
From ODP Viewpoint Consistency to Integrated
Formal Methods

Eerke A. Boitena,∗, John Derrickb

aSchool of Computing, University of Kent
Canterbury, Kent, CT2 7NF, UK

bDepartment of Computer Science, University of Sheffield,
Sheffield, S1 4DP, UK

Abstract

Questions asked by research into ODP Viewpoint Consistency led to fundamen-
tal questions in refinement and contributed greatly to insights and interest in
Integrated Formal Methods; research in those areas is still ongoing, while the
answers provided remain largely unincorporated into model driven development.

In this paper we survey some of the work done on consistency checking for
multiple viewpoints, and subsequent work on generalised notions of refinement,
which in turn led to work on integrations of state-based and behavioural formal
methods.

Keywords: ODP viewpoints, consistency, behavioural and state based
specification, refinement

1. Introduction

In 1994 at the Computing Laboratory of the University of Kent at Canter-
bury, a new research team was formed looking at formal methods for distributed
systems, initially consisting of Howard Bowman and John Derrick with the sup-
port of Peter Linington. Distributed systems standards were of particular inter-
est to this group, and thus initial research concentrated on the issues raised by
the emerging ODP model. A central research project of the group was “Cross
Viewpoint Consistency in ODP” (1995-1997) [21], funded by EPSRC with ad-
ditional support from BT Research; Eerke Boiten joined as a research associate
and Maarten Steen as a PhD student. This work continued in EPSRC funded
projects “ODP Viewpoints in a Development Framework” (1998-2001) [54] and
“A Constructive Framework for Partial Specification” (2000-2003) [19].

In this paper, we describe how the issues explored initially in the context
of consistency checking of ODP viewpoint specifications have set off research in

∗Corresponding author
Email addresses: E.A.Boiten@kent.ac.uk (Eerke A. Boiten),

J.Derrick@dcs.shef.ac.uk (John Derrick)

Preprint submitted to Elsevier December 5, 2011

three directions:

• general theories of development and consistency, with implications for
model driven development (Section 2);

• sophisticated notions of refinement, and thus also of abstraction (Section
3);

• integration of state-based and behavioural formalisms (Section 4).

The latter two topics are still subject of active research by the authors. In this
paper we very briefly sketch some of the work in this area, and the subsequent
sections detail in turn some work in each of the three directions mentioned
above.

2. General Theories of Development and Consistency

A framework like the ODP reference model lends itself to the use of formal
description techniques. Indeed, formal description has been extensively em-
ployed in Open Distributed Processing [41, 22, 57, 55, 58, 53]. Within ODP,
formal description was viewed as enabling precise and unambiguous interpreta-
tion of ODP standards, which is after all the familiar motivation for employing
FDTs in standardization activities. However, the spectrum of FDT usage in
ODP is both extensive and diverse, as is the range of available FDTs. For
example, LOTOS [12, 44], Estelle [45] and SDL [18] are targeted at issues of
explicit concurrency and interaction (specifying ordering and synchronisation of
abstract events). In contrast, approaches such as Z [62] and VDM [49] address
specification of software systems in terms of data state change.

Importantly, none of these FDTs fully addressed the needs of all the view-
points appearing in the Open Distributed Processing standard, since the remit
of systems covered by the standard is extremely broad, encompassing, for exam-
ple, both information modelling and description of engineering infrastructures.
Initial explorations of how to best specify the particular viewpoints [39, 16]
suggested that in particular the information viewpoint could be represented in
a data-rich formalism like Z [62]. The computational viewpoint, on the other
hand, fits more naturally with a behavioural formalism – for example LOTOS
[12] which was developed and applied in the context of telecommunications
standardisation.

Thus, in exploring cross viewpoint consistency for ODP, we were faced with
the issue of reconciling multiple specifications, potentially in widely varying for-
mal models, e.g., languages such as Z and LOTOS. Cross viewpoint consistency
needs to be distinguished from “internal” consistency, i.e., whether any require-
ments in a single specification contradict each other – this may occur in some
(e.g., logic based) formalisms, but not in others (e.g., process algebras) – which
is a largely independent issue.

2

2.1. A small example

A simple example illustrates some of the issues, and is taken from [6], where
we specify a communications protocol (an abstraction of the Signalling System
No. 7 protocol described in [42]) from two viewpoints - loosely based on the
computational and engineering viewpoints. The former is specified in LOTOS,
and the latter, because it is heavily state dependent, in Z. We assume readers
are broadly familiar with the notations used.

Computational Viewpoint in LOTOS: The protocol is specified in terms
of two sequences in and out (which represent messages that have arrived in the
protocol (in), and those that have been forwarded (out)). Incoming messages
are added to the left of in, and the messages contained in in but not in out
represent those currently inside the protocol.

The protocol delivers without corrupting or re-ordering, i.e., the out sequence
is a suffix of the in sequence. Messages are of type element, which contains a
distinguished value null.

