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Abstract. Loop leaping is the colloquial name given to a form of program
analysis in which summaries are derived for nested loops starting from
the innermost loop and proceeding in a bottom-up fashion considering
one more loop at a time. Loop leaping contrasts with classical approaches
to finding loop invariants that are iterative; loop leaping is compositional
requiring each stratum in the nest of loops to be considered exactly once.
The approach is attractive in predicate abstraction where disjunctive
domains are increasingly used that present long ascending chains. This
paper proposes a simple and an efficient approach for loop leaping for
these domains based on viewing loops as closure operators.

1 Introduction

Abstract interpretation [9] provides a compelling theory for modelling a program
with descriptions of concrete data values. Not only does it show how domains
can be defined, refined and related to their concrete counterparts, but it provides
a methodology for constructing transformers that simulate the behaviour of
the primitive operations that arise in a program. Best transformers can, at
least in principle, always be automatically constructed for domains of finite
height [30] which, notably, includes the abstract domain of conjunctions of
predicates [4] that has proved so popular in verification [14]. Techniques for
deriving transformers for whole blocks of code have recently emerged due, in part,
to the development of robust decision procedures [6,21,25] and efficient quantifier
elimination techniques [7,24,27]. The step beyond blocks is the automatic synthesis
of transformers for loops.

Calculational techniques for deriving transformers for loops are colloquially
referred to loop leaping [2] or loop frogging [22,23]. These evocative terms
capture the central idea of jumping over the computational obstacle presented
by repeatedly reaching, iterating and stabilising on each loop in a nest of loops.
Instead, the whole loop nest is summarised in a straight-line block, ideally with
the summary computed in a compositional fashion, starting with the innermost
and ending with the outermost loop. The case for loop summarisation becomes
more convincing for domains with long chains such as those admitted by Boolean
formulae over large numbers of predicates [28]. Boolean formulae can be widened,
even in ways that are sensitive to the underlying Boolean function rather than



merely its representation [20], yet it is our contention that the rich structure of
formulae aids rather than impedes loop analysis when loop leaping is applied.

Ideally one would derive a best transformer that summarises the execution of
a loop, or loop nest, to the limits of what is expressible in the abstract domain.
A best transformer is exactly that: a mapping from the set of input descriptions
to the set of output descriptions where the output description given by the
transformer is the most precise characterisation of the set of all the output states
that are reachable from all the input states described by the input description.
This immediately presents a problem for Boolean formulae: the number of
input descriptions. Even for the sub-class of monotonic Boolean formulae, the
simplest domain that can express both conjunctive and disjunctive properties, the
number of formulae grows rapidly with the number of predicates: 2, 3, 6, 20, 168,
7581, 7828354, 2414682040998, 56130437228687557907788 [37]. It is therefore not
surprising that previous work has sought to curtail the representation, for instance,
by bounding the number of disjuncts [28]. Without exploiting common structure
in and between the input and output formulae, the only realistic prospective
is to design a transformer whose representation is suitably compact and whose
summary is sufficiently precise: the former can be ensured through design but
the latter can only be tested empirically.

The contribution of this paper is simple. It is to show how loop trans-
formers can be computed from maps of the form ↑f : Σ → ℘(℘(Σ)) where
Σ = {σ1, . . . , σn} is the finite set of predicates under consideration. If σi ∈ Σ
then ∆i = ↑f(σi) is interpreted as a monotonic formula in DNF. For example
{{σ1, σ2}, {σ1, σ3}} represents the formula θ = (σ1∧σ2)∨(σ1∧σ3) = σ1∧(σ2∨σ3).
Crucially the map ↑f is defined by just n formulae ∆1 = ↑f(σ1), . . . , ∆n = ↑f(σn).
The map ↑f does not constitute a loop transformer itself since it only specifies how
to map an input formula, which is one of the predicates, to an output formula.
Yet ↑f is designed so that logical combinators can be applied to ∆1, . . . ,∆n

to compute an output formula for an arbitrary input formula. To illustrate, if
the input formula is θ then the output formula is ∆1 ∧ (∆2 ∨∆3), where here
the distinction between a monotonic Boolean function and its representation is
blurred. The construction rests on ↑f : Σ → ℘(℘(Σ)), or rather its extension
↑f : ℘(℘(Σ))→ ℘(℘(Σ)), being a closure operator, that is, a map which is mono-
tonic, idempotent and extensive (extensivity means that the operator relaxes a
formula whenever it is applied). The centrality of these three concepts explains
the title of the paper and the (mysterious) ↑ symbol that indicates closure. These
three properties square with the way a loop transformer maps an input formula
to an output formula which describes the final state of a loop. This fit leads to a
loop summarisation method that is both simple and effective.

