
Stott, Jonathan and Rodgers, Peter (2004) Metro Map Layout Using Multicriteria
Optimization. In: Proceedings 8th International Conference on Information
Visualisation (IV04). IEEE International Conference on Information Visualisation
. pp. 355-362. IEEE ISBN 0-7695-2177-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14133/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/IV.2004.1320168

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14133/
https://doi.org/10.1109/IV.2004.1320168
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Metro Map Layout Using Multicriteria Optimization

Jonathan M. Stott, Peter Rodgers
University of Kent, UK

{jms30@kent.ac.uk, P.J.Rodgers@kent.ac.uk}

Abstract
We describe a system to automatically generate

metro maps using a multicriteria approach. We have
implemented a hill climbing optimizer which uses a
fitness score generated from a sum of several aesthetic
metrics. This is used to move from the initial geographic
layout of the map to a schematic layout that is intended
to aid travellers’ navigation. We describe the software
and show its application to a number of real world metro
maps.

Keywords--- metro map layout problem, public

transport schematics, multicriteria optimization,
graph drawing.

1. Introduction

Metro maps, or public transport schematics, are
familiar to most people. Many cities have underground
metros or above ground tram networks which are usually
represented by a schematic map. The map simplifies the
true geographic layout of the network by straightening
lines and evenly distributing stations along the lines [8].
These maps take inspiration from what is considered the
first such schematic, developed by Harry Beck for the
London Underground [3]. Travellers find it easier to use
such a simplified map to plan routes between start and
destination stations.

However, these schematics are typically created by
hand taking a large amount of effort. The goal of our
research project is to address the metro map layout
problem, where we attempt to automatically generate a
schematic for a metro map.

Such maps are not only used in public transport.
Closely related schematics can be found in circuit
diagrams (from which Harry Beck drew his inspiration)
and public utility pipeline diagrams. The metro map
metaphor has also been considered to be a useful
visualization technique for non-spatial data [10].

We have approached the problem by using a hill
climbing multicriteria optimization technique.
Multicriteria systems have been seen before in other
graph layout applications [2] and a number of metrics

have been investigated [1][6]. In our case we represent a
metro map as a graph, with stations represented by nodes
and lines between stations represented by edges,
including multiple edges where there is more than one
line between stations. We start with the geographic
layout of the network. A number of aesthetic metrics are
calculated in the graph and summed to produce a total
fitness value. The nodes are tested in turn to see if a
position can be found that improves the score. This
process continues for a specified number of iterations.

The implemented metrics are: edge crossings; edge
length, which attempts to position nodes evenly; angular
resolution, which attempts to avoid very narrow angles
for edges attached to the same node; line straightness,
which attempts to avoid a change in direction when a
metro line goes through a node; and 4-gonal, which tries
to make lines horizontal, vertical or 45° diagonal.

In addition to the basic multicriteria system, we have
implemented other features to improve the final layout
including a simple labelling strategy that tests a number
of possible label orientations. We also implemented a
useful technique to contract long lines. Here we replace a
chain of degree two nodes with one weighted edge. The
layout is then generated, after which the edge is
expanded, so that the nodes in the contracted line
reappear. This avoids the computational expense and
difficulties inherent in optimising a long line in the map.
A further technique deals with over-length edges. Here,
two clusters of stations are separated by a edge that is too
long. It is difficult to deal with this problem directly as
an aesthetic criteria, so tests for such edges are made
periodically during the optimising process. When such
edges are found, the clusters are moved together. We
also experimented with a restriction on the movement of
nodes to maintain some physical relationship between
neighbours, so that for example if one node is north of
another, it remains north in the final layout. We do not
use this restriction in the examples in the paper, because
the degree of movement allowed in the current
implementation is too small, and because in any case,
without this restriction in place the nodes do not actually
wander very far from the desired relationship to each
other.

There is some closely related work, one paper
describes a force directed attempt to solve the closely

related problem of laying out schematic cable plans [7].
We know of one previous attempt at automatically laying
out public transport schematics by Hong et. al. [4][5].
Their work introduces the “Metro Map Layout Problem”
and describes an implemented solution to it. They take a
force directed approach, and use a very similar graph
model to the one presented in this paper, and as with our
work they have a contraction preprocessing step. Rather
than begin with the geographic position of stations as a
starting layout, their work begins with a random layout.
They consider similar aesthetics to those we have
chosen, although we have not produced metrics for
dealing with overlapping labels or methods for drawing
lines with unique colours. We have additional metrics:
the edge length and angular resolution metrics are not
explicitly present in their work. We have also
experimented with enforcing a geographic relationship
rule, not present in their work.

