Creating a point in the box for each line

by each ray r ∈ R yielding the point set Q. The translated points are
always outside the square since rays are normalised and then scaled by
2
√

2s, which corresponds to the largest extent of the square, namely
its diagonal. Lines 13–14 are not relevant to this example as they trap
the case when the output polyhedron consists of a single point. Line
16 calculates a feasible point qp of the convex hull of Q which is not
a vertex. This point serves as the pivot point in the classic Graham
scan. Firstly, the point set Q is sorted counter-clockwise with respect
to qp. Secondly, all interior points are removed, yielding the indices of
all vertices, in the case of the example k0, . . . k7 as shown in Fig. 10.
What follows is a round-trip around the hull which translates pairs of
adjacent vertices into inequalities by calling connect at line 23. Whether
this inequality actually appears in the result depends on the state of
the add flag. In our particular example the add flag is only set at line
24. Whenever it is set, it is because one of the two vertices lies within
the square. The resulting polyhedron is shown in Fig. 11 and consists of
the inequalities qk4 , qk5 , qk5 , qk6 and qk6 , qk7 which is a correct solution
for this example.

2.2.3.3. Pathological Configurations The reconstruction phase has to
consider certain anomalies that mainly arise in outputs of lower dimen-
sionality. One subtlety in the two dimensional case is the handling of
polyhedra that contain lines. This is illustrated in Fig. 12 where the
two inequalities ι0, ι1 are equivalent to one equation which defines a
space that is a line or, equivalently, a set of two opposing rays. The
result of translating the vertices by the two rays and their convex
hull is shown in Fig. 13. Observe that no point in the square is a

tvpi-rev.tex; 27/10/2010; 10:46; p.21

22

1

5

1 5

y

x

qk0

qk1

qk2

qk3
qk4

qp

qj

Figure 13. Creating inequalities if one of the points lies in the box

1

5

1 5

y

x

q0

q1

q2

q3
q4

q5

q6

q7q8

Figure 14. Handling the one-dimensional case

vertex in the hull of Q. Therefore the predicate inBox does not hold
for the two vertices qk1 and qk2 and the desired inequality qk1 , qk2 is not
emitted. The same holds for qk4 and qk0 . However, in such cases there
always exists a point qj ∈ Q with qp, qki

]qp, qj < qp, qki
]qp, qk(i+1) mod m

which lies in the square. Hence, it is sufficient to search for an index
j ∈ [ki + 1, k(i+1) mod m − 1] such that qj is both in the square and on
the line connecting the vertices qki

and qk(i+1) mod m
. The inner loop at

lines 26–29 tests if Q contains such a point and sets add appropriately.
In the example qk1 , qk2 and qk4 , qk5 are each saturated by a point in the
square and are, in fact, the only inequalities in the output.

tvpi-rev.tex; 27/10/2010; 10:46; p.22

23

1

5

1 5

y

x

qk i

ιi-1
ιi

Figure 15. Joining a vertex that lies on a ray with the ray itself

The one-dimensional case is handled by the m = 2 tests at line 24
and 30. Fig. 14 illustrates the necessity of the first test. Suppose I1 and
I2 are given such that extreme(I1) = 〈{q4, q5}, ∅〉 and extreme(I2) =
〈{q3}, {r,−r}〉 where r is any ray parallel to q4, q5. Observe that all
points are collinear, thus the pivot point is on the line and a stable sort
could return the ordering depicted in the figure. The correct inequalities
for this example are Ires = {q0, q8, q8, q0}. The Graham scan will identify
qk0 = q0 and qk1 = q8 as vertices. Since there exists j ∈ [k0 + 1, k1 − 1]
such that inBox (s, qj) holds, q0, q8 ∈ Ires. In contrast, although there
are boundary points between q8 and q0, the loop is not aware of them
since sorting the points removed all points between q8 and q0. In this
case the m = 2 test sets add and thereby forces q8, q0 ∈ Ires.

Another complication arises when generating line segments as shown
in Fig. 15. Observe that the output polyhedron must include qki

as
a vertex whenever inBox (s, qki

) holds. If inBox (s, qki
) holds, the al-

gorithm generates the inequalities ιi−1 = qk(i−1) mod m
, qki

and ιi =
qki
, qk(i+1) mod m

. If ιi−1]ιi < π, then {qki
} = intersect(ιi−1, ιi) and the

vertex qki
is realised. However, ifm = 2 then ιi−1]ιi = π which requires

an additional inequality to define the vertex qki
. This is the rôle of the

inequalities generated on line 32 and 34. This new inequality ι obeys
ιi−1]ι < π and ι]ιi < π and thus suffices to define qki

.
The last special case to be considered is a result that is zero dimen-

sional. This case can only occur when both input polyhedra consist of
the same single point v. Line 13 traps this case and returns a set of
inequalities describing {v}.

Even though some subtle problems arise in dealing with the occur-
ring pathological cases, note that the zero and one dimensional case

tvpi-rev.tex; 27/10/2010; 10:46; p.23

24

x

y

qp

q1

q2
q3q4

q5

q6 q7

Figure 16. Sorting points that are on a line with the pivot point qp

only require minute changes to the general two dimensional case. We
show in [68] that these modifications are indeed sufficient to ensure
that the algorithm is correct on all possible inputs.

2.2.3.4. Implementation Issues Special care has to be taken when im-
plementing the actual convex hull algorithm. The pivot point calculated
in line 16 of Alg. 5 is likely to have rational coordinates with large
numerators and denominators, thereby slowing down the algorithm.
The original algorithm of Graham [29] creates an interior point as the
pivot point by choosing two arbitrary points q1, q2 and searching the
point set for a point qi which does not saturate the line q1, q2. The
center of the triangle q1, q2, qi is also guaranteed to be an interior point
of Q. While the pivot point found using this method may have a smaller
representation, generating inequalities from the resulting sequence of
vertices does not guarantee that the first inequality generated will have
the smallest angle of all inequalities. The disadvantage is that the re-
sulting sequence of inequalities needs to be rotated until the sequence is
in increasing order. Another pitfall is that two or more points may lie on
a line with the pivot point and thereby compare as equal even though
the points have different coordinates. Graham suggests to retain only
the point that lies furthest away from the pivot point, since only the
outermost point can ever become a vertex of the convex hull. However,
the removal of points is also at odds with our algorithm, as the input
point set may not be modified. A common way to address this problem
is to perturb the input point set slightly, thereby guaranteeing that no
three points lie on a line [27]. For a sound analysis, the perturbation
would have to be removed after the convex hull algorithm finishes which
complicates the algorithm further.

Our approach to circumvent these problems is to pick one point
from the input set that is a definite vertex and to use this point as
pivot point (as proposed in [2]). Specifically, we choose the vertex with
the largest x-coordinate and the smallest y-coordinate (in that order).
Creating inequalities starting with this vertex is guaranteed to generate

tvpi-rev.tex; 27/10/2010; 10:46; p.24

25

a sequence with strictly increasing angles. As before, complications
arise when ordering points that lie on a line with the pivot point. For
instance, q1, . . . q7 in Fig. 16 must be returned in increasing sequence.
However, the pairs q1, q2 and q6, q7 compare as equal since they have
the same angle to the pivot point qp. By enhancing the comparison
function to lexicographically sort by angle, then by larger x, then by
smaller y-coordinate, the points q6 and q7 are sorted in correct order,
thereby leaving the other pair in the incorrect order q2, q1. To ensure
that the points q1 and q2 appear in increasing sequence, all points at
the beginning of the sequence that lie on a line with qp are reversed.

Finally observe that the loop at lines 26–29 can often be skipped: if
the line between qki

and qk(i+1) mod m
does not intersect with the square,

inBox (s, q) cannot hold for any q ∈ Q. In this case, add cannot be set
in line 27 and the loop has no effect. Hence, if all corners of the box
lie in the feasible region of the potential inequality qki

, qk(i+1) mod m
, the

loop can safely be skipped.

2.2.4. Linear Programming and Planar Polyhedra
The semantics of certain constructs in a program are dependant on
the range of a variable. For instance, the evaluation of an array access
requires the minimum and maximum value that the index may take on
at the given program point. In general, possible values of an expression
~a · ~x with respect to a given polyhedron P ∈ Poly can be inferred by
running a linear program twice; once for an upper and once for a lower
bound on the expression. In fact, finding the tightest bounds [l, u] such
that l ≤ ~a · ~x ≤ u holds in P can be implemented more simply in
planar space: finding the upper bound u amounts to finding a minimal
u such that P uP [[ax + by ≤ u]] = P . To this end, Fig. 17 depicts the
line ax + by = c and its coefficient vector 〈a, b〉 as the vector which
points towards the direction of larger values of c. The minimal value
of u can be found by increasing u until the P uP [[ax + by ≤ u]] = P
holds. In practice, an inequality ιi of P can be found in O(log n) time
such that θ(ιi) ≤ θ(ax + by ≤ u) < θ(ι(i+1) mod n) by performing a
binary search on the sorted set of inequalities with θ(ax + by ≤ u) as
the key. If θ(ιi) = θ(ax+ by ≤ u) then u = ci where ιi ≡ aix+ biy ≤ ci.
Otherwise if ιi]ι(i+1) mod n < π then the intersection point 〈x′, y′〉 of
the two inequalities yields the minimal value of u, namely u = ax′+by′.
Otherwise, no upper bound exists and u = ∞. The lower bound l can
be inferred in a similar way using the angle θ(−ax− by ≤ −l) as key.

Inferring the bound of a single variable x is a special case that
reduces to finding the vertex with the smallest and largest x-coordinate.
Incidentally, our implementation stores the upper and lower bounds of

tvpi-rev.tex; 27/10/2010; 10:46; p.25

26

P

x

y
ax+by

ax+by≤ua

b

Figure 17. Calculating the maximum of a linear expression in a planar polyhedron

1

2

1 2 5 x8

4

x+y≥3

2x-3y=1
2x+y≤20

1

2

1 2 5

y

x8

4
x≥2

y≥1
x≤8

y≤4

2x-3y=1

Figure 18. Planar polyhedra may have several representations if they extend in
fewer than two dimensions (degrees of freedom)

each variable explicitly, so that the these bounds can simply be read off.
The explicit representation of bounds also impacts on the way widening
is implemented which is the next and final planar operation.

2.2.5. Widening Planar Polyhedra
Calculating the fixpoint of a loop using polyhedra may result in an in-
finite chain of iterates. By removing inequalities that describe changing
facets of a polyhedron, the fixpoint calculation is accelerated and, in
fact, forced to converge, a process known as widening [24, 25]. Suppose
that two consecutive loop iterates I1 = {x+y ≥ 3, 2x+y ≤ 20, 2x−3y =
1} and I2 = {x ≥ 2, y ≥ 1, x ≤ 8, y ≤ 4, 2x − 3y = 1} are given
as shown in Fig. 18. Both systems describe the same set of points
[[I1]] = [[I2]] and hence [[I1]]∇[[I2]] = [[I1]] since the iterates are stable.
Thus, since I1 6= I2, widening cannot generally be implemented as
a syntactic operation and has to be defined semantically, that is, in
terms of entailment [25]. In particular, the original widening is defined
such that [[I1]]∇[[I2]] = [[I ′]] where [[I ′]] = ∅ if [[I1]] = ∅ and otherwise
ι ∈ I ′ if ι ∈ I1 and [[I2]] vP [[ι]]. While this operation can be im-
plemented similarly to the entailment check on planar polyhedra, an
even simpler implementation is possible in the context of the TVPI
domain described in the next section, where each planar polyhedron

tvpi-rev.tex; 27/10/2010; 10:46; p.26

27

x

y

z

x

y

z

Figure 19. Approximating a 3-dimensional polyhedron with TVPI inequalities

has a unique representation. Given a unique representation of a planar
polyhedron (which follows from the reduced product representation),
widening can be implemented in purely syntactic way as it reduces to
a simple set-difference operation.

The next section elaborates on how to use the presented algorithms
on planar polyhedra to implement polyhedra of arbitrary dimension
where each inequality has at most two non-zero coefficients.

3. The TVPI Abstract Domain

This section presents the abstract domain of polyhedra where each
facet can be described by an inequality that has at most two non-
zero variables. These so-called TVPI polyhedra form a proper subset
of general convex polyhedra. For instance, consider the inequality set
{x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}. The resulting state space is
depicted on the left of Fig. 19. This system can be approximated with
TVPI inequalities by replacing the inequality x+ y + z ≤ 1 with three
inequalities of the form x + y ≤ cxy, x + z ≤ cxz and y + z ≤ cyz.
The constant cxy can be determined by inserting the bounds for z into
x + y + z ≤ 1, yielding x + y + [0, 1] ≤ 1. Moving the interval to
the right yields x + y ≤ 1 − [−1, 0], that is, x + y ≤ 1 + [0, 1]. Thus,
the tightest bounds that can be inferred for x + y is cxy = 1, and
similarly cxz = cyz = 1. The resulting space is depicted on the right of
the figure. Note that the best TVPI approximation to the polyhedron
[[x + y + z ≤ 1]] is an empty TVPI system. Thus, TVPI polyhedra
are a strict subset of general polyhedra. However, every polyhedron
has a best approximation in the TVPI domain, so that the domain of
polyhedra and the TVPI domain form a Galois insertion.

An interesting property of TVPI inequalities is that they are closed
under projection. Consider projecting I = {2x+3y ≤ 4,−2y+2z ≤ 2}

tvpi-rev.tex; 27/10/2010; 10:46; p.27

28

onto the x, z-plane by applying Fourier-Motzkin variable elimination
[37] on y. This is carried out by scaling the first inequality by 2, the
second by 3 and adding them to yield 2x+ 3z ≤ 7 which describes all
possible x, z-values of the original polyhedron [[I]]. The observation is
that projecting out variables of TVPI inequalities removes a common
variable and thereby yields an inequality with at most two variables.

Interestingly, when the coefficients of inequalities are normalised to
their lowest common denominator, the number of inequalities that can
be added through projection is polynomial in the size of the input sys-
tem [51]. The process of calculating all projections is called closure. In a
closed system, the set of inequalities containing the variables xi, xj ∈ X
expresses all information that is available with respect to these vari-
ables. In fact, the key idea of the TVPI domain is to apply the planar
operations on each xi, xj-projection of a closed TVPI system which is
equivalent to applying the domain operations of general polyhedra to
the whole TVPI system, albeit more efficient.

The principle of applying planar operations on a closed TVPI system
is formalised in Sect. 3.1. In particular, Sect. 3.1.1 formalises closure
before we show how planar algorithms for checking entailment, calcu-
lating the convex hull, and projecting out variables naturally lift to
TVPI systems. The liftings for these three operations are presented
in Sects. 3.1.2, 3.1.3, and 3.1.4, respectively. Other domain operations
are more dependant on how TVPI systems are represented. Section 3.2
therefore presents our choice of representation which separates inequal-
ities over a single variable from those over two. This construction can
viewed as a reduced product [22]. We then introduce those operations
that benefit from the reduced product representation. These are the
removal of redundant inequalities in Sect. 3.2.4, the intersection with
new TVPI inequalities in Sect. 3.2.5 and the intersection with inequali-
ties involving more than two variables in Sect. 3.2.6. Dealing with more
than two variables is also a concern for linear programming which is
therefore considered in Sect. 3.2.7. The reduced product allows for a
straightforward implementation of widening, presented in Sect. 3.2.8.
We conclude Section 3 with a discussion of related work.