In the data typing part of the LOTOS specification one needs to specify
an algebraic type seq of sequences, most of which is omitted below. The main
part is the process specification, where two actions model the behaviour of the
protocol, i.e., the transmission and reception of messages. The transmit action
accepts a new message and adds it to the in sequence. The receive action
either delivers the latest value as an output (which is then also added to the
output sequence), or a null value is output, modelling the environment’s “busy
waiting” (in which case out is unaltered). Initially, no messages have been sent.
The specification can be written:

specification
type seq is element, bool, nat with

sorts seq
opns empty seq :→ seq

add : element , seq → seq
6=: seq , seq → bool
first : seq → element
last : seq → element
front : seq → seq
− : seq , seq → seq
cat : seq , seq → seq
: seq → nat

eqns
(* most characterising equations for operations omitted *)
forall x , y : element , q : seq
ofsort element

last(add(x , empty seq)) = x
last(add(x , add(y , q))) = last(add(y , q))

endtype
behaviour

Protocol [transmit , receive](empty seq , empty seq)

3

where
process Protocol [transmit , receive](in, out : seq) : noexit :=
transmit?x : element ; Protocol [transmit , receive](add(x , in), out)
[]
receive!null ; Protocol [transmit , receive](in, out)
[]
[in 6= out]→receive!last(in − out);

Protocol [transmit , receive](in, add(last(in − out), out))
endproc

endspec

Engineering Viewpoint in Z: This viewpoint describes the route the
messages take through the medium in terms of a number of sections represented
by a non-empty sequence of signalling point codes (SPC). Each section may
send and receive messages of type M , and those that have been received but
not yet sent on are said to be in the section. The messages pass through the
sections in order. In the state schema, ins i represents the messages currently
inside section i , rec i the messages that have been received by section i , and
sent i the messages that have been sent onwards from section i . The state and
initialization schemas can be described by

[M ,SPC]

Section
route : iseq SPC
rec, ins, sent : seq(seq M)

route 6= 〈 〉
#route = #rec = #ins = #sent

rec = ins aasent
front sent = tail rec

InitSection
Section ′

∀ i : dom route •
rec i = ins i = sent i = 〈 〉

where aa denotes pairwise concatenation of the two sequences (so for every i

we have rec i = ins i a sent i). The predicate front sent = tail rec ensures that
messages that are sent from one section are those that have been received by the
next. This specification also has operations to transmit and receive messages:

Transmit
∆Section
m? : M

route ′ = route

head rec′ = 〈m?〉a (head rec)
tail rec′ = tail rec
sent ′ = sent

Receive
∆Section
m! : M

route ′ = route ∧ rec′ = rec
front ins ′ = front ins
last ins ′ = front(last ins)
front sent ′ = front sent
m! = last(last ins)

last sent ′ = 〈m!〉a (last sent)

4

In this viewpoint, the new message received is added to the first section in
the route in Transmit , and Receive will deliver from the last section in the route.
In the computational viewpoint, messages arrive non-deterministically, but in
this viewpoint the progress of the messages through the sections is modelled
explicitly. To do this we use an internal action Daemon which chooses which
section will make progress in terms of message transmission. The oldest mes-
sage is then transfered to the following section, and nothing else changes. The
important part of this operation is:

Daemon
∆Section

∃ i : 1..#route − 1 | ins i 6= 〈 〉 •
ins ′i = front(ins i)

ins ′(i + 1) = 〈last(ins i)〉a ins(i + 1)

∀ j : dom route | j 6= i ∧ j 6= i + 1 • ins ′j = ins j

Even with a small example one can see that viewpoints might be written
in very different languages, they might describe data types (and even types) in
different ways, they might have operations and/or events in one viewpoint that
are not in the other, etc The central question our work addressed was thus:
how to reconcile two viewpoints written, as in the above example, in possibly
different languages, with these types of differing attributes? The reconciliation
will depend on whether the viewpoints are consistent.

2.2. Viewpoint consistency

Viewpoint methods were already common in requirements engineering [36,
35] but the problem of checking consistency between viewpoint specifications
given in formal notations [3] did not have any ready made solutions beyond
translating all viewpoints into a low level common language like predicate logic
[68]. Inspired by Leduc’s work on development relations for LOTOS [51] we
developed a general theory of development relations [17, 9] encompassing:

• refinement relations within a formal notation;

• conformance and implementation relations, between formal notations and
implementation notations;

• translations between different formal notations.

There were two crucial realisations in working this out in detail. The first was
that a viewpoint specification – particularly in a language with multiple devel-
opment relations – does not necessarily speak for itself: we also need to know
how it is expected to relate to any final implementation, i.e., a viewpoint spec-
ification consists of a specification and a development relation. For example, in
the above scenario one would need to know which LOTOS conformance rela-
tion was to be used as the implementation check before one could meaningfully

5

perform a consistency check between the two viewpoints. The second is that in
order to combine, compare, and generally relate two viewpoint specifications, we
need to know how their components and named elements relate to each other.
For example, how do the components in the LOTOS data type and process
specification relate to the state and operations given in the second Z viewpoint
specification - that is, how do the types, operations and other aspects (compare
in, out with rec and sent) relate? This is, of course, the reflection of the ODP
concept of a correspondence. Taking these into account,

• we would consider collections of pairs (spec, dev) where spec is a specifica-
tion, and dev is an associated development relations, with correspondence
relations between the different specifications in the collection;

• consistency of such a collection is then defined as the existence of a com-
mon image under the respective development relations, respecting and
taking into account the various correspondences.

For ODP, such collections could directly correspond to the predefined view-
points, or they could be of even smaller granularity. Constructive consistency
checking does not actually require the construction of such a shared image (im-
plementation?) – it may be possible to construct instead a higher level spec-
ification which correctly reflects the requirements of all viewpoints, called a
unification. In the context of the example above this may well be a single speci-
fication written in either LOTOS or Z which encapsulates all of the requirements
given by the two viewpoints in a single description.

This is what is refered to in the many category theory based methods for
partial specification as a “push-out”; however, those methods tend to stop at
proving their existence, whereas in practice they need to be constructed syntac-
tically. For a language like LOTOS this may be hard [17], but for the special
case where all viewpoints are written in Z we have shown how this can be done
[5]. An overview, with detailed case study, of our general methods applied to
ODP viewpoint consistency is given in [6]. In the next subsection we briefly
explain how some of these ideas apply to the example introduced above.

