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Abstract 

Biodiversity is an important provider of ecosystem services. There is a sense of 

urgency running through the scientific community regarding its protection and 

conservation. This urgency is fuelled by a wealth of research into the effects of habitat 

destruction, intensive agriculture, destructive industries (such as mining and oil exploration) 

and the insidious threat of climate change. It might reasonably be suggested that the 

biodiversity crisis we are facing today is in large part due to a lack of regulation around 

human-activities with regard to biodiversity impacts. In order to impose regulations, 

protecting biodiversity has been incentivised through various governmental and non-profit 

private-sector certification initiatives that aim to minimise the negative impacts that 

industry can have on the environment. Agri-environment schemes are largely governmental 

initiatives that aim to enhance the biodiversity and societal values of farmland. Timber 

certification initiatives, such as the Forest Stewardship Council, promote woodland 

management that takes into account the economic, environmental and social aspects of 

forestry with equal measure. Protection and enhancement of biodiversity is integral to 

achieving the environmental aims of certification. However, several studies have highlighted 

that many schemes (notably agri-environment schemes and some timber certification 

schemes) ultimately fall short of their projected targets, which is often due to a lack of 

suitable monitoring with regard to biodiversity. This is unsurprising since biodiversity 

monitoring is not a straightforward process. Many considerations need to be made when 

choosing suitable indicators of ecosystem health such as whether to measure species-

diversity or functional diversity. But perhaps one of the biggest issues is the ability of 

landowners and managers to contribute to efficient, objective, standardised data collection. 

Acoustic monitoring offers a means of producing unbiased data that can be analysed 

objectively and stored indefinitely. With significant advances in hardware and software 

technologies, the proliferation of acoustic monitoring is evident in the scientific literature. 

The field of soundscape ecology was in many respects borne out of these technological 

advances. It has since been usurped by the newer field of ecoacoustics (I use these two 

terms interchangeably throughout this thesis). Ecoacoustics offers a range of soundscape 

analytical techniques that aim to understand the spectral and temporal composition of the 

soundscape. As such a number of acoustic indices can be used to measure different facets of 



 
 

 
 

acoustic diversity. This study offers an overview of the current literature in bioacoustics and 

ecoacoustics. It applies several of these indices to studying the soundscape of Forest 

Stewardship Council certified plantation forests in the UK. Specifically it investigates the 

soundscape in relation to habitat and landscape metrics and explores temporal variation in 

acoustic activity. It offers insights into the relationship between man-made/machine noise 

(technophony) and biological sounds (biophony) and suggests future directions for research 

and large-scale monitoring of habitats. Finally it provides a set of instructions on how to 

build an automated recording unit using readily available parts and provides links to 

necessary software and guidance on types of hardware available. The key findings indicate 

that the use of acoustic indices for monitoring landscapes could be a useful tool. Clear 

relationships were observed between forest structure and stand age, and vegetation 

structure, with acoustic diversity in Thetford forest over two consecutive years. Although 

these relationships were not clear in Bedgebury forest, the effects of landscape structure 

were statistically significant, particularly when using automated recording units. Road 

proximity had a strong influence on the soundscape in all study sites. And the use of 

ecoacoustic methods to explore this offers an insight into a new means of investigating the 

impact of roads on acoustic biodiversity. The development of a low-cost automated 

recording unit is a significant contribution to the field of soundscape ecology in terms of 

encouraging participation by the non-governmental organisation (NGO) sector. Likewise, the 

use of a handheld recording unit and the application of traditional ecological survey 

methods provide evidence that soundscape/ecoacoustic studies that yield interesting, 

informative and biologically meaningful results can be done on a relatively low budget. As 

such this thesis offers a significant contribution to the field of soundscape ecology in terms 

of both data and logistics. It may be particularly relevant to researchers on a limited budget 

and/or the NGO and citizen science sector. 
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Chapter 1 - Introduction 

Unsustainable forestry and intensive agriculture pose great threats to biodiversity 

worldwide and have resulted in the loss of biodiversity, which continues to decline in the 

face of further exploitation (Kleijn et al. 2011; Laurance, Sayer & Cassman 2014). This has 

led to the development of commodity certification schemes, eco-labelling and agri-

environment schemes that aim to redress the balance between economic viability, social 

equality and environmental destruction (Merger, Dutschke & Verchot 2011; Edwards & 

Laurance 2012). These initiatives offer industries that have historically had a negative 

impact on biodiversity, an opportunity to lessen, and in some cases attempt to reverse, the 

impact they have had so far (Edwards & Laurance 2012). However, due to the complexities 

associated with monitoring biodiversity, both in terms of suitable methods and the costs 

associated with monitoring, few schemes offer quantitative evidence-based protocols on 

how to monitor biodiversity within participating landscapes (Kleijn & Sutherland 2003; 

Angelstam et al. 2013). This is not surprising since ecological sustainability is often only one 

of several criteria considered in complex social negotiation processes (Angelstam et al. 

2013; Forest Stewardship Council 2015). However, without suitable monitoring of 

biodiversity the efficiency of management practises can be misinterpreted and 

misunderstood (Yoccoz, Nichols & Boulinier 2001; Kleijn & Sutherland 2003; Guynn et al. 

2004). 

 

During the 1980s, agri-environment schemes (AESs) were implemented throughout 

much of the European Union (Primdahl et al. 2003). In 2003 a review of 62 studies 

evaluating the impact of AESs on biodiversity throughout the European Union found there 

was a lack of robust data and that reliable assessment of management strategies was not 

possible in many cases (Kleijn & Sutherland 2003). One limiting factor in effectively 

monitoring the impact of different management strategies is the lack of pre-treatment data 

(Kleijn & Sutherland 2003; Herzog 2005). This problem is often addressed by pairing AES 

management areas with non-AES management areas and then comparing the two (Kleijn et 

al. 2001; Pocock & Jennings 2008; Hiron et al. 2013) but this approach is scientifically 

flawed. AES areas are often selected due to their heterogeneous nature and higher levels of 
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biodiversity so comparing these sites to none AES areas is somewhat biased from the outset 

(Perkins et al. 2011; Whittingham 2011). Today, the general consensus is that AESs can offer 

moderate to limited gains to biodiversity but the overall trend of a decline in biodiversity 

continues (Kleijn et al. 2011; Scheper et al. 2013). With billions of Euros being spent 

annually on AESs and at least €40billion having been spent since their implementation 

(Donald & Evans 2006; Kleijn et al. 2011; European Commission 2013), the need for long-

term, large scale monitoring is essential if biodiversity management decisions are to be 

effective and beneficial to the environment (Memmott et al. 2010). 

 

Certification schemes are more recent than agri-environment schemes and are 

usually industry led market-driven initiatives. In exchange for a certified product with an 

eco-label and higher market value, businesses that choose to be certified must meet 

standards and criteria with regards to management of their land/estates (van Kooten, 

Nelson & Vertinsky 2005). The Forest Stewardship Council (FSC), established in 1993, is 

perhaps one of the best known certification schemes , whose standards and criteria are 

used by many other certification schemes globally (Auld, Gulbrandsen & McDermott 2008). 

It is generally accepted that forest certification has positive impacts on biodiversity, but 

Angelstam et al. (2013) discovered that the FSC approach to monitoring ecological 

sustainability poorly reflected quantitative evidence-based knowledge in Sweden.  This is 

unsurprising as the guidelines for monitoring biodiversity within the FSC Principles and 

Criteria are generic and open to interpretation (Robinson et al. 2009; Forest Stewardship 

Council 2015). This approach to monitoring is mirrored in other certification schemes such 

as the Roundtable on Sustainable Palm Oil (RSPO) and the Roundtable for Responsible Soy 

(RTRS). The needs, goals and monetary means of different land-owners and landscapes is 

often cited as a reason for this approach to monitoring (Guynn et al. 2004; Robinson et al. 

2009), especially as the scheme participants are responsible for carrying out the monitoring 

themselves (Forest Stewardship Council 2015). Community based monitoring projects are a 

way of reducing costs (Sheil & Lawrence 2004; Danielsen et al. 2011) but they can be 

susceptible to high variability and reduced accuracy (Palmer Fry 2011). If certification 

schemes are going to halt or reverse the current trends of declines in biodiversity, ecological 
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management decisions need to be informed more effectively than they currently are being 

(Memmott et al. 2010). 

 

 

1.1 Bioacoustics 

Bioacoustics has largely been a species-centred discipline (Towsey, Parsons & Sueur 

2014), studying the acoustic communication pathways between individuals, focussing on 

signal emission, propagation and reception (Sueur et al. 2014b). This approach is extremely 

useful for understanding aspects of animal behaviour (Marten et al. 1977; Favaro, Briefer & 

McElligott 2014) and evolution/speciation (Kirschel et al. 2009a; Tobias et al. 2010) but as a 

discipline has not played a significant role in applied ecological research (Laiolo 2010). 

Recent advances in recording and storage technology have encouraged ecologists to explore 

how a habitat’s acoustics can help us to better understand ecosystem processes. Identifying 

species from their vocalisations in the field, such as the point-count method for birds, is a 

traditional and widely accepted ecological census technique (Sutherland 2006). Perhaps 

unsurprisingly, given the trend of global declines in biodiversity, attention is turning to 

improving the scale and efficiency of biodiversity monitoring for conservation.  

 

The use of passive field recordings has been proposed as being more accurate for 

species identification than active listening/point-count methods due to the ability to stop 

and rewind recordings and to have a permanent record of the survey that can be re-

analysed by more observers (Brandes 2005; Acevedo & Villanueva-rivera 2006). Automated 

digital recording units (ADRUs) that can be placed in the field for weeks, even months, at a 

time, offer a unique efficient means of sampling biodiversity at a scale not previously 

possible. With this, the challenge facing ecologists is matching the technological advances in 

data collection methods with efficient accurate analysis methods (Sueur et al. 2012; Towsey, 

Parsons & Sueur 2014).  
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The majority of studies that analyse recorded animal vocalisations use spectrograms 

to visualise calls. Introduced in the 1950’s, the spectrogram revolutionized the field of 

bioacoustics. The ability to examine calls visually enabled researchers to measure spectral 

and temporal characteristics of vocalisations and to determine how these features differ 

between and within species. In ecology and biodiversity  surveys the use of spectrograms 

greatly reduces the amount of time needed to manually process recordings if surveying for 

one or a few known species with distinct spectral calls (Sutherland 2006). However, 

manually processing large numbers of field recordings remains a time consuming method 

which is a major limiting factor when planning a study (Somervuo, Härmä & Fagerlund 

2006). It stands to reason then, that a growing field in bioacoustics is the development of 

automated call recognition using pattern recognition software and machine learning.  

 

1.2 Machine Learning 

Automated recognition of species calls using machine learning algorithms has great 

potential in conservation management and biodiversity monitoring (Gaston & O’Neill 2004). 

Although this has long been recognised (Riede 1993), its application is becoming more 

widespread in recent years (Acevedo & Villanueva-rivera 2006; Brandes 2008), likely due to 

the recent developments in affordable, robust hardware. Research into artificial intelligence 

and speech therapy (for humans) has led to the development of pattern recognition 

software that can be used to identify or recognise patterns in acoustic data.  These 

computer algorithms are referred to as Artificial Neural Networks (ANNs) and can either be 

supervised to recognise patterns, or unsupervised to identify patterns.  

 

1.2.1 Supervised Learning 

Supervised learning ANN algorithms are trained, using identified patterns such as 

known animal calls, to classify patterns within an unknown dataset/recording (Deecke & 

Janik 2006). This approach is largely based on Automated Speech Recognition (ASR) systems 

for voice recognition in humans, which use supervised learning algorithms that are mostly 

based on Hidden Markov Models (HMMs) (Gales & Young 2007). The application of HMMs 
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to identifying non-human species-calls has seen varying levels of success (Towsey et al. 

2012). Kogan & Margoliash, (1998) demonstrated the potential for HMMs in identifying calls 

that were recorded from birds in a laboratory, but subsequent studies have found HMMs to 

be less suitable when applied to ‘noisy’ acoustic environments (Towsey et al. 2012). This is 

largely because they have been developed for situations where background noise can be 

controlled (i.e. a telephone channel) so when applied to field recordings it is necessary to 

build further models to detect unpredictable noise events (Towsey et al. 2012). However, 

(Trifa et al. 2008) reported higher success at recognising antbirds in field recordings when 

‘noisier’ training data was used to develop recognisers. 

 

Other supervised call recognition tasks such as discriminant function analysis and 

fuzzy logic, have been shown to perform better than HMMs when using smaller training sets 

(Kirschel et al. 2009b). But Walters et al., (2012) suggest that using ensembles of ANNs is 

more effective than using single classifiers as long as the accuracy of each exceeds 50%. 

ANNs have been used to effectively sample targeted communities of species and have been 

successfully applied to sample bat communities (Parsons & Jones 2000; Wickramasinghe et 

al. 2003), primates (Mielke & Zuberbühler 2013) and birds (Potamitis 2014; Potamitis et al. 

2014). They can also be used to identify individuals, enabling researchers to investigate 

social interactions within groups in more detail than previously possible (Favaro, Briefer & 

McElligott 2014). Terry & McGregor, (2002) displayed the effectiveness of using supervised 

ANNs to accurately identify up to 30 individual corncrakes in simulated population playback 

experiments. Individuals can also be detected if recordings are made with multiple 

microphones (i.e. a microphone array). Used in conjunction with ANNs for detecting the 

species of interest, one can determine the number of individuals using spatial information 

by triangulating the position of individual calls (Blumstein et al. 2011; Mennill et al. 2012). 

This approach is also being used to monitor illegal logging activities in rainforests using 

acoustic sensors (in this case, solar-powered smart phones), to detect (using a relatively 

simple ANN) and triangulate the position of chainsaw sounds and relay this positional 

information to rangers on the ground (Butler 2014). 
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Aside from the potential pitfalls of using supervised ANNs in noisy acoustic 

environments, they require lots of training in order to build suitable call-specific recognisers. 

Their poor performance in field studies is often attributed to insufficient training data 

(Kirschel et al. 2009b; Towsey et al. 2012). This is unsurprising considering the similarities 

between some species’ call structures. For instance, bat species belonging to the Myotis 

genus share very similar spectral and temporal call attributes (Parsons & Jones 2000) and 

automated recognition of their calls is more accurate when grouping several species 

together and performing further manual identification to determine species (Walters et al. 

2012). Furthermore, the expression of regional “accents” within species is a common 

occurrence that is not restricted to humans. Such regional variations in the calls of 

conspecifics has been observed in chimpanzees (Mitani, Hunley & Murdoch 1999), geckos 

(Yu et al. 2011), frogs (Wycherley, Doran & Beebee 2002) and a number of bird species 

(Brandes 2008). Such similarities of different species and variation within species highlight 

some of the difficulties of building recognisers for large-scale studies that might encompass 

numerous geographic locations.  

 

Although there are many promising studies out there, supervised learning methods 

are unlikely to be suitable for large-scale biodiversity monitoring in the near future due to 

the need to develop reliable species classifiers. This is not possible for many rare species or 

species that call infrequently due to insufficient training data being available(Sutherland 

2006).  

 

1.2.2 Unsupervised Learning 

Unsupervised learning methods do not require training and so identify, as opposed 

to recognise, patterns within complex data and are sometimes referred to as clustering 

methods. A benefit of using unsupervised neural networks is that they are less constrained 

by human bias and may pick up patterns not previously predicted (Sathya & Abraham 2013). 

Self-Organising Maps (SOMs) are perhaps the most widely used unsupervised learning 

algorithms used in ecology and can be used in data-mining (Kohonen 1998), image-analysis 

(Purser et al. 2009) and bioacoustics (Bormpoudakis, Sueur & Pantis 2013). SOMs are a 
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means of reducing high-dimensional data to a two-dimensional visual display by performing 

unsupervised clustering (Kohonen 1998). They have been proven to be effective at 

identifying the calls of multiple species (Somervuo & Harma 2003; Escobar et al. 2007; 

Ranjard & Ross 2008). Kirschel et al. (2009) found them to be less effective at classifying 

calls down to individuals but this may only be echoing the difficulties previously 

encountered with supervised ANNs for species-call and voice-recognition.  

  

 Stowell & Plumbley (2014) introduced the use of spherical k-means algorithms for 

unsupervised species identification with great success. Most automated call-recognition 

algorithms use acoustic measures based on spectrogram data that have traditionally been 

converted using a time or frequency warping procedure (Anderson, Dave & Margoliash 

1996; Kogan & Margoliash 1998). One of the most common transformations used is the 

Mel-frequency cepstral coefficient (MFCC). MFCCs undergo frequency-warping to produce a 

logarithmic spectral scale which is designed to better mimic human-hearing processes. This 

is a logical thing to do in human speech-recognition software but may be unsuitable when 

approaching non-human call-recognition. Transforming or warping the data will lead to a 

reduction or change in the information held within it. In their study, Stowell & Plumbley 

(2014) did not use any manually-designed feature transformation procedures and allowed 

their algorithm to search for patterns in the raw audio data. Furthermore, supervised call-

recognition methods have a tendency to focus on one or a few species and so inherent in 

their use is the rejection of all other sounds present in the habitat.  

 

Unsupervised learning algorithms are particularly suited to identifying habitat 

characteristics through their acoustic properties. De & Chakraborty (2009) demonstrated 

the use of SOMs to acoustically characterize seafloor sediments using echo waveform data. 

Bormpoudakis, Sueur & Pantis (2013) used SOMs to identify patterns in the ambient sounds 

of several different habitats which mirrored patterns in the physical attributes of these 

habitats. They found that the SOMs clustered recordings of habitats with similar physical 

characteristics together – i.e. oak forests sound like oak forest, pine forests sound like pine 
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forest, grasslands sound like grasslands and so on. Furthermore, Eldridge et al. (2016a) 

suggest that sparse-coding techniques (another form of unsupervised learning algorithm) 

may provide ecologically meaningful estimates of species-richness due to the flexibility of 

these algorithms with regard to time-frequency trade-offs. Using such methods to represent 

sound recordings will retain more signal information than when using the more common 

Fourier transform. This highlights the potential for using such algorithms for monitoring 

ecosystems as a whole. Given the complexities of identifying suitable indicator species and 

then building suitable call recognisers for them, designing algorithms that explore 

soundscape recordings in their entirety may provide a more comprehensive means of 

monitoring landscapes. Encouragingly there are a number of computational tools available 

for exploring and quantifying soundscape recordings which have been developed in the field 

of soundscape ecology. 

 

1.3 The Soundscape  

A soundscape can be defined as the collection of sounds that are present within a 

landscape (Pijanowski et al. 2011a). Three groups of sounds make up a soundscape: the 

biophony (sounds produced by biological organisms), geophony (sounds produced from 

geophysical processes), and anthrophony (sounds produced by anthropological activities) 

(Krause 1987; Pijanowski et al. 2011b). Soundscape recordings are a growing source of data 

within the world of ecology. A traditional approach of analysing these recordings is to 

identify one or a few species of interest within them to determine presence/absence, 

activity-levels and/or species-composition (Miller 2001; Sutherland 2006; Waldon, Miller & 

Miller 2011; Jung et al. 2012). Although there are some relatively efficient techniques for 

automatically identifying species of interest there is still a lot of information that is often not 

considered in the analyses. This approach is restrictive with respect to understanding 

ecosystem dynamics, and is a short-coming that the field of soundscape ecology is aiming to 

address. Considering all information present within a recording is important for a number of 

reasons and could prove to be a useful indicator of ecosystem health. 
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1.3.1 Why is the soundscape important? 

Animal communication can be viewed as niche competition, since vocal species must 

compete for acoustic space in order to effectively exchange information with conspecifics 

(Villanueva-Rivera 2014). In complex communities with high levels of biodiversity, it is 

expected that vocal species may exhibit temporal avoidance or spectral partitioning 

(Planqué & Slabbekoorn 2008). This acoustic signal partitioning in multi-species 

communities has been observed in birds (Planqué & Slabbekoorn 2008; Luther 2009), 

insects (Sueur, Windmill & Robert 2010) and frogs (Chek, Bogart & Lougheed 2003; 

Villanueva-Rivera 2014).The level of signal partitioning within a habitat is thought to 

indicate how healthy that habitat is in terms of disturbance events it may have experienced. 

The acoustic niche hypothesis, first suggested by sound recordist Bernie Krause (Krause 

1987), suggests that as a habitat is disturbed or degraded the acoustic partitioning of the 

vocal community will breakdown. This is especially important when considering the 

potential role that the ambient sounds and acoustic properties of different habitats may 

play in a number of ecological and evolutionary processes. For example, Slabbekoorn (2004) 

suggests that the ambient noise conditions of a habitat may drive evolutionary changes in 

animal signals therefore contribute to divergent evolutionary processes. And Kirschel et al. 

(2009a) illustrated how the physical characteristics of a habitat contributed to variation in 

the song of the green hylia (Hylia prasina). 

 

Just as climatic conditions may constrain a species’ distribution (Thomas et al. 2004), 

the ambient sounds and/or acoustic properties (as determined by habitat structural 

complexity) of a landscape may also place constraints on dispersal. A number of studies 

highlight the potential importance of ambient sounds in guiding pelagic larval reef species to 

coastal reef settlement habitats (Radford et al., 2011, 2010; Stanley et al., 2009; Tolimieri et 

al., 2002; Vermeij et al., 2010). For example, the ambient sounds of a coral reef have been 

shown to induce metamorphosis in crab larvae (Stanley, Radford & Jeffs 2009). Vermeij et al 

(2010) demonstrated that coral larvae navigate towards the ambient sounds of coral reef 

habitat, a behaviour that has also been observed in coral reef fish (Radford et al. 2011). In 

terrestrial habitats there may be similar constraints on species based on the acoustic 

properties of the environment. Some bat species are largely restricted to cluttered 
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environments, such as a rainforest understory. These restrictions may be due to their wing 

morphology but could also be linked to their highly specialized echolocation calls. 

Insectivorous bats can typically be placed into four functional groups, each of which displays 

certain echo-location call characteristics that determine the type of environment in which 

they are best suited to foraging (Schnitzler & Kalko 2001). However, some species such as 

the greater mouse-eared bat (Myotis myotis), can adapt its call to suit different 

environments, from open space/edge habitats to more cluttered spaces in a forest 

understory so is more suited to a mosaic landscape (Schnitzler, Moss & Denzinger 2003).  

 

Aside from the acoustic properties of habitats, the soundscape is a natural resource 

that is often over-looked and under-valued (Dumyahn & Pijanowski 2011b). The 

conservation of natural sounds within landscapes can be considered an important factor in 

public health and human-welfare (Farina, Scozzafava & Napoletano 2007). In Japan, forests 

are recognised as a public health resource for the practice of ‘Shinrin-yoku’ (or ‘forest 

bathing’) to relieve the stresses of modern living (Li 2010; Mao et al. 2012). ‘Bathing’ in a 

forest (i.e. visiting a forest) is a multi-sensory experience, of which sound plays a large part. 

Natural sounds have been shown to facilitate recovery from stressful situations in human 

volunteers (Alvarsson, Wiens & Nilsson 2010), and reduce anxiety and agitation in coma 

patients (Saadatmand et al. 2013). A number of studies have illustrated a human preference 

for more natural soundscapes and suggest it is an important consideration when planning 

and protecting urban green space areas (Zhang & Kang 2007; Irvine et al. 2009; Lam et al. 

2010). This cultural importance is not only limited to human-beings. As mentioned 

previously, the prevalence of regional “accents” in many animal species can be viewed as a 

more discreet form of biodiversity which is perhaps overlooked in its importance to 

conservation. Laiolo & Tella (2007) suggest that these regional accents be viewed as cultural 

elements within a species and that as landscapes become more fragmented and disturbed, 

much of this hidden diversity is lost. Furthermore, the impacts of anthropogenic noise 

disturbance is considered a threat to biodiversity (Barber et al. 2010; Slabbekoorn et al. 

2010) as it can alter the behaviour and productivity of some species (Fuller, Warren & 

Gaston 2007; Francis, Ortega & Cruz 2009; Francis et al. 2011). So disturbing a soundscape 
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with noise pollution can have negative impacts on the biodiversity present, just as 

disturbing a landscape with agricultural or urban development can. 

 

1.3.2 Measuring the Biophony 

The use of taxonomic groups, such as bats or birds, as indicators of ecosystem 

disturbance is a widely accepted practise. However, choosing suitable indicators is hotly 

debated (Noss 1999) and it is considered to be more informative to use multiple taxonomic 

groups (Gardner et al. 2012). Soundscape ecology may provide a means of integrating 

multiple taxonomic groups into one succinct and easily repeatable measure. There is an 

increasing amount of research highlighting the distinct acoustic signatures of different 

habitats including marine (McWilliam and Hawkins, 2013; Radford et al., 2010; Staaterman 

et al., 2013), freshwater/aquatic (Tonolla et al. 2010) and terrestrial (Slabbekoorn 2004; 

Bormpoudakis, Sueur & Pantis 2013). There have also been some encouraging studies 

showing the relationship between physical structure of a habitat and its associated acoustic 

complexity. Pekin et al., (2012) showed that the acoustic diversity of Costa Rican rainforest 

soundscapes was correlated with canopy height. Differences in the soundscape in a 

Mediterranean Maquis habitat were also correlated with vegetation height and density 

(Farina and Pieretti 2014). Furthermore, an inverse correlation between biophony and 

anthrophony was observed along an urban-rural gradient in Michigan, US (Joo, Gage & 

Kasten 2011). These studies highlight the potential for using acoustic sensors in monitoring 

and managing landscapes for biodiversity and reducing the impacts of human activities 

including noise pollution. 

 

The biophony is the largest contributor to the distinctive acoustic signature that a 

natural landscape may produce. It is representative of the vocal community of species 

present in an environment and so its complexity can act as a proxy for the complexity of the 

species community (i.e. species-richness). Soundscape recordings can be analysed using a 

number of indices that summarize the structure and distribution of the acoustic energy 

encapsulated within them (Towsey et al. 2014; Sueur et al. 2014b). An acoustic index 

measures some aspect of the spectrogram to give an output that may be indicative of the 
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level of biodiversity present within a landscape (Towsey, Parsons & Sueur 2014). There is an 

increasing body of evidence outlining the effectiveness of acoustic  indices as proxies for 

biodiversity/species-richness (Towsey, Parsons & Sueur 2014; Sueur et al. 2014b). Most of 

these studies highlight the effectiveness of acoustic indices at determining the species-

richness of bird communities (Sueur et al. 2008; Pieretti, Farina & Morri 2011; Depraetere et 

al. 2012; Gasc et al. 2013; Towsey et al. 2014) but have so far yet to determine how the 

soundscape may be related to other organisms in the environment and how these indices 

could be used to measure the condition of a habitat in terms of disturbance. 

 

1.3.2.1 Acoustic Indices 

There have been a number of indices developed to measure the complexity of the 

soundscape. Many are openly available using R software tools, such as Seewave (Sueur, 

Aubin & Simonis 2008) and Soundecology (Villanueva-Rivera & Pijanowski 2014). Within 

these packages are a set of tools to calculate several acoustic indices. Amongst those 

available indices are the following: 

Bioacoustic Index 

As described by Boelman et al., (2007), the Bioacoustic index (BAI) calculates the 

association of sound intensity with biological frequency bands in a spectrogram (in Boelman 

et al., (2007) it was 2KHz-8KHz to correspond with bird calls). Sound intensity is plotted 

against frequency and the area under the curve is calculated (Boelman et al., 2007). This 

area essentially represents the vocal activity within the set frequency band range and so 

acts as a measure of abundance of sound. Higher dB values across a large frequency range 

would therefore generate a greater BAI value 

Acoustic Entropy Index 

One of the first indices described to indicate species-richness measured acoustic 

entropy (Sueur et al. 2008). Acoustic entropy (H) can be defined as: 

H = Ht  x Hf with Hϵ[0,1] 
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Where temporal entropy is Ht and spectral entropy is Hf. Scores closer to 1 will be indicative 

of more acoustic complexity and 0 would be a single pure tone. Acoustic entropy uses a very 

complex algorithm compared to other available indices (Villanueva-Rivera et al. 2011) but it 

is one of the most consistent indices available in terms of estimating bird species-richness 

(Towsey et al. 2014). It is possible to calculate H using both Seewave and Soundecology. 

However, it is very demanding in terms of computing power and may be less suitable than 

other available indices if it is to be used in monitoring projects where access to high-spec 

computers is limited. 

Acoustic complexity Index  

The acoustic complexity index (ACI) was developed based on the observation that 

biotic sounds are characterized by having variable intensities, whereas mechanical sounds 

tend to present constant intensity values (Pieretti, Farina & Morri 2011). The ACI 

extrapolates a matrix of intensity values from a spectrogram, which is divided into user-

defined frequency bins and temporal steps. It then calculates the difference between 

adjacent values of intensity within each frequency bin and temporal step. The final ACI value 

is derived using a series of simple steps to sum up the different values present in a given 

recording (see Pieretti et al., 2011). As a standalone index, ACI performs well at estimating 

species-richness. When compared to 13 other indices it was in the top three (Towsey et al. 

2014). ACI can be calculated using  the R software package Soundecology (Villanueva-Rivera 

& Pijanowski 2014) or by using the Soundscapemeter1.0 plugin for the WaveSurfer sound 

analysis freeware (Farina et al. 2012). 

Acoustic Diversity Index  

The Acoustic Diversity Index (ADI) is a form of frequency band analysis based on the 

Shannon’s Index (Villanueva-Rivera et al. 2011; Pekin et al. 2012). The value of this approach 

is that it first calculates the proportion of sound occurring in each frequency band (i.e. 1-2 

KHz, 2-3 KHz, 3-4 KHz etc) of a spectrogram. This allows each band to represent a “species”, 

and the proportion of sound within that band the occupancy of said species. This is used to 

calculate Shannon’s Diversity. A further benefit of this approach is that this index can be 

used to determine which frequency bands are contributing most to the soundscape, which 
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can offer further insights as to the composition of the vocal community. For example, 

Villanueva-Rivera et al., (2011) showed that night-time recordings were dominated by 

frequencies between 1-4 KHz, which were mostly frog calls, whilst the morning soundscapes 

ranged from 0-6 KHz, which corresponded with an increase in bird activity. The ability to 

investigate the composition of a soundscape in this manner highlights the flexibility of this 

approach with regards to developing targets for monitoring.  

Acoustic Evenness Index  

Based on the Gini coefficient, the Acoustic Evenness Index (AEI) calculates the 

evenness of sound energy across all frequency bands within a recording (Villanueva-Rivera 

et al. 2011). Values closer to 1.0 indicate high inequality, where sounds mostly occur in one 

frequency band. Sounds closer to 0 indicate high equality, where sounds occur equally 

across all bands. AEI is complimentary to the ADI and when used in conjunction offers 

greater insight into the complexity of a soundscape.  

Normalized Difference Soundscape Index 

The Normalized difference soundscape index (NDSI) is a little cruder than the 

previously mentioned indices but it offers a means of measuring anthropogenic noise 

disturbance within a soundscape. It computes the ratio of anthrophony to biophony (Kasten 

et al. 2012). Most mechanical or technophonic sounds (i.e. anthrophony) are prevalent 

between 1-2 KHz and biological sounds are mostly represented between 2-8 KHz. The NDSI 

is essentially a form of frequency band analysis that computes the ratio of these parts of the 

spectrum with each other, and is calculated as follows: 

NDSI = (β – α) / (β + α) 

Where β is the total estimated power spectral density (PSD) for the largest 1 KHz 

biophony bin (i.e. frequency band) and α the PSD for the anthrophony bin. The output 

ranges from -1 to +1, where +1 indicates a total biophonic soundscape, with no 

anthropogenic noise/pollution. However, there are some species that have calls that fall 

within the “anthrophony” bin so care must be taken when planning to use this index. This 
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index is not a standalone means of measuring the acoustic properties of a soundscape but it 

can be useful for categorising recordings for further investigation (Kasten et al. 2012). 

Acoustic Dissimilarity Index 

A useful tool for comparing soundscapes as opposed to measuring absolute 

complexity is the acoustic dissimilarity index (D) (Sueur et al., 2008). This index measures 

the distance between the H values of two sites and uses a complex algorithm that requires 

high-specification computing equipment. This is a barrier to its widespread use but is 

unlikely to be a long-term obstacle considering the pace of advancement in this field. Gasc 

et al., (2013) also tested Kolmogorov-Smirnov distance (KS), Symmetric Kullback-Leibler 

distance (KL) and the similarity RV correlation coefficient and found that each performed 

well, with the RV calculation being better than D but required extra processing time making 

it unsuitable for handling large datasets. However, in another study several acoustic 

dissimilarity indices failed to accurately track changes in the composition of three temperate 

woodland bird communities (Lellouch et al. (2014) suggesting that more research is needed 

before these indices can be applied effectively to biodiversity monitoring. 

 

1.4 Ecoacoustics in Conservation Monitoring 

With recent advances in hardware and software, the emerging fields of soundscape 

ecology and ecoacoustics offer a new and exciting approach to monitoring and 

understanding landscapes. The principles of both fields are intuitive and potentially offer a 

highly repeatable method of surveying landscapes that minimise observer-bias. Some key 

challenges facing the use of such methods in biodiversity monitoring are: 

1. Understanding the relevant spatial scales at which one should monitor. Farina & 

Pieretti, (2014) found that soundscape characteristics change over very small spatial 

scales in their study of a grid with recording points spaced just 25m apart. This is 

unlikely to be a feasible sampling scale for most monitoring schemes but it highlights 

the fine-scale at which soundscape patterns can be observed.  

2. Understanding relevant temporal scales for informative monitoring. It may not be 

possible to deploy recording units 24/7 in all areas so determining suitable 
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monitoring time-scales can be considered a priority. The level of variability within a 

given soundscape would need to be determined before any management targets 

could be made (Rodriguez et al. 2014). 

3. Selecting the right acoustic analysis methods to contribute to better adaptive 

management. Considerations here include analysis processing times and data 

storage capabilities. Towsey, Wimmer, Williamson, & Roe, (2014), suggest that using 

a combination of acoustic indices is more effective at measuring species-richness 

than using a single index. 

4. Accessibility of recording equipment. Although automated digital recording units 

have improved vastly over the past five years, most still remain off-limits to 

grassroots organisations due to their costs. However, the use of the Raspberry Pi 

computer in a number of creative DIY solutions, from security cameras to weather 

stations and bat detectors, offers the potential for developing a low-cost, open-

source hardware to mirror the open-nature of the available analysis tools. 

 

      There is a need for highly repeatable, low-cost methods for monitoring habitats and 

soundscape ecology has the potential to fulfil this requirement. Studies have already 

indicated that acoustic indices can act as proxy measures of species richness and that 

different habitats produce different soundscapes. One of the main benefits of using acoustic 

monitoring is that there is a permanent record of a survey (Acevedo & Villanueva-rivera 

2006; Towsey, Parsons & Sueur 2014). One that has been subject to almost no observer bias 

and assuming recording units that capture this data are used in accordance with a set 

protocol, the method is highly repeatable (Waldon, Miller & Miller 2011). This approach 

potentially offers a much more informative baseline upon which to develop management 

strategies. Ethically speaking, the non-invasive approach to sampling is less likely to inflict 

undue stress and suffering on individual animals (Jewell 2013). However, to determine the 

suitability of using such methods for monitoring in certification schemes and other 

conservation initiatives it is necessary to investigate their ability to detect differences not 

only between habitats but within them as well. In order to feed into adaptive management 

strategies, an effective monitoring system should be aware of detecting gradients within 

habitats. For example, to improve the chances of success in a woodland restoration 

initiative, developing an understanding of habitat characteristics along an age-gradient can 
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help to produce achievable and realistic targets (Pryor, Curtis & Peterken 2002). Similarly, 

monitoring the effects of, and recovery from, disturbance (such as logging) requires an 

understanding of acoustic patterns before, during and after the disturbance event. Although 

they are not natural ecosystems, plantation forests are an important refuge for biodiversity 

(Brockerhoff et al. 2008) and offer a unique system for investigating the efficacy of 

soundscape-based survey methods at detecting gradients.  

 

In the UK, the Forestry Commission widely practises clear-fell silviculture creating mosaic 

landscapes comprising different-aged even-age forest stands. Within forests there may be 

several different types of woodland including coniferous, semi-natural lowland deciduous 

and coppiced stands. The National Forest Inventory (Forestry Commission 2017a) generates 

up to date GIS data about each forest stand. This wealth of data offers a great opportunity 

to investigate acoustic patterns in relation to habitat types, habitat age, landscape 

composition and management history. By combining field-based measures of vegetation 

structure with this landscape data it may be possible to uncover patterns in the soundscape 

and determine whether acoustic indices can be used to detect structural and age-based 

gradients. This thesis investigates the soundscape in relation to these factors. It explores the 

use of low-cost recording equipment in two different UK forests and in different types of 

forest.  

 

1.5 Aims and Objectives 

This PhD provides a significant contribution to the field of soundscape ecology through 

achieving the following aims. 

1. It investigates the relationship between acoustic diversity and vegetation structure 

in two different types of plantation forest – non-native coniferous woodland and 

sweet-chestnut coppiced woodland. 

2. It compares acoustic diversity between two different coniferous plantation forests 

with different landscape-configurations and management histories.  

3. It investigates the role that landscape heterogeneity plays in contributing to acoustic 

diversity. 



 
 

18 
 

4. It sheds light on the impact that roads have on the soundscape and highlights a 

relationship that might be used in noise mitigation/landscape-planning. 

5. It designed and built a low-cost automated acoustic recording unit (ARU). The 

instructions are freely and openly available and were published online in September 

2015. These units are potentially the first field-based ARU that uses the raspberry pi 

computer as a platform. 

 

1.6 Thesis Structure 

In order to explore these aims, this thesis presents three data-chapters:  

- Chapter two maps the soundscape in part of the UK’s largest lowland conifer 

plantation, Thetford Forest. Using a handheld recording unit and a more traditional 

approach to conducting an ecological census it investigates the relationship between 

forest stand age, vegetation structure and acoustic diversity in two consecutive 

years.  

- Chapter three compares the soundscape of two parts of Thetford Forest with similar 

aged coniferous stands in Bedgebury forest - a plantation on ancient woodland site. 

It aims to determine whether the relationships observed in chapter one are evident 

in a coniferous forest with a different management history that is situated in a more 

heterogeneous landscape.  

- Chapter four uses an automated recording unit called the ARUPI, which was 

designed specifically for this study. It was deployed in coppiced woodland stands in 

Bedgebury forest to investigate temporal and spatial patterns in the soundscape and 

to determine whether acoustic diversity reflects vegetation structure and landscape 

composition. 

- Chapters two to four all investigate the relationship between the soundscape and 

proximity to roads and offer insights into the effects of anthropogenic noise 

disturbance on the soundscape. 

- Chapter five presents the ARUPI. An automated recording unit that utilizes the 

Raspberry Pi single board computer and several off-the-shelf components to 
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produce a piece of equipment that costs a quarter of the price of the leading market 

alternative.  