Expositionally this paper is laid out as follows: First, Sect. 2 explains the
key ingredients of our method for both, unnested and nested loops, by means of
an example, followed by a formalisation and correctness arguments in Sect. 3.
Then, Sect. 4 presents experimental evidence which compares the precision of
our techniques to related ones based on predicate abstraction. Finally the paper
concludes with a survey of related work in Sect. 5 and a discussion in Sect. 6.
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(1) assume i = 0;
(2) assume n > 0;
(3) while i < n do
(4) b := nondet();
(5) if b 6= 0 then
(6) i := i+ 1;
(7) else
(8) skip;
(9) endif
(10) endwhile

if i < n then
b := nondet();
if b 6= 0 then

i := i+ 1;
else

skip;
endif

else
skip

endif

(1) if i < n then
(2) b′ := nondet();
(3) if b′ 6= 0 then
(4) i′ := i+ 1;
(5) else
(6) i′ := i;
(7) endif
(8) else
(9) i′ := i;
(10) endif
(11) n′ := n

Fig. 1. Single loop example: (a) code; (b) loop block; (c) loop block in a SSA-form

2 Worked Examples

The ethos of our method is to summarise a loop with a closure operator on
the domain of monotonic Boolean formulae, D, where the predicates are drawn
from a given finite set of predicates, Σ, that is defined up-front. Monotonic
Boolean formulae are a class of propositional functions which take the following
syntactic form: if σ ∈ Σ then σ ∈ D and if f1, f2 ∈ D then it follows f1 ∧ f2 ∈ D
and f1 ∨ f2 ∈ D [31]. The domain D is ordered by entailment |= and with
appropriate factoring (the details of which are postponed to the sequel) a finite
lattice 〈D, |=,∨,∧〉 can be obtained.

To illustrate how a loop can be summarised using closures over D consider
the program that is listed to the leftmost column of Figure 1. Observe that the
loop transforms the state that the program has when the loop is first encountered
into the state that is obtained by repeated applications of the loop body. A
loop summary expresses this transformation. Since state is described in terms
of monotonic formulae, the summary is itself a mapping from an input formula
to an output formula. The input formula describes the initial state at the head
of the loop: the state of the program when the loop is first encountered. The
output formula describes all the states that are reachable at the head of the
loop, by repeatedly applying the loop body, from any of the initial states. Since
the number of monotonic formulae grows rapidly with |Σ| [37], the challenge
is to find a way to summarise a loop that is both descriptive and yet can be
represented compactly and derived straightforwardly.

Observe that the while loop is equivalent to repeated applications of the block
of statements in the middle column that will collectively be referred to as S.
Suppose too that the set of predicates is defined as Σ = Σ0 ∪Σ1 ∪Σ2 where:

Σ0 = { (n < 0) , (n = 0) , (n > 0)}
Σ1 = { (i < 0) , (i = 0) , (i > 0)}
Σ2 = { (i < n), (i = n), (i > n)}

3



Although Σ is entirely natural given the predicates in the program, observe that
S does not mutate n, hence S does not alter the truth or falsity of the predicates
of Σ0. We shall thus restrict our attention to summaries over the predicates
Σ1 ∪Σ2; extending the summaries to Σ increases the number of cases that need
to be considered without offering the reader fresh insight.

2.1 Closing the Loop over Σ

Using SMT-based reachability analysis [8,14], a function f is computed which
maps input formulae, which coincide with each of the predicates σ ∈ Σ1 ∪Σ2,
to their corresponding output formulae. To derive the output formulae, S is put
into a form of single static assignment [10], which gives the block listed in the
rightmost column, denoted S′. The three paths through S′ correspond to three
systems of constraints that are:

c1 = (i < n) ∧ (b′ 6= 0) ∧ (i′ = i+ 1) ∧ (n′ = n)
c2 = (i < n) ∧ ¬(b′ 6= 0) ∧ (i′ = i) ∧ (n′ = n)
c3 = ¬(i < n) ∧ (i′ = i) ∧ (n′ = n)

To illustrate, consider computing the abstract transformer αΣ′
1∪Σ′

2
((i = 0) ∧ c1)

of (i = 0) ∈ Σ1 subject to path c1, where the abstraction map α is outlined below
and Σ′1 and Σ′2 denote sets of predicates, analogous to Σ1 and Σ2 respectively,
but defined over primed output variables. Passing (i = 0) ∧ c1 to an SMT solver
gives a model m1, e.g.:

m1 =
{

(i = 0) ∧ (n = 2) ∧ (i′ = 1) ∧ (n′ = 2)
}

Since we can check that a concrete model m satisfies a given predicate σ ∈ Σ,
that is, m ∈ γΣ(σ), then αΣ(m) can be computed thus:

αΣ(m) =
∧
{σ ∈ Σ |m ∈ γΣ(σ)}

Note that α is parametric in the set Σ. By abstracting m1, we obtain αΣ′(m1) =
(i′ > 0)∧ (i′ < n′). In a second iteration, we add ¬αΣ′(m1) to the SMT instance
as a blocking clause. Then, passing (i = 0) ∧ c1 ∧ ¬αΣ′(m1) to a solver yields
a different model m2, in which all concrete values described by αΣ′(m1) are
blocked. Suppose m2 is defined as:

m2 =
{

(i = 0) ∧ (n = 1) ∧ (i′ = 1) ∧ (n′ = 1)
}

This model induces an output αΣ′(m2) = (i′ > 0) ∧ (i′ = n′). Then, the formula
(i = 0)∧c1∧¬αΣ′(m1)∧¬αΣ′(m2) becomes unsatisfiable, and thus (i = 0)∧c1 |=
αΣ′(m1)∨αΣ′(m2), which entails f(i = 0∧ c1) = (i′ > 0)∧ ((i < n′)∨ (i′ = n′)).
Applying this strategy to (i = 0) ∧ c2 and (i = 0) ∧ c3 gives:

f((i = 0) ∧ c1) = (i′ > 0) ∧ ((i′ = n′) ∨ (i′ < n′))
f((i = 0) ∧ c2) = (i′ = 0) ∧ (i′ < n′)
f((i = 0) ∧ c3) = (i′ = 0) ∧ ((i′ = n′) ∨ (i′ > n′))
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Combining these three results we derive a formula which describes the effect of
executing S under input that satisfies the predicate σ = (i = 0). In what follows
simplifications have been applied to make the presentation more accessible:

f(i = 0) =
∨3
j=1 f((i = 0) ∧ cj)

= f((i = 0) ∧ c1) ∨ f((i = 0) ∧ c2) ∨ f((i = 0) ∧ c3)
= (i′ = 0) ∨ ((i′ > 0) ∧ ((i′ < n′) ∨ (i′ = n′)))

Likewise, for the remaining predicates in Σ, we compute:

f(i < 0) = (i′ < 0) ∨ ((i′ = 0) ∧ ((i′ < n′) ∨ (i′ = n′)))
f(i > 0) = (i′ > 0)
f(i < n) = (i′ < n′) ∨ (i′ = n′)
f(i = n) = (i′ = n′)
f(i > n) = (i′ > n′)

The map f characterises one iteration of the block S. To describe many iterations,
f is relaxed to a closure, that is, an operator over D which is idempotent,
monotonic and extensive. Idempotent so as to capture the effect to repeatedly
applying S until the output formula does not change; monotonic since if the
input formula is relaxed then so is the output formula; and extensive so as to
express that the output formula is weaker than in the input formula. The last
point deserves amplification: the input formula characterises the state that holds
when the loop is first encountered whereas the output summarises that states
that hold when the loop head is first and then subsequently encountered, hence
the former entails the latter.

With renaming applied to eliminate the auxiliary predicates of Σ′1 ∪Σ′2, the
closure of f(i = 0), denoted ↑f(i = 0), is computed so as to satisfy:

↑f(i = 0) = ↑f(i = 0) ∨ (↑f(i > 0) ∧ ↑f(i < n)) ∨ (↑f(i > 0) ∧ ↑f(i = n))

Likewise, the closures for all predicates in Σ are required such that:

↑f(i < 0) = ↑f(i < 0) ∨ (↑f(i = 0) ∧ ↑f(i < n)) ∨ (↑f(i = 0) ∧ ↑f(i = n))
↑f(i > 0) = ↑f(i > 0)
↑f(i < n) = ↑f(i < n) ∨ ↑f(i = n)
↑f(i = n) = ↑f(i = n)
↑f(i > n) = ↑f(i > n)

This recursive equation system can be solved iteratively until it stabilises, a
property that is guaranteed due to monotonicity and finiteness of the domain.
In fact it is straightforward to see that ↑f(i > 0) = (i > 0), ↑f(i = n) = (i = n),
and ↑f(i > n) = (i > n). Using substitution, we then obtain ↑f(i < n) =
(i < n) ∨ (i = n). Likewise, for (i = 0), we compute:

↑f(i = 0) = (i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))

Also by simplification we obtain:

↑f(i < 0) = (i < 0) ∨ ((i > 0) ∧ ((i < n) ∨ (i = n))) ∨ (↑f(i = 0) ∧ (i = n))
= (i < 0) ∨ (i < n) ∨ (i = n)

which completes the derivation of the closure.
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2.2 Applying Closures

Thus far, we have computed a function ↑f that maps each predicate σ ∈ Σ to
a formula that represents the states reachable at the head of the loop from σ.
Yet ↑f can be interpreted as more than a loop transformer over just Σ since if
σ1, σ2 ∈ Σ it follows that:

↑f(σ1 ∧ σ2) |= ↑f(σ1) ∧ ↑f(σ2)

This holds because the closure operator is monotonic. Moreover, due to the rich
structure of our domain, we also have:

↑f(σ1 ∨ σ2) = ↑f(σ1) ∨ ↑f(σ2)

This follows from the way σ1 ∨ σ2 is formally interpreted as set union and the
operator ↑f is defined so as to distribute over union. The force of this is that
↑f can be lifted to an arbitrary formula over Σ, thereby prescribing a loop
transformer that is sufficiently general to handle any conceivable input formula.
As an example, suppose that the loop is first reached with state described by the
input formula (i = 0) ∧ (i < n). Then

↑f((i = 0) ∧ (i < n))
v ↑f(i = 0) ∧ ↑f(i < n)
= ((i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))) ∧ ((i < n) ∨ (i = n))
= ((i = 0) ∨ (i > 0)) ∧ ((i < n) ∨ (i = n))

which, with some simplifications applied, describes all the states that are reachable
at the head of the loop. The complete loop transformer then amounts to intersect-
ing this formula with the negation of the loop-condition, that is, (i = n)∨ (i > n),
which gives the formula ((i = 0) ∨ (i > 0)) ∧ (i = n) which characterises the
states that hold on exit from the loop as desired. The importance of this final
step cannot be overlooked.

