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Abstract

This paper revisits the problem of determinacy inference addressing the problem of how
to uniformly handle cut . To this end a new semantics is introduced for cut , which is
abstracted to systematically derive a backward analysis that derives conditions sufficient
for a goal to succeed at most once. The method is conceptionally simpler and easier to
implement than existing techniques, whilst improving the latter’s handling of cut . Formal
arguments substantiate correctness and experimental work, and a tool called ’RedAlert’
demonstrates the method’s generality and applicability.
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1 Introduction

The question of determinacy is constantly on the mind of a good Prolog program-
mer. It is almost as important to know that a goal will not compute an answer
multiply, as it is to know that it will compute the right answer. To this effect,
Prolog programmers often use the cut to literally cut off all choice points that
may lead to additional answers, once a goal has suceeded. A cut that is used to
(brutely) enforce determinacy in this way is termed a “red cut” (O’Keefe, 1990).
O’Keefe also distinguishes between further uses of cut , namely “green cut” and
“blue cut”, which are used to avoid repeating tests in clause selection and explor-
ing clauses which would ultimately fail. Such classifications have been introduced
to facilitate reasoning about the determinising effects of cut in different contexts.
Since these issues are subtle, they motivate developing semantically justified tools
which aid the programmer in reasoning about determinacy in the presence of cut .

In light of this close connection between determinacy and cut , it is clear that
cut ought to play a prominent role in determinacy analysis. This was recognised by
Sahlin (1991), twenty years ago, who proposed an analysis which checks whether a
goal can succeed more than once. The analysis abstracts away from the instanti-
ation of arguments within a call which weakens its applicability. Mogensen (1996)
recognised the need to ground the work of Sahlin on a formal semantics, yet his
work illustrates the difficulty of constructing and then abstracting a semantics for
cut . Very recently Schneider-Kamp et al. (2010) have shown how a semantics, care-
fully crafted to facilate abstraction, can be applied to check termination of logic
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programs with cut on classes of calls. This begs the question whether a semantics
can be distilled which is ameniable to inferring determinacy conditions. A good
answer to this question will provide the basis for a tool that supports the software
development process by providing determinacy conditions in the presence of cut .

1.1 Existing methods for determinacy inference

The issue of inferring determinacy in logic programs has been considered before (Lu
and King, 2005; King et al., 2006), though neither of the works adequately addressed
the cut . King et al. (2006) for example present a method for infering determinacy
conditions initially for cut-free Prolog programs by using suspension analysis in
a constraint-based framework. Their motivation is to overcome a limitation of the
method presented by Lu and King (2005) that arises from the way in which the order
of the literals in the clause influences the strength of the determinacy conditions
inferred. To demonstrate this problem, consider the following example:

diag([],[],_).

diag([(X,Y)|Xs],[(Y,X)|Ys],[_|Ds]) :- diag(Xs,Ys,Ds).

vert([],[],_).

vert([(X,Y)|Xs],[(X1,Y)|Ys],[_|Ds]) :- {X1 = -X}, vert(Xs,Ys,Ds).

rot(Xs,Ys) :- diag(Xs,Zs,Ys), vert(Zs,Ys,Xs).

(The constraint notation in the second clause of vert is needed to render the
predicate multi-modal.) The method presented by Lu and King (2005) infers the
groundness of Xs as a sufficient condition for the determinacy of rot(Xs,Ys). It
does not detect that the groundness of Ys, too, is sufficient for determinacy. This
is because the method only considers the left-to-right flow of information from one
goal to the next. For instance, if rot(Xs,Ys) is called with Ys ground, then when
the call diag(Xs,Zs,Ys) is encountered, neither Xs nor Zs are ground, hence the
call is possibly non-deterministic and therefore the method concludes that only
groundness of Xs is sufficient for determinacy of rot(Xs,Ys).

In response, King et al. (2006) propose a framework in which the order of the
literals in a clause does not impose the implicit assumption that the determinacy of
a goal is not affected by the bindings subsequently made by a later goal. To demon-
strate, notice that if Ys is ground then the execution of vert(Zs,Ys,Xs) grounds
Zs, which is sufficient for the earlier goal diag(Xs,Zs,Ys) to be deterministic as
well. They achieve this by delaying execution of a goal until a mutual exclusion con-
dition between its clauses is fulfilled and then using suspension inference (Genaim
and King, 2008) to infer a determinacy condition for the goals that constitute the
body of a clause. This allows them to infer the determinacy condition Xs ∨ Ys for
the goal rot(Xs,Ys). Notice, however, the irony in solving a problem that arises
from the failure to abstract away from the temporal order of execution by adding
temporal complexity into the program.
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1.2 Limitations of existing methods

However, the limitations of (King et al., 2006) become sharply apparent when con-
sidering the way that the framework is extended to cut : Their method is extended
by strengthening the determinacy condition for a predicate to ensure that calls
before a cut are invoked with ground arguments only. While this treatment is suffi-
cient to handle green and blue cuts, it means that a cut will invariably strengthen
the determinacy conditions derived. This is unsatisfactory when considering red
cuts, given that they are used to ensure determinacy. In that case, the presence of
cut ought to have a weakening effect on determinacy conditions. To demonstrate,
consider the following pair of predicates:

memberchk(X,L) :- member(X,L), !.

member(X,[X|_]).

member(X,[_|L]) :- member(X,L).