- Synthesis and discussion. Outlines the key findings from this study and offers 

suggestions for future directions of research in the fields of soundscape ecology and 

ecoacoustics.  
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Chapter 2 - Sound-mapping a coniferous forest – perspectives for 

biodiversity monitoring and noise mitigation. 

2.0 Summary 

Acoustic diversity indices have been proposed as low-cost biodiversity 

monitoring tools. The acoustic diversity of a soundscape can be indicative of the 

richness of an acoustic community and the structural/vegetation characteristics of a 

habitat. There is a need to apply these methods to landscapes that are ecologically 

and/or economically important. We investigate the relationship between the acoustic 

properties of a coniferous forest with stand-age and structure. We sampled a 73 point 

grid in part of the UK’s largest man-made lowland coniferous plantation forest, 

covering a 320ha mosaic of different aged stands. Forest stands ranged from 0-85 

years old providing an age-gradient. Short soundscape recordings were collected from 

each grid point on multiple mornings (between 6am-11am) to capture the dawn 

chorus. We repeated the study during July/August in 2014 and again in 2015. Five 

acoustic indices were calculated for a total of 889 two minute samples. Moderate 

relationships between acoustic diversity with forest stand-age and vegetation 

characteristics (canopy height; canopy cover) were observed. Ordinations suggest that 

as structural complexity and forest age increases, the higher frequency bands (4-

10KHz) become more represented in the soundscape. A strong linear relationship was 

observed between distance to the nearest road and the ratio of anthropogenic noise 

to biological sounds within the soundscape. Similar acoustic patterns were observed in 

both years, though acoustic diversity was generally lower in 2014, which was likely 

due to differences in wind conditions between years. Our results suggest that 

developing these relatively low-cost acoustic monitoring methods to inform adaptive 

management of production landscapes, may lead to improved biodiversity monitoring. 

The methods may also prove useful for modelling road noise, landscape planning and 

noise mitigation.  

 

2.1 Introduction 

The global landscape is increasingly being modified by anthropogenic activities. 

Unsustainable forestry and intensive agricultural practises, and the resulting habitat 
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fragmentation, degradation and loss, are recognised as one of the greatest threats to 

biodiversity worldwide (Kleijn et al. 2011; Laurance, Sayer & Cassman 2014). This has 

led to the development of commodity certification schemes, eco-labelling and agri-

environment schemes that aim to redress the balance between economic viability, 

social equality and environmental destruction(Edwards & Laurance 2012). Integral to 

the success of these schemes is the effective monitoring of biodiversity to enable 

comparative assessments within and between scheme participants. However, due to 

the complexities associated with monitoring biodiversity, in terms of selecting suitable 

methods, monetary costs and time-constraints, few schemes offer quantitative 

evidence-based protocols on how to monitor biodiversity within participating 

landscapes (Kleijn & Sutherland 2003; Angelstam et al. 2013). Without suitable 

monitoring of biodiversity, the efficiency of management practises can be 

misinterpreted and misunderstood (Kleijn & Sutherland 2003; Guynn et al. 2004). 

 

Selecting suitable indicators for monitoring biodiversity is notoriously difficult. 

The term ‘biodiversity’ can be used to describe many aspects of nature, including  

genetic diversity, species diversity, species distributions, community composition, 

functional diversity, the diversity of habitats within a landscape, landscapes within a 

region and regions globally (Noss 1990).   Species-richness and diversity and other 

associated composite indices are perhaps the most traditional and often considered 

the simplest way to describe biodiversity (Buckland et al. 2005). As such, the use of 

taxonomic communities as indicators (such as birds, beetles, ants or plants) can be 

considered cost-effective in some circumstances (Gardner et al. 2008). However, the 

need for expert knowledge in species-identification and survey methods is one of the 

greatest drawbacks of any multi-taxa approach (Sueur et al. 2012). Since habitat 

heterogeneity and complexity has long been recognised as an indicator of bird 

diversity (MacArthur & MacArthur 1961; James & Wamer 1982; Goetz et al. 2007), 

alternative biodiversity indicators use habitat features (such as patch density, canopy 

openness and forest area) as metrics, from which habitat health and biodiversity 

values can be inferred (Noss 1999). This kind of indicator can be extended to include 

the use of remote sensing methods. However, although remote-sensing methods can 

be used to predict potential areas of species-richness (Leyequien et al. 2007; Goetz et 
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al. 2007; Müller & Brandl 2009; Jung et al. 2012) and have been used to assess the 

effectiveness of certifications schemes (Takahashi & Todo 2014), they cannot give 

actual biodiversity values (Bradley et al. 2012). The wealth of literature on selecting 

suitable indicators highlights a further obstacle to effective monitoring, whereby the 

global biodiversity dataset can be regarded as disaggregated, in part due to the non-

standardised nature of data collection and lack of cohesion between different data-

collecting groups (Roberts & Moritz 2011; Han et al. 2014). Waldon et al. [22] suggest 

that a model protocol for biodiversity monitoring should be repeatable, robust against 

observer bias and require little training or equipment. 

 

An acoustic community is defined as an aggregation of sound-producing species 

and as such can be considered an appropriate measure of biodiversity within a habitat 

(Farina & James 2016). The use of acoustic monitoring is emerging as a valuable tool in 

conservation. Acoustic surveys are considered to be a cost and time-efficient method 

for reliably sampling vocal communities (Brandes 2005). However, processing 

recordings to identify species can be extremely time-consuming and susceptible to 

observer-bias. Research into automated species identification is growing but 

identifying species within variably noisy environmental recordings is problematic and 

not currently considered a suitable replacement for human processing (Towsey, 

Parsons & Sueur 2014). Aside from these challenges, identifying species or groups of 

species is exclusive to other components of the soundscape which may be important 

for understanding the health of an ecosystem. The field of soundscape ecology is the 

study of the soundscape as a unit of measurement in and of its self (Pijanowski et al. 

2011a). It aims to understand the composition of sound energy in the context of the 

environment from which it emanates. The soundscape can be considered as the 

interaction between the biophony (sounds from animal sources); geophony (sounds 

such as wind and rain) and anthrophony/technophony (man-made noise pollution 

from machinery- typically between 1-2KHz) (Pijanowski et al. 2011a). 

 

Within the biophony, there are three broad types of acoustic communities – 

infrasonic (eg. whales <20Hz); “ordinary” (20-20,000Hz eg.mostly within the human 

hearing range); and ultrasonic (eg. microchiropterans >20,000Hz) (Farina & James 
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2016). Within each of these acoustic communities there is further partitioning, which 

may be frequency or temporally bound. The niche hypothesis, first introduced by 

Bernie Krause (Krause 1993), suggests that such frequency partitioning is a necessary 

evolutionary process that enables species to co-exist within acoustic space. Recent 

studies have shown that the diversity and composition of a soundscape can be 

indicative of the richness of an acoustic community (Sueur et al. 2008; Pieretti, Farina 

& Morri 2011) and can offer insights into functional and phylogenetic diversity (Gasc 

et al. 2013). If used in conjunction with environmental data they may provide insights 

into habitat type (Bormpoudakis, Sueur & Pantis 2013) and of structural/vegetation 

characteristics within a habitat (Pekin et al. 2012; Farina & Pieretti 2014).  

 

Aside from monitoring the biophony, the technophony is of key importance to 

biodiversity conservation. Noise pollution is known to have drastic impacts on faunal 

communities, including altering species communities (Francis, Ortega & Cruz 2009); 

masking acoustic signals in fish (Holt & Johnston 2015); and causing birds to alter their 

song (Slabbekoorn, Peet & Grier 2003). One study suggests that noise from machinery 

may alter the temporal dynamics and patterns of animal sounds within a soundscape 

indicating significant shifts in animal behaviours (Duarte et al. 2015). Perhaps one of 

the biggest contributors to the global technophony is road noise. The ecological 

effects of roads range from fairly obvious things such as increased mortality through 

traffic collisions (i.e. road kill) (Coffin 2007) to more obscure and sinister effects 

including increased habitat fragmentation and its associated effects (Spellerberg et al. 

1998); and the accumulation of heavy metals and salts in roadside habitats, which can 

have consequences for terrestrial and aquatic wildlife (Trombulak & Frissell 2000). 

Roads can also alter animal behaviours and road noise was shown to alter survival 

behaviours in the North American prairie dog Cynomys ludovicianus (Shannon et al. 

2014) and cause birds to change their calls to suit noisier city-habitats (Slabbekoorn, 

Peet & Grier 2003). Understanding the dispersion of road noise through different 

habitats and how that contributes to the acoustic properties of a landscape is of key 

importance to furthering the field of soundscape ecology. 
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Several acoustic indices, which aim to quantify the soundscape, such as:  the 

acoustic diversity index (ADI) and acoustic evenness index (AEI) (Villanueva-Rivera et 

al. 2011); the normalized difference soundscape index (NDSI) (Kasten et al. 2012); the 

acoustic complexity index (ACI) (Pieretti, Farina & Morri 2011); and the bioacoustic 

index (BAI) (Boelman et al. 2007) have been developed in recent years. The use of 

these indices has been proposed as a low-cost, long term biodiversity monitoring 

strategy (Sueur et al. 2014b), which highlights the need to assess the suitability of 

these methods in a range of habitats. Plantation forests have become increasingly 

important refuges for biodiversity throughout the world (Coote et al. 2013). There are 

2.9 million hectares of woodland in Great Britain, and around 47% of it is coniferous 

plantations (Forestry Commission 2011). The majority of coniferous woodland is 

managed by clear-felling and replanting, thus creating mosaics of even-aged, mostly 

uniform, forest stands (Mason et al. 1999). The resulting patchwork landscape offers 

opportunities to investigate species-assemblages within different aged stands and 

presents itself as a good model for studying soundscapes.  

 

This is the first study to explore the relationship between the soundscape and 

physical properties of a coniferous plantation forest in the UK and it is structured 

around four objectives. Firstly, we explore how the soundscape changes with forest 

age, hypothesising that acoustic diversity would increase with age. Forests become 

more structurally complex with age (Humphrey 2005), offering more resources and 

niches for bird species (MacArthur & MacArthur 1961), which should in turn lead to a 

more complex acoustic community (Sueur et al. 2014b). Secondly, we assessed the 

temporal variation of the soundscape (within and between years) in order to 

determine the potential suitability of these methods as a long-term monitoring tool. 

Thirdly as soundscape conservation is an important consideration both to ecosystem 

health and human health (Dumyahn & Pijanowski 2011b), we investigated how the 

acoustic signature of the forest changes with increasing distance from two moderately 

busy roads. 
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2.2 Methods 

Covering 18,730ha, Thetford Forest in East Anglia is the largest man-made forest 

in lowland UK (Armour-Chelu, Riley & Brooke 2014). Planted during the first half of the 

20th century on poor agricultural soils and heathland, it is a somewhat young forest, 

with forest stands ranging from 1 year to >100years, and is managed by the UK 

government Forestry Commission. Around 76% of the plantation comprises a mosaic 

of even-aged coniferous forest stands (of which 74% is Corsican Pine; 19% Scots Pine; 

and 7% other conifers), ranging in size from <1ha to 18ha, which are managed by clear 

felling and replanting on a 55-70 year rotation cycle. The remaining parts of Thetford 

forest comprise 12% broadleaf woodland (beech; oak; birch and mixed) and a mixture 

of open habitats including grassland, heathland, bracken and farmland habitats. The 

forest is divided by a number of roads, including three major ones (A1065; A134; A11) 

as well as a number of smaller ones. The forest is open to the public but vehicular 

access is restricted to Forestry Commission personnel and those with permits. It is a 

popular recreational area and much of the forest is used by dog-walkers, cyclists, 

walkers and equestrians. There is a large deer population within the forest which is 

mostly managed by the Forestry Commission (Wäber, Spencer & Dolman 2013). It is a 

designated Special Protection Area for the ground-nesting birds, the Woodlark and the 

Nightjar. It is also an important area for a number of scarce and rare fauna and flora in 

the UK and Europe and 94% of the forest (17,653ha) has been designated for national 

and international conservation interests (Armour-Chelu, Riley & Brooke 2014).  

 

This study took place near Santon Downham in the Central Thetford Forest 

block, which is managed by the Forestry Commission (52°28'2.1828''N, 

0°39'53.2872''E) (Figure 2.1). Permission to conduct the study was obtained from the 

Forestry Commission and we liaised with them to ensure we did not interrupt any 

felling operations or deer management activities. Sampling points (N=73) were 

predominantly classified as coniferous woodland (N=65) of which 70% was Corsican 

Pine, 20% Scots Pine, 4% clear-felled and 6% other coniferous species; other habitats 

included broadleaved and lowland mixed deciduous woodland (n=7) and grassland 

(n=1).  
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Figure 2.1  A) United Kingdom coastline. Thetford Forest (black dot) is situated in East Anglia. B) Map of the main central Thetford Forest block. Thick dark lines indicate busy A-

roads. Thinner dark lines indicate minor roads. Black dots represent study grid. C) Study grid. Dots represent sampling points (n=73), which are spaced 250m apart. Polygons 

represent different forest stands. The thick dark line on the Western edge of the grid is the A1065 and the thick dark line to the North East of the Grid is the A134 – two busy main 

roads. 
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2.2.1 Recording methods and sampling design 

To explore spatial variation in the forest soundscape, a systematic grid was used. 

Other soundscape studies have used sampling grids of 50m (Farina & Pieretti 2014) 

and 100m (Pieretti, Farina & Morri 2011). In this study, a 250m grid was used (Figure 

2.1), as one of the key objectives was to explore the relationship between forest stand 

age and acoustic diversity and a larger grid was necessary to represent a meaningful 

age-gradient of forest stands (table 2.1). Soundscape recordings (44.1KHz; 24Bit; 

Stereo) were made using a Roland R-05 digital audio recorder and a DIY stereo 

microphone using Primo EM-172 electret condenser capsules, powered by a 5V 

phantom power battery box. Although the Primo EM172 capsules are omnidirectional, 

this stereo microphone was made to enable bi-directional recording for other 

purposes – a single Primo EM-172 capsule can be used to build a mono microphone 

and give suitable recordings for a study of this kind. The Primo EM-172 was selected as 

it is a favoured microphone for DIY nature sound recordists due to its low self-noise. 

Acoustic analysis of recordings was conducted on both channels and scores used in 

statistical tests were taken as the average value of both channels. The recording unit 

was mounted on a tripod 1.5m from the ground. To minimise handling noise, the 

observer stood 8m from the unit and remained quiet throughout recordings. Since the 

presence of an observer may affect the vocal activity of any animals, upon arriving at a 

site there was a one minute quiet interval before commencing recording. However, 

since Thetford Forest is a popular recreational area it was assumed that the observer 

did not have a drastic effect on the vocal fauna. 
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Table 2.1 Survey effort showing the age and type of forest stands sampled. CCA label column refers to 

the key for the Canonical Correspondence Analysis. 

WOODLAND TYPE AGE (YRS) 
NO. SITES CCA 

LABELS 
2014 2015 

Coniferous 0-5 7 8 CF1 

Coniferous 5-10 7 7 CF2 

Coniferous 15-20 9 9 CF3 

Coniferous 20-30 6 6 CF4 

Coniferous 30-35 9 9 CF5 

Coniferous 35-45 13 11 CF6 

Coniferous 45-50 8 10 CF7 

Coniferous 50+ 6 5 CF8 

Broadleaf  15-20 1 1 BLM3 

Broadleaf  50+ 6 6 BLM8 

Lowland Acid Grassland (n=1 both years) LAG 

 

Three minute recordings were made at each grid point during the morning 

(6am-11am). Although this is a relatively short snapshot of a soundscape, it is possible 

to capture and categorise different habitats using as little as 80 seconds of recording 

(Bormpoudakis, Sueur & Pantis 2013). Furthermore, our aims were to investigate the 

role that snapshot soundscape recordings might have in large-scale monitoring so 

shorter recordings and more sites were deemed a suitable logistical trade-off. On 

average, it was possible to visit 21 sites during the 6-11am sampling window.  To 

ensure each site was sampled earlier and later during this period, it was further split 

into two separate sampling periods (6am-08:30am and 08:30am-11am). The temporal 

variation of the soundscape between different years was explored by sampling the 

grid in two consecutive years during the summertime: between 21st July - 20th August 

2014; and 29th July - 28th August 2015. Due to logistical limitations it was not possible 

to sample all sites equally but most sites were sampled at least six times in each year, 

with each site being sampled at least three times in one or both sampling periods. 

During 2014, two sites were sampled five times, 61 sites sampled six times, and ten 

sites were sampled seven times (N=446). In 2015 three sites were sampled five times, 
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64 sites sampled six times, four sites sampled seven times and two sites were sampled 

eight times (N=443).  

 

Percentage cloud cover was recorded for each recording by estimating what 

portion of the sky directly above the observers head and in the observers field of view 

was taken up with cloud (0-20%; 20-40%; 40-60%; 60-80%; 80-100%). This was done 

from the closest track from each recording point since in some sites it was not possible 

to see a representative portion of the sky. Recordings were not made if it was raining 

or in very windy conditions.  Due to logistical constraints an anemometer was not 

available for the study but the wind levels were estimated for each recording as 

1=still; 2=light breeze; 3=strong breeze; 4=windy. However, for analysis purposes this 

was condensed to whether it was still or if there was any breeze (1=no wind; 2=some 

wind). The final “wind” score for each site was calculated as the percentage of 

“windy” recordings. To assess the suitability of this, we also obtained hourly wind-

speed records from the nearest UK Met-Office weather station at RAF Marham 

(14miles north of study site). Although this is quite a distance, we make the 

assumption that the weather will have been similar at our study grid, largely due to 

the (flat) topography of East Anglia.  

 

2.2.2 Vegetation Structure and Landscape Variables 

Field-based observations and GIS data were used to identify habitat structure 

and landscape characteristics. Canopy height was estimated using an ordinal scale of: 

0m; 1-5m; 5-10m; 10-15m; 15-20m; 20-25m; >25m. Canopy cover was estimated using 

an ordinal scale of: 0% cover; 1-20%; 20-40%; 40-60%; 60-80%; 80-100%. Tree density 

was measured by counting the number of trees above head height (ca. 2m) in an 8m 

radius of the recording position. The number of different tree species (referred to as 

TRSP from here on) and types of ground vegetation were noted down for the same 8m 

radius. Average ground vegetation height was estimated using an ordinal scale of: 0; 

0-10cm; 10-40cm 40-80cm; 80-130cm; >130cm). Vegetation surveys were conducted 

in both years. GIS data obtained from the Forestry Commission was used to determine 
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the age of each forest stand on the grid and the number of species planted in each 

stand (from here on referred to as ‘stand diversity’). The distance of recording points 

to the nearest road (50m bands) and the nearest forest stand edge (10m bands) were 

measured using the multiple ring buffer and intersect functions in ArcGIS (ESRI 2014).  

 

2.2.3 Calculation of acoustic indices 

In order to improve processing time in R, each three minute recording was split 

into ten second segments using WAV Splitter v.1.31 (DigitByte Studio 

software).Unwanted noises (i.e. footsteps, handling noise) were removed from 

subsequent analyses by removing relevant segments (generally 30s from the 

beginning and 30s from the end). For each recording, acoustic indices values were 

calculated for 12, ten second segments (equating to two minutes in total). The 

average value of these 12 segments was then used for that particular recording. 

Recordings from both sampling periods (early morning and late morning) were pooled. 

In the site comparison analyses, the average acoustic indices values were used.  (ca. 

12 minutes audio per site). There were a total of 453 soundscape recordings from 

2014 and 445 soundscape recordings from 2015. This equates to 889 two minute 

samples (2014 N=446; 2015 N=443). As Thetford Forest is a recreational area, popular 

with dog-walkers and cyclists, some recordings were interrupted when the observer 

was approached by other forest users. In these instances, if the full three minute 

recording had not been collected the observer returned to that point within 15 

minutes and collected the remaining recording period required. The usable parts of 

the two recordings were considered as one repetition for analysis purposes. A total of 

29.6 hours of recordings (2014=14.9hours; 2015=14.7hours) from 73 locations were 

considered in the analyses. 

 

Five acoustic indices were calculated for each soundscape recording using the 

soundecology package (Villanueva-Rivera & Pijanowski 2014) in the R (ver3.1.3) 

statistical analysis environment (R Core Team 2015). The acoustic diversity index (ADI) 

and acoustic evenness index (AEI) were calculated using values derived from the 
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proportion of sounds above -50dbfs (decibels) in ten 1 KHz frequency bands across the 

0-10 KHz frequency range (Villanueva-Rivera et al. 2011). The normalized difference 

soundscape index (NDSI), which calculates the ratio between anthrophony and 

biophony (Kasten et al. 2012), was calculated using default bandwidth values (i.e. 

anthrophony = 1-2KHz; biophony = 2-11KHz). The acoustic complexity index (ACI) was 

developed to sample avian communites and essentially divides the recording into 

frequency bins (i.e. bands) and temporal steps and then calculates the sound 

intensities within this matrix, giving a measure of the number of sound events and 

their relationship to one another (Pieretti, Farina & Morri 2011). In this study it was 

calculated using the default parameters (Fast Fourier Transform window length = 512; 

cluster size (J)=5). The bioacoustic index (BAI) measures the amount of sound intensity 

(y axis) across a specified frequency range (x axis) and the index value is essentially the 

area under the curve for any given recording. It was calculated for sounds between 2-

8 KHz and thus serves as a function of the sound levels and frequency bands used by 

the majority of avifauna (Boelman et al. 2007). 

 

2.2.4 Data Analysis 

To investigate the relationship between the soundscape and environmental 

variables in coniferous forest stands only (N=65) a Spearman Rank correlation matrix 

was created using SPSS v.23 (IBM Corp. 2015). This matrix was used to identify and 

interpret the nature of the relationships between indices and environmental variables 

and to guide subsequent analyses.  

 

We tested our variables for normality using Shapiro-Wilk tests and Q-Q plots and 

applied square-root transformations to achieve normality where appropriate 

(indicated with sqrt in results section). In cases where transformations did not achieve 

normality, we used non-parametric equivalent tests. To address the hypothesis that 

acoustic diversity would increase with stand-age we grouped forest stands based on 

age and conducted one-way ANOVAs with Gabriel post-hoc tests using SPSS v.23. 

Gabriel post-hoc tests are recommended where samples sizes are unequal (Field 
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2009). Homogeneity of variance was tested using the Levene test. The Kruskall-Wallis 

test was performed on ACI values from 2014 and 2015 as these data failed the Levene 

test.  

 

Canonical correspondence analysis (Ter Braak 1986), using PC-Ord v.6 (MjM 

Software, Oregon, USA), explored the correlation between sounds occurring  in 

different frequency bands with habitat variables and stand age. The frequency band 

values used represent the proportion of sounds above -50dbfs (decibels) in ten 1 KHz 

frequency bands (0-10KHz). CCA is often used in ecological studies to investigate the 

associations of different species with habitat features and types. Here, we enter the 

frequency band values as we would with species count data, (N=10) since we were 

interested in determining where these frequencies lie within the physical landscape. 

Because species’ calls span different frequencies, ordinations can be used to 

determine which frequencies are most associated with particular habitat features and 

shed light on the acoustic community present (Pekin et al. 2012; Farina & Pieretti 

2014). All sites (N=73) were included in the CCA and were split into 11 categories 

based on stand-age and habitat-type (table 2.1). Habitat structure metrics were 

averaged for each category and each category classed as a site. To investigate how the 

anthrophony/biophony ratio (i.e. NDSI) changes with increasing distance from roads, 

linear regression was used. The impact of road noise on the landscape was visualised 

using interpolation maps created in ArcGIS (ESRI 2014). 

 

To assess whether acoustic indices values from each site (N=73) were similar 

between years, parametric (i.e. Pearson) (ADI, AEI, NDSI, BAI) and non-parametric (i.e. 

Spearman–rank) correlations (ACI) were used. To determine whether indices values 

per site were significantly different between years, we used paired-samples t-tests 

(ADI, AEI, NDSI, BAI) and Wilcoxon signed-rank tests (ACI). To investigate correlations 

between weather data (personal observations and weather station data) and acoustic 

indices scores we used a spearman rank correlation matrix. To investigate differences 

in the soundscape between the two recording periods (i.e period one = 06:00-

08:30am and period two = 08:30-11:00am), paired samples t-tests were performed 
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where appropriate and a Wilcoxon Signed-rank test was used for non-normally 

distributed data. 

 

2.3 Results 

2.3.1 Relationships between the soundscape and environmental variables 

Spearman correlations between acoustic indices and environmental data in 

coniferous forest stands (table 2.2) suggest that ADI was higher in older forest stands 

with a taller, more closed canopy. These stands were more likely to have a higher 

diversity of tree species and lower ground cover diversity. Inversely, AEI was lower in 

these taller, more closed stands. ACI was higher in stands with a more open 

canopy/no canopy and higher ground cover diversity. These stands tended to be 

younger, with a shorter canopy and lower tree density. ACI was the only index to 

display a relationship with distance to the forest stand edge, indicating that ACI 

tended to be higher in more open areas. NDSI increased with increasing distance from 

the nearest road in both years. In 2014, NDSI also bore a relationship with stand age 

though this relationship was not observed in 2015. In 2014 BAI bore a relationship 

with canopy height and had a similar strength relationship to stand age as ACI 

displayed. However, in 2015 these relationships were not observed.  

 

2.3.2 Stand Age 

One-way ANOVAs reveal significant differences in ADI/AEI and NDSI in different 

aged forest stands (Figure 2.2). ADI was higher in older forest stands and lowest in the 

youngest, more open stands. There appears to be a non-linear relationship, which 

shows two stages of increase in acoustic diversity, which is corroborated with Gabriel 

Post Hoc test – showing three (2014 data) and four (2015) groupings of sites based on 

mean values (Figure 2.2). AEI displays the inverse relationship to that of ADI. 

Groupings based on NDSI values are less clear, which is likely due to the effect road 

noise at different sites. Since NDSI calculates the ratio between biophony and 

technophony, the weaker observed relationships with stand age were somewhat 

expected. ACI was significantly different in different aged forest-stands (Kruskal-
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Wallis; 2014, X2 = 20.932; p<0.005; 2015 X2 = 20.327; p=0.005) and visual inspection of 

the data indicate that this is largely driven by high ACI values in the youngest forest 

stands.  There were no significant relationships observed between BAI and different 

age-groups of forest. However, plotting the mean values from 2014 revealed a similar 

relationship to that observed between ADI and stand age but this relationship was not 

as clear in 2015 (Figure 2.2).  
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Table 2.2. Spearman rho correlation matrix of acoustic indices and environmental variables for coniferous woodland (N=65). Non-significant results are displayed as ns. Significant 

correlations are marked in bold (**=p<0.01; *=p<0.05). GIS data: Age = forest stand age; RdDst=distance to nearest road; EdgeDST=distance to edge of forest stand; STDV=stand 

diversity – no. species planted by the Forestry Commission. Field data: TRDN=tree density; TRSP=no. of different tree species; CNHT=canopy height; CCVR=canopy cover; 

GCDV=number of different types of ground vegetation; GCHT=ground vegetation height.

  
Age RdDist EdgeDist STDV TRDN TRSp CNHT CCVR GCDV GCHT 

2014 

ADI .570
**

 .038 .151 .225 .034 .485
**

 .570
**

 .503
**

 -.014 -.087 

AEI -.559
**

 -.080 -.109 -.206 -.039 -.470
**

 -.555
**

 -.482
**

 -.034 .096 

NDSI .374
**

 .659
**

 -.239 .109 -.177 .275
*
 .151 .150 .243 .102 

ACI -.274
*
 .108 -.367

**
 -.047 -.309

*
 -.128 -.344

**
 -.536

**
 .282

*
 .291

*
 

BAI .321
**

 -.111 .077 .010 -.078 .215 .421
**

 .264
*
 .047 .153 

2015 

ADI .659
**

 .283
*
 .121 .446

**
 .233 .346

**
 .646

**
 .665

**
 -.307

*
 -.084 

AEI -.643
**

 -.309
*
 -.082 -.463

**
 -.215 -.373

**
 -.656

**
 -.601

**
 .261

*
 .034 

NDSI .213 .640
**

 -.212 .210 -.141 .207 .248
*
 .041 .033 -.066 

ACI -.321
**

 .046 -.320
**

 -.023 -.430
**

 .148 -.237 -.525
**

 .376
**

 .021 

BAI -.005 -.199 -.063 .027 -.047 .125 .089 .122 -.068 -.046 
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Figure 2.2 Relationships between acoustic indices with coniferous forest stand age (N=65) from each year 

(dots = 2014 data; triangles = 2015 data). Letters represent mean groupings from the Gabriel post-hoc test 

(p<0.05). A) Mean ADI (+/-2 SE). 2014, F7,57=6.896, p<0.001; 2015, F7,57=18.772, p<0.001. B) Mean AEI (+/-2 SE) 

2014, F7,57=5.417, p<0.001; 2015, F7,57=14.359, p<0.001. C) Mean NDSI (+/-2 SE) 2014, F7,57=5.827, p<0.001 

(abc); 2015: F7,57=5.010, p<0.001. D) Mean BAI – there were no significant differences between age-groups but 

the plotted means indicate that in 2014 the mean BAI values were higher in older stands. 

 

2.3.3 Canonical correspondence analysis 

The ordinations reveal that there were three approximate frequency band 

clusters: 0-2KHz (associated with more open habitat types), 4-7KHz (associated with 

broadleaf woodland), and 7-10KHz (older coniferous woodland) (Figure 2.3). They also 

suggest that acoustic diversity would increase with habitat structural complexity. Axis 

1 in both ordinations was strongly associated with the biophony (3-10KHz), which was 

higher in stands with greater structural diversity. Axis 2 reveals that older coniferous 
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sites (>35 years) were most associated with the highest frequency bands (7-10KHz) in 

2014, but only the oldest group (>50 years) was associated with this bandwidth in 

2015. Open areas were also associated with these high frequency bands (CF1 in 2014 

and LAG in 2015). Across all axes, sites aged 15-35years (CF4, CF5, CF6) were largely 

similar to one another in their regression scores, which may partly explain the 

‘plateau’ in acoustic diversity revealed in earlier analyses. 
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Figure 2.3 Canonical correspondence analysis exploring the relationship between habitat type habitat features and ten 1KHz frequency bands. (see table 2.1 for key to 

category labels; R
2
 cut-offs for environmental variables = 0.1; TRSp = no. of tree species; CNHT=Canopy Height; GCHT=ground vegetation height; GCDV=ground vegetation 

diversity).  A) 2014 data. Strong associations between axis 1 with CNHT and TRSp (Appendix 2.1) indicate that as structural complexity increases, the higher frequency 

bands become more apparent in the soundscape. B) 2015 data. Similar relationships between axis 1 and habitat structural metrics (Appendix 2.1) show fairly similar 

distribution of sites in relation to frequency bands. See results section for explanation of key findings. 
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2.3.4 Anthropogenic disturbance 

The strongest predictor of NDSI in both years was the distance to the nearest road 

(Figure 2.4). The sampling grid was sandwiched between two busy roads, the A1065 

(running along the Eastern edge of the grid) and the A134 (ca. 500m West of the grid). NDSI 

values reached ‘0’ (i.e. an equal amount of anthrophony/biophony in the soundscape) at 

approximately 1km from the nearest road. ADI and AEI were also significantly correlated 

with distance to nearest road but the strength of the relationship is somewhat lower. This 

is likely due to the way the indices are calculated (see methods section), making NDSI a 

more suitable measure of road noise/anthropogenic disturbance. 

 

 

Figure 2.4 Interpolation maps of average normalised difference soundscape index (NDSI) scores from each sampling 
point from 2014 (A) and 2015 (B) (points are 250m apart). Darker shading indicates higher levels of 
anthropogenic/technophonic sounds (i.e. from machinery) in the soundscape. Lighter shades indicate higher levels 
of biological/biophonic sounds. The grey and black striped line on the left of each map is the A1065, a busy main 
road. The lighter grey lines indicate smaller connecting roads. The lighter grey lines indicate smaller connecting 
roads. C) Strong positive relationship between NDSI and distance to nearest road 2014 data (r2=0.373, p<0.001, 
N=73) displayed as circles; 2015 data (r2=0.397, p<0.001) displayed as black triangles. The lines of best fit for both 
datasets overlap so are not distinguishable from one another. 
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2.3.5 Temporal changes in the soundscape 

Pearson correlations reveal that ADI, AEI and NDSI values from 2014 were strongly 

related to 2015 values for ADI r=0.709; AEI r=0.646; and NDSI r=0.810, but only displayed a 

moderately weak correlation for BAI(sqrt)  r = 0.381, p<0.001, N=72 for all correlations). ACI 

values from 2014 were related to 2015 values (Spearman Rho rs=0.428, p<0.001, N=72). 

Paired-samples t-tests reveal that mean ADI per site was higher in 2015 (t71= 4.78 p<0.01), 

whilst AEI was lower (t71=-4.93, p<0.01). BAI (sqrt) was significantly higher in 2014 than 

2015 (t71= 4.742 p<0.01). Neither NDSI or ACI were significantly different between years.  

 

The number of “windy” recordings was considerably higher in 2014 (N=264) than 

2015 (N=165). The proportion of windy recordings (from here referred to as %WND) was 

significantly correlated to mean windspeed (kn) data obtained from the met-office 

(Spearman Rho, 2014 rs= 0.279, p<0.05; 2015 rs= 0.48, p<0.001), indicating that our rough 

measures of “wind” reflected that of the observed windspeeds at RAF Marham. 

Relationships between %WND and acoustic indices were stronger in 2015 than 2014. ADI 

was lower when %WND was high (2014, Spearman Rho rs=-0.247, p<0.05; 2015, rs=-0.475 

p<0.001) and in 2015 AEI was higher when %WND was high (rs= 0.427 p<0.001). Similarly 

ACI bore a significant correlation to %WND in 2015 only (Spearman Rho rs= 0.493, 

p<0.001), indicating that ACI is higher during “windy” recordings. 

 

Acoustic activity was significantly higher during the first recording period (06:00-

08:30) (ADI 2014, t72=5.233, p<0.001; 2015, t72=2.025, p < 0.05; and BAI 2014, t72=4.874 

p<0.001; 2015, t72= 2.850, p<0.01). AEI and NDSI were higher during the second period 

(08:30–11:00) in 2014 (t72=-2.929, p<0.005 and t72=-2.076, p<0.05 respectively). NDSI was 

also higher during the second period in 2015 (t72= -2.001, p<0.05), which may be related to 

an easing of traffic after morning “rush hour”. ACI was not significantly different between 

different recording periods.  
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2.4 Discussion 

2.4.1 Relationships between the soundscape and environmental variables 

The relationships between ADI and AEI with canopy characteristics and forest stand 

age echo the findings of Pekin et al. (2012), who observed a similar relationship in a Costa 

Rican rainforest. The relationship in this study perhaps reflects the management strategy of 

the Forestry Commission. Trees in the newly established stands were planted in rows ca. 

2m apart, with trees spaced ca. 1m from one another. Stands aged between 10-35 years 

were typically very dense due to natural establishment of new trees, and often had little or 

no ground vegetation cover. From around 20 years old, stands are progressively thinned 

every five years until the remaining timber reaches economic maturity between 55-70 

years (Armour-Chelu, Riley & Brooke 2014). Thinning opens up the forest and allows light 

to reach the forest floor, enabling a more complex ground vegetation to establish itself 

(Kerr & Haufe 2011).  

 

It has long been understood that as habitat structural complexity increases, so too 

does bird diversity (MacArthur & MacArthur 1961). Mean number of individuals (birds) 

increases linearly with woodland age for winter-bird communities in UK plantation forests 

but community composition is more dependent upon structural characteristics (Donald, 

Haycock & Fuller 1997). Calladine et al. (2015) found that bird assemblages in young UK 

coniferous forest stands (<10years) were typically distinct from older stands (15-30years). 

Although we have no biodiversity values for our study grid, our results indicate that 

different aged stands comprise different compositions of sound energy and older stands 

generally have higher levels of acoustic diversity. This may be caused by higher levels of 

bird vocal activity (i.e. one bird/species with a large vocal repertoire) or higher levels of 

bird diversity (i.e. more vocal species). Upon further investigation, the ordinations suggest 

that as structural complexity increases, the higher frequency bands (4-10KHz) become 

more represented in the soundscape - the majority of UK woodland bird calls range 

between 3-8KHz. Visual inspection of spectrograms highlight the contributions of different 

bird calls to the soundscape (Figure 2.5). In the oldest coniferous stands (>50years), the 

highest bandwidths (7-10KHz) become particularly noticeable within the soundscape. The 

goldcrest (Regulus regulus), which has one of the highest frequency calls in the UK (peak 
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frequency ca. 7KHz, with contact calls peaking higher still) is more associated with older 

coniferous woodland than other habitats in the UK (Donald, Haycock & Fuller 1997) and so 

may have been a key contributor to the soundscapes of the oldest coniferous stands in this 

study (Figure 2.5). 

 

Figure 2.5 Ten second spectrograms illustrating different contributors to the soundscape. A) An example of a 
recording with high ADI, BAI and NDSI values. Three separate bird species calls are highlighted by white 
squares. This kind of frequency partitioning is one of the key concepts in soundscape ecology and 
ecoacoustics. B) Recording from an older coniferous stand (>45yrs) capturing what appear to be contact calls 
of Regulus regulus (goldcrest). C) Highlighting the presence of Orthoptera within our recordings. Although we 
only utilised audio data up to 11KHz in our statistical analyses, this recording shows that the Orthopterans in 
our recordings are occupying higher frequencies (up to 22KHz). D) Another recording with high values in the 
0-10KHz range. The three darker vertical patches highlight the sound of a flying insect (potentially Syrphidae) 

passing the microphone. This kind of frequency modulated pattern might be a useful indicator of winged-insect 

(i.e. pollinator) activity. E) Recording displaying very low NDSI values (-0.95 – i.e. high road noise) which is 

evident from the thick black band filling the 0-2KHz frequency range.  
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Another contributor to the high frequency bandwidths is likely to be the wing beats 

of Dipterans, in particular the Syrphids (hoverflies), and flying Hymenopterans (bees and 

wasps). Syrphid diversity is generally greater where there is greater ground vegetation 

cover (Humphrey et al. 1999). Hoverflies were present in many of the older forest stands 

during the study, and the ambient background noise in some stands was a gentle buzzing 

sound (pers. observation). This buzzing sound can increase the overall proportion of sound 

within a recording and when a flying insect passes close to the microphone the buzzing 

sound can occupy the entire bandwidth of the recording (0KHz-22.5KHz) and is strong at 

10KHz (Figure 2.5). In areas with greater ground vegetation complexity and flower 

diversity, there are likely to be a higher number of flying invertebrates which may explain 

why some of the more open areas had similar sound profiles to the older forest stands with 

regards to the higher frequency bands (8-10KHz). Orthopterans (crickets and grasshoppers) 

were also more abundant in the open areas (pers. observation) and their songs can occupy 

a wide range of frequencies, including 10KHz (Robinson & Hall 2002) (Figure 2.5). The 

grassland site (LAG) was more strongly associated with the higher frequency bands in 2015 

than in 2014, which may be due to the grass being cut by the Forestry Commission during 

the 2014 field season and subsequently disturbing the invertebrate communities there. 

