
Under consideration for publication in Formal Aspects of Computing

Relational Concurrent Refinement
Part III: Traces, partial relations and
automata

John Derrick1 and Eerke Boiten2

1 Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
2 School of Computing, University of Kent, Canterbury, Kent, CT2 7NF, UK

Abstract. Data refinement in a state-based language such as Z is defined using a relational model in terms
of the behaviour of abstract programs. Downward and upward simulation conditions form a sound and jointly
complete methodology to verify relational data refinements, which can be checked on an event-by-event basis
rather than per trace. In models of concurrency, refinement is often defined in terms of sets of observations,
which can include the events a system is prepared to accept or refuse, or depend on explicit properties
of states and transitions. By embedding such concurrent semantics into a relational framework, eventwise
verification methods for such refinement relations can be derived.
In this paper we continue our program of deriving simulation conditions for process algebraic refinement by
defining further embeddings into our relational model: traces, completed traces, failure traces and extension.
We then extend our framework to include various notions of automata based refinement.

Keywords: Data refinement, Z, simulations, automata-based refinements, concurrency, traces, completed
traces, failures, failure traces, extension.

1. Introduction

The last 15 years have seen significant research effort in comparing notions of refinement in different models
of specification and computation, particularly motivated by the desire to integrate specification languages
that use different paradigms. In particular, we have considered the integration of state-based and concur-
rent specification methods, and the introduction of relational verification methods for refinement into a
concurrency context.

Correspondence and offprint requests to: J. Derrick and E.A. Boiten



2 J. Derrick and E.A. Boiten

In a process algebra such as CSP [Hoa85] a system is defined in terms of actions (or events) which represent
the interactions between a system and its environment. The exact way in which the environment is allowed
to interact with the system varies between different semantics. Typical semantics are set-based, associating
one or more sets with each process, for example traces, refusals, divergences. Refinement is then defined in
terms of set inclusions and equalities between the corresponding sets for different processes. A survey and
taxonomy of many prominent process algebraic refinement relations is given in [VG01, VG93].

In state-based systems, specifications are considered to define abstract data types (ADTs), consisting of an
initialisation, a collection of operations and a finalisation, all of which are relations. A program over an
ADT is a sequential composition of these elements, transforming a global visible state into another one via
a sequence of hidden local states. Refinement is defined to be the subset relation over program behaviours,
where what is deemed visible (i.e., the domain of the initialisation and the range of the finalisation) is the
input/output relation. Thus a (concrete) ADT C refines a (more abstract) ADT A if for every program and
sequence of inputs, the outputs that C produces are outputs that A could also have produced. As can be
seen this definition of refinement quantifies over program behaviour and, to make verification of refinements
tractable, simulations have become the accepted approach [DRE98]. For a complete method, often two kinds
of simulations are defined: downward and upward simulations. In the literature these are sometimes also
called forward and backward simulations.

Research on combining relational and concurrent refinement concentrated initially on providing joint se-
mantics, and on identifying correspondences between variations of the relational models and concurrency
semantics. In the latter category, see e.g. work by Bolton and Davies [BD02b, BD06] and Reeves and
Streader [RS08]. Our work on relational concurrent refinement started [BD02a, DB03] from the powerful
idea that the relational finalisations can encode the observations embedded in concurrency semantics. The
relational simulation rules can then be used to extract simulations for concurrency. These provide a “canned
induction” method of verifying concurrent refinement, by checking a fixed number of conditions for each
possible action, rather than checking inclusion between potentially large sets. We derived simulation rules
for failures-divergences refinement [BD02a, DB03], including also outputs and internal operations [BDS09],
and for readiness refinement [DB03]. These were mostly based on the total relations model (as described be-
low). In all these cases, the refinement notions have been imported from a concurrency context, represented
in a relational formalism, and then expressed in terms of Z data types. Thus it provides for an integration of
paradigms by allowing specification using Z schemas and sets while adapting a concurrency-style semantics.

This paper continues the programme, by considering more concurrent refinement relations, many of them
based on the partial relations model. In Section 2 we provide the basic definitions and background. In Section
3 we provide the simulation rules for a number of process algebraic preorders. In Section 4 we introduce
automata and IO automata, their refinement notions, and derive their relational simulation rules. In Section 5
we consider what extensions are necessary in order to include internal events and the possibility of divergence.
We conclude in Section 6.

2. Background

This background section presents the standard refinement theory [DB01] for abstract data types in a rela-
tional setting. The relational model of data refinement where all operations are total, as described in the
1986 paper by He, Hoare and Sanders [HHS86], traditionally received the most attention. The standard
refinement theory of Z [WD96, DB01], for example, is based on this version of the theory. However, later
publications by He and Hoare, in particular [HH90], dropped the restriction to total relations, and proved
soundness and joint completeness of the same set of simulation rules in the more general case. De Roever
and Engelhardt [DRE98] also present the partial relations theory, without emphasizing this.



Relational Concurrent Refinement Part III: Traces, partial relations and automata 3

2.1. A partial relational model

A program (defined here as a sequence of operations) is given as a relation over a global state G, implemented
using a local state State. The initialisation of the program takes a global state to a local state, on which the
operations act, a finalisation translates back from local to global. In order to distinguish between relational
formulations (which use Z as a meta-language) and expressions in terms of Z schemas etc., we use the
convention that expressions and identifiers in the world of relational data types are typeset in a sans serif
font. The following defines our notion of abstract data type.

Definition 1 (Data type).
A (partial) data type is a quadruple (State, Init, {Opi}i∈J ,Fin). The operations {Opi}, indexed by i ∈ J , are
relations on the set State; Init is a total relation from G to State; Fin is a total relation from State to G. If
the operations are all total relations, we call it a total data type.

An i -data type is a quintuple (State, Init, {Opi}i∈J , i ,Fin) such that (State, Init, {Opi}i∈J ,Fin) is a data type
and i (the internal operation) is a partial relation on State. 2

Insisting that Init and Fin be total merely records the facts that we can always start a program sequence (the
extension to partial initialisations is trivial) and that we can always make an observation (but see [BDS09]
for a variant that uses a partial finalisation).

Definition 2 (Program).
For a data type D = (State, Init, {Opi}i∈J ,Fin) a program is a sequence over J. The meaning of a program p
over D is denoted by pD, and defined as follows. If p = 〈p1, ..., pn〉 then pD = Init o

9 Opp1
o
9 ... o

9 Oppn
o
9 Fin. 2

Usually, we assume that the data types being compared for refinement are conformal, i.e., they use the same
index set for the operations.

Definition 3 (Data refinement).
For data types A and C, C refines A, denoted A vdata C (dropping the subscript if the context is clear), iff
for each program p over J , pC ⊆ pA. 2

Data refinement for i -data types will not be defined independently, but in terms of data refinement depending
on different interpretations of internal operations, see Section 5.

Downward and upward simulations form a sound and jointly complete [HHS86, DRE98] proof method for
verifying refinements. In a simulation a step-by-step comparison is made of each operation in the data types,
and to do so the concrete and abstract states are related by a retrieve relation.

Definition 4 (Downward simulation).
Assume data types A = (AState,AInit, {AOpi}i∈J ,AFin) and C = (CState,CInit, {COpi}i∈J ,CFin). A down-
ward simulation is a relation R from AState to CState satisfying

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin
∀ i : J • R o

9 COpi ⊆ AOpi o
9 R

2

Any relational data types A and C in this paper are assumed to be defined as in the above definition
(occasionally with extra conditions imposed).

Definition 5 (Upward simulation).



4 J. Derrick and E.A. Boiten

For data types A and C, an upward simulation is a relation T from CState to AState such that

CInit o
9 T ⊆ AInit

CFin ⊆ T o
9 AFin

∀ i : J • COpi o
9 T ⊆ T o

9 AOpi

2

2.2. Totalisations

The natural encoding of particular programmes being “impossible”, e.g. leading to a deadlock, in the partial
relational model is through the empty relation. However, a non-deterministic choice (union of relations)
may then ensure that possible rather than certain erroneous behaviour is not observable at all – see [DB08]
for a detailed discussion. Sticking with the core idea of relational concurrent refinement, this can be solved
by observing more (e.g. refusals) at the end of a program, as we have done elsewhere. A more traditional
approach is to encode error behaviour explicitly in operations. This is often called “totalisation”, as it
typically increases operations’ domains to become total, but here and elsewhere we also apply it resulting in
relations that remain partial.