2.3 Leaping Nested Loops

The strength of the construction is that it can be used to compositionally sum-
marise nested loops. Given an inner loop SI , we first compute a loop transformer
↑fI , which is then incorporated into the body of the outer loop SO. Our analysis
thus computes loop transformers bottom-up, which is both attractive for con-
ceptual as well computational reasons. As an example, consider the program in
Fig. 2 (nested.c from [15]) with the sets of predicates defined as:

Σ1 = {(y < 0), (y = 0), (y > 0)} Σ4 = {(t < m), (t = m), (t > m)}
Σ2 = {(t < 0), (t = 0), (t > 0)} Σ5 = {(y < m), (y = m), (y > m)}
Σ3 = {(t < y), (t = y), (t > y)}

6



(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y := y + 1;
(6) t := 0;
(7) while t < y do
(8) t := t+ 1;
(9) endwhile
(10) endwhile
(11) assert y = m

(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y′ := y + 1;
(6) t′ := 0;
(7) if y′ < 0 then assume y′′ < 0 endif
(8) if y′ = 0 then assume y′′ = 0 endif
(9) if y′ > 0 then assume y′′ > 0 endif
(10) if t′ = 0 then assume t′′ ≥ 0 endif
(11) if t′ > 0 then assume t′′ > 0 endif
(12) if t′ < y′ then assume t′′ ≤ y′′ endif
(13) if t′ = y′ then assume t′′ = y′′ endif
(14) if t′ > y′′ then assume t′′ > y′′ endif
(15) assume t′′ ≥ y′′

(16) endwhile
(17) assert y = m

Fig. 2. Bottom-up derivation of transformer for a nested loop from [15]

Applying our technique to the inner loop on predicates Σ1∪Σ2∪Σ3, we compute
the map fI as follows:

fI(y < 0) = (y < 0)
fI(y = 0) = (y = 0)
fI(y > 0) = (y > 0)

fI(t < 0) = (t < 0) ∨ (t = 0)
fI(t = 0) = (t = 0) ∨ (t > 0)
fI(t > 0) = (t > 0)

fI(t < y) = (t < y) ∨ (t = y)
fI(t = y) = (t = y)
fI(t > y) = (t > y)

Then, as before, we compute the closure of fI to give:

↑fI(y < 0) = (y < 0)
↑fI(y = 0) = (y = 0)
↑fI(y > 0) = (y > 0)
↑fI(t < 0) = ↑fI(t < 0) ∨ ↑fI(t = 0) = (t < 0) ∨ (t = 0) ∨ (t > 0) = true
↑fI(t = 0) = (t = 0) ∨ (t > 0)
↑fI(t > 0) = (t > 0)
↑fI(t < y) = ↑fI(t < y) ∨ ↑fI(t = y) = (t < y) ∨ (t = y)
↑fI(t = y) = (t = y)
↑fI(t > y) = (t > y)

To abstract the outer loop in Fig. 2, we replace the inner loop, defined at lines
(7)–(9) on the left, by its summary. This gives the program on the right. Here,
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lines (7)–(14) encode an application of the closure, whereas line (15) models the
loop exit condition of SI . Note that lines 10 and 12 relax strict inequalities to
non-strict inequalities to simultaneously express two predicates (which is merely
for presentational purposes). Even though the transformed program appears
to have multiple paths, it is not treated as such: lines (7)–(14) rather model
auxiliary constraints imposed by the closure on a single path.

Next a predicate transformer fO for the outer loop SO is computed which
amounts, like before, to reachability analysis over the predicates

⋃5
i=1Σi. We

obtain a map fO : Σ → ℘(℘(Σ)) defined as:

fO(y < 0) = ((y < 0) ∨ (y = 0)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
fO(y > 0) = (y > 0) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t > 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < y) = (t = y)
fO(t = y) = (t = y)
fO(t > y) = (t > y)
fO(t < m) = (t = y) ∨ (t > y)
fO(t = m) = (t = y) ∨ (t > y)
fO(t > m) = (t = y) ∨ (t > y)
fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = m) = (y = m)
fO(y > m) = (y > m)

Analogous to before, closure computation amounts to substituting the predicates
in the image of fO. In case of the predicate (y = 0) ∈ Σ1, for example, computing
the closure of fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y) amounts to substituting
(y > 0), (t > 0) and (t = y) by ↑fO(y > 0), ↑f(t > 0) and ↑f(t = y), respectively.
By repeated substitution (with entailment checking), we obtain the following
closures for (y = 0) ∈ Σ1, (t = 0) ∈ Σ3 and (y < m) ∈ Σ5:

↑fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
↑fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
↑fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

Likewise, we close f for the remaining predicates.
To illustrate the precision of this type of transformer for nested loops, suppose

(y = 0)∧(y < m)∧(t = 0) holds on enter into the outer loop. The loop transformer
for (y = 0)∧(y < m)∧(t = 0) is computed as ↑fO(y = 0)∧↑fO(y < m)∧↑fO(t = 0),
which simplifies to give:

↑fO(y = 0) ∧ ↑fO(y < m) ∧ ↑fO(t = 0)

=

 (y > 0) ∧ (t > 0) ∧ (t = y) ∧
((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y)) ∧
((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m))
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By conjoining this output of the outer loop with the exit-condition (y ≥ m), we
obtain the post-state of the program after the loop:

↑fO((y = 0) ∧ (y < m) ∧ (t = 0))) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m)) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ (y = m)

Clearly, the assertion in line (11) of Fig. 2 follows, as is required.