Mowing events cause major Orthopteran population declines (Weiss, Zucchi & Hochkirch 

2013) with diversity and abundance recovering over time (Chisté et al. 2016). However, 

due to the relatively short period of time we were sampling, it is unlikely that the 

Orthopteran communities re-established themselves during the remaining sampling 

period. Our findings with regards to ACI were in contrast to those found in a study by 

Farina and Pieretti (2014), who found that ACI was typically higher in sites with denser 

vegetation. This study observed the opposite pattern, where ACI was generally higher in 

more open areas. This may be explained by the strong effect that the wind had on ACI. 

However, it may also have been partly driven by the presence of invertebrate communities 

in the more open areas since ACI was calculated for the whole bandwidth of the 

recordings. The lack of strong relationships between BAI and any habitat characteristics 

could perhaps be explained by the relatively broad way in which BAI characterises the 

soundscape. It was developed to detect differences in bird communities in rich bird-diverse 

rainforests on Hawaii (Boelman et al. 2007). This may explain strong differences in BAI 

between recordings made during the dawn chorus and those made shortly afterwards. But 
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perhaps due to Thetford Forest being relatively species-poor poor when compared to 

Hawaiian rainforests, BAI was not acute enough to detect changes in the soundscape along 

the age-gradient.  

 

2.4.2 Anthropogenic disturbance 

Anthropogenic noise disturbance is recognized as a threat to terrestrial wildlife 

(Barber, Crooks & Fristrup 2010). At high levels it can cause birds (Slabbekoorn & 

Ripmeester 2008) and frogs (Parris, Velik-Lord & North 2009) to alter their song 

characteristics to reduce signal-masking. Bats will avoid crossing roads where vehicle noise 

reaches a certain level (Bennett & Zurcher 2013).  Mcclure et al. (2013) created a phantom 

road (using loud speakers in an otherwise road-free area) and observed that bird 

abundance declined by over 25% during periods of road-noise and that two species 

completely avoided the phantom road.  The negative impacts that anthropogenic noise can 

have on humans is also well documented (Goines & Hagler 2007). Indeed the practise of 

forest bathing (or Shinrinyoku in Japanese) is a means of escaping the stresses of city-living 

and can have measurable health benefits to humans (Li 2010), part of which could be due 

to being immersed in a natural soundscape. Natural sounds have been shown to speed up 

recovery from stressful situations in humans (Alvarsson, Wiens & Nilsson 2010), and to 

reduce stress-levels in coma patients (Saadatmand et al. 2013).  

 

Recognising the negative impacts that anthropogenic noise has, and the positive 

benefits that natural soundscapes can have, on biodiversity and on human health, 

Dumyahn and Pijanowski (2011b) suggest that soundscapes should be viewed as a common 

pool-resource and be managed as such. Other studies have documented ‘user’ perceptions 

of soundscapes in national parks (Iglesias Merchan, Diaz-Balteiro & Soliño 2014) and urban 

green space (Irvine et al. 2009) to identify management and mitigation needs. Using the 

NDSI, this study demonstrates how noise from a busy road leaches into the forest (Figures 

2.4 and 2.5), with a balance between anthrophony and biophony (i.e. NDSI = 0) being 

reached at ca. 1km from the nearest busy road. This distance echoes findings from a 2010 

meta-analysis of road-impact studies which found that bird communities were affected 



 
 

46 
  

over a distance of up to 1km (Benítez-López, Alkemade & Verweij 2010). This distance may 

differ depending on the size of the road and how busy it is, the type of surrounding habitat 

and time of day. However, we demonstrate the potential for NDSI to be used as a tool for 

modelling and predicting areas of ‘acoustic tranquillity’, and for managing soundscapes and 

mitigating noise disturbance.  

 

2.4.3 Temporal changes in the soundscape 

Interpolation maps help to visualise the relationship between both sampling years in 

terms of the acoustic signature (Appendix 2.2). The soundscape on the grid did change 

between years but the general patterns of acoustic diversity remained largely similar with 

regards to stand structure. Changes in bird assemblage structure due to migration and/or 

breeding season success may account for some of these differences. Since bird 

communities were not sampled as part of this study, it is not possible to determine 

whether a change in bird communities was the main driver of the observed differences. 

However, the ordination techniques do offer some evidence that differences in ADI/AEI 

were potentially being driven by changes in bird communities. Furthermore, changes in 

ADI/AEI over the five hour sampling period also indicate that these indices were detecting 

changes in bird activity. ADI was higher between 6-8am, which corresponds with the ‘dawn 

chorus’ peak of bird activity.  

 

Perhaps a more likely explanation for the observed differences in ADI/AEI between 

sampling years was the differences in wind conditions in each year. It is clear that the wind 

affects the performance of some acoustic indices as proxies for species-richness (Towsey et 

al. 2014). All of the acoustic indices used in this study were strongly affected by the wind 

conditions. With the proliferation of studies using automated recording units (ARUs), 

understanding the relationship between the geophysical properties of a soundscape and 

the performance of acoustic indices will become even more important for ensuring 

accurate predictions about biodiversity can be made using unattended field recordings. 

Deploying low-cost weather stations alongside ARUs in the field may help to disentangle 

the geophony from the biophony and anthrophony. They may also prove useful  for 
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understanding the geophonic properties of different habitat-types, since the wind-profile 

of a forested landscape is shaped by canopy structure and tree density  (Boudreault et al. 

2015). In the very least, they would help to speed up the processing of large numbers of 

recordings by allowing researchers to rule out windy/rainy/stormy recordings more 

efficiently.  

 

Our study was conducted by one observer using one recording unit on a minimal 

budget. This is important to note as the FSC principles and criteria state that scheme 

participants should conduct biodiversity monitoring that is relevant to the scale of their 

operation (Forest Stewardship Council 2015). This presents a challenge as the monetary 

resources and expertise of those collecting data will vary greatly. The observer bias of using 

a soundscape approach would mostly rest on the type of recording equipment used. This 

bias could be minimised by using the same equipment; or by calibrating different types of 

equipment to enable comparisons of data collected with different units. Farina et al. (2014) 

demonstrated that low cost recording units detected similar patterns in acoustic 

complexity to more expensive recording equipment, though overall resolution was 

reduced. The use of automated recording units (ARUs) is becoming more common in the 

field of soundscape ecology. However, ARUs are relatively expensive and typically do not 

provide data on weather conditions, although some units are now available with on board 

sensors for light, humidity, temperature and pressure (Farina et al. 2016) , which can 

greatly affect the interpretation of data. Using handheld recording units and a more 

traditional on-foot approach may be more suitable for wider monitoring applications.  

 

2.5 Conclusion 

The relative low-cost of the recording equipment used in this study would enable 

regular assessment of forests to inform adaptive management strategies. The need for a 

relatively high-powered computer is the main logistical barrier to this kind of monitoring 

being used for certification schemes or other environmental initiatives. However, having a 

centralised data processing location as part of a monitoring initiative may reduce the 

monetary pressure on scheme participants (such as in the FSC) and enable for better data 
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management protocols to be put in place (Waldon, Miller & Miller 2011). Our results 

indicate that older forest stands have higher acoustic diversity, which could be explained by 

changes in the vocal community. This relationship could be used to measure the progress 

and impacts of management decisions on biodiversity. The suite of acoustic indices 

currently available offers a number of ways to characterise the acoustic landscape. For 

example, the NDSI could be used to produce dispersion models of road-noise. Used in 

conjunction with species-distribution data such information could feed into landscape 

planning and noise mitigation strategies. Interpolation maps of both NDSI (Figure 2.4) and 

ADI (appendix 2.2) demonstrate how such soundscapes can be visualised to aide 

interpretation and highlight areas of interest. Methods from soundscape ecology clearly 

have great potential for the conservation and management of forests and biodiversity. 

Collaborations between soundscape ecologists and species-focussed research will likely 

add another string to the bow of our understanding of how anthropogenic activities impact 

on nature. 
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Chapter 3 – A comparison of the soundscapes of two UK coniferous 

woodlands. 

3.0 Summary 

There are around 3.17 million hectares of woodland in Great Britain, of which 44% is 

currently certified and 17.5% is classified as ancient woodland. Of the ancient woodland sites 

around 40% is planted on ancient woodland (PAWS), so has been continually wooded for ca. 400 

years but has been converted into plantation forest during this period. The Convention on 

Biological Diversity places great emphasis on the restoration of forest biodiversity and 

restoration of PAWS sites to more natural woodland is part of the UK Forestry Standard.  As with 

certification schemes, restoration schemes require monitoring. The performance of certification 

schemes in delivering biodiversity targets has been questioned echoing questions raised about 

the efficacy of agri-environment schemes. One of the key concerns relates to adequate 

monitoring protocols and procedures. Selecting suitable indicators is notoriously difficult but 

methods in soundscape ecology have shown promise in numerous studies. This chapter 

investigates the relationship between vegetation structure and acoustic diversity in two UK 

coniferous forests, Thetford forest and Bedgebury forest. It investigates temporal differences in 

the soundscape and further investigates the relationship between road proximity and NDSI. 

Acoustic indices were more strongly related to vegetation structure in Thetford forest with 

canopy height bearing the strongest relationships. The acoustic complexity index (ACI) displayed 

significant relationships with canopy cover and tree density in all sites. The only acoustic 

measure to bear a relationship with stand age in all sites was the subjective, Observer Index 

(O_I). Acoustic diversity was greater in Bedgebury forest than Thetford forest, which is likely due 

to the differences in management histories and landscape composition between the two sites. 

Cluster analysis and canonical correspondence analysis shows that although vegetation structure 

was similar in the two forests, their acoustic signatures (based on 10 one KHz frequency band 

values) were relatively unique from one another. Strong relationships between the normalized 

difference soundscape index (NDSI) and road proximity were observed in all sites. Spearman 

correlations indicate that sound levels in five frequency bands, between 3-8 KHz, increase with 

greater distance from the nearest road. This frequency range is most represented by bird 

vocalisations so this relationship suggests an element of road avoidance in the biophony, though 

this may not be driven by road noise per se. This chapter also reveals that relationships between 
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acoustic indices are different depending on the study site, suggesting that the use of multiple 

indices to characterise the soundscape may be more meaningful than using a single index. 

Importantly, this chapter indicates that the relationships between soundscape and landscape are 

not consistent between different sites with the same habitat, suggesting that landscape 

composition plays an important role in contributing to acoustic diversity. Finally, this chapter 

further highlights that low-cost survey methods may be a useful tool in furthering the field of 

soundscape ecology. 

 

3.1 Introduction 

There are around 3.17 million hectares of woodland in Great Britain, which covers 13% of 

total land area (Forestry Commission 2017b). This area represents a 277% increase in forest 

cover in the UK since 1905 (Forestry Commission 2017b), which is largely due to the 

industrialisation of Britain’s forestry following the 1919 Forestry Act (Raum 2017). Currently 

around 51% of woodland is coniferous woodland (mostly comprising of the native Scots pine and 

non-native Corsican pine), the remaining 49% is broadleaf woodland.  Just 17.5% of total 

woodland cover is classified as ancient woodland, so-called as it has been continuously wooded 

since 1600 (Rackham 2008). Between 1919 and the 1970s the government policy on forestry 

resulted in the conversion of many ancient woods into plantations (Brown, Curtis & Adams 

2015), which mostly comprise of native and non-native conifers. Today, around 60% of ancient 

woodland is designated ancient and semi-natural woodland (ASNW) and 40% is planted on 

ancient woodland sites (PAWS) (Atkinson & Townsend 2011). The Convention on Biological 

Diversity places great emphasis on the restoration of forest biodiversity (Dudley et al. 2005) and 

restoration of PAWS sites is part of the UK Forestry Standard (Forestry Commission 2017c).  As 

with sustainable forest management, woodland restoration requires monitoring. There is a 

plethora of research into biodiversity indicators of forest health and sustainable forest 

management (Franc, Laroussinie & Kafjalainen 2001; Marchetti 2004), which feeds into 

developing certification criteria for schemes such as the Forest Stewardship Council.  

 

Of the total UK woodland area, 44% is currently certified. The performance of 

certification schemes in delivering biodiversity targets has been questioned (Angelstam et al. 
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2013) which echo questions raised about the efficacy of agri-environment schemes (Kleijn & 

Sutherland 2003). One of the key concerns raised relates to adequate monitoring protocols and 

procedures. There appears to be an opportunity to integrate soundscape methods into large-

scale monitoring but there must first be an evidence-base on which to build such an initiative. 

The Forestry Commission guidelines on monitoring restoration projects focus mainly on 

monitoring native flora development and suggests keeping a photographic record to document 

the process (Thompson et al. 2003). There seems to be a great opportunity to incorporate 

soundscape methods into these fairly recent monitoring initiatives, which could contain 

important information relating to other aspects of forest health, often missed through focussing 

solely on vegetation. 

 

Since the 1970s UK bird populations have been in decline (Hayhow et al. 2015). The data 

obtained through large-scale citizen science initiatives was integral to identifying this alarming 

population trend (Greenwood 2007; Jiguet et al. 2012). Using data from the Breeding Bird Survey 

(BBS) collected from 1994-2012, Sullivan, Newson & Pearce-Higgins (2015) identified that 

population declines were most evident in woodland-birds and urban habitats. They suggest that 

research and conservation efforts should be focused on those habitats if declines are to be 

reversed.  Birds deliver a number of ecosystem services (Whelan, Wenny & Marquis 2008) 

including seed dispersal (Loiselle & Blake 2002) and pest control (Bereczki et al. 2014) that are 

essential to the maintenance of healthy forests. The use of acoustic indices to monitor bird 

species-richness has been a focus of soundscape ecology with varying degrees of success being 

reported. Initial studies indicated that bird-diversity was strongly correlated with different 

diversity indices, notably the Bioacoustic Index (Kasten et al. 2012); the Acoustic Diversity Index 

(Sueur et al. 2008); and the Acoustic Complexity Index (Pieretti, Farina & Morri 2011). Though 

there is clearly a need to develop the performance of these acoustic indices if they are to be used 

as proxy-measures for biodiversity, there is also a need to understand how the soundscape 

connects with the landscape.  

 

There is a growing body of evidence to suggest that soundscape analysis methods can be 

indicative of the landscape structure, with particular reference to forest fragment-size and 



 
 

52 
  

connectivity (Tucker et al. 2014; Fuller et al. 2015).  Other studies have focussed on describing 

spatial and temporal patterns in the soundscape and investigating their connection to the 

landscape.  Rodriguez et al. (2014) observed clear differences between canopy and understory 

soundscapes in a Neotropical forest, whilst also shedding light on distinct temporal patterns. In 

South-Central Alaska there are clear patterns between landscape variables and the composition 

of the soundscape indicating that proximity to wetlands and rivers was strongly associated with 

the biophony. Bormpoudakis, Sueur & Pantis (2013) were able to demonstrate that distinct 

habitat types produce distinct soundscapes. There are fewer studies that investigate the 

connection between vegetation structure and the soundscape. Using remote-sensing methods 

such as LiDAR (Pekin et al. 2012) and the Normalized Difference Vegetation Index (Machado, 

Aguiar & Jones 2017), clear relationships between vegetation structure and the acoustic diversity 

index (ADI) have been demonstrated. Using field-based measures, (Farina & Pieretti 2014) and a 

combination of remote sensing and field-measures (Farina et al. 2015) relationships between the 

acoustic complexity index (ACI) and vegetation structure have been demonstrated. 

Understanding the relationship between vegetation structure and acoustic diversity at the 

habitat-level could be particularly useful for monitoring the progress of restoration and 

certification initiatives, whilst also providing insights into bird diversity and activity.  

 

In this chapter I aim to further build on the findings in chapter two. Ultimately it 

compares soundscapes in forest stands comprised of the same species and similar age-gradients 

at two different forests in the UK.  

 

3.2 Aims and Objectives 

1. Determine whether there is a relationship between vegetation structure and acoustic 

diversity in Bedgebury Forest - a non-native PAWS conifer plantation. There was a clear 

relationship between canopy height and acoustic diversity at Thetford Forest sites and so I will 

test the same hypothesis: that acoustic diversity will be higher in older forest stands with higher 

degrees of structural complexity. 

2. Compare the soundscape between two forest sites with different landscape-scale 

attributes and management histories, testing the hypothesis that acoustic diversity will be higher 
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in Bedgebury Forest than Thetford forest. The landscape composition surrounding both sites 

differs significantly, with Bedgebury forest being surrounded primarily by ancient woodland. 

3. Compare the soundscape between two temporal sampling periods, testing the hypothesis 

that acoustic diversity will be higher in early summer than late summer. Birds are generally more 

vocally active earlier in the summer due to the breeding season. 

4. Further discuss the nature of road-noise disturbance and investigate the relationship 

between the soundscape and distance to main roads to build on the observations from chapter 

two. 

5. Investigate the relationship between acoustic indices across the different sites to 

determine whether the relationships between indices vary depending on site.  

 

3.3 Methods 

3.3.1 Study Sites 

Bedgebury forest (N 51.071882, E 0.462425°) is situated in the High Weald Area of 

Outstanding Natural Beauty (AONB), in South East England, UK (figure 3.1). The South East is 

England’s most wooded region having twice the national average at 15% cover and has the 

highest concentration of ancient woodland in the country.  The area surrounding Bedgebury 

forest is a mosaic of different types of, primarily privately owned, woodland under varying 

degrees of management (figure 3.2), along with swathes of agricultural land and grasslands. 

Managed by the Forestry Commission, Bedgebury forest is a planted on ancient woodland site 

(PAWS) covering an area of approximately 900 hectares. Comprising 55% coniferous woodland; 

32% Broadleaf, Mixed/Yew Woodland (55% of which is worked coppice); and 12% lowland mixed 

deciduous woodland (the remaining 1% is open water and gardens), Bedgebury forest is under a 

long-term management initiative to restore native broadleaf woodland across the site.  In 

contrast, Thetford forest is the largest man-made forest in lowland UK (Armour-Chelu et al. 

2014). Situated in East Anglia it covers 18,730ha and comprises a mosaic of even-aged, primarily 

coniferous, forest stands (figure 3.1). The forest was created in response to the great demands 

for timber during the First World War to provide an extensive timber reserve on land that was 

not suitable for agriculture. The Forestry Commission began afforestation of the area in the 

1920s making Thetford forest relatively young. The plantation is managed by clear-felling and 



 
 

54 
  

replanting on a 60-80year rotation cycle. Around 76% of the plantation comprises a mosaic of 

even-aged coniferous forest; 10% Broadleaf, Mixed/Yew Woodland; and 2% lowland mixed 

deciduous woodland; and the remaining area is a mixture of open habitats including grassland, 

heathland, bracken and farmland habitats.  
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Figure 3.1. a) Map of the UK. The red square indicates the location of Thetford Forest in East Anglia and the red circle 

highlights location of Bedgebury Forest in the High Weald AONB. b) Map of Bedgebury Forest. Black dots are 

sampling locations, which represent a gradient of different aged coniferous woodland stands. c) Map of central 

Thetford Forest block. Black dots show the two sampling grids used in this study. d) Northern sampling grid. Black 

dots were sampled for the Thetford forest early summer (TFES) and Thetford forest late summer (TFLS) data and 

black triangles indicate sites sampled only in the TFLS data. e) Southern sampling grid. Black dots indicate sites 

sampled in TFES data. Sampling points in d and e are spaced 250m apart.
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Figure 3.2. Woodland cover in four 10km x 10km Ordnance Survey grids squares surrounding and encompassing study 

sites. Light green = coniferous; dark green = broadleaf (including coppice); brown = felled. Black dots represent sampling 

points.  a) Thetford Forest (OS: TL78; TL79; TL88; TL89). None of the woodland in this area is classed as ancient woodland. 

b) Bedgebury Forest (OS: TQ62; TQ63; TQ72; TQ73). Most of this woodland is classed as ancient woodland (ASNW or 

PAWS). c) Ancient woodland cover in England (green shading).Thetford Forest is within the black square. Bedgebury Forest 

is within the black circle. 
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Although the area surrounding the Thetford Forest study grid contains more overall 

continuous forest cover (figure 3.2), the areas surrounding Bedgebury forest contain a 

significantly greater proportion of broadleaf woodland (table 3.1), the majority of which is 

classed as ancient woodland. This offers an opportunity to compare one habitat-type (i.e. 

non-native coniferous woodland) in two very different landscapes. 

Table 3.1. Total area by woodland type and the percentage cover within 10km x 10km OS grid squares (i.e. 

40,000ha) surrounding and including study sites. 

Woodland Type Bedgebury Forest Thetford Forest 

Area 

(ha) 

% of grid Area 

(ha) 

% of grid 

Broadleaved 8262.8 20.66 2949.1 7.37 

Conifer 2098.2 5.25 9351.5 23.38 

Coppice 18.1 0.05 2.2 0.01 

Felled 78.7 0.2 927.1 2.32 

Mixed mainly broadleaved 16 0.04 106.7 0.27 

Mixed mainly conifer 62.8 0.16 136.2 0.34 

Young trees 214.1 0.54 1058.8 2.65 

TOTAL 10750.7 26.9 14531.5 36.34 

% Ancient Woodland Cover 76.50% 0% 

 

3.3.2 Sampling Design 

Thetford Forest Early Summer (TFES) 

Two separate grids were sampled in Thetford Forest between 16th June and 1st July 

in 2014 (figure 3.1). Sampling points were arranged 250m apart as in (Turner, Fischer & 

Tzanopoulos 2018). One 33 point grid was situated in the southern part of the forest in the 

Elveden estate (52.413128, 0.618907); and a 29 point grid was located 7km northeast of 

that grid, close to the Forestry Commission headquarters in Santon Downham (52.468089, 

0.665853). These data (N=62) are considered as one treatment in the analyses and are 

referred to as Thetford Forest Early Summer (TFES). These grids comprised Corsican pine 

(45); Scots pine (10); clear-felled/newly planted (4); other conifers (3).  
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Bedgebury Forest Early Summer (BFES) 

Bedgebury forest early summer (BFES) sites were samples between 17th June and 

12th July, 2015. Due to logistical issues, it was not possible to sample both Thetford and 

Bedgebury at the same time. Although this is not ideal for making direct comparisons 

between sites, data from chapter two indicate that patterns in the soundscape at Thetford 

Forest were largely similar in two consecutive years. As such I make the assumption that the 

soundscape in Bedgebury forest is relatively stable from year to year and will mostly change 

in localised areas in response to disturbance events.. In order to capture a similar age-

gradient in Bedgebury Forest, it was necessary to stratify the sampling approach. Coniferous 

stands (N = 67) were selected to represent an age-gradient (13-87years) and ranged in size 

from less than 1ha to 9ha. Due to this range in stand sizes, centroids were used as sampling 

points - meaning that the area surrounding some sites was more heterogeneous than 

others. This somewhat reflected the variation in heterogeneity of sites on the systematic 

grid at Thetford forest. Due to the PAWS restoration initiative, there were only four stands 

that were less than 15 years old. In order to capture more data from this younger age-class, 

three of these stands contributed two separate sampling points, each spaced at least 90m 

apart. Although this distance is significantly less than that the 250m used in Thetford Forest 

it was not deemed unsuitable since (Farina & Pieretti 2014) found soundscape 

heterogeneity at 25m resolution in Mediterranean maqui habitat.  The dense shrub layer 

and low canopy in young conifer stands results in considerable variation in terms of plant 

species composition when compared to older more uniform stands so the distances 

between these sampling points was considered appropriate. Most other sampling points 

throughout Bedgebury forest were at least 100m from another.  

 

Thetford Forest Late Summer 

In 2015 it was not possible to return to the Elveden grid due to commercial hunting 

activity. Therefore, the northern grid near Santon Downham was revisited in 2015 and 

sampled between 29th July and 28th August (referred to from here as TFLS – Thetford Forest 

Late Summer). The grid was extended to cover a larger area (N=65). Sites comprised 
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Corsican pine (40); Scots pine (16); clear-felled/newly planted (3); other conifers (6). On 

both grids, points were 250m apart from one another (figure 3.1) and were representative 

of forest stands aged between 0-89 years old.  

 

3.3.3 Recording Methods 

Sampling points were visited on multiple mornings between the hours of 6-11am to 

capture morning avian activity. BFES and TFLS sampling points were each visited on six 

different mornings. Due to logistical constraints TFES sites were only visited on three 

different mornings. Three minute soundscape recordings (44.1 KHz; 24Bit; Stereo) were 

made at each grid point using a Roland R-05 digital audio recorder and a Primo EM-172 

electret condenser stereo microphone with a 5V phantom power battery box. The recording 

unit was mounted on a tripod 1.5m from the ground. To minimise handling noise, the 

observer stood 8m from the unit and remained quiet during throughout. Wind conditions 

were noted down as either no wind/still=0; or windy=1 as the wind can have a large effect 

on acoustic indices. 

 

3.3.4 Vegetation Structure and Landscape Variables 

Field-based observations and GIS data were used to identify habitat structure and 

landscape characteristics (table 3.2). Canopy height was estimated using an ordinal scale of: 

0m; 1-5m; 5-10m; 10-15m; 15-20m; 20-25m; >25m. Canopy cover was estimated using an 

ordinal scale of: 0% cover; 1-20%; 20-40%; 40-60%; 60-80%; 80-100%. Tree density was 

measured by counting the number of trees above head height (ca. 2m) in an 8m radius of 

the recording position. The number of different tree species (referred to as TRSP from here 

on) and types of ground vegetation were noted down for the same 8m radius (VS). Average 

ground vegetation height was estimated using an ordinal scale of: 0; 0-10cm; 10-40cm 40-

80cm; 80-130cm; >130cm) (NB: ground vegetation data was not collected for TFES so this 

data will only be included in BFES site-level analyses). GIS data obtained from the Forestry 

Commission was used to determine the age of each forest stand on the grid and the number 

of tree species planted in each stand (from here on referred to as ‘stand diversity’ or STDV). 



 
 

60 
  

The distance of recording points to the nearest road (RdDist) was measured using 50m 

bands; and the nearest forest stand edge (EDs) measured using 10m bands using the 

multiple ring buffer function and intersect function in ArcGIS.  

 

3.3.5 Measures of Landscape Heterogeneity and Elevation 

Four measures of landscape heterogeneity were determined using ArcGIS software. 

Buffer zones of 50m radius were created around each sampling point. The number of 

different stands within that radius was considered as a crude measure of heterogeneity. To 

investigate further, new areas and perimeters were calculated for each polygon within the 

buffer zone. The primary tree species/land-use type for each polygon was determined using 

GIS data obtained from the Forestry Commission. Simpson’s Diversity Index was calculated 

using this data to give an indication of stand-based heterogeneity (SH). A further index was 

calculated based on the age of the forest stands within the buffer zones (AH), where 

Simpson’s Diversity Index was calculated using 9 age-groups of forest and the respective 

area of each group. Edge density (EDn) was calculated by dividing the total length of 

perimeter with the total area of the buffer zone (Katayama et al. 2014). A digital elevation 

model (DEM) was produced using the OS contour lines for Bedgebury Forest. Elevation 

values of each sampling point were determined using the DEM.  
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Table 3.2.  Environmental data codes and descriptions. 

 

3.3.6 Calculation of acoustic indices 

The following acoustic indices were calculated for all recordings: the acoustic 

diversity index (ADI) and acoustic evenness index (AEI) (Villanueva-Rivera et al. 2011), 

Acoustic Entropy (H) (Sueur et al. 2008), the normalised difference soundscape index (NDSI) 

(Kasten et al. 2012), the bioacoustic Index (BAI) (Boelman et al. 2007)and the acoustic 

complexity index (ACI) (Pieretti, Farina & Morri 2011). All indices were calculated using 

default values with the multiple_sounds function in the R statistical package ‘soundecology’. 

Recordings were split into ten second segments using WAV Splitter v.1.31 (DigitByte Studio 

2007) and the first and last 30 seconds of each recording were removed to ensure there 

were no unwanted noises (i.e. footsteps and handling noise). A total of 772 two minute 

soundscape recordings (25.7 hours) were used in the analyses (TFES = 194, NB: some sites 

were recorded 4-5 times, but 12 recordings were lost due to a corrupt sd card meaning 12 

Data Type Code Description 

Vegetation structure 

from field-based 

measures. 

VH Average height of ground vegetation along transects. 

VS Total number of ground vegetation species. 

CC 
Estimate of canopy cover (0m; 1-5m; 5-10m; 10-15m; 15-20m; 20-25m; 

>25m ). 

CH Estimate of canopy height. 

TRSP Number of tree species in 8m radius of recording point. 

TRDN Number of trees in 8m radius of recording point. 

SD 
Structural Diversity based on different size trees (including saplings – dbh 

<5cm). 

GIS data and 

landscape 

heterogeneity 

measures. 

Age Age of forest stand. 

Edn 
Density of forest stand edges/different habitat edges within 100m buffer 

zone. 

SH Stand-based heterogeneity within 100m buffer zone. 

AH Forest stand-age heterogeneity within 100m buffer zone. 

Eds Distance of recording unit to nearest stand edge. 

RD 
Distance to nearest road (including A and B roads as well as all minor 

public access roads). 

 Elevation DEM derived elevation of recording point. 
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sites were only sampled twice: BFES = 383, NB: nineteen recordings were lost due to a 

corrupt sd card meaning 19 sites were only sampled five times: TFLS = 195 NB: only three 

recordings per site are considered in the analysis of this chapter as a more in depth look at 

TFLS data is in chapter two). Acoustic indices values were taken as the average value per 

sampling point. 

Additionally, during each recording, an observer acoustic-diversity index (O-I) was 

estimated to give an indication of the activity and diversity of bird calls in the soundscape. 

The observer scored the soundscape in-situ on an ordinal 1-5 scale (1=Rare/no vocalisations; 

2=Occasional vocalisations; 3=Frequent vocalisations by one species/occasional 

vocalisations by more than one species; 4= numerous vocalisations by a few species/several 

different call types; 5= many vocalisations by numerous species/many different call-types). 

The O_I, therefore, acts as a rough measure of acoustic biodiversity since it was solely 

scored on the vocalisations of birds. Since sites were visited multiple times, the average 

value of all visits to each site was used in subsequent analyses, and the resulting O_I values 

were treated as ratio data.  

 

3.3.7 Data Analysis 

SPSS Statistics 23 (IBM Corp. 2015) was used for all data analysis unless otherwise 

stated. Normality of data was checked visually using histograms and PP-plots, and 

numerically using Skewness and Kurtosis values and Kolmogorov-Smirnov tests. Where 

ANOVAs were used, the Levene’s test was used to check for homogeneity of variance. Data 

that failed to meet assumptions for parametric tests were transformed using log10 and 

square root transformations. For some sites, acoustic indices were not normally distributed 

even after transformation and so only non-parametric tests were used in their analysis if 

deemed necessary. T-tests revealed that acoustic indices values did not differ significantly 

between the two grids sampled in Thetford Forest during 2014 so data from both were 

pooled as one (i.e. TFES) for analyses.  
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3.3.7.1 Acoustic indices relationships to habitat/landscape characteristics 

Spearman correlations were used to identify relationships between 

habitat/landscape characteristic and acoustic indices.  One-way ANOVAs were used to 

explore the relationship between NDSI and distance to nearest road for each sampling grid. 

All three sites were then pooled together in a separate, two-way ANOVA to investigate the 

effects of distance to nearest road (grouped into eight 250m distance bands) and the 

sampling grid (BFES; TFES; TFLS) as well as the combination effect of both predictors. Gabriel 

post-hoc tests were used to identify groups with significant differences to one another. 

Gabriel tests are recommended where group sizes are unequal (Field 2009). The relationship 

between the acoustic activity levels (i.e. the proportion of sounds above -50 dBFS) in ten, 1 

KHz frequency bands (0-10KHz) with distance to the nearest road was investigated using 

Spearman Rank correlations.   

 

3.3.7.2 Between Site Comparisons 

In order to standardise survey effort across sites, acoustic indices values for BFES 

were taken as the average of three recordings per site. Furthermore, time of year was 

somewhat controlled for by only using recordings made between 16th June and 1st July, 2015 

in the BFES data (collected in 2015) and TFES data (collected in 2014). Site means and ranges 

were explored visually for all indices to give an idea of how sites differed from one another. 

For indices that were normally distributed within each treatment/site, one-way ANOVAs 

were used to determine how much sites differed from one another. As such only AEI, BAI 

and O_I were suitable for ANOVAs.  

 

PC-Ord v6 (McCune & Mefford 2011) was used to conduct CCA and cluster analysis. 

Canonical correspondence analysis (CCA) (Ter Braak 1986) was used to explore the 

relationship between habitat structure with the acoustic properties of all sampling points 

(N=194). CCA is an ordination technique that is widely used to explore the relationships 

between species-communities at different sites in relation to environmental 
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measures/variables (Laiolo, Rolando & Valsania 2004; Zalewski & Ulrich 2006; Jung et al. 

2012). Ten 1 KHz frequency bands (used to calculate ADI and AEI) were entered as ‘species’ 

(B1 = 0-1 KHz; B2 = 1-2 KHz; B3 = 2-3 KHz; B4 = 3-4 KHz etc) and the acoustic activity levels in 

each frequency band act as ‘abundances’.  In this way, it is possible to look for patterns in 

the physical environment that may be driving key features of the sonic environment. 

Fourteen environmental variables were included. O_I was included as an environmental 

variable as it was considered important in characterising the bird-activity levels at each site.  

 

Cluster analyses were used to assess the similarities between sites based on their 

acoustic composition and their habitat characteristics. Sites were split into 26 categories 

based on stand age and habitat type (NB: data from broadleaf stands on the Thetford forest 

grids were included in this analysis). Two separate cluster analyses were run; average values 

for ten, 1 KHz frequency bands were entered for each category in one; and average values 

for four habitat structural measures for each category were entered in the other. The Bray-

Curtis distance and centroid linkage method was used in both analyses.  

 

3.3.7.3 Acoustic Indices Associations 

To explore how acoustic indices were related to each other at different sampling 

sites we used Spearman correlations. If strong correlations were found and the data were 

normally distributed, linear regressions were applied to determine the strength of 

relationships. Relationships between O_I and the acoustic indices were explored as O_I was 

considered as a rough measure of avian activity.  
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3.4 Results 

3.4.1 Soundscape relationships to habitat/landscape characteristics 

3.4.1.1 Bedgebury Forest (6 reps per site) 

Spearman correlations (table 3.3) show that ACI was higher where the canopy was 

more open (rs=-0.598, p<0.01) and tree density lower (rs= -0.396, p<0.001) and where 

ground vegetation was taller (rs= 0.370; p<0.001) and more diverse (rs= 0.349; p<0.001). BAI 

decreased as tree density increased (rs= -0.301, p=0.013) indicating that acoustic activity, 

which could be attributed to bird calls (3-11KHz),  was higher in less dense forest stands. 

There were also weak negative correlations between AEI with stand diversity (rs= -0.260, 

p=0.024), TRSP (rs= -0.276, p=0.024) and canopy height (rs= -0.275, p=0.024) indicating that 

acoustic evenness was slightly lower in mixed-species stands, with a taller canopy 

comprising a higher number of different tree species. Conversely ADI was slightly higher in 

mixed-species stands with a higher number of different tree species. There were several 

correlations between O_I and various habitat characteristics and this was the only acoustic 

measure to display a significant relationship with forest stand age (rs=0.295, p<0.05) and 

edge density (rs=-0.285, p<0.05), indicating that older, larger stands had higher O_I. 

Negative correlations between O_I with tree density and canopy cover and a positive 

correlation with canopy height indicate that O_I was higher in stands with fewer, but larger 

trees. ADI, H and NDSI all increased with greater distance from main roads, whilst AEI 

increased with proximity to roads.  

 

3.4.1.2 Thetford Forest 

Spearman correlations (table 3.3) indicate that for TFES data, ADI and H were higher 

in older forest stands whilst AEI was higher in younger stands. Importantly, this relationship 

was being driven by the Santon Downham grid (ADI rs= 0.563; H rs= 0.604; and AEI rs= -

0.617, p<0.01) as there were no significant relationships observed in the Elveden grid. TFES 

had the weakest relationship between NDSI and distance to nearest road of all three sites 

(table 3.3), which may be due to the Elveden grid being situated further from any main road 

than the other sampling areas. In the TFLS data, Spearman correlations (table 3.3) indicate 
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that acoustic diversity tended to be higher in older, more structurally complex forest stands. 

Canopy height was the strongest predictor of ADI/AEI/H, followed by stand-age, then 

canopy cover (table 3.3).  

 

 

 

3.4.2 Between Site Comparisons 

Average O_I/ADI/H and BAI values were highest and AEI the lowest in BFES (table 

3.4) suggesting that BFES was the most acoustically diverse of all sites. ACI was lowest in 

BFES and highest in TFES. One-way ANOVAs show that BAI differed significantly between 

different sites (F2,191=289.78, p<0.001) and Tukey post hoc analysis show that all three sites 

were distinct from one another with BFES having the highest BAI values and TFLS the lowest. 

AEI was significantly lower at Bedgebury Forest than Thetford Forest (F2,191=41.74, p<0.001) 

but Tukey post hoc analysis indicate that TFES and TFLS were not significantly different to 

one another. O_I was highest at BFES and lowest in TFLS (F2,191=13.88, p<0.001); Tukey post 

hoc tests reveal that BFES and TFES were not significantly different to each other. These 

findings suggest that acoustic bird activity was greatest at BFES then TFES and was lowest at 

TFLS. Mean ADI, H and BAI values were higher in the Elveden grid than the Santon 

Downham grid though these differences were not statistically significant. 
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Table 3.3. Spearman correlation coefficients between acoustic indices and O_I with landscape and habitat 

variables for all sites. See table 3.2 for variable codes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Variable ADI AEI H NDSI BAI ACI O_I 

BFES 

Age .203 -.221 .148 .163 .204 .024 .295
*
 

STDV .256
*
 -.260

*
 .192 .156 .048 -.070 .091 

EDn -.026 .033 -.056 .023 -.240 -.158 -.285
*
 

RdDst .481
**

 -.546
**

 .452
**

 .581
**

 .055 .064 .133 

TRDN -.036 .042 -.095 -.145 -.301
*
 -.396

**
 -.293

*
 

TRSP .262
*
 -.276

*
 .225 .083 .122 -.122 .161 

CH .240 -.275
*
 .170 .210 .208 -.043 .325

**
 

CC .132 -.085 -.051 -.137 -.239 -.598
**

 -

.324
**

 VS -.086 .036 .034 .141 .118 .349
**

 .066 

VH .012 -.017 .104 .104 .155 .370
**

 .213 

TFES 

Age .361
**

 -.379
**

 .392
**

 .117 .046 -.219 .266
*
 

STDV .187 -.186 .256
*
 .074 -.023 -.124 -.023 

Elevation .151 -.205 .133 .263
*
 .060 .022 .264

*
 

RdDist .332
**

 -.372
**

 .265
*
 .293

*
 .203 .033 .378

**
 

TRDN .006 .012 -.003 -.193 -.099 -.358
**

 -.042 

TRSP .364
**

 -.377
**

 .359
**

 .080 .058 -.229 .337
**

 

CH .147 -.149 .207 -.091 -.150 -.420
**

 -.036 

CC .161 -.169 .208 -.113 -.153 -.587
**

 -.013 

TFLS 

Age .579
**

 -.610
**

 .492
**

 .252
*
 -.216 -.257

*
 .413

**
 

STDV .384
**

 -.408
**

 .324
**

 .138 -.191 -.017 .241 

SH -.060 .061 -.012 .285
*
 -.012 .189 .131 

EDn .075 -.092 .181 .252
*
 -.012 .283

*
 .160 

Elevation -.077 .062 -.163 .473
**

 -.273
*
 -.178 -.124 

RdDist .223 -.248
*
 .150 .659

**
 -.197 -.056 .170 

EDs -.073 .082 -.221 -.190 -.024 -.283
*
 -.148 

TRDN .162 -.112 .069 -.291
*
 -.133 -.369

**
 .014 

TRSP .342
**

 -.384
**

 .303
*
 .207 -.084 .085 .350

**
 

CH .603
**

 -.639
**

 .587
**

 .265
*
 -.122 -.158 .486

**
 

CC .574
**

 -.527
**

 .376
**

 .009 -.040 -.418
**

 .313
*
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Table 3.4. Average acoustic indices and observer index values for each site. 