2.3. Interlude - example revisited

The correspondences in the above example are fairly straightforward - the
protocol transmits one type of message, so M and element should be identified.
Moreover, the operations and actions described in the two viewpoints are differ-
ent perspectives of the same function, so we should link Transmit to transmit
and Receive to receive (and implicitly the inputs and outputs of the operations
are identified). Finally, it is clear that in and out in the LOTOS viewpoint in
some way represent information that is also represented by rec, ins and sent
in the Z viewpoint. However, this is not a matter of simply identifying these
components, rather we note that they are related via the following predicate:
head rec = in ∧ last sent = out . So these correspondences can then be docu-

6

mented as a relation

{(M , element), (Transmit , transmit), (Receive, receive), (head rec, in),
(last sent , out)}

With these correspondences in place, one can now check for consistency. Here
the viewpoints are written in Z and LOTOS, and we return to the problem in
Section 4 when we discuss integrating state-based and behavioural specification
languages.

2.4. Viewpoints in UML and MDD

The most popular incarnation of multiple-paradigm, multiple-viewpoint spec-
ification has of course been for many years UML and Model Driven Develop-
ment. Curiously, this community is interested in correct implementation (auto-
mated, through transformations, where possible), to some extent in refinement,
and in consistency between different models and model types, but not in un-
derpinning this with a fixed semantics for the notations. We have shown at
various UML workshops on consistency how our ODP inspired techniques also
apply in the UML context [23, 7] – however, these papers also point out the
fundamental issue, evident from our general theory if not already self-evident,
that there is virtually an equivalence between a specification language having
a semantics, having a notion of consistency, and having a notion of refinement.
Thus, for as long as the MDD community agrees to disagree on a common se-
mantics for their notations, their notions of consistency and refinement (and
correct implementation) must necessarily be poor approximations.

3. Liberalised Refinement

Our general theory of consistency checking as described above concentrates
on finding common refinements of different viewpoint specifications. However,
looking at concrete examples, it became clear that the standard refinement
relations for most specification languages are too restrictive for this usage. In
particular, looking at the different ODP viewpoints and their correspondences,
we noticed that

• viewpoints may omit any mention of operations and data which are irrel-
evant to their particular concerns;

• viewpoints may abstract from detailed control mechanisms, inputs, and
outputs, that will appear for the same operation in a different viewpoint;

• viewpoints may view at different levels of granularity: what appears as a
simple action in one, may be a sequence of actions in another one; some
of these actions may be “internal”, outside the environment’s control.

7

Even with a very simple example like the one above some of these issues are al-
ready present, and none of these issues is accounted for in standard Z refinement,
and not all of them are addressed for process algebras like LOTOS.

Thus, initially driven by the desire to allow a wider variety of abstraction in
viewpoint specifications written in Z, we explored more general notions of re-
finement for Z, including weak refinement (introducing internal actions), action
refinement, and I/O refinement. An overview of these is given in [8], and full
details of all of them are in a research monograph [27]. Here we briefly recount
the main details.

The standard method of verifying refinements in Z (and other state-based
languages such as B, event-B etc) is to use simulations, of which there are two
varieties - downward and upward (confusingly also sometimes called forward and
backward resp.). Each of these is sound (i.e, the use of a downward simulation
is a valid refinement etc), and together they are jointly complete.

The theory of data refinement this is based on is that described by He Jifeng,
Hoare and Sanders [43] which provides a useful model of program development
in terms of abstract data types for which the set of operations is known already.
However, there were restrictions, e.g., the abstract data types (ADTs) were as-
sumed to have identical sets of operations, i.e., they were conformal. Moreover,
the application of this theory in languages like Z [62] further restricted this
context. There the emphasis in the early work on refinement in Z was on the in-
complete forward simulation rule, forbidding postponement of non-determinism;
and it was implied that input and output were immutable (i.e., in a refinement
step, inputs and outputs could not change). Later work [66, 63, 4] has relaxed
these unnecessary restrictions by more fully exploiting the theory of [43] as well
as generalising it at key points.

This was necessary in the context of viewpoints because such partial specifi-
cations may mention only aspects of the system of relevance to their particular
viewpoint. For example, only part of the external interface for an operation
may appear in a given viewpoint, and we require that the common refinement
(constructed in a consistency check) can add to, or alter, this interface (i.e., the
IO of an operation). This required a more liberal notion of refinement. Consider
the following small example, taken from [8]:

A two-dimensional world, in which an object moves about and its movement
and position can be observed, is represented with state space 2D , initialisation
Init and two operations Move and Where:

2D
x , y : Z

Init
2D

x = y = 0

Move
∆2D

Where
Ξ2D
x !, y ! : Z

x ! = x ′ ∧ y ! = y ′

8

As Where is total and deterministic, it cannot be refined any further (without
change of state space). Possible operation refinements for Move in the standard
theory include the following:

DontMove
Ξ2D

Swap
∆2D

x ′ = y ∧ y ′ = x

StepLeft
∆2D

x ′ = x − 1 ∧ y ′ = y

StepRight
∆2D

x ′ = x + 1 ∧ y ′ = y

However, the following, seemingly valid developments are not valid refine-
ments:

Adding inputs and outputs a system where Move does not simply have a
non-deterministic result, but there is external control that we were previ-
ously unaware of, i.e. Move is replaced by

Translate
∆2D
x?, y? : Z

x ′ = x + x? ∧ y ′ = y + y?

This is not a valid refinement, because Translate has inputs that Move
did not have.

Changing the type of inputs and outputs a system where the output of
Where is in polar coordinates – also not allowed because conformity en-
forces identical output types.