3 Semantics

In this section we formalise our approach to predicate abstraction and demonstrate
its correctness. The starting is a (countable) finite concrete domain B that is
interpreted as the set of possible program states, for instance, B = [−231, 231−1]2

for a program with just two 32-bit signed integer variables. For generality the
definition of B is left open. To illustrate the compositional nature of our analysis,
the formal study focuses on a language L of structured statements S defined by

S ::= skip | assume(ρ) | transform(τ) | S;S | if ρ then S else S | while ρ do S

where τ ⊆ B×B is a relation between assignments and ρ ⊆ B is a predicate. Since
τ is a binary relation, rather than a function, the statement transform(τ) can
express non-determinism. If τ = {〈x, y〉 × 〈x′, y′〉 ∈ ([−231, 231 − 1]2)2 | x′ = x},
for instance, then the statement transform(τ) preserves the value of x but assigns y
to an arbitrary 32-bit value. For brevity of presentation, we define the composition
of a unary relation ρ ⊆ B with a binary relation τ ⊆ B×B which is defined thus
ρ ◦ τ = {b′ ∈ B | b ∈ ρ ∧ 〈b, b′〉 ∈ τ} (and should not be confused with function
composition whose operands are sometimes written in the reverse order). We
also define ¬ρ = B \ ρ for ρ ⊆ B.

3.1 Concrete Semantics

Because of the non-deterministic nature of transform(τ) the semantics that is
used as the basis for abstraction operates on sets of values drawn from B.
The semantics is denotational in nature, associating with each statement in
a program with a mapping ℘(B) → ℘(B) that expresses its behaviour. The
function space ℘(B)→ ℘(B) is ordered pointwise by f1 v f2 iff f1(ρ) ⊆ f2(ρ) for
all ρ ⊆ B. In fact 〈℘(B) → ℘(B),u,t, λρ.∅, λρ.B〉 is a complete lattice where
f1 u f2 = λρ.f1(ρ) ∩ f2(ρ) and likewise f1 t f2 = λρ.f1(ρ) ∪ f2(ρ). The complete
lattice L → ℘(B)→ ℘(B) is defined analogously. With this structure in place a
semantics for statements can be defined:

Definition 1. The mapping [[·]]C : L → ℘(B)→ ℘(B) is the least solution to:

[[skip]]C = λσ.σ
[[assume(ρ)]]C = λσ.σ ∩ ρ

[[transform(τ)]]C = λσ.σ ◦ τ
[[S1;S2]]C = λσ.[[S2]]C([[S1]]C(σ))

[[if ρ then S1 else S2]]C = λσ.([[S1]]C(σ ∩ ρ)) ∪ ([[S2]]C(σ ∩ ¬ρ))
[[while ρ do S]]C = λσ.([[while ρ do S]]C([[S]]C(σ ∩ ρ))) ∪ (σ ∩ ¬ρ)
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3.2 Abstract Semantics

The correctness of the bottom-up analysis, the so-called closure semantics, is
argued relative a top-down analysis, the abstract semantics, which, in turn, is
proved correct relative to the concrete semantics. The abstract semantics is
parametric in terms of a finite set of predicates Σ = {σ1, . . . , σn} where σ1,
. . . , σn ⊆ B with σi 6= σj if i 6= j are distinct predicates. A set of predicates
δ ∈ ∆ ⊆ ℘(Σ) is interpreted by the following:

Definition 2. The concretisation map γ : ℘(℘(Σ))→ ℘(B) is defined:

γ(∆) =
⋃
δ∈∆

γ(δ) where γ(δ) =
⋂
σ∈δ

σ

Example 1. Suppose δ0 = ∅, δ1 = {σ1} and δ2 = {σ1, σ2}. Then γ(δ0) = B,
γ(δ1) = σ1 and γ(δ2) = σ1 ∩ σ2.

The concretisation map γ induces an quasi-ordering on ℘(℘(Σ)) by ∆1 v ∆2

iff γ(∆1) ⊆ γ(∆2). To obtain a poset an operator ↓ is introduced to derive a
canonical representation for an arbitrary ∆ ⊆ ℘(Σ) by forming its down-set.
The down-set is defined ↓∆ = {δ′ ⊆ Σ | ∃δ ∈ ∆.γ(δ′) ⊆ γ(δ)} from which we
construct D = {↓∆ | ∆ ⊆ ℘(Σ)}. Observe that if ∆1, ∆2 ∈ D then ∆1 ∩∆2 ∈ D.
To see that ∆1∪∆2 ∈ D let δ ∈ ∆1∪∆2 and suppose δ ∈ ∆i. Then if γ(δ′) ⊆ γ(δ)
it follows that δ′ ∈ ∆i ⊆ ∆1 ∪∆2. Moreover 〈D,⊆,∪,∩, ∅, ℘(Σ)〉 is a complete
lattice where ∩ is meet and ∪ is join.