3.1. Principles of the TVPI Domain

For the sake of this section, let var : Ineq → P(X) extract the variables
that occur in an inequality, that is var(~a · ~x ≤ c) = {xi | ai 6= 0}. Let
Ineq2 ⊂ Ineq denote all TVPI inequalities, that is, Ineq2 = {ι ∈ Ineq |
|var(ι)| ≤ 2}. The set of all finite TVPI systems is therefore defined as
Two = {I ⊆ Ineq2 | |I| ∈ N}. In contrast to Poly ⊆ Qn, elements of
Two are inequalities rather than sets of convex spaces. This syntactic

tvpi-rev.tex; 27/10/2010; 10:46; p.28

29

form is required to distinguish between closed and non-closed TVPI
systems. We define these concepts in the next section.

3.1.1. Closure
Define a family of syntactic projection operators πX(I) = {ι ∈ I |
var(ι) ⊆ X} for all X ⊆ X . The set of closed TVPI systems can
now be defined as Twocl = {I ⊆ Two | ∀ι ∈ Ineq2 . [[I]] vP [[ι]] ⇒
[[πvar(ι)(I)]] vP [[ι]]}, that is, a TVPI system is closed if any TVPI
inequality ι that is valid in the whole system I is also valid when
considering only those inequalities of I that contain variables of ι.
Intuitively, this definition implies that all information about a pair
of variables xi, xj ∈ X is expressed as inequalities over these two vari-
ables. In particular, combining inequalities such as axi − xk ≤ c1 and
xk + bxj ≤ c2 to axi + bxj ≤ c1 + c2 does not add any new information
about xi and xj . For instance, the system I = {x ≤ y, y ≤ z} is not
closed, since [[π{x,z}(I)]] = [[∅]] = Q2 although the inequality x ≤ y
fulfills [[I]] vP [[x ≤ z]] and [[∅]] 6vP [[x ≤ y]].

A closed form does always exist within Two, as stated by the fol-
lowing proposition (the proof of all propositions can be found in [71]):

Proposition 1. For any I ∈ Two there exists I ′ ∈ Twocl such that
I ⊆ I ′ and [[I]] = [[I ′]].

In fact, any given TVPI system I ∈ Two can be closed to obtain
I ′ ∈ Twocl by calculating so-called resultants of I using result : Two →
Two, defined as follows:

result(I) =

ae z − bd y ≤ af − cd
∣∣∣∣∣∣∣∣
ι1, ι2 ∈ I ∧
ι1 ≡ ax+ by ≤ c ∧
ι2 ≡ dx+ ez ≤ f ∧
a > 0 ∧ d < 0


The purpose of the result function is to combine inequalities over

the variables x, y and y, z to new inequalities over x, z, thereby making
information on x, z explicit that was only implicitly available before. In
particular, the above combination resembles Fourier-Motzkin variable
elimination where all information on x, z is made explicit in order to
remove the variable y from the system. Nelson observed that merely
adding inequalities (rather than removing those containing y as in
Fourier-Motzkin variable elimination) eventually leads to a closed sys-
tem [50]. For instance, consider applying the result function to the
following system of inequalities:

I0 = {x0 ≤ x1, x1 ≤ x2, x2 ≤ x3, x3 ≤ x4}

tvpi-rev.tex; 27/10/2010; 10:46; p.29

30

We calculate I1 = result(I0) and I2 = result(I0 ∪ I1) resulting in the
following sets:

result(I0) = {x0 ≤ x2, x1 ≤ x3, x2 ≤ x4}
result(I0 ∪ I1) = I1 ∪ {x0 ≤ x3, x0 ≤ x4, x1 ≤ x4}

Here, I3 = result(
⋃2

i=0 Ii) is a fixpoint in that result(I3) ⊆ I3. An
important property of I ∪ result(I) is the way it halves the number
of variables required to entail a given inequality ι ∈ Two: suppose
[[I]] vP [[ι]] then there exists I ′ ⊆ I ∪ result(I) such that [[I ′]] vP [[ι]] and
I ′ contains no more than half the variables of I. Lemma 1 formalises
this and is a reformulation of Lemma 1b of [50].

Lemma 1. Let I ∈ Two and ι ∈ Ineq2 such that [[I]] vP [[ι]]. Then there
exists Y ⊆ X s.t. |Y | ≤ b|var(I)|/2c+ 1 and [[πY (I ∪ result(I))]] vP ι.

Lemma 1 suggests a way to obtain a closed system by applying
the result function approximately log2(|var(I)|) times to any system of
inequalities I ∈ Two. More precisely, a TVPI system can be closed in
O(k2d3 log(d)(log(k)+log(d))) steps where d is the number of variables
and k the maximum number of inequalities for any pair of variables [72].
This bound can be refined by sorting individual projections (rather
than the whole system of inequalities) to O(k2d3 log(d) log(k)). Empir-
ical evidence suggests that k is bounded by a small constant in practice,
such that the bound collapses to O(d3 log(d)) [72]. In fact, on average,
the number of inequalities k needed to describe a set of n random points
is merely O(3

√
n) [9].

Rather than presenting such an algorithm, Sect. 3.2.5 details how an
initially empty inequality system can be incrementally closed each time
a new inequality is added. An incremental closure is more amenable to
abstract interpretation where the meet operation is mostly used to add
a few inequalities to a system before the inequality system is further
passed on to entailment checks, join and projection operations.

Interestingly, applying the planar algorithms from the last section
to each syntactic projection π{xi,xj}(I) of a TVPI system I ∈ Twocl

in most cases results in a closed system. Besides this practical prop-
erty, the next sections also attest the correctness of lifting the planar
entailment check, join and projection algorithms to the TVPI domain.

3.1.2. Entailment Check
We show that checking entailment between two closed TVPI systems
can be reduced to checking entailment on each two-dimensional projec-
tion.

Proposition 2. Let I ′ ∈ Twocl and I ∈ Two. Then [[I ′]] vP [[I]] iff
[[πY (I ′)]] vP [[πY (I)]] for all Y = {x, y} ⊆ X .

tvpi-rev.tex; 27/10/2010; 10:46; p.30

31

Note that the proposition does not require both inequality systems
to be closed. This observation is interesting when applying operations
to individual projections that can lead to a non-closed system.

As a consequence of Proposition 2, it suffices to check that entail-
ment holds for all planar projections which can be checked with the
entails test presented as Alg. 1 in Sect. 2.2.1.

3.1.3. Convex Hull
In order to show that calculating the join of two TVPI polyhedra can
be reduced to calculating the convex hull of each planar projection, we
define the operation g S as follows:

Definition 1. The piece-wise convex hull g S : Two× Two→ Two is
defined I1 g SI2 = ∪{Ix,y | x, y ∈ X} where [[Ix,y]] = [[πx,y(I1)]]g [[πx,y(I2)]].

The following proposition states that calculating the convex hull on
each planar projection results in a TVPI system that is closed if the
two input TVPI systems were closed. This value of this observation
lies in the fact that it is not necessary to calculate the O(d3(log(d)2))
complete closure after each convex hull.

Proposition 3. I ′1 g SI ′2 ∈ Twocl if I ′1, I
′
2 ∈ Twocl.

The following proposition relates the correctness and precision of
the convex hull on TVPI systems to planar convex hull operations on
each projection π{xi,xj}(I).

Proposition 4. Let I ′1, I
′
2 ∈ Twocl. Then the following holds:

− [[I ′1]] g [[I ′2]] vP [[I ′1 g SI ′2]]

− If I ∈ Twocl and [[I ′1]] g [[I ′2]] vP [[I]] then [[I ′1 g SI ′2]] vP [[I]].

Thus, an efficient way to calculate the convex hull of two closed TVPI
systems I1 and I2 is to apply the planar convex hull algorithm in
Sect. 2.2.3 to each pair xi, xj ∈ X of the syntactic projections π{xi,xj}(I1)
and π{xi,xj}(I2). (Note that the corresponding proposition in [72] was
stated incorrectly.)

3.1.4. Projection
Projection returns the most precise system without a given variable.
Semantically, the family of operators ∃xi : Poly → Poly is defined as
∃xi(P) = {〈x1, . . . , xi−1, x, xi+1, . . . xn〉 | 〈x1, . . . xn〉 ∈ P, x ∈ R}. This
operator is sometime called the “forget” operator [47] as it removes all
information from a polyhedron pertaining to x.

tvpi-rev.tex; 27/10/2010; 10:46; p.31

32

X0

X1

X2

X0 X1

⇒

X0

X1

X2

X0 X1

X3

X2

Figure 20. Adding a variable to a TVPI system adds a row to the triangular matrix

An algorithmic definition of projection is easily possible for closed
systems. Proposition 5 states that projection coincides with the defini-
tion of syntactic projection π, that is, projection can be implemented
by removing all those inequalities that contain variables that are to
be eliminated. Furthermore, we prove that this operation preserves
closure. We commence by defining syntactic projection.

Definition 2. The syntactic projection operator ∃S
x : Twocl → Twocl

is defined ∃S
x (I) = ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | = 2}.

Note that the projection function ∃S
x above operates on the inequal-

ity representation of a polyhedron, rather than a set of points. The
following proposition states that the syntactic projection defined above
and the projection operator on polyhedra, which operates on sets of
points, coincide.

Proposition 5. ∃x([[I ′]]) = [[∃S
x (I ′)]] and ∃S

x (I ′) ∈ Twocl for all I ′ ∈
Twocl.

As an example, consider again the system consisting of x ≤ y and y ≤ z.
Closure will introduce x ≤ z. Projecting out y will only preserve x ≤ z
which coincides with projection in that ∃y([[{x ≤ y, y ≤ z}]]) = [[x ≤ z]].

tvpi-rev.tex; 27/10/2010; 10:46; p.32

33

3.2. Reduced Product Between Bounds and Inequalities

Given that most operations on a closed TVPI system are executed as
operations on planar polyhedra over one specific pair of variables, it is
prudent to use a data structure for storing TVPI systems that groups
the inequalities by the pair of variables occurring in them. Given a do-
main of n = |X | variables, n(n− 1)/2 unique combinations of variables
exist which can be stored in a triangular matrix as shown in Fig. 20 for
n = 3 and n = 4. The rows of the triangular matrix are mapped to a
one-dimensional array that dynamically resizes. Each projection 〈xi, xj〉
is stored at the index j(j−1)/2+i if i < j, see [40]. While indexing into
this array is more complicated, it enables the implementation to add
and remove variables without copying the matrix. This is important
since the size of the matrix grows quadratically with n. Since not all
variables X are present in the polyhedron at all times, it is possible to
remove rows that correspond to variables that are projected out and
add a new row whenever a variable is mentioned that is not currently
represented in the matrix.

3.2.1. Adding Variables to a TVPI System
If the underlying array is large enough, a new row with the index
n + 1 can be added by merely appending n new planar polyhedra
to the end of the array, otherwise the matrix has to be copied to a
larger array. In the likely case that some of the variables with indices
0 . . . n are bounded from above or from below, these bounds have to
be inserted into the newly added polyhedra. Rather than replicating
upper and lower bounds of each variable in each planar projection,
we chose to implement the TVPI domain as a reduced product [18]
between intervals and planar polyhedra that contain TVPI inequalities
of the form ax+ by ≤ c where both coefficients, a and b, are non-zero.
Indeed, avoiding the replication of bounds is the main benefit of the
reduced product representation as it avoids the need to keep bounds
consistent across different projections. The principle is shown in the
left schematic drawing of Fig. 20. Here, the dashed lines depict the
upper and lower bounds of each variable which are stored separately
from the TVPI inequalities. We refer to the projection in row i and
column j with 〈xi, xj〉 such that xi and xj correspond to the y- and x-
axis, respectively. The grey polyhedra over 〈x1, x0〉, 〈x2, x0〉 and 〈x2, x1〉
are defined by these bounds and the sets of TVPI inequalities that are
specific to the given projection. In this representation, a fourth variable
is introduced by merely adding a new range and three projections

tvpi-rev.tex; 27/10/2010; 10:46; p.33

34

X0

X1

X2

X4

X5

X6

X0 X1 X2 X6 X4

X0

X1

X2

X3

X4

X5

X6

X0 X1 X2 X3 X4 X5

⇒

Figure 21. Removing a variable from a TVPI domain that is stored as matrix

without any inequalities, one for each variable pair 〈x3, x0〉, 〈x3, x1〉
and 〈x3, x2〉, as shown in Fig. 20.

3.2.2. Removing Variables from a TVPI System
While the triangular matrix can always be extended with a new variable
by adding a new row to the matrix, the removal of a variable might re-
quire the removal of a row that resides within the triangular matrix. For
example, consider the removal of x3 in the system depicted in Fig. 21.
In order to avoid holes in the matrix, the projections of x3 are replaced
with those of the last row in the system, namely x6. Specifically, the
first three projections in the last row, namely 〈x6, xi〉 for i = 1, . . . 3,
simply replace the planar polyhedra 〈x3, xi〉 for i = 1, . . . 3 of the row
that is to be removed. While the projection 〈x6, x3〉 is merely deleted,
the remaining two projections 〈x6, x4〉 and 〈x6, x5〉 cannot overwrite
the projections 〈x4, x3〉 and 〈x5, x3〉. This is because the y- and x-axis
of 〈x6, x4〉 are x6 and x4 but the new projection at the 〈x4, x3〉 entry in
the matrix must have x4 and x6 as its y- and x-axes. A similar problem
arises when moving the 〈x6, x5〉 entry. Thus, prior to replacing these
target projections, the variables of the two planar polyhedra have to be
swapped which geometrically amounts to a mirroring along the x = y
line which is a linear-time operation. Suppose a polyhedron is stored as
an array of inequalities that are sorted by angle. Mirroring along the
x = y line can then be realised by reversing the order of inequalities
with angles in [0, π/2) and then separately reversing inequalities with
angles in [π/2, 2π). After these reversals, the x- and y-coefficients in
each inequality are swapped.

tvpi-rev.tex; 27/10/2010; 10:46; p.34

35

3.2.3. Assignments
Adding and removing rows provides an efficient framework to imple-
ment in situ updates of variables. Consider an assignment of the form
x=e where e is an expression and x is the polyhedral variable repre-
senting x. In the case that x does not appear in e, no information on x
is needed to calculate the new value of x. In this case, the row storing
projections over x can be overwritten with new projections that define
the new value of x. Then closure is applied. For instance, if e ≡ y + 1,
then the projection 〈x, y〉 contains {x = y+1} and all other projections
〈x, z〉 where z 6= y are empty. Closure will then instantiate these empty
projections. Suppose now that e contains x. In the special case where
e is of the form ax + b, the projections over x can be updated by
performing an affine transformation [25]. However, we treat this case
no different from the case when e is a more complex (e.g., non-linear or
multi-variable) expression that must be approximated. In this general
case, a new row is added to hold a temporary variable t. The value of
e is then described by inserting inequalities into the projections 〈t, y〉.
In order to assign t to x and to project out t, it is sufficient to merely
project out x: since t is stored in the last row of the triangular matrix,
the projections containing t overwrite those of x as illustrated in Fig. 21.
Thus, updating a variable can be implemented by adding a new row,
calculating the result within this new row, and replacing the target
variable with the last row.