There are two main types of totalisation: the non-blocking (or non-strict, or chaotic) totalisation represents
erroneous behaviour as leading to all possible states including a new error state; the blocking (or strict)
totalisation maps error traces only to a “sink” state. The totalisations turn a partial relation on a set S into
a total relation on a set S⊥, which is S extended with a distinguished value ⊥ not in S.

Definition 6 (Totalisation).
For a partial relation Op on State, its totalisation is a total relation on State⊥, defined in the non-blocking
model by

Ôp
nb

== Op ∪ {x, y : State⊥ | x 6∈ domOp • (x, y)}

or in the blocking model by

Ôp
b

== Op ∪ {x : State⊥ | x 6∈ domOp • (x,⊥)}

Totalisations of initialisation and finalisation are defined analogously.

A relation R between AState and CState is extended to a relation R̃ between AState⊥ and CState⊥, de-

fined in the non-blocking model by R̃ == R ∪ ({⊥AState} × CState⊥) and in the blocking model by R̃ == R∪
{(⊥AState,⊥CState)} respectively. 2

Characterisations of downward and upward simulations on these totalised relations can be simplified to
remove any reference to ⊥. This results in the standard definitions of downward and upward simulations for
partial relations, see [DB01], e.g.:

Definition 7 (Downward simulation for totalised relations).
Given data types A and C where the operations may be partial. A downward simulation is a relation R from
AState to CState satisfying, in the non-blocking model

CInit ⊆ AInit o
9 R

∀ i : J • ran(domAOpi C R) ⊆ domCOpi
∀ i : J • (domAOpi C R) o

9 COpi ⊆ AOpi o
9 R

In the blocking model, the last condition is strengthened to:

∀ i : J • R o
9 COpi ⊆ AOpi o

9 R 2



Relational Concurrent Refinement Part III: Traces, partial relations and automata 5

Definition 8 (Upward simulation for totalised relations).
For data types A and C where the operations may be partial, an upward simulation is a relation T from
CState to AState satisfying, in the non-blocking model

CInit o
9 T ⊆ AInit

∀ c : CState • ∃ a : AState • (c, a) ∈ T

∀ i : J • domCOpi ⊆ dom(T−B domAOpi)
∀ i : J • dom(T−B domAOpi)−C COpi o

9 T ⊆ T o
9 AOpi

In the blocking model the last condition is strengthened to:

∀ i : J • COpi o
9 T ⊆ T o

9 AOpi
2

The conditions imposed on all operations in Definitions 7 and 8 are called “applicability” and “correctness”
in both cases.

Although in this paper we mostly employ the partial relation model, we will need, on occasion, elements
of the kind of totalisation we have just described in order to give a relational counterpart to some of the
refinement preorders we look at below.

2.3. Refinement in Z

The definition of refinement in a specification language such as Z is usually based on the totalised framework
just given. Specifically, a Z specification can be thought of as a data type, defined as a tuple (State, Init ,
{Opi}i∈J ). The operations Opi are defined in terms of (the variables of) State (its before-state) and State ′

(its after-state). The initialisation is also expressed in terms of an after-state State ′. In addition to this,
operations can also consume inputs and produce outputs. As finalisation is implicit in these data types,
it only has an occasional impact on specific refinement notions. If specifications have inputs and outputs,
these are included in both the global and local state of the relational embedding of a Z specification. See
[DB01] for the full details on this – in this paper we only consider data types without inputs and outputs.
In concurrent refinement relations, inputs add little complication; outputs particularly complicate refusals,
as described in [BDS09].

In a context where there is no input or output, the global state contains no information and is a one point
domain, i.e., G == {∗}, and the local state is State == State. In such a context the other components of the
embedding are as given below.

Definition 9 (Basic embedding of Z data types). The Z data type (State, Init , {Opi}i∈J ) is interpreted
relationally as (State, Init, {Opi}i∈J ,Fin) where

Init == {Init • ∗ 7→ θState ′}
Op == {Op • θState 7→ θState ′}
Fin == {State • θState 7→ ∗}

Given these embeddings, we can translate the relational refinement conditions of downward simulations for
totalised relations into refinement conditions for Z ADTs, where we note that the finalisation conditions are
always satisfied in this Z interpretation.

Definition 10 (Standard downward simulation in Z).
Given Z data types A = (AState,AInit , {AOpi}i∈J ) and C = (CState,CInit , {COpi}i∈J ). The relation R



6 J. Derrick and E.A. Boiten

on AState ∧ CState is a downward simulation from A to C in the non-blocking model if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : J ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : J ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi

⇒ ∃AState ′ • R′ ∧AOpi

In the blocking model, the correctness (last) condition becomes

∀ i : J ; AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

and then the applicability (second) condition above is equivalent to

∀ i : J ; AState; CState • R ⇒ (pre AOpi ⇔ pre COpi) 2

Any Z data types A and C in this paper are assumed to be defined as in the above definition.

The translation of the upward simulation conditions is similar, however this time the finalisation condition
produces a requirement that the simulation is total on the concrete state.

Definition 11 (Standard upward simulation in Z).
For Z data types A and C , the relation T on AState ∧ CState is an upward simulation from A to C in the
non-blocking model if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J ; CState • ∃AState • T ∧ (pre AOpi ⇒ pre COpi)
∀ i : J ; AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi))

In the blocking model, the correctness condition becomes

∀ i : J ; AState ′; CState; CState ′ • (COpi ∧ T ′)⇒ ∃AState • T ∧AOpi 2

3. Process algebraic based refinement

Process algebras [Hoa85, Mil89, BPS01] provide a means of describing and verifying concurrent systems and
processes, and provide operators such as synchronisation, communication, and various flavours of composi-
tion. The semantics of a process algebra is often given by a labelled transition system (LTS). For example,
for CSP or CCS the language is modelled as a LTS where the state space is the set of terms in the language.
Equivalence, and preorders, can be defined over the semantics where two terms are identified whenever no
observer can notice any difference between their external behaviours. Thus equivalences and preorders can
be defined in terms of a function O that represents the set of observations one could make while interacting
with a process. For every such O we can define p vO q iff O(q) ⊆ O(p) and p =O q iff O(p) = O(q). Vary-
ing how the environment interacts with a process leads to differing observations and these can be thought
of as differing testing scenarios, and therefore different preorders (i.e., refinement relations) – an overview
and comprehensive treatment is provided by van Glabbeek in [VG01, VG93]. For systems without internal
evolution, the relationship between different semantics is given by the linear-time, branching-time spectrum
given in Figure 1.

The testing scenarios described in [VG01] refer to an informal description of an experiment upon the process
and its behaviour upon testing. To do so a process is thought of as a black box that contains an interface to
the environment, via which tests are performed - which consist of stimulating the interface, e.g., ’pressing
the button labelled a’ - and observing the outcome. Varying the interface gives different testing scenarios,
a full characterisation is given in [VG93], for example, the interface might contain a display in which the
name of the action is shown that is currently carried out by the process, buttons might also be present (one
for each action) so that the observer may determine which actions are free and which are blocked, or lamps
which illuminate if the process is ready to engage in that action.



Relational Concurrent Refinement Part III: Traces, partial relations and automata 7

Fig. 1. The linear time - branching time spectrum [VG01]

We will need the usual notation for labelled transition systems (LTSs):

Definition 12 (Labelled Transition Systems (LTSs)).
A labelled transition system is a tuple L = (States,Act ,T , Init) where States is a non-empty set of states,
Init ⊆ States is the set of initial states, Act is a set of actions, and T ⊆ States ×Act × States is a transition
relation. The components of L are also accessed as states(L) = States and init(L) = Init . 2

Every state in the LTS represents a process itself – namely the one representing all possible behaviour from

that point onwards. Specific notation needed includes the usual notation for writing transitions as p
a−→ q

for (p, a, q) ∈ T and the extension of this to traces (written p
tr−→ q) and the set of enabled actions of a

process which is defined as:

next(p) = {a ∈ Act | ∃ q • p
a−→ q}.

In the remainder of this section we detail differing preorders and show how they are embedded into our
relational model. For each we give its definition, its characterisation as a testing scenario as described by van
Glabbeek, its embedding into a relational model, and thereby the definition of simulation rules to characterise
the preorder.

3.1. Methodology

We have seen that Z specifications define data types, over which a definition of refinement is given. Simulations
are then a tractable way of verifying such simulations due to results in [HHS86, DRE98]. Alternatively,



8 J. Derrick and E.A. Boiten

refinement in a process algebra can be characterised in terms of the attributes of LTSs as we have just seen.
In order to relate the two approaches we do the following:

1. define a relational embedding of the Z data type, that is, define a data type (specifically define the
finalisation operation) so as to facilitate the proof that data refinement equals the event based semantics.
The choice of finalisation is taken so that we observe the characteristics of interest. Thus in the context
of trace refinement we are interested in observing traces, but in that of failures refinement we need to
observe more.

