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Abstract

Density estimation of terrestrial mammals has become increasingly important in eco-
logy, and robust analytical tools are required to provide results that will guide wildlife
management. This thesis concerns modelling encounters between unmarked animals
and camera traps for density estimation. We explore Rowcliffe et al. (2008) Random
Encounter Model (REM) developed for estimating density of species that cannot be
identified to the individual level from camera trap data. We demonstrate how REM
can be used within a maximum likelihood framework to estimate density of unmarked
animals, motivated by the analysis of a data set from Whipsnade Wild Animal Park
(WWAP), Bedfordshire, south England. The remainder of the thesis focuses on devel-
oping and evaluating extended Random Encounter Models, which describe the data in
an integrated population modelling framework. We present a variety of approaches for
modelling population abundance in an integrated Random Encounter Model (iIREM),
where complicating features are the variation in the encounters and animal species. An
iREM is a more flexible and robust parametric model compared with a nonparametric
REM, which produces novel and meaningful parameters relating to density, account-
ing for the sampling variability in the parameters required for density estimation. The
iREM model we propose can describe how abundance changes with diverse factors such
as habitat type and climatic conditions. We develop models to account for induced-bias
in the density from faster moving animals, which are more likely to encounter camera
traps, and address the independence assumption in integrated population models. The
models we propose consider a functional relationship between a camera index and animal
density and represent a step forward with respect to the current simplistic modelling
approaches for abundance estimation of unmarked animals from camera trap data. We
illustrate the application of the models proposed to a community of terrestrial mammals

from a tropical moist forest at Barro Colorado Island (BCI), Panama.
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Chapter 1

Introduction

There is considerable threat to the survival of native animal species and it is necessary
to determine why these threats are occurring, how these threats are affecting popula-
tion sizes and what can be done to prevent the loss of species forever. Camera trapping
can be used to monitor wildlife and obtain information on behaviour, activity patterns
and characteristics (Bridges et al., 2004; Ridout and Linkie, 2009), their interactions,
and to determine population abundance. Camera trapping is the use of fixed cameras,
triggered by infra-red sensors (Rowcliffe et al., 2011) to take detailed snapshots and/or
videos of passing animals or other objects in front of them. For example, Figure 1.0.1
shows a group of diverse wildlife species surveyed with camera traps. Camera trapping
is a low-cost survey tool which is widely used across the globe to study elusive medium-
to-large terrestrial mammals and birds (Rowcliffe et al., 2008, 2011; Samejima et al.,
2012) and small arboreal mammals (Oliveira-Santos et al., 2008). Camera trapping
has been shown to be more effective and efficient than traditional distance sampling,
radio telemetry and capture-mark-recapture methods as it minimizes the chance of
environmental disturbances (Roberts, 2011), or wounding or stressing target animals
(Cutler and Swann, 1999). These cameras can be left for up to six months (McCallum,
2013), recording the presence and behaviour of the animals in their natural environment
(Swinnen et al., 2014). Leaving camera traps untouched for such long periods minim-
izes the risk of human disturbances, which might influence the behaviour of targeted
animals (McCallum, 2013). Camera traps can operate day and night, in most weather
conditions, and in difficult terrain where other methods are likely to fail (Rowcliffe

et al., 2011). Camera traps can provide information on species distribution, habitat



use, and in particular, behaviour patterns of rare and highly cryptic species. Cam-
era trapping research applications span over a wide range of areas, for example faunal
checklists and detection of endangered or elusive species (Sanderson and Trolle, 2005;
Rovero and De Luca, 2007); a range of species-specific or focal purpose studies on activ-
ity patterns (Tobler et al., 2009); occupancy estimation and modelling (Linkie et al.,
2007); abundance and density estimation of individually recognizable species through
capture-mark-recapture analysis (Karanth and Nichols, 1998), abundance and density
estimation of non-recognizable species (Rowcliffe et al., 2008; Lucas et al., 2015). In
camera trap studies, populations are sampled (rather than enumerated) not because
they are too large to count every individual, but because the target species are elusive

(Foster and Harmsen, 2012).

The focus of this thesis is on abundance and density estimation of animals from camera
trap data. Up until recently, methods that employed camera traps to estimate animal
abundance have been restricted to capture-recapture analysis of species with unique
identifiable markings; examples include relative abundance estimation of tigers using
camera trapping photographic rate (Carbone et al., 2001) and relative abundance of
tigers and their prey as measured by camera traps (O’Brien et al., 2003). Therefore,
the development of sophisticated statistical models for estimating population densities of
unmarked or non-recognizable species is severely lacking given the wealth of individual
and group level data being collected on a huge range of animal populations. This thesis
aims to address a fundamental question in ecology — what is the estimated density
of species from camera trap data that cannot be identified to the level of individuals?
We develop an integrated model, which estimates population densities of unmarked
animals and which accounts for fundamental correlation between data sets. This method
extends on the Random Encounter Model (REM) developed by Rowcliffe et al. (2008)
for non-recognizable animals from camera trap data. We start with a review of camera
trapping with marked animals in Section 1.1. In Section 1.2 we discuss camera trapping
with unmarked animals. The Chapter continues with the thesis motivation and aims
in Section 1.3, and general thesis methodology in Section 1.4. Finally, the Chapter

concludes with the thesis structure in Section 1.5.