Next to updates using the meet operation, the performance of the
domain hinges on the join and entailment operations. In our implemen-
tation, a TVPI system is an array in which each projection is a pointer
to a planar polyhedron which can be shared amongst several TVPI
systems. Thus, creating a new copy of a system merely requires to
copy the pointers in the array. Furthermore, performing minor changes
to the copy and calculating the join with the original is cheap: if only
few projections are changed, most projections still refer to the same
shared polyhedron. In this case, calculating the convex hull on these
projections can be avoided since the result is the same shared polyhe-
dron. Similarly, an entailment check holds automatically if the pointers
of two projections are the same.

3.2.4. Redundancy Removal in the Reduced Product
Closure may add many redundant inequalities to a projection which
have to be removed in order to keep the size of the domain in check.
Redundancy removal in the TVPI domain requires some substantial
changes to the planar redundancy removal algorithm since the domain
is represented as a reduced product of interval bounds and TVPI in-

tvpi-rev.tex; 27/10/2010; 10:46; p.35

36

ι1

❶ ❷ ι1ι2

Figure 22. Variations of entailment check between an inequality and interval bounds

equalities. While the basic round-trip algorithm of Sect. 2.2.2 remains
intact, special care has to be taken with respect to interval bounds. In
particular, they cannot be converted to inequalities since they are often
redundant with respect to other TVPI inequalities and would thus be
removed. Thus, the redundancy removal algorithm only tests TVPI
inequalities for redundancy but has to consult the inequalities and the
interval bounds for entailment checks. In particular, special entailment
tests are needed whenever inequalities lie in different quadrants, that
is, if a bound lies angle-wise between two adjacent inequalities. Fig. 22
shows the two necessary entailment tests between inequalities and inter-
val bounds: The first schematic drawing depicts an inequality ι1 with
no adjacent inequalities in its quadrant. In this case it is necessary
to test the inequality against the two nearest interval bounds. The
second drawing shows a redundant inequality ι1 that is the first in
that quadrant. This inequality needs to be tested for redundancy with
respect to ι2 and one bound, and ι2 and the other bound. Similarly, the
last inequality in each quadrant needs to be tested against the previous
inequality and two nearest interval bounds. In the case where an in-
equality has a neighbour on either side and within the same quadrant,
the normal entailment check can be applied.

In contrast to inequalities, redundant interval bounds cannot be
removed but have to be tightened. Interval bounds are tightened in four
principal ways as shown in Fig. 23. The first case applies if the angle
between the last inequality of a quadrant, ι1, and the first inequality
in the next quadrant, ι2, is less than π, in which case the inequalities
intersect in a point that might imply a tighter interval bound. The
second case applies if two inequalities ι1, ι2 obey ι1]ι2 < π but this
time have an empty quadrant (i.e. two bounds) between them. In this
case their intersection point might tighten two bounds at once. If case
two has not updated both bounds, one or both bounds might be tighter
than what the intersection point suggests, leading to the third case.
In this case, one bound is tightened with respect to the intersection
point of one of the inequalities and the other bound. The last graph in

tvpi-rev.tex; 27/10/2010; 10:46; p.36

37

ι1

❶ ❷

ι1

ι2

ι2

❸ ❹

ι1

ι2

ι1

ι2

Figure 23. Tightening interval bounds given two adjacent inequalities ι1, ι2. Bounds
shown with solid lines are tightened to the bounds shown with dashed lines. Case
one applies if ι1]ι2 < π and one bound lies between them, case two applies if two
bounds lie between ι1 and ι2, case three applies to those bounds that case two could
not tighten, and case four applies if ι1]ι2 > π

Fig. 23 depicts the fourth case where the angle between two inequalities
is greater or equal to π. Here the single inequality ι1 might tighten the
adjacent bound with the bound adjacent to ι2. This completes the suite
of entailment checks and tightenings for interval bounds.

The above entailment checks and tightenings have to be adapted to
all four cardinal directions. Since a full presentation of the algorithm is
repetitive, for brevity, we do not replicate the above cases for the other
quadrants. More insightful is the implementation of the incremental
closure, which implicitly uses the redundancy removal algorithm when
adding inequalities to a projection.

3.2.5. Incremental Closure
Calculating the closure of a TVPI system as discussed in Sect. 3.1
can be implemented by a variant of the Floyd-Warshall algorithm [20]
which infers the shortest paths between any pair of nodes in a graph.
Specifically, the original cubic Floyd-Warshall algorithm on n variables
creates n different n×n matrices where an element at the matrix entry
〈xi, xj〉 describes the cost of traversing the graph from node xi to xj .
Note that the cost of travelling from xi to xj might be different to the
cost of travelling from xj to xi. In the context of the triangular matrix
of a TVPI domain, the planar polyhedron 〈xi, xj〉 represents both direc-
tions of travel due to the fact that inequalities of that polyhedron may
have negative as well as positive coefficients. Apart from this difference,
the Floyd-Warshall algorithm can be adapted to close a TVPI system

tvpi-rev.tex; 27/10/2010; 10:46; p.37

38

X0

X1

X2

X3

X4

X5

X6

X0 X1 X2 X3 X4 X5

X0

X1

X2

X3

X4

X5

X6

X0 X1 X2 X3 X4 X5

Phase I Phase II

Figure 24. Incremental closure after changing the projection x2, x4. New inequalities
in x3, x5 serve to calculate distance-one projections (Phase I). For each set of new
inequalities in these, distance-two projections are calculated (Phase II)

when the operation of adding the cost of two edges between 〈xi, xj〉
and 〈xj , xk〉 is replaced by calculating the resultants of the inequalities
of the planar polyhedra over 〈xi, xj〉 and 〈xj , xk〉. Updating the edge
〈xi, xk〉 with the smaller of current cost and the cost via xj corresponds
to inserting these resultants into the target projection 〈xi, xk〉.

Unfortunately, calculating a complete closure of a TVPI system is at
odds with the needs of program analysis. Here, inequalities are usually
added one by one through conditionals or assignments. Furthermore,
adding inequalities to the domain is interleaved with variable removal
and the calculation of joins. Thus, an incremental closure is required
that takes a closed system and a set of inequalities that are to be inter-
sected with a given projection 〈xi, xj〉 and which returns a new, closed
system in which the inequalities are incorporated. The incremental
closure uses operations similar to those used in the Floyd-Warshall algo-
rithm, albeit with a different strategy. Specifically, the Floyd-Warshall
algorithm calculates a sequence of n matrices m1, . . .mn such that the
distance between nodes in matrix mi that are no more than i edges
apart is minimal. In contrast, the incremental closure operates on a
system in which all distances are minimal, except those that involve
a particular projection 〈xi, xj〉. Thus, the task is to update all other
projections with the new information available on 〈xi, xj〉. This task,
illustrated in Fig. 24, is performed as follows.

In the shown example, the polyhedron for 〈x4, x2〉 is intersected with
new inequalities. In order to close the system, all inequalities that are

tvpi-rev.tex; 27/10/2010; 10:46; p.38

39

new and which were non-redundant have to be propagated to all other
projections. This propagation is performed in two phases. The first
phase propagates information to all projections that share one variable
with the inequalities over 〈x4, x2〉. For instance, all inequalities in the
projection 〈x2, x0〉 are combined with the new inequalities, yielding
inequalities over 〈x4, x0〉. Before these inequalities are inserted into the
projection 〈x4, x0〉, the current inequalities over 〈x4, x0〉 are combined
with those over 〈x4, x2〉, yielding new inequalities for the symmetric
case, namely 〈x2, x0〉. Analogously, the new inequalities over 〈x4, x2〉
are combined with 〈x2, xi〉 and 〈x4, xi〉 for i = 1, 3, 5, 6. At this point,
all resultants that share one variable with the projection 〈x4, x2〉 are up-
to-date. In terms of a graph, all nodes (variables) that are immediate
neighbours of the nodes x2 and x4 are up-to-date; the polyhedra on
these edges are called distance-one results. The second phase uses the
distance-one results to update the remaining projections that have no
variables in common with the 〈x4, x2〉 projection. Specifically, each pro-
jection 〈xi, xj〉 where i, j ∈ {0, 1, 3, 5, 6}, i 6= j is updated by calculating
the resultants of the projections 〈xi, x2〉 and 〈x2, xj〉 in addition to the
resultants of the projections 〈xi, x4〉 and 〈x4, xj〉. For instance, as shown
on the right of Fig. 24, the projection 〈x6, x0〉 is updated by calculating
the resultants of 〈x6, x2〉 and 〈x2, x0〉 followed by 〈x6, x4〉 and 〈x4, x0〉.
The projections 〈xi, xj〉 are called distance-two results because in the
context of the graph interpretation, these edges are two nodes away
from the nodes x2 and x4 for which closure is run. By adapting an
argument for the Octagon domain [47], it can be shown that after
calculating all distance-two projections, the TVPI system is closed.

Algorithm 6 sketches the structure of the incremental closure algo-
rithm. The shown algorithm assumes that the domain is not imple-
mented as a reduced product between TVPI inequalities and intervals,
thereby simplifying the presentation significantly. Furthermore, the al-
gorithm does not assume that the projections are stored in a triangular
matrix. In particular, we define the inequality sets I{i,j} for every
variable set {xi, xj}. As the index is a set, I{i,j} = I{j,i} follows. Fur-
thermore, the sets are not a partitioning of I since inequalities ι with
var(ι) = {xi} appear in all sets I{xi,xj} with j 6= i. The correctness of
this simplified algorithm is stated below.

Proposition 6. Given Inew ∈ Two with |var(Inew)| = 2 and let I ∈
Twocl. Moreover, let I ′ = intersect(I, Inew). Then [[I∪Inew]] = [[I ′]] and
I ′ ∈ Twocl.

Note that the above algorithm only handles inequalities with exactly
two variables. Inserting inequalities over a single variable can be im-

tvpi-rev.tex; 27/10/2010; 10:46; p.39

40

Algorithm 6 Intersection with inequalities over xj , xk and closure
procedure intersect(I, Inew) where I, Inew ⊆ Ineq
1: {xj , xk} ← var(Inew)
2: I{i,j} ← {ι ∈ I | var(ι) ⊆ {xi, xj}}
3: I ′{j,k} ← nonRedundant(I{j,k} ∪ Inew)
4: if [[I ′{j,k}]] = ∅ then
5: return {0 ≤ −1}
6: end if
7: n← |var(I)|
8: for i ∈ [0, n− 1] \ {j, k} do
9: I ′{j,i} ← nonRedundant(I{j,i} ∪ result(I ′{j,k} ∪ I{k,i}))

10: I ′{k,i} ← nonRedundant(I{k,i} ∪ result(I ′{k,j} ∪ I{j,i}))
11: if [[I ′{j,i}]] = ∅ ∨ [[I{k,i}′]] = ∅ then
12: return {0 ≤ −1}
13: end if
14: end for
15: for x ∈ [0, n− 1] \ {j, k} do
16: for y ∈ [x+ 1, n− 1] \ {j, k} do
17: I ′{x,y} ← nonRedundant(I{x,y} ∪ result(I ′{x,j} ∪ I

′
{j,y}) ∪

result(I ′{x,k} ∪ I
′
{k,y}))

18: if [[I ′{x,y}]] = ∅ then
19: return {0 ≤ −1}
20: end if
21: end for
22: end for
23: return {I ′x,y | 0 ≤ x < y < n}

plemented by a simpler algorithm that merely updates the upper and
lower bounds of a single row/column. Adding inequalities with more
than two variables is considered in the next section.

3.2.6. Approximating General Inequalities
Figure 19 at the beginning of this section depicts the problem of adding
the inequality x + y + z ≤ 1 over three variables to the TVPI do-
main. The resulting domain is necessarily an approximation as only
inequalities with at most two variables can be represented. In gen-
eral, calculating the intersection of I ∈ Two with an inequality of the
form a1x1 + . . . anxn ≤ c can be approximated by inserting the set
of inequalities ajxj + akxk ≤ c − cj,k into I where 1 ≤ j < k ≤ n,
cj,k = minExp(

∑
i∈[1,n]\{j,k} aixi, I) and minExp(e, P) calculates the

tvpi-rev.tex; 27/10/2010; 10:46; p.40

41

minimum of an expression e in P using linear programming. In case cj,k
is unbounded, no approximation is possible. The number of inequalities
that are generated this way may be quadratic in the number of non-zero
coefficients n. In practice, programs rarely give rise to inequalities with
more than three variables, so that the number of TVPI inequalities
needed to approximate a single inequality is not a bottleneck.

Surprisingly, the presented approximation of inequalities is not al-
ways optimal: Consider the task of adding x− 2y+ z ≤ 0 to the closed
TVPI system I = {x−y = 0}. Since neither x,−2y nor z have an upper
bound, the above approximation would fail to deduce any information.
However, the new inequality can be rewritten to x − y − y + z ≤ 0
and substituting the inequality x− y = 0 ∈ I yields the approximation
−y + z ≤ 0. While a better approximation algorithm that can deduce
this relationship is certainly desirable, we observed no precision loss in
practice. In fact, many inequalities with more than two variables can
be reduced to TVPI inequalities through substitution, by making use
of equality relationships between variables.

In order to calculate the above approximation to an n-dimensional
inequality, an algorithm for minExp is required, which is discussed next.

3.2.7. Linear Programming in the TVPI Domain
In the context of a TVPI system a linear expression can be minimised
straightforwardly using general linear programming techniques such
as Danzig’s Simplex method. Interestingly, a linear programming al-
gorithm for arbitrary linear cost functions that exploits the special
structure of a TVPI system was proposed by Wayne [77]. This algo-
rithm runs in O(m3n2 logA) where m is the number of inequalities, n
the number of variables and A the upper bound on the absolute value of
the constants. Observe that for a closed TVPI system, a TVPI objective
function can be minimised using the O(log k) algorithm presented in
Sect. 2.2.4 on the appropriate projection. For objective functions with
more than two variables, Prop. 5 states that linear programming may
be run on just those TVPI inequalities whose variables appear in the
expression to be minimised. This reduces the number of inequalities m
that need to be considered which is important since closure introduces
many redundant inequalities. Nevertheless, implementing a general or
specialised linear programming algorithm is not attractive due to the
large number of inequalities that can arise in a closed system. Hence,
we approximate the minimum of a linear expression over several vari-
ables using efficient linear programs over two variables. For instance,
the minimum of caxa + cbxb + ccxc ∈ Lin in the TVPI domain I is

tvpi-rev.tex; 27/10/2010; 10:46; p.41

42

approximated by the minimum of the following expressions:

minExp(caxa + cbxb, I) + minExp(ccxc, I)
minExp(caxa + ccxc, I) + minExp(cbxb, I)
minExp(cbxb + ccxc, I) + minExp(caxa, I)

Similarly, the minimum value of an expression caxa + cbxb + ccxc +
cdxd ∈ Lin is the minimum of the following expressions:

minExp(caxa + cbxb, I) + minExp(ccxc + cdxd, I)
minExp(caxa + ccxc, I) + minExp(cbxb + cdxd, I)
minExp(caxa + cdxd, I) + minExp(cbxb + ccxc, I)

The last operation that needs to be lifted from planar polyhedra to
TVPI polyhedra is widening which is the topic of the next section.