2. We then describe how to calculate the relevant LTS aspect from the Z data type. For example, for trace
refinement what denotes traces in the Z data type.

3. We then prove that data refinement equals the relevant event based definition of refinement.
4. Finally, we extract a characterisation of refinement as simulation rules on the operations of the Z data

type.

The points of originality for each section are the proofs of equivalence of refinement followed by the char-
acterisation of simulation rules that this allows us to give. These simulations are due to their construction
guaranteed to provide a sound proof method for the given notion of refinement; however, their joint complete-
ness requires a separate proof – either an independent one, or one that shows that a standard construction
of an intermediate data type in a completeness proof occurs within the range of the given embedding. See
[BD10] for a detailed discussion and an example.

The following subsection will give a flavour for the approach used throughout the paper.

3.2. Trace preorder

3.2.1. Definition and testing scenario

Definition 13. σ ∈ Act∗ is a trace of a process p if ∃ q • p
σ−→ q . T (p) denotes the set of traces of p. The

trace preorder is defined by p vtr q iff T (q) ⊆ T (p). 2

Testing scenario: Observations consist of a sequence of actions performed by the process in succession,
that is, the interface is just a display which shows the name of the action that is currently carried out by the
process, and the name remains visible in the display if deadlock occurs (unless deadlock occurs initially).

3.2.2. Relational embedding

As observed previously [DB03] the partial relations model records exactly trace information for the em-
bedding with trivial finalisation described in Section 2.3. Possible traces lead to the single global value;
impossible traces have no relational image.

Definition 14 (Trace embedding).
A Z data type (State, Init , {Opi}i∈J) has the following trace embedding into the relational model.

G == {∗}
State == State
Init == {Init • ∗ 7→ θState ′}
Op == {Op • θState 7→ θState ′}
Fin == State× G

To distinguish between the different embeddings we denote the trace embedding of a data type A as A |
tr

.

We drop the |tr if the context is clear. 2



Relational Concurrent Refinement Part III: Traces, partial relations and automata 9

To prove the correspondence between trace preorder and data refinement we need to provide a definition of
the traces (as in Definition 13) of an abstract data type.

Definition 15. The traces of a Z data type (State, Init , {Opi}i∈J ) are all sequences 〈i1, . . . , in〉 such that

∃State ′ • Init o
9 Opi1

o
9 . . . o

9 Opin

We denote the traces of an ADT A by T (A). 2

Theorem 1. With the trace embedding, data refinement corresponds to trace preorder. That is, when Z
data types A and C are embedded as A and C1,

A |
tr
vdata C |

tr
iff T (C ) ⊆ T (A)

Proof From the definition of traces for Z data types and the embedding given it is obvious that for any
sequence p, (∗, ∗) ∈ pA iff p ∈ T (A). Also, for any p, pA = {(∗, ∗)} or pA = ∅. Thus, data refinement (pA ⊆ pC

for all p) corresponds to trace refinement. 2

From this result it can be seen that observations in the testing scenario, here a display with an action name
displayed, are distributed in the relational notion of refinement. That is, although finalisations are often taken
to be the ‘observations’, in fact, some of the observations are implicit in the program p and the relational
inclusion pC ⊆ pA (since finalisations only contain the information as to whether the trace was defined or
not).

We can now extract the simulation rules that correspond to this notion of refinement. These are of course
the rules for standard Z refinement but omitting applicability of operations, as used also e.g. in Event-B
[Abr10].

3.2.3. Simulations

The conditions for a downward simulation in the partial relational model are (cf. Definition 4):

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin
∀ i : I • R o

9 COpi ⊆ AOpi o
9 R

The first and last of these are just the standard initialisation and correctness conditions, respectively. The
finalisation condition in fact places no further requirements with the trace embedding. The same is true for
upwards simulations. We thus have the following conditions for the trace embedding.

Definition 16 (Trace simulations in Z).
Given Z data types A and C , the relation R on AState ∧ CState is a trace downward simulation from A to
C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i ∈ J • ∀AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

The total relation T on AState ∧ CState is a trace upward simulation from A to C if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J • ∀AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧AOpi)
2

1 This association between Z and relational data types is left implicit in the rest of this paper.



10 J. Derrick and E.A. Boiten

3.3. Completed trace preorder

3.3.1. Definition and testing scenario

Definition 17. σ ∈ Act∗ is a completed trace of a process p if ∃ q • p
σ−→ q and next(q) = ∅. CT (p)

denotes the set of completed traces of p. The completed trace preorder, vctr , is defined by p vctr q iff
T (q) ⊆ T (p) and CT (q) ⊆ CT (p). 2

Testing scenario: Observations consist of a sequence of actions performed by the process in succession,
that is, the interface is just a display which shows the name of the action that is currently carried out by
the process, where the display becomes empty if deadlock occurs.

3.3.2. Relational embedding

Definition 18 (Completed trace embedding).
The Z data type (State, Init , {Opi}i∈J ) has the following completed trace embedding into the relational
model.

G == {∗,
√
}

State == State
Init == G× {Init • θState ′}
Op == {Op • θState 7→ θState ′}
Fin == {State • θState 7→ ∗} ∪ {State | (∀ i : J • ¬pre Opi) • θState 7→

√
}

This embedding is denoted A |
ctr

. 2

Here the global state has been augmented with an additional element
√

, which denotes that the given trace
is complete (i.e., no operation is applicable).

Definition 19. The completed traces of a Z data type (State, Init , {Opi}i∈J ) are all sequences 〈i1, . . . , in〉
such that

∃State ′ • Init o
9 Opi1

o
9 . . . o

9 Opin ∧ ∀ i : J • ¬(pre Opi)
′

We denote the complete traces of an ADT A by CT (A). 2

Theorem 2. With the completed trace embedding, data refinement corresponds to completed trace pre-
order. That is,

A |
ctr
v C |

ctr
iff CT (C ) ⊆ CT (A) and T (C ) ⊆ T (A)

Proof 1. Suppose that CT (C ) ⊆ CT (A) and T (C ) ⊆ T (A). To show A v C we need pC ⊆ pA for all
programs p. Given p, if p is not a trace of C then pC = ∅, and thus the inclusion is trivial. Otherwise, either
(∗,
√

) and (∗, ∗) are both in pC or just (∗, ∗) is in pC.

If (∗,
√

) is in pC then p is a completed trace in C , and thus also in A. Hence (∗,
√

) is in pA, and so is (∗, ∗).
If just (∗, ∗) is in pC then p is a trace which is not a completed trace in C . Since T (C ) ⊆ T (A), p is also a
trace in A. Hence (∗, ∗) is in pA.

2. Suppose A v C .

Given p ∈ CT (C ). Thus (∗,
√

) ∈ pC ⊆ pA, and hence p ∈ CT (A). For a similar reason we also get trace
inclusion. 2



Relational Concurrent Refinement Part III: Traces, partial relations and automata 11

We now extract the simulation rules that correspond to this notion of refinement.

3.3.3. Simulations

Given the completed trace embedding in the relational model, only the finalisation is non-trivially altered
from the embedding given in Section 3.2. Thus we just have to consider the effect of the finalisation require-
ment:

Downward simulations: R o
9 CFin ⊆ AFin is equivalent to

∀AState; CState • R ∧ (∀ i : J • ¬pre COpi)⇒ ∀ i : J • ¬pre AOpi

Upward simulations: CFin ⊆ T o
9 AFin is equivalent to

∀CState • (∀ i : J • ¬pre COpi)⇒ ∃AState • T ∧ ∀ i : J • ¬pre AOpi

We thus have the following conditions for the completed trace embedding.

Definition 20 (Completed trace simulations in Z).
Given Z data types A and C . The relation R on AState ∧ CState is a completed trace downward simulation
from A to C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i ∈ J • ∀AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

∀AState; CState • R ∧ (∀ i : J • ¬pre COpi)⇒ ∀ i : J • ¬pre AOpi

The total relation T on AState ∧ CState is a completed trace upward simulation from A to C if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i ∈ J • ∀AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧AOpi)
∀CState • (∀ i : J • ¬pre COpi)⇒ ∃AState • T ∧ ∀ i : J • ¬pre AOpi

2

3.4. Failure preorder

3.4.1. Definition and testing scenario

The failures semantics records both the traces that a process can do, and also sets of actions which it can
refuse, that is, actions which are not enabled. These are recorded as failures of a process.