In the framework of King et al. (2006), memberchk inherits its determinacy condi-
tions from member and (if necessary) strengthens them to ensure that the arguments
in the call to member are ground. In this situation, the determinacy condition derived
for member is false, which cannot be strengthened within the domain of boolean
constraints. Therefore the determinacy condition derived for memberchk is false as
well. However, it should be obvious that the effect of the red cut in this situation is
to make memberchk deterministic independently of the determinacy of member. This
example demonstrates that in the presence of cut , determinacy conditions on pred-
icates cannot be derived by a straightforward compositional method where parent
predicates inherit their conditions from their sub-predicates. Rather, the method
needs to allow for weakening and disregarding of determinacy information in the
transition from parent to sub-predicates. Aiming to develop a uniform technique
for handling cut along these lines, this paper makes the following contributions:

• it presents a concise semantics for Prolog with cut , based on a cut-normal
form, that constitutes the basis for a correctness argument (and as far as we
are aware the sequence ordering underpinning the semantics is itself novel);

• it presents and proves correct a method for inferring determinacy conditions
on Prolog predicates which abstracts over the order of their execution and is
both conceptually simpler and easier to implement than previous techniques;

• it reports experimental work that demonstrates precision improvements over
existing methods; correctness proofs are given in (Kriener and King, 2011).

2 Preliminaries

2.1 Computational domains

The basic domain underlying the semantics presented in the next section is the
set of constraints, Con, containing diagonalization constraints of the form ~x = ~y ,
expressing constraints on and bindings to program variables. Con is pre-ordered
by the entailment relation, |=, and closed under disjunction and conjunction. We
assume the existence of an extensive projection of θ onto ~x , denoted by ∃~x (θ).
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2.1.1 Con↓

Our concrete domain is the set of closed non-empty sets of constraints (Con↓),
which represent program states by capturing all possible bindings to the pro-
gram variables consistent with a specific set of constraints on the same. The el-
ements of Con↓ are constructed thus: For any set of constraints Θ, ↓{Θ} = {φ |
∃θ ∈ Θ·φ |= θ}, i.e. the set of all constraints that entail some constraints in Θ.
(Observe that ↓{false} = {false}.) In this construction, unification is straightfor-
wardly modeled by intersection: The result of unifying variable A with constant
c at state ↓{Φ} is simply ↓{A = c} ∩ ↓{Φ}. Con↓ is partially ordered by ⊆ and
〈Con↓, ⊆, {false}, ↓{true},

⋃
,
⋂
〉 is a complete lattice. (Notice that ∅ /∈ Con↓.)

Two projections, one an over-, the other an under-approximation, are defined on
Con↓ as follows: ∃~x (Θ) = {∃~x (θ) | θ ∈ Θ}, ∀~x (Θ) = {ψ ∈ Θ | ∃~x (ψ) = ψ}. No-
tice that both projections on Con↓ are defined in terms of an arbitrary existential
projection on the elements of Con. Each of these two is required later on to ensure
soundness: The denotational and success set semantics (Sects. 3.1 and 3.2) need to
be over-approximations to be correct. Intuitively, they need to capture all possible
solutions, even at the cost of letting a few impossible ones slip in. The determinacy
semantics (Sect. 3.3) needs to be an under-approximation, which in that context
has the effect of strengthening the determinacy condition. Weakening would lead
to a loss of soundness there. A renaming operator ρ~x ,~y is defined on Con↓ thus:
ρ~x ,~y(Θ) = ∃~y(∃~x (Θ) ∪ {~x = ~y}). (Notice here that ρ~x ,~y(Θ) = ρ~x ,~y(∃~x (Θ)).) For a
single constraint θ, vars(θ) is the set of all variables occurring in θ.
Similar to the notion of definiteness defined by Baker and Søndergaard (1993), a
constraint θ fixes those variables, in respect to which it cannot be strengthened:

fix (θ) = {y | ∀ψ·((ψ |= θ ∧ ψ 6= false)→ ∃~y(θ) |= ∃~y(ψ))}

Put simply, fix (θ) is the set of variables that are fixed or grounded by θ.
In addition to these fairly standard constructions, we define two binary operators

on Con↓ to express more complex relations between its elements: Given Θ1, Θ2 ∈
Con↓ their mutual exclusion (mux ) is the union of all those φ ∈ Con, which fix a
set of variables, on which Θ1 and Θ2 are inconsistent:

mux (Θ1,Θ2) = {φ | ∃Y ⊆ fix (φ)·(∃Y (Θ1) ∩ ∃Y (Θ2) = {false})}

For example, given two sets Θ1 = ↓{A = c,B = d}, Θ2 = ↓{A = e,B = d}, their
mutual exclusion will contain all constraints which fix the variable A to any constant
f : mux (Θ1,Θ2) = ↓{A = f }. Notice that, since Θ1 and Θ2 do not disagree on B ,
fixing B will not distinguish between them and B is therefore not constrained in
mux (Θ1,Θ2). Observe that for Θ1, Θ2 ∈ Con↓, mux (Θ1,Θ2) ∈ Con↓, i.e. the mux
of two closed sets is closed and that mux (Θ1,Θ2) = ↓{true} if Θ1 or Θ2 is {false}.

Given Θ1, Θ2 ∈ Con↓, their implication is defined as the union of all those
elements of Con↓ which, when combined with Θ1, form subsets of Θ2:

Θ1 → Θ2 =
⋃
{Φ | Φ ∩Θ1 ⊆ Θ2}

For example, given two sets Θ1 = ↓{B =d} and Θ2 = ↓{A=c,B =d}, Θ1 → Θ2 =
↓{A = c}. Notice that this construction mirrors material implication on boolean
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formulae in that the following statements are true for any Θ: ↓{true} → Θ = Θ,
Θ → ↓{true} = ↓{true}, ↓{false} → Θ = ↓{true}, Θ → ↓{false} = ↓{false}. Notice
also that it is possible to recover Θ2 from Θ1 → Θ2 by simply intersecting the latter
with Θ1: Θ1 → Θ2 is, in a sense, a systematic weakening of Θ2 by Θ1.

