
Incompleteness of Relational Simulations

in the Blocking Paradigm

Eerke Boiten1 , John Derrick2

1 School of Computing, University of Kent
Canterbury, Kent, CT2 7NF, UK E.A.Boiten@kent.ac.uk

2 Department of Computer Science, University of Sheffield,
Sheffield, S1 4DP, UK J.Derrick@dcs.shef.ac.uk

July 9, 2010

Abstract

Refinement is the notion of development between formal specifications. For specifications
given in a relational formalism, downward and upward simulations are the standard method
to verify that a refinement holds, their usefulness based upon their soundness and joint com-
pleteness. This is known to be true for total relational specifications and has been claimed to
hold for partial relational specifications in both the non-blocking and blocking interpretations.

In this paper we show that downward and upward simulations in the blocking interpreta-
tion, where domains are “guards”, are not jointly complete. This contradicts earlier claims in
the literature. We illustrate this with an example (based on one recently constructed by Reeves
and Streader) and then construct a proof to show why joint completeness fails in general.
Keywords: relational refinement, downward and upward simulations, joint completeness, fail-
ures refinement.

1 Introduction

In relational state-based specification formalisms, there are at least three fundamentally different
approaches to partial relations, which are described below. Informally, the central question is often
phrased as: “what happens” when an operation is applied outside its domain? However, it is
really an issue of refinement, i.e., of acceptable substitution of behaviour: when an operation’s
specification is partial, how does this constrain its implementations? This is normally viewed in
terms of “blocking”: if a state is outside an operation’s domain, should the data type deadlock in
that state when its environment insists on performing that operation?

Consider the data type with initial state 0 in Figure 1(a). Informally, we call the outcomes of
a trace (a sequence of actions) the set of states we may end up in by following the actions one by
one, starting from an initial state. Thus, the outcomes for b are 1 and 2, for bb just 2, and for bbb
there are none.

The first approach is the “contract” or “non-blocking” approach to abstract data types, tradi-
tionally used for a specification language such as Z [23]. Here, the domain of a relation specifies the
area within which the operation is guaranteed to deliver a well-defined result. The domain is thus
a “precondition”, and we view the operation’s effect outside its domain as “anything may happen”.
This interpretation is shown in Figure 1(c). Here it is possible to do two b’s, the first ending in
state 2, and the second leading to all possible outcomes. If we use (as is standard) ⊥ to denote the
error state, we thus find that trace bb has all states including ⊥ as an outcome. Under a refinement,

1



0

2

1

b

b

b

(a)

0

2

1

⊥

(b)

0

2

1

⊥

(c)

Figure 1: A data type with initial state 0 and partial operation b (not applicable in state 2) in (a). Different
interpretations of partiality: in (b), “blocking” adds an error state ⊥ with transition from state 2 to ⊥; in
(c), “non-blocking” also adds transitions from 2 and ⊥ to all states. Operation labels b have been omitted
on all transitions in (b) and (c).

where we can reduce non-determinism, we can reduce a result which was a non-deterministic choice
of all possibilities including errors to any specific value, thus an operation’s precondition can can
be weakened in refinement.

The second approach is the “behavioural” or “blocking” model, illustrated in Figure 1(b). Here,
the domain of an operation is interpreted as a “guard”: it is impossible to apply the operation
outside the guard. This can be encoded by representing the outcome of applying an operation
outside its domain by a special error value ⊥. Then, bb has outcomes 2 and ⊥, and bbb has only
⊥. Under a refinement this behaviour must be preserved, and consequently the guard cannot be
weakened in such a blocking approach.

The third approach, related to the second, consists in not encoding partiality at all. This results
in an interpretation of non-determinism which is angelic as far as deadlock is concerned, observing
certain deadlock but not possible deadlock. In the example, it means staying with Figure 1(a),
where the outcomes for bb hide that the second b was impossible in state 2. That is, for any given
trace, we can observe if executing it will always block on one of its actions (e.g., bbb), but not
the situation where this may or may not happen depending on the data type’s resolution of non-
determinism (e.g., bb). In this notion of refinement, guards may even be strengthened, preserving
“nothing bad happens” – leading to the notion of trace refinement.

