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Abstract. The formal methods and refinement community should be
able to contribute to the specification and verification of cryptography
based security protocols. This paper describes a few of the challenges
that arise in this context. These include: security properties which differ
from one application to another, and as a consequence issues of specifica-
tion completeness; approximate rather than absolute notions of security,
and underlying theories which do not provide obvious methods for “cor-
rectness by construction”.

1 Introduction: Commitment and Completeness

At a first glance, cryptographic protocols provide exactly the kind of problems
that formal methods are most suitable for and perform best at: short programs
(most fit on a single page), based on rich algebraic mathematics, whose correct-
ness is highly critical. However, the mathematics and the notions of security
(correctness) are very different from the usual formal methods repertoire.

As an example, consider the cryptographic primitive of bit commitment. This
is an essential ingredient of many cryptographic applications, particularly to
build up trust between different parties, e.g. in authentication, and for zero-
knowledge proofs of knowledge. Commitment, informally, is like putting a value
in a locked box. One party (the “committer”) chooses a message, and transforms
it in a way which makes sure they cannot later claim it was a different message (it
is “binding”), and the other party (the “receiver”) cannot see it (it is “hiding”),
and passes the transformed message to the other party (it “commits”). After
commitment has taken place, typically further interaction will follow. At some
point the commitment may be opened, e.g. as a check for honesty. One then
expects the original message to be retrieved (“correctness”). The three prop-
erties: hiding, binding, and correctness together constitute the specification of
commitment. When the message is a single bit, it is called bit commitment.

Another method of specifying this functionality is in what is commonly called
the “ideal model” [12], where parties can communicate securely with an incor-
ruptable third party. In that model, the committer sends their message to the
trusted intermediary, who then confirms to the receiver that some commitment is
made. When the committer asks for the commitment to be opened, the interme-
diary sends the original message to the receiver. Security of an implementation



in this model means: any attack that succeeds against the implementation is as
likely to succeed against the ideal model scenario. Although we have omitted the
formal details here, it appears as if hiding, binding and correctness are indeed
guaranteed in this specification. Conversely, it would be difficult to come up
with a simpler “ideal model” specification that satisfies those three properties.
We will come back to this in detail in Section 2.

To consider a rather more complicated example, protocols for electronic vot-
ing have been studied for many years, leading to an extensive list of desirable
security properties [11]:

fairness, eligibility, individual verifiability, universal verifiability, vote-
privacy, coercion-resistance, receipt-freeness

with many of these varying depending on whether computers and election offi-
cials can be trusted or not. Even though the cited work provides a lot of structure
by establishing relations between all these properties, it would still be hard to
be certain that this set of properties or any future extension completely covers
all possible attacks on an electronic voting protocol [9].

In general, when stated security properties closely match attacks that have
been envisioned, clearly any verification is relative to the set of attacks consid-
ered, and completeness remains an issue. The cryptographic security community
is undecided as to whether ideal model specification addresses this completeness
problem [9, 10].

2 Commitment and Feasibility

We examine commitment and its security properties in more detail here. The
context in which commitment schemes must be understood is as part of a pro-
tocol. A protocol involves at least two parties and is an algorithmic prescription
for a number of causally related communications between the involved parties,
aiming to achieve a particular objective. A protocol may succeed, or it may fail.
It fails when the exchange of messages stops prematurely, for example after one
party observes that another party is not adhering to the protocol. It succeeds
if the protocol has completed and none of the parties has declared failure ex-
plicitly. Parties which act according to the protocol’s rules and aim to achieve
the protocol objective are called “honest”. If the protocol succeeds although the
objective has not been achieved, this indicates a breach of security. The protocol
is expected to fail if some of the parties act dishonestly — thus, it is never in the
interest of a dishonest party to perform an action that is guaranteed to lead to
the protocol’s failing. A practically relevant expectation is that a cryptographic
protocol has a fixed number of fixed size messages, where the numbers may de-
pend on the sizes of any protocol parameters, or on a security parameter (such
as a key size).

The bit commitment scheme consists of three phases: preparation, commit-
ted, and opened. In the preparation stage, no bit has been chosen yet; in the
commited stage, the committer has chosen a bit b that they cannot change



(binding), and that the receiver does not know (hiding); in the opened phase,
the receiver knows that the committer originally committed to b. The transitions
between phases are achieved by messages from the committer to the receiver.

A first, obviously broken, attempt at a protocol is where the committer sends
out a value commit(b) for a known function commit, and later the value b as an
opening. Correctness is guaranteed, but hiding normally is not: the receiver can
check immediately by “exhaustive” search whether they received commit(0) or
commit(1). However, if commit(0) = commit(1) then hiding is guaranteed, but
binding is not.