Our approach is relatively slow compared to force
directed methods. However, there are significant
benefits. The requirements for the layout can be specified
directly, and adjusted to user preference by altering the
relative weights of each metric. Moreover, further
metrics can easily be implemented and to deal with
specific difficulties in the layout or user requirements.
For instance, a metric could be implemented to ensure
that stations appear in suitable positions relative to other
geographic features, such as rivers or roads.

The remainder of this paper is organized as follows:
Section 2 gives a detailed description of our method
applied to real metro maps; Section 3 shows some
examples; and Section 4 gives our conclusions, discusses
some problems with the method and outlines further
work.

2. Method

A metro map can be represented as a graph where
stations are nodes and lines between stations are edges.
As some metro maps feature multiple lines between two
stations, we have to take into account multiple edges
between nodes. We use the term ‘line’ to talk about the
subset of edges and nodes that form a line in the map and
are normally distinguished by colour (for example, the
Central Line on the London Underground map).

We embed the graph on an integer grid. This
minimizes the number of points to consider when
moving nodes and therefore reduces the overall running
time of the algorithm. It also encourages edges to be
more orthogonal.

The method that we have developed involves using a
multicriteria optimization technique with a hill climbing
approach. A number of metrics are calculated in order to
determine an aesthetic quality for the graph. Nodes are
moved such that the total metric value never increases. A
preprocessing step is also included which simplifies the
graph by contracting nodes of degree two. A software
tool is used to visualize and manipulate the graphs and
algorithm parameters.

2.1. Schematics Software Tool

In order to experiment with various metrics and their
settings, we decided to implement our own software tool
in Java. The tool (Figure 1) consists of a graphical
interface where nodes and edges can be created and
manipulated. Whole graphs can be saved in text files so
that the tool can display graphs that have been worked on
previously.

Figure 1. Screenshot of the schematics software tool

2.2. Preprocessing – Graph Contraction

Metro maps tend to have a certain characteristic of
long lines of stations radiating from a central area. These
lines can usually be drawn as a single straight line.
Replacing them by a single edge means the optimizer
does not have to attempt to generate the straight line
iteratively (which does not always occur) and means that
the process has improved performance, because the
number of nodes that are moved during each iteration is
reduced.

The preprocessing step involves contracting the
graph such that all nodes of degree two are removed
from the graph and replaced by a single weighted edge.
The removed nodes and edges are not considered during
calculation of the aesthetic metrics. At the end of the
algorithm, the contracted edges are expanded and nodes
are replaced at regular intervals between the endpoints of
the edge.

However, it might not be desirable in every case to
contract the graph in this manner. Once an edge is
contracted it merely becomes a single straight edge,
losing any bends between nodes in between the end
points of the contracted edge.

2.3. The Hill Climbing Optimizer

The hill climber is an iterative process. During each
iteration, an attempt is made to move each node in the
graph. Any nodes which satisfy the conditions for
movement are moved to their new positions.

There are various ways in which moves can be made
when optimizing a graph. We have experimented with
random movement of nodes, however it can take a
considerable time for the random positioning to find the

ideal location for a particular node. Instead, we constrain
nodes to the grid and calculate the metrics for each
possible location in a square around the start point of the
node. The size of this square area is specified at the start
of the algorithm. For example, specifying a size as one
will allow the node to move to any of the eight
immediately adjacent grid points. The node is moved to
the point showing the largest improvement to the total
weighted metrics. A move is also allowed if the total
weighted metric value is the same as the start point. If all
the possible moves are worse than the current value for
the node, no movement is made.

A cooling option is provided in order to allow the
maximum distance that a node can move to decrease
linearly with each iteration. The reasoning behind this is
that the graph initially requires relatively large node
movements to form a overall structure for the layout. In
later iterations, only minor movements need to be made
to node positions in order to refine the layout within the
structure developed in the first iterations.

We experimented with enforcing a geographical
relationship rule whereby nodes that were to the north of
those nodes stayed to the north of other nodes, nodes to
the east stayed to the east, etc. However, we decided that
enforcing these rules was not flexible enough as there are
many situations where the rule has to be broken to
achieve a better layout (particularly in the case of highly
connected regions of graphs).