Refinement is the notion of development between formal specifications. Various theories of re-
finement for relational formalisms have been developed – see De Roever and Engelhardt [6] for a
historical overview and analysis. Extensive bibliographic information can also be found in [16, 7].
At the heart of all theories of refinement is a notion that in a development one should be allowed to
substitute one specification (or indeed implementation) for another provided the behaviour is con-
sistent - that is, one cannot observe the difference. This idea allows one to reduce non-determinism
as discussed in the context of the small example above. Clearly also from the example above, non-
blocking refinement has a slightly different characterisation to blocking refinement, due to their
difference in handling the domain of a partial relation.

For specifications given in a relational formalism, downward and upward simulations are the
standard (tractable) method to verify that a refinement holds, their usefulness based upon their
soundness and joint completeness. Such a theory of simulations for total relations was described
by Hoare, He and Sanders, initially in [12] and later in more detail in [11]. Simulations relate state
spaces of two data types in a way that ensures refinement holds, through a step-by-step comparison
of each operation.

For total relations (i.e., a specification consisting of relations all of which are total), and for

2



the non-blocking refinement of partial relations, downward and upward simulations are sound and
jointly complete. In this paper we show that the simulation rules in the blocking approach are
incomplete, contradicting claims to the contrary in the literature. The problem arises for the
following reason.

For a specification C which is a refinement of A, the joint completeness proof constructs an
intermediate specification B and a simulation from A to B and another from B to C . For total
relations clearly B is also a total relational specification. For a partial relational specification the
proof is adapted so that C and A are totalised, that is turned into total relations via the addition
of the error state as in the example above. One then finds, since they are now all total relations,
a specification B as before. However, one must now also check that this B could have arisen
from an underlying partial specification. In the non-blocking approach one can - which is why the
joint completeness result still holds. However, in the blocking approach one cannot. Providing a
counterexample, understanding the underlying reasons for failure, and then exhibiting a general
proof, is thus the contribution we make in this paper.

In the next section, we give the well-known simulation rules of Hoare, He and Sanders, their
essential properties, and in the following section the various sets of rules for partial relations deriving
from them. The subsequent section contains our main result: that the simulation rules in the
blocking approach are incomplete, contradicting claims to the contrary in the literature. Then, in
Section 5 we discuss this result in the context of a subtly different set of simulation rules, viz. those
for failures refinement. This explains the origin of the result, and provides an elegant indirect proof.
We conclude in Section 6.

2 Data Types and Relational Simulations

First, we give the standard theory of refinement and simulations of total data types, as introduced
in [12, 11], using the definitions and notations of [7].

Relational data types are centred around a hidden local state space S. However, their semantics
are defined in terms of observations on a visible “global” state space G. These observations are
induced by programs which are sequences of invocations of the ADT’s operations. The initialisation
of the program takes a global state to a local state, on which the operations act, a finalisation
translates back from local to global. The semantics of a program is a relation on the global state:
an initialisation, followed by operations on the local state, followed by a finalisation.

Definition 1 (Basic and total data type; Program; Data refinement)
A basic data type is a quadruple D = (S, Init, {Opi}i∈I ,Fin). The operations Opi , indexed by i ∈ I ,
are relations on the set S; Init is a total relation from G to S; Fin is a total relation from S to G. If
all operations Opi are total relations, we call it a total data type, otherwise we call it a partial data
type.

A program over a data type D is a sequence over the index set I , which is identified with
the sequential composition of the corresponding operations. For a program p, the corresponding
complete program for p in D, denoted pD, is the relational composition Init o

9 p o
9 Fin.

For total data types A and C, C refines A, denoted A vdata C, iff for each finite sequence p over
I , we have pC ⊆ pA. 2

Thus, refinement is defined in terms of relational inclusion of all programs. For total data types
clearly each program is defined to be a non-empty relation. Thus refinement requires that the
concrete observations are consistent with what could have been produced by the corresponding
abstract program. For total data types, every program produces an observation, so in that case
with a one-element global state refinement will always hold. For partial data types, it first appears
that a refinement may be trivially satisfied by choosing empty concrete operations. However, this

3



actually depends on what observations are made by the finalisation, and many finalisations do not
allow such a trivial behaviour.