2.1.2 Con↓seq

To model the indeterministic behaviour of Prolog semantically, we extend Con↓ to
finite sequences of its elements which do not contain the set {false}, the elements
of which are denoted by ~Θ. Concatenation is denoted ‘:’, e.g., Θ1 : [Θ2,Θ3] =
[Θ1,Θ2,Θ3]. To obtain a top element we add a single infinite sequence, ω =
[↓{true}, ↓{true}, . . .] and define Con↓seq = {(Con↓ − {false})n | n ≥ 0} ∪ {ω}.
Sub`(~Θ) denotes the set of all subsequences of ~Θ of length `. Eg: Sub2([Θ1,Θ2,Θ3]) =
{[Θ1,Θ2], [Θ2,Θ3], [Θ1,Θ3]}. Given a sequence of elements of Con↓, Θ∗, trim(Θ∗)
is the result of removing all instances of {false} from Θ∗.

Con↓seq can be partially ordered by a prefix-ordering (as is done by Debray and
Mishra (1988)). However, under that ordering, the presence of cut poses problems in
defining suitable monotonic semantic operators. Therefore, we define a partial order
on Con↓seq (v) thus: ∀~Θ1, ~Θ2 ∈ Con↓seq ·(

~Θ1 v ~Θ2) iff ∃~Φ ∈ Subm(~Θ2) · (~Θ1 ⊆pw
~Φ)

where |~Θ1| = m and⊆pw is point-wise comparison on sequences of equal length. The
lattice 〈Con↓seq ,v, [], ω,

⊔
,
d
〉 is complete (see Appendix), with

d
and

⊔
defined as

follows (note that
d

is needed only to define the fixpoints):

~Θ1 u ~Θ2 =


~Θ2 if ~Θ1 = ω
~Θ1 if ~Θ2 = ω
~Θ2 u ~Θ1 if n < m
trim(

⋃
pw{~Θ1 ∩pw

~Φ | ~Φ ∈ Subm(~Θ2)}) otherwise
where |~Θ1| = m, |~Θ2| = n and ∪pw and ∩pw are point-wise union and intersection,
which require their operands to be equal length.

d
S is defined as the lifting of u to

sets in the natural way. From this we can define
⊔

S =
d
{~Θ | ∀~Φ ∈ S·~Φ v ~Θ} in the

normal way. The operators ↓, ∃~x , ∀~x and ρ~x ,~y are all lifted straightforwardly to the
elements of Con↓seq as the results of applying the same operations to each member
of a given ~Θ. Eg: ↓∃~x ([Θ1,Θ2]) = [↓∃~x (Θ1), ↓∃~x (Θ2)].

⋃ ~Θ denotes the union of all
the elements of ~Θ, which itself is an element of Con↓. Finally, to save some space in
the presentation of the definition of FG in Section 3.1, a mixed ∩ is defined thus:
(Φ : ~Φ) ∩Θ = (Φ ∩Θ) : (~Φ ∩Θ).

2.2 Cut normal form

To simplify the presentation of the semantics, we require each predicate in the anal-
ysed program to be defined in a single definition of the form p(~x )← G1; G2, !,G3; G4.
For example, the memberchk and member predicates can be transformed to:
memberchk(X, L) :- false; (member(X, L), !, true); false.

member(X, L) :- L = [X| _]; (false, !, true); (L = [_| L_1], member(X, L_1)).

where true and false abbreviate post(true) and post(false) respectively. This does
not introduce a loss of generality. (For details on this transformation see Appendix.)
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2.3 Syntax and stratification

Given this normal form, the syntax of our programs is defined as follows:

Head ::= p(~x ) (where ~x is a vector of distinct variables)
Goal ::= post(θ) | Head | Goal ,Goal
Predicate ::= Head ← Goal ; Goal , ! , Goal ; Goal
Program ::= ε | Predicate · Program

where post(φ) indicates that φ is added to the current constraint store. Again,
vars(G) is the set of variables in a goal G . Further, heads(P) contains the heads of
the predicates defined in P .

One would expect that an off-the-shelf denotational semantics could be taken and
abstracted to distill a form of determinacy inference. However, the non-monotonic
nature of cut poses a problem for the definition of such a semantics. In particular,
cut can be used to define inconsistent predicates, eg: p ← false ; p, !, false ; true.
To construct a denotational semantics, we have to address the problem posed by
predicates like p, which cannot be assigned a consistent semantics.

Apt et al. (1988) address a parallel problem in the context of negation by banning
the use of such viciously circular definitions. To this end, they introduce the notion
of stratification with respect to negation. In their view, negation is used ‘safely’,
if all predicates falling under the scope of a negation are defined independently
of the predicate in which that negation occurs. Given the similarity between cut
and not , it is natural to adopt a similar approach towards our analogous problem.
We define stratification with respect to cut , assuming that cut is used safely, if
only predicates that are defined independently of the context of a cut , can decide
whether it is reached or not: A program P is cut-stratified, if there exists a partition
P = P1 ∪ . . .∪Pn such that the following two conditions are met for all 1 ≤ i ≤ n:
1. For all p(~x )← G1; G2, !,G3; G4 in Pi , all calls in G2 are to predicates in

⋃
j<i Pj .

2. For all p(~x )← G1; G2, !,G3; G4 in Pi , all calls in G1, G3 and G4 are to predicates
in
⋃

j≤i Pj . Henceforth, we shall simply write ‘stratified’ to mean ‘cut-stratified’.
Notice that this restriction is almost purely theoretical. In the worst case, a cut
after a recursive call produces a situation like or similar to that of the predicate p
above, which has no stable semantics and in practice introduces an infinite loop. In
the best case, such a cut is simply redundant. Either way, we have not been able
to find such a cut in an actual Prolog program, nor have we been able to come up
with an example in which such a cut is put to good use.

