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Abstract. Verifying the published results of algorithms is part of the usual
research process. This helps to both validate the existing literature, but also
quite often allows for new insights and augmentations of current systems in a
methodological manner. This is very pertinent in emerging new areas such as
Artificial Immune Systems, where it is essential that any algorithm is well
understood and investigated. The work presented in this paper results from an
investigation into the opt-aiNET algorithm, a well-known immune inspired
algorithm for function optimisation. Using the original source code developed
for opt-aiNET, this paper identifies two minor errors within the code, propose a
slight augmentation of the algorithm to automate the process of peak
identification: all of which affect the performance of the algorithm. Results are
presented for testing of the existing algorithm and in addition, for a slightly
modified version, which takes into account some of the issues discovered
during the investigations.

1 Introduction

This paper investigates the now popular aiNET algorithm, first proposed in [1]. The
initial system was initially designed for data clustering, but later adapted for
optimisation [2,6]. This investigation forms part of a larger on-going project into the
usefulness and viability of the AIS approach: the investigations call for a detailed re-
implementation and testing of existing algorithms. To this end, a detailed testing of an
algorithm called opt-aiNET was undertaken. This investigation employed both the
existing code written by the authors of [2] (obtained with their permission) and a
reimplementation of the system in Java by the authors of this paper.  Through the
process of revisiting the algorithm, testing the original system and undertaking
reimplementation, existing results can be verified and augmentations and
improvements can be proposed. It was found that results from [2] were not exactly
reproducible, whilst this is to be expected to some degree (as this is a stochastic
algorithm) we observed that when averaged over a reasonable number of independent
runs (in this case 50), the results were slightly different than first reported in [2]. This
is not to say that results in [2] were inaccurate, merely incomplete, as results for
multiple independent results were not reported. A reimplementation of opt-aiNET was
then undertaken, to further investigate the performance of the algorithm and try to



identify reasons for these differences. Reimplementation is a useful tool and this is
especially true in new paradigms such as AIS [3]. Indeed, work as already shown
problems with algorithms such as AINE [4] another immune network approach. Work
by [5] demonstrated premature convergence of the algorithm, which was not observed
in the original work. This in itself, acted to some degree to motivate this work and
validate a similar style immune network algorithm. It is felt that only through rigorous
investigations can the field of AIS hope to grow and be taken as a serious competitor
and viable alternative to other techniques.

This paper presents the original opt-aiNET, and identifies a number of minor issues
relating to the actual implementation of that algorithm. The paper then proposes slight
modifications to the algorithm and results testing both the original and re-
implemented versions of opt-aiNET. This paper assumes knowledge of the AIS area
in general, if the reader is not familiar with the area, they are directed to [3] for further
information.

2 Artificial Immune Systems in Optimisation

There is a natural parallel between the immune system and optimisation. Whilst the
immune system is not specifically an optimiser, the process of the production of
antibodies in response to an antigen is evolutionary in nature: hence the comparison
with optimisaiton, the location of better solutions. The process of clonal selection (a
theory widely held by many immunologists) describes how the production of
antibodies occurs in response to an antigen, and also explains how a memory of past
infections is maintained. This process of clonal selection has proved to be a source of
inspiration for many people in AIS and there have been a number of algorithms
developed for optimisation inspired by this process [3,6,12,13].

One algorithm that has received much attention is aiNET [1,6]. AiNET has the
capability to not only perform unimodal search, but also multimodal, without the need
for any enhancements, unlike hybrid genetic algorithms [2]. The rest of this paper
focuses on the algorithm proposed in [1], then extended in [2]. The reason for this is
two fold: (1) It is becoming more widely used, so it is important to ascertain that the
algorithm behaves the way it is reported and (2) it allows for greater confidence in the
area of AIS if results are verified.

2.1 AiNET

The aiNET algorithm is a discrete immune network algorithm that was developed for
data compression and clustering [1], and was also extended slightly and applied to
optimization to create the algorithm opt-aiNET [2]. This has subsequently been
developed further and applied to areas such as bioinformatics [7] and even modeling
of simple immune responses [8].