To make the verification of refinement tractable, the standard methodology is to use simulations,
which relate state spaces of two data types in a way that ensures refinement holds, through a step-
by-step comparison of each operation. There are two varieties: downward and upward simulations.

Definition 2 (Downward simulation)
Consider total data types A = (AS,AI, {AOpi}i∈I ,AF) and C = (CS,CI, {COpi}i∈I ,CF). A relation
R between AS and CS is a downward simulation between A and C if it satisfies the three conditions:

CI ⊆ AI o
9 R

R o
9 CF ⊆ AF
∀ i : I • R o

9 COpi ⊆ AOpi
o
9 R 2

Definition 3 (Upward simulation)
A relation T between CS and AS is an upward simulation between total data types A and C as
above if it satisfies the three conditions:

CI o
9 T ⊆ AI

CF ⊆ T o
9 AF

∀ i : I • COpi
o
9 T ⊆ T o

9 AOpi
2

The relevance of simulations is explained by the following.

Theorem 1 Upward and downward simulation are sound and jointly complete for data refinement,
i.e., the existence of either kind of simulation ensures that refinement holds between the respective
data types, and any data refinement can be proved using a sequence of upward and downward
simulations only.

We give the essential aspects of the proof only. Soundness is proved by induction over the program.
Joint completeness is proved by the construction of an intermediate data type B such that an

upward simulation exists from A to B, and a downward simulation from B to C. A useful lemma is
that all refinements of data types with a deterministic initialisation and operations can be proved
using downward simulation only. The intermediate data type B is constructed as a deterministic
normal form of A: either using the familiar powerset construction (as from NDFAs to DFAs), or as a
“canonical data type” where every state represents a different trace. This normal form construction
is indeed an upward simulation, which postpones all non-deterministic choice to the finalisation.
(As the normal form is equivalent to its original, an alternative proof is by exhibiting a downward
simulation between both data types’ normal forms.)

Hoare, He and Sanders presented this theory initially [12] for total data types only, but in
subsequent papers such as [11] removed the totality restriction without emphasizing that fact.
In the form given above, the simulation rules are thus also sound and jointly complete for partial
operations. This, then, provides a first theory of simulations for partial data types, e.g. for verifying
trace refinement, and they are used in this way by Lynch and Vaandrager [16] and others.

3 Simulation rules from totalised relations

As indicated above, the two main theories for partial relations are the blocking and non-blocking
ones which are derived from the total relations theory. Indeed, a specification language such as Z
gains its theory and methodology of refinement from using a blocking or non-blocking approach
depending on the meaning given to the area outside an operation’s domain (i.e., are we specifying
guards or preconditions).

4



A possible derivation of the simulation rules for a theory of partial relations consists of four
steps: extending the state spaces; embedding operations (etc.) in the enhanced state spaces by
“totalisation”; applying the simulation theory to the totalised data types; and then expressing the
resulting conditions in terms of the original state and operations.

The global and local state spaces are extended by adding a new value ⊥ to the state space
which represents “erroneous” behaviour. We let S⊥ = S ∪ {⊥} for some ⊥ 6∈ S. Augmenting the
state space with such a value allows one to make each operation total in a way that encodes how
an operation is defined outside its domain. Thus totalisation is defined as follows.

Definition 4 (Totalisation)
For a partial relation Op on S, its totalisation is a total relation on S⊥, defined in the non-blocking
model by

Ôp
nb

== Op ∪ {x, y : S⊥ | x 6∈ dom Op • (x, y)}

and in the blocking model by

Ôp
b

== Op ∪ {x : S⊥ | x 6∈ dom Op • (x,⊥)}

Finalisation is already assumed to be total on S, but it is totalised on S⊥ by adding (⊥,⊥), thus
making erroneous behaviour observable. 2

For an example, see Figure 1, where the single operation b of the partial data type in (a) is given
a blocking totalisation in (b) and a non-blocking one in (c).

