
Mutton, P. (2004) Inferring and Visualizing Social Networks on Internet
Relay Chat. In: Banissi, Ebad and Borner, Katy and Chen, Chaomei and
Dastbaz, Mohammad and Clapworthy, Gordon, eds. Eighth International
Conference on Information Visualisation, 2004. IEEE International Conference
on Information Visualisation . IEEE, pp. 35-43. ISBN 0-7695-2177-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14119/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/IV.2004.1320122

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14119/
https://doi.org/10.1109/IV.2004.1320122
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Inferring and Visualizing Social Networks on Internet Relay Chat

Paul Mutton
Computing Laboratory, University of Kent, Canterbury, Kent.CT2 7NF. United Kingdom.

{pjm2@kent.ac.uk}

Abstract
Internet Relay Chat is a system that allows groups of

people to collaborate and chat from anywhere in the
world. Clearly defined by several RFC documents, it is
arguably the most standard real-time chat system
currently in use. This paper describes a method of
inferring the social network of a group of IRC users in a
channel. An IRC bot is used to monitor a channel and
perform a heuristic analysis of events to create a
mathematical approximation of the social network. From
this, the bot can produce a visualization of the inferred
social network on demand. These visualizations reveal
the structure of the social network, highlighting
connectivity, clustering and strengths of relationships
between users. Animated output allows viewers to see the
evolution of the social network over time. Some novel
ideas for future work are discussed, showing other useful
applications of this system.

Keywords: inferring social networks,

visualization, animation, irc bot, heuristics, internet
relay chat, spring embedder, shakespeare.

1. Introduction

Internet Relay Chat is used by millions of people to
communicate in real-time across the world. An IRC
network consists of a set of servers that people can use to
connect to IRC. Each network typically consists of
several servers, which helps to increase the performance
and resilience of the system. Since its introduction by
Jarkko Oikarinen in 1988, IRC has steadily grown in
popularity and currently has more than a million users at
any one moment worldwide [Gel2003]. The IRC
protocol was clearly defined 5 years later in RFC 1459
[Oik1993], which made the system more accessible. As a
result of this, there are now many client programs that
users can use to connect to an IRC network.

Figure 1 demonstrates the layout of a typical IRC
client. Most IRC clients contain a central area to view
messages, a sorted list of nicknames to the right, and a
text field at the bottom to enter your own messages.

Figure 1 A typical IRC client

In addition to sending messages directly from one
user to another, IRC users can join a set of channels,
which are analogous to rooms. When a message is sent to
a channel, all other users in the channel can see it. Figure
1 shows a list of channel names down the left hand side,
with the user currently viewing the messages being sent
to the channel called “#java”. Each channel has a unique
name and is usually inhabited by users with a common
interest. Much like a real room, it is possible to infer
social interactions between the users in a channel. This
paper describes a simple method of inferring a social
network by monitoring an IRC channel and producing
visualizations of the resulting data.

Figure 2 A simple social network

2. Social Network Analysis

Social network analysis [Kre2002] concerns itself
with the measuring of relationships and flows between
entities. We are able to model an IRC channel as a social
network, as each individual user is an entity and their
interactions imply relationships and flows. Such social
networks can provide a mathematical analysis of the
relationships in an IRC channel, yet visual
representations are often easier to comprehend. The
network is modeled as a graph, consisting of a set of
nodes and edges, where each node represents a user and
an edge represents a relationship between a pair of
nodes, as shown in Figure 2.

Visualization of social networks is important, as it
allows the viewer to determine facts about nodes and
relationships between nodes more rapidly than
examining the raw mathematical model. For example,
the prominence of a node in the network can be
determined by its centrality, which is easy to see in a
visualization of a social network.

3. Inferring Social Networks

A social network is virtually present whenever we
observe a group of people interacting electronically
[Wel1997]. The first step in visualizing the social
network of an IRC channel is to infer the approximate
mathematical representation. Identifying the nodes in the
graph is a trivial task, as these simply correspond to the
users in the channel. Identifying the presence of edges is
slightly more difficult, as this can only be done by
monitoring the activity in the channel and identifying
specific classes of user interactions. Furthermore, we
enhance our social network model by assigning
weightings to each edge to show the strength of each
relationship.