Index BFES TFES TFLS 

N Mean S.E. N Mean S.E. N Mean S.E. 

O_I 67 2.77 0.09 62 2.54 0.10 65 2.12 0.07 

ADI 67 1.86 0.02 62 1.57 0.04 65 1.42 0.05 

AEI 67 0.44 0.01 62 0.56 0.01 65 0.60 0.01 

H 67 0.68 0.00 62 0.61 0.01 65 0.63 0.01 

NDSI 67 0.53 0.04 62 0.58 0.03 65 -0.07 0.04 

BAI 67 13.31 0.40 62 8.60 0.27 65 3.32 0.12 

ACI 67 309.13 0.48 62 315.14 1.07 65 309.93 1.06 

 

3.4.3 Canonical Correspondence Analysis (CCA) and Cluster Analysis (all three sites) 

Fourteen explanatory variables were included (table 3.5). The observer acoustic-

diversity index (O_I) was included as it was considered to be important in characterising 

stands in terms of avian vocalisations. CCA explained 45.8% variance in three axes (table 

3.5). Axis 1 had strong positive associations with distance to nearest road and O_I and was 

moderately associated with age and elevation.  Axis 2 shows moderate associations with 

field-based habitat structure data and forest stand age. Axis 3 only accounted for 2.5% 

variation in the data but was mostly associated with the measures of landscape 

heterogeneity. Frequencies between 3KHz to 8KHz were closely related to one another and 

all have a strong positive relationship with axis 1 (figure 3.3). Many UK bird calls are within 

this frequency range, which is an indication that Bedgebury Forest had higher levels of bird 

activity than Thetford Forest.  The CCA shows that BFES, TFES and TFLS general had distinct 

acoustic signatures from one another. The strongest environmental predictors were 

distance to nearest road, O_I and tree diversity. 
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Table 3.5. CCA axis associations with fourteen environmental variables. See table 3.2 for variable codes. 

 

 

 

 

 

 

 

 

 

Cluster analysis reveals that when grouping sites based on the acoustic activity in ten 

frequency bands, Bedgebury Forest sites were largely distinct from Thetford Forest sites, 

and the TFES sites were distinct from the TFLS sites (figure 3.4). And broadleaf stands in 

TFES and TFLS, aged 55-65 years old, were most similar to BFES sites than any other. 

However, cluster analysis based on habitat characteristics indicates three groupings which 

correlate with different age-groups: 0-5years old; 5-35 years; and 35-90 years old, 

regardless of site (figure 3.4). The youngest sites (0-5years: TFES_1, TFLS_1) were distinct 

from all other sites in both cluster analyses. These sites were newly planted or recently 

felled coniferous forest, so were essentially open areas with relatively little structural 

complexity or avian activity. This indicates that habitat structure was similar at BFES, TFES 

and TFLS, suggesting that differences in acoustic measures were likely being driven by other 

factors.  

Independent 

Variable 

AxIs (45.8%) 

1    

(34.7%) 

2         

(9.0%) 

3       

(2.1%) 

Age 0.349 0.239 0.045 

O-I 0.62 -0.006 -0.008 

W 0.003 0.278 0 

TRDN -0.031 0.232 -0.13 

TRSP 0.295 0.406 -0.104 

CH 0.26 0.264 0.133 

CC 0.171 0.296 -0.063 

Elevation 0.387 0.094 -0.281 

RdDist 0.627 -0.065 0.115 

EDs 0.013 -0.175 -0.083 

STDV 0.113 0.19 0.128 

EDn 0.043 0.142 0.129 

SH 0.032 0.127 0.157 

Age_D 0.069 0.16 0.135 
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Figure 3.3. Canonical Correspondence Analysis showing relationships between recording locations at three 

sites (N=194). Fourteen environmental variables were included and frequency band values inputted as species. 

R
2
 cutoff for environmental variables = 0.2. Bedgebury Forest (BFES) soundscapes were more closely 

associated with the frequency bands B4-B8 (3-8KHz) than Thetford Forest sites (TFES/TFLS). TFLS was more 

associated with B2 and B3 (1-3KHz), and B10 (9-10KHz) than TFES and BFES. NB: TFES and BFES data are from 

the same time of year (mid-June – early July) but in different years (TFES =2014; BFES = 2015). TFLS data are 

from 2015 (mid-July to mid-August). 
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Figure 3.4 a) Cluster dendrogram showing groupings of sites based on ten 1KHz acoustic frequency band 

activity values. b) Cluster dendrogram showing groupings of the same sites based on measures of habitat 

structure (canopy height, canopy cover, tree density and tree diversity).  

 

3.4.4 Effect of roads on soundscape 

One-way ANOVAs revealed significant differences in NDSI at different distances to 

the nearest road in BFES (F6,60=7.160, p<0.001) and TFLS (F5,59=10.289, p<0.001) but no 
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significant differences in TFES data. Means plots reveal the nature of the relationship with 

distance to road whereby NDSI generally increases with increasing distance from roads in all 

3 sites (figure 3.5). Two-way ANOVA reveals significant differences in NDSI values between 

sites and between different distance bands but that there was no significant interaction 

effect between distance to road and the study grid (table 3.6). Gabriel post-hoc tests 

indicate that BFES and TFES were not significantly different between one another but they 

were both significantly different to TFLS (table 3.7).  

Table 3.6. Two-way ANOVA showing differences in NDSI values between sites and at different distances from 

the nearest road and showing there was no interaction effect between site and road distance. 

Source D.F. Mean Square F Sig. 

Corrected Model 20 1.193 19.372 <0.001 

Intercept 1 12.843 208.544 <0.001 

Site 2 1.964 31.885 <0.001 

RdDist_G 7 .745 12.090 <0.001 

Site * RdDist_G 11 .069 1.128 .342 

 

Table 3.7. Gabriel Post-hoc test results indicating that TFLS had significantly lower mean NDSI values than BFES 

and TFES (which were not significantly different to one another). 

(I) Site (J) Site Mean Difference (I-J) Std. Error Sig. 

BFES TFES -0.053 .0437 .536 

TFLS 0.601 .0432 <0.001 

TFES BFES 0.053 .0437 .536 

TFLS 0.655 .0440 <0.001 

TFLS 

 

BFES -0.602 .0432 <0.001 
TFES -0.655 .0440 <0.001 

 

Spearman correlations (p<0.01) show that sounds between 3-8 KHz tend to increase 

with distance from roads (3-4 KHz, Rs = 0.480; 4-5 KHz, Rs = 0.522; 5-6 KHz, Rs = 0.507; 6-7 

KHz, Rs = 0.474; 7-8 KHz, Rs = 0.413) and sounds between 0-2 KHz decrease with distance 

from roads (0-1 KHz, Rs = -0.276; 1-2 KHz, Rs = -0.322). These results suggest that the 

relationship between NDSI and distance to nearest roads is not solely being driven by the 

dispersion of road noise (i.e. technophonic noise between 1-2 KHz), but that road avoidance 
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of bird species may also be a contributing factor. There were no significant correlations 

between technophonic noise (i.e. 1-2 KHz) with frequencies associated with bird 

vocalisations (i.e. 3-8 KHz) suggesting that noise may not be driving these relationships. We 

also observed strong relationships between ADI, AEI and H with distance to the nearest road 

in BFES and TFES which were not as strong or evident in TFLS (table 3.3). 

 

 

Figure 3.5. Error bar plot showing the relationship between NDSI and distance to the nearest road. 

BFES=circles; TFES=triangles; TFLS=squares. The relationship was strongest in the TFLS data. 

 

3.4.5 Acoustic Indices Associations 

O_I was square root transformed (sqrtO_I) for some of the following analyses. 

Relationships between acoustic indices were not constant across sites indicating that 
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seasonal changes and differences in acoustic communities affect how indices correlate with 

one another (table 3.8). O_I was correlated with all the acoustic indices (except ACI in the 

TFLS data) suggesting that the indices values were related to acoustic biodiversity to some 

degree. BAI was most strongly related to sqrtO_I (r2=0.325, p<0.001, N=194) and in the BFES 

dataset the relationship between BAI and O_I was very strong (r2 = 0.719, p<0.001, N=67). 

The weakest relationship between BAI and O_I was in the TFLS data when bird-activity was 

notably lower. ACI was most closely correlated with BAI in the BFES data but again this 

relationship was weakest in the TFLS data. Similarly O_I, ADI, AEI, H, ACI and BAI were all 

strongly correlated to NDSI in the BFES and TFES sites but these strong relationships 

disappear in the TFLS data. The relationship between BAI and ADI was strongest in the TFES 

data (linear r2=0.373, p<0.001) and was fairly strong in the BFES data but this relationship 

also disappeared in TFLS data. The relationships between ADI/AEI/H all remained fairly 

similar across the three sites, which is due to the similar methods used for calculating these 

indices. These results indicate that time of year may play an important role in how these 

indices perform in terms of capturing surrogate measures of biodiversity. It is evident that 

the two indices that focus mostly on total bird activity (BAI and O_I) were higher during 

early summer, which is what one might expect. 
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Table 3.8. Spearman correlation coefficients showing relationships between six acoustic indices and the 

observer-estimate of bird-diversity (O_I). * p<0.05; ** p <0.01 

    O_I ADI AEI H NDSI BAI 

Bedgebury 

Forest Early 

Summer 

(2015) 

N=67 

O_I 1     
 

ADI .374
**

 1     

AEI -.410
**

 -.976
**

 1    

H .487
**

 .892
**

 -.923
**

 1   

NDSI .635
**

 .612
**

 -.654
**

 .720
**

 1  

BAI .843
**

 .366
**

 -.374
**

 .482
**

 .621
**

 1 

ACI .584
**

 0.01 -0.06 .276
*
 .454

**
 .648

**
 

Thetford 

Forest Early 

Summer 

(2014) 

N=62 

O_I 1     
 

ADI .577
**

 1     

AEI -.600
**

 -.977
**

 1    

H .464
**

 .930
**

 -.946
**

 1   

NDSI .477
**

 .768
**

 -.756
**

 .704
**

 1  

BAI .477
**

 .635
**

 -.608
**

 .513
**

 .682
**

 1 

ACI .324
*
 0.08 -0.09 -0.04 .384

**
 .567

**
 

Thetford 

Forest Late 

Summer 

(2015) 

N=65 

O_I 1     
 

ADI .417
**

 1     

AEI -.438
**

 -.982
**

 1    

H .372
**

 .860
**

 -.879
**

 1   

NDSI .284
*
 0.22 -.274

*
 0.15 1  

BAI .423
**

 0.12 -0.08 0.14 -0.04 1 

ACI 0.20 -0.14 0.12 0.04 0.19 .375
**

 

All Sites 

N=194 

O_I 1      

ADI .502
**

 1     

AEI -.515
**

 -.983
**

 1    

H .421
**

 .866
**

 -.888
**

 1   

NDSI .566
**

 .573
**

 -.571
**

 .425
**

 1  

BAI .554
**

 .594
**

 -.565
**

 .425
**

 .700
**

 1 

ACI .326
**

 -0.04 0.05 -0.01 .403
**

 .276
**

 

 

3.5 Discussion 

3.5.1 Acoustic indices relationships to habitat/landscape characteristics 

The relationship between habitat structure and the soundscape was not consistent 

across the sampling sites. The hypothesis that older forest stands would be more 

acoustically diverse was only true in the TFLS data. The only index/acoustic measure to bear 

a significant relationship with forest stand age in all sites was O_I. However, O_I was only 

included in this study as a rough measure of audible bird activity and cannot be considered 

an objective measure of acoustic diversity. Observer-estimates in other facets of habitat 
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surveys are open to bias and variability depending on both environmental conditions and 

the actual and perceived skill level of the observer (Farmer et al. 2009; Campbell & Francis 

2011). In this study there was only one observer and the parameters were quite crude so 

the level of variation within the data may be somewhat reduced but this kind of measure 

would be unsuitable for a large-scale monitoring initiative involving numerous observers.  

 

Of the computer-based indices ACI appears to have the most consistent relationship 

to habitat structure. In all three sites it showed relatively strong negative correlations with 

canopy cover and tree density indicating that ACI tended to be higher in more open areas. 

ACI can be particularly sensitive to random noise events, such as wind (Sueur et al. 2012), 

which may explain these consistent findings across all three sites. The strongest 

relationships between habitat structure and acoustic indices were observed in the TFLS 

data, which echoes the findings of Pekin et al. (2012) and may be being driven by greater 

species-richness in older, taller stands. However, the relationship does not appear in the 

BFES data and is much weaker in the TFES data. When separating TFES data into two 

separate grids (Elveden Forest and Santon Downham) it is apparent that the Santon 

Downham grid is driving the relationship between habitat structure and the acoustic indices. 

The fact that these strong relationships are not evident in the BFES data or on the Elveden 

grid (TFES) may be indicative that the Santon Downham grid has a particular landscape 

composition that lends itself to such a relationship. Landscape composition is a driver of 

biodiversity in woodland and agricultural landscapes (Kroll et al. 2014; Neumann et al. 

2016). Further study grids in Thetford forest and across other coniferous plantations in the 

UK may shed light on the effect that landscape composition has on the soundscape.  

 

The relationship between habitat structure and acoustic diversity may also be linked 

to anthropogenic noise. ADI, AEI and H bore relatively strong relationships with distance to 

the nearest road in the BFES and TFES data. The same relationship was not observed in the 

TFLS data. Sites in the TFLS grid were generally closer to roads because the grid was 

bordered on the east and west by busy A-roads. It might therefore be possible that these 
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roads are affecting both the abundance and diversity of birds  or their behaviour  

(Trombulak & Frissell 2000; Slabbekoorn & Halfwerk 2009) which could have skewed the 

results. Road avoidance is common amongst bird species (Brotons & Herrando 2001; Husby 

2017) and road noise can affect the health, and survival, of some birds (Halfwerk et al. 2011; 

McClure et al. 2017) so it may be that the vocal community throughout the TFLS study is not 

what one would expect in a less-disturbed site. However, other sites were subject to 

anthropogenic noise disturbance too. Half of the TFES data (Elveden grid, N=35) was 

collected between 0.5-3km from RAF Lakenheath. As such there were often bursts of loud 

engine noise that permeated through the grid as planes were taking off and landing so 

anthropogenic noise was often a dominant feature of the soundscape. Studies have shown 

how birds living close to airports, or other sources of anthropogenic noise disturbance, alter 

their singing behaviour to avoid overlapping with the noise(Gil et al. 2015). Further studies 

throughout Thetford Forest would need to be conducted in order to determine whether 

proximity to RAF Lakenheath does alter the temporal and spatial patterns of acoustic 

diversity.  

 

3.5.2 Effects of Roads on the Soundscape 

Proximity to roads bore the strongest relationship to the soundscape (particularly 

NDSI) across all sites. Roads are known to have negative effects on terrestrial and aquatic 

ecosystems (Forman & Alexander 1998). Our results are consistent with findings from 

previous studies that indicate that species richness/abundance increase with increasing 

distance from roads (Brotons & Herrando 2001; Forman, Reineking & Hersperger 2002; 

Husby 2017; Yip et al. 2017). We found strong correlations between indicators of bird 

activity (i.e. acoustic activity in the 3-8 KHz bandwidth) and distance to road which remained 

strong when only considering sites over 500m from a road. There is debate over the cause 

of biodiversity decline with proximity to roads. Roads are a source of anthropogenic noise 

disturbance, which can cause birds to change their vocalisations (Slabbekoorn, Peet & Grier 

2003; Nemeth et al. 2013; Grade & Sieving 2016) and even disrupt the breeding success of 

freshwater fish (Holt & Johnston 2015). It is well documented that anthropogenic noise is a 

source of environmental pollution that can have surprising and far-reaching effects on 
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wildlife (Slabbekoorn & Ripmeester 2008). However, a number of studies have concluded 

that noise is not the main driver of reductions in biodiversity with proximity to roads. 

Berthinussen & Altringham (2012) found that bat foraging activity increased dramatically 

with increasing distance from a busy motorway (between 0-1600m) but found no evidence 

to suggest that noise-levels were driving this relationship and instead suggested habitat 

degradation and collisions with vehicles as being more important. Likewise, (Summers, 

Cunnington & Fahrig 2011) suggest that traffic mortality is the main driving factor in the 

relationship between species diversity/abundance and proximity to roads. However, these 

studies have only focussed on noise levels, which often dissipate rapidly over a relatively 

short distance. This study demonstrates that road-noise is the most dominant feature in the 

soundscape for distance of at least 1km in a wooded area (and even beyond this it is still 

clearly audible). Other studies have shown that birds do avoid road traffic noise (McClure et 

al. 2013).  With this in mind, studying the effects of road noise on wildlife might be slightly 

more nuanced than simply measuring noise levels. Regardless of the causes of apparent 

biodiversity declines due to the presence of roads, this study demonstrates a simple, low-

cost method for mapping road-noise and audible biodiversity and highlights the level of 

information available within a single recording.  

 

3.5.4 Between Site Comparisons  

As expected Bedgebury forest had the highest acoustic diversity values followed by 

early summer and then the late summer recordings from Thetford forest. These differences 

are particularly clear when taking into consideration BAI and ADI values. Both of these 

indexes have been linked to bird species richness in previous studies (Boelman et al. 2007; 

Machado, Aguiar & Jones 2017). Aside from absolute differences in acoustic index values, 

the composition of the soundscape (as determined by activity levels in ten 1 KHz frequency 

bands) was distinct at the three sites. There are several factors that may be driving these 

results.  
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Bedgebury forest is relatively small and forms part of a mosaic landscape comprising 

pockets of ancient and plantation woodland, farmland and, improved and unimproved 

grassland. Landscape heterogeneity is often considered a key driver of biodiversity and is 

especially important for bird diversity (Báldi 2008; Cerezo, Conde & Poggio 2011; Neumann 

et al. 2016) though it is acknowledged that different species respond differently to 

landscape composition (Katayama et al. 2014).  Forest stands at Bedgebury forest were on 

average much smaller and comprised greater variety (i.e. coniferous, coppiced and other 

broadleaf stands) than those sampled in Thetford Forest, leading to greater heterogeneity 

and higher availability of different niches. Furthermore, the average age of forest stands in 

Bedgebury forest is much older than Thetford Forest. Older forest stands can act as refuges 

for wildlife in UK woodlands and creating old-growth stands within plantations is becoming 

a standard of best forestry practise in the UK (Humphrey 2005). Additionally, Bedgebury 

forest has been undergoing a long-term restoration to ancient semi-natural (broadleaf) 

woodland since 2005. Although there is limited data on species-recovery rates during 

ancient woodland restoration it is likely that the impact of such restoration initiatives may 

be detectable after ten years of progress. 

  

In contrast to BFES, the TFLS sampling grid, situated at the heart of Thetford Forest, 

is bordered by two busy A-roads with a quiet road to the north and a relatively quiet railway 

to the south. The Elveden grid (N=35 in TFES data) is located in a corner of Thetford Forest 

(figure 3.2) and so may be more susceptible to edge effects that may affect the relationship 

between forest structure and acoustic diversity, though it does still comprise large, even-

aged forest stands. Bird diversity is often higher closer to forest edges as different habitats 

and their respective vegetation combine to provide opportunities for multiple species 

(Reino et al. 2009). Although not significant, both BAI and ADI were higher in the Elveden 

Grid than the Santon Downham grid which suggests that bird activity may have been slightly 

higher there. Another possible explanation for this is the proximity of the Elveden grid to 

RAF Lakenheath and so was subject to extreme-noise events when aeroplanes were taking 

off and landing. Birds have been shown to sing at a higher pitch in areas where 

anthropogenic noise is high (Slabbekoorn & Ripmeester 2008) so it is possible that birds 
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living in closer proximity to RAF Lakenheath sing louder than those situated in Santon 

Downham.  Another explanation could be due to potential differences in deer populations 

between the two sites. The Elveden grid, although part of Thetford Forest, is privately 

owned and deer populations are managed by the landowners. There were several well 

maintained deer “hunting” platforms situated around this grid, compared to only one on the 

Santon Downham grid. Speaking with a deer-stalker from Elveden estates it became clear 

that they take bookings of private hunting parties during the hunting season, which is why I 

was not allowed access to the site later in the summer.   

 

3.5.5 Temporal Variations in the Soundscape 

Temporal differences in the soundscape may also be important. The results indicate 

that early summer recordings generated higher acoustic values, in particular for the BAI and 

ADI. Most birds are still breeding during June/July in the UK and by August their breeding 

activity is slowing down. This likely explains the higher acoustic values in the TFES data than 

TFLS. Soundscape composition also appeared to be different between TFES and TFLS. Higher 

frequencies (9-10 KHz) were more represented in the TFLS recordings. Thetford Forest 

comprises lots of grassland and open areas as part of its management for ground-nesting 

birds (nightjar and woodlark). These areas attract a diverse invertebrate fauna including 

Orthopterans (crickets and grasshoppers) and Syrphids (hoverflies). However, the lack of 

strong associations with TFES sites and the higher frequencies indicates that soundscape 

composition changes depending upon the time of year. Orthopterans and syrphids are 

typically more abundant later on in the summer (Riede et al. 1998) and so are more likely to 

become a more prominent fixture in the soundscape during these warmer months.  

 

3.5.6 Acoustic Indices Associations 

The results indicate that O_I was significantly correlated with all indices. These 

correlations were the strongest in the early summer recordings (BFES and TFES) which may 

be suggestive that these indices are more effective at estimating bird abundance/diversity 

during periods of high activity. BAI was likely the strongest predictor of avian activity since it 
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was most correlated with O_I.  The relationships between acoustic indices were different 

depending on the sampling period. During periods of higher bird activity (i.e. BFES and 

TFES), all six indices were more correlated with one another than in periods of low bird 

activity (TFLS). This indicates that using a combination of indices may be more suitable for 

characterising sites than relying on one index. Towsey et al. (2014) found that using 

combinations of acoustic indices was more appropriate for determining bird-species 

richness. A similar approach may be useful when determining differences between sites. In 

this study, the relationship between acoustic indices was not uniform across all sites. For 

example, ADI/AEI and H were stronger predictors of structural complexity when BAI was low 

(i.e. TFLS data). Where BAI was high the relationship between canopy structure and 

ADI/AEI/H was not evident. Further data collected at different times of the year may shed 

light on this. Bormpoudakis, Sueur & Pantis (2013) were able to classify different habitat 

types using recordings taken in the afternoon, during the autumn (i.e. when bird singing 

activity is vastly reduced). The clear relationship between habitat structure and ADI in the 

TFLS data (where BAI was low) could be indicating that vegetation differences may be more 

easily detected during periods of relative quiet in the biophony. 

 

3.6 Conclusion 

Echoing the findings of chapter two – using soundscape recordings to monitor road 

noise and its effect on wildlife could be a valuable tool for noise mitigation.  Unfortunately 

the methods of this study do not enable the proper modelling of road noise and further, 

more targeted studies would need to be done in order to feed into suitable models. 

Determining the finer relationships between the soundscape, habitat structure and 

landscape composition is an area of research still in its infancy. If such methods are to be 

incorporated into monitoring initiatives they first need to be trialled in a variety of habitat 

types and environmental conditions. It is evident that in some cases there is a clear 

relationship between habitat structure and acoustic diversity (i.e. TFLS). This relationship, 

however, may not be a general rule. In chapter two I suggest that this relationship may be 

due to differences in species communities along the vegetation gradient since several 

studies have found such relationships (Nikolov 2009; Pekin et al. 2012; Calladine et al. 
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2015). However, this chapter indicates that the relationships between soundscape and 

landscape are not consistent between different sites with the same habitat. Improvements 

on this study would include conducting some sound-transmission surveys as in Darras et al. 

(2016) to investigate how sounds travel through different forest stands and how forest 

structure affects sound transmission. Aside from investigating forest structure and its role in 

sound transmission, the role of landscape heterogeneity is likely important. There are many 

studies attempting to understand the relationship between the soundscape and the 

landscape using passive acoustic monitoring equipment and long audio recordings (Krause, 

Gage & Joo 2011; Gage & Axel 2014; Pieretti et al. 2015; Mullet et al. 2016). Although useful 

for creating a detailed acoustic image of an area, the time and resources available for 

conducting these studies on a wider scale are limited. This study highlights that differences 

and relationships between the soundscape and landscape can be observed using relatively 

low-cost methods. Such methods could prove extremely useful if enough data could be 

generated over a wider variety of landscapes. This kind of data-collection could lend itself 

well to a large-scale citizen-science initiative along similar lines to the National Bat 

Monitoring Project, by the Bat Conservation Trust (Barlow et al. 2015) or The Breeding Bird 

Survey, by the British Trust for Ornithology (Sullivan, Newson & Pearce-Higgins 2015). There 

is one such initiative, the Global Soundscapes Project /Record the Earth but it lacks a 

standardised protocol and is not focussed on recording outdoor soundscapes. Combining 

the ecology protocols/ethos of species focussed citizen science projects with the 

technological advances of Record The Earth may be an extremely useful means of 

identifying relationships between biodiversity, the landscape and the soundscape. 
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Chapter 4 – Investigating the soundscape of Sweet Chestnut coppiced 

woodland. 

4.0 Summary 

Coppicing is one of the oldest known forms of woodland management. Since the late 

19th and early 20th century Europe has seen a huge decline in this form of woodland 

management, with many stands being abandoned or restored to High Forest. The 

biodiversity associated with coppice woods is the product of many centuries of 

management and is distinctive from that of high forest due to a number of features 

including: short rotation cutting cycles, high woody species diversity, high degrees of spatial 

heterogeneity and limited amounts of fallen deadwood. The loss of these particular 

structural phases has been linked to declines in some aspects of biodiversity. Although 

sweet chestnut coppice in the UK is generally considered to be poor for biodiversity, there 

are relatively few studies demonstrating this. This study investigates the relationship 

between the soundscape with vegetation structure and landscape composition in sweet 

chestnut coppice stands in a UK plantation forest. It uses a low-cost automated recording 

unit built for the purpose of this study and a suite of acoustic indices to uncover temporal 

and spatial patterns in the soundscape. A total of 6930 one minute recordings equaling 115 

hours and 30 minutes of soundscape recordings were collected in 40 sites. Although there 

were no particularly strong correlations between acoustic index values and vegetation 

structure but there were a number of moderately significant findings. Each acoustic index 

was associated with one or more vegetation structure metrics. There were several 

significant relationships between acoustic indices and landscape-based heterogeneity 

measures. Sites with a greater proportion of broadleaf woodland displayed greater acoustic 

diversity than those with mostly coniferous woodland. The strongest observed relationships 

in the study were between NDSI and distance to the nearest A-road. NDSI values increased 

with increasing distance from the nearest busy road following a non-linear relationship. This 

chapter provides evidence that soundscape-based monitoring techniques could provide 

useful tools in forest management and best practice guidelines, with particular reference to 

road-disturbance and landscape heterogeneity. Furthermore it presents a dataset that was 

collected using the ARUPI – an automated recording unit utilizing the Raspberry Pi single 

board computer. These units cost a quarter of the price of the leading market alternative 
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and are customizable to suit different research needs. As such they present the budget-

limited researcher with a high-quality, low-cost option for investigating soundscapes. 

 

4.1 Introduction 

Coppicing is one of the oldest known forms of woodland management. The practice 

involves periodically cutting trees to promote new growth to emerge from the cut stumps 

(termed stools).  The multiple stems are then harvested on regular short rotations to 

provide timber in smaller dimensions than traditional, long-term silvicultural methods 

(Forestry Commission 2015). A great number of broadleaf tree species will coppice readily 

but amongst the most common are hazel, ash, hornbeam, and sweet chestnut. The time 

between harvest (or rotation) is different depending on the species. For example, Hazel is 

usually cut every 7-10 years and sweet chestnut every 12-16 years, though this can be 

different depending on the desired product (Fuller & Warren 1993). The harvested poles 

have a variety of uses including as fence palings, posts and planking and firewood (Buckley 

& Howell 2004).  Coppices can be managed as simple coppice or coppice with standards. 

Simple coppice is defined as even-aged single storey stands that are clear-cut at the time of 

harvest leaving stools to regenerate without canopy cover. Coppice with standards involves 

growing larger trees (aka standards), often oak trees or other important timber species, 

scattered infrequently around the coppice stand so their crowns do not touch, allowing 

plenty of light through to the coppice below. Standard trees often span several age-classes 

to give increased vertical complexity to the overall structure of the stand (Forestry 

Commission 2015). In this chapter coppiced woodland is referred to as an all-encompassing 

term for both management practices.  

 

Since the late 19th and early 20th century Europe has seen a huge decline in coppiced 

woodland, with many stands being abandoned or restored to High Forest (Mairota et al. 

2016). In the UK, these declines were in part due to the post-war 1919 Forestry Act, which 

saw a shift towards creating a strategic timber reserve using even-aged silviculture (Mason 

2007). Combined with reduced market demand for coppiced products over the past few 

decades, the loss of coppiced woodland has been drastic. In the UK, although broadleaf 
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forest cover has increased by over 25% in the past 70 years, the area of coppice has 

declined by around 600%. In 1947 there were 141,698ha of coppiced woodland in the UK, 

representing around 21% of all broadleaved woodland, and by 2002 that figure stood at 

23,523ha, representing just 2.6% of broadleaf woodland cover (Hopkins & Kirby 1947). 

Indeed, the value of sweet chestnut coppice per hectare of land in Kent dropped by 43% 

between 1987 and 1999 (Buckley & Howell 2004).  In the past two decades, forestry has 

undergone yet another sea change in management practice and has veered towards 

restoration of natural forest processes and continuous cover forestry (Angelstam 1998; 

Mason et al. 1999; Humphrey 2005). And more recently there has been a resurgence of 

interest in reinstating coppice management as a means of sustainable timber production for 

biofuels (Fuller et al. 2007; Fuller 2013) whilst also accommodating the distinctive 

biodiversity associated with coppiced woodland (Kirby, Buckley & Mills 2017).  

 

The biodiversity associated with coppice woods is the product of many centuries of 

management and is distinctive from that of high forest due to a number of features 

including: short rotation cutting cycles, high woody species diversity, high degrees of spatial 

heterogeneity and limited amounts of fallen deadwood (Kirby, Buckley & Mills 2017). The 

loss of these particular structural phases has been linked to declines in some aspects of 

biodiversity. For example, several heath butterfly species (notably the High Brown Fritillary 

Argynni adippe) have shown significant declines since the 1970s (Hopkins & Kirby 2007). The 

reduction in coppice management practices coupled with a switch towards continuous 

cover forestry has resulted in a decline in woodland clearings on which many species 

depend. Similarly, Willow Warbler (Phylloscopus trochilus) population decline in the UK has 

been linked to the loss of coppice management as they prefer sites with a partially closed 

canopy, where tree density is high but trunk diameter is small (Stostad & Menéndez 2014). 

As such, different aged stands often display distinct faunal assemblages and it is the 

maintenance of a mosaic of different aged stands that contributes to maintaining a distinct 

forest biota. Moth assemblages in young coppice stands are characterized by species 

typically associated with open habitats, whereas assemblages in older coppice are typically 

comprised of species associated with closed-canopy woodland (Broome et al. 2011). Similar 

changes in bird assemblages are observed through different aged coppice stands and 
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studies often suggest that management should be geared towards maintaining a mosaic of 

age-structures in order to maximize biodiversity on the whole (Maccoll, du Feu & Wain 

2014).  Indeed, younger sweet-chestnut coppice stands are associated with open-ground 

and migrant bird-species but following canopy closure the balance shifts towards resident 

woodland species and species richness declines (Fuller & Moreton 1987).  

 

There are studies that suggest that allowing natural regeneration of sweet-chestnut 

coppice into high forest can yield biodiversity benefits, particularly for tree-cavity and 

deadwood species (Laiolo, Rolando & Valsania 2004). And although it is generally recognized 

that in the UK, sweet-chestnut coppice monocultures are relatively poor in terms of their 

biodiversity, maintaining them with mature standards can improve the habitat for a variety 

of species, including dormice and several bird species (Buckley & Howell 2004). It is 

inevitable that forest management practices will continually fluctuate between placing 

emphasis on different aspects of forestry such as the economy, biodiversity and social well-

being. Just as forest management practices evolve, so too can the methods used to inform 

best practice. The purpose of this study is to investigate the relationship between forest 

structure and the soundscape within worked coppice woodland and assess the viability of 

such methods as a monitoring tool. Thus, the key purpose of this study is to identify 

whether differences in the soundscape relate to differences in vegetation and landscape 

structure.  

 

4.2 Objectives 

1. To explore the temporal patterns of acoustic activity throughout worked coppice 

stands along an age-gradient to test the hypothesis that acoustic activity will be the 

highest in the morning during and immediately following the dawn chorus, when 

bird activity is at its highest.  

2. To investigate the relationship between vegetation structure and acoustic diversity 

to test the  hypotheses:  
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a. That  acoustic diversity will be greater in stands that display higher structural 

complexity – previous studies suggest that acoustic diversity and structural 

complexity are intrinsically linked through the Niche Hypothesis (Krause 

1993). 

b. And that young stands (<10years) will display high-levels of acoustic diversity 

as will older stands (aged >40 years). Previous studies have found bird 

species-richness to be particularly high in very young coppice (Fuller & 

Henderson 1992) and other studies suggest that when left or abandoned, the 

biodiversity of sweet chestnut coppice increases (Laiolo, Rolando & Valsania 

2004). 

3. To explore the relationship between landscape heterogeneity and acoustic diversity 

testing the hypothesis that stands located in more heterogeneous surroundings will 

display greater levels of acoustic diversity. Landscape hetereogeneity is known to 

have a positive influence on species-richness and diversity, particularly in birds so it 

stands to reason that areas with a greater degree of landscape complexity should 

produce more diverse soundscapes. 

4. To further elaborate on the relationships between road proximity and acoustic 

diversity to test the hypotheses that: 

a. NDSI values will increase with distance to the nearest road, following a linear 

relationship - chapters two and three indicated that NDSI values reach ‘0’ at 

around 1000m from the nearest busy road, therefore it is assumed that a 

similar pattern will be found in this study particularly in the morning. 

b. Acoustic diversity will be higher at greater distances from roads; there was 

some evidence in chapters two and three that acoustic diversity increased 

with distance from the nearest road and  the use of automated recording 

units should improve the interpretation of that finding. 
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4.3 Methods 

4.3.1 Study Site 

                 Bedgebury Forest, situated near Goudhurst, Kent, is managed by the UK 

government funded body, the Forestry Commission and falls within the High Weald Area of 

Outstanding Natural Beauty. It is a planted on ancient woodland site (PAWS), meaning it has 

been continually wooded since 1600. Part of the forest (around 6%) is made up of the 

National Pinetum, a centre for international conifer conservation, but the rest of the forest 

is managed for timber and a host of recreational activities. There are over 40km of walking, 

cycling and horse-riding routes running throughout the forest making it a popular spot for 

recreational forest users. The forest itself is comprised of around 73% High Forest and 17.6% 

worked coppice, which is almost exclusively (99.3%) composed of sweet chestnut (Castanea 

sativa) (appendix 4.1). It was selected for this study due to the relatively large number of 

worked coppice stands (N=107), which span a range of ages from 0-49 years. As such 

Bedgebury forest offers an opportunity to sample stands that are under “active 

management” and those that may be considered abandoned or regenerating. Active 

management can be defined as coppices that undergo cutting cycles of 0-20 years for sweet 

chestnut (Buckley & Howell 2004) or 5-30 years for coppices in general (Kirby, Buckley & 

Mills 2017). One limitation that has been noted in previous studies is the omission of older 

abandoned coppice stands when investigating age-associated bird assemblages (Fuller & 

Moreton 1987; Maccoll, du Feu & Wain 2014); or the absence of younger, actively managed 

stands when investigating natural regeneration of coppice (Laiolo, Rolando & Valsania 2004).  

 

4.3.2 Site Selection 

Sweet Chestnut worked coppice sites were selected using GIS data obtained from 

the Forestry Commission (figure 4.1). At the time of the study there were 157 hectares of 

sweet chestnut coppice in Bedgebury Forest. They ranged from 0.2 - 6.3 ha in size and were 

aged between 0-49 years (i.e. time since last coppicing event). 48 sites were selected to give 

a range of different aged stands. In order to select a suitable range of different aged-forest 

stands, sites were divided into five 10 year age-brackets. Unfortunately it was not possible 

to select an equal number of sites for different age-categories due to the recent 

management history of the forest. As such there were only 6 sites aged 0-10 years; 11 sites 
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aged 10-20 years; 11 sites aged 20-30 years; 10 sites aged 30-40 years; and 10 sites aged 40-

49 years. Since data analysis with regard to stand age was mostly based on regression or 

correlation this was considered acceptable as age-groups were not directly compared to one 

another.  

 

4.3.3 Recording Methods 

Recordings were made using the ARUPI (see chapter five) between June 17th and July 

18th in 2015. The units were programmed to record one minute of audio (16-bit; Mono; 48 

KHz sampling rate) every 15 minutes. Rodriguez et al. (2014) used the same recording 

schedule to investigate the temporal and spatial dynamics in a neotropical forest. 