Definition 21. (σ,X ) ∈ Act∗ × P(Act) is a failure of a process p if there is a process q such that p
σ−→ q ,

and next(q) ∩ X = ∅. F(p) denotes the set of failures of p. The failures preorder, vf , is defined by p vf q
iff F(q) ⊆ F(p). 2

Testing scenario: The machine for testing failures has, in addition to the interface of the completed trace
machine, a switch for each action in Act . One can then observe which actions are blocked. If the process
reaches a state where all actions are blocked, then this can be observed by an empty display. Observations
are thus the failures of a process.



12 J. Derrick and E.A. Boiten

3.4.2. Relational embedding

This was covered in detail in [BD02a, DB03, BDS09], although we used an embedding into the totalised
relational model there. Lemma 3 in [BDS09] suggested this was not necessary: ⊥ appears as a possible
outcome iff somewhere along the trace the next action of the trace could be refused. Thus, below we give a
simpler embedding into the partial relations model.

Definition 22 (Failures embedding).
A Z data type (State, Init , {Opi}i∈J ) in the refusals interpretation is embedded in the relational model as
follows.

G == P J
State == State
Init == {Init ; E : P J • E 7→ θState ′}
Op == {Op • θState 7→ θState ′}
Fin == {State; E : P J | (∀ i ∈ E • ¬pre Opi) • θState 7→ E}

This embedding is denoted A |
f
. 2

In the relational embedding failures are pairs (tr ,X ), where tr is a trace, and there exists states (State,State′) ∈
tr (with State being initial) such that ∀ i : X • State′ 6∈ domOpi .

Theorem 3. With the failures embedding, data refinement corresponds to the failures preorder. That is,

A |
f
v C |

f
iff F(C ) ⊆ F(A)

The proof of this is an adaptation of that given in [DB03]. 2

3.4.3. Simulations

Given the failures embedding the changes to the simulation conditions are as follows (these are derived in
[DB03] - remember we have no input/output at this stage):

Downward simulations: R o
9 CFin ⊆ AFin is equivalent to

∀ i : J ; AState; CState • R ∧ pre AOpi ⇒ pre COpi

Upward simulations: CFin ⊆ T o
9 AFin is equivalent to

∀CState • ∃AState • ∀ i : J • T ∧ (pre AOpi ⇒ pre COpi)

3.5. Failure trace preorder

3.5.1. Definition and testing scenario

The failure trace semantics considers refusal sets not only at the end of a trace, but also between each action
in a trace.

Definition 23. σ ∈ (Act ∪ PAct)∗ is a failure trace of a process p if σ = X1a1X2a2 . . .XnanXn+1 where
a1a2 . . . an is a trace of p and each (a1 . . . ai ,Xi+1) is a failure of p. FT (p) denotes the set of failure traces
of p. The failures traces preorder, vftr , is defined by p vftr q iff FT (q) ⊆ FT (p). 2



Relational Concurrent Refinement Part III: Traces, partial relations and automata 13

Testing scenario: The display in the machine for testing failures traces is the same as that for failures.
However, it does not halt if the process cannot proceed, rather it idles until the observer allows one of the
actions the process is ready to perform. The observations are traces with idle periods in between, and for
each idle period the set of actions that are not blocked by the observer.

It has been argued [Lan89, Lan92] that this is a better notion for testing than simply observing failures of a
process, and is appropriate when one can detect that a process refuses an action, and if this is the case, one
has the ability to try another action.

3.5.2. Relational embedding

Definition 24 (Failure trace embedding).
A Z data type (State, Init , {Opi}i∈J ) in the failure trace interpretation is embedded in the relational model
in an obvious generalisation of the failures embedding. The observation of refusals at finalisation is retained,
but a similar observation is also made before every operation; these observations are collected in a sequence,
which is initialised as empty and copied to the global state at finalisation (similar to the standard treatment
of outputs in Z [WD96, DB01]).

G == seqP J
State == seqP J × State
Init == G× {Init • (〈 〉, θState ′)}
Op == {Op; fs : seqP J ; E : P J | (∀ i : E • ¬pre Opi) •

(fs, θState) 7→ (fs a 〈E 〉, θState ′)}
Fin == {State; fs : seqP J ; E : P J | (∀ i : E • ¬pre Opi) • (fs, θState) 7→ fs a 〈E 〉}

The embedding is denoted A |
ft

. 2

In the relational embedding failures traces are the obvious generalisation of failures.

Theorem 4. With the failure traces embedding, data refinement corresponds to the failure traces preorder.
That is,

A |
ft
v C |

ft
iff FT (C ) ⊆ FT (A)

2

3.5.3. Simulations

In the failure trace embedding, both the correctness and finalisation conditions are potentially amended due
to the record of failures at each operation step; initialisation conditions are unchanged from the trace simula-
tions. The extended retrieve relation will necessarily relate only identical sequences of previous observations.
The derivations of simulation conditions are very similar to those for failures refinement, as given in great
detail in [BD02a], except that we use the partial relations model here where there is only a single simulation
condition (“correctness”) for individual operations.

Downward simulations: The finalisation condition here leads to the traditional “applicability” condition
for operations, namely

∀AState; CState; i : J • (R ∧ pre AOpi)⇒ pre COpi

The correctness condition R o
9 COpi ⊆ AOpi o

9 R expands to the following

∀ i : J ; AState; CState; CState ′ • ∀E •
R ∧ COpi ∧ Fcond(E , θCState) ⇒
∃AState ′ • R′ ∧AOpi ∧ Fcond(E , θAState)



14 J. Derrick and E.A. Boiten

where Fcond(E , s) == ∀ i : E • ¬∃Opi • s = θState. However, taking the finalisation condition into
account, this simplifies to the standard correctness condition:

∀ i : J ; AState; CState; CState ′ •
R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

Upward simulations: The finalisation condition here expands to the stronger “applicability” condition
also known from failures refinement, see [BD02a, Appendix A] for the least obvious step in its derivation:

∀CState • ∃AState • T ∧ Ref (CState) ⊆ Ref (AState)

where Ref denotes a maximal refused set of operations, i.e., Ref (State) = {i : J | ¬pre Opi}. The
correctness condition for operations COpi o

9 T ⊆ T o
9 AOpi expands to

∀ i : J ; AState ′; CState; CState ′ •
(COpi ∧ T ′) ⇒ ∃AState • T ∧AOpi ∧ Ref (CState) ⊆ Ref (AState)

which does not imply the finalisation condition (e.g. there may be states with Ref (CState) = J ).

3.6. Extension and conformance

3.6.1. Definition and testing scenario

Here we consider a number of alternative preorders for process algebras which are not considered in [VG01].
These have been suggested motivated by testing and test generation from LOTOS specifications [BB88],
specifically extension and conformance [BS86]. To define these formally we need the following notation
which defines refusals sets after a particular trace (i.e., a failure, cf. earlier definition).

Definition 25 (Refusals after a trace).
Let p be a LTS, σ a trace of p, and X ⊆ Act . Then p after σ ref X iff

∃ q • p
σ−→ q and X ∩ next(q) = ∅

2

Testing scenario: Three definitions of refinement can be given on the basis of the idea behind Definition
25. These were motivated in [BS86, BSS86] by considering that there might be a number of different notions
of implementation:

• implementation as a real/physical system;

• implementation as a (deterministic) reduction of a given specification;

• implementation as a (conforming) extension of a given specification;

• implementation as a refinement of a given specification.

These are formalised [Bri88] by, respectively, conformance, reduction, extension and testing equivalence.
Reduction (also called the testing preorder [DNi87]) in our context (of no divergence) is identical to the
failures preorder. Testing equivalence is the equivalence induced by that preorder.

Conformance has the following characteristics: if p vconf q then q deadlocks less often than p in any
environment whose traces are limited to those of p. Thus conformance restricts the quantification (of traces
one must check refusals about) to be over the abstract specification (and this restriction gives rise to efficient
test generation algorithms).

The extension preorder can be defined as conformance together with the additional property that traces can
be extended. Thus, if p vext q then q has at least the same traces as p, but in an environment whose traces



Relational Concurrent Refinement Part III: Traces, partial relations and automata 15

are limited to those of p, it deadlocks less often. The equivalence induced by extension is the same as that by
reduction (that is, testing equivalence). Leduc [Led91] documents the relationship between these relations
in some detail. They can be defined as follows.