Opt-aiNET, proposed in [2], evolves a population, which consists of a network of
antibodies (considered as candidate solutions to the function being optimised). These



undergo a process of evaluation against the objective function, clonal expansion,
mutation, selection and interaction between themselves. Opt-AiNET creates a
memory set of antibodies that represent (over time) the best candidate solutions to the
objective function. Opt-aiNET is capable of either unimodal or multimodal
optimisation and can be characterised by five main features:

•  The population size is dynamically adjustable;
•  It demonstrates exploitation and exploration of the search space;
•  It determines the locations of multiple optima;
•  It has the capability of maintaining many optima solutions;
•  It has defined stopping criteria.

2.1.1 The Algorithm
Assuming the following terminology:

Network Cell Individual of the population. Opt-aiNET does not employ any
mechanism of encoding – real values are used in a Euclidean
shape space.

Fitness Measure of how good a particular cell is performing in relation
to the objective function

Affinity The Euclidean distance between two network cells
Clone Offspring cells that are identical copies of their parent cell.
Mutated Clone A clone that has undergone somatic hypermutation

1. Randomly initialise population

2. While (stopping criteria is not met) do

I. Determine fitness of each network cell against
objective function

II. Generate Nc clones for each network cell

III. Each clone undergoes somatic hypermutation
in proportion to the fitness of the parent
cell (see Eq. 1)

IV. Determine the fitness of all network cells
(including new clones and mutated clones)



V. For each clone select the most fit and remove
the others

VI. Determine average error (distance from
solution), if different from previous
iteration, repeat from step 2

3. Determine highest affinity network cells and perform
network suppression.

4. Introduce a percentage d of randomly generated
network cells.

In step 1, the initial population consists of N network cells (randomly created). Each
cell is a real value vector, which represents a candidate solution. During steps I-V
each network cell undergoes a process of clonal expansion (N x Nc) and affinity
maturation. Clones of each cell are mutated according to the affinity of the parent cell.
The fitness represents the value of the function for the specific candidate solution.
The affinity proportion mutation is performed according to the following equation:

C’ = c + αN (0.1)

α= (1/β) exp (-f*)

(1)

where α is the amount of mutation, c is the parent cell, c’ is the mutated clone of c, N
(0,1) is a Gaussian random variable of zero mean and standard deviation of 1, β is a
parameter that controls the decay of the inverse exponential function and f* is the
fitness of c normalised in the interval [0..1]. As c’ represents a candidate solution, it
must be within the range of the functions specified domain. If c’ exceeds that, then it
is rejected and removed from the population.

The fitness of each clone (and parent cell) is evaluated, then the fittest
individual being selected to become a memory cell and the algorithm adopts an elitist
approach to achieve this by always selecting the most fit. This is an iterative process
that continues unto the average error value (distance from objective function)
stabilises (this must be less than 0.0001). Once stablilisation occurs, the algorithm
then proceeds to steps 3 and 4. Network suppression removes any similar or non-
stimulated antibodies and antibodies that fall below the pre-determined suppression
threshold σ. By removing similar cells, opt-aiNET prevents antibodies clustering on a
single peak. This reduces the amount of cells maintained in the memory set,

It should be noted at this point, that the network interactions within opt-
aiNET are only suppressive in nature and they do not contribute to the stimulation of
the cells in any way. This algorithm is not faithful to the traditional immune network
theory by Jerne [9], which proposes interactions of suppression and stimulation
between B-cells.



2.2 Observations on opt-AiNET

A detailed investigation of the code for opt-aiNET both employing the existing code
(implemented by the authors of [2]) and a reimplementation of the algorithm by
authors of this paper. These investigations uncovered a number of minor issues within
the code implanted in  [2]. The implication of this was that if one were to implement a
version directly from the paper, then the results reported there would not be obtained.
Uncovering this minor points, whilst not dramatically altering the algorithms
performance, does have some impact, however. This paper proposes the small fixes
required to be implemented, which we feel more accurately represents the algorithm
as it was intended. This work also extends the current system by employing an
automated mechanism for the location of peaks in search space, a mechanism which
was lacking from the original. Discrepancies between the original results and results
obtained using the same code were also identified. It is suggested that the original
results reported were not in any way meant to be misleading, but the discrepancy is
more likely to be caused by a lack of independent runs being reported in [2]. A
technique which has been employed in this paper.