Fortunately, there are some fairly simple heuristics
that enable us to obtain reasonably accurate
approximations of the data required to produce the social
network, most of which are analogous to inferring social
networks from real life conversations. It must be noted
that the accuracy of these approximations is very
subjective by nature and that the social network derived
from the heuristics can be no more than a good guess.
However, in practice, we find that the results are
generally good. We call this first stage inferring the
social network.

3.1. Inferring Relationship Strengths

An IRC bot is used to monitor channels and infer the
social network structure for us (the term bot is commonly
used to describe an automated IRC client and is a
contraction of robot). The bot is called PieSpy and has
been implemented in Java using the PircBot IRC Bot
Framework [Mut2001]. The bot is instructed to join a
channel and examine the messages and actions sent to
the channel. Each user has a unique nickname (or nick)
and each message includes a source nickname so it is

possible to tell which user it came from. To begin with,
the inferred graph contains only a set of nodes to
represent the users in a channel. All that remains is for us
to build the set of weighted edges.

3.2. Direct Addressing of Users

The first simple method we use to infer relationships
in the graph is to monitor occurrences of direct
addressing. This is where a user attempts to target a
channel message to another user by specifying their
nickname, as shown in Figure 3. This is a very common
observation in a channel and usually involves the target
nickname being stated before the actual message, often
separated by a colon or other punctuation. This is a
simple yet reliable way of building the set of edges in the
graph, but it works best in conjunction with other
methods.

 <Dave> Can someone ping me?
 <Phil> Dave: Okay.

Figure 3 An example of direct addressing

3.3. Temporal Proximity

Direct addressing is not always used (or required) to
specify the target of a message. A message without
explicit direct addressing is either targeted to everybody
in the channel, or it is targeted to an individual user.
Analogous to a real life conversation, if there is a long
period of silence before a user sends a message and this
message is immediately followed up by a message from
another user, then it is reasonable to imply that the
second message was in response to the first. The fact that
the second message was probably a response to the first
allows us to infer a relationship between the two users.

3.4. Temporal Density

If there are no long delays in a channel’s
conversation, it is still possible to derive clues about the
structure of the social network by examining other
temporal features. If the last n messages have been sent
within a short time span and all n of these messages
originate from only two users, then it is reasonable to
assume that these two users are engaged in conversation.
We find that values of n > 5 allow us to build the set of
edges and their weightings in the graph fairly accurately.

3.5. Monitoring Private Messages

Each IRC user is able to bypass channel discussions
and send messages directly to other users. This is the
strongest and most accurate indication of a relationship
between sender and recipient. Our bot does not
implement this heuristic, as it would require special
access to the servers that make up an IRC network and
raises strong ethical debate about the privacy of users. As
users may also be in more than one channel, it is not a

valid method of inferring a social network for an
individual channel.

Another difficultly in inferring the social network
for a channel is that users may change their nickname at
any time. It is therefore necessary to track such nickname
changes and model these nicknames as belonging to the
same user. Alternatively, each nickname can be treated
as a different user to see if a user’s nickname has any
effect on their role in the social network.

4. Examining the Inferred Social Network

Before we visualize the inferred social network, it is
possible to calculate results and draw conclusions by
examining the graph theoretic structure.

4.1. Degrees and Strengths

Nodes with many emanating edges represent the
most active users in the social network. Working out
which users are most active can also involve looking at
the weighting of each edge, as these represent the
strength of each relationship. The strongest relationships
in the social network are represented by the edges with
the highest weightings. This can be determined
quantitatively by examining the graph, but a
visualization of the social network is also adept at
highlighting such features.

4.2. Disconnected Social Networks

It is possible that the inferred social network does
not form a connected graph. Several graph algorithms
can be used to detect whether or not the social network is
disconnected. A disconnected social network is a useful
indication of there being distinct groups of users in the
same channel that do not communicate with each other.
Each group is a maximally connected component of the
social network and these can be found using simple
recursive graph algorithms. This information can have a
variety of useful applications, such as allowing IRC
clients to provide automatic filtering of irrelevant
messages or to highlight the fact that a channel may
function better if it were to be split into several new
channels.

