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Abstract 

Transcriptomics has been extensively applied to the investigation of the CHO cell platform for 

the production of recombinant biotherapeutic proteins to identify transcripts whose expression 

is regulated and correlated to (non)desirable CHO cell attributes. However, there have been 

few attempts to analyse the findings across these studies to identify conserved changes and 

generic targets for CHO cell platform engineering. Here we have undertaken a meta-analysis 

of CHO cell transcriptomic data and report on those genes most frequently identified as 

differentially expressed with regard to cell growth (µ) and productivity (Qp). By aggregating 

differentially expressed genes from publicly available transcriptomic datasets associated with 

µ and Qp, using a pathway enrichment analysis and combining it with the concordance of 

gene expression values, we have identified a refined target gene and pathway list whilst 

determining the overlap across CHO transcriptomic studies. We find that only the cell cycle 

and lysosome pathways show good concordance. By mapping out the contributing genes we 

have constructed a transcriptomic ‘fingerprint’ of a high-performing cell line. This study 

provides a starting resource for researchers who want to navigate the complex landscape of 

CHO transcriptomics and identify targets to undertake cell engineering for improved 

recombinant protein output. 

 

Keywords: Chinese hamster ovary (CHO) cells; transcriptomics; microarray and RNAseq; 

cell engineering; pathway enrichment. 

 

  



3 

1.0 Introduction 

The most widely industrially utilised mammalian cell expression system for the manufacturing 

of biotherapeutic proteins is the Chinese hamster ovary (CHO) cell. The CHO cell expression 

system has now been used for the manufacture of a number of classes of biotherapeutic 

proteins, notably monoclonal antibodies (mAbs) [1], however there remains the potential to 

further optimise this system, particularly for the expression of novel format and difficult to 

express molecules. The appeal of the CHO cell for the manufacture of biopharmaceuticals is 

explained by several factors. First, CHO cells have been in use as protein expression 

‘factories’ for several decades, meaning there is an established precedent to using this system 

and a track record of approval from regulatory agencies. Secondly, CHO cells have 

appropriate specific productivity, can grow in suspension in chemically defined, serum-free 

media [2]. CHO cells can now deliver high recombinant product yields, with reports of 

recombinant antibody yields of >10 g/L compared to other systems such as HEK 293 where 

yields of approximately 1 g/L have been reported [3,4]. They also have the ability to produce 

human like glycosylation patterns that are bio-compatible with the human immune systems 

[5]. However, the CHO cell research is still being driven by a need to reduce development 

times (and costs), increase recombinant protein yields/quality, enhance cell growth and 

express novel molecules.  

CHO cell research is presently experiencing a paradigm shift in terms of how the cell 

factory is understood due to the availability of a variety of omics data. The Chinese hamster, 

CHO K1 [6] and various other cell line genomes have been sequenced and published along 

with a library of proteomic, transcriptomic and metabolomic data [7–9]. These studies and 

databases provide the community with a wealth of information around the CHO cell platform 

and allow for the rational and precise fine-tuning of the CHO recombinant protein expression 

platform. However, in order to identify pathways and targets for CHO cell engineering, the 

investigator needs to know what genes are being expressed under which conditions and how 

this affects phenotype. Investigations into the CHO transcriptome have been underway since 

2006 [10] using in house CHO cDNA microarrays and cross-species microarrays. More 

recently, RNAseq as a technique has been applied to CHO transcriptomics, with the first 

reports in 2010 [11]. According to the CHO bibliome [12] up to 2015, 52 CHO gene expression 

and transcriptomic publications had been identified with datasets being generated for panels 

of CHO cell lines with different growth and production characteristics [13,14], under cold shock 

[15], butyrate treatment [16], adaptation to suspension [17] and other culture conditions 

[18,19]. Here we describe a meta-analysis of different CHO transcriptome datasets to identify 

common pathways and genes identified as underpinning CHO cell growth and product yield. 

These genes and pathways represent priority targets for cell engineering and manipulation to 

further enhance the CHO platform for manufacturing of biotherapeutic proteins.  



4 

 

2.0 Methods 

2.1 Identification of Publicly Available CHO Transcriptomic Datasets for Analysis  

The CHO bibliome [12] was used to identify CHO based transcriptomics publications up to 

2015. Additional datasets sourced from those published 2015 – 2017 were also included in 

the analysis. The list of final genes and their datasets of origin are provided in Table 1 and 

Supplementary Table 1. Transcriptomic studies that used a cross-species microarray 

approach were omitted since the accuracy of cross-species microarray data is still under 

debate. From these datasets, we extracted lists of differentially expressed genes and assigned 

them to one of two groups based on their association with either specific productivity (Qp) or 

growth (µ). This was undertaken in order to accurately discern the impact of genes to a specific 

phenotype as it has been shown that Qp can come at the cost of µ and vice versa [20]. An 

expression value (+1 or -1) was assigned to all genes and corresponds to the upregulation 

(+1) or downregulation (-1) of the gene. This did not consider the absolute fold change in the 

datasets, only the direction in which expression changes were observed. Comparing fold 

change values across datasets without having access to the raw data of the omics experiment 

would not be meaningful and, unfortunately, such data is not available from most of the 

datasets included in this study.  