Definition 26 (Reduction, conformance, and extension).
Let p, q be LTSs. Then

p vred q iff ∀σ : Act∗; X ⊆ Act • q after σ ref X implies p after σ ref X

p vconf q iff ∀σ : T (p); X ⊆ Act • q after σ ref X implies p after σ ref X

p vext q iff
T (p) ⊆ T (q) and
∀σ : T (p); X ⊆ Act • q after σ ref X implies p after σ ref X

2

3.6.2. Relational embedding

The relational embedding we use to model extension is, in fact, a totalisation over the space of partial
relations, and is the standard non-blocking model (e.g., as discussed in [DB01]).

Definition 27 (Extension embedding).
A Z data type (State, Init , {Opi}i∈J ) in the extension interpretation is embedded in the relational model as
follows.

G == P J ∪ {⊥}
State == State ∪ {⊥}
Init == G× {Init • θState ′}
Op == OpB ∪ {x, y : State | x 6∈ domOpB • (x, y)}
where OpB == {Op • θState 7→ θState ′}
Fin == {State; E : P J | (∀ i : E • ¬pre Opi) • θState 7→ E} ∪ {⊥} × G

This embedding is denoted A |
ext

. 2

Theorem 5. With the extension embedding, data refinement corresponds to the extension preorder. That
is,

A |
ext
v C |

ext
iff

T (A) ⊆ T (C ) and
∀σ ∈ T (A); X ⊆ Act • C after σ ref X implies A after σ ref X

Proof 1. Suppose that T (A) ⊆ T (C ) and
∀σ ∈ T (A); X ⊆ Act • C after σ ref X implies A after σ ref X .

Consider a trace p. If p 6∈ T (A) then the embedding (through the totalisation) ensures that pA = G×G and
thus pC ⊆ pA trivially holds. If p ∈ T (A) then by assumption also p ∈ T (C ). Now although p is a trace
in C , it is still possible that pC = G× G. In this case, p is “blocked along the way” in C , i.e., there is an
action a and strings p′ and p′′ such that p = p′ap′′ and C after p′ ref {a}. Then refusal inclusion ensures
that A after p′ ref {a} and the embedding ensures that pA = G× G, thus pC ⊆ pA. When pC 6= G× G, all
observations made record genuine refusals, and (g ,X ) ∈ pC implies C after p ref X , by assumption then
also A after p ref X and thus (g ,X ) ∈ pA and pC ⊆ pA.

2. Suppose A v C . Then trace inclusion can be proved by induction over the length of the trace, and refusals
subsetting follows as a consequence of using the non-blocking totalisation. 2



16 J. Derrick and E.A. Boiten

Whilst we have found an embedding such that data refinement induces extension, this is not possible for
conformance. This is because conformance is not a preorder (see any of the references given above), but data
refinement is a preorder. Thus no combinations of embeddings as a data refinement theory will produce an
embedding equivalent to it.

3.6.3. Simulations

The use of the non-blocking totalisation for modelling extension means we can extract simulation conditions
by reference to above results. They are thus the following.

Definition 28 (Extension downward simulation in Z).
Given Z data types A and C . The relation R on AState ∧ CState is a extension downward simulation from
A to C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : J ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : J ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi 2

Definition 29 (Extension upward simulation in Z).
Given Z data types A C . The total relation T on AState ∧ CState is an extension upward simulation from
A to C if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀CState • ∃AState • ∀ i : J • T ∧ (pre AOpi ⇒ pre COpi)
∀ i : J ; AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi)) 2

4. Automata based refinement

Automata offer another perspective on refinement to those given by a process algebra or state-based context.
In [LV95] Lynch and Vaandrager provide a comprehensive treatment of refinement for automata, defining
a number of simulation definitions and results relating them. In this section we describe the relationship
between automata based refinement and our relational characterisation, hence answering the question raised
in [LV95] concerning their connection.

In Section 4.2 we subsequently consider IO-automata and thus provide a relational characterisation for
IO-automata refinement and a set of simulation rules.

4.1. Basic definitions

For our purposes automata are simply LTSs. Initially we do not consider systems with internal evolution,
thus there is no special element τ ∈ Act .

Lynch and Vaandrager use the trace preorder as the definition of refinement; simulations are then used to
provide sound and jointly complete techniques. However, slightly confusingly the term refinement is also
used in [LV95] to mean a restricted form of downward simulation. To remain consistent with the notation
introduced above we use refinement to mean data refinement in a relational setting. Lynch and Vaandrager
define simulations in the standard fashion, that is, use Definitions 4 and 5 transcribed into the framework
of automata. Thus we have (eliding some obvious quantification):



Relational Concurrent Refinement Part III: Traces, partial relations and automata 17

Definition 30 (Simulations for automata).
Let A and C be automata. A downward simulation from A to C is a relation2 f over states(A) and states(C )
such that

If s ∈ init(A) then f (s) ∩ init(C ) 6= ∅
If astate

a−→ astate ′ and cstate ∈ f (astate)

then ∃ cstate ′ ∈ f (astate ′) • cstate
a−→ cstate ′

An upward simulation from A to C is a total relation f over states(A) and states(C ) such that

If s ∈ init(A) then f (s) ⊆ init(C )

If astate
a−→ astate ′ and cstate ′ ∈ f (astate ′)

then ∃ cstate ∈ f (astate) • cstate
a−→ cstate ′

2

Along with many other results and examples, the standard soundness and joint completeness results are
given for these simulations with respect to the trace preorder.

Lynch and Vaandrager raise a number of questions regarding the relationship between the refinement theory
and simulations given for automata and those for data refinement. In particular, they comment in [LV95]:

Surprisingly, the definition of refinement between data types is completely different from the definition of
trace inclusion between automata: informally, one data type is refined by another if any program that uses
the former would function at least as well using the latter.

Clearly, an important topic of future research is to study the connection between automata based simulation
techniques and methods for data refinement.

As should be clear, the partial relational framework can be used to answer these questions. In particular,
the most natural relational embedding of an automaton in that framework is the following.

Definition 31 (Automata embedding).
An automaton (states(A),Act ,−→, init(A)) has the following embedding into the relational model.

G == {∗}
State == states(A)
Init == {s : init(A) • ∗ 7→ s}
Opi == {s, s ′ : states(A) | s i−→ s ′ • s 7→ s ′}
Fin == {s : states(A) • s 7→ ∗}

2

As can easily be seen, with this embedding the definitions in Definition 30 are equivalent to the trace
simulations described in Definition 16. This answers the query in [LV95] in the following way. The automata
embedding in Definition 31 is equivalent to the trace embedding given in Definition 9. Furthermore, the
automata simulations are equivalent to the trace simulations (Definition 16). Thus with this embedding
relational data refinement is trace inclusion (Theorem 1), and the “completely different” goes away, or put
another way, with this automata embedding looking at consistency of program behaviour is the same as
trace inclusion. The question for connections between automata based simulation techniques and methods
for data refinement can now be seen as one of varying the embedding as has been described in this paper.

2 In order to remain closer to the original formulation, we identify the relation with its corresponding set-valued function.



18 J. Derrick and E.A. Boiten

q0 q1 q2 q3

but but butbut

liq liq

butbut

liq
but

liq

liq choc

Fig. 2. Four IO automata

4.2. IO automata

IO automata [LT89] are a class of automata that distinguish explicitly between the input and output of a
system, and thus share characteristics with both standard automata and state-based languages such as Z and
B. In such a model the set of actions is partitioned into input and output actions. A particular computational
interpretation is taken, viz: output actions are actions initiated by the system, while input actions are under
the control of the environment. A system can never refuse to perform its input actions, and its output actions
can never be blocked by the environment.

While we are considering systems without internal evolution, IO automata do not differ from IO transition
systems as discussed by Tretmans in [Tre96], and we use the notation introduced there.

Definition 32 (Partitioned automaton; IO automata).
A partitioned automaton is a LTS where the set of actions Act is partitioned into input actions LI and output
actions LU (LI ∪ LU = Act , LI ∩ LU = ∅). An IO automaton p is a partitioned automaton for which all
input actions are always enabled in any state. That is, for all states p:

∀ a ∈ LI • p
a−→

The class of IO automata with input and output actions LI and LU is denoted IOT S(LI ,LU ). 2

Example 1. Four IO automata are given in Figure 2 (adapted from [Tre96] where they model a candy
dispensing machine for chocolate and liquorice ), where LI = {but}, LU = {liq , choc}. Input actions are
always enabled, but may have no effect in a particular state; where this occurs it is denoted graphically with
a self-loop without explicit label. 2

The input-output testing relation, viot is defined via the notion of weakly quiescent traces, which are traces
after which no more outputs are possible.