5. Drawing Social Networks

After we have inferred the social network for an IRC
channel, we are ready to begin the creation of the
visualization. This is essentially a graph drawing
problem, as we wish to obtain a layout of the nodes and
edges of the graph that represents the social network.
The layout should not only portray which relationships
are present, but also the strength of those relationships. It
is convenient to produce a two-dimensional layout, as we
do, because it is most versatile in terms of both screen
display and printing hard copies.

Dense social networks may be more effectively
visualized in three dimensions. Using three dimensions

allows large graphs to be navigated more effectively than
using only two dimensions, with advantageous usability
issues in spatial navigation, layout and semiotics
[Mun1995, Par1998, Wil1999]. Although our method of
embedding the graph can deal with three dimensions, this
adds complexity to the requirements of viewing
software. Furthermore, hard copies are only able to
display a single two dimensional projection viewpoint of
the social network, which may result in confusion
brought about by occlusions. The social networks that we
derive from IRC channels typically contain between 10
and 100 active users, so two dimensions are very much
adequate for these visualizations. Note that we do not
concern ourselves with displaying maximally connected
components if they consist of a single node, that is, we
do not draw users that exhibit no relationship behaviour
whatsoever. We call these inactive users.

It is important to make the resultant drawing
meaningful. Some desired characteristics are that related
users should be close to each other and highly related
users should be even closer together. Conversely, it is
undesirable for any pair of nodes to be too close to each
other, as it becomes difficult to interpret the graph when
there are a number of node-node occlusions present.

The spring embedder [Ead1984] is one such graph
drawing method that is suitable for application to social
networks. Its effect is to distribute nodes in a two-
dimensional plane with some separation, while
attempting to keep connected nodes reasonably close
together. The spring embedder graph drawing process
considers the graph model as a force system that must be
simulated. Each node in the graph is modelled as a
charged particle, thereby causing a repulsive force
between every pair of nodes. Each edge is modelled as a
spring that exerts an attractive force between the pair of
nodes it connects. A graph is laid out by repeated
iterations of a procedure that calculates the repulsive and
attractive forces acting on all nodes in the graph. At the
end of each iteration step, all nodes are moved according
to the resultant forces acting on them.

5.1. Modified Spring Embedder Force Model

The force models that we use for the spring
embedder are based on those of Fruchterman and
Reingold [Fru1991]. This version of the spring embedder
is effective and widely used. It is also relatively easy to
implement and requires a minimal set of parameter
values that can be adjusted to achieve good automatic
layouts. In this model, the repulsive force acting on a
pair of nodes is –k2/d and the attractive force between
two nodes caused by an edge is d2/k, where d is the
distance between two nodes and k is a constant. With this
force model, it is worth noting that an edge connecting
the only pair of nodes in a graph will have a natural
length of k.

We start the graph drawing process by allocating
each node to a random location on a two-dimensional
plane. The iterative calculation of the forces begins and
nodes are moved accordingly at the end of each iteration

step. This results in a layout where connected nodes are
close together, yet no pair of nodes are too close to each
other due to the repulsive forces acting between them.

5.2. m-limited Force Model

As some social networks may be disconnected, the
simple spring embedder model described above can
cause the layout to expand rapidly, as there is nothing to
counter the repulsive forces acting between each
maximally connected component. Limiting the distance
over which repulsive forces may act easily solves this
problem. The force model is modified so that a pair of
nodes with separation greater than m does not exert a
repulsive force [Mut2003a]. This alteration to the force
model ensures that we do not end up with an
unnecessarily sparse graph drawing.