3 Semantics

Given these preliminaries, we can now define a denotational semantics for Prolog
with cut (section 3.1), over Con↓seq , which is expressive enough to capture multiple
answers, and a determinacy semantics (section 3.3), over Con↓, suitable for abstrac-
tion to boolean conditions. The success set semantics presented in between these
two (section 3.2) provides a link between them.
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3.1 Denotational semantics

To establish a basis for arguing the determinacy semantics presented in the following
sections correct, we define a denotational semantics for Prolog with cut . The driving
intuition here is, that the semantics of a program P is a mapping from goals called
in the context of P to sequences of possible answer substitutions. The context
is provided by an environment (µ), henceforth called a success environment to
distinguish it from other types of environments, which is a mapping from predicate
heads and Con↓seq to Con↓seq : Env ::= Head → Con↓seq → Con↓seq . The notation
µ[p(~y) 7→ ~Θ] denotes the result of updating µ with a new assignment from p(~y)
to ~Θ. For a given program P , the set EP of success environments is point-wise
partially ordered by: µ1 v µ2 iff ∀p(~y), ~Θ·(µ1(p(~y))(~Θ) v µ2(p(~y))(~Θ)). For any
program P the lattice 〈EP ,v, µ⊥, µ>,

⊔
,
d
〉 is complete, where:

µ⊥ = λp(~y)~Θ·[] µ> = λp(~y)~Θ·ω
µ1 t µ2 = µ3 s·t· ∀~Θ, p(~y)∈heads(P)·(µ3(p(~y))~Θ = µ1(p(~y))~Θ t µ2(p(~y))~Θ)
µ1 u µ2 = µ3 s·t· ∀~Θ, p(~y)∈heads(P)·(µ3(p(~y))~Θ = µ1(p(~y))~Θ u µ2(p(~y))~Θ)

And
⊔

and
d

are lifted to sets of environments in the normal way.

Definition 1
For a given stratified program P , its semantics - µP - is defined as a fixpoint of FP :

FP :: Program → Env → Env
FPJεKµ = µ

FPJP · PsKµ = FPJPsK(µ[p(~y) 7→ (FH JPKµ)(p(~y))])
where P = p(~y)← B

FH :: Predicate → Env → Env
FH Jp(~y)← BKµ = µ[p(~y) 7→ λ~Θ· ↓ ∃~y(FGJG1Kµ~Θ : ~Ψ)]

where ~Ψ =

{
FGJG3Kµ[Φ] if FGJG2Kµ~Θ = Φ : ~Φ
FGJG4Kµ~Θ otherwise

and B = G1; G2, !,G3; G4

FG :: Goal → Env → Con↓seq → Con↓seq
FGJGKµ[] = []
FGJpost(φ)Kµ(Θ : ~Θ) = trim(↓{φ} ∩Θ : FGJpost(φ)Kµ~Θ)
FGJp(~x )Kµ(Θ : ~Θ) = (↓ ρ~y,~x ( µ p(~y) (↓ ρ~x ,~y([Θ]))))∩Θ : FGJp(~x )Kµ~Θ

where p(~y) ∈ dom(µ)
and vars(~x ) ∩ vars(~y) = ∅

FGJG1,G2Kµ(Θ : ~Θ) = FGJG2Kµ(FGJG1Kµ(Θ : ~Θ))

Observe that given a stratified program P = P1 ∪ . . .∪Pn , FP is monotonic, under
our sub-sequence order, within each stratum Pi . By Tarski’s theorem, FPJPiK has
a least fixed point. µP can therefore be defined as the result of evaluating all strata
in order from lowest to highest, starting with µ⊥ and then taking the least fixed
point of the previous stratum as input to the evaluation of the next stratum.

The crucial part is in FH , which updates the assignments in the success en-
vironment and reflects the possible indeterminacy in a predicate by splitting the
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resulting sequence up into the possibility resulting from executing G1 and that re-
sulting from either executing G3 or G4, depending on the success of G2. Given a
call to a predicate, FG imposes onto each open possibility (i.e. each member of
~Θ) the constraints associated with that predicate in the given µ. The constraints
are determined by the application of µ to that predicate, after first applying pro-
jection and renaming operations required to match formal and actual parameters.
Information about other variables, which is lost in that process, is recovered by
intersecting the result of the predicate call with the previous state of computation.
The effect of this is, that constraints on the variables that the predicate is called on
are strengthened in accordance with its definition, while those on all other variables
are preserved. Given a goal of the form ‘post(φ)’ or ‘G1,G2’, FG does what you
would expect: In the former case, it imposes φ onto each open possibility in the
current state of computation, filtering out those possibilities which fail as a result.
In the latter case, it successively evaluates G1 and G2. Notice further that given an
empty sequence (i.e. a failed state of computation), FG simply returns an empty
sequence, regardless of its other parameters.

Example 1
To illustrate, suppose member(A,S) and memberchk(A,S) are called at a point in a
program where there is only one possible set of bindings Θ = ↓{A = 3∧S = [3, 2, 3]}.
FGJmember(A,S )K µ [Θ] = [Θ ∩ ↓{S =[A| ]},Θ]
FGJmemberchk(A,S )K µ [Θ] = [Θ ∩ ↓{S =[A| ]}]

3.2 Success set semantics

For the purposes of the determinacy inference, a coarser representation of the con-
straints under which a goal can succeed is given by the following pair of functions.