Bormpoudakis, Sueur & Pantis (2013) were able to distinguish different habitat types from 

one another using just 80 seconds worth of recording per site. Furthermore, in Thetford 

forest meaningful relationships between habitat structure and the soundscape were 

documented based on several two minute recordings per site (Turner, Fischer & 

Tzanopoulos 2018). Based on these previous studies it was deemed appropriate to use a 

schedule of one minute recordings every 15 minutes to characterize the soundscape. The 

added benefit of using this schedule is that it also minimized energy consumption and data 

storage, lowering the overall budget considerably than using longer or more frequent 

recordings. The order of sampling was randomized to ensure that different aged stands, in 

different parts of the forest were sampled throughout the survey period. ARUPI units were 

placed as close to the centroid of each forest stand attached to a suitable sized tree using 

bungee cord at a height of between 2.5-3.5m from the ground. The microphone was angled 

away from the tree and as far away from any foliage as possible to reduce the sound of 

leaves rustling in the wind. Units were left at each site for around two days and on average 

units were left in position for approximately 43 hours (2hours 54 minutes of audio per site 

on average). Each unit was numbered to help identify if there were any significant 

differences in recording quality between units. Four units were deployed for this study.   
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Figure 4.1. Worked coppice ARUPI recording sites in Bedgebury Forest. Black dots indicate survey positions 

(N=40).  

 

4.3.4 Vegetation Structure and Diversity 

Two belt transects (2m x 15m) were surveyed at each recording site. Transects 

radiated out 15m north and 15m south-east of the recording tree. The purpose of using this 

v-shape was to better capture spatial heterogeneity and vegetation structure (Shoko, 

Masocha & Dube 2015). All trees and saplings were identified to species in each transect. 

Every tree-trunk measuring >5cm diameter at breast height (DBH) was assigned to a size 

class (1 = 5-10cm; 2 = 10-20cm; 3 = 20-30cm; 4 = 30-40cm; 5 = 40-50cm; 6 = 50-60cm; 7 = 

60-70cm; 8 = 70-80cm; 9 = 80-90cm; 10 = 90-100cm; 11 = 100-110cm; 12 = 110-120cm; 13 

=120-130cm). An estimate of basal area was calculated using the upper measure for each 

DBH size-class and multiplied by the number of tree-trunks in that group to give an 

approximate measure of total basal area (BA) per transect. Deadwood volume was also 

estimated in this same way – each standing dead trunk was assigned a DBH group and total 

basal area calculated. Two diversity indices were calculated based on the Simpson’s 

Diversity Index (1-D): tree-species diversity (TD) and tree-size diversity (SD), which was 
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based on the number of individuals in each size-class. SD acts as an approximate measure of 

structural diversity, based only on living trees as deadwood was calculated separately. 

Shannon’s Diversity Index has been used widely as a surrogate for tree-size diversity 

(Mcwethy, Hansen & Verschuyl 2009; Hui & Pommerening 2014). However, Simpson’s 

Diversity Index was used as it is less sensitive to sample size (Magurran 2004) and in some 

transects there were relatively few trees. Canopy height was estimated at the beginning and 

end of each transect on a five-point scale (1 = 0-5m; 2 = 5-10m; 3 = 10-15; 4 = 15-20m; 5 

= >20m). Canopy openness was estimated using a spherical densiometer (Lemmon 1957). 

Four readings (in the cardinal directions N;E;S;W) were taken at three points along each 

transect (1m; 7m; 14m) and averaged to give an indication of openness along the transect. 

Ground vegetation was surveyed at six points along each transect (0m; 3m; 6m; 9m; 12m; 

15m) using a 1m x 1m quadrat. Total percentage cover of vegetation within the quadrat was 

estimated (VC), all species present were identified to give a measure of diversity (VS and 

VSQ) and vegetation height (VH) was measured at the centre of each quadrat. Data from 

both transects per site were combined and averaged to give an overall snapshot of 

structural and species diversity for each recording location (see table 4.1 for vegetation 

survey codes).  
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Table 4.1.  Environmental data codes and descriptions. 

Data Type Code Description 

Vegetation structure 
from field-based 
measures 

VH Average height of ground vegetation along transects 

VC Amount of ground vegetation cover along transects 

VS Total number of ground vegetation species 

VSQ Average number of ground vegetation species per quadrat. 

Rh Length of Rhodedendron touching the transect 

DBH DBH of tree which ARUPI was attached to. 

CO Canopy openness 

CH Estimate of canopy height 

TT Total number of tree trunks with DBH greater than 5cm 

BA Rough indication of total basal area per transect. 

DWf Fallen Dead basal area - as an indication of fallen deadwod volume 

DWs Standing Dead basal area 

DW Total deadwood basal area 

TD Tree Species Diversity 

SD Structural Diversity based on different size trees  (including saplings - DBH 
<5cm) 

GIS data and 
landscape 
heterogeneity 
measures 

Age Age of forest stand 

AG Age group (1-5) 

AvA Average age of forest stands in a 100m buffer zone aroun d recording unit 

TP Total length of perimeter/edge within 100m buffer zone 

EDn Density of forest stand edges/different habitat edges within 100m buffer 
zone 

SH Species-based  heterogeneity within 100m buffer zone 

AH Forest stand-age heterogeneity within 100m buffer zone 

HH Habitat heterogeneity within 100m buffer zone 

%RC Percentage of 100m buffer zone attributed to recreational areas 

%BL Percentage of 100m buffer zone attributed to broadleaf woodland 

%CF Percentage of 100m buffer zone attributed to coniferous woodland 

%WC Percentage of 100m buffer zone attributed to worked coppice 

%OA Percentage of 100m buffer zone attributed to open areas 

%OW Percentage of 100m buffer zone attributed to open water 
(lakes/rivers/streams/ponds) 

Eds Distance of recording unit to nearest stand edge. 
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Table 4.1. continued... 

Data Type Code Description 

GIS data and 
landscape 
heterogeneity 
measures 

RR 
Distance to Recreational Routes and Forestry Commission roads (no public 
vehicle access) 

RD Distance to nearest road (including A and B roads as well as all minor 
public access roads) 

A_Rd Distance to nearest A-road (i.e. major highway) 

B_Rd Distance to nearest B-road (i.e. main road) 

WD Distance to nearest source of water (rivers/lakes/streams/ponds) 

 

4.3.5 Landscape Heterogeneity 

Using GIS data obtained from the Forestry Commission National Forest Inventory, 

ArcGIS 10.4.1 (ESRI 2014) was used to measure the different facets of landscape 

heterogeneity (table 4.2). Buffer zones around each recording location of 100m were 

intersected with FC polygon data. The area of each new polygon within the buffer zone was 

calculated. Three measures of heterogeneity were calculated for each buffer zone using 

Simpson’s diversity index (1-D) whereby the areas of different classes of polygon were 

entered as abundance or count data (Katayama et al. 2014). Species-heterogeneity (SH) was 

based on the diversity of primary species of each forest stand within the buffer zone, where 

a high diversity score would mean that there were many different primary species within 

the buffer zone (list of species in Appendix 4.2). Age-heterogeneity (AH) was based on the 

age of each stand within the buffer zone, where higher scores indicate a greater diversity of 

different aged forest stands (NB: any polygons that were not classified as forest were 

entered a separate, unclassified, entity to ensure that heterogeneity was based on the same 

area for each site). Habitat-heterogeneity was calculated based on the primary habitat-type 

of polygons within the buffer zone (see table 4.2 for habitat groups). The average age of 

forest stands (AVA) in the buffer zone was also calculated. The percentage of each buffer 

zone attributed to each habitat type was also calculated to explore any habitat-based 

relationships in the data. Some habitat types were combined in order to improve the spread 

of the data across all sites. The amount of edge-habitat within each buffer zone was 

calculated by dividing the total perimeter length by total area to give edge density (EDn). 
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Table 4.2. Habitat types used for calculating habitat heterogeneity. 

Habitat Code Description Total Area (sq m) 

RC Recreational areas such as picnic spots 15967 

Deer_Glade Deer glade 862 

LMD Lowland mixed deciduous woodland 57620 

BM/YW Broadleaf/Mixed/Yew Woodland 36664 

CF Coniferous woodland 319422 

WC Worked coppice 764942 

OA Open areas 9165 

OW Ponds and lakes 3657 

Other Gardens,  residential and parking areas 46687 

NB: LMD and BM/YW were combined to form % broadleaf woodland (BL) for analysis. Deer_Glade was 
combined with OA and Other was combined with RC. 

 

Distances from recording units to important landscape features were also calculated. 

Distance to the nearest forest stand edge (EDs) was calculated by converting the Bedgebury 

forest polygon shapefile to a line-based file and generating a near table in ArcGIS. Distance 

to recreational routes and private access Forestry Commission roads (RR) was calculated in 

the same manner.  Distance of recording units to the nearest road (RD) was calculated using 

the roads shapefile obtained from Open Street Map (McGarva 2009). Since some of the 

nearest roads were small and quiet, the distance to the nearest A-road (A_Rd) and B-road 

(B_Rd) was calculated separately as the traffic on these roads is often considerably larger in 

volume, with higher speed limits so the noise generated from them is considerably louder. 

The distance to the nearest water source (including ponds/lakes and rivers) was also 

calculated (WD).  

 

4.3.6 Sound Analysis 

All recordings were analysed using the soundecology function in R (R Core Team 

2015; Villanueva-Rivera & Pijanowski 2015). Six acoustic indices were generated for each 

one minute recording (ACI; ADI, AEI, BAI, H, NDSI) as in Turner, Fischer & Tzanopoulos 

(2018). The proportion of sounds above -50dBfs in ten 1KHz frequency bands (from 1KHz – 
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11KHz) were calculated using seewave package in R using the batch-analysis script 

(Villanueva-Rivera et al. 2011). Five distinct periods were identified in the temporal analyses 

and mean index values for each period per site were used in spatial analyses. All recordings 

were listened to and explored visually using Audacity® 2.0.5 (Audacity Development Team 

2013) and scored “yes” or “no” for rain and predominant wind noise and these noisy 

recordings were removed from spatial and temporal analysis. 

 

4.3.7 Data Analysis 

                 Since the recording units were only programmed to collect four one minute 

recording every hour, five different sampling periods were identified. Mean values per site 

per sampling period were then calculated (i.e. N=40 x 5 periods). This ensured that sites 

were characterized by a greater number of recordings than if average hourly values were 

used. Normality of acoustic index data was explored using SPSS Statistics 23 (IBM Corp. 

2015); visually using histograms and QQ plots and numerically using Kolmogorov-Smirnov 

normality tests. Data transformations for several acoustic index values were attempted but 

failed to achieve normality. Subsequently, these data were analyzed using non-parametric 

tests where appropriate.  Frequency band data were not normally distributed so only non-

parametric tests and visual inspection of trends were used in their analysis. 

 

4.3.8 Temporal Analysis 

Activity levels in different frequency band values were used to explore temporal 

patterns in the Bedgebury forest soundscape. Mean hourly values were plotted on line 

charts for each 1 KHz frequency band. These plots were used to describe the daily pattern of 

the forest as a whole. Error bar plots were used to explore hourly changes in acoustic index 

values and give a further indication. These graphical depictions of the soundscape were 

used to identify five sampling periods. Non-parametric repeated measures ANOVA 

(Friedman tests) with post-hoc analysis (Wilcoxon signed rank tests) were used to determine 

whether index values differed significantly between periods.  

 



 
 

96 
  

4.3.9 Spatial Analyses 

Spearman rank correlation matrices were used to explore associations between 

environmental variables and acoustic index values. These correlations were used to guide 

further analyses. Linear regression models were used to determine relationships between 

normally distributed index values and environmental predictors; scatter plots and residual 

plots were used to assess the models for homoscedasticity. If data did not meet the 

assumption of homoscedasticity, the results were limited to interpreting the Spearman rank 

correlation matrices to look for potential relationships (i.e. H and ACI). To explore 

relationships between non-normal acoustic index data and categorical variables, non-

parametric ANOVA (Kruskal-Wallis Independent samples test) was used. Non-linear (cubic) 

regressions were used to explore the relationship between NDSI and distance to the nearest 

road. Two separate principal components analyses (PCA) were used, both with Varimax 

rotation to improve the fit of the axes to the input variables. One PCA condensed the 

vegetation structure variables, which also included stand-age. The other condensed the 

landscape heterogeneity variables. Distance-based variables (except distance to stand edge 

– EDs) were not included in the final PCAs as they tended not to be associated with other 

landscape variables, were generally independent from one another and were deemed to be 

important predictors in themselves. As such, distance variables were entered into 

subsequent models as standalone predictors. The PCA factors and distance measures were 

inputted into General Linear Models to explore the relationships between environmental 

data and acoustic index values. Multicollinearity of independent variables entered into the 

GLMs was tested using correlation matrices and was not deemed to be a problem in any of 

the presented results. The PCA factors were also used in a Canonical Correspondence 

Analysis (CCA) (Ter Braak 1986) which investigated the nature of the relationship between 

sound activity in ten 1 KHz frequency bands (1-11 KHz) and the environmental data using 

PC-Ord v6 (McCune & Mefford 2011). CCA scores were standardized using centering and 

normalizing, and the scaling method was a compromise between environmental data and 

frequency band data. Distance to nearest A-road and stand-age were also included as 

grouping variables to determine whether there were any patterns in the soundscape that 

related to either of these variables. A Monte Carlo randomization test using 1000 

permutations was run to test the null hypothesis that there was no relationship between 

the frequency band data and the environmental variables. 
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4.4 Results 

4.4.1 Survey Effort and Sound Analysis 

Four ARUPI units were deployed at 48 sites and 40 sites were successfully surveyed. 

Eight sites were unsuccessful either due to teething problems with ARUPI unit 1 (three sites), 

corrupted data files after sampling (two sites) and handling error (three sites: two battery 

failures, one failure to connect the phantom power unit to power the microphone). The 

teething problem with ARUPI unit 1 was due to a bug in the script that switches the unit on 

and off and did not affect recording quality. Unfortunately, two of these sites were younger 

stands aged <10years, which significantly reduced the number of stands in that age category 

(table 4.3). A total of 6930 one minute recordings equaling 115 hours and 30 minutes of 

soundscape recordings were collected. After removal of noisy (windy/rainy) recordings 

there were 5870 one minute recordings totaling 97hours 48mins of audio files that were 

analyzed. The average contribution of usable recordings from each site was 2hours 

24minutes, with only 5 sites contributing less than 2 hours, one of which only contributed 

54 minutes (this was due to battery failure) and four site contributing more than 3 hours. 

Table 4.3. Site selection and survey effort of sweet chestnut coppice stands. 

Age-Group 
No. of sites      

selected 

No. of sites 

sampled 

0-10 6 4 

10-20 11 7 

20-30 11 11 

30-40 10 9 

40-50 10 9 

 

 

4.4.2 Temporal Patterns 

Splitting the soundscape into ten 1 KHz frequency bands (i.e proportion of sound 

above -50dBfs per band) shows  that sounds in the lower frequencies are more prevalent in 

the soundscape (figure 4.2). Band 1 (1-2 KHz) displays two distinct peaks during the 24hr 

period. The first is sharp, starting between 04:00 and 05:00, peaking at 06:00, dropping to a 
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relative low at 09:00 before rising again at 10:00 and fluctuating until around 14:00. The 

second peak is more gradual from around 14:00 and peaking around 18:00 and gradually 

dropping until 20:00 when it drops sharply through to 00:00. These peaks largely follow 

peak traffic times and are potentially mostly indicative of the technophony. This pattern is 

loosely observed in band 2 (2-3KHz) though the second peak is less prominent. Bands 3-7 

(3KHz-8KHz) display a similar morning peak (which may be due to the onset of the dawn 

chorus) but there is no second peak. Instead, the most noticeable pattern is when sound 

levels start dropping from around 19:00 until around 00:00. Between 00:00 and 04:00, 

levels remain constantly low until the cycle begins again. A similar pattern is observed in 

bands 8-10 (8-11KHz) though the activity levels in these bands are considerably lower than 

in the other bands. 

 

Acoustic activity tended to be highest between 04:00 and 10:00 and gradually 

declined throughout the day with the period of lowest activity between 23:00 and 04:00. 

Due to this pattern the mean acoustic index values for five periods were used in subsequent 

analyses. [Index]_1 = 04:00 – 10:00; [Index]_2 = 10:00 – 15:00; [Index]_3 = 15:00- 20:00; 

[Index]_4 = 20:00 – 22:00; [Index]_5 = 22:00 – 04:00. Friedman tests reveal that BAI 

exhibited the strongest differences between these time-periods (Appendix 4.3) (χ2
(4)= 

106.274, p<0.001); followed by ACI (χ2
(4)=100.337, p<0.001); AEI (χ2

(4)=72.989, p<0.001); ADI 

(χ2
(4)=69.053, p<0.001); and NDSI (χ2

(4)= 44.168, p<0.001). The smallest changes between 

periods were observed in H indicating that this index was the least sensitive to changes in 

the acoustic composition of the soundscape (χ2
(4)=27.221, p<0.001). Post-hoc analysis using 

pairwise-comparisons (Wilcoxon signed rank tests) indicate that there were significant 

differences in BAI values between all five periods suggesting that these five periods 

represent distinct periods within the soundscape (table 4.4). When considering other indices, 

there were four distinct periods in ACI, ADI and AEI, three periods of NDSI and two periods 

using H. The five distinct period groupings were used in subsequent spatial analyses for all 

indices as they are indicative of changes in the acoustic activity of the biophony (i.e. 3-8KHz) 

and retaining the same periods across all indexes allows for better comparisons between 

index performance. 
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Figure 4.2. Mean frequency band values (i.e. proportion of sounds above -50dBfs in each band) across forty 

sites in Bedgebury Forest during a typical 24 hour period (between and the 17
th

 June and 18
th

 July 2015). 

Frequency band 1 (1-2KHz) is the most prevalent sound in the forest and is mostly comprised of road noise (i.e. 

technophony). 

 

4.4.3 Vegetation Structure 

For each index at least one periodic mean was correlated with one or more 

measures of habitat structure. There were no particularly strong correlations between 

acoustic index values and habitat structure but there were a number of moderately 

significant findings. In the following text p1= 04:00–10:00; p2 = 10:00 – 15:00; p3 = 15:00- 

20:00; p4 = 20:00 – 22:00; p5 = 22:00 – 04:00. Stand age bore only two significant 

correlations indicating that ACI (p1) was highest in young stands (Kruskal-Wallis χ2 
(4) =11.202, 

p<0.001) and NDSI (p5) tended to be higher in older stands (table 4.5).  ACI, ADI and AEI 

were the only indices to bear any relationship with ground vegetation. ACI (p1) was 
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positively correlated with VH and VC suggesting that ACI was higher in sites with a greater 

coverage of ground-based vegetation. This echoes findings in chapters two and three, 

where it was observed that ACI tended to be higher in more open areas. ADI (p2) was 

negatively correlated with VSQ whilst AEI (p2) bore the opposite relationship suggesting 

that greater ground vegetation diversity may result in lower acoustic diversity. This 

relationship is likely linked to canopy characteristics as ADI (p3) and AEI (p3) are the only 

indices to bear significant relationships with canopy openness (CO) indicating that sites with 

a more open canopy had lower acoustic diversity. BAI (p5) was the only index to bear a 

significant correlation with a taller canopy (CH), though this relationship was not very strong 

(table 4.5). Interestingly, the mean values of six 1KHz frequency bands (2-8KHz) indicate that 

older sites with taller canopies on average had more activity in these bands (appendix 4.4), 

though this relationship was not statistically significant.  

 

TT was the only structural variable that bore a relationship with every acoustic index 

(though not in every period). BAI(p2,p3) and NDSI (p4) bore negative relationships with total 

number of trees larger than 5cm DBH (TT) suggesting that denser forest stands had lower 

activity in the biophony (i.e.3-11KHz). ACI (p5), ADI (p2, p5) and H (p2-5) displayed positive 

correlations with TT suggesting that denser stands had higher acoustic diversity. ACI (p1-5) 

tended to be lower in sites that had higher structural diversity of trees. ADI (p1) and H (p2, 

p5) also decreased in sites with greater structural diversity of trees.  Although basal area (BA) 

and TT were correlated with one another (appendix 4.5), NDSI (p2) was the only index to 

show a relationship with BA indicating lower NDSI values in sites with a greater total basal 

area of live trees. ACI (p1, p2), ADI (p1) and BAI (p1, p2) were lower in sites with a larger 

amount of deadwood. BAI (p2, p3) also tended to be higher when the recording unit was 

attached to a larger tree (rs= 0.388; p<0.05). Only three indexes were related to structural 

variables when considering total mean index value per site. ACI was negatively correlated 

with SD (rs= -0.462; p<0.001) and H was positively correlated with TT (rs= 0.368; p<0.05). BAI 

was lower in stands that had a greater volume of standing deadwood (rs= -0.349; p<0.05) 

and total deadwood (rs= -0.350; p<0.05) and also tended to be higher when the recording 

unit was attached to a larger tree (rs= 0.388; p<0.05).  
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Table 4.4. Friedman post-hoc analysis (Wilcoxon signed rank tests) showing differences between acoustic index values between different sampling periods 

(P1;P2;P3;P4;P5). BAI was significantly different between all periods. ADI and AEI were significantly different across all periods except P2 and P3 were not significantly 

different to one another. 

 

 

 

 

 

 

  P2 - P1 

N=38 

P3 - P1 

N=39 

P4 - P1 

N=39 

P5 - P1 

N=39 

P3 - P2 

N=39 

P4 - P2 

N=39 

P5 - P2 

N=39 

P4 - P3 

N=40 

P5 - P3 

N=40 

P5 - P4 

N=40 
ACI Z -0.573 -2.554 -4.814 -5.442 -2.833 -5.331 -5.442 -4.651 -5.256 -4.167 

p .567 .011 .000 .000 .005 .000 .000 .000 .000 .000 

ADI Z -3.502 -3.377 -4.828 -5.442 -0.879 -2.665 -4.507 -2.93 -4.355 -3.468 

p .000 .001 .000 .000 .379 .008 .000 .003 .000 .001 

AEI Z -3.328 -2.889 -4.787 -5.442 -1.34 -3.084 -4.005 -3.145 -3.938 -2.608 

p .001 .004 .000 .000 .180 .002 .000 .002 .000 .009 

BAI Z -4.749 -5.024 -5.289 -5.442 -2.484 -3.754 -5.442 -2.997 -5.497 -5.135 

p .000 .000 .000 .000 .013 .000 .000 .003 .000 .000 

H Z -0.007 -0.349 -4.34 -3.6 -1.284 -3.852 -3.042 -4.315 -3.038 -1.438 

p .994 .727 .000 .000 .199 .000 .002 .000 .002 .150 

NDSI Z -3.604 -4.284 -4.689 -3.475 -3.921 -3.238 -0.461 -1.21 -2.083 -2.715 

p .000 .000 .000 .001 .000 .001 .645 .226 .037 .007 
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Table 4.5. Spearman rank correlations between mean acoustic index values and habitat structural metrics. See table 4.1 for vegetation variable codes.  Acoustic index 
values are the mean value for each period for each site. Period 1: 04:00-10:00 (N=39); Period 2: 10:00-15:00 (N=39); Period 3: 15:00- 20:00 (N=40); Period 4 = 20:00 – 22:00 
(N=40); Period 5 = 22:00 – 04:00 (N=40). Period T = total mean value per site across all periods (N=40). ** Correlation is significant at the 0.01 level; * Correlation is 
significant at the 0.05 level. 

 

[Index]_period VH VC VS VSQ CO CH TT TD SD SDW BA DWf DWs DW DBH 

ACI_1 .342
*
 .335

*
 .086 .024 .096 -.194 .194 -.048 -.411

*
 -.162 -.063 -.110 -.359

*
 -.382

*
 -.081 

ACI_2 .221 .213 .176 .028 .117 -.181 .077 -.139 -.497
**

 -.301 -.077 -.283 -.467
**

 -.514
**

 -.109 

ACI_3 .100 .054 .094 -.031 -.054 -.196 .225 -.100 -.446
**

 -.368
*
 -.030 -.281 -.200 -.272 -.183 

ACI_4 .075 .021 .044 .003 -.065 -.149 .185 -.002 -.335
*
 -.329

*
 -.085 -.092 -.184 -.221 .006 

ACI_5 .147 .083 .169 .033 -.079 -.290 .414
**

 -.110 -.455
**

 -.112 .131 -.034 -.069 -.133 -.207 

ACI_T .200 .153 .091 -.016 .001 -.210 .245 -.076 -.462
**

 -.288 -.025 -.179 -.259 -.302 -.140 

ADI_1 .055 .119 .107 .064 .028 .042 .020 .117 -.320
*
 -.187 -.109 -.233 -.323

*
 -.391

*
 .145 

ADI_2 -.260 -.219 -.133 -.344
*
 -.308 .117 .322

*
 -.022 -.073 -.156 .280 -.082 .109 .001 -.037 

ADI_3 -.192 -.116 -.007 -.080 -.350
*
 .063 .307 .176 -.083 -.031 .277 .055 .081 .077 -.030 

ADI_4 -.087 -.132 .038 -.037 -.214 -.082 .279 -.042 -.200 -.194 .066 .098 -.029 -.077 .039 

ADI_5 .013 -.031 .288 .081 -.069 -.060 .343
*
 -.052 -.275 -.051 .089 -.019 -.046 -.069 -.100 

ADI_T -.115 -.085 .068 -.063 -.190 .055 .292 .060 -.216 -.137 .141 -.034 -.095 -.152 .026 

AEI_1 -.101 -.152 -.131 -.101 -.064 -.028 -.009 -.124 .315 .157 .127 .236 .302 .352
*
 -.160 

AEI_2 .274 .213 .149 .347
*
 .303 -.119 -.288 .004 .046 .147 -.255 .108 -.134 -.034 .050 

AEI_3 .195 .100 .006 .082 .346
*
 -.085 -.282 -.202 .091 .013 -.212 -.024 -.087 -.092 .043 

AEI_4 .103 .123 -.035 .026 .191 .066 -.227 .064 .171 .180 .012 -.078 .048 .107 -.097 

AEI_5 -.038 .019 -.299 -.091 .038 .052 -.357
*
 .033 .259 .059 -.095 .021 .033 .060 .037 

AEI_T .080 .026 -.083 .019 .159 -.061 -.236 -.107 .217 .129 -.076 .082 .086 .132 -.039 
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Table 4.5 (contd). Spearman rank correlations between acoustic index values and habitat structural metrics. ** Correlation is significant at the 0.01 level; * Correlation is 

significant at the 0.05 level. 

[Index]_period VH VC VS VSQ CO CH TT TD SD SDW BA DWf DWs DW DBH 

BAI_1 .213 .164 .156 .228 .268 -.001 -.294 -.152 -.166 -.217 -.221 -.248 -.440
**

 -.498
**

 .222 

BAI_2 -.009 .046 -.017 .010 .225 .064 -.347
*
 -.149 .015 -.069 -.154 -.004 -.341

*
 -.373

*
 .422

**
 

BAI_3 .012 .095 .023 .111 .177 .068 -.406
*
 -.103 .173 -.023 -.092 .080 -.265 -.243 .432

**
 

BAI_4 -.006 -.062 -.034 .067 .048 .033 -.165 -.091 .109 -.092 -.062 .040 -.173 -.157 .282 

BAI_5 -.129 -.196 .191 .049 -.062 .358
*
 .052 .081 .248 .170 .203 .041 .018 .096 .303 

BAI_T .075 .062 .102 .160 .228 .077 -.299 -.164 .005 -.128 -.150 -.104 -.349
*
 -.350

*
 .388

*
 

H_1 .012 .097 .092 -.007 -.136 -.047 .283 .133 -.317 -.089 .041 .069 -.215 -.229 -.008 

H_2 -.107 -.088 .026 -.171 -.230 -.068 .415
**

 .011 -.333
*
 -.184 .149 .009 -.036 -.058 -.176 

H_3 -.047 -.036 .076 -.043 -.206 -.057 .390
*
 .062 -.287 -.044 .170 .113 -.041 -.031 -.173 

H_4 -.036 -.017 .091 .005 -.154 -.109 .329
*
 -.037 -.283 -.108 .081 .113 -.075 -.072 -.056 

H_5 .028 .003 .240 .081 -.091 -.110 .355
*
 -.118 -.330

*
 -.121 .048 .024 -.077 -.085 -.156 

H_T -.016 .030 .082 -.017 -.170 -.070 .368
*
 .003 -.312 -.117 .134 .058 -.081 -.086 -.128 

NDSI_1 .180 .198 .092 .181 .253 .036 -.221 .206 -.145 -.142 -.290 -.309 -.206 -.269 -.013 

NDSI_2 .050 .192 -.021 .034 .240 .004 -.315 .075 -.019 .026 -.386
*
 -.189 -.165 -.215 .054 

NDSI_3 .116 .259 -.021 .067 .193 -.040 -.201 .101 -.034 .014 -.291 -.096 -.115 -.181 .016 

NDSI_4 .051 .143 .032 .124 .182 .111 -.365
*
 .163 .136 .120 -.306 .054 -.121 -.119 .182 

NDSI_5 .122 .256 .067 .166 .292 .196 -.226 .162 .189 .154 -.180 .043 -.046 -.050 .246 

NDSI_T .093 .230 .014 .119 .215 .078 -.283 .137 .029 .015 -.293 -.106 -.178 -.227 .125 
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4.4.4 Landscape Heterogeneity 

There were several significant relationships between acoustic indices and landscape-

based heterogeneity measures (table 4.6). AH was positively correlated with ACI (p5), ADI 

(p1), and NDSI (p1) and negatively associated with AEI (p1) suggesting that acoustic diversity 

was higher in sites with a greater diversity of different aged forest stands in the surrounding 

area. Similarly, ACI (p4), ADI (p1), BAI (p4) and NDSI (p1) were higher and AEI (p1) lower in 

sites with greater species-based heterogeneity (SH) and habitat heterogeneity (HH). NDSI 

was positively correlated with SH in all time periods, but this may be explained by the 

positive correlation between SH and distances to busy roads (appendix 4.6). All six indices 

displayed relationships with HH. ACI; ADI; BAI and H have positive relationships with BL 

(percentage of broadleaf woodland) whilst AEI displays a negative one. This may be because 

sites that had a greater proportion of broadleaf woodland in their buffer zone also tended 

to be more heterogeneous. Indeed BL is positively correlated with the landscape 

heterogeneity measures AH, SH and HH (appendix 4.6). However, CF is also positively 

correlated with these measures to a similar degree but the only index to show any strong 

correlations with CF is NDSI. In fact, ADI and H are negatively correlated with CF and AEI 

positively, suggesting that sites with a greater proportion of broadleaf woodland displayed 

greater acoustic diversity than those with mostly coniferous woodland.  The relationship 

between NDSI and CF may be explained by the moderately strong positive correlation 

between distance to nearest A-road and CF (appendix 4.6). 
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Table 4.6. Spearman rank correlations between mean acoustic index values and landscape metrics. See table 
4.1 for variable codes.  Acoustic index values are the mean value for each period for each site. Period 1: 04:00-
10:00 (N=39); Period 2: 10:00-15:00 (N=39); Period 3: 15:00- 20:00 (N=40); Period 4 = 20:00 – 22:00 (N=40); 
Period 5 = 22:00 – 04:00 (N=40). Period T = total mean value per site across all periods (N=40).

[Index]_period Age AG AVA EDs RD A_rd B_rd WD RR %RC 

ACI_1 -.346
*
 -.333

*
 -.022 -.224 -.414

**
 -.365

*
 -.099 .037 .058 .230 

ACI_2 -.219 -.207 -.029 -.175 -.366
*
 -.236 -.036 .038 -.011 .267 

ACI_3 -.144 -.142 -.031 -.282 -.219 -.318
*
 -.136 -.032 .060 .227 

ACI_4 -.153 -.130 .043 -.310 -.274 -.115 .062 -.138 -.170 .344
*
 

ACI_5 -.213 -.233 -.288 -.253 -.426
**

 -.263 -.036 -.205 .059 .475
**

 

ACI_T -.257 -.258 -.056 -.193 -.414
**

 -.367
*
 -.138 .018 .041 .316

*
 

ADI_1 -.025 .030 .019 -.446
**

 -.426
**

 .097 .338
*
 -.089 -.314 .316

*
 

ADI_2 -.005 -.010 -.281 -.138 -.509
**

 -.215 -.060 .040 -.092 .157 

ADI_3 .063 .058 -.253 -.063 -.335
*
 -.203 -.147 -.076 -.076 .327

*
 

ADI_4 -.112 -.091 -.129 -.318
*
 -.247 -.269 -.123 -.375

*
 -.148 .356

*
 

ADI_5 -.009 -.033 -.228 -.033 -.415
**

 -.441
**

 -.227 -.158 .025 .326
*
 

ADI_T -.013 -.003 -.179 -.245 -.519
**

 -.215 -.010 -.164 -.176 .357
*
 

AEI_1 .030 -.021 .000 .405
*
 .431

**
 -.126 -.353

*
 .023 .345

*
 -.334

*
 

AEI_2 -.001 -.009 .294 .094 .493
**

 .161 .032 -.099 .122 -.098 

AEI_3 -.071 -.072 .242 .046 .311 .149 .105 .015 .119 -.259 

AEI_4 .077 .043 .099 .283 .242 .155 .015 .321
*
 .218 -.349

*
 

AEI_5 -.032 -.005 .219 .094 .416
**

 .339
*
 .124 .171 .081 -.357

*
 

AEI_T -.015 -.035 .165 .235 .479
**

 .100 -.079 .068 .246 -.329
*
 

BAI_1 -.115 -.071 .126 -.301 -.143 .256 .300 -.109 -.124 .116 

BAI_2 .068 .103 .126 -.150 -.295 .362
*
 .350

*
 .081 -.263 .215 

BAI_3 .069 .110 .143 -.187 -.103 .330
*
 .276 -.041 -.238 .228 

BAI_4 -.051 -.013 .107 -.393
*
 .056 .252 .164 -.197 -.319

*
 .156 

BAI_5 .283 .267 -.117 -.014 -.293 -.098 -.134 .085 -.111 -.065 

BAI_T -.006 .029 .140 -.266 -.197 .284 .261 -.064 -.241 .150 

H_1 -.028 -.022 -.133 -.265 -.416
**

 -.262 -.018 -.126 -.139 .396
*
 

H_2 -.040 -.071 -.174 -.208 -.378
*
 -.400

*
 -.176 -.075 .048 .306 

H_3 -.029 -.058 -.165 -.072 -.316 -.301 -.159 -.131 .038 .373
*
 

H_4 -.047 -.070 -.078 -.098 -.361
*
 -.429

**
 -.214 -.202 .017 .391

*
 

H_5 -.039 -.072 -.167 -.043 -.341
*
 -.447

**
 -.242 -.159 .091 .335

*
 

H_T -.036 -.068 -.116 -.130 -.354
*
 -.361

*
 -.165 -.149 .018 .372

*
 

NDSI_1 .021 .053 .102 -.256 .110 .753
**

 .672
**

 .089 -.455
**

 .122 

NDSI_2 .092 .130 .146 -.032 .213 .763
**

 .643
**

 .294 -.405
*
 -.006 

NDSI_3 .065 .076 .073 -.097 .280 .806
**

 .666
**

 .178 -.417
**

 .118 

NDSI_4 .191 .222 .191 -.219 .246 .864
**

 .707
**

 .154 -.576
**

 .067 

NDSI_5 .366
*
 .361

*
 .314 -.131 .198 .776

**
 .728

**
 .112 -.528

**
 .114 

NDSI_T .162 .187 .197 -.172 .243 .855
**

 .726
**

 .143 -.521
**

 .106 
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Table 4.6 (contd). Spearman rank correlations between mean acoustic index values and landscape metrics. See 

table 4.1 for variable codes.   

[Index]_

period 

AH SH HH TP EDn %BL %CF %WC %OA %OW 

ACI_1 .258 .097 .218 .142 .142 .328
*
 -.129 -.121 -.027 -.081 

ACI_2 .312 .067 .131 .255 .255 .304 -.110 -.102 -.160 .053 

ACI_3 .310 .112 .230 .245 .245 .325
*
 -.067 -.132 -.163 .010 

ACI_4 .285 .348
*
 .404

*
 .250 .250 .447

**
 -.014 -.296 -.001 .134 

ACI_5 .333
*
 .026 .241 .160 .160 .408

**
 -.344

*
 -.023 -.056 .117 

ACI_T .231 .123 .237 .120 .120 .341
*
 -.156 -.116 -.056 -.035 

ADI_1 .418
**

 .421
**

 .452
**

 .418
**

 .418
**

 .428
**

 .137 -.446
**

 -.022 .209 

ADI_2 .031 .028 .088 .148 .148 .287 -.200 -.032 .036 .040 

ADI_3 .037 .046 .159 -.039 -.039 .129 -.249 .010 -.118 .053 

ADI_4 .197 .209 .340
*
 .199 .199 .595

**
 -.179 -.221 -.111 .203 

ADI_5 .139 -.043 .124 .070 .070 .420
**

 -.366
*
 .031 -.091 .256 

ADI_T .205 .194 .313 .198 .198 .439
**

 -.150 -.195 -.046 .200 

AEI_1 -.418
**

 -.431
**

 -.445
**

 -.379
*
 -.379

*
 -.368

*
 -.154 .442

**
 .009 -.218 

AEI_2 .015 -.016 -.045 -.129 -.129 -.230 .181 .007 -.068 -.055 

AEI_3 -.005 -.049 -.134 .034 .034 -.083 .203 -.009 .091 -.059 

AEI_4 -.153 -.247 -.339
*
 -.162 -.162 -.532

**
 .146 .239 .079 -.204 

AEI_5 -.182 -.025 -.183 -.111 -.111 -.442
**

 .313
*
 .044 .048 -.255 

AEI_T -.187 -.228 -.311 -.185 -.185 -.370
*
 .090 .216 .020 -.198 

BAI_1 .257 .211 .244 .332
*
 .332

*
 .212 .139 -.287 .035 .049 

BAI_2 .235 .219 .170 .235 .235 .088 .130 -.256 .087 .047 

BAI_3 .205 .223 .201 .174 .174 .080 .156 -.253 .011 .133 

BAI_4 .271 .359
*
 .373

*
 .368

*
 .368

*
 .355

*
 .211 -.432

**
 .047 .211 

BAI_5 -.033 -.136 -.028 .065 .065 .087 -.162 .048 .136 -.029 

BAI_T .248 .254 .259 .314 .314 .229 .139 -.325
*
 .091 .108 

H_1 .313 .203 .326
*
 .217 .217 .385

*
 -.143 -.168 -.179 .210 

H_2 .192 .090 .209 .120 .120 .381
*
 -.221 -.078 -.048 .055 

H_3 .128 .055 .197 -.006 -.006 .246 -.254 -.016 -.058 .059 

H_4 .140 .083 .213 -.020 -.020 .408
**

 -.264 -.037 -.153 .151 

H_5 .118 -.032 .129 .014 .014 .383
*
 -.361

*
 .045 -.140 .175 

H_T .171 .085 .218 .045 .045 .357
*
 -.247 -.050 -.146 .115 

NDSI_1 .326
*
 .497

**
 .372

*
 .348

*
 .348

*
 -.116 .526

**
 -.493

**
 .187 .228 

NDSI_2 .200 .350
*
 .133 .181 .181 -.304 .405

*
 -.269 .124 .171 

NDSI_3 .198 .374
*
 .218 .230 .230 -.279 .426

**
 -.334

*
 .061 .219 

NDSI_4 .288 .455
**

 .309 .357
*
 .357

*
 -.127 .497

**
 -.426

**
 .087 .316

*
 

NDSI_5 .246 .454
**

 .278 .123 .123 -.195 .533
**

 -.418
**

 .064 .195 

NDSI_T .255 .464
**

 .290 .289 .289 -.192 .493
**

 -.423
**

 .066 .237 
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4.4.5 General Linear Models and Principal Components Analysis  

Fourteen vegetation structure and diversity measures were entered into a PCA and 

condensed into 5 factors which explained 82.59% of the variation in the vegetation data 

(table 4.7). Nine landscape variables (EDs; AH; SH; HH; EDn; %RC; %BL; %CF; %WC) were 

entered into a separate PCA and reduced into three factors which explain 86.27% of the 

variation in the landscape data (table 4.8; for descriptions of both sets of PCA factors see 

table 4.9).  GLM reveals that L2, RD and A_Rd were the strongest predictors of ADI_1 and 

AEI_1 (table 4.10). This finding indicates that acoustic diversity in the morning (between 

05:00-11:00am) was higher in sites that were closer to minor roads (RD) and lower in sites 

closer to busy main roads in areas with a greater proportion of broadleaf woodland and 

diversity of different aged forest stands. Linear regression indicates a moderate but 

significant relationship between ADI_1 and L2 (figure 4.3). ADI_2 was most associated with 

RD, V1 and V5 indicating sites closer to minor roads, with greater tree density and less 

ground vegetation cover were more acoustically diverse. RD and V1 were the best 

predictors for AEI_2, indicating that acoustic evenness was greater further away from small 

roads and in sites with more ground vegetation cover (table 4.10). RD, V1, L2 and L3 were 

the strongest predictors for ADI_T indicating that acoustic diversity was greater closer to 

small roads, in sites with greater landscape heterogeneity and less ground-vegetation cover. 