5.3. Representing Edge Weights

To make the resultant graph drawing convey
information about the strengths of relationships, we
change the attractive forces caused by edges. These are
altered so that the calculated attractive force is multiplied
by the weight of the edge, causing strongly related nodes
to be even closer together. Another effective way of
representing the strength of a relationship is to make the
edge thickness proportional to its weight. This is used in
conjunction with the length of edges to provide a
redundant cue to the person viewing the visualization.
Color and opacity are other variables used in the
implementation of PieSpy, which add further redundant
emphasis, but the examples in this paper do not use this
for clarity. In many cases, we have observed that a large
variance of edge weights can cause the layout to become
very distorted and the edge thicknesses become too great.
This makes it difficult to navigate the layout, so we
multiply the calculated attractive force by log(weight)+1.
This causes stronger relationships to have shorter edges
still, but lessens the effect when relationship strengths
get greater. This seems to be an effective compromise,
resulting in layouts that are easy to navigate and
understand.

5.4. Performance Requirements

A graph, G = (N,E), is modelled as a set of nodes
and edges. A simple implementation of the spring
embedder calculates the repulsive force between every
pair of nodes and so has a time complexity of O(|N|2) per
iteration. In practical terms, this limits the maximum size
of the social network to several hundred nodes if we
want it to be laid out in less than one second on
affordable hardware. Various optimisations exist to make
this process quicker, such as preprocessing the initial
random layout with linear time complexity [Mut2002],
speeding up the calculation of forces between pairs of
nodes [Tun1998], or reducing the number of nodes that
are paired [Qui2001, Tun1998]. Multi-level approaches
[Har2001, Wal2001] provide a heuristic method that

clusters a graph and lays out the coarsened graph,
reintroducing the other nodes in uncoarsening steps until
a final layout is produced. These can be used to reduce
the time complexity of each spring embedder iteration to
O(|N|log|N|) without any significant reduction in its
effectiveness, making the method suitable for application
to graphs with tens of thousands of nodes in real-time.

The current implementation of the IRC bot does not
use any optimisations when calculating forces, as the size
of each social network is typically small enough to allow
the drawing to be generated each time the underlying
social network changes, taking no more than one second.

6. Using the IRC Bot

A Java implementation of the IRC bot can be
downloaded from http://www.jibble.org/piespy/. The
PieSpy web page also contains links to output generated
by other users of the system from around the world.

While the IRC bot is in a channel, other users can
instruct it to send the latest drawing of the social
network, as shown in Figure 4. It then sends a PNG
(Portable Network Graphics) file to the user that
requested the diagram. It can also generate high quality
EPS (Encapsulated Postscript) output if required. The
drawing corresponds to the inferred social network at the
time of the request.

Figure 4 Interacting with PieSpy

The IRC bot can also store numbered sequences of
these diagrams, which can be turned into animations to
illustrate the evolution of the social network over time.
The state of each layout is preserved between
invocations of the IRC bot.

6.1. Evolution of Social Networks

Each time a social network diagram is drawn by the
IRC bot, the position of each node is stored. When the
next diagram is drawn, the previous layout is used as a
starting point so that the resulting drawing differs only
slightly. This helps to preserve the mental map of the
diagram as it evolves. If a diagram is generated each time
the underlying social network changes, then all of these
diagrams can be pieced together to form an animation of
the evolving social network. The evolution of a social

network diagram of a moderately busy channel over a
12-hour period can be demonstrated by about 10
megabytes of MPEG video. Some still frames and
MPEG animations are available from the PieSpy web
site [Mut2003b].

6.2. Temporal Decay

Each social network diagram that is drawn relates to
a particular moment in time. Each diagram is, in essence,
a snapshot of the social network during its evolving
inference. Another real life analogy plays a part in the
reason for applying temporal decay to the social network.
The general idea is that a relationship deteriorates over
time if it remains inactive. Each time the structure of the
social network changes, all edges have their weightings
reduced by a small amount to simulate this real life
analogy. This results in social network diagrams that are
more accurate for the time at which they are created,
giving preference to recent and prolonged activity. A
nice side effect is that inactive users gradually disappear
from the diagram, naturally limiting the size of the graph
to reasonable bounds.

7. The Results

The IRC bot was tested on both private and public
IRC servers. The results shown here relate to a public
channel on a public server, as this is information easily
available to anybody. The IRC bot was instructed to join
the channel #java, which is a moderately busy channel
used to discuss Java programming on the freenode IRC
network.