3.2.8. Widening of TVPI Polyhedra
As mentioned in Sect. 2.2.5, widening the individual planar projections
of the TVPI domain is simpler if the representation of each projection
is unique. This is the case for the reduced product representation where
each projection is defined by interval bounds and TVPI inequalities. For
instance, Figure 18 on page 26 shows two inequality sets that describe
the same polyhedron. While the left graph shows a non-redundant set
of TVPI inequalities, two of the interval bounds in the right graph
are redundant. However, the representation using bounds and TVPI
inequalities is unique in that no other set of bounds and inequalities
defines the same polyhedron. As a consequence, widening, which re-
moves facets of a polyhedron that are unstable, reduces to a simple
set-difference operation and we therefore omit the pseudo-code.

Note that widening each planar projection results in a TVPI system
that is not closed in general. For instance, let I1 = {x ≤ y + 1, y ≤
z + 1, x ≤ z + 1} and I2 = {x ≤ y + 1, y ≤ z + 1, x ≤ z + 2} represent
two consecutive loop iterates. The result of I = I1∇I2 discards the
inequality x ≤ z+1 as it has changed to x ≤ z+2. However, result(I) =
{x ≤ z+2} /∈ I, thus the widened TVPI system I is not closed. In fact,
result(I) ∪ I = I2 which hints at the fact that closure might interfere
with widening in that it re-introduces inequalities that were widened
away. This phenomenon has been observed by Miné in the context of
the Octagon domain [47]. The solution to this termination problem is
merely to avoid closing the state that is stored at a widening point.

While widening is a prerequisite to ensure that a fixpoint calculation
using the TVPI domain will terminate, it may not be sufficient. Infinite
chains manifest themselves in a continuously growing number of in-
equalities and infinitely increasing coefficients. While widening tackles

tvpi-rev.tex; 27/10/2010; 10:46; p.42

43

both aspects, it is not always sufficient to ensure that coefficients within
inequalities remain tractable. Section 4 therefore presents techniques to
reduce the size of coefficients by tightening the inequalities around the
set of integral points that they enclose.

3.3. Related Work

Using n-dimensional polyhedra as an abstract domain for program
analysis is expressive, but expensive [25]. Recent proposals suggest
only inferring certain inequalities that are deemed to be important
to prove a property [56], only use special geometric shape of poly-
hedra [13], impose a fixed dependency between variables [57] or to
simply approximate the exponential operations when the size of the
system becomes too large [69]. In contrast, the TVPI domain limits the
precision of the inferred polyhedra up front. TVPI polyhedra form a
so-called weakly relational domain and thereby constitute a proper sub-
class of general polyhedra. Other sub-classes include Difference Bounds
Matrices (DBMs for short) [5, 61, 46], the Octagon domain [47] and
the Octahedron domain [17]. The abstract domain of DBMs represents
inequalities of the form xi−xj ≤ cij , xi, xj ∈ X by storing cij in an n×n
matrix such that the entry at position 〈i, j〉 is cij . A special value ∞ is
stored at this position if xi−xj is not constrained. Closure is computed
with an all-pairs Floyd-Warshall shortest-path algorithm that is O(n3)
and echos ideas in the early work of Pratt [52]. The Octagon domain [47]
represents inequalities of the form axi + bxj ≤ c where a, b ∈ {1, 0,−1}
and xi, xj ∈ X . The key idea of [47] is to simultaneously work with a set
of positive variables x+

i and negative variables x−i and consider a DBM
over {x+

1 , x
−
1 , . . . , x

+
n , x

−
n } where n = |X |. Then xi−xj ≤ c, xi +xj ≤ c

and xi ≤ c can be encoded respectively as x+
i − x

+
j ≤ c, x+

i − x
−
j ≤ c

and x+
i − x−i ≤ 2c. Thus a 2n × 2n square DBM matrix is used to

store this domain. The Octagon domain has been successfully applied
to verify large-scale embedded software [11, 12]. While the matrix rep-
resentation makes adding and removing variables cumbersome, matrix
elements can be simple integers or floating point variables rather than
arbitrary-precision integers as required for the TVPI domain. In fact,
the operations of the Octagon abstract domain are so simple that they
can be implemented efficiently on high-end graphics hardware [8]. Even
then, the cubic closure is too expensive when considering the number
of variables that arise in some applications. One solution is to restrict
the relational information to so-called packs of variable and use one
Octagon domain for each pack [47]. An alternative approach is to use
decoupling techniques developed in the context of general polyhedra

tvpi-rev.tex; 27/10/2010; 10:46; p.43

44

Table I. An overview of TVPI operations and their properties.

closed

operation implementation inputs result running-time

join piece-wise convex hull yes yes O(d2k log(k))

meet full closure no yes O(d3k2 log(d) log(k))

meet incremental closure yes yes O(d2k2 log(k))

subset piece-wise entailment first — O(d2k)

widen piece-wise widening first no O(d2k)

1

y

k

1

x
0
0 k-1

Figure 25. Calculating a new set of Cutting Planes will refine the rational vertex
〈k, 1

2
〉 to 〈k − 1, 1

2
〉. Thus k − 1 more steps are necessary to obtain a Z-polyhedron

[31] where linear independence is detected between sets of constraints
and exploited by applying meet and join on these smaller sets.

The Octagon domain was generalised into the Octahedron domain
[17], allowing more than two variables with zero or unary coefficients
whilst maintaining a hull operation that is polynomial in the number
of variables.

Finally, to aid comparison with other domains, Table 3.3 summarises
the different operations on TVPI polyhedra and their properties. Here,
d denotes the dimension of the TVPI system and k the maximal number
of inequalities in each projection.

4. The Integral TVPI Domain

Most properties that are of interest in static analysis can be expressed
with integral numbers. Hence, it is possible to restrict the inferred poly-
hedra to the contained integral points. In fact, shrinking a polyhedron
around the contained integral points is highly desirable for precision as

tvpi-rev.tex; 27/10/2010; 10:46; p.44

45

well as for performance, as discussed in Sect. 4.1. However, this task
is computationally hard [58]. A first step towards an integral TVPI
domain is to tighten each individual inequality ax+ by ≤ c, a, b, c ∈ Z
by replacing it with the inequality (a/d)x + (b/d)y ≤ bc/dc where
d = gcd(a, b). Note that every integral point 〈x′, y′〉 with ax′ + by′ ≤ c
satisfies the tightened inequality since ax′ + by′ as well as (ax′ + by′)/d
are integral and thus (ax′ + by′)/d ≤ bc/dc [55]. However, tightening
individual inequalities is not enough to ensure that the vertices of the
polyhedron are integral and additional inequalities need to be added.
One way to add these extra inequalities is Gomory’s famous Cutting
Plane method [58, Chap. 23]. This method systematically infers in-
equalities ax + by ≤ c for a given polyhedron I ∈ Two such that
[[ax+ by ≤ c]] ⊆ [[I]]. The tightened inequality (a/d)x+ (b/d)y ≤ bc/dc
where d = gcd(a, b) is then added to the representation of P , thereby
cutting off space of I that contains no integral points. This process is
repeated until no more inequalities ax+by ≤ c can be inferred in which
bc/dc < c/d at which point the polyhedron is integral. The method
terminates after generating a finite number of cutting planes; however,
the number of cutting planes may be exponential in the diameter of the
polyhedron. This is illustrated by an example presented in [58, p. 344]:
consider the rational polyhedron shown in Fig. 25 that is defined by the
vertices 〈0, 0〉, 〈0, 1〉 and 〈k, 1

2〉. One step of Gomory’s algorithm infers
new inequalities such that 〈k−1, 1

2〉 is a new vertex. By induction, k−1
further steps are necessary to derive the Z-polyhedron containing only
the vertices 〈0, 0〉 and 〈0, 1〉.

While all but the last planes in this example were redundant, even
the number of non-redundant inequalities that need to be added to
define an integral polyhedron can be exponential in the number of
inequalities that describe the rational input polyhedron [58]. Thus, it
is not possible to implement an efficient (polynomial) static analysis
using Z-polyhedra as the abstract domain. For the special case of planar
polyhedra, Harvey proposed an efficient algorithm to shrink a ratio-
nal polyhedron around the contained integral points [33]. Section 4.2
presents Harvey’s algorithm and its implementation in the context of
the TVPI domain when it is realised as reduced product between in-
terval bounds and TVPI inequalities. Not surprisingly, shrinking each
planar projection is not sufficient to obtain an integral n-dimensional
TVPI system. In fact, testing whether a TVPI polyhedron has an
integral solution is NP-complete [42]. Hence, Sect. 4.3 discusses how
Harvey’s algorithm can be combined with the TVPI closure presented
in the previous section to approximate an integral TVPI domain.

tvpi-rev.tex; 27/10/2010; 10:46; p.45

46

1

2

1 2 5

j

k10

4

k=7

1≤ j ≤ 1.75

Figure 26. The state space after executing j=k/4 where j and k are integers. The
crosses mark possible variable valuations. The dashed lines denote the admissible
solutions for j after intersecting the polyhedron with k = 7

4.1. The Merit of Z-Polyhedra

This section motivates the use of Z-polyhedra in an analysis: On one
hand, the precision of an analysis can be improved by removing non-
integral state space. On the other hand, shrinking the state space
around the contained integral points avoids excessive growth of co-
efficients in the inequalities that describe the polyhedron and limits
the number of inequalities in each projection. The following sections
discuss each aspect in turn.

4.1.1. Improving Precision
Restricting the solution set of a polyhedron to integral points can im-
prove the precision of an analysis to the extent that certain properties
can be verified which are too coarsely approximated when using rational
polyhedra. Spurious state space that contains no integral points may
be transformed by scaling, that is, evaluating multiplication operations,
to a state that contains spurious integral points. For instance, consider
Fig. 26 which shows the state space after executing the first assignment
in the following C function:

void f(unsigned int k) {
int i,j;
j = k/4;
i = j*2;
if (k==7) { assert(i<3); }

};

On nearly all architectures, integer division rounds towards zero
and, when assuming that 0 ≤ k ≤ 232 − 1, the smallest polyhedron
that contains all solutions of the division j=k/4 contains 4j ≤ k and
k − 3 ≤ 4j since the remainder that is discarded is at most 3. The

tvpi-rev.tex; 27/10/2010; 10:46; p.46

47

resulting polyhedron is P = [[{0 ≤ k ≤ 232 − 1, 4j ≤ k ≤ 4j + 3}]]
which is shown in grey. The multiplication i=j*2 adds i = 2j to the
description, yielding 2i ≤ k ≤ 2i + 3 as the relationship between k
and i. The assertion in the branch of the conditional therefore does not
appear to hold since with k = 7, it only follows that 2i ≤ 7 ≤ 2i+3, i.e.
i ∈ [2, 7/2]. However, when i = 3 then j = 3/2 which is not a possible
state in the actual program. In fact, the largest value of j for k = 7
is 1, and hence the maximal value for i is 2. The necessary precision
to verify the assertion can be attained by shrinking the polyhedron P
around the containing integral points after the intersection with k = 7:
While the possible rational values for j are [1, 7/4], the only integral
point in this polyhedron P uP [[{k = 7}]] satisfies j = 1, k = 7 which
indeed implies i = 2 and thus verifies the assertion.

4.1.2. Limiting the Growth of Coefficients
While improved precision is important in some circumstances, a more
pressing reason to perform tightening around the integral grid is the
growth of coefficients that can occur otherwise. Specifically, repeated
application of the join operator during a fixpoint calculation can lead
to coefficients that are excessively large [69]. Note that arbitrarily large
coefficients can arise even in the planar case when expressing floating
point computations using rational polyhedra [64]. In principle, widen-
ing can be applied to remove inequalities with excessive coefficients.
However, this may incur a precision loss that is difficult to understand
and anticipate when interpreting the results of an analysis. Even when
pursuing this idea, the question of whether an inequality contains an
excessively large coefficient, and should therefore be discarded, has no
straightforward answer. For instance, wrapping the variable x to an
unsigned 32-bit integer in the polyhedron [[{x = y − 1, 0 ≤ y ≤ 1}]]
yields {x + (232 − 1)y = 232 − 1, 0 ≤ y ≤ 1} which is the most
precise set of inequalities that contains the two integral points and
removing any of these inequalities would discard valuable information.
In contrast, calculating intersection points between inequalities with
coefficients as large as 232 can easily generate numbers that exceed
64-bit integers which requires expensive arbitrary-precision arithmetic.
Thus a threshold lower than 232 is desirable which, however, would
compromise the polyhedron above. A more principled way to prevent
coefficients from growing excessively is, again, to shrink the polyhedron
around its integral points. For instance, adding the inequality x ≤ 7
to the above system {x + (232 − 1)y = 232 − 1, 0 ≤ y ≤ 1} results
in a polyhedron that only contains the integral point 〈x, y〉 = 〈0, 1〉.
Tightening the rational polyhedron around this integral point results
in the inequality set {0 ≤ x ≤ 0, 1 ≤ y ≤ 1} which contains none of the

tvpi-rev.tex; 27/10/2010; 10:46; p.47

48

large coefficients of the rational system. In general, the coefficients of
inequalities in a Z-polyhedron are bound by the admissible range of the
variables in the inequalities. For instance, the wrapped system above
constitutes an inequality set that spans the whole 32-bit range of x and
whose coefficients are bound by 232. In fact, this system represents the
worst-case scenario as any other system of inequalities that contains
the values 0 and 232 − 1 for x has the same or smaller coefficients for
x. Thus, tightening combined with wrapping guarantees upper bounds
on the coefficient sizes.

4.1.3. Limiting the Number of Inequalities
While limiting the size of coefficients, integer tightening may add ad-
ditional inequalities as well as make inequalities that do not cut off
any integral points redundant. However, the number of inequalities in
a planar Z-polyhedron is, in fact, polynomial in the absolute value of
any vertex coordinate. To illustrate this, observe that any inequality
in a Z-polyhedron connects two integral vertices and that its slope is
different from all other inequalities since it would otherwise be redun-
dant. Consider the sequence of points 〈1, 1〉, 〈2, 3〉, 〈3, 6〉, . . . , 〈k,

∑k
i=1 i〉

that forms the vertices of the Z-polyhedron defined by the inequality
sequence x− y ≤ 0, 2x− y ≤ −1, 3x− y ≤ −3, This non-redundant
sequence gives the minimal increase in the y-coordinate for each unit
increase in the x-coordinate whilst preserving convexity. This minimal
sequence covers a range of k(k−1)

2 units on the y-axis for k units on the
x-axis. Point reflection of this inequality sequence yields . . . , x− 3y ≤
1, x−2y ≤ 0, x−y ≤ 0 which spans k(k−1)

2 units on the x-axis for k units
on the y-axis. Thus, the maximal range spanned by combining the two
sequences to one sequence of 2k−1 inequalities is k+ k(k−1)

2 = k(k+1)
2 on

each axis. Thus, we observe that the maximal number of inequalities
is O(

√
m) where m is the size of the smallest box that contains all

vertices of the Z-polyhedron. The force of this result is that the number
of inequalities is polynomial in the size of the bounding box. Since
the running time of all domain operations depends on the number of
inequalities, this implies that all operations are polynomial. Together
with the limit on the size of coefficients in inequalities, this implies that
these polynomial operations of the integral TVPI domain are, in fact,
strongly polynomial.