The inverse was true of the same predictors and AEI_T (table 4.10). BAI_1 was higher in sites 

that had a high percentage of ground-vegetation, lower volumes of deadwood and further 

from A-roads (table 4.10). BAI_2 was strongly associated with distance to the nearest A-road 

(being higher in sites further from the road) and RD (being higher in sites closer to smaller 

roads) and was higher in sites with a taller more open canopy that had lower volumes of 

deadwood and a good covering of ground vegetation. BAI_T was associated with RD, A_Rd, 

V1 and V2 but was also associated with L2 indicating that a greater variety of different aged 

stands, with a higher proportion of broadleaf woodland was also important in predicting BAI 

(table 4.10). 
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Figure 4.3. Linear regression indicates the predictive power of L2 on ADI_1 values (r
2
=0.206, p<0.001).  

Table 4.7. PCA axis loadings for vegetation structure variables. See table 4.1 for variable codes. Stand age was 

included as it highlights the association with increased structural complexity and stand age. Cumulative 

percentage = 82.56%. 

Veg. Structure 
Axis 

1 (22.29%) 2 (17.71%) 3 (15.44%) 4 (15.08%) 5 (12.06%) 

Age -.552 .646 .322 -.006 -.018 

VH .880 -.185 .272 .055 .129 

VC .891 -.050 .237 -.051 .058 

CO .766 -.206 .037 -.253 -.297 

TD -.424 .224 .432 .209 .002 

CH -.443 .771 .156 -.058 -.009 

SD -.359 .647 .004 .397 .255 

DBH .092 .850 -.205 .085 -.212 

VS .117 -.039 .919 -.134 .004 

VSQ .348 -.008 .879 .038 -.146 

DWs -.072 -.015 -.077 .930 .165 

DW -.061 .129 .035 .943 .007 

TT .049 -.373 .078 -.026 .844 

BA -.041 .200 -.206 .238 .842 

L2 

A
D

I_
1
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Table 4.8. PCA axis loadings for landscape heterogeneity variables. See table 4.1 for variable codes. Stand age 
was included as it highlights the association with increased structural complexity and stand age. Cumulative 
percentage = 82.56%. 

Landscape 
variable 

Axis 

1 (33.40%) 2 (30.41%) 3 (22.45%) 

EDs -.452 -.684 -0.36 

EDn .242 .863 -0.05 

AH .371 .573 0.44 

SH .795 .275 0.49 

HH .622 .457 0.58 

%Rec .015 .108 0.96 

SUM%BL .007 .841 0.21 

%CF .968 .033 -0.21 

%WC -.806 -.438 -0.33 

 

Table 4.9. Factors obtained from principle components analysis of field-based vegetation structure measures 
(V1-V5) and landscape-based heterogeneity metrics (L1-L3). 

 

 

 

Factor Description 

V1 
Younger stands with greater coverage of ground vegetation, a more open canopy and less 
tree-species diversity 

V2 Older stands with a taller canopy and more structural diversity and a larger ARUPI_tree 

V3 Great diversity of ground vegetation 

V4 Greater volumes of deadwood 

V5 Greater density of trees and a higher overall basal area 

L1 
high levels of species and habitat heterogeneity and high percentage of coniferous 
woodland 

L2 
high proportion of edge habitat, high percentage of broadleaf woodland and greater stand-
age heterogeneity 

L3 
greater proportion of recreational land and private gardens, with high levels of habitat 
heterogeneity 
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Table 4.10. General Linear Models showing the combined effects of different environmental variables on acoustic index values. P-values: *** ≤0.005; ** ≤0.01; * ≤0.05. 
n.b.1 = 0.059; n.b.2=0.071; n.b.3=0.066; n.b.4=0.057; n.b.5=0.072. Although the n.b. p-values were above the usual cut-off for significance, the decision to retain those 
variables in the model was based on their influence on the overall model and the fact that these variables were significant predictors in other analysis.

 Corrected Model RD A_Rd V1 V2 V4 V5 L2 L3 

Index d.f. F r2 F F F F F F F F 

ADI_1 3, 35 11.092*** 0.487 17.504*** 5.074** n/a n/a n/a n/a 14.491*** n/a 

ADI_2 3, 35 9.444*** 0.447 16.615*** n/a 9.091*** n/a n/a 4.674** n/a n/a 

ADI_T 4, 35 8.662*** 0.497 20.112*** n/a 3.819 
n.b.1

 n/a n/a n/a 7.998** 5.265* 

AEI_1 3, 35 8.962*** 0.434 15.116*** 5.908** n/a n/a n/a n/a 9.698*** n/a 

AEI_2 2, 36 9.532*** 0.346 14.740*** n/a 7.705** n/a n/a n/a n/a n/a 

AEI_T 4, 35 6.493*** 0.426 15.794*** n/a 3.471 
n.b.2

 n/a n/a n/a 4.789* 4.086* 

BAI_1 3, 35 6.137*** 0.345 n/a 3.612 
n.b.3

 7.904** n/a 7.160* n/a n/a n/a 

BAI_2 5, 33 7.599*** 0.535 9.357*** 13.381*** 4.398* 4.275* 5.453* n/a n/a n/a 

BAI_T 5, 34 4.676*** 0.407 3.891 
n.b.4

 8.159** 3.459 
n.b.5

 4.621* n/a n/a 5.515* n/a 
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4.4.6 Influence of Road Noise on the Soundscape 

The strongest observed relationships in the study were between NDSI (all periods) 

and distance to the nearest A-road. NDSI values increased with increasing distance from the 

nearest busy road following a non-linear relationship (figure 4.4). There was also a strong 

positive relationship between NDSI and distance to the nearest B-road, though the 

relationship was linear: NDSI_1 (r2=0.404, p<0.001); NDSI_2 (r2=0.340, p<0.001); NDSI_3 

(r2=0342, p<0.001); NDSI_4 (r2=0.487, p<0.001); NDSI_5 (r2=0.501, p<0.001); and NDSI_T 

(r2=0.487, p<0.001). BAI (p2, p3) and AEI (p5) increased with distance from the nearest A-

road but these correlations were fairly weak (table 4.6). ACI (p1, p3, t), ADI (p5) and H (p2, 

p4) all decreased with distance from the nearest A-road suggesting that acoustic diversity 

was higher closer to these busy highways, but again these correlations were relatively weak 

(table 4.6). ACI, ADI and H were negatively associated with RD (distance to nearest road) 

indicating that acoustic diversity was higher closer to these roads. RD represents all roads so 

includes all minor routes that run close to and through Bedgebury forest in some places so 

increased acoustic diversity may, in some cases, be attributed to the acoustic activity of 

road users, including pedestrians, equestrians and cyclists. 
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Figure 4.4. Non-linear regression models indicate that NDSI values increase with increasing distance from the 

nearest A-road (metres) in all 5 time periods. a) NDSI_1 (cubic r
2
=0.566, p<0.001, N=39); b) NDSI_2 (cubic 

r
2
=0.718, p<0.001, N=39); c) NDSI_3 (cubic r

2
=0.76, p<0.001, N=40); d) NDSI_4 (cubic r

2
=0.811, p<0.001, N=40); 

e) NDSI_5 (cubic r
2
=0.676, p<0.001, N=40); f) NDSI_T (cubic r

2
=0.815, p<0.001, N=40). 
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4.4.7 Canonical Correspondence Analysis (CCA) 

A CCA using 13 environmental variables was built entering the proportion of sound 

in each of ten 1 KHz frequency bands as individual species. Three axes cumulatively 

explained 56.9% of the variance in the frequency band data (table 4.11). The Monte-Carlo 

randomisation test indicated that the null hypothesis can be rejected and that there is a 

significant relationship between frequency band data and the environmental data (p=0.002). 

Axis 1 is strongly positively correlated with the technophony (1-2KHz) and negatively 

correlated with sounds between 2KHz and 9KHz. It is also negatively associated with 

distance to nearest A-road, B-road and water source as well as species and habitat 

heterogeneity (L1) and ground vegetation diversity (V3) and positively correlated with 

distance to recreational routes, tree density and age-based heterogeneity (table 4.12). Sites 

that are positively associated with axis 1 can therefore be described as being closer to roads 

and water and further away from forest recreation routes, with greater tree density and 

lower ground vegetation diversity. These sites tended to have lower acoustic activity in 

frequencies above 2KHz. Sites that are negatively associated with axis 1 had greater activity 

in the biophony (2-9KHz), and were further away from busy roads. Sites that are positively 

associated with axis 2 might be described as having greater volumes of deadwood and being 

closer to water and B-Roads. These sites were also more associated with frequencies above 

6KHz. Positive associations with axis 3 would be indicative of sites with greater ground 

vegetation coverage, potentially with a taller more open canopy that were generally further 

away from water but with a higher proportion of recreational areas nearby. This axis was 

particularly strongly associated with sounds above 8KHz.  By far the strongest predictor of 

the variation between frequency bands was distance to the nearest A-road and when sites 

are grouped according to their distance from the nearest A-road this becomes evident 

(figure 4.5). Sites situated over 1500m from the nearest A-road have significantly different 

soundscapes with regard to the composition of ten 1 KHz frequency bands. This is not so 

surprising since road noise (i.e. the technophony; 1-2KHz) will logically dissipate and 

diminish with increasing distance from the nearest road. However, there is some evidence 

that the higher “biophony” frequencies (3-8KHz) do have a negative relationship with the 

technophony. This may suggest that there is more biophonic activity at sites that are over 

1500m from the nearest road regardless of habitat structure and stand-age. Indeed, plotting 

the same CCA but using stand-age as the grouping variable indicates that stand-age does 
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not have a great influence of the composition of the soundscape (figure 4.5). Furthermore, 

the relationships between ADI and BAI with distance to the nearest A-Road is further 

evidence that the biophony is lower with proximity to busy roads (table 4.10).  

 

Table 4.11. Canonical correspondence analysis axis summary. 

 Axis 

 1 2 3 

Eigenvalue 0.081 0.007 0.004 

Variance in FB data explained (%) 49.9 4.4 2.6 

Cumulative variance (%) 49.9 54.3 56.9 

Kendall Rank Correlation FB-ENV (tau) 0.582 0.215 0.315 
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Table 4.12. Axis associations with ten 1 KHz frequency bands (1-11KHz) and environmental variables included 

in the final CCA. 

 Axis 

 1 2 3 

FB1 0.63 -0.02 -0.05 

FB2 -0.26 -0.18 0.55 

FB3 -0.5 -0.37 -0.07 

FB4 -0.58 -0.2 -0.26 

FB5 -0.49 0.1 -0.23 

FB6 -0.47 0.36 -0.09 

FB7 -0.42 0.79 -0.04 

FB8 -0.2 1.04 0.37 

FB9 -0.08 0.57 0.72 

FB10 -0.14 0.46 0.67 

RD -0.02 -0.02 0.07 

AR -0.90 -0.04 0.13 

BR -0.75 0.26 0.05 

WD -0.40 0.29 -0.35 

RR 0.46 -0.12 0.23 

V1 -0.04 0.00 -0.61 

V2 -0.12 -0.10 -0.32 

V3 -0.29 0.11 0.05 

V4 0.07 0.42 0.17 

V5 0.45 0.10 0.11 

L1 -0.438 0.265 -0.058 

L2 0.272 -0.069 0.118 

L3 -0.089 0.157 0.574 
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Figure 4.5. CCA ordination using mean frequency band values (FB1 = 1-2KHz; FB2 = 2-3KHz; FB3 = 3-4KHz; FB4 = 4-5KHz; FB5 = 5-6KHz; FB6= 6-7KHz; FB7 = 7-8KHz; FB8 = 8-

9KHz; FB9 = 9-10KHz; FB10 = 10-11KHz) from 40 coppiced woodland sites (r
2 

cutoff for environmental variables = 0.1;   N=40; see table 4.1 for variable codes; and tables 

4.10 and 4.11 for CCA outputs). a) Sites grouped in accordance with their distance to the nearest highway (A-Road), indicating that sites over 1500m from the nearest busy 

road displayed distinct soundscape composition from those nearer to the road. b) Sites grouped according to their stand-age, indicating that road distance has a stronger 

influence on soundscape composition. 

 

a) b) 
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4.5 Discussion 

4.5.1 Temporal Patterns 

Understanding temporal patterns in the soundscape is an important step for 

determining suitable sampling schedules in different environments. As with any data-

collection procedure, the general rule is that the more audio data you collect the better the 

representation of the soundscape. One problem facing soundscape ecologists is finding the 

balance between the explanatory power of their data and having the resources to analyze 

and store it efficiently (Sueur et al. 2012; Farina et al. 2015). Another issue is having the 

battery power to collect it in the first place. Indeed, the sampling protocol used in this study 

was a compromise between these logistical issues. However, the daily pattern observed 

indicates that enough information was collected to determine several distinct periods within 

the soundscape depending upon which acoustic index is employed. The changes in acoustic 

activity levels between these periods can likely be attributed to changes in bird activity (the 

biophony – 3-8KHz), and road-traffic noise (the technophony – 1-2KHz).  This is particularly 

evident in the high-levels of activity monitored during the morning (period 1) and the low 

levels during the night time (period 5). These temporal differences in the soundscape have 

been observed in other studies and were expected in this study. The differences serve as a 

proxy for validating the ability of the Bio-Acoustic Index (BAI) at detecting biophonic activity 

within the soundscape. An important finding within the NDSI was that periods two and five 

were not significantly different from one another. However, period 5 was the lowest in 

terms of biophonic activity (BAI) and acoustic diversity (ACI, ADI, AEI). This is significant 

because a number of studies have investigated the suitability of using NDSI as a proxy-

measure of species-richness (Fuller et al. 2015; Fairbrass et al. 2017; Machado, Aguiar & 

Jones 2017) but this study shows that two periods of the day with significantly different 

levels of biophonic activity (i.e. different levels of bird activity) yield similar NDSI values. This 

unsurprising since NDSI is a ratio between technophonic and biophonic noise. Based on this 

study it is reasonable to state that NDSI could not be used as a standalone proxy for species-

richness – its relationship with other indices would have to be explored to understand its 

relationship with species-richness.  
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4.5.2 Vegetation Structure 

The trend in acoustic index values across sites of different ages and therefore 

structural composition does share similarities with bird-richness trends found in previous 

coppice studies. The general consensus is that coppice management is beneficial to bird 

diversity due to the mosaic of different aged-habitats its creates (Fuller & Moreton 1987; 

Fuller & Henderson 1992; Buckley & Howell 2004; Schulz, Brauner & Gruß 2009; Maccoll, du 

Feu & Wain 2014). Young coppice (<8years) is particularly good for nesting migrant species 

who depend on open/cleared areas and ground vegetation cover (Fuller & Warren 1993). As 

the canopy closes, the resident/migrant ratio changes in favour of more UK resident, forest-

species (Fuller & Moreton 1987). The UK resident species tend to be present in all age-

classes of coppice stand (up to 20years at least) and become more abundant when the 

stand reaches an age unsuitable for migrant-nesting birds. As such, the overall species-

richness of coppice stands declines as they become older. Although this study did not have a 

great number of sites <8years (N=4 due to corrupted data files) there was an observable 

trend in that the youngest sites had relatively high levels of acoustic diversity, which 

dropped off in stands aged 20-30years and then started to rise again in stands >30years 

(appendix 4.4). Although these findings were not statistically significant, the trend appears 

to follow what one might expect. Other studies have shown that older abandoned coppice 

stands are also good for bird diversity (Laiolo, Rolando & Valsania 2004) indicating that 

restoration of unmanaged coppice into semi-natural woodland may yield significant 

biodiversity benefits.  

 

The negative relationships between BAI and deadwood volumes are initially counter-

intuitive, since deadwood is an important facet of a healthy bio-diverse forest ecosystem 

(Ferris & Humphrey 1999; Smith et al. 2008). An old growth forest will have an assortment 

of deadwood at different stages of decay providing a variety of niches for different facets of 

biodiversity (Ferris & Humphrey 1999). It is important to note that the sampling of 

deadwood in this study was relatively crude in that it did not distinguish different states of 

decay and so does not provide information on the diversity of deadwood. However, from an 

observational point of view, the majority of deadwood in this study was in the early stages 

of decay. This assumption can be corroborated by the fact that deadwood is not 
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commonplace within coppiced woodland due to the management focus being on removing 

stems (Kirby, Buckley & Mills 2017). Furthermore, the deadwood observed was largely 

comprised of dead stems of coppiced sweet chestnut aged between 10 and 30 years 

(appendix 4.7), indicating that the trees may have been self-thinning. This could be due to a 

change in coppice management at Bedgebury Forest, which is currently undergoing 

restoration to semi-natural woodland. A typical coppice cycle for sweet chestnut is around 

12-16 years but for some products that cycle may be as long as 45 years (Buckley & Howell 

2004; Forestry Commission 2015). The majority of UK studies investigating bird species-

richness in coppiced woodlands focus their survey effort on actively managed stands up to 

20years old (Fuller & Moreton 1987; Fuller & Green 1998; Maccoll, du Feu & Wain 2014), 

which typically do not contain significant volumes of deadwood. However, (Laiolo, Rolando 

& Valsania 2004) found that bird species richness and abundance does increase with stand 

age when considering older-aged forests, and they suggest that this increase in richness is 

partly due to higher volumes and diversity of deadwood. Deadwood is important for some 

European bat species (Tillon et al. 2016), and deadwood diversity, over volume, is a 

powerful indicator of saproxylic beetle species-richness (Brin, Brustel & Jactel 2009; Redolfi 

De Zan, Battisti & Carpaneto 2014).  Over half of the stands in this study were older than 20 

years but all were younger than 50 years old, so the volume of deadwood observed may not 

have represented a great diversity of decaying states to provide biodiversity enhancements 

at the time of the study. 

 

The relationship between vegetation structure and the different acoustic indices 

changed depending on the time of day. ACI was the only index that maintained a consistent 

relationship with a single vegetation structure metric. ACI was higher where the structural 

diversity (SD) of the stand was lower. This is an unexpected result as previous studies have 

found ACI to be higher where there is more vegetation-structural diversity (Farina & Pieretti 

2014). The measure of structural diversity in this study was strongly positively correlated 

with canopy height (appendix 4.5), which indicates that ACI was higher in less complex 

stands with a shorter canopy. These sites also tended to have greater cover of ground 

vegetation and higher tree density (due to the small size of trees). Acoustic entropy (H) also 

displayed negative correlations with structural diversity and positive correlations with tree 
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density.  A potential explanation could lie in the findings of Fuller & Moreton (1987) which 

indicate that younger coppice stands have richer avian communities. Younger coppice 

stands are typically associated with high densities of stems and a good covering of ground 

vegetation providing habitat for both migrant nesting birds and UK resident species (Ferris & 

Humphrey 1999; Buckley & Howell 2004). As stands age and the canopy closes, the nesting 

habitat for migrant species disappears and the resident species abundances increase. 

Interestingly, BAI shares the opposite relationship with tree density to H and ACI – in that it 

was higher in less densely packed stands. This disparity between index relationships with 

vegetation metrics may be explained by there being a greater richness of bird species in the 

younger stands but a greater total abundance in the older stands. ACI and H essentially 

provide measures of acoustic diversity based on temporal and spatial attributes of sounds 

but BAI does not measure diversity - it is a measure of total abundance.   

 

There are alternative explanations to the findings discussed above. The presence of 

the geophony (particularly the wind) is a concern that faces all soundscape-studies that 

collect data using automated recordings units. An overriding concern when interpreting ACI 

values in relationship to habitat structure is that ACI is known to be significantly affected by 

wind (Towsey et al. 2014; Duarte et al. 2015). It seems that the sites most correlated with 

higher ACI values were also most likely to be susceptible to even small amounts of wind (i.e. 

younger more open stands). Care was taken to remove particularly windy recordings but it 

was not considered appropriate to remove all wind events such as sudden gusts and the 

occasional light breeze. Similar findings between ACI and open areas were observed in 

chapters two and three, where recordings were not made in windy conditions and light 

breezes were noted for each recording. There were significant correlations between ACI and 

breezy recordings, which is a serious problem for anyone using the ACI with automated 

recording units. Data from nearby Metoffice weather stations was obtained to aid 

interpretation of recordings in this study, but it was not detailed enough to capture micro-

events that may be having a significantly strong effect on acoustic index values and was 

therefore excluded from the analysis in favour of listening to and removing recording with 

significant geophonic noise in them. It would be useful to set up small weather stations 
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alongside any recording units in order to get a more detailed picture of meteorological 

events before, during and after recordings.  

 

The effect of vegetation structure on sound attenuation may also exert an influence 

on acoustic index values. Bird-song detection rates are significantly affected by the habitat 

in which they take place - there are major differences in bird detection ability of automated 

recording units between interior forest surveys and those conducted on forest roads (Yip et 

al. 2017). The effect that forest structure has on sound attenuation is an important 

consideration when trying to interpret acoustic index values. For example, it may be that 

more open forest stands yielded higher BAI values (as mentioned in the previous paragraph) 

due to better sound propagation through less cluttered environments (Embleton 1963; 

Tarrero et al. 2008). Vegetation structure is known to be an important predictor of species-

diversity (MacArthur & MacArthur 1961; Hewson et al. 2011) but since it also has a 

significant effect on sound attenuation and propagation (Cosens & Falls 1984; Kuczynski et 

al. 2010), it is important that future studies aim to understand the effect that vegetation 

structure has on the sound detection and attenuation of acoustic communities.  

 

4.5.3 Landscape Heterogeneity 

The relationship between ADI/AEI and L2 was particularly interesting. It indicates 

that acoustic diversity is greater in areas with higher proportions of broadleaf woodland and 

age-structures of forest. These findings echo numerous studies into the relationship 

between bird-diversity and landscape heterogeneity. Bird diversity is higher in more 

heterogeneous landscapes (Cleary et al. 2005; Cerezo, Conde & Poggio 2011; Katayama et al. 

2014). The same is true for more heterogeneous forests, particularly with reference mosaics 

of different aged forest stands. Increased canopy and stand heterogeneity leads to higher 

bird species richness and abundance (Calladine et al. 2017). These findings are economically 

important as increased heterogeneity can lead to increases in natural insect pest control 

(Bereczki et al. 2014; Barbaro et al. 2017). Hewson et al. (2011) suggest that conservation 

planning should take into consideration species-specific responses to habitat variation. They 

suggest that landscapes should be managed for increased habitat heterogeneity embracing 
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both structural and floristic diversity. This study shows that patterns in landscape 

heterogeneity were evident in the soundscape. It indicates that the use of soundscape 

methods could be a useful tool in landscape-scale management, whilst offering the 

opportunity to determine the species-richness of acoustic communities.  

 

4.5.4 Influence of Road Noise on the Soundscape 

There is a surprising scarcity of studies investigating the impact that roads have on 

acoustic index values in terrestrial soundscapes. This is surprising considering the wealth of 

studies highlighting the negative impact of human-induced noise pollution on the behaviour 

and abundance of birds (Slabbekoorn & Ripmeester 2008; Francis, Ortega & Cruz 2009) and 

on marine wildlife (Codarin et al. 2009; Slabbekoorn et al. 2010b).This study provides some 

evidence that the biophony was more active at distances further from busy roads but these 

relationships are not particularly strong. However, the CCA clearly shows that the 

composition of the soundscape at sites over 1500m from the nearest road was different to 

site closer than 1500m. Part of this finding will be due to the fact that sites situated closer to 

the busy roads will have greater noise activity in the 1-2 KHz frequency band. However, 

there was some evidence that BAI increased with greater distance from busy roads, 

especially when taking into consideration vegetation structure and landscape heterogeneity 

(table 4.10), suggesting that there may be an element of road-avoidance within the 

biophony. Further studies explicitly designed to investigate the relationship between roads 

of different traffic-flow patterns and the soundscape in different habitats may provide a 

means of carrying out environmental impact assessments and modeling the impact of roads 

on natural soundscapes. 

 

The finding that acoustic diversity tended to be higher in sites closer to roads, 

including small roads is perhaps somewhat counter-intuitive. Birds and other wildlife have 

been shown to avoid roads (McClure et al. 2013; Schepers & Proppe 2017). This finding 

could be indicative of there being more human-pedestrian activity in the form of dog 

walkers, cyclists and equestrians closer to these roads. Fairbrass et al. (2017) highlight that 

BAI and ACI are affected by anthropogenic noise such as human voices and suggest that the 
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use of automated identification of such sounds could be used to remove them from final 

acoustic index-based analysis. However, the presence of human voices within the recordings 

in this study was not considered to be problematic due to their relative scarcity. 

Furthermore, one might expect stronger relationships with distances to recreational routes 

as these were the most likely source of human voices within the forest. Another possible 

explanation to this finding could be due to road avoidance behaviour in local deer 

populations. Deer populations in the UK are currently unsustainably high and they are 

having adverse ecological effects (Fuller & Gill 2001), notably on nesting migratory bird 

populations due to their browsing habits (Fuller 2001). Several recent studies have shed 

light on the effect that roads have on the behaviour of ungulates. Roads induce a predation-

risk behavioural response in elk in the US, and as such, elk were shown to select areas 

farther from roads at all times of the day (Prokopenko, Boyce & Avgar 2017). In Europe 

similar patterns of road avoidance have been observed in red deer, regardless of road 

surface and traffic volume (though busier roads do invoke a stronger response) (D’Amico et 

al. 2016). If deer in the UK avoid roads in a similar manner, it is possible that their forage-

impact on habitats closer to roads may be lower than in sites further away from roads. 

However, there are studies that suggest that traffic noise is not the driver of reductions in 

bird abundance in proximity with roads, although they do observe that bird richness and 

abundance declines with proximity to road (Summers, Cunnington & Fahrig 2011). 

Conversely, there are studies that explicitly show that birds avoid road noise (McClure et al. 

2013) and that road noise reduces the health and breeding success of birds (McClure et al. 

2017). Although not possible to determine in this study, the impact of small roads on deer 

behaviour and how that relates to songbird nesting success may be an interesting line of 

research. Proximity to quieter roads may potentially provide a form of deer protection and 

more suitable habitat for songbirds that would normally be badly affected by excessive 

browse-related damage. However, other findings in this study and previous research 

highlight that proximity to busy roads can have a negative impact on biophony-related 

sounds (i.e. bird activity).  
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4.6 Conclusions 

This study presents the first soundscape study that uses the ARUPI - a DIY automated 

recording unit developed using the Raspberry Pi computer for the purposes of conducting 

this study. The cost of four of these units with battery power and data storage was less than 

the cost of one unit of the leading market alternative. The use of automated recording units 

allows for greater volumes of data to be collected per unit of effort. The survey effort in this 

study was adequate to detect some meaningful temporal and spatial relationships, though 

greater effort or a different approach to sampling design may have yielded more clarity or 

depth to these relationships. The sampling design was aimed at comparing the soundscapes 

of different aged-coppice stands. There was a lack of stands aged <10 years but this was 

primarily due to data becoming corrupted or due to recorder error. As such the power of 

the analyses was somewhat affected but the data still yields some interesting findings. The 

study may be improved by sampling more sites but this study sampled in almost half of all 

the worked coppice stands in Bedgebury Forest. Perhaps broadening the focus would have 

enabled greater investigation into the relationship between landscape, habitat and the 

soundscape. Extending the frequency range to include ultrasonic vocalisations may also 

improve the explanatory power of the data, since many insects and small mammals 

(including bats) produce sounds above 11KHz (up to 115KHz in the case of the lesser 

horseshoe bat, Rhinolophus hipposideros,  present across South West England).  

 

The relationship between habitat heterogeneity and acoustic diversity echoes the 

findings in previous studies that link the landscape to the soundscape (Tucker et al. 2014; 

Fuller et al. 2015). Future studies using a systematic grid-sampling approach at different 

resolutions/scales could be used to identify areas of high and low acoustic diversity and 

spatial analyses could identify patterns between the physical landscape and the soundscape. 

In this study acoustic diversity was higher in areas that had greater levels of landscape 

heterogeneity. This kind of approach could be a useful tool for monitoring managed 

woodland and ensuring complexity in the landscape is contributing to acoustic diversity. In 

conclusion, this study provides evidence that soundscape-based monitoring techniques 

could provide useful tools in forest management and best practice guidelines, with 

particular reference to road-disturbance and landscape heterogeneity.  
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Chapter 5 - Developing an Automated Recording Unit - the ARUPI 

(Automated Recording Unit PI) 

5.1 Introduction 

The field of soundscape ecology has mushroomed since Sueur et al. (2008) 

presented the acoustic entropy index (H) and Pijanowski et al. (2011) presented an 

introduction to the field from a landscape ecology point of view. The availability of open-

source acoustic analysis software has greatly aided this expansion, such as the Seewave 

(Sueur et al. 2014a) and soundecology (Villanueva-Rivera & Pijanowski 2015) packages 

within R (R Core Team 2015) and SoundscapeMeter (Farina et al. 2012) plugin extensions for 

WaveSurfer (Sjölander & Beskow 2000). But perhaps the most important development has 

been the increased availability of affordable digital recording devices (particularly 

Automated Recording Units, ARUs) and relatively inexpensive high-volume data storage in 

the form of SD cards and micro USB sticks. The range of available recording devices 

currently offers the soundscape ecologist a great many options. Selecting suitable 

equipment largely depends upon the type of study. Handheld recording devices, coupled 

with directional microphones, are often used in bioacoustics studies where capturing 

species-calls is the priority (eg. Slabbekoorn & Smith 2002; Touchton, Seddon & Tobias 

2014). Similar setups have been used in soundscape studies using omnidirectional 

microphones. Some makes and models of handheld devices occur frequently in the 

literature such as the Zoom H4 (Farina & Pieretti 2014; Farina et al. 2015); Marantz PMD 

range (Bormpoudakis, Sueur & Pantis 2013; Touchton, Seddon & Tobias 2014; Holt & 

Johnston 2015); Sony PCM (Krause, Gage & Joo 2011) and the Roland/Edirol range (Vermeij 

et al. 2010). Aside from peer-reviewed journals, there is an abundance of information 

available on the internet through amateur nature recording websites/forums and forums for 

general recording enthusiasts, which often provide sample recordings.  These sites are 

especially useful to soundscape ecologists on a limited budget and often have advice on 

building your own recording equipment, especially microphones.  

 

Automated recording systems (ARUs) have revolutionised the fields of bioacoustics 

and essentially paved the way for the field of ecoacoustics to take off. These systems have 
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been around for almost 30 years but it is only in the past 10 years or so that they have been 

developed on a commercial scale and seen great improvements in functionality. In the 

literature they may be referred to as Passive Acoustic Monitoring systems (PAMs); 

Automated Recording System (ARS); Automated Digital Recording Systems (ADRS); 

Autonomous Recording Units/Automated Recording Units (ARUs);  or some other 

combination of those key words. Essentially they have enabled researchers who are 

interested in acoustic signaling in biology, ecology and conservation to survey much greater 

temporal and spatial scales than previously possible. Most commercially available ARUs can 

be deployed in the field for months at a time and programmed to record to any desired 

schedule. The first notable automated recording systems were developed for studying 

amphibians and reptiles, so-called frogloggers (Peterson & Dorcas 1992). Indeed the 

Froglogger® (www.frogloggers.com) has been in production since 1994.  With the digital age, 

a number of newer systems have been developed, again with herpetologists leading the 

way: the Amphibulator (Cambron & Bowker 2006), which no longer seems to be in 

production and the ADRS (Acevedo & Villanueva-rivera 2006), which is not available 

commercially. All of these systems essentially integrate a handheld recording device, a 

microcontroller (typically made by Texas Instruments or Atmel) and real time clock (RTC) to 

switch the unit on and off, a waterproof casing and waterproof microphone. Only the 

Froglogger® is commercially available and the cost of these units, therefore vary depending 

on which handheld recording device is used, but one might expect to pay at least £500 per 

unit.  

 

Perhaps the most functional commercially available ARUs are manufactured by 

Wildlife Acoustics®. The SongMeter2 (SM2), which was released in 2007, paved the way for 

the field of soundscape ecology (now ecoacoustics) to flourish. The opportunity to collect 

data remotely and passively presented the means with which to explore temporal and 

spatial variation in the soundscape as never before. The basic units were somewhat 

customisable, as they were geared towards terrestrial sounds within the human hearing 

range (i.e. 20Hz-20000Hz) but had the option of ultrasonic frequency sampling available for 

an extra cost. As such, these units have been used to sample species of interest such as 

birds (Borker et al. 2014), bats (Newson, Evans & Gillings 2015), primates (Heinicke et al. 

http://www.frogloggers.com/
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2015) and soundscapes as a whole (Tucker et al. 2014; Pieretti et al. 2015; Mullet et al. 

2016). At the start of this PhD, the basic SM2 unit was priced at around £600, not including 

batteries or SD cards for data storage. The cost is a prohibitive factor in the use of ARUs in 

the Non-Governmental Organisation (NGO) sector and citizen science initiatives (pers. 

communication with the BTO and Norfolk Bat Group). The SM2 is no longer available as 

Wildlife Acoustics ® are now producing their third model the SM4, retailing in 2018 at 

£636.66 (not including shipping, batteries or memory cards). They also produce the SM3BAT, 

which records birds and bats (range of 1KHz – 384KHz), which costs £1200. These units are 

incredibly power efficient and produce high-quality audio recording and as such are perhaps 

the most widely used units in the scientific literature. However, their cost is not realistic for 

a large-scale citizen science project and puts severe limitations on the NGO sector.  

        

The use of ARUs carries significant risks. There is a risk of damage due to severe weather 

events or to the movements of wildlife, but perhaps more importantly there is a great risk of 

vandalism or theft from humans. Indeed, this problem has plagued studies making use of 

camera-traps, which led to the development of several armoured boxes to protect digital 

cameras (Grassman Jr., Tewes & Silvy 2005; Fiehler et al. 2007). Similar boxes are available 

to protect the SM2 and SM4 but these come with extra cost (ca. £60) and are not produced 

by Wildlife Acoustics®. An alternative way around this fear of losing expensive equipment is 

to build your own using low-cost parts. This was the approach settled upon in this PhD due 

to a lack of funding and seeing the opportunity to provide a low-cost solution for citizen 

scientists, NGOs and budget-limited researchers. The aim of this chapter was to develop an 

Automated Recording Unit which fulfilled the following criteria. 

1. The unit should be waterproof and robust enough to be left out in the field for 

extended periods in all kinds of weather. 

2. The unit should be programmable and able to record schedules to lengthen the 

battery life and enable the capture of temporal patterns in the soundscape. 

3. The unit should be easily replicated by amateur enthusiasts and a set of online 

instructions should be made readily available once the unit is up and running. 
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4. The unit should be cheap enough to warrant using them. To build an ARU that costs 

as much as a commercially available unit would not solve any problems.  

5. The unit should be enabled to monitor abiotic factors, such as temperature and 

humidity, alongside the acoustic data (NB. This objective was not achieved within the 

remit of this PhD but it is entirely possible and probable). 

 

5.2 Design Process and Equipment Summary 

Many of the DIY systems mentioned in the scientific literature are either composed 

of relatively expensive parts or seem to require a level of expertise that limits their 

accessibility to the general population. Some studies use handheld recording devices on 

recording grids and simply press record and leave them out in the field until the batteries 

die-down (Farina & Pieretti 2014). However, handheld units typically cost at least £100 for a 

moderate but basic unit (eg. Tascam DR-05), are not robust or weather proof and are 

immediately recognisable and potentially desirable to the casual thief. However, it is 

possible to integrate a microcontroller to the hand held recorder enabling the recording of 

schedules and improve to the longevity of the ARU. This would give the researcher a unit 

similar to the Froglogger®.  These types of microcontrollers used are also widely used in 

robotics (notably often deployed on the open hardware Arduino® platform). When 

researching this kind of equipment it is not long before one stumbles across multipurpose 

self-contained single board computers (SBCs) such as the Raspberry Pi.  

 

5.2.1 Raspberry Pi (RPi) – The Core of the ARUPI (Automated Recording Unit Pi) 

The Raspberry Pi Model B single-board computer was released in 2012 at a price of 

£20, followed shortly after by the Model A. The initial Raspberry Pi was comparable in speed 

and memory to a typical high end PC in the year 2000, in a package that measured 

85.60 mm × 56.5 mm. In 2014 the Models B+ and A+ were released. Since then several more 

versions have been released. This series of Linux-based SBCs were developed by the 

Raspberry Pi Foundation, a UK based charity promoting the teaching of basic computing in 

schools in developing countries. The first units were incredibly popular and were quickly 

utilised by amateur enthusiasts in the Maker community. The maker community has been 
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borne out of a culture that sought to extend the DIY culture to incorporate modern 

technologies such as SBCs and microcontrollers (Lindtner 2014; McGrath 2016). With the 

introduction of low-cost SBCs and microcontrollers the Maker community flourished and 

soon a whole suite of complimentary boards were being built by makers and manufactured 

using crowd-funding business models (Riedl 2013). Popular projects included the use of the 

Raspberry Pi as the platform for remote weather stations, some of which are now featured 

within the scientific literature (Jiménez-Carvajal et al. 2017). There are also projects utilising 

the Raspberry Pi as a camera trap (Nazir et al. 2017) and more recently there are other 

projects utilising the Raspberry Pi as acoustic sensors (Segura-Garcia et al. 2015; Whytock & 

Christie 2017). It was due to the evident versatility of the Raspberry Pi and the wealth of 

enthusiasm throughout the Maker community that in 2014 the concept of the ARUPI was 

borne.  