Finally, before a movement is made, the graph is
checked to make sure that the movement does not
introduce edge crossings or that the node and its adjacent
edges do not occlude any other nodes or edges.

2.4. Aesthetic Metrics

We implemented a total of five different metrics
based on various geometric measurements that we
believe affect the quality of the graph. A metric involves
iterating through either all the nodes or all the edges in
the graph and calculating a value for each item. These
are then summed to provide the value for the metric. In
order to overcome some of the problems with metric
values being disproportionate, each metric value is
multiplied by a weighting. Altering the weighting also
allows the user to emphasize or de-emphasize particular
criteria. All the metrics we implemented are invariant
under scaling, so that if the graph (and underlying grid)
are scaled, the value for the metric remains the same.

The five metrics that we implemented are:

Edge Crossings Metric. The edge crossings metric

is defined as the total number of edge intersections. As
this is typically a low number, the weighting for this
particular metric tends to be significant compared to the
weightings for other metrics. It can be argued that edge
crossings have meaning in metro maps, representing a
line that crosses another. However, as edges are
represented as straight lines between stations and not as
their true route, unwanted edge crossings may be
inadvertently introduced into the initial layout of the

graph. This metric will only remove edge crossings that
are in the initial layout because node movement is
constrained to never adding an edge crossing.

4-gonality Metric. The 4-gonality metric is a

measure of how close edges are to being horizontal,
vertical or at 45° diagonal [12]. The intention of this
metric is to favour edges which are orthogonal or at a
45° diagonal. Other edges as penalized with respect to by
how much an angle they differ from being orthogonal or
at 45° diagonal.

The metric for a graph containing edges E is:

() ()
() ()

1

(,)

sin 4 tan
u v E

y u y v

x u x v
−

∈

 −  − ∑ (1)

where (u, v) is an edge between nodes u and v, and y(v)
and x(v) are the y- and x-coordinate of node v
respectively.

Edge Length Metric. In order to make sure that

nodes are spaced evenly along lines, it is necessary to try
to minimize the length of edges in the graph. The
smallest edge length will be no less than the spacing of
one grid point, so edge lengths are considered as being
multiples of the grid spacing.

The edge length metric for a graph containing edges
E is:

e E

e

g∈
∑ (2)

where e is the length of an edge and g is the grid

spacing. For contracted edges, the number of hidden
nodes must be taken into account. The metric is therefore
modified:

 ()1
e E

e
d

g∈

− +∑ (3)

where d is the number nodes of degree two that e
represents. This will cause contracted edges which are
too short as well as too long to contribute to the metric.

Angular Resolution Metric. This metric attempts

to ensure that all the edges incident to a node are evenly
spaced. For example, if the node has four incident edges,
the ideal angle between each pair of adjacent edges will
be 90°. Maximising the angular resolution in this way
reduces the possible confusion between edges which
would otherwise be drawn very close together.

To calculate the metric, the absolute value of the
difference between the ideal angle and the angle between
each pair of adjacent incident edges is found and
summed for all the nodes v in the graph:

() ()

1, 2 where
1& 2are incident
to and adjacent

360
1, 2

degv V e e E
e e

v

e e
v

θ
∈ ∈

  ° −   
∑ ∑ (4)

where deg(v) is the degree of node v and ()1, 2e eθ is the

angle between the adjacent edges e1 and e2.

Line Straightness Metric. An obvious feature of

public transport schematics is that lines should appear to
pass straight through nodes much the same way as the
metro line passes through the station.

In order to measure this metric, a subgraph for each
line in the graph is considered and all the nodes of degree
two are then found. For each of these nodes, the
difference in angle between the two incident edges is
found:

 ()
1, 2 where 1& 2
are theonly twoedges

of thesameline incident to

1, 2
v V e e E e e

v

e eθ
∈ ∈

      
∑ ∑ (5)

where ()1, 2e eθ is the angle between the adjacent edges

e1 and e2.
Figure 2 shows a simple example of how the line

straightness metric is calculated. The angles θ1 and θ2
show the angles which are measured as part of the
metric.