The observations we would like to make are:

1. Population fitness is calculated assuming that the overall fitness has increased and
both values are positive.

Every 5 iterations, the degree of similarity between the present average fitness (Avfit)
and the previous average fitness, is evaluated (this number is left out from any
literature and is hard coded into the algorithm. Experimental evidence also suggested
tat this could play an important role in the convergence of the algorithm). If the
similarity is less than 0.0001 then the algorithm the algorithm can proceed to the
suppression function.
The average fitness delta is calculated using the following equation:

If I - avefitold/avefit < 0.0001; (2)

Calculating the value in this manner assumes that Avfit > avefitold are positive and
that Avfit is greater than avefitold. This creates a problem if both values are negative,
as the absolute value of avefitold is greater than the absolute value of Avfit (as in the
existing code, it is the absolute value that is taken). This would result in the criteria
for similarity being met even if there is a large difference between the two values. In
order to fix this problem, these assumptions have been lifted.

2. The selection function within opt-aiNET was not elitist.

In the original system, the suppress function, calls the DIST function in MATLAB.
This calculates the Euclidean distance between two vectors. If the distance is less than
the suppression threshold, then the first vector is suppressed. No attempt is made to
evaluate which of the two possess the greater fitness. This of course can result in the



deletion of a potential optimum solution. The greater the threshold, the greater the
chance of this occurring.

In order to overcome this, a simple ordering was placed on the network cells (they
were sorted by fitness), to ensure that the least fit was always removed, as opposed to
another candidate solution that had a higher fitness.

3. The calculation of peaks was done manually

This is very important for the reliability of the results. Upon inspection of the code
taken from [2], it was clear that there was no reliable mechanism for the analysis of
peaks within the system. Therefore, a more reliable automated approach was created
that counted the number of optima found within the population, so as to accurately
record the number. This is done simply by comparing the fitness of the candidate
solution with the fitness value of its neighbors (determined by stimulation threshold).
The candidate solution with the highest fitness is determined to be the highest point in
that neighborhood.

3 Results

3.1 Experimental Protocol

In order to assess the opt-aiNET, we were obliged to follow as far as possible the
same experimental protocol as the authors of [2]. Therefore, we used the same three
functions presented by those authors, namely:

Multi Function: Range [-2,2]

G(x,y) =x.sin(4Πx) – y.sin(4Πy  + Π) + 1 (3)

This function has a single global optimum solution, with many local optima
distributed non-uniformly

Roots Function: Range [-2,2]

g(z) = 1/1 + |z6 –1| (4)

Where z is a complex number z = x + iy
This function has six maxima, which are located on slender peaks that rise to a

height of 1 (g(z) ==1) from a plateau of 0.5 centered on (0,0). These maxima are at
the six roots of the unity of the complex plane.

Schaffer’s Function: Range [-10,10]



( )
( ))(001.01

5.0sin
5.0)(

22

222

yx

yx
zg

++

−+
+=

(5)

This function has as single global optima and an infinite number of local optima,
which form concentric rings expanding out from the optima. The global optimum is
hard to locate due to the similarity with the best local optima.

The parameters employed by the original authors were:

Parameter Value
Suppression threshold 0.2
Initial population size 20
Number of clones generated 10
Percentage of random new cells each
iteration

40%

Scale of affinity proportion selection 100
Maximum iteration number 500

The results in the following section record the number of peaks located (Peaks),
ItG is the number of iterations required to reach the global optima and ItC is the
number of iterations required for convergence. Each experiment was performed 50
times, and the standard deviation is presented. Results are presented for the published
version of the results (taken from [2]) identified as published, testing of the original
code, identified as recorded and taken from the reimplementation, identified as new.