Replicating operations a system where various kinds of Move are possible
that we did not distinguish above, e.g. Move is replaced by both StepLeft
and StepRight .

Adding internal operations a system which introduces an internal clock,
which is left unchanged by Move and Where but incremented by an in-

9

ternal operation Tick , e.g.

Timed2D
x , y , clock : Z

TInit
Timed2D

x = y = clock = 0

TMove
∆Timed2D

clock ′ = clock

TWhere
ΞTimed2D
x !, y ! : Z

x ! = x ′ ∧ y ! = y ′

Tick
∆Timed2D

clock ′ = clock + 1
x ′ = x ∧ y ′ = y

See also the example above, where the internal operation Daemon was
introduced in the second viewpoint.

Adding an external operation a system where an additional (external) op-
eration is available, e.g.

Reset
∆2D

x ′ = y ′ = 0

which is not viewed as a concrete occurrence of Move (although as it
happens, Reset does refine Move).

To deal with such developments one can generalise the standard definition
of refinement in a number of ways:

IO refinement. In the standard model operations and their more concrete
versions are required to have identical inputs and outputs. This requirement
can be traced back to the conformity condition on the ADTs when interpreting
the original theory in Z. In fact this condition can be relaxed to produce IO
refinement rules (i.e., simulation rules) that are (still) a consequence of the data
refinement theorems of Jifeng He, Hoare and Sanders.

These simulation rules use input and output transformers to change the
representation of the inputs and outputs in a manner similar to the change of
state space in a data refinement as achieved by the retrieve relation. There are
some simple conditions on these transformers: input transformers must be total
on the abstract input: every abstract input must still be allowable. Similarly,
output transformers should be injective from abstract output to concrete out-
put: different abstract outputs should be distinguishable by leading to different
concrete outputs.

The most obvious instances of simple input refinement are:

• addition of an input whose value is not used in the new operation;

10

• replacement of an input by an isomorphic one (total bijective input trans-
former)

The replacement of Move by Translate can now be justified in two steps: the
first is a simple input refinement step introducing inputs x? and y? which are
not used. The corresponding input transformer takes the input of Move – there
was none, so it is the empty tuple – and relates it to any pair x?, y? : Z. The
second step is then an operation refinement, reducing the non-determinism by
using x? and y?.

Similarly one can define simple output refinements, the most obvious in-
stances include:

• addition of an output whose value does not depend on the state;

• replacement of an output by an isomorphic one (total bijective output
transformer)

The version of Where which returns polar coordinates as its output is of course
an instance of a total bijective output transformer.

Adding internal operations. To deal with the addition of internal or unob-
servable operations in a state-based context of refinement one can either view
them as stuttering steps or generalise the existing standard theory further. The
full generality is given by the latter course of action, and that draws inspiration
from the use of internal events in a process algebra. This results in a set of weak
refinement rules [26] that ensure the observable behaviour of the refined ADT
is a valid refinement of the observable behaviour of the original ADT.

To do so we still assume the sets of observable operations in a refinement
are conformal (i.e, the same in each), but we extend the notion of a data type
to additionally include a set of internal operations, and the rules allow the
introduction or removal of internal operations during a refinement. We then
move from the application of a single observable operation Op to a situation
where a finite number of internal operations are allowed before and after the
occurrence of that operation, as is typical in a process algebraic definition.
Specifically, this corresponds to the change from P

a−→ Q to P
a

=⇒ Q in a
process algebra when internal (i.e. unobservable) actions are taken into account.
Using this definition of refinement, one can derive simulation rules for verifying
particular examples such as the one above (e.g., the refinement into Timed2D).

Adding visible operations. To cope with the example above, where we
wished to replicate an existing visible operation, one needs a further general-
isation where we would give an explicit mapping from the abstract index set
to the concrete index set. This mapping needs to be total (every abstract
operation has at least one concrete counterpart) and injective (every concrete
operation reflects at most one abstract operation). This generalisation is com-
patible with others defined above, and allows the addition of visible operations
without adding ones that fundamentally alter the behaviour in a specification.

Action, or non-atomic, refinement. A key aspect of viewpoints in general
is that they are not necessarily at the same level of abstraction. In terms of

11

behavioural specifications this means that an event or operation in one viewpoint
might well be implemented by not one, but a sequence of concrete operations in
the eventual system. Such action, or non-atomic, refinements arise in a number
of settings quite naturally in addition to viewpoints or partial specification (see
[1]) and they allow initial specifications to be described independently of the
structure of the eventual implementation. The desired final structure can then
be introduced by non-atomic refinements which support a change of operation
granularity absent if we require conformity.

[24] discusses how action refinement can be supported in Z. In essence one
allows the implementing sequence to appear in the simulation rules, so that they
can be used to make step-by-step comparisons as before. We omit the details
here, see [27] for the technicalities, sufficient to note that they allow verification
of the examples above, and also naturally use the ideas of IO transformations
in order to come up with quite general transformations between abstract and
concrete.

The above is but a brief overview of some work on generalising refinement
that came out of the requirements of ODP. As can be seen, the main outcome
of this work is that the abstraction methods listed above can all be incorpo-
rated in generalisations of refinement, and that most of these generalisations
are orthogonal.

4. Integration of State-Based and Behavioural Specification

The ODP consistency checking problem (for example, between the view-
points in the example above) brings with it the issue of reconciling state-based
specifications (such as Z, OCL, or state charts) with behaviourally based ones
(such as LOTOS and other process algebras, or sequence diagrams). In our
work on ODP we considered initially two approaches to this: the separated
use of each formalism in carefully constructed layers and templates [28], and a
translation approach, typically from behavioural to state-based formalisms [31].