(d) collared Peccary

Figure 1.0.1: Examples of the diverse wildlife species surveyed with camera traps at Barro Col-
orado Island, Panama. Methods for density estimation of unmarked species such as a) agouti
Dasyprocta punctata, b) roe deer Capreolus capreolus, c) mara Dolichotis patagonum and d) collared
peccary Tayassu tajacu are less well established than methods for species with identification marks.

1.1 Camera trapping with marked animals.

For the past two decades camera trapping has been used as a noninvasive technique
for the sampling of animal populations, particularly, those that are elusive often occur
in low densities (O’Connell et al., 2010). As the estimation of density and abundance
became increasingly important to ecologists, methods that use camera trap data were
developed to address this issue. Early work by Karanth (1995) and Karanth and Nich-
ols (1998) was the landmark for using camera traps to estimate population abundance
of recognizable species, particularly tigers Panthera tigris. To estimate abundance,
Karanth (1995) and Karanth and Nichols (1998) adopted a capture-recapture (C-R)
approach. In capture-recapture analysis, the main objective is to estimate the (possibly
changing) size of a population of individuals (e.g. animals, birds) in their natural state.
To this end, the observer captures individuals from a population on a number of suc-

cessive occasions, and each time an individual is caught, a record is marked for it or on



it to show the occasion of that capture; the individual is then returned to the popula-
tion. In Karanth (1995) and Karanth and Nichols (1998) the tigers could be identified
unambiguously from the photographs, and estimates of capture probabilities and pop-
ulation size were determined. Population abundance was estimated on the assumption
of geographic closure around the sample site, and demographic closure during the study
period. Karanth (1995) explored the potential use of camera traps to answer questions
such as can tiger populations be adequately sampled from camera traps, can capture-
recapture analysis derive reasonable estimates of population densities from camera trap
data, and under what conditions is this approach practical. Building on this work, Kar-
anth et al. (2004) explored camera trapping as a scientific tool to estimate population
abundance of tigers using capture-recapture modelling. Rigorous sample surveys were
designed to answer questions such as why sample, what to sample and how to sample

rare or elusive animals.

Capture-recapture analysis of camera trap data has since become a common method of
estimating population density, particularly for terrestrial mammals in the tropics. Trolle
and Kéry (2003), for example, adopted the method of Karanth and Nichols (1998) which
combined camera trapping with mark-recapture models to estimate density of ocelots
in the Brazilian Pantanal — the first published attempt to estimate population size of
felids in South America. The study adopted natural variation technique in body mark-
ings of ocelots in closed population to estimate density. This method was later used in
a larger-scale investigation by Trolle and Kéry (2005) on ocelot density in the northern
Pantanal. The focus was on further development and evaluation of the camera trap
methodology, and the effect of placement of traps on trails and roads on trapping rates.
Silver et al. (2004) also adopted methods of camera trapping and density estimation by
Karanth and Nichols (2002) to estimate ocelot density in eastern Bolivia. The initial
focus of the study was jaguars (Maffei et al., 2004) but valuable data on ocelots were
collected simultaneously during the pilot studies conducted. Silver et al. (2004) used
systematic camera trap surveys, and capture-recapture sampling methods to estimate
total abundance across five Bolivian dry-forest sites with different habitat types and
annual rainfall regimes. Further studies by Trolle et al. (2007) used capture-recapture

analysis of camera trap data to estimate maned wolf density in two Brazilian study



areas: Cerrado and the Pantanal. Such capture-recapture applications on individually
identifiable species — typically large, patterned carnivores — continued to develop rap-
idly, particularly with the advent of mark-resight methods (Fuller et al., 2001; Watts
et al., 2008), and more recently spatially explicit capture-recapture (SERC) models
(e.g., Royle et al., 2009; Royle, 2011; Royle et al., 2013; Borchers et al., 2014).

While these studies have been shown to provide robust, unbiased density estimates,
the methods adopted are restricted to animals being individually recognizable, based
on the natural variation in patterns (rosette, stripes, etc.) and/or tags. However, the
majority of wildlife species are not recognizable to individual level from photographs,
rendering capture-recapture approaches for abundance estimation difficult. Also the
methods of capture-recapture that use camera traps are sensitive to the spacing of
cameras relative to the size of animal home ranges (Rowcliffe et al., 2008). Therefore,
new methods that adopt camera trapping techniques are required to estimate population
densities of these unmarked species. The next section (1.2) gives detailed information
on methodologies developed to monitor wildlife and estimate densities of unmarked

individuals from camera trap data.