3.2 Multi Function

Opt-aiNET
(Published)

Opt-aiNET
(Recorded)

Peaks ItG ItC Peaks ItG ItC
56.10±4.36 53.50±47.19 278.50±70.09 57.2±13.83 58.8±45.18 410±145.36

Opt-aiNET
(New)

Peaks ItG ItC
56.5±17 212.8±140 384.6±143

Table 1. Resutls for opt-aiNet

Analysis the results in detail revealed some interesting results. First, there is an
issue of extreme convergence, which affects the average value of convergence (ItG)



and also the number of peaks found. The empirical evidence would suggest that on
this function, opt-aiNET failed to converge at least 50% of the time, but premature
convergence was less frequent. When there is a failure to converge, it was observed
that the suppress function was never activated which lead to a large number of
candidate solutions to be located on a single peak. The authors of [2] comment that
opt-aiNET avoids a “waste of resources” by positioning only a single individual on a
peak. This assumes that it converges before reaching the maximum number of
iterations allowed and as peaks were counted manually, that process was very prone
to error.

Secondly, the global optima solution was found to be very unstable. Although in
each instance the algorithm did reach a point that was considered the global
maximum, as many as 90% of the time, this optimum solution was lost (due to the
problems highlighted earlier).

Overall, the obtained and previously published results are very similar, with the
exception of the number of iterations. As the work in [2] does not report how many
independent runs were undertaken, one can only assume this figure is somehow
affected in the work presented here, due to the number of experiments undertaken.

However, when one observes the results using the version with the enhancements
(which were highlighted above), then the results appear different. The ability to find
peaks has not been affected greatly, but the time taken to find the first optima
solution, has. In addition, the overall convergence rate increases. This is most likely
explained by the elitist mechanism now implemented in the new version of the
algorithm. This may well lead to an overall quicker convergence rate being achieved.
It is also worth pointing out that the standard deviations are rather large, even for a
stochastic search algorithm, this might indicate a lack of reliability and robustness in
the system.

3.3 Roots Function

Opt-aiNET
(Published)

Opt-aiNET
(Recorded)

Peaks ItG ItC Peaks ItG ItC
6.0 86.89±34.31 295±129.74 5.9±0.32 93.2±31.99 308.8±112.62

Opt-aiNET
(New)

Peaks ItG ItC
5.2±0.79 149.2±87.1 344±99

Table 2. Results comparing the Roots Function

Overall, with this function, the results that were obtained were consistent with those
published, but did vary with the reimplementation of the algorithm. The time it takes
to first locate the optima solution is significantly longer than the original versions and



indeed, average convergence is also longer. In some ways this is surprising, as the
new version operates with an elitist approach. Clearly the average fitness within the
network is staying lower for longer, hence the increase in time to convergence. Also,
the ability to identify peaks has been diminished slightly Whilst not overly significant,
we fell that it is worthy of note at least as the standard deviation is quite high and
often the maximum number of peaks was not obtainable.

3.4 Schaffer’s Function

For this function, things were a little more complicated. According to the published
results [2], the algorithm should not converge within the 500 iterations. However, this
was found not to be the case, where on average, the number of iterations for
convergence was 219.2±199.97 It is proposed that the cause for this is the unstable
average fitness level within the population. The instability is such that convergence
occurs frequently.

After further investigations, it was discovered that the reason that convergence is
occurring so frequently is that with a suppression threshold of 0.2 (as taken from the
already published work) it is highly probable that no network cells will undergo the
suppression. Upon examination of the actual original code, if this does occur, than the
algorithm will terminate. A simple remedy to this problem is increasing the
suppression threshold, but this will reduce the number of peaks that are located by the
search. An alternative to that would be to increase the size of the initial population.
This would hope to reduce the chances of no suppression taking place (as there will
be more members and a higher probability that some will be close enough to be below
the suppression threshold).  However, if this approach is adopted that there will be an
adverse affect on the running time, as a larger population increases the execution
time.

4 Conclusions

This paper has revisited an immune inspired algorithm called opt-aiNET. A number
of minor modifications to the original system have been proposed, which, it is felt
more accurately reflect the intended and previously described system.

An identical test protocol based on the original work was established, with
systematic tests using the existing code and newly developed code, being undertaken.
It was observed that the results obtained from testing the system were not quite the
same as reported in [2], but this may well be due to more tests being produced. Minor
problems with existing code were identified, and these corrected in a new
implementation. Whilst not affecting the performance significantly, the algorithm
does behave differently, and is subject (independent to the alterations) to a very high
standard deviation when experiments are performed multiple times. We are confident
that the system that has been developed as part of this investigation is faithful to the
original intended system and the code is available from the authors upon request.
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