After the assembly of an aggregate gene list, two parameters were calculated for unique gene 

entries in the Qp and growth categories: 

a) Frequency - the number of times a gene appears across selected datasets. 

b) Concordance - the arithmetic mean of expression values (from the assigned -1 or +1 

expression value assigned as described above). A concordance threshold of -0.2 and 0.2 was 

established to differentiate which genes show an agreement in expression data. This 

corresponds to a minimum of three fifths 0.6 of the gene entries in the group having an 

agreement of the expression value. 

These two parameters form the cornerstone of our analysis. 

2.2 Ensuring Consistent Gene Annotation for Analysis 

Most of the available publications have annotated the gene sets as mouse, rat or human gene 

ID’s or by using official gene symbols. To compare the different gene lists all datasets had to 

be re-annotated to a single format so that these could be compared and analysed. Re-

annotation was performed using the Mouse Genome Information database batch gene lookup 

tool (http://www.informatics.jax.org/batch) into an Entrez ID format. This format is preferable 

to an official gene names based annotation because gene name designations tend to change 

with time and may cause duplications of genes under synonym entries. ID’s identified as 

http://www.informatics.jax.org/batch
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pseudogenes and non-coding genes were discarded. Entrez ID’s given in publications were 

not changed. The annotated master gene list is provided in Supplementary Table 2.  

2.3 Pathway Enrichment Analysis 

For pathway enrichment, entrez ID’s of genes with a frequency of 1 in the growth and 

productivity groups (GG, PG) were rejected and these genes account for roughly half of the 

master gene list. Entrez ID’s of genes that had a frequency of 2 were submitted to DAVID 

Knowledgebase 6.8 (https://david.ncifcrf.gov/) for functional annotation analysis with the 

option to chart KEGG pathway enrichment as we wished to identify conserved differentially 

expressed genes across CHO cell lines and conditions. KEGG was used as the functional 

annotation database because the use of KEGG in pathway enrichment is widespread for 

interpreting the biological meaning of transcriptomic datasets and is well curated [16,21,22]. 

Default functional annotation parameters were used (Threshhold count 2 and EASE value of 

0.1). Pathway charts were generated in DAVID using the KEGG database. We then included 

an overlay of concordance values for each gene present in the meta-analysis and in the 

pathway enrichment to visualise the dynamics of pathway expression. Once the gene list was 

submitted to DAVID, the number of viable targets was reduced due to insufficient coverage in 

the database. At the time of undertaking this study, 7720 genes were present in the KEGG 

pathways for Mus musculus. 

3.0 Results 

3.1 The datasets used in this study 

We wanted to screen the publicly available CHO transcriptomic data to aggregate and analyse 

patterns of changes at the transcript level relating to high specific productivity (Qp) and growth 

rate (). The working datasets used in this study consisted of publicly available species-

specific transcriptomic data that was generated using CHO cell lines expressing recombinant 

proteins under various conditions. The reported transcriptomic experiments were set up using 

a number of different approaches. Some experiments compared a panel of cell lines with a 

range of parameter values, while in others cells were exposed to known productivity or 

phenotype changing treatments such as cold shock or sodium butyrate to enhance their 

recombinant protein yields or change cell growth. The selected publications for data mining 

are presented in Table 1. Out of the 19 datasets, only 4 used RNAseq while 2 compared the 

use of RNAseq to a microarray in the same experiment. Affymetrix based custom microarrays 

are the most often used across the datasets. In the Qp group, 2 studies used copper to reduce 

lactate levels while 4 studies used butyrate to enhance Qp. One dataset was generated under 

high osmotic stress and 4 induced cold shock in the culture. Six of the studies directly 
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investigated the differences in transcriptomic gene expression amounts between cell lines with 

different Qp. In total, we assigned 16 lists to the Qp category and 6 to growth. Growth datasets 

included in this study compared a panel of cell lines with different growth characteristics – no 

growth enhancing processes were used in any of the sources. Lists from 3 sources are present 

in both groups because they contained data that was partitioned for these phenotypes 

separately. Genes present in these lists were then assigned values for their frequency and 

concordance as outlined in section 2.1. The top most frequent genes across the datasets (≥5) 

are listed in Table 2 along with their individual concordance values. We note that definition of 

Qp as ‘high’ differs between studies and is a subjective judgement made by the investigators 

of each study. 

Taking into account the clonal variation of the cell lines used in the datasets is also important. 

These are included in the supplementary file S1. We can see that the dominant cell line was 

CHO-DXB11, which was used in 8 studies. These cells are DHFR deficient so that MTX can 

be used as a selection tool. DHFR deficient cells were used in 11 of our 19 studies. 

Unfortunately, 7 studies failed to self-report the type of CHO cell line they were using. 

3.2 Pathway enrichment analysis 

We set out to determine whether particular pathways were enriched within the lists that we 

extracted from the datasets. It has been suggested that single gene overexpression or knock-

down alone is unlikely to govern complex changes underpinning phenotypes such as growth 

or recombinant protein yield [23], except in cases where a cell line has a specific bottleneck 

or a product specific requirement. On-the-other-hand, groups of genes (or pathways) can be 

co-expressed together with moderate fold change values [24], where the cumulative 

contribution effect results in an improvement in the phenotype required (growth, productivity). 

Thus, in a cell line engineering strategy, changes at the transcriptomic level that reflect (a) 

high value single gene targets, (b) global transcriptomic analysis of groups of genes that are 

co-expressed, and (c) entire pathways that are enriched within the expression data, should be 

considered.  