1.2 Camera trapping with unmarked animals.

There have been several analytical approaches proposed for population surveys of un-
marked species using camera traps. For example, Carbone et al. (2001) and O’Brien
et al. (2003) used relative abundance indices, such as detection rates, as a measure of
estimated densities. However, these methods have been criticized for their simplistic
approaches, and their implicit assumption that detectability is constant across areas,
time and species (Burton et al., 2015). Further, these methods have not considered
a functional relationship between a camera index and animal density. Jennelle et al.
(2002) agreed that a properly calibrated index may be useful in rapid conservation as-
sessments but to use such an index as a substitute for direct estimation of density, one
must: 1) demonstrate a functional relationship between the index and the density that
is invariant over the desired scope of inference; 2) calibrate the functional relationship

by obtaining independent measures of the index and animal density; and 3) evaluate



the precision of the estimates. A properly calibrated index must model the underlying
process between animals and camera traps. In the absence of such an index and indi-
vidual identification of species, detection rates confound abundance and detectability —
they may reflect both the number and behaviour of animals, as well as nuisance factors
related to sampling errors (Burton et al., 2015). Rowcliffe et al. (2008) developed a
Random Encounter Model (REM) to eliminate the need for individual identification of
animals by modelling the underlying process of contact between animals and cameras.
REM considers a functional relationship between the camera index and animal density,
which is derived on theoretical grounds of the “ideal gas” model. REM accounts for
both animal movement and detectability while considering the sampling process under-
lying the collection of animal photographs. When tested on an enclosed animal park
with known abundances REM has been found to provide reliable density estimates. In
general, subject to unbiased camera placement, REM opens the possibility of estimat-
ing animal density where it has not been previously possible (Rowcliffe et al., 2008).
However, REM remains to be thoroughly tested in broader camera trapping surveys.
Another advancement in methods that use camera trap data for density estimation is
the spatial capture-recapture (SCR) model (Chandler et al., 2013) for inference about
density when individuals cannot be uniquely identified nor detected with certainty. The
SCR has the advantage over capture-recapture methods in yielding explicit estimates
of animal density without the need for additional data. The SCR models of Chandler
et al. (2013) SCR require spatially correlated count data, which prove to be informative
about encounter rate parameters and density. However, like REM the broader reliability

of SCR models remain to be more thoroughly tested.

Other studies (Mazzolli, 2010; Trolle et al., 2008; Kelly et al., 2008; Noss et al., 2003)
have used camera traps to estimate abundance of species that lack individually identifi-
able natural markings. Phenotypic and environment-induced characteristics were used
as identifiers, for example, pumas (Puma/concolor) and tapirs (Tapiris/terrestris)
have been identified by scars, parasites, torn ears, toenail markings or color, tail length
and kinks, and dark or light body markings. However, these are not necessarily found
on all individuals within the population, and when samples are sufficiently large iden-

tification becomes increasingly difficult (Harmsen, 2006) and abundance estimation via



C-R methods is unlikely to be reliable (Foster and Harmsen, 2012). Noss et al. (2003),
for example, assume that an unidentified individual is the same individual previously
photographed at that location but this assumption is only valid if the target species
defends exclusive territories (Foster and Harmsen, 2012). On the other hand Mazzolli
(2010) excluded these photos completely, while Trolle et al. (2008) failed to clearly re-

port the proportion of photographs that were unidentifiable.

As an alternative approach, camera trap studies used mark-resight estimators (for ex-
ample Bartmann et al., 1987; Bowden and Kufeld, 1995; McClintock et al., 2009) to
deal with unmarked species. Abundance estimation of unmarked species is obtained by
using the frequency of marked and unmarked individuals. The Mark-resight estimator
is a more robust approach to C-R methods, which does not require all animals in the
sample to be marked, therefore, estimation is possible when only some of the study
animals have unique identifiers (see Foster and Harmsen, 2012). However, a limitation
of this method is that it requires that the number of marked animals be known, and so a
sample of the population must be captured and marked prior to camera trapping (Fuller
et al., 2001; Matthews et al., 2008), which may be nearly impossible to do, particularly

for elusive species in the tropics.

1.3 Thesis motivation and aims

This thesis primarily aims to develop new analytical methods for abundance estima-
tion of unmarked animals from camera trap data. Biodiversity is constantly threatened
by factors such as climate change, habitat loss and overharvesting, and new statistical
methods are needed to model and estimate population abundance. The majority of
studies are based on species that can be identified to individual level either by unique
markings or tags, and the REM method for unmarked species is yet to be applied to
a more extensive data set. We focus on extending the REM of Rowcliffe et al. (2008)
and developing methods that will be broadly applicable to many species, particularly

unmarked species for abundance estimation from camera trap data.