Definition 33 (Weakly quiescent traces, IOTS preorder).
The weakly quiescent traces of a partitioned LTS A are denoted by δ–traces(A), and consist of all the traces
σ ∈ Act∗ such that A after σ ref LU . The IOTS preorder is defined for IOTSs A and C by:

A viot C iff T (C ) ⊆ T (A) and δ–traces(C ) ⊆ δ–traces(A)

2



Relational Concurrent Refinement Part III: Traces, partial relations and automata 19

The definition of viot is the same as that given in [Seg97, Seg93] for IO-automata, which is shown to be
equivalent to the quiescent trace preorder of [Vaa91]. Introducing internal actions gives rise to some minor
differences between the definitions which we do not repeat here, see Section 5 for a discussion.

The following hold between the systems introduced above: q0 viot q1 but q1 6viot q0, q2 viot q1, q3 viot q1,
but q1, q3 6viot q2 and q1, q2 6viot q3.

4.2.1. Relational characterisation of IOTS refinement

The IOTS preorder can be defined for arbitrary partitioned LTSs, in which case it is usual to interpret these
as under-specified IOTSs, where some input actions are not specified in some states. One might define an
alternate relation, vioconf , specifically for partitioned LTSs. Another approach, given in [DS95], is to give
a demonic semantics for process expressions. In this semantics a transition is added for each non-specified
input, and after this transition any behaviour is possible. We will follow the latter approach here. We give a
relational characterisation of viot , and in doing so derive simulation rules for it. To do this we will use the
partial relational framework, but with some elements of totalisation used to deal with the demonic process
semantics.

To define viot between arbitrary partitioned LTSs, we define A viot C iff Â v Ĉ , where Â is an appropriate
relational embedding – i.e., rather than explicitly constructing the IOTS representing its demonic semantics,
we give its relational version directly. This relational embedding needs to totalise operations in LI to represent
the fact that they are always enabled, and include a modification of LU to represent the fact that after an
unspecified input any behaviour is possible, and an appropriate finalisation to ensure subsetting of δ–traces.
We thus make the following definition.

Definition 34 (IOTS embedding).
A partitioned LTS L = (states,LI ,LU ,−→, init) is embedded into the relational model as

L̂ = (State, Init, {Ôpi}i∈LI∪LU
,Fin), where

G == {∗, δ}
State ==states ∪ {⊥}, where ⊥ 6∈ states
Init == {g : G; s : init • g 7→ s}
Ôpi ==

i−→ ∪{⊥ 7→ ⊥} ∪ {x : states, y : State | i ∈ LI ∧ x 6 i−→• x 7→ y}
Fin == {x : State • x 7→ ∗} ∪ {(⊥, δ)}

∪ {x : states | (∀ i ∈ LU • x 6 i−→) • x 7→ δ}
2

Theorem 6. With the IOTS embedding, data refinement corresponds to the IOTS preorder. That is, let Ã
denote the IOTS obtained by giving the partitioned LTS A a demonic semantics, then

Â v Ĉ iff T (C̃ ) ⊆ T (Ã) and δ–traces(C̃ ) ⊆ δ–traces(Ã)

Proof The crucial point to note is that ∗ represents the observation of a trace, and δ the observation of a
quiescent trace, i.e., we have that

(g , ∗) ∈ tr
Â
≡ tr ∈ T (Ã)

(g , δ) ∈ tr
Â
≡ tr ∈ δ–traces(Ã)

The latter means that either A after tr ref LU , or tr contains an input action that was impossible in A
(encoded in the pair (⊥, δ) ∈ Fin).

1. Suppose Â v Ĉ , i.e., for all tr we have tr
Ĉ
⊆ tr

Â
.

Given tr ∈ T (C̃ ). Then we have (g , ∗) ∈ tr
Ĉ
⊆ tr

Â
. Thus tr ∈ T (Ã).



20 J. Derrick and E.A. Boiten

Given tr ∈ δ–traces(C̃ ). Then (∗, δ) ∈ tr
Ĉ
⊆ tr

Â
. Thus tr ∈ δ–traces(Ã).

2. Suppose that T (C̃ ) ⊆ T (Ã) and δ–traces(C̃ ) ⊆ δ–traces(Ã).

Consider a program tr . If tr
Ĉ

is empty (due to some output action being impossible in tr) then tr
Ĉ
⊆ tr

Â

as required. If (g , ∗) ∈ tr
Ĉ

then tr ∈ T (C̃ ). Thus tr ∈ T (Ã) and consequently (g , ∗) ∈ tr
Â

. If (g , δ) ∈ tr
Ĉ

then tr ∈ δ–traces(C̃ ). Thus tr ∈ δ–traces(Ã) and consequently (g , δ) ∈ tr
Â

.

Thus tr
Ĉ
⊆ tr

Â
for any tr , and Â v Ĉ as required. 2

We now extract the simulation rules that correspond to this notion of refinement.

4.2.2. Simulations

We have embedded an IOTS into a partial relational model, but one augmented with both refusals and a
distinguished element, ⊥. The downward simulation conditions for this data type are, of course:

CInit ⊆ AInit o
9 R̂

R̂ o
9 CFin ⊆ AFin

∀ i : J • R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂

We will extract the underlying conditions in the usual fashion, however, one will obtain different conditions
depending on whether an operation is in LI or LU .

First, the initialisation condition, which under the totalisation adds no extra constraints beyond normal.

Second, if i ∈ LU , then Ôpi == Opi ∪ {(⊥,⊥)}, so that

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂ iff R o
9 COpi ⊆ AOpi o

9 R

Third, if i ∈ LI , then Ôpi is the non-blocking totalisation over states ∪ {⊥}, thus

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂ iff (domAOpi C R) o
9 COpi ⊆ AOpi o

9 R and
ran (domAOpi C R) ⊆ domCOpi

Note, that for an IOTS (as opposed to an arbitrary partitioned LTS), input actions are always enabled, and
thus in that case this correctness condition reduces to R o

9 COpi ⊆ AOpi o
9 R for LI .

Finally, the finalisation condition adds in the condition to check for refusals as needed for δ–trace inclusion.

So R̂ o
9 CFin ⊆ AFin will become

∀R • (∀ i ∈ LU • ¬pre COpi)⇒ (∀ i ∈ LU • ¬pre AOpi)

That is, if states are linked by the retrieve relation and C refuses output actions, then so must A.

For upwards simulations, we use a similar line of reasoning to find that one requires the standard initialisation,
blocking correctness for output actions, non-blocking applicability and correctness for input actions together
with the refusal condition

∀CState • (∀ i ∈ LU • ¬pre COpi)⇒ ∃AState • T ∧ (∀ i ∈ LU • ¬pre AOpi)

which can be combined with the usual totality of upward simulation to give

∀CState • ∃AState • T ∧ ((∀ i ∈ LU • ¬pre COpi)⇒ (∀ i ∈ LU • ¬pre AOpi))

These are summarised in the following definition.

Definition 35 (IOTS simulations in Z).



Relational Concurrent Refinement Part III: Traces, partial relations and automata 21

Given Z data types A and C , both representing partitioned LTSs, J = LI ∪LU . The relation R on AState ∧
CState is an IOTS downward simulation from A to C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : LU ; AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

∀ i : LI ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : LI ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi

⇒ ∃AState ′ • R′ ∧AOpi

∀R • (∀ i : LU • ¬pre COpi)⇒ (∀ i : LU • ¬pre AOpi)

The relation T on AState ∧ CState is an IOTS upward simulation from A to C if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : LU ; AState ′; CState; CState ′ • (COpi ∧ T ′)⇒ (∃AState • T ∧AOpi)
∀ i : LI ; CState • ∃AState • T ∧ (pre AOpi ⇒ pre COpi)
∀ i : LI ; AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi))
∀CState • ∃AState • T ∧ ((∀ i : LU • ¬pre COpi)⇒ (∀ i : LU • ¬pre AOpi))

2

4.2.3. Angelic process semantics

Above we used a totalisation to define viot between an LTS and an IOTS, specifically the demonic pro-
cess semantics discussed in [DS95]. An alternative view of under-specified input actions is that the under-
specification represents an implicit skip. Such an interpretation was introduced in [Vaa91] and discussed in
[DS95], where it is called the angelic process semantics.

The relational embedding of such a semantics only alters the input action component from that we defined
above. Thus, when deriving simulation conditions for such an embedding, the initialisation, refusal conditions
and correctness for output actions remain the same.