4.1. Relating LOTOS and Z - and subsequent consistency checking

Comparing viewpoints written in LOTOS and Z requires that we bridge a
gap between completely different specification paradigms. Although both lan-
guages can be viewed as dealing with states and behaviour, the emphasis differs
between them. One solution is to adopt a more behavioural interpretation of
Z, and in [31] a translation between LOTOS and Z is described by defining a
common semantics for LOTOS and a subset of Z in an extended transition sys-
tem, which is used to validate the translation from full LOTOS into Z [25]. The
essential idea behind the translation is to turn LOTOS processes into objects
in an OO version of Z, and hence if necessary into Z. We illustrate with a few
parts of the above example. The translation turns the data type definitions in
LOTOS into equivalent axiomatic definitions in Z. E.g., the definition of element
would be translated to a definition of element in Z:

[element]

12

null : element

And the remaining part can be translated directly to an axiomatic declaration
in Z, viz:

[seq]

empty seq : seq
add : element × seq → seq
last : seq → element

∀ x , y : element , q : seq• last(add(x , empty seq)) = x
∧ last(add(x , add(y , q))) = last(add(y , q))

For the LOTOS behaviour expression each transition (which represents a
LOTOS action) becomes a Z operation schema with explicit pre- and post-
conditions to preserve the temporal ordering. The pre- and post-conditions are
derived from the start and end state of each transition together with the guard
of the transition. The data-typing content of a transition is incorporated into
the operation schema’s declaration.

For example, the above LOTOS viewpoint will be translated into a Z specifi-
cation which contains operation schemas with names transmit and receive. The
operation schemas have appropriate inputs and outputs (controlled by chan-
nels ch? and ch!) to perform the value passing defined in the LOTOS process.
Each operation schema includes a predicate (defined over the state variable s)
to ensure that it is applicable in accordance with the temporal behaviour of the
LOTOS specification. Thus the behaviour expression in the above viewpoint is
translated to the following Z schemas.

State
s : {s0, s1, s2, s3}
in, out : seq
x : element

Init State
∆State

s ′ = s0
in ′ = empty seq
out ′ = empty seq

transmit
∆State
ch? : element

s = s0 ∧ s ′ = s1 ∧ x ′ = ch?

receive
∆State
ch! : element

(s = s0 ∧ s ′ = s2 ∧ ch! = null)∨
(in 6= out ∧ s = s0 ∧ s ′ = s3
∧ch! = last(in − out))

13

i
∆State

(s = s1 ∧ s ′ = s0 ∧ in ′ = add(x , in) ∧ out ′ = out)∨
(s = s2 ∧ s ′ = s0 ∧ in ′ = in ∧ out ′ = out)∨
(s = s3 ∧ s ′ = s0 ∧ in ′ = in ∧ out ′ = add(last(in − out), out))

Because the translation is actually defined indirectly via a common semantic
model, recursion is dealt with by using an internal action, which is translated as
an internal Z operation with special name i . However, we can re-write it without
the internal action by replacing the three operation schemas by the following
two and then removing the state component s which has become redundant. In
order to reason about Z specifications which contain internal actions we need
to use weak Z-refinement discussed above (see also [26]), and the specification
without the above internal operation is weak Z-refinement equivalent to the
original.

transmit
∆State
ch? : element

in ′ = add(ch?, in) ∧ out ′ = out

receive
∆State
ch! : element

in ′ = in
(out ′ = out ∧ ch! = null)∨
(in 6= out ∧ ch! = last(in − out)∧
out ′ = add(ch!, out))

The two viewpoints are now both expressed in Z, and techniques for consis-
tency checking can be applied, e.g., see those described in [5]. Normally this
involves constructing a least refined unification of the two viewpoints, in two
phases. In the first phase (“state unification”), a unified state space (i.e., a
state schema) for the two viewpoints has to be constructed. The essential com-
ponents of this unified state space are the correspondences between the types
in the viewpoint state spaces. The viewpoint operations are then adapted to
operate on this unified state. At this stage we have to check that a condition
called state consistency is satisfied. In the second phase, called operation uni-
fication, pairs of adapted operations from the viewpoints which are linked by
a correspondence (e.g. Transmit and transmit) have to be combined into single
operations on the unified state. This also involves a consistency condition (op-
eration consistency) which ensures that the unified operation is a refinement of
the viewpoint operations.

In the above example, the viewpoints turn out to be consistent. However,
with two minor but reasonable modifications they are not. Consider an alter-
native computational viewpoint with the following type of impatient receive
operation (here just given directly in Z):

14

impreceive
∆State
m! : element

in ′ = in
(in = out ∧ out ′ = out ∧m! = null)∨
(in 6= out ∧m! = last(in − out) ∧ out ′ = 〈m!〉a out)

If we also modify the engineering viewpoint’s receive operation to be total, by
making it have no effect outside its precondition except for returning a null , i.e.

TotReceive=̂Receive ∨ (¬ preReceive ∧ ΞSection ∧m! = null)

the resulting specifications become inconsistent . When the last section is empty,
but there is a message in some other section, TotReceive will insist that the
state remain unchanged. However, in that situation impreceive states that this
message should be added to out. Unsurprisingly, the only way to prevent this
situation and make these operations consistent is to ensure there is no more
than one section. . . clearly not what was intended by the viewpoint specifiers.

The translation approach induces a question for subsequent development
of the viewpoint specifications, namely the following. If specifications in dif-
ferent formalisms are initially consistent with each other, they can clearly be
developed “in opposite directions” to then become inconsistent; however, if the
development relations used are incompatible in nature such an effect is almost
unavoidable. Thus we also studied compatibility of refinement relations in var-
ious formalisms [32].