Proposition 1. The maps α : ℘(B) → D and γ : D → ℘(B) form a Galois
connection between 〈℘(B),⊆〉 and 〈D,⊆〉 where α(σ) = ∩{∆ ∈ D | σ ⊆ γ(∆)}

Example 2. Suppose Σ = {σ1, σ2} where σ1 = (0 ≤ i ≤ 1) and σ2 = (1 ≤ i ≤ 2).
Let ∆1 = {{σ1} , {σ1, σ2}} and ∆2 = {{σ2} , {σ1, σ2}}. Note that ↓∆1 = ∆1 and
↓∆2 = ∆2 thus ∆1, ∆2 ∈ D. However {{σ1}} 6∈ D and {{σ2}} 6∈ D. Observe
γ(∆1) = σ1 and γ(∆2) = σ2. Moreover ∆1 ∩ ∆2 ∈ D and ∆1 ∪ ∆2 ∈ D with
γ(∆1 ∩ ∆2) = σ1 ∩ σ2 = (i = 1) and γ(∆1 ∪ ∆2) = σ1 ∪ σ2 = (0 ≤ i ≤ 2).
Furthermore α(i = 1) = {{σ1, σ2}} and α(0 ≤ i ≤ 2) = {{σ1}, {σ2}, {σ1, σ2}}.

Example 3. Observe that if ∆ = ∅ then ∆ ∈ D and γ(∆) = ∅. But if δ = ∅,
δ ∈ ∆ and ∆ ∈ D then ∆ = ℘(Σ) since γ(δ′) ⊆ B = γ(δ) for all δ′ ⊆ Σ.

Proposition 2. If σ ∈ Σ then α(σ) = ↓{{σ}}.

Both for brevity and for continuity of the exposition, the proofs are relegated to
a technical report [5].

As before, the abstract semantics is denotational associating each state-
ment with a mapping D → D. The function space D → D is ordered point-
wise by f1 v f2 iff f1(∆) ⊆ f2(∆) for all ∆ ∈ D. Also like before 〈D →
D,u,t, λ∆.∅, λ∆.℘(Σ)〉 is a complete lattice where f1 u f2 = λ∆.f1(∆) u f2(∆)
and likewise f1 t f2 = λ∆.f1(∆) t f2(∆). Moreover, the point-wise ordering on
D → D lifts to define a point-wise ordering on L → D → D in an analogous
manner. Since L → D → D is a complete lattice the following is well-defined:
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Definition 3. The mapping [[·]]A : L → D → D is the least solution to:

[[skip]]A = λ∆.∆
[[assume(ρ)]]A = λ∆.∆ ∩ α(ρ)

[[transform(τ)]]A = λ∆.α(γ(∆) ◦ τ)
[[S1;S2]]A = λ∆.[[S2]]A([[S1]]A(∆))

[[if ρ then S1 else S2]]A = λ∆.([[S1]]A(∆ ∩ α(ρ))) ∪ ([[S2]]A(∆ ∩ α(¬ρ)))
[[while ρ do S]]A = λ∆.([[while ρ do S]]A([[S]]A(∆ ∩ α(ρ))) ∪ (∆ ∩ α(¬ρ))

Proposition 3. Let S ∈ L. If ρ ∈ γ(∆) then [[S]]C(ρ) ⊆ γ([[S]]A(∆)).

3.3 Closure Semantics

At the heart of the closure semantics are functions with signature Σ → D. Join
and meet lift point-wise to the function space Σ → D since if f1 : Σ → D and
f2 : Σ → D then f1 t f2 = λσ.f1(σ)∪ f2(σ) and f1 u f2 = λσ.f1(σ)∩ f2(σ). The
key idea is to construct a mapping f : Σ → D whose extension to f : D → D is
a closure, that is, an operation which is monotonic, extensive and idempotent. A
map f : Σ → D lifts to f : ℘(Σ)→ D and then further lifts to f : ℘(℘(Σ))→ D
by f(δ) = ∩{f(σ) | σ ∈ δ} and f(∆) = ∪{f(δ) | δ ∈ ∆} respectively. Observe
that a lifting f : D → D is monotonic, irrespective of f , since if ∆1 ⊆ ∆2 then
f(∆1) ⊆ f(∆2). It also distributes over union, that is, f(∆1)∪f(∆2) = f(∆1∪∆2).
We introduce ↑f : Σ → D to denote the idempotent relaxation of f : Σ → D
which is defined thus:

Definition 4. If f : Σ → D then

↑f = u{f ′ : Σ → D | f v f ′ ∧ ∀σ ∈ Σ.f ′(σ) = f ′(f ′(σ))}

Note the use of loading within the expression f ′(f ′(σ)): the inner f ′ has type
f ′ : Σ → D whereas the outer f ′ has type f ′ : Σ → D. Observe too that
↑f : Σ → D is extensive if f : Σ → D is extensive. Although the above
definition is not constructive, the idempotent relaxation can be computed in an
iterative fashion using the following result:

Proposition 4. ↑f = ti=0fi where f0 = f and fi+1 = fi t λσ.fi(fi(σ))

With ↑f both defined and computable (by virtue of the finiteness of Σ), an
analysis based on closures can be formulated thus:

Definition 5. The mapping [[·]]L : L → D → D is the least solution to:

[[skip]]L = λ∆.∆
[[assume(ρ)]]L = λ∆.∆ ∩ α(ρ)

[[transform(τ)]]L = λ∆.α(γ(∆) ◦ τ)
[[S1;S2]]L = λ∆.[[S2]]L([[S1]]L(∆))

[[if ρ then S1 else S2]]L = λ∆.([[S1]]L(∆ ∩ α(ρ))) ∪ ([[S2]]L(∆ ∩ α(¬ρ)))
[[while ρ do S]]L = λ∆.↑f(∆) ∩ α(¬ρ) where

f = λσ.↓{{σ}} ∪ [[S]]L(↓{{σ}} ∩ α(ρ))
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Table 1. Experimental results

Program |Σ| Time Input Result

counter.c 12 0.1 s x = 0 ∧ n ≥ 0 n ≥ 0 ∧ x = n

ex1a.c 12 0.1 s 0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 2 x ≥ 0 ∧ x ≤ 2

ex1b.c 20 0.1 s m = 0 ∧ x = 0 m ≥ 0 ∧ n > m ∧ x = n ∧ x > 0

ex3.c 25 0.6 s x ≤ y ∧ x = 0 ∧ y = m x ≤ m ∧ x = n ∧ x = y ∧ y ≥ m

lockstep.c 12 0.1 s x ≤ y ∧ x ≥ y x = y ∧ x = n

nested.c 15 1.0 s t = 0 ∧ y = 0 ∧ m ≥ 0 t > 0 ∧ t = y ∧ y = m ∧ y > 0

two-loop.c 20 0.2 s x = 0 ∧ y = 0 x = n ∧ y = n

Note that ↑f is a closure since f is extensive by construction. Observe too that
[[while ρ do S]]L is defined with a single call to [[S]]L whereas [[while ρ do S]]A is
defined in terms of possibly many calls to [[S]]A. Thus the closure semantics can
be realised without auxiliary structures such as memo tables that are needed to
intercept repeated calls.

Conceptually the closure semantics simulates the top-down flow of the abstract
semantics from which it is derived, until a loop is encountered at which point
the loop body is entered. The loop body is then evaluated, again top-down, for
each of the predicates. The closure is then calculated, applied to the formula that
holds on entry to the loop, and the result composed with the negation of the loop
condition, to infer the formula that holds on exit from the loop. Yet because of
the structured nature of the domain, the loop transformer can be represented as a
straight-line block of conditional assumptions. Thus the transformer has the dual
attributes of: closely mimicking the top-down abstract semantics, which aids in
constructing a convincing correctness argument, whilst being fully compositional
which is the key attribute in the bottom-up approach to loop summarisation.

Proposition 5. Let S ∈ L and ∆ ∈ D. Then [[S]]A(∆) ⊆ [[S]]L(∆).

By composing propositions 3 and 5 the main correctness result is obtained:

Corollary 1. Let S ∈ L. If ρ ∈ γ(∆) then [[S]]C(ρ) ⊆ γ([[S]]L(∆)).

4 Experiments

A prototype analyser had been implemented in Ruby [13], with the express aim
of evaluating the precision of our technique on some loops used elsewhere for
benchmarking. The analyser faithfully realises the closure semantics as set out in
Def. 5. In addition to the examples outlined in Sect. 2, we applied our prototype
to the programs evaluated in [18] which are available from [15]. These sample
programs test and mutate integers with loop structures are either single loops,
nested loops, or sequences of loops.
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The results our experiments are presented in Tab. 1. The column |Σ| denotes
the number of predicates used, followed by Time which indicates the runtime
required to evaluate the whole program. The column Input gives the formula that
input to the program (actually an assumption that was given in the benchmark).
Likewise for Σ we chose those predicates which are listed in a comment in
the benchmark itself. The Result column documents the formula obtained by
running the program on this input (in a cleaned format as is explained below).
The runtime for all tests where less than a second on a 2.6 GHz MacBook Pro
equipped with 4 GiB RAM.

Interestingly, our implementation seems to outperform the invariant generation
technique presented in [18] for speed in all except one benchmark (nested.c).
This result is rather surprising as our prototype has been implemented näıvely
in Ruby, more as a sanity check on the design rather than a tool for assessing
performance. Considering that Ruby is interpreted, the runtimes of our proof-of-
concept implementation are encouraging. It should be noted, however, that we
generate the transformers for blocks off-line, prior to applying the analysis, rather
than using a SMT solver to compute block transformers on-the-fly. Nevertheless
the dominating time is the closure calculation since it needs to repeatedly combine
formulae; pruning intermediate formulae should improve this.