θ1

θ2

Figure 2. Line straightness metric example

Therefore, if the two edges are parallel, the metric
evaluates to 0. If the two edges are at right angles, the
metric evaluates to 90. This will penalize edges which
double back on themselves more than edges which bend
only slightly.

If a node in the subgraph for a line has a degree of
more than two (for example, a line that branches), the
node is not included in the line straightness metric. This
is because it is not obvious as to which of the edges is the
main line (and should therefore be straightened) and
which is the branch line.

Total Metrics. The hill climber uses the sum of the

weighted metrics to calculate a value for the total
aesthetic metric for any particular layout of the graph.

2.5. Dealing with Over-length Edges

One of the problems that we discovered while
developing this work was that the graph would tend to
form small clusters of nodes, particularly at the ends of
lines or where a line branched. This is because with only
moving one node at a time, the nodes at the edge of each
cluster can’t move towards the rest of the graph. A
feature of these clusters is that the they are connected to
the rest of the graph by one (or more) long edge.

We initially tried to find the clusters using the k-
means clustering algorithm. However, this method is not
used because we discovered clusters are not easy to find,
particularly where the number of clusters and the number
of nodes in each cluster varies.

Our next approach was to limit ourselves to clusters
that formed at the end of lines. These are relatively easy
to find by using an algorithm to find over-length bridge
edges. These are edges which are longer than one grid
spacing and whose removal would disconnect the graph.

To find bridge edges, a recursive algorithm is used.
Starting with an over-length edge, the graph is
recursively explored starting from the two endpoint
nodes of the over-length edge. If at any point the
algorithm comes upon the node at the other end of the
over-length edge, it can be assumed that the edge is not a
bridge edge (there must have been some other route
between the two endpoint nodes rather than directly
along the over-length edge). If the over-length edge is a
bridge edge, then the algorithm returns two sets of nodes,
representing the subgraph formed at each end of the
over-length edge.

Once all the over-length bridge edges are found, all
of the nodes that are on the far end of the bridge edge
(the smaller of the two sets of nodes) are moved so they
are closer to the rest of the graph. If both sets of nodes
are the same size, then one set is chosen arbitrarily.
Figure 3 shows an example of a bridge edge where the
edge b is over-length. Neither of the two end nodes of b
can move towards each other without increasing the
length of two or more edges. In this case, the three nodes
to the right of b will be moved closer to the other four
nodes as it is the smallest subset of nodes. This process is
implemented as an optional step to be performed after
each iteration.

b

Figure 3. Bridge edge example

2.6 Labelling

We have implemented a simple labelling strategy for
station names. Station labels can be oriented in up to
eight different directions, listed in order of preference:
horizontally to the right of the node, horizontally to the
left of the node, 45° diagonally above-right, below-right,
above-left and below-left of the node, vertically above
the node or vertically below the node. To determine in
which orientation to place a label, each possible
orientation is checked in order of preference and the first
location which is clear of incident edges is used for the
label. An example of labelling a map is shown in Figure
8. No checks are made to make sure that the label does
not obscure other nodes, edges or labels.

3. Examples

To illustrate the performance of our algorithm, we
show how it performs on three metro maps of increasing
size and complexity. The Atlanta MARTA Rail map [9]

is an example of a small metro map with only two lines
and 38 nodes. The Washington Metro [13] is an example
of a medium sized map with 86 nodes and five lines. For
an example of a large metro map, we use the Sydney
Suburban CityRail map [11] which has 172 nodes and
seven lines. The layout of the Atlanta map is dealt with
in more detail than the other two maps to show
intermediate stages during the running of the algorithm.

Examples were run on a 2.4GHz Pentium 4 machine
with 512MB of RAM using Java 2 v1.4.2. The running
time in seconds for each map using both contracted and
uncontracted edges with the metrics weightings as shown
in the following sections and with ten iterations is shown
in Table 1. As the complexity of the map increases, the
time taken to layout the map increases. Using the
preprocessing step to contract edges significantly reduces
the running time of the algorithm.

Map Uncontracted
Graph - Time

Contracted
Graph - Time

Atlanta 10.665 0.260
Washington 161.394 16.865
Sydney 1690.228 241.590

Table 1. Running times for the three examples

On most of the examples, labels have been omitted
for clarity.