4.2. Integrating formal methods

Work in this area on ODP, on the emerging UML, and the general realisation
that different styles of specification work best for different aspects, led to an in-
creased interest in“integrating formal methods”, with the conference series that
started in 1999 still ongoing, e.g. [2, 11]. There are two strands to this work, one
on integrating their semantics, and in particular understanding the relationship
between the differing notions of refinement, and another on integration of two,
or more, languages to derive a combined specification notation.

For example, work on the former includes that due to Josephs [50], He [47],
Woodcock and Morgan [67], Bolton and Davies [13, 14], Derrick and Boiten [29]
and Reeves and Streader [56]. That due to Josephs [50], He [47], Woodcock
and Morgan [67] defines a basic correspondence between refinement rules in Z
and the CSP failures-divergences refinement relation. Later work by Bolton and
Davies [13, 14], Derrick and Boiten [29] and Reeves and Streader [56] investigates
a direct correspondence between the relational semantic model that underpins
a state-based notation such as Z and process semantics, and includes specific
consideration of input and output which introduces some subtleties.

Work on integrating the notations, as opposed to the semantics, includes that
which combines Z and Object-Z [61] with process algebras such as CSP and CCS.

15

For example, combinations of Object-Z and CSP have been investigated by a
number of researchers including Smith [60], Fischer [37] and Mahony and Dong
[52]. Other combinations of languages include those investigated by Galloway
[40], Treharne [65] and Sühl [64]. A survey of some of these approaches is given
in [38]. In this context, refinement relations that are compatible between state-
based languages and process algebras are desired so that a uniform method of
refinement can be presented for integrated specifications.

Our more recent work in this area follows the ethos of the first strand,
and is based on a more fundamental integration of behavioural and state-based
specification, which we call “relational concurrent refinement” [29, 10, 30]. Be-
havioural formalisms have semantics that are typically given as sets of possible
observations. We encode these observations explicitly in a state-based (rela-
tional) formalism, in a way which ensures that relational refinement represents
the desired concurrency refinement relation. This has three very useful conse-
quences:

• behavioural development relations can be verified in a stepwise manner
using the relational method of simulations (rather than through inclusion
of observation sets for entire processes);

• state-based formalisms like Z can be given non-standard semantics for
concurrency based interpretations;

• the various refinement relations in the relational and behavioural world
can be compared and contrasted within a single framework.

So far, relational concurrent refinement has been used to analyse many pro-
cess algebra refinement relations, including internal actions and divergence, and
various refinement notions for state based systems and automata.

5. Conclusions

This has been a brief survey of the work on viewpoint consistency in ODP
which then influenced work on refinement and development relations, which in
turn led to increased work on integrated specification formalisms. Some of these
ideas have had further influence on aspects of informal software engineering such
as UML and MDD.

There has been another strand to work on formal methods and ODP which
we have not touched on in the above, namely the strand of work concerned with
formalising the ODP standard itself. The RM-ODP defines abstract languages
for the five viewpoints. Several research groups have worked on populating this
abstract framework with specific formal specification notations (e.g. [53, 20, 34]).
Other examples include [48], which describes an approach of using Z to represent
the formal semantics of some fundamental concepts of RM-ODP (Part 2) rather
than just of viewpoint-specific concepts. This is relevant because the viewpoint-
specific concepts are based on and substantially use the fundamental ones. See

16

also [33], which uses category theory as a mathematical framework for formal
foundations of RM-ODP.

In addition, work on the ODP architectural semantics aims to provide in-
terpretations of the abstract modelling and specification concepts in a number
of standardised formal description techniques [46, 59, 39]. The architectural
semantics aimed to provide the basis for uniform and consistent comparison
between formal descriptions of the same system or standard in different FDTs.
This again strengthens our motivation for developing realistic consistency check-
ing techniques as described above.

Acknowledgements

We would like to thank our colleagues in the research projects on ODP
Viewpoints: Peter Linington, Howard Bowman and Maarten Steen – the five of
us were equal contributors to the ideas described in Section 2, and the success
of these projects was significantly due to the excellent collaboration within the
group.

References

[1] L. Aceto. Action Refinement in Process Algebras. CUP, London, 1992.

[2] K. Araki, A. Galloway, and K. Taguchi, editors. International Conference
on Integrated Formal Methods 1999 (IFM’99). Springer, York, July 1999.

[3] E. A. Boiten, H. Bowman, J. Derrick, and M. W. A. Steen. Issues in
multiparadigm viewpoint specification. In Finkelstein and Spanoudakis
[35], pages 162–166.

[4] E. A. Boiten and J. Derrick. IO-refinement in Z. In A. Evans, D. J. Duke,
and T. Clark, editors, 3rd BCS-FACS Northern Formal Methods Workshop.
Springer-Verlag, September 1998. http://www.ewic.org.uk/.

[5] E. A. Boiten, J. Derrick, H. Bowman, and M. W. A. Steen. Constructive
consistency checking for partial specification in Z. Science of Computer
Programming, 35(1):29–75, September 1999.

[6] E.A. Boiten, H. Bowman, J. Derrick, P.F. Linington, and M.W.A. Steen.
Viewpoint consistency in ODP. Computer Networks, 34(3):503–537, Au-
gust 2000.

[7] E.A. Boiten and M.C. Bujorianu. Exploring UML refinement through uni-
fication. In J. Jürjens, B. Rumpe, R. France, and E.B. Fernandez, editors,
Critical Systems Development with UML - Proceedings of the UML’03 work-
shop, volume TUM-I0323, pages 47–62. Technische Universität München,
September 2003.