Figure 5 shows the visualization of the inferred
social network after a short time in the channel. Inactive
users are not displayed in the diagram. This diagram
shows several interesting features already.

Figure 5 A simple social network for #java

We are able to ascertain “The_Vulture” as having
high centrality in the network. This user has a high
degree, linking directly to several other users. This user
also has a high level of betweenness, which means he has
an influence over what flows in the network. It also
exhibits a high level of closeness, with short paths to
everywhere else in the network. Removing this user from
the network would create a sparse, disconnected graph.

Figure 6 shows the inferred social network at a later
moment in time. Newcomers to the channel have stolen
the lead in centrality, illustrating the temporal nature of
the social network.

Figure 6 The evolving social network for #java

Figure 7 shows a disconnected social network
consisting of two maximally connected components. One
of these components is a complete subgraph of three
nodes, indicating that these three users have been talking
only to each other. The other component represents the
majority of the network, who were presumably not
interested in participating in the other small discussion.
Note that the m-limited alteration to the force model has
caused the diagram to fit nicely within the view port,
without causing a large separation between the two
components.

Figure 7 Disconnected social network for #java

Figure 8 Social proximity representation of

#java

As the social network grows in size, it may become
difficult to understand the visualization. This occurs
because the diagram becomes more complicated, with an
increasing number of edges. One obvious approach to
this problem is shown in figure 8, where the underlying
social network is the same as that in figure 7, but the
edges have not been drawn. This allows a viewer to
imply the presence of relationships by judging proximity
of nodes on the two dimensional plane. This layout
shows potential for building a bridge between IRC and
proximity-based chat systems, such as Chat Circles
[Vie1999].

8. Future Work

Some interesting ideas for future work include
integrating the current system into existing IRC clients to
enhance their functionality, or to bridge the gap between
proprietary chat systems and IRC. Visualizing other
types of network data on IRC, such as geographical
proximity, may also provide interesting research.

8.1. Integration with an Existing IRC Client

The existing system is written in pure Java and
could therefore be altered to behave like an IRC client.
Alternatively, it could be integrated with one of the many
existing Java IRC clients. Such integration would
provide the user with some powerful features. The user
can not only view a diagram of the current social
network for the channels they are in, but the inferred
social networks could also be used to automatically filter
out messages that the user may regard as irrelevant.

8.2. Spam Filtering on IRC

After a short period of training, the IRC client could
be configured to only accept messages from trusted
clients, that is, those clients contained in the same
maximally connected component as the user. Messages
from other components may be filtered as “spam”. This
feature could be of great benefit in very busy channels.

The training period would simply involve using the
channel for a short period without requiring any user
configuration. If desired, the user may alter the spam
detection settings by changing threshold values for
relationship strengths, potentially changing the
connectivity of the social network.

8.3. Trust Networks

The ability to infer social networks is useful in the
study of trust networks, or to reinforce the findings of
trust networks. Trust ratings can be inferred between
users that are not directly connected to each other. This
web of trust is the ultimate goal of the semantic web,
which itself can be interrogated via an IRC interface with
TrustBot [Gol2003].

8.4. Automatic FOAF Generation

The Friend of a Friend (FOAF) project aims to
establish links between people and what they create and
do [Bri2003]. Each person must have a machine-readable
homepage that can describe various attributes, including
their links to other people. For a community of people on
an IRC channel, the inferred social network could be
used to create suitable machine-readable files
automatically. FOAF files can be spidered to create a
knowledge base, which can be accessed via an IRC
interface with FOAFBot [Dum2002].

8.5. Bridging Chat Circles and IRC

Chat Circles [Vie1999] is a chat system that uses
circular avatars on a two-dimensional plane to represent
users. Each avatar can move freely about the plane. A
pair of avatars can only hear each other if they are close
enough. One criticism of the system is its lack of
popularity compared with IRC, which typically has more
than a million users at any one moment. Chat Circles is
dependent on the notion of proximity to determine
audibility by filtering, so it cannot be used to connect to
a network of IRC servers, where there is no concept of
proximity. One possible enhancement of Chat Circles
would be to allow it to connect to IRC and use the
inferred social networks to simulate the movement of
avatars in each channel.