REM was tested on a small data set with known census at Whipsnade Wild Animal



Park (WWAP), Bedfordshire, south England during a June-July, 2005 survey. For the
purpose of analyses Rowcliffe et al. (2008) focused on four habituated mammals at
WWAP: red necked wallaby (Macropus rufogriseus), Chinese water deer (Hydropotes
inermis), Revee’s muntjac (Muntiacus reevesi), and mara (Dolichotis patagonum). But
given the efforts of Rowcliffe et al. (2011), during a 2008-2010 survey, huge amounts of
data are available for a community of terrestrial mammals from a tropical moist forest
at Barro Colorado Island (BCI), Panama, hence statistical techniques are required to
exploit the information fully. Using REM for estimating density of unmarked anim-
als currently requires five steps to derive all the necessary components of the analysis.
Consequently, this thesis develops a single analytical framework of the REM formula,
allowing for more robust model-based inference. This has particular relevance for incor-

porating covariates such as habitat/land cover, and dealing with spatial autocorrelation.

In addition to obtaining a unified approach for density estimation in REM, we aim to
develop models that incorporate multiple sources of variance. By considering all the
information required in the analysis in REM we aim to describe the implications of
these variances for unbiased estimation of the density, and model how sample sizes in
the different sources affect overall precision. We aim to develop parametric approaches
for abundance estimation in REM with the aim of producing estimates of meaningful

and relevant parameters.

In this thesis we develop robust and flexible frameworks for modelling encounters between
animals and camera traps for density estimation in REM, which can be modified ac-
cording to the purpose of the particular study or application. In doing so, further
application of the models may provide new insights relevant to density estimation of

unmarked species from camera trap data.

The development of new models that are suitable for describing data between animals
and camera traps requires knowledge about common models for count data and con-
tinuous data, and their potential relevance for land mammals. Hence, we additionally
consider the performance of new models developed for dependent and independent data

sets. Combining multiple sources of data into a single framework utilizes an integrated



population modelling approach for parameter estimation, which is a popular tool for
estimating parameters with overlapping information, but which rely on the assumption
of independence between data sets (see Newman et al., 2014, Ch. 9). We develop a
variety of modelling approaches with the aim of introducing new models that are more
efficient, comprehensive and more informative, and applicable to all species, marked or

unmarked, with possible adaptation where required.

1.4 General thesis methodology

The work in this thesis is carried out within the maximum-likelihood inference frame-
work. Models are implemented in R Core Team (2016). Maximum-likelihood estimates
are obtained by numerical minimization of the negative log-likelihood function using
the optimization routine optim, which implements the Nelder-Mead simplex search al-
gorithm (Nelder & Mead, 1965) as the default method. The optimization routine optim
is a general-purpose optimization routine, which bundles six different optimization meth-
ods but we use the default method Nelder-Mead, and Brent algorithms for minimization
without derivatives (Brent, 1973) for one-dimensional unconstrained functions. The
Brent method is implemented in optimize, which searches an interval for a minimum or
maximum. As optim is designed primarily for unconstrained optimization (although it
includes an option for box-constrained optimization), parameters are transformed to the
log scale as appropriate prior to optimization. The log scale is used for parameters that
are constrained to [0, c0), such as density, mean speed, and shape parameters. Standard
errors are derived on the transformed log scale with the option hessian, which returns
an approximation to the an observed information matrix. This function returns a sym-
metric matrix giving an estimate of the Hessian at the solution found. The asymptotic
variance-covariance matrix of the maximum-likelihood estimators is obtained by taking
the inverse of the Hessian. Standard errors on the original parameter scale are calculated

from those obtained on the transformed log scale using the delta method approximation.

We study properties of estimators using simulations. We compute the Root Mean
Square Error (RMSE) and Standard deviation (Sd) using the formulas outlined below.

The sample standard deviation (Sd), which measures the spread of the of the parameter



estimates is computed by using the sd function in R, which has formula

N

sd = Z(e}-éf/(zv_n,

i=1
where N represents the number of simulations, 0; is the ith (1 =1,2,..., N) parameter

estimate, and 0 is the mean of the parameter estimates. The Root Mean Square Error

(RMSE) is computed from the Mean Square Error (MSE), which is defined as

x 2
MSE = Var + (6 — 6)

and

RMSE = vMSE.

In analysing real data we use the sample mean, in some cases, as an estimate of a para-
meter and an approximate standard error is computed. An approximate standard error
of the sample mean is computed as omean = 0//n, where o is the standard deviation

of the data, and n is the number of observations.

We also carry model selection using information criteria of the form

I = —2logL + q,

where L is the likelihood evaluated at the maximum likelihood estimates of the para-
meters and ¢ is the penalty function that involves the number of parameters (Buckland
et al., 1997). One of the most commonly used information criteria is the Akaike inform-

ation criterion (AIC) (Akaike, 1992) with
AIC = —2logL + 2p,

where p is the number of parameters. To allow for the non-optimal AIC values to be

more easily interpreted AAIC values are calculated, where
AAIC = AIC — min(AIC)
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(Burnham and Anderson, 2004). The model with the smallest AIC is the best model

(and of course has AAIC equal to zero).