To analyse the results from the selected transcriptomic studies, the differentially 

expressed gene lists from these sources were aggregated and analysed for frequency and 

concordance of expression direction. In total, 4783 unique differentially expressed genes were 

identified (4044 Qp and 1406 growth associated as visualised in Figure 1a.). Between these 

groups, an overlap of 667 genes was established. The frequency distributions for these groups 

are reported in Table 3. A detailed annotation master list reporting on the frequency, direction 

of expression and concordance of discovered genes across the datasets analysed here is 

provided in Supplementary file S2. The results from the pathway enrichment analysis using 

KEGG pathways data are presented in Table 4 and are more extensively described and 
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reported in the Supplementary Tables S3 & S4. We have integrated these enrichment results 

onto pathway maps, which enables a more integrative look at the interactions between the 

genes identified.  

From the pathway enrichment analysis, a number of what might be considered 

‘unusual’ pathways were identified including biosynthesis of antibiotics and Epstein-Barr (EB) 

virus infection. This can be explained by the fact that these pathways share a broad overlap 

with other major pathways. In the case of the EB virus infection pathway, half of the genes 

assigned are present in the cell cycle, while almost all hits in the biosynthesis of antibiotics 

pathway term are present in the general cell metabolism pathway. Therefore, we deemed 

these pathways as being non-specific and they were excluded from further considerations for 

identification of potential cell engineering targets. We have kept these non-specific pathways 

in the list to reflect a typical enrichment result and for reference, should anyone try to replicate 

or use our work in the future. 

For those genes associated with the growth group, we observed that only a small 

number of relevant pathways were found to be enriched; the cell cycle, phagosome and 

lysosome (Benjamini-Hochberg adj. p-value <0.05). The cell cycle (0.42) and lysosome (-0.73) 

pathways had high concordance within the data sets, while there was little concordance in the 

phagosome (-0.02) pathway for the genes being up- or down-regulated. In comparison, the 

only pathway that showed concordance in the Qp group was the lysosome (-0.36). The overlap 

between genes in these two pathways (cell cycle and lysosome) for both groups is shown in 

Figure 1B & 1C. In both cases, there were more genes in the Qp group for both pathways; 22 

and 25 respectively for lysosome and the cell cycle. This is most likely a result of the fact that 

the Qp group is larger, therefore has more coverage of the pathways. We have used the 

pathway enrichments to explain changes in cellular mechanisms that could lead to fast growth 

or high specific productivity phenotypes and also compared genes identified in the study with 

engineering strategies that others have applied to engineer increased yields in recombinant 

CHO cell lines. The pathways are presented in more detail in the following sections. 

3.3 Cell cycle pathway 

The pathways that show the most concordance are presented in more detail in Figure 2. There 

are several functional clusters of genes in the KEGG cell cycle pathway that are present in the 

enrichment data. One such group is clustered around P53 - one of the most studied genes in 

the scientific literature, due to its status as the “guardian of the genome” and P53’s role in 

controlling the DNA damage checkpoint [25]. MDM2 directly binds to P53 preventing it’s 

mechanism of action; MDM2 shows a strong downregulation concordance in the growth group 

(GG) and no concordance in the productivity group (PG), while P53 is upregulated. P53 is 

known to be mutated in CHO-K1 cells and facilitates DNA repair but not UV-induced G2/M 
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arrest or apoptosis [26]. It is unclear how expression of P53 helps promote cell growth. 

Interestingly, the transcripts that code for proteins that lead to growth arrest as a response of 

p53 upregulation (GADD45A and P21 (CDKN1A)) both show downregulation with good 

concordance. GADD45A and P21 can interact with PCNA to initiate DNA damage repair 

response and inhibit transition into S-phase [27,28]. P130(RBL2) is known to interact with 

proteins of the EF2 family as part of a UV-induced DNA damage repair pathway to cause cell 

cycle arrest [29] and was strongly downregulated in the PG. On-the-other-hand, CREBBP 

(EP300) is upregulated in the PG even though it is a tumour supressing gene because of it’s 

ability to activate P53 through acetylation [30]. Based on this it seems that the mechanisms 

associated with DNA repair growth arrest are inhibited in the GG while PCNA is upregulated 

due to its role in DNA synthesis as a processivity factor. The MCM genes are upregulated with 

strong concordance in the GG as well. MCMs together form a hexamer that acts as a helicase 

essential for the function of the replication fork in DNA synthesis [31]. MCM7 is also found 

upregulated in the PG. However, MCM5 and MCM3 are downregulated. It has been observed 

that overexpression of MCM3 leads to inhibition of the G1/S checkpoint, while knockdown 

does not affect the entry or progression of said checkpoint [32]. MCM5 knockdown leads to S-

phase arrest in CHO cells and overexpression was shown to prevent over-duplication of 

centrosomes [33]. Based on available data it is not clear how downregulation of these two 

genes would contribute to an increased Qp phenotype. DNA-PK(PRKDC) is known to be an 

upstream activator of p53 and the knockdown phenotype is known to be sensitive to UV 

irradiation is downregulated in the PG group as well [34]. MYC was found to be upregulated 

in the GG, which is not surprising as it is a characterised oncogene that promotes DNA 

synthesis and has been implicated in DHFR/MTX associated gene amplification [35]. 