8.6. Channel Similarity Graphs

An individual IRC user may be present in several
channels. This set of channels represents the interests of
the user. If another user is present in a smaller subset of
these channels, then there is a possibility that they may
be interested in joining the other channels. This provides
a channel discovery mechanism for those with similar
interests. This type of visualization involves drawing a
larger graph, using a similar method as before, but where
each node now represents a channel. Edges are used to
represent pairs of channels that share the same users,
with each edge having a similarity weighting based on
the number of shared users.

Users of a specific channel can follow the emanating

edges to discover similar channels. Some IRC servers
may have tens of thousands of channels [Gel2003], thus
requiring optimisation of the graph drawing process used
by the bot. Embedding each maximally connected
component separately can also lead to a performance
gain, although it is difficult to piece these back together
in an aesthetically pleasing way.

Figure 9 shows a channel similarity graph for the
freenode IRC network, showing the similarity between
the most popular set of channels. This was produced with
a modified version of PieSpy.

8.7. Studying Social Networks in Plays

Plays are typically written in the form of a script,
which is used to tell each actor what to say. This forms a
sequence of dialogue, similar to that observed on IRC
channels, and is therefore amenable to the same type of
processing as IRC chat. To illustrate the feasibility of
this idea, PieSpy was modified [Mut2004] to read the
entire texts of plays by William Shakespeare [Bos1998]
and generate several thousand frames of output. These
frames were then pieced together to form animations of
the social networks as each play progressed.

Figure 10 shows the social network during the play

Antony and Cleopatra. This diagram shows a strong link
between Mark Antony and Cleopatra (as you might
expect), but also another strong link between Mark
Antony and Octavius Caesar. Temporal decay ensures
that old relationships are removed from the diagram, thus
avoiding a tangled mass of edges.

Figure 10 A Shakespearean social network

Figure 9 A channel similarity graph for popular channels in the freenode IRC network

These visualizations demonstrate the usefulness of

the system to those who are about to start studying the
play for the first time. It only takes a few minutes to
watch the evolution of the social network and understand
the entire social structure of the of the set of characters,
which is a lot quicker than gleaning the information by
reading the entire play yourself.

This modified version of PieSpy has been used to
generate animations of all 37 of Shakespeare’s plays.
Figure 11 shows a still frame taken from the play
Macbeth. Strong links can be seen between both
Macbeth and Lady Macbeth, and Malcom and Macduff,
with Macbeth playing a central part in the play.

9. Conclusions

This paper has described an IRC bot that is able to
connect to a network of IRC servers and infer social
networks from a set of channels. The bot can produce
drawings and animations of these social network
diagrams on demand. A modified version of the bot can
be used to create channel similarity graphs, which can
help users identify previously unvisited channels that
they may find interesting.

An offline version of the bot can be used to analyse

the lines in Shakespeare plays as if they were being
spoken in IRC channels. The resulting animations are
shown to be useful to people that are studying the plays
for the first time.

The accuracy of the social network diagrams is a
subjective matter. Casual testing has shown participants
to be happy with the output, often agreeing with what
they interpret from the diagrams. It was extremely rare
for any user to disagree with any aspect of the diagrams,
so it would seem that the simple inference heuristics we
use are fit for their purpose, however subjective that is.

Some of the diagrams may be easier to understand if
there are fewer edge crossings. As there are no strict
performance requirements in the current system, a simple
and adequate solution would be to use a simulated
annealing approach to avoid local minima and avoid
unnecessary edge crossings. There is evidence to suggest
that minimizing the number of edge crossings is an
important factor in graph comprehension [Pur2001].

There are several ideas for future work, all of which
are certainly feasible. Some of these will act as better
indicators of the accuracy of the system.

Figure 11 A still frame of the evolving social network from the play Macbeth

References

[Kre2002] Valdis Krebs. Introduction to Social Network
Analysis, http://www.orgnet.com/sna.html
(Accessed 14 October 2003).

[Mut2001] Paul Mutton. PircBot Java IRC Bot
Framework, http://www.jibble.org/pircbot.php
(Accessed 14 October 2003).