The next sections details the tightening process that calculates pla-
nar Z-polyhedra and its implications on the closure.

tvpi-rev.tex; 27/10/2010; 10:46; p.48

49

1

2

1 2 5

y

x10

5

10

15

ι ≡≣3x+y≤25
2x+y≤18 x+y≤12

ι ≡≣3x+5y≤50

1

2

Figure 27. Given two neighbouring inequalities, Harvey’s algorithm calculates
so-called cuts that tighten these inequalities around the contained integral points

4.2. Harvey’s Integral Hull Algorithm

The integral TVPI domain used in our analysis is based on Harvey’s
integral hull algorithm which tightens a planar polyhedron around the
contained integral points. The idea of the integral hull algorithm is to
calculate cutting planes between adjacent inequalities. The number of
new cutting planes is bounded logarithmically by the size of the (coeffi-
cients of) the polyhedron, hence, Harvey’s algorithm runs in O(n logA)
where A represents the maximum coefficient in the inequality set. Cal-
culating cutting planes between two adjacent inequalities is presented
next. Section 4.2.2 adapts the integral hull algorithm to the reduced
product between intervals and TVPI inequalities with two non-zero
coefficients. Our algorithm is novel in that it exploits the representation
of the TVPI domain as a reduced product between interval bounds and
TVPI inequalities. It thereby avoids rather exotic data structures that
Harvey relies on to achieve the stated time bound.

4.2.1. Calculating Cuts Between two Inequalities
The building block of Harvey’s algorithm calculates cuts between two
adjacent inequalities that have a rational intersection point. These cuts
correspond to Gomory’s cutting planes, except that they are always

tvpi-rev.tex; 27/10/2010; 10:46; p.49

50

non-redundant. Suppose the following inequalities are adjacent in the
input polyhedron:

ι1 ≡ 3x+ y ≤ 25
ι2 ≡ 3x+ 5y ≤ 50

Figure 27 shows that the intersection point of ι1 and ι2 is not inte-
gral. In order to calculate the shown cuts 2x+y ≤ 18 and x+y ≤ 12, the
initial inequalities are mapped to a different coordinate system in which
ι2 is parallel to the y-axis. This is achieved by applying a transformation
T ∈ Z2×2 to their coefficients such that det(T) ∈ {1,−1} and(

3 1
3 5

)
T =

(
t u
1 0

)
,

where the values of t and u are fixed by the constraints on T . In par-
ticular, the inequality ι1 ≡ 3x+ y ≤ 25 is mapped to ι′1 ≡ tx+uy ≤ 25
and ι2 ≡ 3x+5y ≤ 50 to ι′2 ≡ x ≤ 50. The restriction det(T) ∈ {1,−1}
implies that T is unimodular, that is, the transformation maps every
integral point in the original system to an integral point in the new
coordinate system [26]. In the example above, a suitable matrix is

T =
(
−3 −5

2 −3

)
.

Applying this transformation matrix to the inequality ι1 yields ι′1 ≡
−7x+ 12y ≤ 25 which is shown together with ι′2 in Fig. 28. As before,
ι′1 has a non-integral intersection with ι′2 ≡ x ≤ 50. However, observe
that the first feasible integral point that lies on the boundary of ι′1 is at
〈41, 26〉 such that the problem of calculating cuts reduces to finding in-
tegral points with 41 ≤ x ≤ 50. The idea is to consider the slope of ι′1 as
a fraction 12/7 and to calculate approximations to 12/7 using fractions
made up of smaller numbers. These approximations provide potential
slopes for a cut that originates in 〈41, 26〉. Note that an inequality
touching 〈41, 26〉 with approximated slope a/b ≥ 12/7 touches the next
integral vertex at 〈41+a, 26+b〉 and thus does not cut off integral points
with x-coordinates between 41 and 41+a. Hence, it suffices to find two
consecutive slopes a/b and a′/b′ such that 41 + a ≤ 50 < 41 + a′ to
ensure that no feasible integral point is cut off. In order to find these
slopes, observe that every rational number can be represented as a finite
continued fraction that takes on the following form:

a1 +
1

a2 + 1
a3+··· 1

an

tvpi-rev.tex; 27/10/2010; 10:46; p.50

51

y

x
0

0 4538 50 54

30

26

34
ι' ≡≣x≤50 ι' ≡≣-7x+12y≤25

❷

❸

❺

-4x+7y≤18

❻

❼

❶

❹

-x+2y≤12

40

2 1

Figure 28. The inequalities in the transformed space. The seven convergents are
shown relative to 〈41, 26〉, the integral point on ι′1 that lies on the feasible side of
ι′2 = x ≤ 50

The coefficients ai can be inferred by observing the intermediate results
of Euclid’s greatest common divisor algorithm when applied to 12 and
7 [26]:

12 = 1× 7 + 5
7 = 1× 5 + 2
5 = 2× 2 + 1
2 = 2× 1 + 0

The coefficients are thus a1 = 1, a2 = 1, a3 = 2, a4 = 2 and 12/7 can
therefore be reexpressed as follows:

12
7

= 1 +
1

1 + 1
2+ 1

2

Approximations to 12/7 can now be derived by calculating a series
of prefixes of the continued fraction, namely

5
3

= a1 +
1

a2 + 1
a3

;
2
1

= a1 +
1
a2

;
1
1

= a1

where the empty prefix is 1/0, which represents the coarsest approxi-
mation. Let the fractions Ai/Bi be equal to the prefix of the continued
fraction up to and including ai. Rather than calculating these fractions
using rational arithmetic, the following recurrence equations provide a

tvpi-rev.tex; 27/10/2010; 10:46; p.51

52

way to calculate these fractions using integral numbers only:

A0 = 1 A1 = a1 Am = amAm−1 +Am−2

B0 = 0 B1 = 1 Bm = amBm−1 +Bm−2

The following table shows the values of Ai and Bi:

i 0 1 2 3 4

Ai 1 1 2 5 12
Bi 0 1 1 3 7

For all indices i where ai > 1, namely i = 3, 4, there exists fur-
ther approximations that have to be considered for possible slopes for
generating cuts. These slopes are obtained by calculating Ai and Bi

where ai is substituted with the values 1, . . . ai− 1. The following table
augments the above with indices i.j where j = 1, . . . ai − 1 for ai > 1:

1 2 3 4 5 6 7

i or i.j 0 1 2 3.1 3 4.1 4
Ai 1 1 2 3 5 7 12
Bi 0 1 1 2 3 4 7

This table gives the complete set of slopes Ai/Bi that suffices to
generate all possible cuts. For the example, these seven slopes are shown
in Fig. 28 as a displacement to the integral point 〈41, 26〉. Note that
slopes with odd indices i are not feasible with respect to ι′1 and can
therefore be discarded as an end-point for a cut. In particular, the
coefficients for the first cut are taken from the largest even index i
(or sub-index i.j with i even) that yields a point that is still satisfied
by ι′2 ≡ x ≤ 50. The first cut in the transformed space is therefore
−4x+ 7y ≤ 18 using the sixth fraction. The next cut originates in the
end-point of the first cut which is 〈48, 30〉. Calculating the next cut
is a matter of approximating the slope 7/4 of the first cut. Since the
continued fraction coefficients of 7/4 form a suffix of those of 12/7, we
can reuse the table above to find a suitable slope. The slope 2/1 gives
a displacement that reaches 〈50, 31〉 which lies on the boundary of ι′2.
Thus the corresponding inequality −x + 2y ≤ 12 is the final cut with
respect to the two input inequalities. The two cuts are translated to
the original coordinate system by multiplying the coefficients with

T−1 =
(

3 5
2 3

)
,

tvpi-rev.tex; 27/10/2010; 10:46; p.52

53

❶ ❷ ❸

ι12ι

ι1

2ι
ι1

2ι

Figure 29. Determining the bounds with which to calculate integral cuts

yielding 2x+ y ≤ 18 for the first cut and x+ y ≤ 12 for the second, as
shown in Fig. 27. Given that Euclid’s algorithm requires log(A) steps
where A bounds the size of the two input coefficients and the fact that
the fraction in each step may give rise to at most one cut, no more
than log(A) new inequalities are generated. However, some of these
new cuts may be redundant with respect to adjacent inequalities of the
rational polyhedron. The next section discusses the challenges of imple-
menting an algorithm that combines tightening of two inequalities with
redundancy removal and thereby provides a practical implementation
of Harvey’s algorithm in O(n logA) time if the inequalities to be added
are sorted by angle. Here n is the number of given inequalities (which
may have rational intersection points) plus the number of inequalities
to be added to the polyhedron.

4.2.2. Applying the Integer Hull in the Reduced Product Domain
Based on the method of calculating cuts between two inequalities,
Harvey suggested an incremental algorithm that tightens a rational
input polyhedron by adding its inequalities one by one to an initially
empty tree of inequalities that constitutes the output. The complexity
of O(n logA) is based on a level-linked finger tree [45] that is im-
plemented in a circular fashion. In this section we present a way to
calculate the integral hull that is likely to be faster for small n that
occur in program analysis and which is more in tune with the reduced
product representation of the TVPI domain where interval bounds are
represented separately from the relational information and the latter is
stored as an ordered, non-redundant array of inequalities.

Calculating the integral hull of a polyhedron has to be performed
whenever new inequalities are added through the meet-operation since
this may create non-integral intersection points. On the one hand, any

tvpi-rev.tex; 27/10/2010; 10:46; p.53

54

redundant inequality that arises when adding new inequalities needs to
be removed as cuts must be calculated on pairs of inequalities that are
themselves non-redundant. On the other hand, any new cut may make
other inequalities redundant such that the redundant inequalities must
be removed while calculating cuts. Satisfying both requirements in one
algorithm is difficult as the redundancy removal algorithm in Sect. 2.2.2
on p. 12 reduces the number of inequalities until a fixpoint is reached
while calculating cuts creates new inequalities. Thus, we present a strat-
egy that separates these concerns by exploiting the fact that the TVPI
domain is implemented as a reduced product between TVPI inequalities
and interval bounds. In particular, by observing that interval bounds
are tightened explicitly during redundancy removal as shown in Fig. 23
on p. 37, we propose to tighten the interval bounds further, namely to
the values that they will take on in the final Z-polyhedron. Given these
tightened interval bounds, cuts can be calculated separately within
each quadrant without requiring a fixpoint computation to remove
inequalities that become redundant with respect to the calculated cuts.

4.2.2.1. Bounds With Integral Points. We describe how to tighten
interval bounds to the bounds of the final Z-polyhedron. Since a Z-
polyhedron is characterised by the fact that all vertices are integral, it
follows that a Z-polyhedron has at least one feasible, integral point
on each (finite) bound of its bounding box. Thus, in order to find
this bounding box, the intervals of the rational polyhedron must be
tightened until at least one integral point lies on each bound. Suppose
that the bounds are rationally tightened such that the intersection of
two adjacent bounds defines a feasible (but possibly non-integral) point,
corresponding to graph 2–4 in Fig. 23 on p. 37. Rounding the bounds
to the nearest feasible integral values may lead to one of the situations
depicted in Fig. 29.

The interval bounds need no tightening if a point lies on them that
is integral and feasible, such as in the second graph. Algorithm 7 imple-
ments this test for pairs of inequalities ι1, ι2 where the normal vector
of ι1 points south-east as is the case in Fig. 29. Only the upper interval
bounds, namely xu and yu are relevant for this test. The algorithm
returns false if the feasible section of a bound contains no integral
point. In particular, lines 6 and 7 calculate the lower and upper y-
values of the intersection point of the inequalities with the x-bound xu

which corresponds to the first graph in Fig. 29. Line 8 tests if these
intersection points are feasible with respect to the upper bound on y,
namely yu. If these two bounds lie either side of yu then an integral
point has been found since yu ∈ Z (lines 9–11 and graph two in the

tvpi-rev.tex; 27/10/2010; 10:46; p.54

55

Algorithm 7 Test for a feasible, integral point on the upper bounds.
procedure hasZPoint4th(ι1, ι2, xu, yu) where xu, yu ∈ Z ∪ {∞} and

ι1, ι2 ∈ Ineq with 3
2π < ι1 < 2π∧ ι1]ι2 ≤ 2π∧θ(ι2) 6= 0∧θ(ι2) 6= π

2
1: a1x+ b1y ≤ c1 ← ι1
2: a2x+ b2y ≤ c2 ← ι2
3: if xu =∞ then
4: return true
5: end if
6: lower ← (c1 − a1xu)/b1
7: upper ← (c2 − a2xu)/b2
8: if yu <∞∧ upper > yu then
9: if lower ≤ yu then

10: return true
11: end if
12: upper ← (c1 − b1yu)/a1

13: lower ← (c2 − b2yu)/a2

14: end if
15: return dlowere ≤ bupperc

figure). Otherwise, the upper and lower x-values of the intersection
between the inequalities and yu is calculated (lines 12–13 and graph
three in the figure). If rounding these values towards each other results
in a non-empty interval, a feasible point on one of the bounds has been
found and line 15 returns true. Two special cases may occur during
the test. Firstly, ι1]ι2 = π, that is, the inequalities define an equality.
In this case the polyhedron may have no upper bounds and is thus
automatically a valid Z-polyhedron and lines 3–5 return immediately.
Secondly, in case the inequalities ι1 and ι2 lie in adjacent quadrants
(graph one in Fig. 23) yu may be infinite and line 8 ensures that
calculating the intersection with yu in lines 9–13 is skipped.

4.2.2.2. Tightening Bounds Using Inequalities. Since Alg. 7 only tests
whether an integral point exists on the upper x-bound, three more
variants of this test are necessary for the other bounds. If these tests
returns true, shrinking the polyhedron around the contained integral
points will not affect the corresponding bound. In case false is returned,
the corresponding bound must be tightened until it contains a feasible
integral point. This process is illustrated in Figure 30 where the objec-
tive is to find the two circled integral points that define the tightened
x- and y-bound. In order to find these integral points we calculate
a sequence of cuts c0, c1, . . . from the two inequalities ι1 and ι2 as

tvpi-rev.tex; 27/10/2010; 10:46; p.55

56

1

2

1 2

y

x

4

5 8

c ≡-2x+5y≤5

c ≡
2x

-y
≤1

0

c ≡x≤6

c ≡y≤3
ι ≡-192x+456y≤456

ι ≡
25

2x
-1

56
y≤

12
60 x≤7

y≤4

1

2

1

2

3

4

Figure 30. Deriving new bounds by calculating intersection points between cuts

follows: set c0 = ι1 unless ι1]ι2 = π in which case c0 is set to the
cut between ι1 and the next bound. (In Figure 29, this is the upper x-
bound, such that the cut is calculated with respect to 1x+0y ≤ xu.) Let
ci denote the cut between the inequalities ci−1 and ι2. Suppose there are
n such cuts such that c0, . . . cn, cn+1 denotes a sequence of inequalities
with integral intersection points where cn+1 = ι2. Furthermore, let
i denote the smallest index such that class(ci) 6= class(ι1), that is,
the cut ci lies in the next quadrant. Then the intersection between
ci−1, ci is an integral vertex that represents the largest extent of the
polyhedron towards that direction. Analogously, let j denote the largest
index such that class(cj) 6= class(ι2) and use the intersection of cj and
cj+1 to refine the next bound. For example, consider Fig. 30 where
ι1 = c0 and ι2 = c5 define the first and the last cut. Here, the class
boundaries are class(ι1) = class(c1) = 8, class(c2) = 1, class(c3) = 2
and class(c4) = class(ι2) = 3. Thus, i = 2 and j = 3 such that the
intersection point between c1 and c2 defines the upper x-bound and
similarly, c3 and c4 define the upper y-bound. After tightening the
bounds, all cuts are discarded and the redundancy removal algorithm
continues, possibly identifying ι1 or ι2 as redundant, in which case the
bounds might need tightening again.