Definition 2
For a given program P , SG : Goal → Con↓ and SH : Head → Con↓ are defined as
the least maps, such that:

SGJpost(φ)K = ↓{φ}
SGJp(~x )K = ↓ ρ~y,~x (SH Jp(~y)K)

where p(~y)← B ∈ P
and vars(~x ) ∩ vars(~y) = ∅

SGJG1,G2K = SGJG1K ∩ SGJG2K

SH Jp(~y)K = ↓ ∃~y(SGJG1K ∪ SGJG2,G3K ∪ SGJG4K)
where p(~y)← B ∈ P and B = G1 ; G2 , ! , G3 ; G4

Example 2
To illustrate consider again member and memberchk: SGJmemberchk(A,S )K =
SGJmember(A,S )K = ↓{S =[A| ]} ∪ ↓{S =[ ,A| ]} ∪ ↓{S =[ , ,A| ]} ∪ . . ..

Theorem 1 states that S is a sound over-approximation of F :

Theorem 1⋃
FGJGKµP

~Θ ⊆ (
⋃ ~Θ) ∩ SGJGK Proof: See Appendix.
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3.3 Determinacy semantics

With these in place, we can construct and prove correct a group of functions to de-
rive a set of constraints which guarantee the determinacy of a goal in the context of
a program P , its determinacy condition, henceforth abbreviated to ‘dc’. As before,
the context is provided as an environment: A determinacy environment (δ) is a map-
ping from predicate heads to Con↓: DEnv ::= Head → Con↓. Again, δ[p(~y) 7→ Θ] is
an update operation. As above, the set Ed

P of determinacy environments for a pro-
gram P is partially ordered point-wise by: δ1 v δ2 iff ∀p(~y)·(δ1(p(~y)) ⊆ δ2(p(~y))).
The lattice 〈Ed

P ,v, δ⊥, δ>,
⊔
,
d
〉 is complete, with:

δ⊥ = λp(~y)·{false} δ> = λp(~y)·↓{true}
δ1 t δ2 = δ3 such that ∀p(~y) ∈ heads(P) · (δ3(p(~y)) = δ1(p(~y)) ∪ δ2(p(~y)))
δ1 u δ2 = δ3 such that ∀p(~y) ∈ heads(P) · (δ3(p(~y)) = δ1(p(~y)) ∩ δ2(p(~y)))

And again,
⊔

and
d

are lifted to sets in the normal way.

Definition 3
The determinacy semantics - δP - of a program P is the greatest fixpoint of DPJPK:

DP :: Program → DEnv → DEnv
DPJεKδ = δ

DPJP · PsKδ = DPJPsK(δ[p(~y) 7→ (DH JPKδ)(p(~y))])
where P = p(~y)← B

DH :: Predicate → DEnv → DEnv
DH Jp(~y)← BKδ = δ[p(~y) 7→↓ ∀~y(DGJG1Kδ

∩ (SGJG2K→ DGJG3Kδ)
∩ DGJG4Kδ ∩Θ1 ∩Θ2)]

where Θ1 = mux (SGJG1K,SGJG4K)
and Θ2 = mux (SGJG1K,SGJG2,G3K)
and p(~y)← G1 ; G2 , ! , G3 ; G4 ∈ P

DG :: Goal → DEnv → Con↓

DGJpost(φ)Kδ = ↓{true}
DGJp(~x )Kδ = ↓ ρ~y,~x∀~y(δ(p(~y)))

where p(~y) ∈ dom(δ)
DGJG1,G2Kδ = (SGJG2K→ DGJG1Kδ) ∩ (SGJG1K→ DGJG2Kδ)

Given a goal of the form ‘post(φ)’, DG returns ↓{true} since the goal cannot
introduce indeterminacy in the computation. As before, given a predicate call, DG

applies the projection and renaming necessary to match parameters before calling
DH . Notice that the projection used here is ∀, since an under-approximation is
required to derive a sufficient condition. DH maps predicates defined in cut normal
form to a condition that entails: (a) the dc for G1, (b) the dc for G3 weakened by the
success set of G2 - the intuition here being that the dc for G3 will only be relevant
if G2 can succeed and therefore its dc can be weakened by the success set of G2 - (c)
the dc for G4, and finally mutual exclusion conditions for the two possibilities arising
from the structure of the predicate definition. (The case that needs to be excluded
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is that of G1 succeeding and subsequently G2 and G3 succeeding or subsequently
G2 failing and G4 succeeding.) Finally, when given a compound goal ‘G1,G2’, DG

returns a condition that entails both the dc for G2 weakened by the success set
of G1 and the dc for G1 weakened by the success set of G2. The intuition here
is, that the temporal order of execution is irrelevant. Weakening the dc for G2 by
the success set of G1 is intuitive, since one can safely assume that G1 will have
succeeded at the point when determinacy of G2 needs to be enforced. But similarly,
when enforcing determinacy on G1, one can safely assume that G2 will succeed,
since both G1 and G2 need to succeed for the compound goal to succeed.

Example 3
Consider again member and memberchk. Observe thatDGJmember(A,S )K δ = {false}
since mux (SGJG1K,SGJG4K) = {false} is a component of DH Jmember(X ,L)Kδ,
where G1 = (L = [X | ]) and G4 = (L = [ |L1],member(X ,L1)). member is therefore
inferred to be non-deterministic for exactly the right reason: There is no ground-
edness condition on its parameters such that only one of its clauses can succeed.
DGJmemberchk(A,S )K δ =↓ ρ~y,~x∀~y(↓{true} ∩ (SGJmember(A,S )K → ↓{true}) ∩
↓{true} ∩mux ({false}, {false}) ∩mux ({false},SGJmember(A,S ), trueK))
= ↓{true}
The crucial observation here is, that DGJmember(A,S )K δ is not required in this
construction at all; memberchk does not simply inherit its condition from member.

Theorem 2 states that, in the context of a stratified program P , the condition given
by DGJGKδP is indeed sufficient to guarantee the determinacy of a call to G :

Theorem 2
If Θ ⊆ DGJGKδP then |FGJGKµP [Θ]| ≤ 1 for stratified P (i.e. P = P0 ∪ . . . ∪ Pn).