The normal solution for this is randomisation. The traditional argument
for the need for randomisation in cryptography is masking known distributions
within plaintexts in encryption algorithms — this is another. There are two com-
mon views of probabilistic algorithms. One view is that they include explicit
probabilistic choices “inside”. This model fits best when e.g. considering the
combination of non-deterministic and probabilistic specification [13]. The other
view is to consider “deterministic extensions” of probabilistic algorithms: these
are deterministic algorithms which take an additional argument (sampled from
a given distribution) representing the actual probabilistic choices made. In the
context of commitment, we need the latter view. Thus we end up with a new
specification, where commit takes an additional argument, which is also sent at
opening time to allow the receiver to verify correctness. However, due to the
assumption of bounded sized messages, this additional argument is bounded,
and thus both sides can attempt to cheat. When the committer has sent out
¢ = commit(0,r), he can search for v’ such that commit(0,r) = commit(1,r’) in
order to defeat the binding property: he could claim to have committed to 1 and
provide 7’ as the evidence. Thus, such r’ should not exist. However, in order to de-
feat hiding, the receiver can search exhaustively for r such that ¢ = commit(0,r)
or ¢ = commit(1,7). One of these is guaranteed to succeed, so the only case
where hiding succeeds because the cheating receiver has no information is when
¢ = commit(0,1) = commit(1l,r’') — exactly the case where binding fails. Thus,
binding and hiding are contradictory properties, and a protocol of the suggested
shape satisfying both cannot exist, despite the existence of an “ideal model”
specification.

However, commitment ¢s considered useful, even if practical schemes cannot
live up to the ideal. The compromise of completely dropping one of the two
crucial properties is clearly unacceptable — and we can do significantly better
than that, by bringing in a computational notion of correctness. In summary:
the ideal combination of “perfect” binding and hiding is not achievable; however,
the literature shows that schemes exist which approximate both as closely as
required, provided we assume (dishonest) parties to be constrained to bounded
(polynomial) time. We will briefly describe approximate notions of correctness
and refinement in Section 3.

A final aside about commitment relates to the notion of universal compos-
ability [7]. This is a formal methods inspired concept, of conditions which would
allow compositional reasoning, in the sense that one could substitute the ideal



model specification of a scheme instead of an implementation when reasoning
about protocols built using the scheme. For commitment, it has been proved
that an implementation satisfying this strong compositional notion of correct-
ness cannot exist [8, 10].

3 Computational Correctness

Notions of statistical and computational correctness (“provable security”) in
cryptography are built on the idea that breaking a system may only need to be
hard and unlikely, rather than theoretically impossible. For commitment this is
the best that can be achieved; for other applications it may be more realistic and
efficient. Attack models then include explicit probabilism, reflecting situations
like it always being possible to correctly guess an encryption key, though with a
very small probability only. Informally, the computational version of the hiding
property is as follows. Let the randomising argument to commit have length
n bits. Then, for any probabilistic algorithm with time complexity polynomial
in n, the probability of it distinguishing outputs of commit for bit 0 with uni-
formly chosen randomising input, and similar for bit 1, is negligible (i.e., smaller
in the limit than 1 divided by any positive polynomial). A similar definition
exists for binding, and commitment schemes have been defined in the literature
that achieve one security property in the absolute sense, and the other in the
computational sense described here.

For more details of this and the reconstruction of the commitment primitive
from a formal methods perspective, see the draft paper [4]. Clearly there is a
connection between the notion of approximate correctness described here, and
our notion of approximate refinement [6] — the draft paper also gives more details
of that.

4 Towards Correctness by Construction

For a slightly more extensive discussion, see [5]. The state of the art for cryp-
tographic protocols is that verification is done post-hoc only, with very little
machine support. Proofs for provable security are hard: notations and theories
such as probability theory and complexity theory do not have strong algebraic
traditions or properties. In particular, proofs over “all probabilistic polynomial
algorithms” have no induction principles to support them, so are typically carried
out by contradiction and probabilistic reduction. (“If we had an efficient algo-
rithm to break this cryptographic scheme, this could be used to solve a known
difficult number-theoretic problem.”) Promising approaches in this area include
universal composability discussed above, and “game hopping” [2] supported by
the CryptoVerif proving system [3].

On the formal methods side, recent developments in probabilistic refinement
[13,16], action refinement [1], and secrecy-preserving refinement [15,14] con-
tribute to solving the problem of finding refinement relations that will one day



allow us to derive cryptographic protocols from abstract specifications, providing
correctness by construction.
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