 

5.2.2 The Sleepy Pi 

Like any computer, the Rasbperry Pi needs to be actively switched on and off. 

Therefore to create an ARU that will switch itself on and off it is necessary to use extra 

hardware. One option is to use a microcontroller and a real time clock (RTC) (as in Acevedo 

& Villanueva-rivera 2006). This adds an extra level of complication to anyone wanting to 

build the ARUPI. The Sleepy Pi is a ready-made unit built for the RPi manufactured by The 

Spell Foundry, a small family run company based in Bedfordshire, UK. The Sleepy Pi is an 

add-on board enabling smart power management to the Raspberry Pi. Essentially this unit 

controls when the Raspberry Pi receives power. The power source is plugged into the Sleepy 

Pi, which is plugged into the RPi. A schedule can be set on the Sleepy Pi to wake the RPi up 

as needed.  

 

5.2.3 Soundcard  

Selecting a suitable soundcard is an important consideration. Initially, the Wolfson 

Microelectronics SoundCard (which became the Cirrus Logic Soundcard – used in Whytock & 

Christie (2017) was investigated. It was not used in the final design for two reasons: it was 

not possible to connect both the Sleepy Pi and the soundcard to the RPi as they use the 
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same General Purpose Input Output (GPIO) pins (i.e. you can use either the soundcard or 

the Sleepy Pi, not both); and the software needed to run the Wolfson audio card is quite 

complex and needs a specialist operating system to run. An alternative was to use a USB 

soundcard. There are a great many USB soundcards available on the market but the Creative 

Soundblaster Play! was selected due to its capacity to make high-quality recordings (16bit; 

48KHz sampling rate) at an affordabile price (ca. £20). It is also a well-known make from a 

large company and as such is readily available across many countries. Making the 

components of the ARUPI accessible for the NGO or citizen science community was a 

consideration throughout development to offer the potential to compare and contrast 

landscapes and their soundscapes on an international scale. Finally the Creative 

Soundblaster Play! is immediately compatible with Linux operating systems so there is no 

need to install drivers – i.e. it is plug and play. 

 

5.2.4 Microphone   

Selecting the right microphone is particularly important in bioacoustics studies 

where individual songs and acoustic signals are of particular interest. These are important in 

the field of soundscape ecology but are not the most critical piece of equipment. In a 

seminal piece of research, that is often overlooked in the literature, Farina et al. (2014) 

demonstrated that extremely low cost recording units (ca. US$10) detect the same general 

patterns in the soundscape as more expensive equipment. However, the resolution in the 

data is greatly reduced due to a poor microphone and low sampling rate (16000Hz i.e. it 

captures sounds up to 8 KHz only), so these units are not suitable for more descriptive 

studies. But their potential use in large-scale monitoring initiatives is particularly exciting 

and they have been used in further studies with a certain degree of success (Bobryk et al. 

2016). For the ARUPIs used in chapter four, single-channel (mono) microphones were built 

using Primo EM172 electret condenser microphones with an acoustically transparent 

waterproof film (sold by www.frogloggers.com as the BT172). These are commonly used in 

many amateur nature recording projects as they have a flat frequency response between 

100Hz-10000Hz, low self-noise, high sensitivity and a good signal to noise ratio (SNR = 80dB). 

The microphones require a 5v power supply and so were powered by a simple-circuit 

phantom power unit converting a 9v battery supply down to 5v. In the final set of 
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instructions published online the build of the microphone was not included. Any 

microphone with a 3.5mm stereo jack can be used with the selected soundcard and some 

other options are given. Although the microphone is important, the prospect of building one 

might be off-putting, so the decision to reduce that aspect of detail was made. It also allows 

the maker to think creatively and determine what their needs are. 

 

5.2.5 Data Storage, Power and Waterproof Housing 

As with the microphone, these options can be customised to suit the needs of the 

maker. However, the ARUPI OS provided in the instructions is configured to use the exact 

USB data storage outlined in the online instructions. Therefore, if selecting a different 

device, the maker will need to follow the instructions given (at the end of step 6). In terms 

of power, the use of 8xAA batteries was opted for since battery boxes for these are 

inexpensive and ubiquitous in electronic shops and online. They are also relatively 

lightweight and provide a considerable amount of power, recording more than 576 minutes, 

or 9.6 hours, per 8 batteries. The use of 8xD cell batteries would enable the ARUPI to record 

for up to 10 times longer (based on a D-cell battery of 15000mAh capacity). This translates 

as around 5684 minutes of recordings, or 94.7 hours. However, these would make the units 

considerably heavier and may need a larger waterproof housing. The waterproof housing 

selected was an IP67 rated (dustproof and waterproof) tough plastic box, typically used for 

transporting expensive electronic or fragile equipment. A hole was drilled into the box and a 

25mm IP68 rated cable gland was used to ensure the microphone connection to the ARUPI 

unit was watertight. This step is dependent upon microphone selection. The boxes are 

available from a UK-based company but are likely available in other countries with similar, 

but not exact, dimensions. There are also other options open to the maker depending on 

their design preferences and budget. At around £20 these boxes are cheap but there are 

cheaper options available, such as the one used in the SOLO (Whytock & Christie 2017).  

 

5.3 Programming the ARUPI 

The most challenging aspect of developing the ARUPI was the programming. Dr Daniel 

Knox from the Makerspace at the University of Kent (The Shed) provided the technical 
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assistance and advice on the programming of both the RPi and the Sleepy Pi that enabled 

the ARUPI to come to fruition.  The Arch Linux operating system (OS) was used as it 

essentially provides a bare-bones starting point and it has three key features: It is free and 

largely open-source; it enables the user to install packages and software as necessary; it also 

has no graphical user interface (GUI). These three attributes of the Arch Linux OS provide 

two important benefits to the ARUPI: 

1. The software is free and so the customised version specific to the ARUPI is readily 

distributable. 

2. The bare-bones starting point ensures better power-efficiency. GUIs require lots of 

processing power and many ready-made OS systems (such as Raspbian) come with 

pre-installed packages that are not necessary for the ARUPI, including a GUI.   

 

The Advanced Linux Sound Architecture (ALSA) software was installed onto the OS and a 

simple recording program was written, which is easily customisable and explained in the 

instructions. A simple program was also written which told the RPi to read the time from the 

Sleepy Pi (which has an on-board RTC). These two programs are set to run when the RPi 

powers on using the job-scheduling software crontab (a standard utility in Linux). Crontab is 

a utility that enables you to run certain programs upon start-up (or any time following 

startup) and so the sequence used in the ARUPI is essentially: Set time > Record sound > 

Shutdown.  

 

The jobs that the Sleepy Pi performs are to wake the RPi up when needed and to keep 

the current time using an RTC powered by a separate battery to the power source used to 

power the RPi. The code required to do this requires a degree of skill and understanding of 

the C programming language. In this version of the ARUPI, when the power is switched on, 

the Sleepy Pi starts a 15minute countdown clock. When it reaches ‘0’ it sends power to the 

RPi, which does the jobs outlined above. Whilst the RPi is recording, the Sleepy Pi keeps 

checking whether the RPi has shut down or not. If the RPi is still awake, the Sleepy Pi keeps 

giving it power. Once the RPi finishes its cycle and shuts down, the Sleepy Pi finds out the 
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RPi has shut down and kills the power completely, sets a 15minute countdown timer for the 

cycle to begin again and reduces its own power consumption to a minimal level. On the 

latest Sleepy Pi2, the on-board RTC has more functionality and the unit can be more easily 

programmed to wake the RPi at set times (i.e. 8pm, 9pm, 10pm etc). This new functionality 

will open up the development of the ARUPI to be used as a dedicated automated bat 

detector unit.  

 

5.4 Discussion and Conclusions  

The instructions on how to build an ARUPI were published on one of the largest 

maker websites (www.instructables.com) on September 16th 2015. A Google search for 

“Automated Recording Unit” will bring it up as one of the top hits. It is the first ARU to be 

developed using the Raspberry Pi computer platform and off-the-shelf components. The 

instructions are easily and openly accessible and all the programs developed by The Shed 

(i.e. Daniel Knox) are available through a GoogleDrive linked in the instructions. The units 

themselves perform incredibly well and if built using the same equipment in the published 

guidelines (appendix 5.1 and 5.2) they are waterproof and robust. They performed 

exceptionally well in the field and were not subject to theft, vandalism or wildlife/weather 

related damage (though the foam microphone windshields were nibbled by something, 

most likely inquisitive squirrels). The units were deployed with stickers indicating their use 

to explain what they were being used for (figures 5.1 +5.2), though it should be noted that 

no one contacted me regarding the units, so either nobody saw them, or nobody was 

interested by what they saw. Either case is a positive in terms of data collection and unit-

security. The recording quality is good (figure 5.3) and the power consumption is good.  
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Figure 5.1. The ARUPI used in the study of worked coppice stands in Bedgebury Forest. Using a polite sticker 

explaining what the unit is was deemed a sufficient counter-theft/vandalism measure (NB: the phone number 

is no longer active).  

 

 

Figure 5.2. Deploying the ARUPI. The use of a telescopic ladder enables one to comfortably attach ARUs (in 

general) out of sight and out of reach. Being lightweight and easily transported, although not terribly long, 

they offer a means of minimising both human and wildlife risks to recording units. 

 

The ARUPI does not have the same capabilities as many commercially available ARUs. 

The commercially available units from Wildlife Acoustics® are superior to the ARUPI in many 

ways. But the ARUPI can be bought for a fraction of the price, are easily customised and are 
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essentially modular in that they are made using several low-cost, easily replaceable and 

interchangeable components. The ARUPIs used in chapter four cost around £135 each 

(including data storage). Therefore, researchers on a budget could buy five ARUPIs for the 

price of one SM4 unit (assuming one buys a 64gb high-speed SD card to store audio 

recordings made by the SM4). As of November 2017, makers from various countries 

(including the United States, UK, Denmark and Sweden) and professions, including biologists, 

ecologists and artists have contacted me to discuss the ARUPI and have started to build 

them. 

 

Numerous studies state the influence the geophony has on interpreting the 

soundscape using acoustic indices (Towsey et al. 2014; Mullet et al. 2016). The ARUPI 

achieved four of the five key objectives of this project, and although it is not currently set up 

to record abiotic data (objective 5), it remains a possibility. Incorporating a fully functioning 

weather station to the ARUPI could conceivably be done for less than £100 extra (+extra 

power requirements). Although bumping up the cost considerably, this would provide a 

powerful tool for improving data-processing speeds enabling removal of unwanted sounds. 

It would provide time-matched abiotic data which may shed light on the effects of 

meteorological events on animal behaviour (Hovi 1995; Schäfer et al. 2017) and acoustic 

propagation. A further addition that could provide the ultimate automated, passive wildlife 

monitoring system would be the addition of a camera module that would enable the ARUPI 

to act as a camera-trap. Camera-traps have been widely used over the past 20 years but 

they too are expensive and face the risk of theft and vandalism. Attaching a dedicated 

Raspberry Pi camera module, infrared detector and flash would add ca. £40 to the total cost 

(+extra power requirements). These extensions are achievable with current technology if 

the researcher has access to support staff with some hardware and software expertise. 

Furthermore, the development of wireless sensor networks (WSNs) to monitor 

environmental change (Dong, Meyland & Karaomeroglu 2017) could enable the 

development of ARUPI networks to generate forest-wide sound-maps. Such networks have 

been developed to monitor traffic noise in urban environments (Segura-Garcia et al. 2015; 

Noriega-Linares & Navarro Ruiz 2016) so it is conceivable that similar low-cost networks 

could be developed to monitor certification schemes and other green-initiatives. Perhaps 
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due to the ethos of the Maker community, keeping costs low is a core consideration in the 

development of WSNs. Such values are in-line with that of biodiversity conservation so 

making connections between these two fields of expertise should be beneficial to both.  

 

Figure 5.3. Spectrograms from one minute recordings made using the ARUPI in coppiced woodland in the UK (a, 

c, e). b) Blackcap call identified in image a. d) Chiff Chaff call from image c. f) Wren song identified in image e. 
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Chapter 6 - Synthesis and Discussion  

6.1 Summary of key findings: 

This study explored spatial and temporal patterns in the soundscape of two types of 

plantation forest using a suite of acoustic indices. In chapter two there were significant 

relationships between forest stand age (and associated vegetation structural metrics 

including canopy height and ground vegetation cover) with acoustic diversity, particularly 

with the acoustic diversity index (ADI). This relationship was observed in consecutive years 

indicating the repeatability of these methods. In chapter three significant differences in 

acoustic diversity between two coniferous plantations (Thetford forest and Bedgebury 

forest) were observed. These relationships are likely due to the different management 

histories of the two landscapes, with Bedgebury forest being a planted on ancient woodland 

site (PAWS), situated in a landscape abundant with fragments of ancient woodland and 

Thetford forest being a 100 year old man-made plantation. Indeed, in Chapters three and 

four there were significant relationships between measures of landscape heterogeneity and 

acoustic indices. These relationships echo previous studies investigating the relationship 

between biodiversity and landscape heterogeneity. Temporal influences on the soundscape 

were observed in Thetford forest at two different times of the year (early summer vs late 

summer) indicating that acoustic diversity is higher the closer it is to spring (bird breeding 

season). And in Chapter four, temporal patterns in the 24 hours daily period were observed, 

giving insights on the use of different acoustic indexes particularly the Normalized 

Difference Soundscape Index (NDSI). In all three data chapters (2-4) the influence of 

proximity to roads was of particular interest. There was some evidence that the relationship 

between road proximity and NDSI was different in the different landscapes (i.e. Thetford 

forest vs Bedgebury forest). It highlights that the use of NDSI to map road noise could prove 

a useful tool for noise mitigation and landscape planning. Finally this thesis offers insights 

into low-cost monitoring solutions that may be implemented in conservation initiatives and 

the non-governmental organisation (NGO) sector. It offers instructions on how to build a 

low cost automated recording unit (the ARUPI) for a quarter of the cost of one of the 

leading market alternative. And it highlights the potential for using low-cost handheld 

recording devices to map forest soundscapes. As such, this thesis offers a significant 
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contribution to the field of soundscape ecology (and ecoacoustics) and offers several 

considerations for future research in this field. 

 

6.2 Use of Acoustic Indices 

This study used several acoustic indices to characterize the soundscape in the 

context of vegetation and landscape structure. These indices have been extensively 

reviewed for their suitability as proxies for species-richness. Previous studies indicate that 

ACI (Pieretti, Farina & Morri 2011), ADI (Machado, Aguiar & Jones 2017), AEI (Fuller et al. 

2015), H (Sueur et al. 2008; Depraetere et al. 2012), and BAI (Boelman et al. 2007) can act as 

suitable indicators of avian activity and diversity. However, Towsey et al. (2014) suggest that 

using multiple indices can achieve better estimates of avian species richness. Xie et al. 

(2017) use several analytical steps to produce species-richness estimates of frog calls. They 

essentially pass their recordings through a filter and then classify each recording using 

several acoustic features, two of which are ACI and ADI. In this study, there were no 

significant correlations between ACI and ADI in coniferous woodland (chapter two and 

chapter three). However, in the coppiced woodland (chapter four), these two indices were 

strongly correlated with one another, and most strongly related during the “quietist” 

periods of the day, between 8pm and 4am (table 6.1). With this in mind, studies using 

multiple (or single) indices to determine species richness, should take into account the 

habitat type, time of day and other factors affecting sound production and propagation. This 

thesis shows how the relationship between different indices changes depending upon the 

time of year, time of day and habitat structure. This indicates potential considerations when 

using several acoustic indices to characterize a soundscape and highlights the need for more 

studies that incorporate vegetation structure and landscape metrics whilst investigating the 

relationship between different acoustic indices.  

One potential explanation for changing relationships between indices could be 

differences in sound propagation between the two forest types (Embleton 1963; Martens et 

al. 1985; Price, Attenborough & Heap 1988; Padgham 2004). Bird detection using acoustic 

methods is affected by sound attenuation in different habitat types (Schiek 2017; Yip et al. 

2017) and at different heights in the same habitat (Waide & Narins 1988). Typically, higher 
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frequencies attenuate faster than lower frequencies and sound attenuates faster in 

broadleaf woodland. However, over short distances reverberation of narrow-frequency 

band calls can be beneficial to some birds (Slabbekoorn, Ellers & Smithi 2002). And some 

birds can alter their singing behaviour (by selecting singing perches at optimal heights) to 

minimize attenuation (Blumenrath & Dabelsteen 2004).  Therefore the position of the 

microphone amongst sound-altering objects (i.e. vegetation) is likely to be an important 

factor in how sounds are collected and the resulting data interpreted. Furthermore, the 

sound propagation characteristics of different habitats are believed to be drivers of 

evolutionary traits in birds (Tobias et al. 2010), bats (Schnitzler & Kalko 2001) and some 

marine life is known to select sites based on their sound signatures (Stanley, Radford & Jeffs 

2009; Radford et al. 2010, 2011). In the field of soundscape ecology and the development of 

acoustic indices, sound propagation characteristics often seem over-looked though there 

are a wealth of studies highlighting its importance to species-evolution and behaviour. Only 

a handful of studies to date have measured vegetation structural characteristics and none 

have measured sound propagation characteristics at their study sites (this one included). 

Understanding the sound propagation properties of a habitat may provide important 

caveats that could be included in acoustic analysis and potentially improve species-

estimates. 

 

Table 6.1. Spearman correlation matrix of acoustic complexity and acoustic diversity indices in worked coppice 

sites in Bedgbury forest, at different times of the day. 1= 4am-10am (N=39); 2=10am-3pm(N=39); 3=3pm-

8pm(N=40); 4-8pm-10pm(N=40); 5=10pm-4am(N=40). Total is the mean value per site (N=40). **. Correlation 

is significant at the 0.01 level; *. Correlation is significant at the 0.05 level 

  ACI_1 ACI_2 ACI_3 ACI_4 ACI_5 ACITotal 

ADI_1 .573
**

 .583
**

 .454
**

 .544
**

 .509
**

 .580
**

 

ADI_2 .331
*
 .382

*
 .350

*
 .466

**
 .553

**
 .483

**
 

ADI_3 .263 .263 .353
*
 .412

**
 .547

**
 .450

**
 

ADI_4 .399
*
 .481

**
 .515

**
 .743

**
 .661

**
 .589

**
 

ADI_5 .536
**

 .543
**

 .589
**

 .561
**

 .785
**

 .705
**

 

ADITotal .510
**

 .564
**

 .516
**

 .652
**

 .728
**

 .666
**

 

 

6.3 Temporal Patterns 

This study provides insights into three levels of temporal variation: annual variation, 

seasonal variation and daily/hourly variation. Chapter two indicated that ADI and AEI values 
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remained similar in two consecutive years on the same grid. This is the first study (to my 

knowledge) that has repeated a study of the soundscape on one grid in consecutive years.  

The purpose for doing this was to assess the suitability of such methods in long-term 

soundscape monitoring and the results were encouraging.  The patterns of ADI/AEI 

remained fairly similar between years and small variations could probably be explained by 

changes in meteorological conditions (i.e. wind). However, dramatic changes in ADI/AEI 

between 2014 and 2015 were observed in a stand that was clear-felled and there was visual 

evidence of acoustic diversity dispersal.  Interpolation maps indicate that areas surrounding 

the clear-felled stand displayed higher acoustic diversity after the disturbance event. 

Although the data are fairly limited, the pattern follows what one might expect. Biodiversity 

typically responds to logging events by dispersing from the logged area and gradually 

moving back over time as vegetation structure recovers and niches are re-established. 

Indeed, the idea behind retention forestry and continuous cover forestry is to minimize this 

initial impact on biodiversity and ensure a variety of habitats are retained post-logging 

(Mason et al. 1999; Gustafsson et al. 2012). The apparent dispersal of acoustic diversity 

observed at the clear-fell site in this study, although a relatively small coincidental finding, 

offers an insight into a potential means of monitoring biodiversity responses to different 

management practises in the forestry sector. This may be particularly useful since many 

indicators used in the forestry sector focus on vegetation structure and species-diversity 

(Marchetti 2004) and in many certification schemes and restoration schemes the 

biodiversity assessment is often dependent upon the means and skill-level of the land 

owner/manager (Thompson et al. 2003; Forest Stewardship Council 2015). Incorporating a 

standardized acoustic monitoring protocol to capture a snapshot of the audible faunal 

community may provide a means of detecting broad scale patterns in biodiversity and 

deepen our understanding of the relationship between the soundscape and structural 

diversity. 

 

Determining optimal temporal sampling patterns is considered a priority in 

soundscape ecology (Rodriguez et al. 2014; Pieretti et al. 2015) though it is not necessarily 

essential for a long-term monitoring initiative. The daily (24h) patterns of acoustic activity 

evident in chapter four are broadly in-line with what one might expect to observe if 
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conducting a bird survey – i.e. 4am to 10am display the highest levels of activity/diversity, 

with the highest activity being between 4-6am (during the so-called dawn chorus). Indeed, 

the British Trust for Ornithology (BTO) stipulates that volunteers on the Breeding Bird 

Survey (BBS) start their 90 minute surveys no earlier than 6am to avoid peak bird activity 

during the dawn chorus and no later than 9am. Soundscape studies could be developed 

using a more traditional approach to collecting data. Where monitoring is concerned, rather 

than searching for temporal patterns, controlling for them might be more appropriate. In 

chapters two and three, significant relationships between habitat structure and landscape 

composition with the soundscape were uncovered by conducting surveys at the same time 

of day and time of year. The key issue using this type of approach is generating enough data 

(i.e. recording length and/or repetition) per sampling point. However, Bormpoudakis, Sueur 

& Pantis (2013) demonstrated that it is possible to detect distinct habitats from two minute 

recordings of ambient soundscapes and in chapters two and three in this thesis, six minutes 

was adequate. Although there is a proliferation of studies using ARUs to investigate the 

soundscape to uncover spatial and temporal patterns, it is important to note that handheld 

units can be utilized effectively when combined with more traditional ecological methods 

that aim to control for external factors which may influence the data acquired.  Further 

research into the use of handheld recording devices to uncover spatial (and temporal) 

patterns in the soundscape could pave the way for, or be incorporated into, a citizen-

science initiative (see section 6.6).  

 

6.4 Structural and Spatial Patterns 

The relationship between forest age and canopy height with ADI in Thetford Forest 

was particularly encouraging and followed a similar pattern as that observed by Pekin et al. 

(2012). Similar relationships to vegetation structure were observed in the coppiced 

woodland (chapter four). Sites with a taller but more open canopy tended to display higher 

BAI values, which is indicative of higher levels of bird activity. Due to the lack of bird-species 

data from these sites it is not possible to determine the extent that this pattern is being 

caused by bird species-richness but it is almost certain that a significant degree is caused by 

bird activity levels. The relationship between acoustic indices with bird species richness and 

vocal activity is well documented (Boelman et al. 2007; Pieretti, Farina & Morri 2011; 
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Depraetere et al. 2012; Machado, Aguiar & Jones 2017). When acoustic indices do not 

perform well as proxies for species-richness, it is usually when they are compared with bird 

point-count data (Mammides et al. 2017), which is itself victim to observer-error and bias 

(Farmer, Leonard & Horn 2012; Schiek 2017). The geophony can also have a significant 

effect on the performance of acoustic indices as proxies for species-richness (Sueur et al. 

2012; Towsey et al. 2014).  Since the geophony was largely controlled for in this study (i.e. 

wind and rain either avoided or removed post-recording) it may be safe to assume that high 

acoustic diversity values were due to higher biological activity and to some extent diversity. 

Furthermore, bird diversity is higher with greater structural complexity (MacArthur & 

MacArthur 1961; James & Wamer 1982; Goetz et al. 2007) so the pattern observed in all 

three chapters broadly follow what would be expected and has been observed in other 

recent studies. For example, Hilje, Stack & Sánchez-Azofeifa (2017) recently found that liana 

abundance is positively associated with the acoustic complexity index which they attribute 

to bird species-richness. Likewise, landscape heterogeneity is a known driver of biodiversity 

(Fahrig et al. 2011; Grant & Samways 2016; Neumann et al. 2016) so the relationship 

between acoustic diversity and heterogeneity was not wholly unsurprising. Finally, when 

entering all sites from this study using age-category as a grouping variable, there are fairly 

clear differences between different aged stands (figure 6.1).  
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Figure 6.1 Canonical correspondence analysis using nine frequency bands (FB1-FB9) from all sites from this 

thesis (N=247). Three environmental variables are in red – Age = Stand Age; CH = Canopy Height; A_rd = 

distance to nearest A-road. There seems to be a clear pattern in differences in acoustic diversity in relation to 

forest stand age and canopy height. The overall CCA accounted for 27.2% of variation in the data (Axis 1 = 

24.6%; Axis 2=2.5%; Axis 3 = 0.1%). This graph essentially sums up the two key findings of this study quite 

nicely. Firstly that stand age (and therefore structure) is an important driver of acoustic diversity – with 

frequencies greater than 3 KHz (i.e. FB4 and higher) being more associated with older habitats (>30 years old). 

Secondly that distance to the nearest road has a significant influence on soundscape composition, with the 

heart of the biophony (FB4-FB7) being more represented at a greater distance from busy roads. These data are 

just presented as a graphical indication of the broad patterns observed in this study. It is important to note 

data from worked coppice stands and coniferous woodland were not collected using the same recording 

equipment or sampling schedule. 

 

6.5 Perspectives on the Influence of Roads 

Several studies that investigate the efficacy of acoustic indices as proxies for species-

richness include NDSI in their analyses (Tucker et al. 2014; Fuller et al. 2015; Machado, 

Aguiar & Jones 2017) or use NDSI to describe biophonic activity (Ritts et al. 2016). The daily 

temporal pattern observed in chapter four highlights a key issue regarding this type of use 

of NDSI. Though there are no studies that explicitly state that NDSI provides a good measure 
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species-richness, it is probably not wise to use it in any species-estimation context. It does 

however show great promise for noise modelling but only one study to date investigates the 

relationship between NDSI and distance to the nearest road. Machado, Aguiar & Jones 

(2017) present a linear relationship between NDSI and distance to nearest road. This thesis 

presents both linear and non-linear relationships between NDSI and road proximity. This 

may be due to differences in habitat structure and landscape configuration at different sites. 

In this thesis, figure 2.4 (chapter two – coniferous plantation, Thetford forest) displays a 

clear linear relationship between NDSI and proximity, whilst figure 4.4 (chapter four – 

coppice plantation, Bedgebury forest) shows a non-linear relationship. One key difference 

between these two sites is that Bedgebury forest has much higher landscape heterogeneity 

and a higher proportion of broadleaf woodland, whilst Thetford forest is predominantly 

comprised of uniformly planted coniferous woodland. Broadleaf woodland has better sound 

attenuation properties than coniferous plantations due to the higher vegetation surface 

area, which absorbs and deflects sound (Aylor 1972; Tarrero et al. 2008).  As such it is likely 

that different habitats will present different relationships between NDSI and road proximity. 

Furthermore, it is possible that the linear model used to describe the relationship presented 

in figure 6 in Machado, Aguiar & Jones (2017) could actually be improved by fitting a non-

linear model.  

Alternatively, differences in the avian community at both sites may be affecting the 

relationship between NDSI and road proximity. All recording sites on the Santon Downham 

grid were within 1500m of a busy main road in a landscape with low sound attenuation 

properties. This proximity to such an intrusive source of anthropogenic noise may influence 

bird community composition through species-avoidance of roads (Brotons & Herrando 

2001; McClure et al. 2013) or reduced the health and breeding success of individuals 

(McClure et al. 2017). Further studies into the effect that roads have on the biophony are 

necessary to determine the potential for using NDSI in noise mitigation strategies. There is a 

moderately good understanding of the impact that technophonic noise has on animal 

signalling behaviour (Slabbekoorn & Ripmeester 2008). But there are far fewer studies that 

show the detrimental effects that noise might be having on animal health. It is well known 

that technophonic noise is a cause of ill health in humans leading to afflictions including 

sleep-disturbance, cognitive impairment, increased stress and annoyance and 
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cardiovascular disease  (Marquis-Favre, Premat & Aubree 2005; Goines & Hagler 2007). 

Recent studies are beginning to shed light on how noise might cause harm to wildlife. Frogs 

exposed to high traffic noise levels produced elevated levels of stress hormones which 

resulted in an immunosuppressive response (Troïanowski et al. 2017). Their vocal sac 

colouration was also affected indicating that road noise can have serious health and long-

term fitness implications in tree frogs. Similarly McClure et al. (2017) demonstrated reduced 

fitness and reproductive success in birds exposed to road traffic noise in the field.  

Road noise, and its mitigation, is often considered in terms of sound pressure levels 

(SPL) (DEFRA 2014). This approach is adopted in many studies investigating the impact of 

road noise on wildlife (Berthinussen & Altringham 2012; Troïanowski et al. 2017). More in 

depth studies into the relationship between roads and the soundscape may provide tools 

for a more holistic approach to noise mitigation. That is to say that considering the balance 

between the biophony and technophony and how they interact in different landscapes 

could feed into models for so-called tranquillity mapping (Watts & Pheasant 2015) and 

provide more nuanced insights into the effects of road-traffic noise on wildlife. There is 

evidence to suggest that greenspace areas with low NDSI values (i.e. high levels of 

technophony) had higher levels of anti-social behaviour and litter in areas of Sheffield (Peet 

2014). As the insidious negative impact that noise pollution has on human health becomes 

more clear (Brown & van Kamp 2017) and the health benefits of natural surroundings are 

championed in social welfare (Li 2010; Lanki et al. 2017; Triguero-Mas et al. 2017), there 

may be opportunities to tie in species-conservation with human-welfare.  The use of 

soundscape-based monitoring may have far reaching applications and NDSI might offer a 

bridge between human-health and social welfare with the conservation and ecology sectors. 

It may also provide a tool to monitor biophony/technophony balance before and after any 

management decisions, such as planting strips of mixed-species non-uniform deciduous 

woodland along roadsides to mitigate noise levels. 

 

6.6 Perspectives for Monitoring and Citizen Science 

The potential for producing low-cost objective measures of biodiversity with insights 

into habitat and landscape structure offers a real opportunity for long-term monitoring in 
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certification schemes and other environmental initiatives. As mentioned in the introduction, 

one of the greatest pitfalls of agri-environment schemes and forest certification initiatives 

has been the lack of suitable monitoring (Kleijn & Sutherland 2003; Angelstam et al. 2013). 

This may largely be due to the guidelines often given to landowners and managers, which 

essentially boil down to “do what you can”. This is absolutely understandable given the 

complexities with selecting suitable biodiversity indicators (Noss 1990), coupled with the 

vast differences in the monetary and temporal means of scheme participants. This thesis 

offers two important insights with regard to soundscape recording as a long-term 

monitoring solution: 

1. Collecting short soundscape recordings using a relatively low-cost handheld 

recording unit can yield important information about forest and landscape structure 

that is objective and related to biodiversity. 

2. The soundscape patterns on a grid within an FSC certified forest remained fairly 

constant between years, though large changes were observed around a clear-felled 

stand. 

These findings support the notion that a soundscape-based monitoring approach could 

make a useful rapid assessment tool (Sueur et al. 2008), particularly for forest certification 

and restoration schemes, where monitoring can play an important role in adaptive-

management. Current monitoring guidelines for such initiatives are often open to 

interpretation and are dependent upon the skill-level and the monetary and temporal 

means of those taking part. One suggestion in woodland restoration is to take periodic 

photographs to assess change objectively over a number of years (Thompson et al. 2003). 

The simple addition of taking periodic audio recordings may yield a surprising amount of 

information for very little extra effort. With the ubiquity of handheld recording devices in 

the form of smart phones, the addition of such a tool would cause minimal disruption and 

cost to current monitoring efforts. Conducting pilot studies in several woodland sites across 

the UK would enable a better evaluation of the suitability of such methods.  

 

 Dumyahn & Pijanowski (2011) suggest that soundscapes should be managed as an 

ecosystem service. They can have a significant impact on human health and wildlife health. 
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They can be used to identify species-richness and they are easily captured using digital 

recording media. With these things in mind, the field of soundscape ecology could benefit 

from a large-scale monitoring project to further our understanding of the interaction 

between these different subjects. One such initiative now exists in Record the Earth 

(www.recordtheearth.org), a mobile phone app for making soundscape recordings. 

However, there is no real structure to the data collection except that it only allows 

recordings to be uploaded on Earth Day (April 22) each year. As such, its scientific rigour 

does not fulfil criteria considered essential for a citizen science initiative that will provide 

statistically sound data (Magurran et al. 2010). Citizen science initiatives such as the 

National Bat Monitoring Programme (NBMP) (Barlow et al. 2015) and the Breeding Bird 

Survey have given great insights into population trends of various UK species. One concern 

with citizen science data is that it can be prone to observer bias and error (Farmer, Leonard 

& Horn 2012) but good experimental design and statistical analysis can overcome such 

issues (Magurran et al. 2010; Schiek 2017). The use of acoustic recording units can be used 

to further reduce these errors. Newson, Evans & Gillings (2015) demonstrate that setting up 

an automated bat detector lending service can produce an unbiased, large-scale data set 

whilst also introducing new scientific methods to members of the public who are interested 

in taking part. This kind of approach could form the basis of a citizen-science soundscape 

initiative in the UK. The use of ARUs is not necessary as most people possess mobile phones, 

which are relatively high-quality recording units when compared to the ones used in Farina 

et al. (2014) and Bobryk et al. (2016).  

Instead of focussing on a taxonomic group or species community, a soundscape 

initiative might be more appropriate when focussed on a particular habitat type. The 

development of a citizen-science based woodland monitoring initiative, for instance, could 

provide invaluable information to land managers such as the Forestry Commission. In the 

UK between 2015 and 2016 there were an estimated 604 million visits to woodland and 

around 61% of the UK population have visited woodland in the last five years (Forestry 

Commission 2017b). Even if just 0.01% of those visits each produced a one minute 

soundscape recording that would be equivalent of 60,400 minutes (or over 1000 hours) of 

data. During the course of this study there were a number of familiar faces who visited the 

same parts of the forest almost every morning, often walking their dogs and often 

http://www.recordtheearth.org/
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interested in learning more about this study. This positive reception indicates that there 

may be an opportunity to nurture this interest and develop a citizen-based data collection 

protocol that capitalizes on the ubiquity of smart phone ownership (i.e. handheld recording 

devices) and the British public’s enjoyment of recreational woodland. Dog-walkers in 

particular would be ideal targets for such an initiative since they often visit the same 

woodland on a regular basis. The UK public have demonstrated their willingness to 

participate in citizen-science initiatives by contributing to the BBS and the NBMP to produce 

informative datasets that have increased our understanding of bird and bat population 

trends. The importance of natural soundscapes for human health and well-being (Smith & 

Pijanowski 2014) combined with the information they contain pertaining to biodiversity 

(particularly birds); landscape configuration; and anthropogenic noise disturbance suggests 

that they may draw interest from a wide cross-section of society. With this in mind, the 

development of a citizen-science initiative within the UK seems like a logical next step for 

both soundscape ecology as a field of research and institutions such as the Forestry 

Commission, for whom monitoring of their land could prove invaluable. 

 

6.7 The ARUPI 

The ARUPI presents a building block that will open up the availability of ARUs to 

NGOs, budget-limited researchers and potentially citizen science projects similar to that 

presented by Newson, Evans & Gillings (2015). There are other DIY ARU options available 

but currently, it seems that only the ARUPI is easily and freely available. A unit called the 

AudioMoth is perhaps the best low-cost acoustic monitor as it claims to have the ability to 

sample at up to 384,000Hz and so is equipped to detect ultrasonic frequencies.  It also uses 

just three AA batteries and appears to have a long battery life. Its downfall is its availability – 

it is not commercially available and in order to purchase it one must pay for the circuit 

boards (PCBs) to be printed by an external company. They are currently unavailable due to 

some parts not being available. The ARUPI is essentially modular and can be made using off-

the-shelf parts and it is possible to customize it to also record meteorological data and even 

take photographic images. Indeed, the geophony remains a problem when analysing and 

interpreting soundscape data. Wimmer et al. (2013) suggest incorporating data from nearby 

weather stations to aid interpretation of acoustic index data. Other studies have developed 
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algorithms for detecting rain within recordings (Bedoya et al. 2017). The ARUPI may provide 

a simple means with which to remove the geophony from recordings. Furthermore, weather 

events, such as high temperatures, can alter bird behaviours that are related to mating and 

signalling (Hovi 1995; Luther & Danner 2016). Time and space-matched acoustic-

meteorological data may be an important step in understanding community-level behaviour 

in response to abiotic stimuli. Development of the ARUPI to detect bats is underway using a 

USB powered ultrasonic microphone and when successful they may be incorporated into 

the Norfolk Bat Monitoring Project outlined in Newson, Evans & Gillings (2015). There are 

also plans to build some ARUPIs with volunteers from a small Sheffield based charity, Heeley 

City Farm, in order to map the acoustic diversity across the farm site and introduce people 

to the Raspberry Pi, soundscape ecology and the outdoors.   