The complete derivation of the non-blocking theory was (to our knowledge) first published by
Woodcock and Davies [23]. The blocking theory with its embedding was described by Bolton et al
[5], without details of the derivation. Our monograph [7] contains full details of both; Deutsch and
Henson [9] have recently investigated the design choices for totalisations in the blocking theory. We
have studied variants with multiple level embeddings in [1, 2].

The simulation rules for partial operations are derived by applying the simulation rules to
the totalised relations, and then eliminating ⊥ from the resulting conditions. Thus, the rules
inherit soundness from soundness of the standard rules; however, completeness does not transfer
immediately.

To understand why completeness might be an issue, consider the schematic diagram given in
Figure 2. The circles represent partial data types. These are then totalised in the manner described
above, leading to an embedding of a partial data type as a total data type. This embedding is
depicted as the circle being part of the large oval - the space of total specifications. To attempt to
prove completeness, take A and C and consider their totalisation - the standard theory constructs
an intermediate total data type, here called Anf , and simulations from it to the totalised A and C .

The key question now is whether there are simulations from the partial A and C to some
intermediate B - which is also a partial data type. For this to be the case, Anf needs to be derivable
as a totalised partial data type - in terms of the picture it must lie within the circle, not just the
oval. This is not automatically the case, and is the source of the failure of completeness for the
blocking simulation rules.

As they play no further rôle in this paper, we do not give the non-blocking simulation rules
here. The only relevant aspect is the following.

Theorem 2 The non-blocking simulation rules are sound and jointly complete for partial data
types in the non-blocking interpretation.

This theorem is, to our knowledge, not stated and proved anywhere for the standard non-blocking
simulations. However, De Roever and Engelhardt [6, pp. 187-188] prove a closely related theorem.

5



C

Anf

A

Figure 2: The completeness proof of the underlying theory (represented by the oval) does not automatically
transfer to completeness for an embedded theory (the circle indicates the image of the embedding); arrows
indicate simulations, Anf is the “normal form” of data type A, and lies outside the image of the embedding.

Their non-blocking rules are derived from the partial relations simulations of He and Hoare, so their
formalism observes both (certain) blocking and (possible) divergence using partial relations on S⊥;
see [1] for a discussion. Their theorem does not imply the theorem we are looking for (as they
operate in a larger domain of relations), but its proof carries over successfully. The proof inherits
the construction of the proof of Theorem 1 and recognises the additional proof obligation: that the
intermediate datatype is in the image of the embedding1, avoiding the situation in Figure 2.

In the blocking case, the totalisation resembles a well-known construction from automata theory.
From an NDFA which does not have transitions from all states for all actions, a “total” NDFA is
created by adding a “sink” state, and adding all the missing transitions with the sink state as their
target (plus loops from the sink to itself for every action), exactly as in Figure 1(b). Additionally,
the observations (finalisations) from the states are defined to be the normal observations for all
original states, and a special error value for the sink. In the particular case of a partial data
type with a single-element global state {∗}, which is extended to {∗,⊥}, all original local states
represent “success” ∗, and the new state ⊥ represents failure. However, crucially, in the definition
of recognition of languages by NDFAs, the non-determinism is interpreted angelically, i.e., asking
whether a string can lead to success – not distinguishing between the outcome sets {⊥, ∗} and {∗}
as the relational semantics does. Thus, in Figure 1(b), in the NDFA interpretation the string bb is
simply accepted, whereas its relational view returns both ∗ and ⊥.

The simulation rules that are derived from the Hoare, He and Sanders rules through this con-
struction are as follows.

Definition 5 (Downward simulation for partial relations (blocking))
Consider data types A and C as in Definition 2 where the operations may be partial. A downward
simulation is a relation R from AS to CS satisfying2

CI ⊆ AI o
9 R

R o
9 CF ⊆ AF
∀ i : I • ran(dom AOpi C R) ⊆ dom COpi

∀ i : I • R o
9 COpi ⊆ AOpi

o
9 R

1Their embedding is not explicit, instead they characterise relations in its image axiomatically.
2P C R is the relation R constrained to the domain P , i.e., {(x , y) : R | x ∈ P}.