4.2.2.3. Tightening Quadrants. By applying the above procedure for
all quadrants of the planar space, the redundancy removal algorithm
will infer a polyhedron in which the bounds coincide with the bounds
of the corresponding Z-polyhedron. With cuts being calculated on-the-

tvpi-rev.tex; 27/10/2010; 10:46; p.56

57

Algorithm 8 Calculating all cuts between two non-redundant bounds
procedure tightenFirstQuadrant(I, xu, yu), I sorted, xu, yu ∈ Z∪{∞}
1: if xu <∞ then
2: I ← 〈1x+ 0y ≤ xu〉 · I
3: end if
4: if yu <∞ then
5: I ← I · 〈0x+ 1y ≤ yu〉
6: end if
7: O ← ∅
8: while |I| > 0 do
9: if |O| = 0 then

10: 〈ι0, . . . ιn〉 ← I
11: I ← 〈ι1, . . . ιn〉
12: O ← 〈ι0〉
13: else
14: 〈o1, . . . om〉 ← O
15: 〈ι1, . . . ιn〉 ← I
16: if |I| > 1 ∧ {om, ι2} v ι1 then
17: O ← 〈o1, . . . om−1〉
18: I ← 〈om, ι2, . . . ιn〉
19: else if intersect(om, ι1) ∈ Z2 then
20: O ← 〈o1, . . . om, ι1〉
21: I ← 〈ι2, . . . ιn〉
22: else
23: O ← 〈o1, . . . om−1〉
24: I ← 〈om, calculateCut(om, ι1), ι1, . . . ιn〉
25: end if
26: end if
27: end while
28: return O

fly, rather than being inserted into the sequence of inequalities, there
is no need to alter the fixpoint calculation of the redundancy removal
algorithm. The integral bounds can now serve to tighten each quadrant
of the polyhedron separately, as implemented by Alg. 8 for inequalities
I = {ι1, . . . ιn} with 0 < θ(ι1) < . . . < θ(ιn) < π

2 . The first three
lines prepend the upper x bound as inequality to I (using a dot to
denote concatenation), thereby ensuring that the sequence begins with
a non-redundant inequality that is known to be part of the output Z-
polyhedron. Analogously, lines 4–6 append the upper y-bound. Note
that in case a bound is infinite, the nearest inequality is in both cases a
non-redundant ray that is satisfiable by an integral point and must

tvpi-rev.tex; 27/10/2010; 10:46; p.57

58

❶ ❷

om-1

c

1ι

mo

1ι

2ι
3ι

mo
c

Figure 31. Removing inequalities that were made redundant by a new cut

therefore be part of the output Z-polyhedron. While lines 1–6 are
specific to the first quadrant, the code in lines 7–28 is applicable to all
quadrants. The shown loop examines the polyhedron described by I and
calculates its Z-polyhedron in form of the initially empty sequence O.
Specifically, lines 9–12 ensure that O contains at least the first element
of I which is known to be in the output Z-polyhedron by the previous
argument. The following lines ensure that O only contains inequalities
that are non-redundant and that intersect in an integral point. Non-
redundancy of ι1 is ensured by the test in line 16 which holds if ι1
is the last inequality in I or if it is not entailed by its neighbouring
inequalities. Furthermore, integrality is ensured by the test in lines 19,
in which case lines 20–21 move the head ι1 of I to the tail of O. In case
the intersection point is not integral, lines 23–24 calculate a cut that
has an integral intersection with om. However, the new cut may make
om redundant which is illustrated in the first graph of Fig. 31. Since om

was appended to O, it is non-redundant with respect to om−1 and ι1 and
there exists an integral point p = intersect(om−1, om). It follows that om

can only be redundant if p = intersect(om, c). In this case, the current
om becomes ι1 in the next loop iteration and is removed by lines 16–18.
The loop iteration thereafter will find that om−1 and the cut c (now the
new ι1) intersect in the same integral point p and therefore appends
the cut to O. Thus, no more than one element of O is ever taken out of
O. On the contrary, inserting a new cut c in line 24 may render several
of the following inequalities ι1, ι2, . . . redundant as shown in the second
graph of Fig. 31. These are consecutively removed by lines 16–18. Since
the number of possible cuts between two inequalities is bounded and
the fact that the other three branches of the loop (lines 10–12, 17–18
and 20–21) reduce the length of I, the loop will terminate eventually.
In particular, since each element in O is put back into I at most once,
the algorithm is linear in the size of the output set O.

tvpi-rev.tex; 27/10/2010; 10:46; p.58

59

4.2.2.4. Complexity. In order to assess the complexity of the above
tightening methods, observe that the O(k) redundancy removal al-
gorithm is augmented with the calculation of cuts between interval
bounds and the adjacent inequalities. Harvey observes that no more
than O(logA) cuts can exist between any two inequalities whose coeffi-
cients are bounded by A. Furthermore, even if inequalities that are
adjacent to the bounds become redundant and each rational input
inequality were to be removed, the whole redundancy removal will still
terminate in O(k logA). Similarly, calculating cuts in each quadrant
terminates after creating at most O(logA) cuts between each pair
of adjacent inequalities, giving an overall running time of O(k logA).
Note that Harvey’s algorithm requires only O(k logA) steps even if
the input inequalities are not sorted by angle. However, Alg. 8 can be
implemented using a dynamically growing array for the output O. The
simpler data structure compensates for the requirement of sorting the
input inequalities. This is particularly true in the case of using the
TVPI domain for program analysis as the occurring planar polyhedra
are usually very small such that the overall running time is dominated
by constant overheads, e.g. manipulation a complicated level-linked tree
structure.

The next section presents a closure algorithm which builds on the
integral hull and the redundancy removal algorithm.

4.3. Planar Z-Polyhedra and Closure

Given an efficient algorithm that shrinks a given planar polyhedron
around the integral points that it contains, we now consider the prob-
lem of closing a system of planar integral polyhedra. Nelson originally
proposed the calculation of the closure of a TVPI system as a way to
check satisfiability [50]. However, checking if an arbitrary TVPI system
has an integral solution is NP-complete [42]. Hence, although the pla-
nar integral hull algorithm is complete, completeness is not preserved
when this algorithm is applied during the TVPI closure algorithm of
Sect. 3.2.5. In this section we shall explore how this manifests itself in
practice.

4.3.1. Our Implementation of the Z-TVPI Domain
The complexity of calculating an integral TVPI system could be cir-
cumvented by implementing a rational TVPI domain and merely tight-
ening planar projections whenever the value of a variable is queried.
However, this approach does not prevent the excessive growth of co-
efficients and does not fully exploit the precision improvement due to
tightening. The latter is illustrated by Fig. 32, which depicts the closure

tvpi-rev.tex; 27/10/2010; 10:46; p.59

60

3x+z≤25

3x+5z≤46

x+5z≤40

y-6z≤42

2y-5z
≤39

5y
-4z
≤4
8

18x+y≤192
15x+2y≤164

12x+5y≤148

12x+25y≤424

4x+25y≤400

10

z

x

1

2

5

9

1 2 5 8

z

9

-5

-1

y1 2 5 8
1

y

x

1

2

5

10

1 2 5

-5

-1

-2

-2

15

Figure 32. Closing a system over x, z and y, z to yield x, y. Shrinking the initial
system around the integral grid removes two integral points in the x, y system.

of a TVPI system containing inequalities over x, z and z, y. Here, ratio-
nal inequalities are shown as solid lines whereas the contained integral
polyhedra are shown as the solid grey area. Calculating the resultants of
the inequalities in the two graphs on the left yields five non-redundant
inequalities shown in the x, y-projection. The dashed lines in the left
two graphs denote the cuts that define the integral polyhedra in the
x, z and z, y-projections. Closing the system using these cuts results
in the inequalities indicated by the dashed line in the x, y-projection.
Note that the two integral points 〈4, 15〉 and 〈6, 14〉 are no longer part
of the feasible state space which shows that tightening every planar
projection leads to more precise relationships between other variables

tvpi-rev.tex; 27/10/2010; 10:46; p.60

61

of the system. However, the x, y-resultants calculated from the integral
x, z and z, y-cuts do not define a Z-polyhedron and tightening these
resultants around the integral grid is necessary, which results in the grey
polyhedron. The example shows that (1) using a rational TVPI domain
and applying integer tightening only when querying the domain is less
precise than (2) tightening all projections before closure which, in turn,
is less precise than (3) tightening all projections, performing closure
and then tightening all updated projections. For precision, tightening
before closure is preferable. In order to limit the size of coefficients as
discussed in Sect. 4.1.2, it is necessary to perform integral tightening
after closure. Hence, our implementation follows (3).

4.3.2. Tightening Bounds Across Projections
In order to adapt the incremental closure algorithm to use Harvey’s
tightening algorithm, recall that closure adds a set of inequalities to a
projection, removes redundant inequalities and uses the non-redundant
subset of the new inequalities to close the TVPI system. When perform-
ing integral tightening after running the redundancy removal algorithm,
the set of new, non-redundant inequalities is not a subset of the new
inequalities as tightening may have added cuts that are necessary to
describe the integral polyhedron. This non-monotone behaviour com-
plicates the data structures that are required in the implementation.

Except for calculating the cuts, performing closure with tighten-
ing exhibits the same complexity as the rational closure. However, an
integral closure algorithm would provide a way to test for integral satis-
fiability which, in turn, is NP-complete. In fact, performing tightening,
closure and another tightening step does not generally lead to a Z-
polyhedron. For instance, consider the TVPI system over the three
variables x, y, z shown in Fig. 33. Suppose the initial system consists of
{x = 2z} and that the inequalities 2x+ 3y ≤ 27,−2x+ 3y ≤ 3,−2x−
3y ≤ −15, 2x− 3y ≤ 9 are then added as indicated by the solid lines in
the upper left system. Applying integral tightening to these inequalities
has no effect as the intersection points of the inequalities are already in-
tegral. Closing the system calculates the resultants of these inequalities
and the empty y, z-projection before combining the x, y-projection with
{x = 2z} = {x − 2z ≤ 0,−x + 2z ≤ 0} which results in a compressed
image of the rhombus in the y, z-plane. During redundancy removal, the
interval bounds of z are tightened to 2 ≤ z ≤ 4. Now the scaled rhombus
4z + 3y ≤ 27,−4z + 3y ≤ 3,−4z − 3y ≤ −15, 4z − 3y ≤ 9, depicted by
the solid lines, has non-integral intersection points with the bounds of
z. As the next step, the inequalities are tightened around the integral
grid, yielding 2z + y ≤ 11,−2z + y ≤ −1,−2z − y ≤ −7, 2z − y ≤ 5 as

tvpi-rev.tex; 27/10/2010; 10:46; p.61

62

1

2

1 2 5

y

x9

5

1

2

1 2 5

z

x9

5

1

2

1 2 5

z

y9

5

y

z

x

-2x+3y≤3 2x+3y≤27

-2x-3y≤-15 2x-3y≤9

x=2z

-4z+3y≤3 4z+3y≤27

-4z-3y≤-15 4z-3y≤9

Figure 33. Tightening inequalities around their integral grid can affect interval
bounds which requires a new tightening step in previously visited projections

indicated by the dashed lines. This tightening has derived bounds on
z, namely [2, 4]. Since the bounds of variables are of particular interest,
any updated interval is propagated to all other interval bounds using
inequalities drawn from any projection that fulfils cases three and four
of Fig. 23 on p. 37. Using these propagation rules, the x, z-projection
thereby tightens the interval of x to [4, 8]. Our implementation stops
at this point. Observe that the x, y-projection now has non-integral
intersection points since the bounds on z and x were updated after the
x, y-projection was tightened.

The shown dashed rhombus of the x, y-plane can be obtained by
either tightening the existing inequalities around the integral grid or by
calculating new resultants from the rhombus in the y, z-projection and
the line segment in the x, z-projection. In order to ensure that a TVPI
system is closed, closure and tightening has to be applied repeatedly
until a fixpoint is reached. To ensure efficiency, our implementation
stops with the state space shown in grey and thereby admits non-
integral intersection points with the interval bounds. This implies that
vertex-based algorithms such as the planar convex hull may operate on
non-integral vertices and may thus create inequalities that intersect in

tvpi-rev.tex; 27/10/2010; 10:46; p.62

63

1

2

1 2 5

y

x8

5

1

2

1 2 5

y

x8

5

x≥2

y≥1

x≤6

y≤4

x≥2

y≥1

x≤8

y≤4

ι3

ι0ι1

ι2 ι3

ι0ι1

ι2

Figure 34. Allowing interval bounds to tighten after calculating the integral hull
can lead to intersection points outside the original polyhedron

non-integral points. For instance, the polyhedra in the second system
of Fig. 1.3 on p. 6 can arise by tightening the bounds of the polyhedron
in the first system, namely once to x2 ≤ 4 and once to x2 ≥ 6. Any
rational intersection point between the updated bound and the existing
inequalities are only removed if new inequalities are added.

4.3.3. Discussion and Implementation
Rather unexpectedly, note that even repeated application of integral
closure does not constitute a decision procedure for integral TVPI
satisfiability. Consider the system comprised of the inequalities 0 ≤
4y − 7z ≤ 1 for the y, z-projection and 6 ≤ −4x+ 7z ≤ 7 for the x, z-
projection. Closing this TVPI system, which corresponds to adding the
two equations, adds 6 ≤ −4x+4y ≤ 8 to the x, y-projection. The latter
can be tightened without losing integral solutions to d64e ≤ x−y ≤ b

8
4c

which is equivalent to x−y = 2. The resulting system is, in fact, closed
and all projections are integral. This is peculiar, since the TVPI system
is actually unsatisfiable in Z. For this reason, we deemed repeated ap-
plication of closure to be excessive as, even then, unsatisfiability cannot
be detected in all cases.

Another consequence of bounds being tightened after a projection
has been shrunk around the integral grid is that inequalities might
become redundant. Suppose the integral polyhedron in the left graph
of Fig. 34 has just been tightened around the integral grid. If tightening
in a different projection reduces the upper bound on x to x ≤ 6, the
polyhedron will contain two redundant inequalities ι0 and ι3 as shown
in the right graph. Applying the convex hull algorithm to this system
of inequalities will calculate an intersection point between the upper
bound on y and the boundary of ι0, as these are angle-wise adjacent.
However, the resulting point lies outside the polyhedron and the convex
hull algorithm calculates a result that is incorrect. Thus, inequalities

tvpi-rev.tex; 27/10/2010; 10:46; p.63

64

that are redundant due to tightened bounds have to be removed before
applying the convex hull or other planar algorithms that require a non-
redundant input system. However, note that these excess inequalities
can be removed on-the-fly by merely using case two of the tests in
Fig. 22 on p. 36, rather than by applying the full redundancy removal
algorithm.

Working on non-closed TVPI systems implies that the analysis is
not as precise as possible. Worse, since the closure calculation has to be
stopped at some point, the specific implementation of the TVPI domain
determines the precision of the analysis. While this is an argument
against integer tightening, observe that the integral TVPI domain is
always more precise than its rational counterpart. Furthermore, since
coefficients in the inequalities of a rational TVPI system can grow ex-
cessively, inequalities have to be removed in order to ensure scalability
which inevitably leads to a non-closed and possibly imprecise system.
Tightening the planar polyhedron ensures that the coefficients in the
inequalities remain small so that the removal of inequalities with large
coefficients is unnecessary. Hence, implementing the TVPI domain over
planar Z-polyhedra seems to be the only way to implement the rational
TVPI domain efficiently.