 

6.8 Conclusions and Future Directions in Soundscape Ecology 

The incorporation of sound propagation models into acoustic analysis may improve 

our understanding of soundscape composition. Since it is clear that sound propagation is an 

important driver of evolutionary divergence and convergence (Kuczynski et al. 2010; Tobias 

et al. 2010) it will no doubt be an important factor when exploring evidence for the acoustic 

niche hypothesis (Krause 1987). For example, in chapter four, BAI was higher when ARUPI 

units were attached to larger trees. This finding is likely due to a larger tree being indicative 

of an older, more structurally complex stand, but it may also be due to reverberations of 

sound waves on the tree trunk. Investigating the nature of sound propagation in the context 

of soundscape composition may provide important insights into how acoustic indices can be 

interpreted. The acoustic indices used in this study are conceptually straightforward in their 

computation. There are other developments using unsupervised machine learning 

algorithms to categorize different habitats based on their soundscape signature 

(Bormpoudakis, Sueur & Pantis 2013) or as an alternative means of estimating species-

richness (Eldridge et al. 2016). No doubt more complex computational methods can and will 

be developed. For example, it may be possible to combine the use of multiple acoustic 

indices (as suggested by Towsey et al. (2014); and Xie et al. (2017)) with techniques used in 

other bioacoustics fields, such as using microphone arrays to detect distance and direction 

of sound sources (Blumstein et al. 2011; Mennill et al. 2012). Or using generalized Random 
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Encounter Models (Lucas et al. 2015) to estimate abundance of call-types, perhaps 

incorporated with an unsupervised automated call-recognition algorithm (Stowell & 

Plumbley 2014). These developments are conceptually possible and will no doubt add an 

extra dimension to current acoustic index calculation methods. However, in the meantime it 

is also important to collect field-recordings alongside detailed vegetation structural 

measures. There is a strong focus towards species-estimation which should not become the 

sole-focus of the field. Determining the relationship between the soundscape and the 

structural habitat and wider landscape should also be a priority due to the nature of sound 

propagation and attenuation through different structural landscapes. The findings in this 

study suggest that further research using NDSI as a tool for modelling road-noise in different 

habitats and investigating its effects on wildlife might be particularly useful. With further 

developments on these suggested research topics, soundscapes may become important 

tools that will inform both conservation initiatives and landscape planning.  
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Appendices 

Appendix – Chapter 2 
 

Appendix 2.1.  Correlation matrix showing intra-set correlations between environmental variable and three 

ordination axes of the CCA. Bold values show positive relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Axes 2014 Axes 2015 

 
1 2 3 1 2 3 

TRDN -0.303 0.177 0.544 -0.028 0.016 0.916 

TRSp 0.805 0.364 0.375 -0.932 -0.184 -0.122 

CNHT 0.749 0.099 0.001 -0.486 -0.386 0.36 

CCVR 0.2 0.541 0.469 -0.37 -0.275 0.594 

GCHT 0.489 -0.087 -0.681 -0.284 0.631 -0.404 

GCDV 0.407 -0.207 -0.846 0.462 -0.329 -0.647 

0-1KHz -0.325 0.133 -0.146 0.511 -0.076 -0.165 

1-2KHz -0.309 -0.190 0.185 0.260 0.125 0.277 

2-3KHz 0.820 -0.448 -0.100 -0.322 0.266 0.419 

3-4KHz 0.199 -0.555 0.310 -0.734 0.239 -0.142 

4-5KHz 0.690 -0.165 -0.209 -0.687 0.219 -0.276 

5-6KHz 0.649 -0.008 -0.292 -0.638 0.241 -0.250 

6-7KHz 0.636 0.101 -0.144 -0.633 0.121 -0.195 

7-8KHz 0.552 0.736 0.218 -0.607 -0.622 0.196 

8-9KHz 0.528 0.986 0.597 -0.699 -1.111 0.275 

9-10KHz 0.593 0.809 0.527 -0.681 -0.596 -0.498 
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Appendix 2.2 Interpolation maps of ADI values across the study grid. 

  

A) 2014 data. B) 2015 data. Darker areas indicate lower acoustic diversity. Site labels are those used in 

CCA analysis and a key can be found in table 2.1 in main body of text. These maps highlight how the 

acoustic diversity of the area displayed a similar pattern in both years. The dotted circular line (in both 

maps) shows site 63, which was felled between sampling years and so displayed major changes in the 

soundscape. These maps highlight the potential for using such sound-mapping techniques for monitoring 

change between years. Further research into selecting appropriate resolutions in different habitats is key 

to optimising performance of such tools. 
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Appendix – Chapter 4 
 

Appendix 4.1 Table showing land-use and habitat types in Bedgebury Forest. 

Land Use/Habitat Type Total Area (m
2
) % Cover 

Arboreta 565969 6.35 

BROADLEAVED; MIXED/YEW WOODLANDS 565969 6.35 

Car Parks/Picnic Areas 54948 0.62 

BUILT UP AREAS & GARDENS 46555 0.52 

UNKNOWN 8393 0.09 

Christmas Trees 78542 0.88 

CONIFEROUS WOODLANDS 78542 0.88 

Deer glades 2719 0.03 

BRACKEN 1140 0.01 

UNKNOWN 1579 0.02 

High Forest 6534606 73.29 

Lowland Mixed Deciduous Woodland 1065966 11.96 

BROADLEAVED; MIXED/YEW WOODLANDS 702374 7.88 

CONIFEROUS WOODLANDS 4766266 53.45 

Open 38805 0.44 

Lowland Mixed Deciduous Woodland 16931 0.19 

BOUNDARY & LINEAR FEATURES 6840 0.08 

BROADLEAVED; MIXED/YEW WOODLANDS 7862 0.09 

CONIFEROUS WOODLANDS 7172 0.08 

Open Water 29785 0.33 

STANDING OPEN WATER/CANALS 29785 0.33 

Other Built Facility 13174 0.15 

BUILT UP AREAS & GARDENS 13174 0.15 

Other Recreation 13620 0.15 

UNKNOWN 13620 0.15 

Residential 2966 0.03 

BUILT UP AREAS & GARDENS 2966 0.03 
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Appendix 4.1. continued. 

Land Use/Habitat Type Total Area (m2) % Cover 

Unplantable or bare 11374 0.13 

CONIFEROUS WOODLANDS 11374 0.13 

Worked Coppice 1569961 17.61 

Lowland Mixed Deciduous Woodland 11656 0.13 

BROADLEAVED; MIXED/YEW WOODLANDS 1558305 17.48 

Total Area (m
2
) 8916469 

 

Appendix 4.2. List of primary tree species found in 100m buffer zones around all sampling points (N=40) 

Tree Type Total Area (m
2
) 

Not Planted 29651 

Ash 720 

Beech 4437 

Birch (downy/silver) 10433 

Corsican pine 178475 

Douglas fir 14151 

European larch 2569 

Hybrid larch 5403 

Hybrid poplar 136 

Japanese cedar 10586 

Japanese larch 3766 

Mixed broadleaves 25332 

Norway spruce 3069 

Oak (robur/petraea) 43738 

Scots pine 99488 

Sweet chestnut 771665 

Sycamore 196 

Western hemlock 4484 
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Appendix 4.3. Interpolation maps indicating mean BAI values in Bedgebury forest at different times of the day. a)Period 1  04:00 – 10:00; b) Period 2 10:00 – 15:00; c) Period 3 15:00- 

20:00; d) Period 4 20:00 – 22:00; e) = Period 5 22:00 – 04:00; f) mean values across all periods. The brightest green areas indicate BAI values of between 8 – 8.5; Dark red values indicate 

BAI values of 0 - 0.5. 

a) b) c) 

d) e) f) 
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Appendix 4.4. Means plots indicating trends in ADI (a) and BAI (b) across different aged forest stands (in years) at different 

times during the day. Blue line = 04:00-10:00; Green line = 10:00-15:00; Red line = 15:00-20:00; Purple line = 20:00-22:00; 

Yellow line = 22:00-04:00; Black dotted line indicates mean values across all periods. c) Means plot indicated mean 

proportion of sound energy in nine 1 KHz frequency bands. Dotted lines key: Dark Blue = 2-3 KHz; Green = 3-4 KHz; Black 4-5 

KHz; Purple = 5-6 KHz; Orange = 6-7 KHz. Solid lines key: Red = 7-8 KHz; Light Blue = 8-9 KHz; Light Green = 9-10 KHz; Yellow = 

10-11 KHz. The dotted bands represent the majority of avian vocalisations in UK woodland. NB: 1-2 KHz frequency band not 

included as it alters the scale and affects visual interpretation of these bands. Interestingly frequency band 1-2 KHz follows a 

similar pattern to the other bands up until stands aged 20-30 years, but beyond 30years it continues to decline potentially 

indicating that the effects of road noise and technophony becomes somewhat moderated. d) Mean frequency band values 

across different canopy heights. Although not statistically significant, mean values look to be increasing with canopy height. 

Frequency band colours are as with figure c, but the top two bands (9-11KHz) are not included. 
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Appendix 4.5. Spearman correlations between vegetation structural variables, including stand age. * p-value < 0.05 **p-value <0.01. See table 4.1 for 

codes.

  VH VC VS VSQ CO CH TT TD SD SDW BA DWf DWs DW DBH 

Age -.470
**

 -.258 .279 .189 -.205 .728
**

 -.195 .301 .392
*
 .254 .020 .070 .001 .059 .365

*
 

VH 1.000 .832
**

 .311 .496
**

 .629
**

 -.423
**

 .227 -.156 -.375
*
 -.102 .013 -.163 -.070 -.055 -.139 

VC .832
**

 1.000 .308 .523
**

 .657
**

 -.298 .062 -.126 -.232 -.043 .009 -.058 -.182 -.141 -.043 

VS .311 .308 1.000 .819
**

 .394
*
 .050 -.026 .188 -.374

*
 -.031 -.266 -.247 -.249 -.218 -.094 

VSQ .496
**

 .523
**

 .819
**

 1.000 .504
**

 -.008 -.161 .180 -.268 -.011 -.327
*
 -.196 -.185 -.107 .050 

CO .629
**

 .657
**

 .394
*
 .504

**
 1.000 -.278 -.160 -.127 -.172 .049 -.354

*
 .049 -.162 -.059 .174 

CH -.423
**

 -.298 .050 -.008 -.278 1.000 -.311 .414
**

 .617
**

 .444
**

 .129 .108 .007 .087 .441
**

 

TT .227 .062 -.026 -.161 -.160 -.311 1.000 -.138 -.335
*
 -.218 .514

**
 -.089 .311 .171 -.435

**
 

TD -.156 -.126 .188 .180 -.127 .414
**

 -.138 1.000 .096 .280 -.075 .116 -.102 .031 .008 

SD -.375
*
 -.232 -.374

*
 -.268 -.172 .617

**
 -.335

*
 .096 1.000 .563

**
 .324

*
 .422

**
 .413

**
 .470

**
 .558

**
 

SDW -.102 -.043 -.031 -.011 .049 .444
**

 -.218 .280 .563
**

 1.000 .195 .562
**

 .310 .472
**

 .308 

BA .013 .009 -.266 -.327
*
 -.354

*
 .129 .514

**
 -.075 .324

*
 .195 1.000 .102 .457

**
 .340

*
 -.119 

DWf -.163 -.058 -.247 -.196 .049 .108 -.089 .116 .422
**

 .562
**

 .102 1.000 .065 .273 .298 

DWs -.070 -.182 -.249 -.185 -.162 .007 .311 -.102 .413
**

 .310 .457
**

 .065 1.000 .915
**

 .010 

DW -.055 -.141 -.218 -.107 -.059 .087 .171 .031 .470
**

 .472
**

 .340
*
 .273 .915

**
 1.000 .146 

Rh .006 .010 -.018 .068 -.096 .030 .087 .342
*
 -.112 -.059 -.004 -.360

*
 -.064 -.110 -.252 

DBH -.139 -.043 -.094 .050 .174 .441
**

 -.435
**

 .008 .558
**

 .308 -.119 .298 .010 .146 1.000 
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Appendix 4.6. Spearman correlations between landscape metrics.* p-value < 0.05 **p-value <0.01. See table 4.1 for codes.

 Age AG AVA EDS RD A_rd B_rd WD RR AH SH HH EDN %Rec %BL %CF %WC %OA %OW 

Age 1.000 .976
**

 .253 -.043 .225 .223 .197 -.076 -.165 -.049 .124 .080 -.155 .056 -.174 .145 -.107 -.187 .144 

AG .976
**

 1.000 .226 -.055 .175 .224 .218 -.039 -.209 -.040 .136 .071 -.153 .008 -.157 .142 -.109 -.123 .156 

AVA .253 .226 1.000 -.243 .231 .193 .202 -.019 -.357
*
 .125 .511

**
 .340

*
 .016 -.062 .171 .560

**
 -.481

**
 -.094 -.185 

EDS -.043 -.055 -.243 1.000 -.004 -.208 -.395
*
 .387

*
 .223 -.721

**
 -.659

**
 -.794

**
 -.649

**
 -.317

*
 -.569

**
 -.413

**
 .756

**
 -.083 -.038 

RD .225 .175 .231 -.004 1.000 .358
*
 .056 -.289 .146 .045 .086 .080 .054 .040 -.085 .071 -.062 -.196 .065 

A_rd .223 .224 .193 -.208 .358
*
 1.000 .814

**
 -.074 -.454

**
 .351

*
 .506

**
 .385

*
 .262 .256 -.203 .477

**
 -.445

**
 .195 .310 

B_rd .197 .218 .202 -.395
*
 .056 .814

**
 1.000 -.129 -.390

*
 .468

**
 .610

**
 .518

**
 .217 .385

*
 .022 .437

**
 -.538

**
 .297 .307 

WD -.076 -.039 -.019 .387
*
 -.289 -.074 -.129 1.000 -.119 -.307 -.242 -.451

**
 -.214 -.527

**
 -.576

**
 .157 .239 .082 -.383

*
 

RR -.165 -.209 -.357
*
 .223 .146 -.454

**
 -.390

*
 -.119 1.000 -.303 -.587

**
 -.407

*
 -.303 -.050 -.056 -.564

**
 .508

**
 -.198 -.273 

AH -.049 -.040 .125 -.721
**

 .045 .351
*
 .468

**
 -.307 -.303 1.000 .658

**
 .728

**
 .674

**
 .507

**
 .426

**
 .343

*
 -.661

**
 .157 .298 

SH .124 .136 .511
**

 -.659
**

 .086 .506
**

 .610
**

 -.242 -.587
**

 .658
**

 1.000 .909
**

 .400
*
 .491

**
 .342

*
 .698

**
 -.935

**
 .255 .297 

HH .080 .071 .340
*
 -.794

**
 .080 .385

*
 .518

**
 -.451

**
 -.407

*
 .728

**
 .909

**
 1.000 .535

**
 .598

**
 .540

**
 .513

**
 -.895

**
 .229 .326

*
 

EDN -.155 -.153 .016 -.649
**

 .054 .262 .217 -.214 -.303 .674
**

 .400
*
 .535

**
 1.000 .119 .502

**
 .311 -.534

**
 .016 .323

*
 

%Rec .056 .008 -.062 -.317
*
 .040 .256 .385

*
 -.527

**
 -.050 .507

**
 .491

**
 .598

**
 .119 1.000 .336

*
 -.101 -.398

*
 -.070 .364

*
 

%BL -.174 -.157 .171 -.569
**

 -.085 -.203 .022 -.576
**

 -.056 .426
**

 .342
*
 .540

**
 .502

**
 .336

*
 1.000 -.070 -.426

**
 .015 .197 

%CF .145 .142 .560
**

 -.413
**

 .071 .477
**

 .437
**

 .157 -.564
**

 .343
*
 .698

**
 .513

**
 .311 -.101 -.070 1.000 -.747

**
 .180 .147 

%WC -.107 -.109 -.481
**

 .756
**

 -.062 -.445
**

 -.538
**

 .239 .508
**

 -.661
**

 -.935
**

 -.895
**

 -.534
**

 -.398
*
 -.426

**
 -.747

**
 1.000 -.218 -.238 

%OA -.187 -.123 -.094 -.083 -.196 .195 .297 .082 -.198 .157 .255 .229 .016 -.070 .015 .180 -.218 1.000 -.107 

%OW .144 .156 -.185 -.038 .065 .310 .307 -.383
*
 -.273 .298 .297 .326

*
 .323

*
 .364

*
 .197 .147 -.238 -.107 1.000 
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Appendix 4.7. Boxplot indicating significant differences in standing deadwood volumes in different aged-stands (Kruskal-

Wallis χ
2

(4)=14.465, p=0.006). These differences are likely explained by a change in coppice management either due to 

Bedgebury forest restoration initiative or a reduction in market demand for chestnut coppice fence palings, or a combination 

of those two factors. 
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Appendix – Chapter 5 

Appendix 5.1 - ARUPI Instructable 

The following instructions were published on www.instructables.com on September 16th 2015 and are 

accessible through the following URL:  

https://www.instructables.com/id/ARUPi-A-Low-Cost-Automated-Recording-Unit-for-Soun/  

 

Introduction 

This instructable was written by Anthony Turner. The project was developed with lots of help from the 

Shed in the School of Computing, University of Kent (Mr Daniel Knox in particular was a great help!). 

It will show you how to build an Automated Audio Recording Unit for less than £150. You can use this 

unit to conduct research in the field of Soundscape Ecology (which is why I built this). You could use it to 

monitor the birds in your garden or just to make nice recordings of the dawn chorus, without having to 

get up really early. 

 

The ARUPi (Automated Recording Unit Pi) uses the Raspberry Pi computer and an Arduino-based power-

control board called the Sleepy Pi. It is fully customisable and you will be able to add different 

environmental sensors to the units if you wish (not explained here). This instructable will give you a 

bare-bones unit. I will provide you with an Arch Linux operating system (OS) that is stripped down and 

has the recording program pre-installed on it. 

 

You may need to do some (very simple) soldering so be prepared for this, but it is possible to build this 

unit without soldering if you do not own or cannot afford a soldering iron (ca. £10). I will split this 

instructable into several steps. The first ## steps will deal with getting the software onto your ARUPi and 

getting the computer side of things up and running (uploading software to Raspberry Pi and Sleepy Pi). 

Once you have done this, you will be able to go your own way and decide which microphones and casing 

you want to use. If you want to make what I have made, then continue with the instructable and it will 

show you how to build some cheap (but good) microphones and assemble some field-tested, fully 

waterproof, pretty robust ARUPi's (pictured). 

 

http://www.instructables.com/
https://www.instructables.com/id/ARUPi-A-Low-Cost-Automated-Recording-Unit-for-Soun/
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Step 1 - Items Needed 

a) Raspberry Pi A+ (case optional) - get it from PiMoroni/Ebay/Amazon (figure 1). 

b)  Sleepy Pi - http://spellfoundry.com/products/sleepy-pi/ (figure 1) 

c) Sleepy Pi programmer - http://spellfoundry.com/products/sleepy-pi-program... 

i. This programmer saves a lot of hassle. However, you can build your own for less money if 

you buy an FTDI 3.3V USB to TTL Arduino Programmer cable/board 

(http://spellfoundry.com/sleepy-pi/programming-sleepy-pi-standalone-board/). If you 

are new to programming I recommend buying the Sleepy Pi Programmer. 

d) 16GB Kingston Data Traveler Micro (figure 1). You need to format the USB drive to NTFS before 

plugging it into your Raspberry Pi (format USB using Windows Explorer – figure 2). If you decide 

to use a different make/model USB storage device, you may need to change some information in 

the /etc/fstab system files on the ARUPi OS I supply you with. The OS I provide you with mounts 

the 16GB Kingston Micro DT to sda1. 

e) USB soundcard. I chose the Creative Soundblaster Play! (figure 1) because it records 16bit 

Stereo; 48KHz sampling rate. It is also compatible with the Raspberry Pi and doesn't need any 

extra drivers - plug and play. However, there are cheaper USB soundcards available so it might 

be worth investigating. 

 

http://spellfoundry.com/products/sleepy-pi/
http://spellfoundry.com/products/sleepy-pi-programming-adapter/
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Figure 1. Core hardware items needed to build the ARUPI. The soundcard and USB splitter can be 

interchanged with other makes/models. The Kingston DT Micro can be interchanged as well but you will 

need to see Step 5 for enlightenment on how to enable your ARUPI to read a different make/model.  

 

Figure 2. Format USB drive to NTFS file format – right click on the USB drive in Windows explorer; select 

<Format>; File System = <NTFS>; <Start>. This step is important. 

 

Step 2 – Software Needed 

a) Download and install Win32 Disk Imager® software 

from http://sourceforge.net/projects/win32diskimager/ 

b) Install Arduino IDE software onto your computer: https://www.arduino.cc/en/Main/Software 

c) Collect the operating system (OS) and other relevant files from my GoogleDrive Account by 

following this link: 

https://drive.google.com/folderview?id=0BxoTy4JIKn... 

d) The link should take you to a googledrive shared folder I created. It contains: 

i. the Operating System you need (ARUPi_240415). This file is 7.32GB so may take a while 

to download. GoogleDrive will also state that it cannot scan the file to check it is safe as it 

is too large. Don't worry about that - the file is virus free (it is an image of an Arch-Linux 

Operating System). 

ii. The Folder labelled "Sleepy_Pi" contains "_15min_Pi" (a program that tells the Sleepy Pi 

to wake the Raspberry Pi every 15 minutes) and a folder called Libraries. You need to 

save these files into the "Arduino" folder that should be found in the My Documents 

folder on your computer (assuming you have installed Arduino IDE. 

iii. A more detailed Parts List (ARUPI_PARTS_INFO.xls) with some links to where you can buy 

some of the parts.  

http://sourceforge.net/projects/win32diskimager/
https://www.arduino.cc/en/Main/Software
https://drive.google.com/folderview?id=0BxoTy4JIKnzeUkRFQnB4dFFQbXM&usp=sharing
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iv. A PDF document that covers step 5. I suggest following the PDFs as it is colour-coded and 

easier to follow. 

Step 3 – Set up the Operating System 

a) Write the OS disk image to your micro SD card using Win32 Disk Imager. 

b) When selecting Arupi_240415, you need to change file type to *.* to make it visible (figure 3a). 

c) Select the disk drive that corresponds to your micro SD card (figure 3b) 

i.  I always make sure I only have my SD card plugged in to avoid accidentally 

formatting an external HDD or other USB device. 

d) Now click the “Write” button 

i. This will write the disk image to the device. 

 

Figure 3. a) Change file type to make Arupi_240415 visible. b) Select file path that corresponds to your 

micro sd card. 

 

Step 4 – Program the Sleepy Pi 

a) 

b) 
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The Sleepy Pi is one of the most important pieces of kit for this unit. It turns the Raspberry Pi on and off 

to a schedule that you choose. Therefore, you need to tell the Sleepy Pi what you want it to tell 

the Raspberry Pi to do. 

a) The Sleepy Pi has an onboard Arduino microcontroller, on which instructions can be installed. To 

do this you need to have installed the Arduino IDE software. 

b) Download the entire Sleepy_Pi folder from the GoogleDrive link on the previous step. Place the 

“_15min_Pi” file and “libraries” folder in the “Arduino” folder created in your “My Documents” 

folder (i.e. C:\Users\Ant\Documents\Arduino). 

i. Open the script “_15min_Pi.ino” in the Arduino IDE. This script is what you need to 

upload to the Sleepy Pi. It tells the Sleepy Pi to turn on your Raspberry Pi every 900 

seconds (i.e. 15 minutes). You can change this schedule by modifying the following line 

(i.e. 1800 seconds would equal 30 minutes).  

i. int SYSTEM_SLEEP_TIME_IN_SECONDS = 900; 

c) To verify that the script works click on the tick symbol just below the 'file' tab (figure 4a). If the 

script doesn't run properly, check that you have put all the libraries from my GoogleDrive into 

your Arduino folder (see above – step b). 

d) Connect your Sleepy Pi to your computer and upload the _15min_Pi.ino script to the Sleepy Pi 

unit. If you have bought the programming unit from the Spell Foundry then follow the 

instructions given (install correct drivers etc etc). If you have your own FTDI programmer then 

use this webpage for guidance http://spellfoundry.com/sleepy-pi/programming-sle... 

 

Step 4 In a nutshell: 

- Connect the programmer to the GPIO pins of your Sleepy Pi and connect USB to your computer NB: 

Make sure you connect pins correctly (see webpage given above)! 

- Plug in the power supply to your Sleepy Pi (micro USB OR via barrel jack) 

- Open “_15Min_Pi” (or your modified script) in Arduino IDE.  

- Select Arduino Fio as your board (figure 4b) 

- Upload your script to the Sleepy Pi by pressing the “upload” arrow next to the tick. 

- If it doesn’t work then check the COM Port is correct (figure 4c). You might have to reinstall the drivers 

for your FTDI serial programmer. 

 

http://spellfoundry.com/sleepy-pi/programming-sleepy-pi-standalone-board/
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Figure 4. a) Checking the script works. b) Selecting the Arduino FIO board. c) Troubleshooting serial port. 

 

Step 5 - Sleepy Pi/Raspberry Pi Connections 

IMPORTANT 

- FORMAT USB DRIVE TO NTFS FILE SYSTEM – THE ARUPI OS IS PROGRAMMED TO AUTOMATICALLY INSTALL THE 

NTFS USB DRIVE. IT WILL NOT WORK IF THE DRIVE IS USING ANOTHER FILE SYSTEM 

- UPLOAD PROGRAM ONTO SLEEPY PI BEFORE FOLLOWING THESE INSTRUCTIONS 

a) 

b) 

c) 
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To install the time on the Sleepy Pi and get it to talk with your Raspberry Pi you must follow these 

instructions for each unit you build.  

a) Insert a CR1632 battery into the Real Time Clock (RTC) slot on the Sleepy Pi (figure 5) 

b) Plug Sleepy Pi into GPIO pins on the Raspberry Pi as shown in image (figure 5).  

 

Figure 5. a) Install RTC battery on Sleepy Pi. b) Connect Sleepy Pi to Raspberry Pi. 

c) Plug in your usb port splitter and plug in the soundcard, your USB storage device and a keyboard 

(figure 6 –step 1).  

d) If you have a network cable (ethernet), plug it into the Raspberry Pi ethernet port now. Don’t worry 

if you don’t have one, the instructions will explain all. 

e) Plug in a HDMI cable into the Raspberry Pi HDMI socket to connect to your monitor/TV . 

f) Ensure the power bypass switch is set to override the Sleepy Pi program (figure 7) 

g) Plug the power supply into the micro USB power socket on the Sleepy Pi (figure 6 – step 2). 

h) The Raspberry Pi should boot up (if it doesn’t boot up see note at end of this section).  
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i. Type in the username: root and the password: root. 

 

Figure 6. Step 1 indicates where to plug the USB splitter in. Step 2 indicates where to plug power in to 

power the Raspberry Pi through the Sleepy Pi unit. 

 

 

Figure 7. a) How to bypass Sleepy Pi programming to ensure immediate power to Raspberry Pi. b) How 

the bypass switch should look when placing your finished unit out in the field. 

Step 6 - Accessing the sleepy pi clock: 

a) Type:    

i2cdetect -y 1 <enter> 

 

The following screen should come up after you press enter 
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If that doesn’t work try: 

i2cdetect -y 0 <enter> 

(If that doesn’t work then shutdown Raspberry Pi (type: shutdown) and check you have properly 

installed the Sleepy Pi onto the Raspberry Pi unit) 

If the RTC is detected but the entry at 0x68 is “UU” not “68” then you need to unload the drivers 

from that address. To do this type: 

rmmod rtc-ds1374 <enter> 

Now try the i2cdetect command again and you should get the same output as the image above. 

The RTC will be detected with the address 0x68. 

Note: Remember which i2cdetect command worked (i.e. –y 0 or –y 1) as you need to enter /i2c-

0/ or /i2c-1/ depending on which one worked, in the line after next (highlighted in blue). 

b) Now type the following: 

modprobe rtc-ds1374 <enter> 

 

      /bin/bash -c "echo ds1374 0x68 > /sys/class/i2c-adapter/i2c-1/new_device" <enter> 

 

If you get error messages check very carefully that you have entered exactly what is above. 

 

c) Now check the time on the RTC by typing: 

hwclock –r <enter> 

It won’t be the correct date. 
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d) Upload the correct time to the Sleepy Pi RTC.  If you have a network cable connected to your 

Raspberry Pi simply type: 

hwclock –w <enter> 

If you don’t have a network cable you have to set the time on your Raspberry Pi. To do this type 

the following: 

date –s “dd MTH yyyy hh:mm:ss” <enter> 

eg.  date –s “15 MAR 2015 18:33:46” <enter> 

Now type: hwclock –w <enter> 

e) Now check the time on the RTC by typing 

hwclock –r <enter> 

If the time is incorrect, try repeating the necessary steps carefully – it is easy to miss things. 

 

Step 6 NOTE: If the Raspberry Pi Didn’t boot up properly 

If you are using a different USB storage device to the one I have recommended it might affect the way 

the Raspberry Pi boots up. If it does, you will be taken to a command that says type password or D to 

continue as administrator. This is because this OS is set up to automatically mount the Kingston DT 

micro 16GB USB stick.  

- Type blkid <enter> 

- Something similar to this should appear 

/dev/sda1: LABEL=”System Reserved” UUID=”36423FA6423F6A2F” TYPE=”ntfs” 

/dev/sda2: UUID=”B6DA024DDA0209F7″ TYPE=”ntfs” 

/dev/sda3: UUID=”08D44A70D44A5FD4″ TYPE=”ntfs” 

/dev/sda4: UUID=”f2025d4a-ab25-41de-a530-285f5b979cd0″ TYPE=”ext4″ 

/dev/sdb: UUID=”6ABB-232A” TYPE=”vfat” 

- Identify your USB drive from the list and make a note of the mount point “/dev/sda?” that 

corresponds to it. 

- Now type nano /etc/fstab <enter> 
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- Modify the line that contains /mnt/arupi so that the /dev/sda1 corresponds to the ID/mount 

point of your USB drive. 

 

Step 7 - Modifying the recording script and Activating the ARUPi 

a) Now set your desired  recording lengths by typing the following: 

nano  /root/recordTest.sh <enter> 

The first few lines that are preceded with“#” are some instructions/information about what is in this file 

– the # prevents the computer from running the information following it (much like in R, if you are 

familiar with that language). Basically, the last two digits on the script (the line that isn’t preceded with a 

#) indicate recording length in seconds. The default setting is to record for 60 seconds. So if you want to 

make two minute recordings delete 60 and change it for 120 (for three minute recordings 180 etc). 

 

b) Finally set the Raspberry Pi to start recording automatically when the Sleepy Pi wakes it up. Type 

the following: 

export EDITOR=nano <enter> 

crontab –e <enter> 

The following lines will appear in the nano editor: 

# @reboot /root/setClock.sh & 

# @reboot python /root/recordPi.py & 

These lines are essentially your recording program. At the moment, these lines are not active when the 

Raspberry Pi boots up. You need to delete the # in order to activate them.  

@reboot /root/setClock.sh & sets the Raspberry Pi’s clock to be the same as the RTC on the Sleepy Pi.  

@reboot python /root/recordPi.py & runs a program using python software that makes the Raspberry 

Pi record for 60seconds when it is booted up and then shuts the Raspberry Pi down. 

NOTE: Do not delete the # from the first 6 lines on this page – these are just re-iterating the instructions 

you should follow. Once you have deleted the two # symbols required, your ARUPi is ready to go. 

Now press <ctl> x to exit nano. It will ask you if you would like to save the changes you made press: 

 y and <enter> for yes  
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n and <enter> if you want to start afresh (in case you accidentally deleted everything or made a mistake 

but can’t remember what it was). 

NOTE: when your Raspberry Pi boots up from now on it will automatically run these two files. If you 

wish to alter anything (i.e. recording length), you will need to reverse what you have just done by 

placing # at the beginning of the two lines in crontab manager, save the crontab file and then 

type reboot at the command line. You need to do all of this before the pi shuts itself down again (i.e. 

you have to type fast if your set recording length is one minute or less). If you cannot type fast enough 

to do that, you can boot up your Pi without the USB stick plugged in. This will log you in as an 

administrator and you can modify the pi as you like, without having to rush! Also remember to re-

activate the Pi (i.e. delete the #s) when you intend to use it in the field. 

c) Shutdown the Raspberry Pi by typing: 

shutdown <enter> 

There will be a delay of around one minute whilst the Raspberry Pi initiates the shutdown so just 

relax. Now you are ready to go and do some automated audio recording! Alternatively, you can type 

poweroff <enter> to shut it down more quickly. 

d) Once the Raspberry Pi has shutdown, remove the power supply from the Sleepy Pi. 

e) Readjust the power bypass switch to enable the Sleepy Pi to control the power to the Raspberry 

Pi  (image e).  

 

NOTE: 

If you are making multiple units and you have changed anything in this step (i.e. altered the recording 

length or activated the ARUPi – i.e. deleted the 2 #s in crontab) then you might want to make a disk 

image of your current micro SD card. To do this, use Win32 Disk Imager to read the data from the card 

into a new image file (eg. MYARUPi_170915). You can then write the new image to your subsequent SD 

cards and they should all perform identically. NB: You will still need to set the time on all of your Sleepy 

Pi units using a Raspberry Pi.  

 

Some Notes  

a) Progress Update Now, when you plug a power supply into the Sleepy Pi, the timer on the Sleepy 

Pi will start counting down from 900seconds (or whatever length of time you stated in step 4). 
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b) After 900seconds, the Sleepy Pi will turn on the Raspberry Pi and the Raspberry Pi will record 

audio (WAV) for 60seconds (or whatever you stated). NOTE. If you don’t have a microphone 

plugged into the Soundcard, the audio file will be 60seconds of no sound! 

c) The file will be saved on your USB stick and will be labelled “ddmmyyhhmmss.wav” eg. 

050715190559.WAV. 

d) It is always worth running the unit from your chosen battery supply for a few hours to check the 

recordings are working OK. Sometimes if the power supply is too low, there can be interferences 

(beeps and clicks) in the recordings. This is also worth remembering when deploying your units 

for long periods – find out when the power from your chosen supply method drops to a level 

where it affects the audio. NOTE. The beeps and clicks mentioned don’t seem to appear on any 

spectrograms so they are not a major problem, but they are an indication that your power 

supply has dropped or is too low! 

e)  Now you can mount your recording unit in a waterproof casing. 

 

Step 7 – Final Push 

a) You now have an automated recording unit. However, you still need a microphone and power 

supply. From here on you can use your creativity/research to put your stamp on the unit. But 

you do need the following three things!  

b) Power Supply: - The Raspberry Pi requires at least 5V to function, but this unit requires more 

since it has several bits of kit attached to it. The Sleepy Pi can regulate a 5.5V to 17V power 

supply via the power jack to the Raspberry Pi. I used 8xAA (non-rechargeable-ca.2400mAh each) 

batteries (ca.12V total) to power my ARUPis. They could record one minute of audio, every 15 

minutes for ca 7days. The barrel jack shown in the picture comes with the Sleepy Pi unit. - You 

will need: Battery holder (i.e. 8xAA) pp3 9v battery clip and lead In-line switch (optional - but 

makes life simpler in the field and reduces stress on plugs and sockets!)  

c) Microphone - If you wish to build your own microphone, I recommend the Primo EM172 (or 

Primo BT EM-172). Please see the Microphone building PDF in my GoogleDrive to learn more 

about building your own Primo EM172 microphone. It really is quite simple.  

d) Waterproof Enclosure - I recommend the one pictured, sold by Solent Plastics amongst other 

vendors on Ebay and Amazon. It is very robust and comes with modifiable foam inside and I can 
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vouch for their performance in terms of ruggedness and waterproof-ness.  However, you can use 

whatever enclosure you wish. A Lock and Lock tupperware style container would probably be 

OK. But it is worth getting together your entire ARUPi before buying a container as you need to 

know how much space you need. 
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                   Appendix 5.2. Equipment list for the ARUPI used in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Item Make Model Seller UK £ Purpose/Notes 

Raspberry Pi 
A+ with 
PiBow Coupe 
Case 

Raspberry 
Pi 

A+ 
PiMoroni/Amazon/ 
Ebay 

25 
The raspberry Pi A+ has the lowest power consumption of all the raspbery pis. The 
case is not essential but it just adds that extra bit of protection for the Pi and you can 
often buy them together. A Raspberry Pi A+ on its own can cost as little as £17. 

8 gb micro sd 
card 

any class10 
 

5 This is for the Operating System (OS) that will run the Raspberry Pi. 

SleepyPi     
www.spellfoundry.c
om 

39 
This unit controls the power to the Raspberry Pi and can be programmed to switch it 
on and off as required. 

Coin-Cell 
Battery 

Any CR1632 Ebay/Amazon 1.5 
This is for the Real Time Clock on the Sleepy Pi - without this battery, the Sleepy Pi 
cannot function to a schedule unless it is plugged into the mains. 

USB stick  kingston DT micro 16gb Ebay/Amazon 5.2 

NB: if you get a different make/model/size USB stick, you may need to change a few 
system files in the Rasbperry Pi. This is not difficult but you should be aware this will 
need to be done otherwise the unit will not work. Also, I recommend getting two USB 
sticks per unit. That way you can swap the sticks in the field and keep you unit out 
recording for longer (you just bring the full USB stick back to retrieve the data). 

USB splitter       1.50 the Rpi A+ only has one USB port, so you need this to plug in the USB stick.  

Soundcard Creative Soundblaster Play! Ebay/Amazon 20 

I am not sure whether these are much better than a cheaper £10 soundcard. You can 
even get some cards for as little as £3. I went for this one because it can record up to 
16BIT/48KHz (i.e.24KHz per channel). This unit is also compatible with the Raspberry 
Pi and no drivers are needed. So it is hassle free. 

Waterproof 
IP67 Case 

?? MAX235H105 
Ebay/Amazon OR 
www.solentplastics.c
o.uk 

20 
NB: you can use any case you like - I got these because they are very rugged, 
waterproof and dustproof and come with internal foam (IP67). 

http://www.spellfoundry.com/
http://www.spellfoundry.com/
http://www.solentplastics.co.uk/
http://www.solentplastics.co.uk/
http://www.solentplastics.co.uk/
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Appendix 5.2 (contd). Equipment list for the ARUPI used in Chapter 4. 

Item Make Model Seller UK £ Purpose/Notes 

Microphone 
and phantom 
power unit 

Primo BT/EM172 

For inspiration search in 
google for how-to guides 
and information on nature 
recording. 

11.46 

NB: See microphone building pdf if you want to build this. Alternatively you can 
search for a ready made alternative. It needs to have a 3.5mm stereo jack plug (to fit 
into the Creative Soundblaster Play!). Alternatively you could investigate buying a 
USB microphone, but you will need to figure out if extra drivers are needed and how 
you install them. 

battery 
case/holder 

AA 8XAA 
 Anywhere (but buy good 
ones).  

1.5 

NB: you can use different power options - this is just what I used. The Sleepy Pi can 
regulate a power supply between 5.5V and 17V via the power jack. 8xAA batteries 
(each being 1.5V) = 12V. I tried using 4xD cell batteries but the voltage was not high 
enough. I also tried using a USB power bank (often used for charging phones and 
tablets on the go), but this failed to keep the Sleepy Pi awake. I didn't get round to 
experimenting with Li-ion rechargeable battery packs. 

25mm IP68 
cable gland 

    Screwfix 1.2 
The microphone I built used 15mm aluminium tubing. The 25mm cable glands are 
perfect for mounting the microphone and maintaining a waterproof seal around the 
fixing point. 

glue/sealant 
I used 
Sugru 

https://sugru.c
om/ 

Ebay/Amazon (ca. £13 for 
8 sachets) 

1.6 
You can use other, cheaper adhesives if you like. I chose Sugru as it is easily 
mouldable and remains slightly flexible but is strong, yet easy to remove if needs be. 

      TOTAL(ish) 133 

This total will vary depending on market prices and on what equipment you go for. It 

is worth noting that the only essential items are first four in this list. The other items 

can be swapped/changed for cheaper or more expensive items - but this might 

require some tweaking of the OS I provide you with! 

Price doesn't include: 

AA batteries I bought 100 Duracell Procell for around £25. The unit uses 8 batteries, which last for 7/8days (recording one minute every 15 minutes). 

9v battery Only necessary if you decide to build the microphone! 

https://sugru.com/
https://sugru.com/
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