Another cluster of genes appears to be involved in the entry/exit of the mitotic stage of 

the cell cycle. Cyclin B1 signals the irreversible start of cell division and CDC20 is responsible 

for activating the APC complex which degrades G2/M cyclins and signals start of anaphase, 

while MAD2 stalls the separation of the chromosomes until they are properly aligned [36]. All 

three of these genes showed upregulation with strong concordance in the GG as well as 

YWHAE/14-3-3 , which binds CDC25 proteins based on their phosphorylation state 

preventing a premature entry into mitosis before replication of the genome [37,38]. While the 

Cyclin B2 gene was found to be upregulated in the PG, CDK1 was downregulated. Typically, 

CDK1 downregulation is associated with a prolonged G2/M phase and it has been proposed 

that CDK1 can have an inhibitory effect on the secretory pathway which would decrease Qp 

[39,40]. PLK1 is upregulated in the PG which activates the CyclinB/CDK1 complex and the 

APC. This is supported by upregulation of CDC20 in both groups. BUB1B is downregulated in 

Qp and inhibits the APC and PLK1 [36,41]. However, CDC27 which is a core subunit of the 

APC and responsible for ubiquitin mediated degradation of B-Cyclins and degradation of 
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CDC20 [42], is downregulated in the PG. Our meta-analysis therefore suggests that the cell 

cycle in CHO cells can be rewired in three major ways related to increased growth; 

upregulation of proteins that facilitate the passing of the G1/S checkpoint, upregulation of DNA 

synthesis and those that assure proper separation of chromosomes in the anaphase.  

A number of cell cycle based engineering strategies have been attempted in CHO cells 

that provides further evidence that this pathway has potential for engineering to improve 

desirable phenotypes. MDM2 was overexpressed in batch cultures increasing viable cell 

concentration two times over control cells in spent media conditions [43]. GADD45A was used 

to arrest the cell cycle via inducible expression controlled by doxycylin in CHO-TREx, showing 

a 110% increase in yields of Fc fusion protein Valpha [44]. Overexpression of CDC20 in CHOd 

cells led to a 4-fold increase in the VCD of cells growing on plates by day 14 compared to cells 

transfected with antisense CDC20 cDNA. The antisense cells also grew larger and had more 

DNA per cell as shown by flow cytometry [45]. A small molecule inhibitor of CDK4/CDK6 was 

able to induce sustained G1/S checkpoint arrest for up to 4 days without causing cell death or 

decrease of product quality. As a result Qp was increased ~2 fold across a panel of cell lines 

[20]. One of the most obvious candidates to induce cell cycle arrest are the cyclin dependant 

kinase inhibitor proteins. Fusseneger et al. has successfully overexpressed P21 along with 

CCAAT/enhancer-binding protein α by tetracycline enhancing the yields of SEAP by 10-15 

times [46]. The overexpression of BCL-XL with P27 was found to significantly increase SEAP 

yields in the same study. A similar method was applied to overexpression of CDKN1B with 

comparable results to P21 overexpression induced cell cycle arrest [47]. E2F-1 was 

overexpressed in CHO-K1 cells leading to elevated cyclin A levels and bypassing the need for 

serum in the growth media [48]. Similar effects have been observed in CHO-K1 by 

overexpression of cyclin E [49]. Overexpression of CDC25A and CDC25B has successfully 

been used to increase recombinant protein yields as well, however cell lines displayed an 

increased incidence of chromosomal aberration [50]. Finally, MYC has been stably 

overexpressed in both suspension and adherent cells resulting in increased growth rate and 

VCD [51]. 

3.4 Lysosome pathway analysis 

The KEGG lysosomal pathway graphic provides an overview of the progression of endosome 

maturation and genes belonging to the pathway are roughly classified based on their functions. 

Cathepsins are some of the most vital proteins in the degradation and recycling machinery of 

the lysosome. Of these, CTSL (GG, PG) and CTSA (GG) were found to be downregulated. 

CTSL knockout mice have been shown to have hyperproliferation of hair follicle epithelial cells 

and basal epidermal keratinocytes [52]. Cathepsins have also been implicated in mAB 

degradation during production from CHO cells via proteomic analysis [53]. 

Glycosylceramidase gene GBA was found to be downregulated and quite a few sphingolipid 
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metabolism genes can be seen within the Qp group - ceramide synthase (CERS2) and 

sphingosine-1-phosphate (SP1) lyase-1 (SGPL1), alkaline ceramidase 3 (ACER3) were 

downregulated, while SGPHK1 was upregulated. This suggests an overall trend towards 

downregulation of ceramide levels and an increase in sphingosine-1-phosphate. Ceramide 

has been implicated in promotion of apoptosis, while S1P induces proliferation in HEK293 

cells [54]. Yusufi et al. reported an increase in the levels of ceramide and it’s derivatives in a 

high producing SH-87 cell line when compared to the host cell [55]. Another two genes 

involved in sphingolipid metabolism coding sphingolipid activator proteins (SAP’s) were 

downregulated in the PG; prosaposin (PSAP) and GM2 ganglioside activator (GM2A). These 

genes are responsible for degrading lysosomal membrane bound glucocerebrosides. 

Accumulations of these lipids can lead to Gauche disease and are linked to mutations in PSAP 

and GBA, while GM2A deficiency is implicated in GM2 gangliosidosis [56]. These genes are 

mainly studied in neuronal context and their role in CHO cell metabolism in not clear. 

The major lysosomal genes LAMP1 and LAMP2 were downregulated in both groups 

and represent some of the most frequent hits across the meta-study; 6 and 5 respectively. 