1.5 Thesis structure

This thesis consists of seven core Chapters.

In Chapter 2 we introduce the main model - the Random Encounter Model (REM)
on which this thesis is built, demonstrating how the model can be used to estimate
density of unmarked species from camera trap data. We start the Chapter by present-
ing the theoretical “ideal gas” model, on which REM is based, exploring its properties
and application in biological and ecological studies. We then give a derivation of the
REM formula proving that the REM method could be derived by assuming a Poisson
distribution for the encounters between animals and camera traps and obtain the max-
imum likelihood estimate of the encounter rate. We also demonstrate the flexibility of
the maximum likelihood framework by including habitat-specific covariates, accounting
for the additional variation in population abundance. We then conclude the Chapter
by applying the maximum likelihood framework of REM with a Poisson model to the
analysis of the WWAP data set.

In Chapter 3 we consider an integrated population modelling approach for the maximum
likelihood framework of the REM formula, which is widely used to account for overlap-
ping information in multiple data sets (Newman et al., 2014, Chpt. 9). We develop an
integrated REM (iREM), which combines the encounter data and animal speed data
in a unified framework for abundance estimation. iREM provides a new approach for
abundance estimation of unmarked animals accounting for the sampling variability in
the data sets and allowing for the accurate treatment of precision and correlation in the
estimators. We also show that more variable models such as a negative binomial, and
zero-inflated Poisson, or a zero-inflated negative binomial can be used in REM to model
the encounter data for density estimation. We also consider the case in which animals
move in family groups by integrating this information in iREM to estimate density of

the individual. The methods in Chapter 3 are illustrated by a simulation study and
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analysis of data for four animal species at WWAP. The integrated REM (iREM) fitted
in Chapter 3 has links with the models in the later Chapters of the thesis.

In Chapter 4 we extend the iREM model proposed in Chapter 3 to the case in which
there are spatial covariates such as habitat/land-cover variables and random effects co-
variates such as camera random effect which may describe additional variation in the
density. We detail two iREM model approaches that use a log link function to incorpor-
ate habitat-specific covariates and camera random effects. In the latter part of Chapter
4 we describe an iREM model approach that simultaneously incorporates habitat spe-
cific covariates and camera random effect covariates which may explain some of the
variation in the model parameters. We illustrate the utility of the models proposed by

fitting them to the data of four species at WWAP.

Chapter 5 builds on the iREM model in Chapter 3 to provide a comprehensive model,
accounting for the sampling variability of the animal speed data, and the distance and
angle at which the camera sensor detects the animal data. The models developed in
Chapter 5 use distance sampling methodology (Buckland et al., 2001) to estimate de-
tection distance and angle of the camera trap, which are required in REM for density
estimation. Assuming independence between the data sets, we show how accounting for
the sampling variability in model parameters can lead to more precise estimation of the
density. The models are illustrated by simulation studies and an analysis of the BCI,

Panama data set.

Chapter 6 considers animal speed data collected from camera traps. Faster moving an-
imals are more likely to encounter camera traps than slower moving animals (Hutchinson
and Waser, 2007), which could introduce bias in the estimate of the speed required in
REM. Size biased sampling (Patil and Rao, 1978) deals with this bias. In size biased
sampling the probability of encounter between an animal with a given speed and camera
traps is proportional to a weight function, which is equal to the animal’s speed. We
show that the probability of encountering an animal with a given speed from a Poisson

model, a negative binomial model (NB), a zero-inflated Poisson (ZIP) or a zero-inflated
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negative binomial model (ZINB) is approximately proportional to the speed of the an-
imal. We test this approximation in a simulation study and illustrate its use by an
analysis of the BCI data set. We also consider the true probability of encountering an
animal from a Poisson model in a size biased sampling method, which we illustrate in a
simulation study. The size biased models fitted in Chapter 6 have links with the model
in Chapter 7 where the size biased models are used for the speed data model component

in iREM.

In Chapter 7 we propose and evaluate an iREM model with size biased sampling for
abundance estimation. This model is an adjustment of the model in Chapter 3 cor-
recting for the bias in animal speed. In integrated population modelling it is required
that the data sets be independent. In most camera trapping studies, however, the data
sets are collected from the same camera trap source, which makes the data sets de-
pendent. In this Chapter we start by investigating the independence assumption of the
encounter data and the speed data in a simulation study. We show that the effect on
estimated density is inconsequential if the assumption of independence is disregarded.
We show the relevance of accounting for the bias in speed of faster moving animals in
density estimation. We illustrate the comprehensive iREM model framework developed

in Chapter 5 with size biased sampling with an analysis of the data set at BCI, Panama.
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Chapter 2

Random Encounter Model (REM)

Prior to Rowcliffe et al. (2008) Random Encounter Model (REM), estimation of an-
imal abundance using camera trapping analysis was usually accomplished by capture-
recapture methods. These methods are generally hard to implement at large spatial
scales, and they under-represent populations of animals that cannot be identified to the
individual level. REM estimates animal abundance from camera trap data without the

need to identify animals (either by unique natural markings or tags).