[Mut2002] Paul Mutton, Peter Rodgers. Spring
Embedder Preprocessing for WWW Visualization.
Sixth International Conference on Information
Visualization (IV02), IEEE, pages 744-749, 2002.

[Mut2003a] Paul Mutton, Jennifer Golbeck.
Visualization of Semantic Metadata and Ontologies.
Seventh International Conference on Information
Visualization (IV03), IEEE, pages 300-305, 2003.

[Mut2003b] Paul Mutton. PieSpy Social Network Bot.
http://www.jibble.org/piespy/ (Accessed 14 October
2003).

[Mut2004] Paul Mutton. Shakespeare Social Networks.
http://www.jibble.org/shakespeare/ (Accessed 29
April 2004).

[Vie1999] Fernanda B. Viegas, Judith S. Donath. Chat
Circles, CHI 1999, pages 9-16, 1999.

[Gel2003] Andreas Gelhausen. Summary of IRC
Networks, http://irc.netsplit.de/networks/ (Accessed
14 October 2003).

[Oik1993] Jarkko Oikarinen. RFC 1459 - Internet Relay
Chat Protocol,
http://www.faqs.org/rfcs/rfc1459.html (Accessed 14
October 2003).

[Wel1997] Barry Wellman. An Electronic Group is
Virtually a Social Network. Culture of the Internet,
pages 179-205, 1997.

[Mun1995] T. Munzer and P. Burchard. Visualizing the
Structure of the World Wide Web in 3D Hyperbolic
Space. VRML 1995, special issue of Computer
Graphics, ACM SIGGRAPH, pages 33-38, 1995.

[Par1998] G. Parker, G. Frank, C. Ware. Visualization of
Large Nested Graphs in 3D: Navigation and
Interaction. Journal of Visual Languages and
Computing, 9(3), pages 299-317, 1998.

[Wil1999] G.J. Wills. NicheWorks – Interactive

Visualization of Very Large Graphs. Journal of
Computational and Graphical Statistics 8, 2, pages
190-212, 1999.

[Ead1984] Peter Eades. A Heuristic for Graph Drawing.
Congressus Numerantium 42, pages 149-160, 1984.

[Fru1991] T.M.J. Fruchterman, E.M. Reingold. Graph
Drawing by Force-Directed Placement. Software –
Practice and Experience Vol. 21(11), pages 1129-
1164, 1991.

[Har2001] D. Harel, Y. Koren. A Fast Multi-scale
Method for Drawing Large Graphs. GD 2000,
LNCS 1984, pages 183-196, 2001.

[Qui2001] Aaron. Quigley, Peter Eades. FADE: Graph
Drawing, Clustering and Visual Abstraction. GD
2000, LNCS 1984, pages 197-210, 2001.

[Tun1998] D. Tunkelang. JIGGLE: Java Interactive
Graph Layout Algorithm. GD 1998, LNCS 1547,
pages 413-422, 1998.

[Wal2001] C. Walshaw. A Multilevel Algorithm for
Force-Directed Graph Drawing. GD 2000, LNCS
1984, pages 171-182, 2001.

[Dum2002] Edd Dumbill. FOAFBot: IRC Community
Support Agent. http://usefulinc.com/foaf/foafbot
(Accessed 14 October 2003).

[Bri2003] The FOAF Project. http://www.foaf-
project.org/ (Accessed 14 October 2003).

[Gol2003] Jennifer Golbeck, Bijan Parsia, James
Hendler. Trust Networks on the Semantic Web.
Proceedings of Cooperative Intelligent Agents,
pages 238-249, 2003.

[Pur2001] H.C. Purchase, L. Colpoys, M. McGill, D.
Carrington, C. Britton. UML class diagram syntax:
an empirical study of comprehension. Proceedings
of the Australian Symposium on Information
Visualization, Australian Computer Society, pages
113-120, 2001.

[Bos1998] Jon Bosak. Shakespeare in XML.
http://www.ibiblio.org/xml/examples/shakespeare/
(Accessed 29 April 2004).