Proof: See Appendix

4 Abstraction

In order to synthesize a determinacy inference from the above determinacy seman-
tics, we systematically under-approximate sets of constraints with boolean formu-
lae that express groundness conditions. Pos, however, is augmented with a con-
stant for falsity, so as to express unsatisfiable requirements. The abstract domain
〈Pos⊥, |=, true, false,∧,∨〉 is a complete lattice (Armstrong et al., 1998) and to
define the abstraction of a single atomic constraint we introduce:

α~x (θ) =
(∧

(vars(~x ) ∩ fix (θ)) ∧ ¬
∨

(vars(~x ) \ fix (θ))
)
∨
∧

vars(~x )

For example, if θ = A=c then α〈A〉(θ) = A, while α〈A,B,C 〉(θ) = (A ∧ ¬B ∧ ¬C ) ∨
(A ∧ B ∧ C ). Notice that finiteness is achieved by limiting the scope to a finite
vector of variables ~x . A Galois connection can then be established thus:

α~x :: Con↓ → Pos⊥ γ~x :: Pos⊥ → Con↓

α~x (Θ) =
∨
{α~x (θ) | θ ∈ Θ ∧ θ 6= false} γ~x (f ) =

⋃
{Θ ∈ Con↓ | α~x (Θ) |= f }

For instance, if Θ = ↓{A=c,B =d} then α〈A,B〉(Θ) = A ∧ B .
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The following two propositions and two axioms establish relations between the con-
crete notions of implication, mutual exclusion and the projections and their abstract
counterparts. (Notice that abstract implication is simply boolean implication.)

Abstract Implication Proposition 1 establishes the link between concrete (→) and
abstract (⇒) implication as follows:

Proposition 1
If Θ1 ⊆ γ~x (f1) and γ~x (f2) ⊆ Θ2 then γ~x (f1 ⇒ f2) ⊆ Θ1 → Θ2 Proof: See Appendix.

Abstract Mutual Exclusion In order to construct an abstract mutual exclusion oper-
ator we need to approximate elements of Con↓. We do so with depth-k abstractions
which are finite sets ΘDK ⊆ Con such that each atomic constraint θ of the form
x = t occurring in ΘDK has a term t whose depth does not exceed k . From these
we synthesize boolean requirements sufficient for mutual exclusion thus:

muxα~x (ΘDK
1 ,ΘDK

2 ) = ∨
{
∧Y

∣∣∣∣Y ⊆ vars(~x ) ∧
∀θ1∈ΘDK

1 , θ2∈ΘDK
2 ·(∃Y (θ1) ∧ ∃Y (θ2) = ⊥)

}
Notice, again, that muxα~x (ΘDK

1 ,ΘDK
2 ) = true if either of ΘDK

1 or ΘDK
2 is {false}.

Example 4
Consider muxα〈X ,L〉({L = []},SGJG4KDK ) where G4 = (L = [ |L1],member(X ,L1)).
If depth k =3, then SGJG4KDK = {θ1, θ2} where θ1 = (L1 = [X | ]∧ L = [ |L1]) and
θ2 = (L1 = [ ,X | ] ∧ L = [ |L1]). In this situation muxα〈X ,L〉({L=[]},SGJG4KDK ) is
L ∨ (L ∧X )=L.

Proposition 2 states how this abstract construction and the concrete one are related:

Proposition 2
γ~x (muxα~x (ΘDK

1 ,ΘDK
2 )) ⊆ mux (Θ1,Θ2) Proof: See Appendix.

Abstract Projections Had we defined a specific concrete projection on single con-
straints, we could synthesis abstract ones in the standard way (Cousot and Cousot,
1979). However, since both concrete projection operators on Con↓ are defined in
terms of an arbitrary projection on single constraints, we follow Giacobazzi (1993,
Sect.7.1.1) in simply requiring the following to hold for any such projection:

∃~x (γ(f )) ⊆ γ(∃α~x (f )) γ(∀α~x (f )) ⊆ ∀~x (γ(f ))

In addition to the above two axioms, a requirement on the relation between concrete
and abstract renaming functions in the context of universal projection is stipulated:

γvars(~x)(ρα~y,~x∀
α

~y (f )) ⊆ ρ~y,~x∀~x (γvars(~y)(f ))

4.1 Abstract success semantics

The last construction that needs to be abstracted in order to mechanise the deter-
minacy semantics presented above is the success set construction S .
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Definition 4
The abstract success semantics is defined as the least maps SαG , SαH such that:

SαGJpost(φ)K = αvars(φ)(φ)
SαGJp(~x )K = ↓ ρα~y,~x (∃α~y (SαH Jp(~y)K))

where p(~y)← B ∈ P
SαGJG1,G2K = SαGJG1K ∧ SαGJG2K

SαH Jp(~y)K = ↓ ∃α~y (SαGJG1K ∨ SαGJG2,G3K ∨ SαGJG4K)
where p(~y)← B ∈ P and B = G1 ; G2 , ! , G3 ; G4

Proposition 3 formalises the connection between Sα and its concrete counterpart:

Proposition 3
SGJGK ⊆ γvars(G)(SαGJGK) Proof: standard.

Depth-k abstractions can be derived analogously to groundness dependencies and
therefore we omit these details.