17

[8] E.A. Boiten and J. Derrick. Liberating data refinement. In R.C. Backhouse
and J.N. Oliveira, editors, Mathematics of Program Construction, 5th In-
ternational Conference, Ponte de Lima, volume 1837 of Lecture Notes in
Computer Science, pages 144–166. Springer, July 2000.

[9] E.A. Boiten and J. Derrick. A relational framework for the integration of
specifications. Journal of Integrated Design and Process Science, 7(3):39–
48, September 2003.

[10] E.A. Boiten, J. Derrick, and G. Schellhorn. Relational concurrent refine-
ment II: Internal operations and outputs. Formal Aspects of Computing,
21(1-2):65–102, 2009.

[11] E.A. Boiten, J. Derrick, and G. Smith, editors. Integrated Formal Methods,
4th International Conference, volume 2999 of Lecture Notes in Computer
Science. Springer-Verlag, April 2004.

[12] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, 1988.

[13] C. Bolton and J. Davies. Refinement in Object-Z and CSP. In M. Butler,
L. Petre, and K. Sere, editors, Integrated Formal Methods (IFM 2002), vol-
ume 2335 of Lecture Notes in Computer Science, pages 225–244. Springer-
Verlag, 2002.

[14] C. Bolton and J. Davies. A singleton failures semantics for Communicating
Sequential Processes. Formal Aspects of Computing, 18:181–210, 2006.

[15] J. P. Bowen, A. Fett, and M. G. Hinchey, editors. ZUM’98: The Z Formal
Specification Notation, volume 1493 of Lecture Notes in Computer Science.
Springer-Verlag, September 1998.

[16] H. Bowman, J. Derrick, P. Linington, and M. Steen. FDTs for ODP.
Computer Standards and Interfaces, 17:457–479, September 1995.

[17] H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal frame-
work for viewpoint consistency. Formal Methods in Systems Design, 21:111–
166, 2002.

[18] CCITT Z.100. Specification and Description Language SDL, 1988.

[19] A Constructive Framework for Partial Specification, 2000-2003.
http://www.cs.kent.ac.uk/archive/research/groups/tcs/framework/,
last accessed 8-9-2011.

[20] AFNOR cont. A direct computational language semantics for Part 4 of the
RM-ODP. ISO/IEC JTC1/SC21/WG7 approved AFNOR contribution,
July 1994.

18

[21] Cross Viewpoint Consistency in ODP, 1995–1997.
http://www.cs.kent.ac.uk/archive/research/groups/tcs/consistency/,
last accessed 8-9-2011.

[22] E. Cusack. Object oriented modelling in Z for Open Distributed Systems.
In J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 International
Workshop on Open Distributed Processing, pages 167–178, Berlin, Ger-
many, September 1991. North-Holland.

[23] J. Derrick, D.H. Akehurst, and E.A. Boiten. A framework for UML consis-
tency. In L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors,
UML 2002 Workshop on Consistency Problems in UML-based Software De-
velopment, pages 30–45, October 2002.

[24] J. Derrick and E. A. Boiten. Non-atomic refinement in Z. In J. M.
Wing, J. C. P. Woodcock, and J. Davies, editors, FM’99 World Congress
on Formal Methods in the Development of Computing Systems, volume
1708 of Lecture Notes in Computer Science, pages 1477–1496, Berlin, 1999.
Springer-Verlag.

[25] J. Derrick, E. A. Boiten, H. Bowman, and M. W. A. Steen. Supporting
ODP - translating LOTOS to Z. In E. Najm and J.-B. Stefani, editors,
First IFIP International Workshop on Formal Methods for Open Object-
based Distributed Systems, pages 399–406, Paris, March 1996. Chapman &
Hall.

[26] J. Derrick, E. A. Boiten, H. Bowman, and M. W. A. Steen. Specifying and
refining internal operations in Z. Formal Aspects of Computing, 10:125–159,
December 1998.

[27] J. Derrick and E.A. Boiten. Refinement in Z and Object-Z: Foundations
and Advanced Applications. FACIT. Springer Verlag, May 2001.

[28] J. Derrick and E.A. Boiten. Combining component specifications in Object-
Z and CSP. Formal Aspects of Computing, 13:111–127, May 2002. Special
issue based on extended papers from [2].

[29] J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal
Aspects of Computing, 15(1):182–214, November 2003.

[30] J. Derrick and E.A. Boiten. Relational concurrent refinement part III:
Traces, partial relations and automata. Formal Aspects of Computing,
2011. Submitted for publication.

[31] J. Derrick, E.A. Boiten, H. Bowman, and M. Steen. Viewpoints and con-
sistency: translating LOTOS to Object-Z. Computer Standards and Inter-
faces, 21:251–272, 1999.

19

[32] J. Derrick, H. Bowman, E.A. Boiten, and M. Steen. Comparing LOTOS
and Z refinement relations. In FORTE/PSTV’96, pages 501–516, Kaiser-
slautern, Germany, October 1996. Chapman & Hall.

[33] Z. Diskin. On modeling, mathematics, category theory and RM-ODP.
In José A. Moinhos Cordeiro and Haim Kilov, editors, WOODPECKER,
pages 38–54. ICEIS Press, 2001.

[34] J. Dustzadeh and E. Najm. Consistent semantics for odp information
and computational models. In A. Togashi, T. Mizuno, N. Shiratori, and
T. Higashino, editors, FORTE, volume 107 of IFIP Conference Proceedings,
pages 107–126. Chapman & Hall, 1997.

[35] A. Finkelstein and G. Spanoudakis, editors. SIGSOFT ’96 International
Workshop on Multiple Perspectives in Software Development (Viewpoints
’96). ACM, 1996.

[36] A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency handling in multiperspective specifications. IEEE Transac-
tions on Software Engineering, 20(8):569–578, August 1994.