For input actions, they are embedded as

Ôpi == Opi ∪ {(state, state) | state 6 i−→}
and the downward simulation condition

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂

evaluates to

R o
9 (COpi ∪ (domCOpi C skip)) ⊆ (AOpi ∪ (domAOpi C skip)) o

9 R

However, this does not have a particular interesting simplification.

5. Internal events and divergence

The consideration above has dealt with the basic structure of automata and IO automata, but without
internal events or the potential consideration of divergence that they can give rise to. We briefly discuss
some of these aspects here.

The definitions of automata and refinement given by Lynch and Vaandrager in [LV95] have in their full
generality an internal action τ ∈ Act . Their definitions of refinement and simulation use this in the standard
way, that is, allow silent evolution before and after external events, formally characterised by a change from
a−→ to

a
=⇒ in relevant places in the definitions. Thus, for example, the definition of a downward simulation

becomes:



22 J. Derrick and E.A. Boiten

If s ∈ init(A) then f (s) ∩ init(C ) 6= ∅
If astate

a−→ astate ′ and cstate ∈ f (astate)

then ∃ cstate ′ ∈ f (astate ′) • cstate
a

=⇒ cstate ′

All the standard results carry over, and in a relational embedding the simulations can be adapted to allow
such internal behaviour. Details of how to do this are in [BDS09]. Lynch and Vaandrager do not, however,
consider divergence, that is their simulation conditions are ones which ignore divergence.

As shown in [BD09] it is possible to extend the relational framework with the capability to model various
types of divergence. To do so the embeddings that are used need to incorporate internal behaviour into
the operations, initialisation and possibly finalisation. Once that is done, if a refinement relation ignores
divergence, then there are obviously no further requirements. Otherwise, the embeddings need to ensure the
correct observations are made when the final state records divergence. In the case of catastrophic interpreta-
tions (i.e., ones where divergence is propagated to all further behaviours) the embeddings need to generate
arbitrary behaviour from the point of divergence onwards, and propagate this into all subsequent operations.

We record divergence using a special value ω which as usual is assumed not to be included in any local or
global state space. For any set S, let Sω = S ∪ {ω}. Then we can make the following embeddings. First, the
refinement relations that ignore divergence.

Trace refinement As discussed also in [DB08], trace refinement in the absence of internal operations “is”
the partial relations model. Including also internal operations is relatively simple. We only need to include
internal operations after initialisation and operations.

Definition 36 (Embedding trace refinement ignoring divergence).

An i -data type D = (State,G, Init, {Opk}k∈J , i ,Fin) is embedded as the data type D̂ = (State,G, Înit,

{Ôpk}k∈J ,Fin) where

Ôp = Op o
9 i∗

Înit = Init o
9 i∗

2

If D only makes trivial observations, i.e., G = {∗}, then so does D̂, and furthermore their traces are identical,
i.e., for every sequence p over J

p
D̂

=
⋃

q∈(J∪{i})∗∧q�J=p qD

(where s � A is the largest subsequence of s whose elements are all in A) or equivalently (recall that a
non-empty result indicates a trace being possible in this basic model):

p
D̂
6= ∅ ≡ ∃ q • q � J = p ∧ qD 6= ∅

This can easily be proved by induction over the length of p. The simulation rules deriving from this are those
of Definitions 4 and 5 with internal behaviour inserted after all occurrences of operations and initialisation.
In the absence of (observed) divergence, joint completeness of the simulations follows from joint completeness
of the partial relations simulations, plus the fact that the data type with internal operations is refinement
equivalent to its embedding as in Definition 36, see also [DB01] for the latter point.

Note that this trace refinement relation is different from trace inclusion in the CSP failures-divergences model,
as that does take divergence into account. An embedding for CSP trace refinement would be a simplification
of the failures-divergences embedding, with a trivial observation at finalisation instead of refusals, as follows:

Definition 37 (Embedding trace refinement (CSP f-d model)).



Relational Concurrent Refinement Part III: Traces, partial relations and automata 23

An i -data type D = (State,G, Init, {Opk}k∈J , i ,Fin) is embedded as the data type D̂ = (Stateω,G, Înit,

{Ôpk}k∈J}, F̂in) where

Înit = Init o
9 i∗ ∪ if divi Init then G× Stateω

Ôp = Op o
9 i∗ ∪ divOp× Stateω

F̂in = Fin ∪ {ω} × G

divOp =def {s : State | ∃ s ′ : State • (s, s ′) ∈ Op ∧ s ′
i∞−→}

divi Init =def ∃ s : ran Init • s
i∞−→

2

The derivation of simulation rules leads to the following definition.

Definition 38 (Simulations for trace refinement (CSP f-d model)).
A relation R between AState and CState is a downward simulation between i -data types A and C iff ∀ k : J
we have:

if diviCInit then diviAInit else CInit o
9 i∗C ⊆ AInit o

9 i∗A
o
9 R

R o
9 CFin ⊆ AFin

(divAOpk )−C R o
9 COpk o

9 i∗C ⊆ AOpk o
9 i∗A

o
9 R

dom(RB divCOpk ) ⊆ divAOpk

A relation T between CState and AState is an upward simulation between i -data types A and C iff ∀ k : J

if diviCInit then diviAInit else CInit o
9 i∗C

o
9 T ⊆ AInit o

9 i∗A
CFin ⊆ T o

9 AFin
dom(TB divAOpk )−C COpk o

9 i∗C
o
9 T ⊆ T o

9 AOpk o
9 i∗A

divCOpk ⊆ dom(TB divAOpk )

2

Reduction The embedding for reduction is a simplification of that for failures-divergences refinement, e.g.
as given in [BDS09], introducing an extra component E recording refused events, but removing the case
distinctions and special treatment arising from infinite internal evolution.

Definition 39 (Embedding reduction).

An i -data type D = (State,G, Init, {Opk}k∈J , i ,Fin) is embedded as the data type D̂ = (State,G × P J , Înit,

{Ôpk}k∈J , F̂in) where

Înit = {((g ,E ), s) : (G× P J )× State | (g , s) ∈ Init o
9 i∗}

Ôp = Op o
9 i∗

F̂in = {(s, (g ,E )) : State× (G× P J )|
(s, g) ∈ Fin ∧ ∀ k : E • s 6∈ dom(i∗ o

9 Opk )}

2

Note that the change to initialisation is only to account for the extra component E in the global state.
The resulting simulation rules are identical to those for failures refinement with internal evolution added
after all operations and initialisation, and before operations in precondition (refusal) computation. The
multiple components observed in finalisation imply that the simulations are not in general complete: the
simulations as given impose separate conditions on each component, whereas due to dependencies between
the components weaker conditions may suffice. However, for trivial original finalisations, due to the same
normal form argument as given for trace refinement above, these rules inherit the joint completeness of the
failures refinement rules proved e.g., by Josephs [Jos88].



24 J. Derrick and E.A. Boiten

Non-catastrophic divergence In a non-catastrophic interpretation, divergence is a property only of the
state (whether it admits infinite internal evolution) and not of the trace (whether it may have come through
such a state). Thus, embeddings for associated refinement relations are significantly simpler, not having to
propagate divergence from one state to the next, nor having to introduce arbitrary behaviour in such states.

Automata with additional structure over the basic model given in [LV95] include IO automata [LT89] and
IO transition systems [Tre96]. Although they coincide in the absence of internal events, in general they offer
slightly differing models.

IO transition systems offer the same perspective as the basic automata of [LV95] in that they include internal
evolution in standard ways in their definition of refinement and simulation, and ignore divergence (indeed,
only divergence-free systems are considered in [Tre96]). Although internal actions do not alter the standard
view of refinement, IO transition systems differ marginally from IO automata even for convergent systems
since IO transition systems only require weak input enabling as opposed to the strong input enabling as
required in [LT89].

As noted above the use of weakly quiescent traces differs from the (original) definition of quiescence given
in [Vaa91], where quiescence requires the absence of both output and internal actions. Tretmans [Tre96]
comments that for divergent-free systems the two notions coincide but views the stronger quiescence to
be counter-intuitive in the presence of divergence. The exact role of divergence in IO transition systems is
still unresolved: “for a precise comparison [of IOTS with IO automata] a more elaborate investigation of
divergence in IOTS is necessary” [Tre96].