Lysosomal content has been shown to be negatively correlated with Qp in a tissue 

plasminogen producing CHO cell line along with LAMP2 mRNA levels. The study also reported 

that glutamine depletion on its own is enough to increase levels of autophagy [57]. The 

Niemann-Pick type C1 NPC1 gene was downregulated in the GG; CHO cells lacking NPC1 

have been observed to have impaired lipid recycling, accumulating in late endosomes. 

However, no data was given on any impact on cell growth [58]. LAPTM4A was found to be 

downregulated in both groups. Little is known about this protein, except that it is a 

transmembrane protein localized to the lysosome and possibly facilitates transport across the 

membrane. It has been shown to co-precipitate with NEDD4, which was upregulated in growth 

and downregulated in the PG with a cumulative frequency of 7 across both groups. NEDD4 

deficient mice seem to divert LAPTM4 from the lysosome towards the plasma membrane [59]. 

CLN5 is downregulated in the PG, but it’s exact function is not well understood. Depletion of 

CLN5 has been shown to degrade lysosomal sortilin receptors and cation-independent 

mannose 6-phosphate receptors (CI-MPR) [60]. CLN5 null human fibroblast cells were 

observed to have decreased levels of ceramide, sphingomyelin and glycosphingolipids along 

with increased growth and apoptosis. Based on these findings it was proposed that CLN5 has 

a function in the de novo synthesis of sphingolipids [60]. Clathrin light chain a (CLTA) was 

found to be upregulated in growth but downregulated in the productivity group. Clathrin is a 

key protein in vesicle formation and has an essential role in endocytotic trafficking and protein 

secretion [61]. It has been shown that MAD2B is co-localized with CLTA at the mitotic spindle 

for stabilization of kinetochores. MAD2A was also found to be upregulated in the growth group 

as part of the cell cycle pathway suggesting a possible explanation for inclusion of CLTA in 
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the GG, but not the PG [62]. The GGA family genes were implicated in both PG and GG; 

GGA2 was downregulated in both and GGA3 upregulated in the GG. GGA depletion has been 

shown to have a missorting effect on mannose-6-phosphate receptors, cathepsin D and APP 

secretory inhibition [63,64], which was one of the top hits in our master gene list. In HeLa cells 

it was found that overexpression of GGA’s increases fragmentation and vacuolization of the 

trans-Golgi network implying that these proteins have a role in maintaining Golgi integrity [65]. 

Genes coding for the δ and μ subunits of AP-3 were found to be downregulated in the PG. 

AP-3 has been shown to regulate LAMP1 and LAMP2 sorting into late endosomes/lysosomes 

and knockdown of AP-3 led to an increase in LAMP proteins in tubular endosomes and on the 

cell surface [66]. In HEK293 cells depletion of AP-3 was shown to have an impact on lysosomal 

distribution, causing them to accumulate at the end of microtubules in the peripheral cytoplasm 

[67]. 

Both the regulatory profiles of the PG and GG point towards a clear pattern of downregulation 

of lysosomal activity by disrupting trafficking and recycling of lysosomal proteins and structural 

lipids and impairing lysosomal processing. None of these proteins have been engineered in 

recombinant CHO cells, however strategies to induce autophagocytic and supress lysosomal 

pathways have been implemented before using inhibitors as described in Kim et al. with up to 

30% increase in recombinant mAB yields [68].  

 

4.0 Discussion 

4.1 Evaluation of publicly available datasets 

Of the data investigated, only two data sets/publications report on the application of RNAseq 

to investigate transcriptomic changes associated with Qp and growth rate. Studies comparing 

RNAseq and microarray approaches suggest that the two techniques can complement each 

other. Birzele et al. reported expression data for 10428 genes in a microarray group and 13375 

genes in an RNAseq group [11]. Between these approaches there was an overlap of 8404 

genes with 2024 and 4971 unique genes in the microarray and RNAseq groups respectively 

[11]. On-the-other-hand, Yuk et al. reported that there was almost no overlap between 

differentially expressed genes identified by microarray and RNAseq [69]. In this study, 

samples were taken at different times through culture at 4 and 48 h, and the subsequent 

microarray and RNAseq data sets had only 1 gene in common. This is surprising as it has 

been shown that RNA-seq and microarrays can have a high degree of concordance on the 

same biological system [70]. Whilst microarrays can give a good indication of relative 

expression levels of genes in a given experiment, these studies cast doubt on the ability of 

single transcriptomic analysis platforms to provide us with a representative snapshot of the 

transcriptome and hence a wider surveying and compiling of multiple studies may provide a 

better insight into those cellular processes important during CHO cell bioprocessing.  
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Combining omics approaches is a potentially powerful approach for constructing multi-

dimensional and comprehensive models of CHO cell biology [7]. However, to date undertaking 

such an approach has not been widely applied in comparative cell line analysis to investigate 

the underlying changes in cellular machinery. The work reported by Yusufi et al. [55] is one 

such noteworthy attempt to compare a parental CHO-K1 cell line with an antibody producing 

derivative. In this work, not only are changes in mRNA levels, but also copy number variant 

changes, reported and analysed. Using DAVID enrichment, they identified groups of genes 

enriched after differential expression analysis. Among these were genes involved in DNA 

damage repair, mRNA processing and transport, vesicle transport and mitochondrial 

metabolism. Some of the genes singled out in this report [55] were also identified in the meta-

analysis undertaken and reported here including Mmp14, Tm9sf2, Slc1a4, cers2, lpin1, rps2, 

Hnrnpa1, Nsmce2, Ercc1 and Eps8. We also note that when comparing transcriptomic 

datasets some overlap can be missed and our study does not account for this nuance. This 

emphasises the need for enrichment analysis as different sets of stochastic transcriptomic 

changes can identify similar changes at a pathway level. 