In terms of precision, most output formulae are actually disjunctive, but the
table gives conjunctive simplifications to make the presentation accessible. In
case of counter.c, for instance, we write n ≥ 0∧ x = n instead of the disjunctive
formula (n = 0 ∧ x = n) ∨ (n > 0 ∧ x = n). Manually we checked that each of the
component cubes (conjunctions) were genuinely reachable on program exit. (It
may not be feasible to infer invariants by hand but if Σ is small it is possible
to manually verify that a cube is irredundant with a high degree of confidence.)
We conclude that these invariants appear to be optimal even though the closure
semantics can, in principle, lead to a sub-optimal transformer for loops.

5 Related Work

The key idea in predicate abstraction [3,12,14] is to describe a large, possibly
infinite, set of states with a finite set of predicates. If the two predicates ρi and ρj
describe, respectively, the sets of states γ(ρi) and γ(ρj), then all the transitions
between a state in γ(ρi) and a state in γ(ρj) are described with a single abstract
transition from ρi to ρj . The existence of a transition between γ(ρi) and γ(ρj),
and hence an abstract one between ρi and ρj , can be determined by querying
a SAT/SMT solver [8] or a theorem prover [14]. The domain of conjuncts of
predicates is related to the domain of sets of states by a Galois connection
[4], allowing the framework of abstract interpretation [9], as well as domain
refinements such as disjunctive completion [4], to be applied to systematically
derive loop invariants using iterative fixpoint computation.

13



5.1 Loop Summarisation

Motived by the desire to improve efficiency, a thread of work has emerged on
compositional bottom-up analysis that strives to reorganise iterative fixed-point
computation by applying loop summarisation [34]. The idea is to substitute
a loop with a conservative abstraction of its behaviour, constructing abstract
transformers for nested loops starting from the inner-most loop [2,22]. Various
approaches have been proposed for loop summarisation, such as taking cues from
the control structure to suggest candidate invariants that are subsequently checked
for soundness [22, Sect. 3.3]. Inference rules have also been proposed for deriving
summaries based on control structures [33]. Increasingly loop summarisation is
finding application in termination analysis [2,36].

5.2 Quantifier Elimination

Existential quantification has also been applied to characterise inductive loop
invariants. Kapur [19] uses a parameterised first-order formula as a template
and specifies constraints on these parameters using quantification. Quantifiers
are then eliminated to derive the loop invariants [19, Sect. 3] which, though
attractive conceptually, inevitably presents a computational bottleneck [11].
Likewise Monniaux (see [25, Sect. 3.4] and [26, Sect. 3.4]) uses quantification to
specify inductive loop invariants for linear templates [32].

5.3 Disjunctive Invariants

Gulwani et al. [18] derive loop invariants in bounded DNF using SAT by specifying
constraints that model state on entry and exit of a loop as well as inductive
relations. Monniaux and Bodin [28] apply predicate abstraction to compute
automata (with a number of states that is bounded a priori) which represent the
semantics of reactive nodes using predicates and an abstract transition relation.
Rather than computing abstractions as arbitrary formulae over predicates, they
consider disjunctions of a fixed number of cubes. The specification of loop
invariants itself is not dissimilar to that in [25, Sect. 3.4]. However, bounding
the problem allows for the application of incremental techniques to improve
performance [28, Sect. 2.4]. Similar in spirit, though based on classical abstract
interpretation rather than SMT-based predicate abstraction, is the work of
Balakrishnan et al. [1] on control-structure refinement for loops in Lustre.

Disjunctive loop invariants have also been studied in other contexts, for
instance, Gulwani et al. [16,17] apply auxiliary variables in the complexity analysis
of multi-path loops, where disjunctive invariants describe the complexities over
counter variables. Recent work by Sharma et al. [35] focusses on the structure
of loops in general. The authors observed that loops, which require disjunctive
invariants, often depend on a single phase-transition. They provide a technique
that soundly detects whether a loop relies on such, and if so, rewrite the program
so that conjunctive techniques can be applied. Such invariants are easier to
handle than disjunctive ones. By way of contrast, Popeea and Chin [29] compute
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disjunctions of convex polyhedra using abstract interpretation. To determine
whether a pair of two polyhedra shall be merged, they apply distance metrics so
to balance expressiveness against computational cost.

6 Conclusions

This paper advocates a technique for leaping loops in predicate abstraction where
the abstract domain is not merely a conjunction of predicates that simultaneously
hold but rather a (possibly disjunctive) monotonic formula over the set of
predicates. Each loop is summarised with a closure that enables each loop to
be treated as if it were a straight-line block. Because the number of monotonic
formulae grows rapidly with the number of predicates, the method, by design,
does not compute a best transformer. Instead closures are derived solely for the
atomic predicates and, as a result, each closure can be represented by just n
monotonic formulae where n is the number of predicates. Applying the loop
transformer then amounts to computing logical combinations of these n formulae.
The compact nature of the loop transformers, their conceptual simplicity, as well
as their accuracy which is demonstrated empirically, suggests that this notion
of closure is a sweet-point in the design space for loop leaping on this domain.
Future work will investigate adapting these loop leaping techniques to other
abstract domains.
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