In Section 4.2.1 we provided a relational characterisation of IOTS refinement via a demonic semantics for
under-specification of input actions. Specifically in this semantics a transition is added for each non-specified
input, and after this transition any behaviour is possible. Clearly, one could link this demonic behaviour to
divergence arising from internal evolution. However, [DS95] takes a much simpler approach and although it
includes internal events (and a more elaborate treatment of fairness), it does not view the transition that
is added for each non-specified input as divergence in the sense of potential unbounded internal evolution.
One avenue of future work would be to incorporate such a view and to understand what the consequences
of doing so are.

6. Conclusions

In this paper we have derived simulations for relational embeddings of a number of refinement preorders
found in process algebras, and then explored the relation between automata based refinement and notions
of refinement for relational data types and process algebras.

Although downward and upward simulations (Definitions 4 and 5) are complete, their totalised versions are
not. However, complete simulations can be given for each semantics, e.g. the failures semantics simulations
are known to be complete. A separate completeness proof for simulations is needed in each embedding, this
is a line for future exploration.

The notions of trace refinement and basic refinement for automata were shown to coincide through sharing
the same sound and complete set of simulation rules. Refinement for IO automata (IO transition systems
[Tre96]) was shown to be different from any refinement relation considered so far in our relational concurrent
refinement programme [DB03, BDS09, DB08, BD09]. This was due to the separation of input and output
actions, requiring a different treatment in refinement, each sharing some characteristics with previously
considered methods of “totalising” operations.

There are still some unanswered questions. Some deal with the notion of divergence in IOTS and IO automata
as described in the last section, others deal with the issue of granularity of transition, that is, non-atomic
refinement. This is particularly pertinent to the structure offered by IOTS and IO automata since they
already distinguish between input and output actions, and how this can be incorporated into theories of
non-atomic refinement (e.g., as in those offered in [DSW07, DW03, DW05]) remains to be seen.



Relational Concurrent Refinement Part III: Traces, partial relations and automata 25

References

[Abr10] Abrial J-R (2010) Modelling in Event-B. CUP
[BB88] Bolognesi T, Brinksma E (1988) Introduction to the ISO Specification Language LOTOS. Comput Networks ISDN

14(1):25–59
[BD02a] Boiten EA, Derrick J (2002) Unifying concurrent and relational refinement. ENTCS 70(3):182-196. In Derrick J,

Boiten EA, Von Wright J, Woodcock JCP (eds): Proceedings REFINE’02
[BD02b] Bolton C, Davies J (2002) Refinement in Object-Z and CSP. In Butler M, Petre L, Sere K (eds), IFM 2002,

volume 2335 of LNCS, pages 225–244. Springer
[BD06] Bolton C, Davies J (2006) A singleton failures semantics for Communicating Sequential Processes. Form Asp

Comp 18:181–210
[BD09] Boiten EA, Derrick J (2009) Modelling divergence in relational concurrent refinement. In Leuschel M, Wehrheim

H (eds) IFM 2009, volume 5423 of LNCS, pages 183–199. Springer
[BD10] Boiten EA, Derrick J (2010) Incompleteness of relational simulations in the blocking paradigm. Sci Comput

Program 75(12):1262–1269
[BDS09] Boiten EA, Derrick J, Schellhorn G (2009) Relational concurrent refinement II: Internal operations and outputs.

Form Asp Comp 21(1-2):65–102
[BPS01] Bergstra JA, Ponse A, Smolka SA (eds, 2001) Handbook of Process Algebra. Elsevier Science Inc., New York, NY,

USA
[Bri88] Brinksma E (1988) A theory for the derivation of tests. In Aggarwal S, Sabnani K (eds) Protocol Specification,

Testing and Verification, VIII, pages 63–74, Atlantic City, USA. North-Holland
[BS86] Brinksma E, Scollo G (1986) Formal notions of implementation and conformance in LOTOS. Technical Report

INF-86-13, Dept of Informatics, University of Twente
[BSS86] Brinksma E, Scollo G, Steenbergen C (1986) Process specification, their implementation and their tests. In Sarikaya

B, v. Bochmann G (eds) Protocol Specification, Testing and Verification, VI, pages 349–360, Montreal, Canada.
North-Holland

[DB01] Derrick J, Boiten EA (2001) Refinement in Z and Object-Z. Springer
[DB03] Derrick J, Boiten EA (2003) Relational concurrent refinement. Form Asp Comp 15(1):182–214
[DB08] Derrick J, Boiten EA (2008) More relational refinement: traces and partial relations. ENTCS 214:255–276.

Proceedings of REFINE 2008 (Turku)
[DNi87] De Nicola R (1987) Extensional equivalences for transition systems. Acta Inform 24(2):211–237
[DRE98] De Roever WP, Engelhardt K (1998) Data Refinement: Model-Oriented Proof Methods and their Comparison.

CUP
[DS95] De Nicola R, Segala R (1995) A process algebraic view of I/O automata. Theor Comput Sci 138:391–423
[DSW07] Derrick J, Schellhorn G, Wehrheim H (2007) Proving linearizability via non-atomic refinement. In Davies J,

Gibbons J (eds), IFM, volume 4591 of LNCS, pages 195–214. Springer
[DW03] Derrick J, Wehrheim H (2003) Using coupled simulations in non-atomic refinement. In Bert D, Bowen JP, King

S, Waldén M (eds) ZB 2003, volume 2651 of LNCS, pages 127–147. Springer
[DW05] Derrick J, Wehrheim H (2003) Non-atomic refinement in Z and CSP. In Treharne H, King S, Henson MC, Schneider

SA (eds) ZB2005, volume 3455 of LNCS, pages 24–44. Springer
[HH90] He Jifeng, Hoare CAR (1990) Prespecification and data refinement. In Data Refinement in a Categorical Setting,

Technical Monograph, number PRG-90. Oxford University Computing Laboratory
[HHS86] He Jifeng, Hoare CAR, Sanders JW (1986) Data refinement refined. In Robinet B, Wilhelm R (eds) Proc. ESOP

86, volume 213 of LNCS, pages 187–196. Springer
[Hoa85] Hoare CAR (1985) Communicating Sequential Processes. Prentice Hall
[Jos88] Josephs MB (1988) A state-based approach to communicating processes. Distrib Comput 3:9–18
[Lan89] Langerak R (1989) A testing theory for LOTOS using deadlock detection. In Protocol Specification Testing and

Verification IX, pages 87–98. North-Holland
[Lan92] Langerak R (1992) Transformations and Semantics for LOTOS. PhD thesis, University of Twente, The Nether-

lands
[Led91] Leduc G (1991) On the Role of Implementation Relations in the Design of Distributed Systems using LOTOS.

PhD thesis, University of Liège, Liège, Belgium
[LT89] Lynch N, Tuttle M (1989) An introduction to input/output automata. CWI quarterly 2(3):219–246
[LV95] Lynch N, Vaandrager F (1995) Forward and backward simulations I.: untimed systems. Inform Comput 121(2):214–

233
[Mil89] Milner R (1989) Communication and Concurrency. Prentice-Hall
[RS08] Reeves S, Streader D (2008) Data refinement and singleton failures refinement are not equivalent. Form Asp Comp

20(3):295–301
[Seg93] Segala R (1993) Quiescence, fairness, testing, and the notion of implementation (extended abstract). In Interna-

tional Conference on Concurrency Theory, pages 324–338
[Seg97] Segala R (1997) Quiescence, Fairness, Testing, and the Notion of Implementation. Inform Comput 138(2):194–210
[Tre96] Tretmans J (1996) Test Generation with Inputs, Outputs, and Quiescence. In Margaria T, Steffen B (eds)

TACAS’96, volume 1055 of LNCS, pages 127–146. Springer
[Vaa91] Vaandrager FW (1991) On the relationship between process algebra and input/output automata. In Logic in

Computer Science, pages 387–398



26 J. Derrick and E.A. Boiten

[VG93] Van Glabbeek RJ (1993) The linear time – branching time spectrum II; the semantics of sequential systems with
silent moves (extended abstract). In Best E (ed) CONCUR’93, volume 715 of LNCS, pages 66–81. Springer

[VG01] Van Glabbeek RJ (2001) The linear time - branching time spectrum I. The semantics of concrete sequential
processes. In [BPS01], pages 3–99

[WD96] Woodcock JCP, Davies J (1996) Using Z: Specification, Refinement, and Proof. Prentice Hall


	Introduction
	Background
	A partial relational model
	Totalisations
	Refinement in Z

	Process algebraic based refinement
	Methodology
	Trace preorder
	Completed trace preorder
	Failure preorder
	Failure trace preorder
	Extension and conformance

	Automata based refinement
	Basic definitions
	IO automata

	Internal events and divergence
	Conclusions
	References