We conclude this section by reviewing work on rational and integral
satisfiability of the TVPI domain.

4.4. Related Work

Inequalities with at most two variables have given rise to much research
in recent decades, not least due to the fact that general network flow
problems can be expressed using TVPI systems. Integer TVPI systems
describe a special class of flow problems where flows consists of discrete
units.

The closure operation presented in Sect. 3.2 stems from an idea of
Nelson to check for satisfiability of a rational TVPI system [50]. It
turns out that more efficient methods exist for this task [36]. However,
Shostak used closure algorithms to check for satisfiability of integer
TVPI problems [63] although his procedure is not guaranteed to ei-
ther terminate nor detect satisfiability. In the context of weaker TVPI
classes, Jaffar et al. [39] show that satisfiability of two-variables per
inequality constraints with unit coefficients can be solved in polynomial
time and that this domain supports efficient entailment checking and
projection. More recently, Harvey and Stuckey [34] have shown how to
reformulate this solver to formally argue completeness, which gave rise
to the planar integer hull algorithm [33]. Su and Wagner [73] present an
algorithm for calculating the least integer solution of a system of two

tvpi-rev.tex; 27/10/2010; 10:46; p.64

65

variable inequalities. They claim that their algorithm is polynomial,
however, it turns out that solving integer two variable per inequality
constraints is NP-complete [42]. However, checking integral satisfiabil-
ity of a TVPI system is polynomial if all inequalities are monotone [35],
that is, if all inequalities have the form ax− by ≤ c where a, b ∈ N. A
practical implementation of the integer satisfiability for general poly-
hedra is the Omega test [55], an extension of Fourier-Motzkin variable
elimination that is complete over the integers, but that might not ter-
minate in general. Other classic integer decision procedures include the
SUP-INF algorithm [62] and Cooper’s algorithm [19]. These techniques
are widely applied in verification but do not provide the operations
necessary for domains used in abstract interpretation.

5. Applications

When coupled with integral tightening, the TVPI domain can im-
prove both efficiency and precision of an analysis. This section presents
example applications of the TVPI domain that illustrate both aspects.

5.1. String Buffer Analysis

We demonstrate the use of the TVPI domain in the context of an
example drawn from string buffer analysis. In particular, the example
below shows how integral tightening reduces the number of iterations to
calculate a fixpoint. Furthermore, this verification problem requires in-
equalities with arbitrary coefficients and therefore beyond the precision
of the Octagon domain whose coefficients are unitary. The verification
task is to check that no memory buffer is accessed out-of-bounds. In
C, this analysis is complicated by the fact that the end of a string is
marked by a zero character (the so-called nul character). One common
idea of string buffer analysis [28, 67, 76] is to not track the contents of
a buffer, but only the position of the first nul character. Consider the
following loop which is naturally produced by a C compiler translating
while (*s) s++;.

1 char s[32] = "the string";
2 int i = 0;
3 while (true) {
4 c = s[i];
5 if (c==0) break;
6 i = i+1;
7 };

tvpi-rev.tex; 27/10/2010; 10:46; p.65

66

The task is to check that the string buffer s is only accessed within
bounds. This program is challenging for automatic verification because
the loop invariant is always satisfied and the extra exit condition within
the loop does not mention the loop counter i. In C, a string is merely
an array of bytes, in this case s is an array of 32 bytes. The string literal
initialises the first ten characters whilst the eleventh position is set to
0 (the nul character). A single polyhedral variable per array suffices
to express the position of the first nul character. Specifically, let n
represent the index of the nul position in s. The control flow graph of
the string buffer example is decorated with polyhedra P,Q,R, S, T, U
as follows:

c==0i=0 i=i+1+

yes

noP Q

S

TR
c=s[i]

U

The initial state of the program is described by P = [[{i = 0, n = 10}]].
The merge of this polyhedron and the one on the back edge, U , defines
Q = P tP U . To verify that the array access s[i] is within bounds,
we compute Q′ = Q uP [[{0 ≤ i ≤ 31}]] and issue a warning if Q′ 6= Q.
The analysis continues under the premise that the access was within
bounds and hence R is defined in terms of Q′ rather than Q as follows:

R = (∃c(Q′) uP [[{i < n, 1 ≤ c ≤ 255}]])
tP (∃c(Q′) uP [[{i = n, c = 0}]])
tP (∃c(Q′) uP [[{i > n, 0 ≤ c ≤ 255}]])

The projection operator ∃c removes all information pertaining to c in
Q′ so that c can be updated. Since the contents of s are ignored in our
model, the new value of c only depends on the relationship between the
index i and n which describes the position of the first nul character.
The value of c is restricted to [1, 255] if i < n, it is set to 0 if i = n and
to [0, 255] if i > n. Note that this model is valid for platforms where
the C char type is unsigned. The last three equations that comprise
the system are given by the following:

S = R uP [[{c = 0}]]
T = (R uP [[{c ≤ −1}]]) tP (R uP [[{c ≥ 1}]])
U = {〈n, i+ 1, c〉 | 〈n, i, c〉 ∈ T}

The affine transformation in the last equation defining U assumes
that the variables in the polyhedron are ordered as in the sequence

tvpi-rev.tex; 27/10/2010; 10:46; p.66

67

n, i, c. Figure 35 details the calculation of a fixpoint using Jacobi iter-
ation [23], where widening is applied in Q at iteration 10. Specifically,
we use widening with landmarks [70] that tracks the development of
the upper bound on i and extrapolates this bound to 10 since at i = 10
the second case of R first makes a contribution to R.

The development of state R11 is depicted in Fig. 36. The first graph
shows the contributions of the first and second cases in the definition
of R; the second graph shows their join. The states S12 and T12 are
derived from R11 by applying the test c==0 and its negation. Observe
that i takes on its maximal value in the state R11uP [[c ≥ 1]] at the point
〈10, 2549

255 , 1〉, that is, i < 9.996. Integral tightening ensures that i ≤ 9
in T12. This is important since i ≤ 10 in U13 and since U13 vP Q13, a
fixpoint has been reached. Additional iterations are required to reach a
fixpoint without integral tightening. In order to illustrate this, suppose
that no integral tightening is performed so that U13 = [[{1 ≤ i <
10.996, 1 ≤ c ≤ 255, n = 10}]]. Since i exceeds 10, another loop iteration
is calculated, leading to Q14 = [[{0 ≤ i < 10.966, n = 10}]]. Next R15

is calculated. Note that the guards i < n, i = n and i > n in the
definition of R merely abbreviate i ≤ n − 1, n ≤ i ≤ n and i ≥ n + 1.
Hence, since n = 10, these guards amount to intersection Q14 with the
ranges 0 ≤ i ≤ 10 and i = 10 and i ≥ 11. Since the latter guard is
unsatisfiable, the upper bound of i in R15 is 10 which (fortuitously)
recovers integrality so that the same fixpoint is reached, albeit after
more iterations. Observe that in order to express the fixpoint, non-
unitary coefficients are required in the inequalities that describe the
relation between the index i and the character c. Hence, this verification
problem is beyond the reach of other weakly relational domains such
as the Octagon [47] or the Octahedral domain [17].

5.2. Trace Partitioning

While the previous section showed how integral tightening can reduce
the number of iterations that arise during fixpoint calculations, this
section presents an example of how the precision improvement due to
integral tightening can be crucial to verify a program property. The
example builds on the observation that a Boolean flag can be added
to a polyhedral domain in order to distinguish two sub-polyhedra that
characterise different paths through the program [66]. In order to illus-
trate control-flow splitting, consider the task of proving the absence of
a division by zero in the following C fragment:

int r=MAX_INT;

tvpi-rev.tex; 27/10/2010; 10:46; p.67

68

j Qj Rj Sj Tj Uj

1 ⊥ ⊥ ⊥ ⊥ ⊥

2 0 ≤ i ≤ 0 ⊥ ⊥ ⊥ ⊥

3 0 ≤ i ≤ 0
0 ≤ i ≤ 0,

1 ≤ c ≤ 255
⊥ ⊥ ⊥

4 0 ≤ i ≤ 0
0 ≤ i ≤ 0,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 0,

1 ≤ c ≤ 255
⊥

5 0 ≤ i ≤ 0
0 ≤ i ≤ 0,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 0,

1 ≤ c ≤ 255

1 ≤ i ≤ 1,

1 ≤ c ≤ 255

6 0 ≤ i ≤ 1
0 ≤ i ≤ 0,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 0,

1 ≤ c ≤ 255

1 ≤ i ≤ 1,

1 ≤ c ≤ 255

7 0 ≤ i ≤ 1
0 ≤ i ≤ 1,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 0,

1 ≤ c ≤ 255

1 ≤ i ≤ 1,

1 ≤ c ≤ 255

8 0 ≤ i ≤ 1
0 ≤ i ≤ 1,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 1,

1 ≤ c ≤ 255

1 ≤ i ≤ 1,

1 ≤ c ≤ 255

9 0 ≤ i ≤ 1
0 ≤ i ≤ 1,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 1,

1 ≤ c ≤ 255

1 ≤ i ≤ 2,

1 ≤ c ≤ 255

10 0 ≤ i ≤ 10
0 ≤ i ≤ 1,

1 ≤ c ≤ 255
⊥

0 ≤ i ≤ 1,

1 ≤ c ≤ 255

1 ≤ i ≤ 2,

1 ≤ c ≤ 255

11 0 ≤ i ≤ 10

0 ≤ i, c ≤ 255,

255i + c ≤ 2550,

−i− 10c ≤ −10

⊥
0 ≤ i ≤ 1,

1 ≤ c ≤ 255

1 ≤ i ≤ 2,

1 ≤ c ≤ 255

12 0 ≤ i ≤ 10

0 ≤ i, c ≤ 255,

255i + c ≤ 2550,

−i− 10c ≤ −10

i = 10,

c = 0

0 ≤ i ≤ 9,

1 ≤ c ≤ 255

1 ≤ i ≤ 2,

1 ≤ c ≤ 255

13 0 ≤ i ≤ 10

0 ≤ i, c ≤ 255,

255i + c ≤ 2550,

−i− 10c ≤ −10

i = 10,

c = 0

0 ≤ i ≤ 9,

1 ≤ c ≤ 255

1 ≤ i ≤ 10,

1 ≤ c ≤ 255

14 0 ≤ i ≤ 10

0 ≤ i, c ≤ 255,

255i + c ≤ 2550,

−i− 10c ≤ −10

i = 10,

c = 0

0 ≤ i ≤ 9,

1 ≤ c ≤ 255

1 ≤ i ≤ 10,

1 ≤ c ≤ 255

Figure 35. Fixpoint calculation of the string loop. A polyhedron [[S]] is abbreviated
to S and ⊥ denotes an unsatisfiable set of inequalities. The column Pj is omitted
since Pj = [[{i = 0}]] for all iterations j. Further we omit n = 10 from all polyhedra.

tvpi-rev.tex; 27/10/2010; 10:46; p.68

69

255

1

1 10

255

1

1 10

255

1

1 10

c c c

i i i

2 2 2

5 5 5

constituents of R calculating T

c≥1

R

Figure 36. Performing integer tightening during the fixpoint calculation.

0

1

-9

f

d-5 -1 0 1 5 9

P

P -

+
d=0

Figure 37. Using a Boolean flag to perform control-flow splitting. Feasible integral
points are indicated by crosses, the dashed line indicating the polyhedron [[d = 0]].

if (d!=0) r=v/d;

The test d 6= 0 is modelled by intersecting the current state, say
P , with d > 0 and d < 0, resulting in P+ = P uP [[d > 0]] and
P− = P uP [[d < 0]]. The state with which the division operation is
analysed is approximated by P ′ = P+ tP P−. However, the convex
hull reintroduces the state P uP [[d = 0]] for which the division r=v/d
is erroneous. In fact, it turns out that P ′ = P whenever P+ and P−

are non-empty.
Suppose this block of code is executed with a value of [−9, 9] for

d. Rather than analysing the division twice, once with positive values
of d, once with negative values of d, Fig. 37 shows how the states
P+ and P− can be stored in a single state without introducing an
integral point where d = 0. Specifically, the figure shows the state
P ′ = (P− uP [[f = 0]]) tP (P+ uP [[f = 1]]). Suppose that the division
operations on polyhedra flags a warning whenever the denominator d
can be zero in P ′. Indeed, while the state space P ′uP [[{d = 0}]] is non-
empty, it contains no integer point, thereby indicating that an integer
division by zero is not possible. This can be proved by performing
integral tightening on P ′ which will collapse P ′ to the empty state.

tvpi-rev.tex; 27/10/2010; 10:46; p.69

70

5.3. Related Work

Quite apart from the applications discussed above, weakly relational
domains have found application in many areas. Difference-bounded
matrices that track the maximal difference between any two variables
have been used to reason about systems of constraints [5], clocks in
timed automata [14], and parallelisation [7]. More generally, TVPI in-
equalities with coefficients -1,0 or 1 were proposed for constraint logic
programming [34, 38] and were subsequently generalised to the Octagon
abstract domain [47] for the purpose of verifying C code. Elsewhere,
Octagons have been used to detect memory leaks in Java programs
[61]. Two variable inequalities were relaxed to arbitrary coefficients in
the context of satisfiability testing in theorem proving [50, 63]. As far
as we are aware, our work was the first to define an abstract domain
based on TVPI inequalities with arbitrary coefficients [72].

6. Conclusion

This paper presented the Two Variables Per Inequality abstract do-
main. Specifically, we presented abstract operations on planar polyhe-
dra which we lifted to several variables using a closure (information
propagation) algorithm. We then presented techniques to perform in-
tegral tightening. Overall, the TVPI domain, whether integral or not,
represents an attractive trade-off between tractability and expressive-
ness. Moreover, the TVPI domain provides polynomial runtime for
all its operations whilst being the most expressive domain over two
variables. Furthermore, the ability to perform integral tightening may
be important to an analysis focussing solely on integer properties.

Acknowledgements. This work was supported, in part, by EPSRC
grants EP/E033105, EP/E034519, EP/F012896, the INRIA project
“Abstraction” funded by CNRS and ENS, and the DFG EN SI 1579/1.
We would like to thank the anonymous reviewers for their comments;
in particular one reviewer who alerted us to Prop. 4 which incorrectly
stated in [72].

References

1. Akl, S. G. and G. T. Toussaint: 1978, ‘A fast convex hull algorithm’.
Information Processing Letters 7(5), 219–222.

2. Anderson, K. R.: 1978, ‘A Reevaluation of an Efficient Algorithm for Deter-
mining the Convex Hull of a Finite Planar Set’. Information Processing Letters
7(1), 53–55.

tvpi-rev.tex; 27/10/2010; 10:46; p.70

71

3. Andrews, A. M.: 1979, ‘Another efficient algorithm for convex hulls in two
dimensions’. Information Processing Letters 9(5), 216–219.

4. Avis, D. and K. Fukuda: 1992, ‘A Pivoting Algorithm for Convex Hulls and Ver-
tex Enumeration of Arrangements and Polyhedra’. Discrete & Computational
Geometry 8, 295–313.

5. Bagnara, R.: 1997, ‘Data-Flow Analysis for Constraint Logic-Based Lan-
guages’. Ph.D. thesis, Università di Pisa, Dipartimento di Informatica, Pisa,
Italy.