6



The conditions are referred to as initialisation, finalisation, applicability and correctness. 2

Definition 6 (Upward simulation for partial relations (blocking))
Assume data types A and C as above. An upward simulation is a relation T from CS to AS satisfying

CI o
9 T ⊆ AI

CF ⊆ T o
9 AF

∀ i : I ; c : CS • ∃ a : AS • (c, a) ∈ T ∧ (a ∈ dom AOpi ⇒ c ∈ dom COpi)
∀ i : I • COpi

o
9 T ⊆ T o

9 AOpi

The conditions are again referred to as initialisation, finalisation, applicability and correctness. 2

These simulation rules were first considered systematically by Bolton et al [5]. However, they
had already been used (postulated, rather than derived) within the Z community before this [22] and
in particular they were presented as the simulation rules for Object-Z (however, see the discussion
in Sections 5 and 6).

4 Blocking simulations are not jointly complete

Bolton, Davies and Woodcock [5] state a theorem that the above simulation rules are sound and
complete. Their proof of completeness is on the same basis as the completeness proofs described
above: by exhibiting an intermediate data type, with an upward simulation from the abstract to
the intermediate, and a downward simulation from intermediate to concrete.

However, unlike the proof of Theorem 2 outlined above, the proof in [5] omits the proof obligation
that the intermediate data type is in the image of the embedding used. This proof obligation turns
out not to hold, i.e., a situation as in Figure 2 arises.

Informally, if we start with a single-element global state {∗}, the embedding enhances this to
{∗,⊥}. The embedding of the finalisation links the extra local state ⊥ to ⊥, and all “normal” states
to ∗. The intermediate data type which postpones all non-determinism to the finalisation would
finalise some states to ∗, some states to ⊥, and some to both of these. The last kind of state does
not arise in data types constructed by the embedding, and thus the intermediate data type will in
general not be an image of the embedding.

This invalidates the proof in [5] – but not (yet) the theorem itself. We postpone a formal proof
that the theorem itself does not hold until Section 5. The crucial element in this proof is the
example in Figure 3.

In this figure two partial data types A and C are specified, each with a single operation b. They
are totalised in the blocking model, where transitions added by totalisation are indicated with
dotted arrows but we have omitted the b transition from ⊥ to itself. Blocking relational refinement
holds from A to C , however, this cannot be proved using simulations.

Lemma 1 For the data types in Figure 3, C is a relational refinement of A in the blocking model.

Proof The relation between traces and final observations for A is {(ε, ∗), (b, ∗), (bb, ∗), (bbb, ∗)} ∪
bb+ × {⊥} and it is the same for C. 2

The next lemma is straightforward.

Lemma 2 There is no blocking downward simulation from A to C.

Proof Construction of a relation R satisfying the downward simulation conditions is not possible.
From the initialisation condition it follows that (a0, c0) ∈ R. Then from correctness R o

9 bC ⊆ bA
o
9 R

it follows that (a0, c5) ∈ bA
o
9 R. This implies that either (a4, c5) ∈ R or (a1, c5) ∈ R. The former fails

7



a0 a1

a4

a2 a3 ⊥A

b b b

b A

c0 c1

c4

c2 c3

b b b

b C

c5 c6

b b

⊥C

Figure 3: Relational (blocking) refinement - later on we will also use the fact that C is not a (singleton)

failures refinement of A.

on correctness; the latter implies (a1, c6) ∈ bA
o
9 R, hence (a2, c6) ∈ R, which fails on applicability.

2

However, a more surprising lemma is the following.

Lemma 3 C is not a blocking upward simulation of A (i.e., following Definition 6) although an
upward simulation (according to Definition 3) exists between their embeddings.

Proof We construct an upward simulation T between the embeddings, showing that the conditions
of Definition 6 cannot be satisfied. Note that the embeddings are indicated in Figure 3 including
all arrows and dotted arrows as the definition of the single operation b.