3.1. Atlanta MARTA Rail Map

The Atlanta MARTA Rail Map is used as an
example of a small metro map. It’s structure is that of a
tree as it has no cycles. The initial layout of the map is
shown in Figure 4, and like all our examples, the starting
layout is the geographic position of the stations. The
metric weightings used to generate this map are: edge
crossings, 10000; 4-gonality 8.0; edge length 7.0;
angular resolution 0.0; line straightness 1.0. Angular
resolution has a value of 0.0 because it has little effect in
this particular example and therefore discounting it speed
up finding the final layout.

Figure 5 and Figure 6 show the graph during and
after the first iteration. It is evident that only one iteration
is required to remove any edges that are not 4-gonal. It
can also be seen in Figure 6 that all the over-length edges
are shortened to their shortest length. However, owing to
not enforcing geographical relationships between nodes,
the single-node branch at the western end of the darker
east-west line has been moved to the wrong side of the
line.

Figure 7 shows the final layout of the Atlanta map
after 10 iterations. Figure 8 shows the same final layout,
this time with labels to illustrate the labelling of station
names. It is clearly a much improved layout than the
initial layout shown in Figure 4. The overall topology of
the map has been preserved. However, the darker east-
west line seems to have skewed. This is partially due to
the order in which the nodes are processed by the
algorithm. Also, neither of the two nodes either side of
the intersection with the other line can move without

introducing an extra bend in the line. This is a problem
that could be solved by using contracted edges.

Figure 4. Initial layout of the Atlanta MARTA Rail
map

Figure 5. During the first iteration, before over-
length edges are processed

Figure 6. After the first iteration

Figure 7. Final layout of the Atlanta MARTA
Rail map

Figure 8. Final layout of the Atlanta MARTA Rail

map with labelling

3.2. Washington Metro

The Washington Metro map is more complex than
the Atlanta map. The initial layout of the Washington
Metro map is shown in Figure 9. Of note are the
introduction of loops of nodes, particularly in the centre
of the map and on the two north-eastern lines. The map
also has multiple edges between certain stations. For this
map, the algorithm used the edge contraction
preprocessing step, the result of which can be seen in
Figure 10. The metric weightings used to generate this
map are: edge crossings, 10000; 4-gonality 5.0; edge
length 4.0; angular resolution 0.05; line straightness 2.0.

Figure 11 shows the final layout of the Washington
map after four iterations. The finished graph is greatly
improved from the initial graph, with lines significantly
straightened and in the majority of cases each line can be
followed easily enough. The resulting graph shows a
problem with the loop of stations at the north-east where
the loop has been significantly squashed. This problem is
caused by the edge contraction stage. A possible solution
to this problem would be to use one or two intermediate

nodes as ‘anchor-node’ so that both halves of the loop
are not totally contracted. Another problem also arises in
the centre of the graph where some of the edges are
drawn with a disproportionate length. However, this is
also a problem for the designers of the real map, so
perhaps it is unreasonable to draw each edge with the
same length.

Figure 9. Initial layout of the Washington Metro Map

Figure 10. Initial layout with contracted edges (dotted
edges represent contracted edges)

Figure 11. Final layout of the Washington map

3.3. Sydney Suburban CityRail

The Sydney Suburban CityRail map (shown as part
of Figure 12) is used as an example of using our
algorithm to lay out a large metro map. We only use the
suburban part of the map and leave out the intercity lines
such as the northernmost line. This makes it difficult to
compare our results against those in [4], where a larger
map is used. Figure 13 shows the initial layout of the
CityRail map while Figure 14 and Figure 15 show two
final layouts after ten iterations, the first a layout
generated using contracted edges, the second without.
The metric weightings used to generate this map are:
edge crossings, 10000; 4-gonality 8.0; edge length 7.0;
angular resolution 0.0; line straightness 1.0.

Figure 12. Sydney CityRail map

Both the final graphs show significant straightening
of all the lines. The graph drawn without edge
contraction is closer to the initial layout but at the cost of
more time required to create the layout. We believe that
both of the final graphs are preferable to the
approximation when it comes to using them for
navigation round the network.

In Figure 14, some contracted edges are clearly not
4-gonal. There are two possible reasons for this. Firstly,
that it is not possible to move the nodes at the end of the
contracted to improve the metrics without moving more
than one node. Secondly, that in the case of diagonal
edges, because the integer grid restricts the possible
positions for nodes, which means that the best position
for the endpoints of the edge is slightly offset from the

45° diagonal in order to satisfy the edge length metric.
Some sections of the graph also suffer from irregular
node spacing, mainly where more than one bridge edge
partitions the graph.