4.2 Limitations of the meta-analysis 

Using aggregation methods and pathway enrichments, we present a meta-analysis of CHO 

high Qp and growth transcriptomics. However, it should be noted that the ability of a meta-

analysis to identify common features and differentially expressed genes is highly dependent 

on the quality of the data available. In the case of the data that have been investigated here, 

there are several limitations for a meta-analysis. The most obvious limitation was the lack of 

accessibility to the transcriptomic platform expression data e.g. probe intensities for 

microarrays and raw RNAseq data [71]. Out of the 4 available published RNAseq datasets, 

only 1 has made the raw RNAseq data available, and only 2 of the microarray based 

transcriptomic studies have deposited their raw microarray data in public databases. This is 

out of step with generally accepted good practice for accessibility of ‘omic’ type data whereby 

the scientific community can only use and review/judge such reports if the raw data (as 

opposed to analysed data) is made available. This situation is exacerbated in the CHO cell 

field as the majority of the microarrays used in the experiments published are listed as 

proprietary and their probe sets are not disclosed. Further, the unavailability of the raw 

transcriptomic data prevents reanalysis of the data by others in the field, integration with other 

datasets or the reader reproducing any of the analysis or statistical outputs reported. 

Differential gene expression fold changes and listed p-values cannot be meaningfully 

compared between different studies due to experimental and biological variation. In our master 

gene list, around half of the genes appear only once across the 19 transcriptomic datasets as 

differentially expressed, which is indicative of a highly heterogeneous dataset to begin with.  
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To complicate meta-analyses further, there is a high degree of variance between the 

experimental methods of transcriptomic analyses performed. Further, the datasets reported in 

the literature around CHO cell biology are analysed using dramatically different workflows 

ranging from partial least squares regression [14], to co-expression clustering [24] and gene 

set enrichment analysis [13]. Naturally, these methods tend to produce gene lists that are 

derived from different methods of analysis and format, making it difficult to aggregate and 

interpret results across datasets. In human and mouse, a wealth of easily accessible and 

comparable transcriptomic data is available in data repositories like the Gene Expression 

Omnibus (GEO, see https://www.ncbi.nlm.nih.gov/geo/), which requires depositing MIAME 

(Minimum Information About a Microarray Experiment) compliant information transcriptomic 

datasets from investigators (including raw data file for each hybridization, processed data, 

annotation information, experimental design, gene identifiers and other annotations, data 

processing protocols) and facilitates target identification under specific conditions for further 

research.  

In the CHO cell field, while there are now a number of transcriptomic data sets 

generated and publicly available, very few studies actually follow up on their results and 

validate transcriptomic findings. In one of the few instances where such work has been 

undertaken, out of 21 potential targets from a transcriptomic and proteomic analysis of a CHO 

K1 cell line, 5 targets were selected for further validation [72]. Only one of these 5, VCP, had 

a substantial effect on CHO cell growth. This is not unexpected as it is well known that 

transcriptomic data does not always correlate to abundance of protein [73] making validation 

a cumbersome ordeal. However, in order to build more comprehensive multi-omic models the 

CHO cell community should strive towards not only the generation of high quality omics data, 

but more high-throughput rigorous validation, so that a comprehensive understanding of the 

cell and potential engineering strategies can be developed. This study here will help provide 

a framework for researchers looking to interpret the currently available transcriptomic datasets 

as a ‘whole’ and want to apply the findings for improving the CHO cell platform. The pathways 

and genes identified as high frequency differentially expressed genes await validation by 

others as potential targets for achieving enhanced cell growth and/or productivity of 

recombinant biotherapeutics from cultured CHO cell expression systems.  

5.0 Conclusions 

In this study, currently available CHO transcriptomic datasets were analysed to identify 

enriched pathways and genes differentially regulated with respect to cell growth or 

productivity. While individual studies have suggested these pathways as relevant for CHO cell 

recombinant protein expression, we have established and examined the landscape of 

transcriptomic variability between CHO specific studies. The datasets isolated from these 

studies were aggregated and processed to yield a reduced and manageable number of target 

https://www.ncbi.nlm.nih.gov/geo/
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genes and relevant pathways. This work should prove most useful for those wishing to 

undertake validation studies or trying to mine transcriptomic data from existing CHO cell 

literature as most of the data is not in the same format and not conviently indexable. As a 

result of undertaking this analysis, we have also discovered and highlighted deficiencies in 

currently published transcriptomic studies and suggest improvement to these practices. 

Disclosing the raw data from transcriptomic experiments and using open, non-proprietary 

platforms are key to experiment reproducibility and producing data that is of use to the whole 

community. While platforms for depositing and analysing data exist such as NCBI’s Biosample 

and Gene Expression Omnibus, they are not widely adopted in bioprocess transcriptomics 

providing unnecessary barriers for transparency of research and utilisation of the data. There 

is also a significant need for an indexed CHO bioprocess omics resource for target selection 

and gene cross-referencing. Projects including the CHO genome project 

(http://www.chogenome.org/) and the CHO co-expression database have already taken the 

first steps toward this goal, however they will rely on the community to provide the required 

data in appropriate depth and format to capture the scope of the CHO omics landscape. While 

new CHO transcriptomic data is regularly being generated using increasingly more 

sophisticated tools and analysis, the curation of data must not be neglected and researchers 

should look to validate results. 