From totality of finalisations it follows that upward simulations are total on the concrete state
(in either definition), so we need to find one or more abstract states matching c6. The correctness
condition works “backward”, so we can only link c6 to abstract states that allow two preceding b
operations. We perform a case analysis on those states:

(c6, a3) ∈ T: From correctness it follows that also (c5, a2) ∈ T. Then by correctness also (c0, a1) ∈ T.
This violates the initialisation condition, as a1 6∈ ran AI. Thus, this case cannot lead to a
solution.

(c6, a2) ∈ T: This is not allowed by the applicability condition (which is unique to Definition 6),
which states that if b is impossible in c6 and c6 is linked to a2, then b should also be impossible
in a2. Thus, this case is also excluded.

Given that there are no other states that c6 could be linked to, the conditions of Definition 6
cannot be satisfied.

However, the second case is not ruled out by Definition 3 and we find that the following upward
simulation holds between the embeddings:

T = {(ci , ai)}i=0..4 ∪ {(c5, a1), (c5, a4), (c6, a2), (c6,⊥A), (⊥C,⊥A)}

The mapping of c6 corresponds to postponement of non-determinism in refinement, which is the
situation where upward simulation tends to be necessary: the state c6 represents both a2 and “⊥
after a4”. 2

This proves the following preliminary incompleteness lemma.

Lemma 4 In the blocking model, partial data types exist such that they are not related by upward
simulation (in the sense of Definition 6), whereas their corresponding embeddings are related by
upward simulation (in the sense of Definition 3). 2

8



This still does not prove joint incompleteness of blocking upward and downward simulation: for
situations like this, a different sequence of intermediate data types might exist to circumvent the
problem. Given the small size of the example, one could prove the absence of such a sequence by
exhaustively considering all relational refinements of A with at most n branches for some credible
value of n (3? 6?) – however, a more elegant proof is found below via the connection to failures
refinement.

5 Simulations for Refusals

In this section, we prove the incompleteness of blocking simulations by interpreting the counterex-
ample using relational failure semantics.

Going back to the late 1980s, the group around the Oxford PRG not only investigated semantics
and refinement for relational data types and Z, but also for CSP [13, 19]. In particular, failures
refinement was defined in both settings – in the relational model, upward and downward simulations
for it were characterised and shown to be sound and complete by Josephs [15], He [14] and Woodcock
and Morgan [24].

The results in this paper rely solely on results for this particular interpretation, which have been
proved by Josephs [15] and others. We do not formally define failures semantics and refinement
here – informally, a failure of a process P is a pair (t ,E ) such that P can perform trace t and
afterwards refuse all events in the set E . Singleton failures semantics considers only sets E of at
most one element. Failures refinement of processes is defined as set inclusion on their failures, and
similarly for singleton failures refinement. The crucial definition is the following.

Definition 7 (Failure simulations [15]) For data types A and C above, simulation relations for
failures refinement are defined as follows.

• Downward simulations are characterised by Definition 5.

• Upward simulations are characterised by Definition 6, with the additional condition

∀ c : CS • ∃ a : AS • (c, a) ∈ T ∧ ∀ i : I • a ∈ dom AOpi ⇒ c ∈ dom COpi (1)

2

The following theorem is proved by [15, 24, 14].

Theorem 3 The upward and downward simulation rules of Definition 7 are sound and jointly
complete for failures refinement. 2

Although often confused, refinement induced by the blocking simulation rules is distinct from
failures refinement, as shown by Bolton et al [4, 3] who illustrated the distinction with a number
of small examples. It is intuitively unsurprising that all examples in Bolton et al’s papers illus-
trating the difference use data types with at least two operations. The following lemma appears to
demonstrate the necessity of this.

Lemma 5 When the index set I is a singleton set, the blocking simulation rules (Definitions 5 and
6) and failure simulation rules (Definition 7) coincide.

Proof Condition (1) and applicability in Definition 6 are equivalent when the quantification over
i : I is trivial. All other conditions are identical. 2

Our final result is a corollary of these results. First, we need to revisit Figure 3. So far we
have shown that C is a refinement of A in the blocking model. However, although it is a relational

9



blocking refinement, it is not a singleton failures refinement. To see this note that the singleton
failure arising in C but not in A is (bb, {b}) in state c6: C can do bb and then refuse another b, but
A cannot.