4.2 Determinacy inference

Finally, an abstract determinacy environment (δα) is a mapping from predicate
heads to Boolean formulae representing groundness conditions on the arguments
of the predicate sufficient to guarantee determinacy of a call to that predicate:
ADEnv ::= Head → Pos⊥. As in the case of determinacy environments, the set
of abstract determinacy environments for a given program (Eα

P ) is partially or-
dered point-wise by δα2 v δα1 iff ∀p(~y)·(δα1 (p(~y)) |= δα2 (p(~y))). The lattice 〈Eα

P ,v
, δα⊥, δ

α
>,
⊔
,
d
〉 is complete, where δα> = λp(~y)·true, δα⊥ = λp(~y)·false and

⊔
and

d

are constructed analogously to the case of concrete environments. For a given pro-
gram P , its abstract determinacy semantics – δαP – is defined as the greatest fixed
point of DαPJPKδα>, where DαP is given by the following construction which, unsur-
prisingly, is very similar in structure to the definition of DP : (We write (SGJGK)DK

as SDK
G JGK.)

Definition 5
DαP :: Program → ADEnv → ADEnv
DαPJεKδα = δα

DαPJP · PsKδα = DPJPsK(δα[p(~y) 7→ (DαH JPKδα)(p(~y))])
where P = p(~y)← B

DαH :: Predicate → ADEnv → ADEnv
DαH Jp(~y)← BKδα = δα[p(~y) 7→ ∀α~y (DαGJG1Kδα

∧ (SαGJG2K⇒ DαGJG3Kδα)
∧ DαGJG4Kδα ∧ f1 ∧ f2]

where f1 = muxαvars(~y)(S
DK
G JG1K,SDK

G JG4K)
and f2 = muxαvars(~y)(S

DK
G JG1K,SDK

G JG2,G3K)
and B = G1; G2, !,G3; G4
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DαG :: Goal → ADEnv → Pos⊥
DαGJpost(φ)Kδα = true
DαGJp(~x )Kδα = ρα~y,~x∀

α

~y (δα(p(~y)))
where p(~y) ∈ dom(δα)

DαGJG1,G2Kδα = (SαGJG2K⇒ DαGJG1Kδα) ∧ (SαGJG1K⇒ DαGJG2Kδα)

Theorem 3 states that each parallel application of DP and DαP preserves the cor-
respondence between the dc and its abstract counterpart and Corollary 1 states a
direct consequence of this, namely that the same correspondence holds between the
greatest fixpoints of these constructions.

Theorem 3
∀i ∈ N : γvars(G)(DαGJGKδαi ) ⊆ DGJGKδi , where δαi (resp. δi) are the results of i
applications of DαPJPK (resp. DPJPK) to δα> (resp. δ>). Proof: See Appendix.

Corollary 1
γvars(G)(DαGJGKδαP ) ⊆ DGJGKδP Proof: Straightforward.

These two statements establish, in effect, that δαP is correct with respect to (i.e. is a
sound under-approximation of) δP . The significance of this is, that the correctness
of DGJGKδP as a determinacy condition for G , which was proved in the last section,
is carried over to DαGJGKδαP . Since the latter is finite and can be mechanised, an
implementation is therefore proven to give a correct (if possibly overly strong)
determinacy condition for a goal G in the context of a stratified program P .

5 Implementation

The determinacy inference specified in the previous section is realised as a tool
called ‘RedAlert’, using a simple bottom-up fixpoint engine in the style of those
discussed by Codish and Søndergaard (2002). Boolean formulae are represented in
CNF as lists of lists of non-ground variables. In this way, renaming is straightforward
and conjunction is reduced to list-concatenation (Howe and King, 2001). However,
disjunction, implication and existential quantifier elimination are performed by enu-
merating prime implicants (Brauer et al., 2011), which reduces these operations to
incremental SAT. The solver is called through a foreign language interface following
Codish et al. (2008). It is interesting to note, that we have not found any of the
benchmarks to be non-stratified, though even if this were the case, a problematic
cut could be discarded albeit at the cost of precision.

In the case of the memberchk predicate mentioned in the introduction, the im-
plementation does indeed infer true as its determinacy condition, as desired. To
discuss a more interesting case, consider the partition predicate of quicksort.

pt([], _, [], []).

pt([X | Xs], M, [X | L], G) :- X =< M, !, pt(Xs, M, L, G).

pt([X | Xs], M, L, [X | G]) :- pt(Xs, M, L, G).

The method presented in King et al. (2006) handles this cut by enforcing mono-
tonicity on the predicate. To this end, the negation of the constraint before the cut
(X > M ) is conceptually added to the last clause and the cut then disregarded. The
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benchmark org new impr mean benchmark org new impr mean
asm 44 157 5 0.6 peval 108 14 2 1

crypt wamcc 11 12 2 2 nandc 12 5 2 0
semi 22 19 0 0 life 10 11 7 1.85
qsort 3 1 1 1 ronp 16 5 4 1

browse 15 7 1 2 tsp 23 2 10 1.4
ga 58 102 2 1.5 flatten 27 25 6 1.5

dialog 30 11 3 0 neural 34 23 3 0
unify 26 33 3 1.33 nbody 48 34 11 2
peep 20 189 0 0 boyer 26 95 4 0
read 42 89 0 0 qplan 65 41 7 2.57

reducer 31 57 9 2 simple analyzer 60 50 9 2.22

Table 1. Comparison

groundness requirement inferred in this way for pt(w , x , y , z ) is (w ∧x )∨ (x ∧y ∧z ).
The determinacy condition inferred for the same predicate by the method pre-
sented in this paper is: w ∧ (y ∨ z ), which is clearly an improvement, though still
sufficient. Improvements similar to this can be observed when analysing a number
of benchmark programs. Table 1 summarises the results of this comparison on 22
benchmarks (which are available at http://www.cs.kent.ac.uk/people/staff/amk/

cut-normal-form-benchmarks.zip). Under ‘org ’ is the number of predicate defini-
tions in the original program. To give a measure of the impact of the cut normal
form transformation, under ‘new ’ is the number of new predicates introduced by
it. Under ‘impr ’ is the number of predicates in the original benchmark (excluding
any newly introduced ones) on which the determinacy inference is improved by our
method over King et al. (2006). Under ‘mean’ is the mean size of improvement
(i.e. the mean number of variables which occur in the previous determinacy condi-
tion but not in the new one). The results show a uniform improvement. Note that
randc, dialog, neural and boyer give precision improvements but no determinancy
conditions are inferred which involve strictly fewer variables. The runtime for the
groundness analysis, the depth-k analysis and the backwards analysis, that propa-
gates determinacy requirements against the control flow, are all under a second for
all benchmarks (and not even SCCs are considered in the bottom-up fixpoint calcu-
lations). However, the overall runtime is up to an order of magnitude greater, due
to the time required to calculate the mutual exclusion conditions. This is because
the definition of the abstract mutual exclusion in section 4 is inherently exponential
in the arity of a predicate. This is currently the bottleneck.