Figure 15 suffers from similar problems to Figure
14, mainly with respect to irregular spacing of nodes
along lines. Both graphs struggle to cope with the small
loop in the middle on the right; the loop is excessively
large in order to accommodate the small branch line
inside the loop.

Figure 13. Initial layout of the Sydney CityRail map

Figure 14. Final layout of the Sydney CityRail map
using contracted edges

Figure 15. Final layout of the Sydney CityRail map
without using contracted edges

4. Conclusions and Future Work

In this paper we presented an algorithm using a hill
climbing multicriteria optimisation technique to
automatically generate good layouts of metro maps. We
implemented a preprocessing step to contract nodes of
degree two and an additional step at each iteration of the
algorithm to deal with over-length edges. The final
layouts of the metro maps show a significant
improvement on the original geographic layout and make
the maps much easier to navigate.

We believe that out multicriteria optimisation
technique can be extended relatively easily with other
metrics in order improve further on the quality of the
final map layouts. In particular, metrics can be
introduced so that station labels are positioned with
regard to the rest of the map – for example, it is generally
desirable when labelling metro maps that labels never
obscure edges, nodes or other labels. Other metrics might
include constraining the graph to a certain area or to
reduce the chance that a node could move close to
another edge. Another improvement would be to use
polylines to draw edges that cannot be drawn either
orthogonally or diagonally.

There are also other problems that need to be
considered. These include dealing with highly connected
maps, contracting multiedges and reducing over-length
edges when there is more than one over-length bridge
edge separating the graph.

As the size of the network increases, the speed of
our system degrades significantly. There is a great deal
of optimisation that could be implemented, for example
the metrics are completely recalculated for each node
movement. This could be improved by the system
reusing many of the calculations in subsequent iterations.
The calculations of the metrics could be speeded up by
integrating the calculation of multiple metrics.

5. References

[1] G. Battista, P. Eades, R. Tamassia and I. Tollis. Graph
Drawing: Algorithms for the Visualisation of Graphs.
Prentice Hall. 1999.

[2] R. Davidson, D. Harel. Drawing Graphs Nicely Using
Simulated Annealing. ACM Trans. Graphics, 15(4):301-
331, 1996.

[3] K. Garland. Mr. Beck’s Underground Map. Capital
Transport Publishing. England. 1994.

[4] S. H. Hong, D. Merrick, H. A. D do Nascimento. The
Metromap Layout Problem. Technical Report IT-IVG-
2003-03, School of IT, University of Sydney, 2003.

[5] S. H. Hong, D. Merrick, H. A. D do Nascimento. The
metro map layout problem, in N. Churcher and C.
Churcher, eds, Information Visualisation 2004, Vol. 35
of Conferences in Research and Practice in Information
Technology, ACS, pp. 91-100. 2004.

[6] M. Kaufmann and D. Wagner. Drawing Graphs:
Methods and Models, LNCS 2025. 2001.

[7] Ulrich Lauther, Andreas Stübinger. Generating
Schematic Cable Plans Using Springembedder Methods.
Proc. Graph Drawing 2001. LNCS 2265. pp. 465-466.
Springer. 2001.

[8] M. Ovenden, Metro Maps of the World, Capital
Transport Publishing, England, 2003.

[9] Metropolitan Atlanta Rapid Transport Authority network
map, http://www.itsmarta.com/getthere/schedules/index-
rail.htm. Accessed on 5 March 2004.

[10] E.S. Sandvad, K. Grønbæk, L. Sloth, J.L. and Knudsen.
A Metro Map Metaphor for Guided Tours on the Web:
the Webvise Guided Tour System. Proc. 10th International
World Wide Web Conference, Hong Kong, May 1-5,
2001. ACM: New York, 2001. pp. 326-333.

[11] Sydney CityRail network map,
http://www.cityrail.info/networkmaps/selection.jsp.
Accessed on 5 March 2004.

[12] R. Tamassia. On Embedding a Graph in the Grid with the
Minimum Number of Bends. SIAM Journal of
Computing. Vol. 16. No. 3. pp. 421-444. June 1987.

[13] Washington Metro network map,
http://www.wmata.com/metrorail/systemmap.cfm.
Accessed on 5 March 2004.