We can now glue together these results as applied to this example to derive our contradiction.

Theorem 4 The blocking simulation rules of Definitions 5 and 6 are not jointly complete.

Proof Lemma 1 shows that blocking refinement holds between the data types in Figure 3. We
assume completeness of blocking simulations, and derive a contradiction. Completeness means that
a sequence of blocking upward and downward simulation steps exists to prove the refinement. By
Lemma 5 each of these steps is also a failures simulation. By Theorem 3 (soundness of failure
simulations) this establishes a failures refinement between the data types. However, singleton
failures refinement does not hold, and thus a fortiori failures refinement does not hold either.
Consequently, such a sequence of simulations cannot exist and the blocking simulation rules are
incomplete. 2

6 Concluding Comments

Overall, blocking data refinement may be viewed as somewhat problematic. Its relation with
intuitive semantic models is less than straightforward [4, 3, 18]. Moreover, the simulation rules that
come “naturally” with it are incomplete. We might do better to adopt failures refinement overall:
its semantics is well understood, and it coincides with data refinement on forward simulation.

We are reminded that the strategy of deriving rules through embeddings, though attractive
in principle, carries a risk: it guarantees soundness, but does not preserve completeness. The
completeness proof of the simulation rules for failures refinement, e.g., bears little relation to their
reconstruction through embedding.

In the absence of internal actions and hiding, the relational simulation rules for failures refine-
ment are very similar to the blocking simulations defined in Definitions 5 and 6. For a survey of
the literature on comparing relational and process algebraic refinement relations see [2]. Although
the essence of the correspondence between relational data types and process algebra is intuitive –
both can be viewed as transition systems – there are many subtle issues.

For example, due to the great similarity between condition (1) in Definition 7 and the applica-
bility condition in Definition 6 – further obscured if the quantification over i in (1) is expressed in
terms of next sets as it is in [15] – the two notions of refinement they represent have frequently been
confused. Woodcock and Morgan in 1990 [24] hinted at a difference, by stating that their forward
simulation rules are identical to the sequential ones (our emphasis). However, we are not aware of
any paper published between then and 2002 that mentions both the “blocking rules” and “failures
refinement” but does not mistakenly identify them – see e.g. [21, 10, 20, 5].

Bolton et al [4, 3] finally brought the difference to the fore again. They also pointed out that
the failures simulation rules were the correct ones to use for the Object-Z histories semantics.
Complementary to their analysis identifying the relational blocking rules with singleton failures
semantics (now shown to be incorrect by Reeves and Streader [18]), we showed [8] that using
finalisations which observe failures in the relational model leads to the failure simulation rules.

The example constructed by Reeves and Streader [18] to exhibit the difference between relational
refinement and singleton failure refinement is illuminating. The difference between their example
and the one given in Figure 3 is that theirs concerns the trace abc and its prefixes rather than bbb
– either would have worked to make their point, but the change is necessary for the proof given
in Section 5. These two systems are equivalent in the relational semantics, but the interesting
direction of refinement is (as suggested by the naming) from A to C . In that direction, singleton
failures refinement does not hold but blocking relational refinement does. The only way out of this

10



is to use a different encoding which records exactly at which point blocking occurs – for example
by effectively introducing states ⊥n for all n : IN. A more detailed discussion of this is given in [17].

The results in this paper are the first examples of lack of completeness due to the embedding of
the intermediate data type. A related issue is soundness, where for data types involving unbounded
non-determinism soundness of upward simulations fails, a result which goes back 20 years. However,
this issue arises only when programs include loops or recursion, whereas the relational theory used
here (the standard one for Z and related formalisms) only considers straight line programs.

Acknowledgements

We would like to thank Steve Reeves and David Streader for coming up with a crucial counterex-
ample and comments on this paper, and the anonymous reviewer of [2] who pointed us at their
result. We also thank Wim Hesselink and the reviewers for their comments which have clarified the
contents and presentation of this paper.

References

[1] E.A. Boiten and W.-P. de Roever. Getting to the bottom of relational refinement: Relations
and correctness, partial and total. In R. Berghammer and B. Möller, editors, 7th International
Seminar on Relational Methods in Computer Science (RelMiCS 7), pages 82–88. University of
Kiel, May 2003.