Without presuming lysosomal or cell cycle involvement a priori, through the use of an 

aggregation and frequency based meta-analysis of publicly available transcriptomic data we 

were able to deduce the involvement of these pathways based on the concordance of 

transcriptomic data. Some of the identified targets have already been investigated in 

engineering recombinant CHO cells and validate our meta-study as having predictive value. 

We have yet to see many CHO cell engineering projects in the literature that have been 

informed by transcriptomic studies and this work should prove useful in that regard. 
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Table 1.  List of publications selected for transcriptomic meta-analysis in this study. 

DATABASE ENTRY TITLE TYPE AUTHOR/ 
DATE 

  Predicting cell-specific 
productivity from CHO 
gene expression  

Microarray - 
Wye2aHamster  

Clarke et al14, 2011 

E-GEOD-30321  Gene expression profiling 
of Chinese Hamster 
Ovary production cell 
lines 

Microarray - 
Wye2aHamster  

Clarke et al24, 2011 

E-GEOD-37251  Transcriptomic analysis of 
clonal growth rate 
variation during CHO cell 
line development  

Microarray - 
Wye3aHamster  

Doolan et al13, 2013 

  Microarray and 
proteomics expression 
profiling identifies several 
candidates, including the 
valosin-containing protein 
(VCP), involved in 
regulating high cellular 
growth rate in production 
CHO cell lines  

Microarray - 
Wye2aHamster; 
proteomics 

Doolan et al72, 2010 

  Transcriptome and 
proteome analysis of 
Chinese hamster ovary 
cells under low 
temperature and butyrate 
treatment  
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Kantardjieff et al16, 2010 

  Translatome analysis of 
CHO cells to identify key 
growth genes  
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Courtes et al73, 2013 

  Transcriptome and 
proteome profiling to 
understanding the biology 
of high productivity CHO 
cells 

Microarray - 15 K CHO 
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Nissom et al74,  
2006 

Bioproject 79563  Into the unknown: 
expression profiling 
without genome 
sequence information in 
CHO by next generation 
sequencing.  

Microarray - CHO 
affymetrix; RNAseq 

Birzele et al11, 2010 

  CHO Gene Expression 
Profiling in 
Biopharmaceutical 
Process Analysis and 
Design  

Microarray - CHO 
Affymetrix 

Schaub et al75, 2010 

  Genomic and proteomic 
exploration of CHO and 
hybridoma cells under 
sodium butyrate 
treatment.  

Microarray - CHO cDNA 
library, proteomics 
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  Comparative 
transcriptome analysis to 
unveil genes affecting 
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productivity in mammalian 
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Table 2. Frequency analysis results from datasets relating to high growth rate () and specific 

productivity (Qp) phenotypes as described in the text. 

  Frequency Concordance 

Gene Name Sum Growth Qp All Growth Qp 

Cd36 CD36 molecule 9 2 7 -0.50 -1.00 
-
0.33 

Ctsl cathepsin L 8 4 4 -0.43 -0.50 
-
0.33 

App 
amyloid beta (A4) precursor 
protein 

7 5 2 -0.67 -0.60 
-
1.00 

Eif6 
eukaryotic translation initiation 
factor 6 

7 2 5 0.33 0.00 0.50 

Nedd4 
neural precursor cell expressed, 
developmentally down-regulated 
4 

7 2 5 0.00 1.00 
-
0.50 

Hnrnpk 
heterogeneous nuclear 
ribonucleoprotein K 

6 4 2 0.60 1.00 
-
1.00 

Lamp1 
lysosomal-associated membrane 
protein 1 

6 4 2 -0.60 -0.50 
-
1.00 

Hdgf hepatoma-derived growth factor 6 3 3 0.33 0.33 0.33 

Mcm5 
minichromosome maintenance 
complex component 5 

6 3 3 0.33 1.00 
-
0.33 

Rab10 
RAB10, member RAS oncogene 
family 

6 3 3 -0.67 -0.33 
-
1.00 

Slc25a20 

solute carrier family 25 
(mitochondrial 
carnitine/acylcarnitine 
translocase), member 20 

6 3 3 -1.00 -1.00 
-
1.00 

Eif5a 
eukaryotic translation initiation 
factor 5A 

6 3 3 0.20 0.33 0.00 

Ldha lactate dehydrogenase A 6 2 4 -0.33 0.00 
-
0.50 

Atp6ap2 
ATPase, H+ transporting, 
lysosomal accessory protein 2 

6 2 4 -1.00 -1.00 
-
1.00 

Acaa2 
acetyl-Coenzyme A 
acyltransferase 2 (mitochondrial 
3-oxoacyl-Coenzyme A thiolase) 

6 0 6 0.33 N/A 0.33 

Glul 
glutamate-ammonia ligase 
(glutamine synthetase) 

5 4 1 -0.60 -1.00 1.00 

Cbx5 chromobox 5 5 3 2 1.00 1.00 1.00 

Cct3 
chaperonin containing Tcp1, 
subunit 3 (gamma) 