This Chapter introduces REM and demonstrates how REM can be used to estimate
density using a data set from Whipsnade Wild Animal Park (WWAP), Bedfordshire,
south England. REM is based on the “ideal gas model”, which is a theoretical gas
composed of many randomly moving point particles that do not interact, except when
they collide elastically (Hutchinson and Waser, 2007). We discuss the ideal gas model
and its application to modelling encounter rates with animals in Section 2.1. The
Chapter then continues with Section 2.2, which provides an explanation of how the
ideal gas model can be adapted to modelling camera trap encounters to give REM. It
then goes on, in Section 2.3, to give the methods used to estimate density in REM, while
Section 2.4 gives the methods of estimating the variance of density in REM. In Section
2.5 we provide methods for constructing appropriate confidence intervals of the density.
Several key assumptions are required in REM to make valid inference concerning the
density of the population sampled. These assumptions are discussed in detail in Section
2.6. The data set from WWAP used by Rowcliffe et al. (2008) to test REM is described

in Section 2.7. To conclude the Chapter, Section 2.8 provides an illustration of the
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application of methods used in REM to estimate density.

2.1 Ideal gas model

An ideal gas model is a model for collision rates among molecules. Maxwell (1860)
worked out expected rates of collision among molecules in three dimensions given the
concentration of molecules in the gas, their mean speed, and their size. The formula
in Maxwell (1860) assumes molecules move with uniform velocity (speed) in straight
lines striking against the vessel in which they are contained, and thus producing pres-
sure. The movement of molecules are also assumed to be independent, and equally
likely in all directions. According to Maxwell (1860) it is not necessary to assume each
molecule to travel any great distance in the same straight line; for the effect in produ-
cing pressure will be the same if the molecules strike against each other, so that the
straight line described may be very short. The assumptions of the ideal gas model have
proven attractive to biologists, who have applied the ideal gas model more generally to
predict collision rates. For example, biologists have used these models, and their two-
dimensional analogues, to predict “encounter” rates and duration of encounters among
animals and social groups that move randomly and independently given population
density, velocity, and distance at which encounters occurs. In this thesis we use the
two-dimensional ideal gas model to predict encounter rates. The next section describes

the encounter rate formula in a two-dimensional ideal gas model.

2.1.1 Encounter Rate Formula in a Two-dimensional Ideal Gas Model

Classic two-dimensional ideal gas models assume a circular detection zone around mo-
lecules within which contact occurs. Figure 2.1.1 shows a circular detection zone, with
radius r, and the directions in which molecules are moving. In Figure 2.1.1 molecules
are assumed to move randomly and independently of each other, and movement is also

assumed to be equally likely in all directions.
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Figure 2.1.1: Circular detection zone where the arrows (—) denote the
approach directions of molecules. The diameter of the circle is 2r.

In a two-dimensional ideal gas model, the encounter rate formula links the number of
times individuals come within a specified distance of one another to their speed and
density. There are different versions of the formula depending on whether the speed
of movement is constant or follows a Maxwell-Boltzmann distribution. A Maxwell-
Boltzmann distribution is a probability distribution for describing the speed of indi-
viduals in idealized gas models. To use a Maxwell-Boltzmann distribution to describe
the speed of movement, it is required that the temperature of the system in which in-

dividuals occupy and the mass of the individuals to be known.

For a stationary object with a circular detection zone within which contact occur (Fig-
ure 2.1.1), Hutchinson and Waser (2007) showed that the area covered by a moving
individual can be easily defined as the product of the individuals’ speed (v), the time
period (t), and twice the radius of the detection zone (7). That is, the area covered
by each individual is 2rtv. If the total area within which the individuals are contained
is defined by A, and the density of individuals is D, then the number of individuals
present is given as DA and the area covered by moving individuals is therefore defined
as 2rtvDA. If the number of individuals in the total area, A, is assumed to follow a
Poisson distribution, then the expected number of contacts is obtained by dividing the
covered area, 2rtvDA by A. That is, the expected number of contacts
_ 2rvtDA

Here the speed of movement, v is assumed to be constant. To show this, let X; (for i =
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1,2,...,N) be N independent and identically distributed Bernoulli random variables

defined as

1 if individual 7 encounters the camera,

0 if individual 7 does not encounter the cmaera.