6. Bagnara, R., E. Ricci, E. Zaffanella, and P. M. Hill: 2002, ‘Possibly Not Closed
Convex Polyhedra and the Parma Polyhedra Library’. In: M. V. Hermenegildo
and G. Puebla (eds.): Static Analysis Symposium, Vol. 2477 of LNCS. Madrid,
Spain, pp. 213–229.

7. Balasundaram, V. and K. Kennedy: 1989, ‘A Technique for Summarizing
Data Access and Its Use in Parallelism Enhancing Transformations’. In: Pro-
gramming Language Design and Implementation. Snowbird, Utah, USA, pp.
41–53.

8. Banterle, F. and R. Giacobazzi: 2007, ‘A Fast Implementation of the Octagon
Abstract Domain on Graphics Hardware’. In: H. R. Nielson and G. Filé (eds.):
Static Analysis Symposium, Vol. 4634 of LNCS. Kongens Lyngby, Denmark,
pp. 315–332.

9. Bentley, J. L., H. T. Kung, M. Schkolnick, and C. D. Thompson: 1978, ‘On
the Average Number of Maxima in a Set of Vectors’. Journal of the ACM 25,
536–543.

10. Bertrand, J.: 2005, ‘NewPolka’. http://www.irisa.fr/prive/bjeannet/

newpolka.html.
11. Blanchet, B., P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-

niaux, and X. Rival: 2002, ‘Design and Implementation of a Special-Purpose
Static Program Analyzer for Safety-Critical Real-Time Embedded Software’.
In: T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough (eds.): The Essence
of Computation: Complexity, Analysis, Transformation. Essays Dedicated to
Neil D. Jones, Vol. 2566 of LNCS. pp. 85–108.

12. Blanchet, B., P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival: 2003, ‘A Static Analyzer for Large Safety-Critical
Software’. In: Programming Language Design and Implementation. San Diego,
California, USA.

13. Bournez, O., O. Maler, and A. Pnueli: 1999, ‘Orthogonal Polyhedra: Repre-
sentation and Computation’. In: F. W. Vaandrager and J. Schuppen (eds.):
Hybrid Systems: Computation and Control, Vol. 1569 of LNCS. Berg en Dal,
The Netherlands, pp. 46–60.

14. Bowman, H. and R. Gomez: 2006, Concurrency Theory, Calculi and Automata
for Modelling Untimed and Timed Concurrent Systems. Springer.

15. Brönnimann, H., J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T.
Toussaint: 2002, ‘In-Place Planar Convex Hull Algorithms’. In: Latin American
Symposium on Theoretical Informatics, Vol. 2286 of LNCS. Cancun, Mexico,
pp. 494–507.

16. Chernikova, N. V.: 1968, ‘Algorithm for Discovering the Set of All Solutions
of a Linear Programming Problem’. USSR Computational Mathematics and
Mathematical Physics 8(6), 282–293.

17. Clariso, R. and J. Cortadella: 2004, ‘The Octahedron Abstract Domain’. In:
R. Giacobazzi (ed.): Static Analysis Symposium, Vol. 3148 of LNCS. Verona,
Italy.

tvpi-rev.tex; 27/10/2010; 10:46; p.71

72

18. Codish, M., A. Mulkers, M. Bruynooghe, M. Garćıa de la Banda, and M.
Hermenegildo: 1995, ‘Improving Abstract Interpretations by Combining Do-
mains’. ACM Transactions on Programming Languages and Systems 17(1),
28–44.

19. Cooper, D. C.: 1972, ‘Theorem proving in arithmetic without manipulation’.
Machine Intelligence 7, 91–99.

20. Cormen, T. H., C. Stein, R. L. Rivest, and C. E. Leiserson: 2001, Introduction
to Algorithms. McGraw-Hill.

21. Cousot, P. and R. Cousot: 1977, ‘Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints’. In: Principles of Programming Languages. Los Angeles, California,
USA, pp. 238–252.

22. Cousot, P. and R. Cousot: 1979, ‘Systematic Design of Program Analysis
Frameworks’. In: Principles of Programming Languages. San Antonio, Texas,
USA, pp. 269–282.

23. Cousot, P. and R. Cousot: 1992a, ‘Abstract Interpretation and Application to
Logic Programs’. Journal of Logic Programming 13(2–3), 103–179.

24. Cousot, P. and R. Cousot: 1992b, ‘Comparing the Galois Connection
and Widening/Narrowing Approaches to Abstract Interpretation’. In: M.
Bruynooghe and M. Wirsing (eds.): Programming Language Implementation
and Logic Programming, Vol. 631 of LNCS. Leuven, Belgium, pp. 269–295.

25. Cousot, P. and N. Halbwachs: 1978, ‘Automatic Discovery of Linear Constraints
among Variables of a Program’. In: Principles of Programming Languages.
Tucson, Arizona, USA, pp. 84–97.

26. Davenport, H.: 1952, The Higher Arithmetic. Cambridge University Press, 7th
edition.

27. Day, A. M.: 1990, ‘The implementation of a 2D convex hull algorithm using
perturbation’. Computer Graphics Forum 9(4), 309–316.

28. Dor, N., M. Rodeh, and M. Sagiv: 2001, ‘Cleanness Checking of String Ma-
nipulations in C Programs via Integer Analysis’. In: P. Cousot (ed.): Static
Analysis Symposium, Vol. 2126 of LNCS. Paris, France, pp. 194–212.

29. Graham, R. L.: 1972, ‘An Efficient Algorithm for Determining the Convex Hull
of a Finite Planar Set’. Information Processing Letters 1(4), 132–133.

30. Gries, D. and I. Stojmenović: 1987, ‘A note on Graham’s convex hull algorithm’.
Information Processing Letters 25(5), 323–327.

31. Halbwachs, N., D. Merchat, and L. Gonnord: 2006, ‘Some ways to reduce
the space dimension in polyhedra computations’. Formal Methods in System
Design 29(1), 79–95.

32. Halbwachs, N., Y.-E. Proy, and P. Roumanoff: 1997, ‘Verification of Real-Time
Systems using Linear Relation Analysis’. Formal Methods in System Design
11(2), 157–185.

33. Harvey, W.: 1999, ‘Computing Two-Dimensional Integer Hulls’. SIAM Journal
on Computing 28(6), 2285–2299.

34. Harvey, W. and P. J. Stuckey: 1997, ‘A Unit Two Variable per Inequality Inte-
ger Constraint Solver for Constraint Logic Programming’. Australian Computer
Science Communications 19(1), 102–111.

35. Hochbaum, D. S.: 2004, ‘Monotonizing linear programs with up to two
nonzeroes per column’. Operations Research Letters 32(1), 49–58.

36. Hochbaum, D. S. and J. Naor: 1994, ‘Simple and Fast Algorithms for Linear
and Integer Programs with Two Variables per Inequality’. SIAM Journal on
Computing 23(6), 1179–1192.

tvpi-rev.tex; 27/10/2010; 10:46; p.72

73

37. Imbert, J.-L.: 1993, ‘Fourier’s Elimination: Which to Choose?’. In: Principles
and Practice of Constraint Programming. pp. 117–129.

38. Jaffar, J. and M. J. Maher: 1994, ‘Constraint Logic Programming: A Survey’.
Journal of Logic Programming 19/20, 503–581.

39. Jaffar, J., M. J. Maher, P. J. Stuckey, and R. H. C. Yap: 1994, ‘Beyond Finite
Domains’. In: A. Borning (ed.): Principles and Practice of Constraint Pro-
gramming, Vol. 874 of LNCS. Rosario, Orcas Island, Washington, USA, pp.
86–94.

40. Knuth, D. E.: 1973, The Art of Computer Programming: Fundamental Algo-
rithms, Vol. 1. Addison-Wesley, 2nd edition.

41. Koplowitz, J. and D. Jouppi: 1978, ‘A more efficient convex hull algorithm’.
Information Processing Letters 7(1), 56–57.

42. Lagarias, J. C.: 1985, ‘The Computational Complexity of Simultaneous Dio-
phantine Approximation Problems’. SIAM Journal on Computing 14(1),
196–209.

43. Le Verge, H.: 1992, ‘A Note on Chernikova’s Algorithm’. Technical Re-
port 1662, Campus Universitaire de Beaulieu, Institut de Recherche en
Informatique, Beaulieu, France.

44. Loechner, V.: 2005, ‘PolyLib’. http://icps.u-strasbg.fr/polylib/.
45. Mehlhorn, K.: 1984, Sorting and Searching, Vol. 1 of ETACS Monographs.

Springer.
46. Miné, A.: 2001, ‘A New Numerical Abstract Domain Based on Difference-

Bound Matrices’. In: O. Danvy and A. Filinski (eds.): Programs as Data
Objects, Vol. 2053 of LNCS. Aarhus, Denmark, pp. 155–172.

47. Miné, A.: 2006a, ‘The Octagon Abstract Domain’. Higher-Order and Symbolic
Computation 19, 31–100.

48. Miné, A.: 2006b, ‘Symbolic Methods to Enhance the Precision of Numerical
Abstract Domains’. In: E. A. Emerson and K. S. Namjoshi (eds.): Verification,
Model Checking and Abstract Interpretation, Vol. 3855 of LNCS. Charleston,
South Carolina, USA, pp. 348–363.

49. Motzkin, T. S., H. Raiffa, G. L. Thompson, and R. M. Thrall: 1953, ‘The
Double Description Method’. In: H. W. Kuhn and A. W. Tucker (eds.):
Contributions to the Theory of Games.

50. Nelson, C. G.: 1978, ‘An nlog(n) Algorithm for the Two-Variable-Per-
Constraint Linear Programming Satisfiability Problem’. Technical Report
STAN-CS-78-689, Stanford University.

51. Nelson, C. G.: 1981, ‘Techniques for Program Verification’. Ph.D. thesis, Palo
Alto Research Center, Palo Alto, California, USA.

52. Pratt, V. R.: 1977, ‘Two Easy Theories Whose Combination is Hard’. http:

//boole.stanford.edu/pub/sefnp.pdf.
53. Preparata, F. P. and S. J. Hong: 1977, ‘Convex Hulls of Finite Sets of Points

in Two and Three Dimensions’. Communications of the ACM 20(2), 87–93.
54. Preparata, F. P. and M. I. Shamos: 1985, Computational Geometry, Texts and

Monographs in Computer Science. Springer.
55. Pugh, W.: 1992, ‘The Omega test: a fast and practical integer programming

algorithm for dependence analysis’. Communications of the ACM 8, 102–114.
56. Sankaranarayanan, S., M. Colón, H. B. Sipma, and Z. Manna: 2006, ‘Effi-

cient Strongly Relational Polyhedral Analysis.’. In: E. A. Emerson and K. S.
Namjoshi (eds.): Verification, Model Checking and Abstract Interpretation, Vol.
3855 of LNCS. Charleston, South Carolina, USA, pp. 111–125.

tvpi-rev.tex; 27/10/2010; 10:46; p.73

74

57. Sankaranarayanan, S., F. Ivančić, and A. Gupta: 2007, ‘Program Analysis Us-
ing Symbolic Ranges’. In: H. R. Nielson and G. Filé (eds.): Static Analysis
Symposium, Vol. 4634 of LNCS. Kongens Lyngby, Denmark, pp. 366–383.

58. Schrijver, A.: 1998, Theory of Linear and Integer Programming. John Wiley &
Sons.

59. Sedgewick, R.: 1988, Algorithms in C. Addison-Wesley.
60. Seidel, R.: 1997, Convex Hull Computations, pp. 361–376. In: J. E. Goodman

and J. O’Rourke (eds.): Handbook of Discrete and Computational Geometry.
CRC Press.

61. Shaham, R., H. Kolodner, and M. Sagiv: 2000, ‘Automatic Removal of Array
Memory Leaks in Java’. In: D. A. Watt (ed.): Compiler Construction, Vol.
1781 of LNCS. Berlin, Germany, pp. 50–66.

62. Shostak, R.: 1977, ‘On the SUP-INF method for proving Presburger formulas’.
Journal of the ACM 24(4), 529–543.

63. Shostak, R.: 1981, ‘Deciding Linear Inequalities by Computing Loop Residues’.
Journal of the ACM 28(4), 769–779.

64. Simon, A.: 2005, ‘Relational Analysis of Floating-Point Arithmetic’. In:
Workshop on Numerical and Symbolic Abstract Domains. Paris, France.

65. Simon, A.: 2006, ‘Value-Range Analysis of C Programs with Focus on Find-
ing Buffer Overflow Vulnerabilities’. Ph.D. thesis, Computing Laboratory,
University of Kent.

66. Simon, A.: 2008, ‘Splitting the Control Flow with Boolean Flags’. In: M.
Alpuente and G. Vidal (eds.): Static Analysis Symposium, Vol. 5079 of LNCS.
Valencia, Spain, pp. 315–331.

67. Simon, A. and A. King: 2002, ‘Analyzing String Buffers in C’. In: H. Kirchner
and C. Ringeissen (eds.): Algebraic Methodology and Software Technology, Vol.
2422 of LNCS. Reunion Island, France, pp. 365–379.

68. Simon, A. and A. King: 2004, ‘Convex Hull of Planar H-Polyhedra’. Interna-
tional Journal of Computer Mathematics 81(4), 259–271.

69. Simon, A. and A. King: 2005, ‘Exploiting Sparsity in Polyhedral Analysis’.
In: C. Hankin and I. Siveroni (eds.): Static Analysis Symposium, Vol. 3672 of
LNCS. London, UK, pp. 336–351.

70. Simon, A. and A. King: 2006, ‘Widening Polyhedra with Landmarks’. In: N.
Kobayashi (ed.): Asian Symposium on Programming Languages and Systems,
Vol. 4279 of LNCS. Sydney, Australia, pp. 166–182.

71. Simon, A., A. King and J. M. Howe: 2010, ‘The Two Variable Per Inequality
Abstract Domain: Proofs’. Technical report.

72. Simon, A., A. King, and J. M. Howe: 2003, ‘Two Variables per Linear Inequality
as an Abstract Domain’. In: M. Leuschel (ed.): Logic-Based Program Synthesis
and Transformation, Vol. 2664 of LNCS. Madrid, Spain, pp. 71–89.

73. Su, Z. and D. Wagner: 2005, ‘A Class of Polynomially Solvable Range Con-
straints for Interval Analysis without Widenings’. Theoretical Computer
Science 345(1), 122–138.

74. Toussaint, G. T. and D. Avis: 1982, ‘On a convex hull algorithm for polygons
and its application to triangulation problems’. Pattern Recognition Letters
15(1), 23–29.

75. Toussaint, G. T. and H. E. Gindy: 1983, ‘A counterexample to an algorithm
for computing monotone hulls of simple polygons’. Pattern Recognition Letters
1, 219–222.

76. Wagner, D.: 2000, ‘Static analysis and computer security: New techniques for
software assurance’. Ph.D. thesis, University of California at Berkeley.

tvpi-rev.tex; 27/10/2010; 10:46; p.74

75

77. Wayne, K. D.: 1999, ‘A polynomial combinatorial algorithm for generalized
minimum cost flow’. In: Theory of Computing. Atlanta, Georgia, USA, pp.
11–18.

tvpi-rev.tex; 27/10/2010; 10:46; p.75

tvpi-rev.tex; 27/10/2010; 10:46; p.76