6 Related Work

Determinacy inference and analysis As mentioned above, Lu and King (2005) and
King et al. (2006) address the problem of inferring determinacy conditions on a
predicate. Since their limitations have been discussed above, we will not repeat them
here. Dawson et al. (1993) present a method for inferring determinacy information
from a program by adding constraints to the clauses of a predicate which allow
the inference of mutual exclusion conditions between these clauses rather than
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determinacy conditions for a whole predicate. Sahlin (1991) presents a method for
determinacy analysis, based on a partial evaluation technique for full Prolog which
detects whether there are none, one or more than one ways a goal can succeed. This
approach has been developed by Mogensen (1996) (see below). Le Charlier et al.
(1994) present a top-down framework for abstract interpretation of Prolog which is
based on sequences of substitutions and can be instantiated to derive an analysis
equivalent to that of Sahlin (1991).

Denotational semantics for Prolog with cut Mogensen (1996) constructs a deno-
tational semantics for Prolog with cut based on streams of substitutions as the
basis for a formal correctness argument for the determinacy analysis. The problem
of constructing a denotational semantics for Prolog with cut has been addressed
before by Billaud (1990), Debray and Mishra (1988) and de Vink (1989) a good 20
years ago, around the same time that Apt et al. (1988) first published their theory
of non-monotonic reasoning, introducing the idea of stratification. Billaud (1990)
constructs an elegant denotational semantics based on streams of states of compu-
tation and proves it correct with respect to an operational semantics. Debray and
Mishra (1988) construct a more complex semantics over a domain of sequences of
substitutions, comparable to our Con↓seq , which is partially ordered, in contrast to
Con↓seq , by a prefix-ordering, rather than a sub-sequence-ordering. Both proceed by
first defining a semantics for cut-free Prolog and then extending it to cut . In both
cases, they argue monotonicity for the former of these constructions and appear
to assume that it carries over to the latter. Finally de Vink (1989), too, presents
a denotational semantics of Prolog with cut . His approach is probably closest to
ours, using environments to represent the context provided by a program in a sim-
ilar fashion. However, as in the case of Debray and Mishra (1988), no argument is
provided for the monotonicity of their semantic operators, which casts some doubt
over the question whether the semantics is well-defined. Common to all these ap-
proaches is the view of cut as essentially an independent piece of syntax. This view
requires cut to be treated on a par with success and failure, having an evaluation by
itself, which creates the need for complex constructions involving the introduction
and later elimination of cut-flags into the streams or sequences, to semantically
simulate the effect that cut has on a computation. In contrast, we view cut as es-
sentially relational. In our view, a cut has no semantics of its own, but only affects
the evaluation of the goals in the context where it occurs. This reliefs us of the need
for systematically introducing and eliminating cut-flags.

7 Conclusions

This paper has presented a determinacy inference for Prolog with cut , which treats
cut in a uniform way, while being more elegant and powerful than previously ex-
isting methods. The inference has been proved correct with respect to a novel
denotational semantics for Prolog with cut . We have demonstrated the viability
of the method by reporting on the performance of an implementation thereof and
evaluating it against a comparable existing method.
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RedAlert 17

Howe, J. M. and King, A. 2001. Positive Boolean Functions as Multiheaded
Clauses. In Proceedings of the Seventeenth International Conference on Logic

Programming, P. Codognet, Ed. Lecture Notes in Computer Science, vol. 2237.
Springer, 120–134.

King, A., Lu, L., and Genaim, S. 2006. Detecting Determinacy in Prolog Pro-
grams. In Proceedings of the Twenty-second International Conference on Logic

Programming. Lecture Notes in Computer Science, vol. 4079. Springer, 132–147.
Kriener, J. and King, A. 2011. Appendix for RedAlert: Determinacy Infer-

ence for Prolog. Tech. Rep. 1-11, School of Computing, University of Kent,
CT2 7NF, UK. Available from: http://www.cs.kent.ac.uk/pubs/2011/3107/
index.html.

Le Charlier, B., Rossi, S., and Van Hentenryck, P. 1994. An Abstract
Interpretation Framework which Accurately Handles Prolog Search-Rule and the
Cut. In Symposium on Logic Programming. MIT Press, 157–171.

Lu, L. and King, A. 2005. Determinacy Inference for Logic Programs. In Four-

teenth European Symposium on Programming, S. Sagiv, Ed. Lecture Notes in
Computer Science, vol. 3444. Springer, 108–123.

Mogensen, T. Æ. 1996. A Semantics-Based Determinacy Analysis for Prolog with
Cut. In Ershov Memorial Conference. Lecture Notes in Computer Science, vol.
1181. Springer, 374–385.

O’Keefe, R. A. 1990. The Craft of Prolog. MIT Press, Cambridge, MA, USA.
Sahlin, D. 1991. Determinacy Analysis for Full Prolog. In Symposium on Partial

Evaluation and Semantics-Based Program Manipulation. ACM, 23–30.
Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., and Thie-
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