5 3 2 0.20 1.00 
-
1.00 

Hspa8 heat shock protein 8 5 3 2 0.00 0.33 
-
1.00 

Kpnb1 karyopherin (importin) beta 1 5 3 2 0.60 1.00 0.00 

Lamp2 
lysosomal-associated membrane 
protein 2 

5 3 2 -1.00 -1.00 
-
1.00 

Mcm7 
minichromosome maintenance 
complex component 7 

5 3 2 0.60 0.33 1.00 

Rsu1 Ras suppressor protein 1 5 3 2 -0.20 -0.33 0.00 

Tuba1b tubulin, alpha 1B 5 3 2 0.50 0.33 1.00 

Retsat 
retinol saturase (all trans retinol 
13,14 reductase) 

5 3 2 -1.00 -1.00 
-
1.00 

Mrpl14 
mitochondrial ribosomal protein 
L14 

5 3 2 -0.20 -0.33 0.00 
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Atic 

5-aminoimidazole-4-carboxamide 
ribonucleotide 
formyltransferase/IMP 
cyclohydrolase 

5 3 2 0.60 1.00 0.00 

Mthfd1 
methylenetetrahydrofolate 
dehydrogenase (NADP+ 
dependent), 

5 3 2 0.50 1.00 
-
1.00 

Bsg basigin 5 2 3 -0.20 0.00 
-
0.33 

Ccnb2 cyclin B2 5 2 3 0.50 0.00 1.00 

Itgb1 
integrin beta 1 (fibronectin 
receptor beta) 

5 2 3 -0.50 0.00 
-
1.00 

Npc1 
NPC intracellular cholesterol 
transporter 1 

5 2 3 -0.50 -1.00 0.00 

Ccl2 chemokine (C-C motif) ligand 2 5 2 3 -0.20 -1.00 0.33 

Cdc20 cell division cycle 20 5 2 3 1.00 1.00 1.00 

Hadhb 
hydroxyacyl-Coenzyme A 
dehydrogenase beta subunit 

5 2 3 -0.60 -1.00 
-
0.33 

Anxa2 annexin A2 5 1 4 -0.50 1.00 
-
1.00 

Serpinh1 
serine (or cysteine) peptidase 
inhibitor, clade H, member 1 

5 1 4 0.60 1.00 0.50 

Grb2 
growth factor receptor bound 
protein 2 

5 1 4 -0.20 1.00 
-
0.50 

Kpna4 karyopherin (importin) alpha 4 5 1 4 -0.20 -1.00 0.00 

Vim vimentin 5 0 5 0.00 N/A 0.00 
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Table 3. Frequency distribution of unique genes found in the literature relating to 

transcriptomic changes associated with productivity and growth rate. 

Frequency Sum Growth Qp 

1 3461 1166 3269 

2 918 186 636 

3 283 49 118 

4 81 4 16 

5 25 1 3 

6 10 0 1 

7 3 0 1 

8 1 0 0 

9 1 0 0 
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Table 4. Pathway enrichment results from datasets relating to high growth rate () and specific 

productivity (Qp) phenotypes as described in the text. Pathways marked with * are non-specfic 

and are only included as a representation of a general enrichment result. High concordance 

values are marked in bold. 

Pathway Count P-Value FE BH p-value FDR Concordance 

Growth 

Cell cycle 15 1.60E-07 6.00 3.00E-05 1.90E-04 0.42 

Phagosome 15 9.40E-06 4.30 9.10E-04 1.20E-02 -0.02 

*Epstein-Barr virus infection 14 3.70E-04 3.20 2.40E-02 4.60E-01 0.55 

Lysosome 10 7.40E-04 4.10 3.50E-02 9.20E-01 -0.73 

*Biosynthesis of antibiotics 13 1.20E-03 3.00 4.60E-02 1.50E+00 0.46 

Specific productivity (Qp) 

Cell cycle 25 5.00E-09 4.1 1.30E-06 6.50E-06 0.15 

*Biosynthesis of antibiotics 32 4.20E-08 3 5.30E-06 5.50E-05 -0.13 

Lysosome 22 3.80E-07 3.7 3.20E-05 4.90E-04 -0.36 

FoxO signaling pathway 20 2.50E-05 3 1.60E-03 3.30E-02 0.18 

Steroid biosynthesis 7 2.10E-04 7.5 8.80E-03 2.70E-01 0.14 

MicroRNAs in cancer 29 1.90E-04 2.1 9.40E-03 2.40E-01 0.11 

Metabolic pathways 89 3.40E-04 1.4 1.20E-02 4.40E-01 -0.12 

Fatty acid degradation 10 5.30E-04 4.1 1.70E-02 6.90E-01 -0.07 

Fatty acid metabolism 10 7.20E-04 4 2.00E-02 9.30E-01 -0.07 

PH – total genes in KEGG pathway. FDR – false discovery rate. FE – Fold enrichment, BH – 
Benjamini-Hochberg 
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Figure Legends 

 

Figure 1. A Venn diagram showing the number of unique genes in both Qp and growth () 

categories (A) and the lysosome (B) and cell cycle (C) pathway enrichments.  

 

Figure 2. Pathway enrichment maps for the cell cycle (A) and lysosome pathways (B). Hits 

for the growth group are shown in squares ( ) and the productivity group is represented as 

circles ( ). Overlap between shapes ( ) indicates a hit in the same gene, while adjacent but 

non-overlapping shapes ( ) convey hits in the same gene family. Concordance values for 

each hit are shown as a colour value as visualised in the concordance bar in the figures. 
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Supplementary Excel data spreadsheets 

S1 - Literature annotation table 

S2 - Master gene list containing the frequency of discovered genes across the selected 

publications. 

S3, S4 – Growth (S3) and Qp (S4) pathway enrichment tables. 
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