The probability of encounter, p is therefore the ratio of the area covered by an individual,

2rtv, and the total area, A, that is p = (2rtv/A). Hence,

2rtv
X, ~B Wi{—.
ernou 1< 1 >

Let the number of individuals recorded by the camera be defined as X = X7 + X5 +
..+ Xn. Then conditional on the number of individuals, N, the number of encounters

has a binomial distribution, that is

2rt
X|(N =n) ~ Binomial <n, Zlv)

with expected value np = n x 2rtv/A. If N has a Poisson distribution with mean DA,

then the marginal distribution of X can be written as

ZP =2z | n)P(N =n)

i)

since the number of encounters conditional on N is Binomial, N is Poisson and the
conditional probability is zero if N = n < x (where, p = 2rtv/A). Simplifying this
expression gives,

e(=D4) DAp Z{1— DA}" v

’I’L—CIT

6(_DA)(DAP) (1-p)DA
x!

e(=DAP) (D Ap)*
x! '

Therefore, the number of encounters has the Poisson distribution with mean DAp =
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DA x 2rtv/A, that is, X ~ Pois(2rtvD). Then the expected number of encounters is
A =2rtvD.

If individuals vary their speed or if speed varies among individuals, Hutchinson and
Waser (2007) state that the ideal gas formula must be amended. The term v in equation
(2.1.1) must be replaced by a revised mean relative speed between the focal individual
and other individuals in the population. To calculate this it is necessary to know the
distribution of the absolute speeds, not just their means. But if the speed of the focal
individual is known the revised encounter rate formula in two-dimension is given as
2rtu, D, where p, is the true population mean speed. To show this, let us suppose that
individuals are moving at speeds v; for i = 1,2,...,n, and let X; (for i = 1,2,...,n) be n

independently distributed Bernoulli random variables

1 if individual 7 encounters the camera,

0 if individual ¢ does not encounter the camera,

each with a probability of success p; = 2rtv;/A, that is

2rtv;
X, ~B 11i .
i ernoulli ( 1 >

If we let P = (p1,p2,...,pn), then conditional on N = n, and v; the sum of these
independent non-identical Bernoulli random variables, X = >"" | X is distributed as a
Poisson-Binomial random variable with parameter P, that is X |(N = n, v;) ~ PBD(P).
We can obtain the encounter rate using probability generating functions. The random
variables X;, conditional on v;, are independent so therefore the probability generating

function is defined to be

GX|N:n,vi (5) = GX1|N:n,v1 (S)GX2|N:n,v2 (8)-"GXn|N:n,vn (8)’ (212)

for all s € R for which the expected value exists (note that the probability generating
function GG of a random variable X is defined as follows, for all s € R for which the

expected value exists: Gx(s) = E(sX)). As

Gx,|N=nw; () =1 —pi+pis  for i=1,2,...,n. (2.1.3)

18



and p; = av;, where a = 2rt/A, then equation (2.1.2) becomes

GX\N:n,vi (3) = H(l —av; + CL’UZ‘S).

i=1

To obtain the marginal distribution of the random variable X, the random variables v;

need to be integrated out. So we obtain,

G x|N=n( / / / (1 — av; + av;s) f(v1, ..., vy )dvy...dvy,

14=1

which is

Gx|N=n(s) =

/ (1 — av; + avis) f (v;)dv;.

[ / F(v)dvs — / avs f (v)dv; + / asvif(vi)dvi].

(1 = Qfly + aﬂiﬁ)'

I
om PR es ER e

.
Il
—_

This is the probability generating function of a binomial distribution and from previous

X ~ Poisson distribution. Thus,

where p* = ap, = 2rtu,/A. For a binomial distribution, the expected value of X
is defined as E(X) = n x p* = n X 2rtu,/A where n, in this case, is the number of
individuals and is defined as the product of the density (D) and the area (A), that is
n = D x A. Hence, the expected encounter rate in an ideal gas for individuals with

varying speed is defined to be

2rtp, x D x A

A= 1

= 2rtp, D, (2.1.4)

where 1, is the expected speed of movement of the population. This formula (2.1.4) still
holds for the mean number of encounters if movement is not in straight lines. However,

the number of contacts will no longer follow a Poisson distribution since encounters
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will now be re-encounters with the same individuals, which leads to a more variable
distribution of contacts (see Hutchinson and Waser, 2007). For example, let us assume
that the number of encounters follows a negative binomial distribution with expected
encounter rate A, defined in equation (2.1.4). Then, if z; | A ~ Pois(\) with probability

mass function

hpois(i | A) = —(A)™, (2.1.5)

where A\ ~ Ga(k, ) with probability density function

Bf‘i
(k)

g(\) = )\O‘*lexp(—)\/B), (2.1.6)

we can obtain the density function of the encounters x; by integrating out .