[37] C. Fischer. CSP-OZ - A combination of CSP and Object-Z. In H. Bowman
and J. Derrick, editors, Second IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems, pages 423–438. Chap-
man & Hall, July 1997.

[38] C. Fischer. How to combine Z with a process algebra. In Bowen et al. [15],
pages 5–23.

[39] J. Fischer, A. Prinz, and A. Vogel. Different FDT’s confronted with differ-
ent ODP-viewpoints of the trader. In J.C.P. Woodcock and P. G. Larsen,
editors, FME’93: Industrial Strength Formal Methods, LNCS 670, pages
332–350. Springer-Verlag, 1993.

[40] A. Galloway and W. Stoddart. An operational semantics for ZCCS. In
M. G. Hinchey and Shaoying Liu, editors, First International Conference
on Formal Engineering Methods (ICFEM’97), pages 272–282, Hiroshima,
Japan, November 1997. IEEE Computer Society Press.

[41] R. Gotzhein and F. H. Vogt. The design of a temporal logic for Open
Distributed Systems. In J. de Meer, V. Heymer, and R. Roth, editors,
IFIP TC6 International Workshop on Open Distributed Processing, pages
229–240, Berlin, Germany, September 1991. North-Holland.

[42] I. Hayes, M. Mowbray, and G.A. Rose. Signalling system no. 7 – the network
layer. In PSTV IX, pages 3–14, 1990.

[43] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In
B. Robinet and R. Wilhelm, editors, Proc. ESOP’86, volume 213 of Lecture
Notes in Computer Science, pages 187–196. Springer-Verlag, 1986.

20

[44] ISO 8807. LOTOS: A Formal Description Technique based on the Temporal
Ordering of Observational Behaviour, July 1987.

[45] ISO 9074. Estelle, a Formal Description Technique based on an extended
state transition model, June 1987.

[46] ISO/IEC JTC1/SC21/WG7. Basic Reference Model of Open Distributed
Processing. ISO 10746, 1993. Part 1 to 4.

[47] He Jifeng. Process refinement. In J. McDermid, editor, The Theory and
Practice of Refinement. Butterworths, 1989.

[48] D.R. Johnson and H. Kilov. An approach to a Z toolkit for the Reference
Model of Open Distributed Processing. Computer Standards and Interfaces,
21(5):393–402, 1999.

[49] C. B. Jones. Systematic Software Development using VDM. Prentice Hall,
1989.

[50] M. B. Josephs. A state-based approach to communicating processes. Dis-
tributed Computing, 3:9–18, 1988.

[51] G. Leduc. A framework based on implementation relations for implement-
ing LOTOS specifications. Computer Networks and ISDN Systems, 25:23–
41, 1992.

[52] B. P. Mahony and J. S. Dong. Blending Object-Z and timed CSP: An
introduction to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors,
20th International Conference on Software Engineering (ICSE’98). IEEE
Press, 1998.

[53] E. Najm and J.-B. Stefani. A formal semantics for the odp computational
model. Computer Networks and ISDN Systems, 27(8):1305–1329, 1995.

[54] OpenViews: ODP Viewpoints in a Development Framework, 1998–
2001. http://www.cs.kent.ac.uk/archive/research/groups/tcs/openviews/,
last accessed 8-9-2011.

[55] P. F. Pinto and P. F. Linington. A language for the specification of in-
teractive and distributed multimedia applications. In B. Mahr, J. de
Meer, and O. Spaniol, editors, IFIP International Conference on Open
Distributed Processing, pages 217–234, Berlin, Germany, September 1993.
North-Holland.

[56] S. Reeves and D. Streader. Data refinement and singleton failures refine-
ment are not equivalent. Formal Aspects of Computing, 20(3):295–301,
2008.

21

[57] M. Van Sinderen and J. Schot. An engineering approach to ODP system
design. In J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 Inter-
national Workshop on Open Distributed Processing, pages 301–312, Berlin,
Germany, September 1991. North-Holland.

[58] R. Sinnott. An Initial Architectural Semantics in Z of the Information
Viewpoint Language of Part 3 of the ODP-RM. ISO/IEC SC21/WG7
N915, July 1994. BSI Input document to the ODP Plenary meeting in
Southampton.

[59] R.O. Sinnott and K.J. Turner. Applying formal methods to standard devel-
opment: The Open Distributed Processing experience. Computer Standard
and Interfaces, 17:615–630, 1995.

[60] G. Smith. A semantic integration of Object-Z and CSP for the specification
of concurrent systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
FME’97: Industrial Application and Strengthened Foundations of Formal
Methods, volume 1313 of Lecture Notes in Computer Science, pages 62–81.
Springer-Verlag, September 1997.

[61] G. Smith. The Object-Z Specification Language. Kluwer Academic Pub-
lishers, 2000.

[62] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 2nd
edition, 1992.

[63] S. Stepney, D. Cooper, and J. C. P. Woodcock. More powerful data refine-
ment in Z. In Bowen et al. [15], pages 284–307.

[64] C. Sühl. RT-Z: An Integration of Z and timed CSP. In Araki et al. [2],
pages 29–48.

[65] H. Treharne and S. Schneider. Using a process algebra to control B opera-
tions. In Araki et al. [2], pages 437–456.

[66] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement, and
Proof. Prentice Hall, 1996.

[67] J. C. P. Woodcock and C. C. Morgan. Refinement of state-based concur-
rent systems. In D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors,
VDM’90: VDM and Z!- Formal Methods in Software Development, volume
428 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[68] P. Zave and M. Jackson. Conjunction as composition. ACM Transactions
on Software Engineering and Methodology, 2(4):379–411, October 1993.

22