[2] E.A. Boiten, J. Derrick, and G. Schellhorn. Relational concurrent refinement part II: Internal
operations and outputs. Formal Aspects of Computing, 21(1-2):65–102, 2009.

[3] C. Bolton and J. Davies. A comparison of refinement orderings and their associated simulation
rules. In J. Derrick, E.A. Boiten, J.C.P. Woodcock, and J. von Wright, editors, REFINE
02: The BCS FACS Refinement Workshop, volume 70(3) of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, July 2002.

[4] C. Bolton and J. Davies. Refinement in Object-Z and CSP. In M. Butler, L. Petre, and K. Sere,
editors, Integrated Formal Methods (IFM 2002), volume 2335 of Lecture Notes in Computer
Science, pages 225–244. Springer-Verlag, 2002.

[5] C. Bolton, J. Davies, and J.C.P. Woodcock. On the refinement and simulation of data types
and processes. In K. Araki, A. Galloway, and K. Taguchi, editors, International Conference
on Integrated Formal Methods 1999 (IFM’99), pages 273–292, York, July 1999. Springer.

[6] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and
their Comparison. CUP, 1998.

[7] J. Derrick and E.A. Boiten. Refinement in Z and Object-Z: Foundations and Advanced Appli-
cations. FACIT. Springer Verlag, May 2001.

[8] J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal Aspects of Computing,
15(1):182–214, November 2003.

[9] M. Deutsch and M.C. Henson. An analysis of refinement in an abortive paradigm. Formal
Aspects of Computing, 18(3):329–363, 2006.

[10] C. Fischer and H. Wehrheim. Failure-divergence semantics as a formal basis for an object-
oriented integrated formal method. Bulletin of the EATCS (European Association of Theoret-
ical Computer Science), 71:92 – 101, 2000.

11



[11] He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Refinement in
a Categorical Setting, Technical Monograph, number PRG-90. Oxford University Computing
Laboratory, November 1990.

[12] He Jifeng, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In B. Robinet and
R. Wilhelm, editors, Proc. ESOP’86, volume 213 of Lecture Notes in Computer Science, pages
187–196. Springer-Verlag, 1986.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[14] He Jifeng. Process simulation and refinement. Formal Aspects of Computing, 1(3):229–241,
1989.

[15] M.B. Josephs. A state-based approach to communicating processes. Distributed Computing,
3:9–18, 1988.

[16] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations: I. Untimed systems.
Inf. Comput., 121(2):214–233, 1995.

[17] S. Reeves and D. Streader. State- and event-based refinement. Technical report, Department
of Computer Science, University of Waikato, September 2006.

[18] S. Reeves and D. Streader. Data refinement and singleton failures refinement are not equivalent.
Formal Aspects of Computing, 20(3):295–301, 2008.

[19] A.W. Roscoe. The Theory and Practice of Concurrency. International Series in Computer
Science. Prentice Hall, 1998.

[20] A. Simpson, J. Davies, and J.C.P. Woodcock. Security management via Z and CSP. In
J. Grundy, M. Schwenke, and T. Vickers, editors, International Refinement Workshop & For-
mal Methods Pacific ’98, Discrete Mathematics and Theoretical Computer Science, Canberra,
September 1998. Springer-Verlag.

[21] G. Smith and J. Derrick. Refinement and verification of concurrent systems specified in Object-
Z and CSP. In M.G. Hinchey and S. Liu, editors, First International Conference on Formal
Engineering Methods (ICFEM’97), pages 293–302, Hiroshima, Japan, November 1997. IEEE
Computer Society Press.

[22] B. Strulo. How firing conditions help inheritance. In J.P. Bowen and M.G. Hinchey, editors,
ZUM’95: The Z Formal Specification Notation, volume 967 of Lecture Notes in Computer
Science, pages 264–275, Limerick, September 1995. Springer-Verlag.

[23] J.C.P. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall,
1996.

[24] J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent systems. In
D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM’90: VDM and Z!- Formal Methods
in Software Development, volume 428 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

12