N o T K— leX
h(:m—/A h(zi | Ng(A)d = / )A p(—AB)dA

0

X

_ B (k A+ ) /°° prtTiXmitlexp(—Ap)
CzIT(k)B)F T D(k + i)

= firr((:)gi) - F(Z(i 53@ (1 i 6)9“ (1 fﬂ) .

where the probability of encounter, p* = /(1 + ) and 1 — p* = 1/(1 + ). Therefore,
x; ~ NB(k, 8/(1+ f)) with mean /8. Given that the encounter rate is A\, where
A = 2rtu, D, and the mean encounters from the Poisson-gamma mixture is /3, then
in this case A = k/ and 8 = k/A. Therefore, the probability density function of the

encounters, x; defined as

e sziﬁ){?zﬁ) (A i H)K(z\j\—/) ’mi

where 1/k is the dispersion parameter. The negative binomial distribution has NB-2

form as given in Hilbe (2011).
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2.2  Encounter Rate Formula in REM

Rowrcliffe et al. (2008) derived the encounter rate formula in REM from a two dimen-
sional ideal gas model, which we described in Section 2.1.1 above. In REM the encounter
rate links the density with the speed of the individual and the detection zone dimensions
of a camera trap. In the case of a camera trap, however, the detection zone is not circu-
lar but rather it has a sector-shaped zone as shown in Figure 2.2.1. For a sector-shaped
detection zone, the width of the individuals’ path would no longer be 2r but instead it

would depend on the angle of approach.

Figure 2.2.1: Representation of sensor detection width. The sector represents a sensor (e.g.,
camera); the detection zone of the sensor has width 0 (radians), and distance r.

REM uses a stationary sector-shaped detection zone to represent the area seen by the
camera trap as shown in Figure 2.2.1. The radius of the sector, r, is the detection dis-
tance and angle of the sector, 6, is the angle of detection. Now rather than a molecule (or
particle) entering a detection zone, it is an animal being captured on film by a camera
trap. If animals move within this sector-shaped detection zone they are captured with
a probability of one; while outside this zone animals are captured with a probability of
zero. As an animal can approach the sector-shaped sensor from any direction, the total
path an animal can cover is no longer 2r but instead it changes with the approach angle
between the sensor and the animal. The covered path within which an animal can be
detected is called a profile, p. The path the animal takes is assumed to be equivalent

to that of a molecule, however, as the contact zone is no longer circular the profile will
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vary depending on the angle of approach. Figure 2.2.2 (page 25) shows 6 limiting cases
of profiles, p, for m approach angles, where v; = {71,...,77} is the angle opposite the
profile. The range of possible values ~; can take is 0 < ; < 7/2 (see Rowcliffe et al.,
2008).

Firstly, consider Figures (a) and (b) and possible approaches between the two figures.
From Figure (b) the length of p can be determined using the trigonometric rule that
sin(7y) is equal to opposite divided by the hypotenuse. The length of the hypotenuse can
be determined from the triangle representing the camera, which is an isosceles triangle
with angle, 6, and two sides of length r. The third side and hypotenuse has length
2rsin (0/2); this is so because if we draw a perpendicular line from the vertex of the
isosceles triangle at 6 to the third side and we use the trigonometric rule of sin (6/2) is

equal to opposite divided by hypotenuse, we can find p in terms of r and #. Therefore,

p

sin(y) = M@) or p=2rsin (g) sin(7). (2.2.1)

In Figure (b) the angle 49 can also be found from the fact that the triangle is isosceles
with angle #, and two angles of v5. As the angles of a triangle add up to 7 we get,

m = 0 + 27v,. Rearranging gives
m—0
5

72 =

The profile arising from the transition between Figure (a) and Figure (b) is given by

equation (2.2.1). The angle 7 is /2. The contribution to the average for the directions

w/2 0
/ \ 27 sin <2> sin(vy)d~y.

2

between 1 and 7y is

Secondly, consider Figures (b) and (c) and the possible approach directions between
the two figures. To obtain the transition the angle of approach opposite the profile,
vs in Figure (c), is used. To get the profile, we start from Figure (b), and using the
trigonometric rule, sin(#) is equal to opposite divided by the hypotenuse, we have

sin(f) = P

r

or p=rsin(h). (2.2.2)
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In Figure (¢), p = r = rsin (7/2). Between the two figures p = rsin(y). Therefore, the

contribution to the average for directions between Figure (b) and Figure (c) is

w/2
/ rsin(y)dy.
0

Thirdly, for the transition between Figures (c) and (d), there is no angle opposite the
profile, making the profile constant. Therefore, the profile, p = r. The angle v4 = 6,

and the contribution to the average for directions between Figures (c) and (d) is

0
/ rdy.
0

Fourthly, for the transition between Figures (d) and (e), let us consider Figure (e). The
angle of approach that is opposite the profile, p is 5. We can determine the profile p
using the trigonometric rule sin(#) is opposite divided by hypotenuse, that is

sin(f) = Por p = rsin(6). (2.2.3)

r

In Figure (e) p = r = rsin(7/2). Between the two figures p = rsin(y). Therefore, the

contribution to the average for directions between Figures (d) and (e) is

/2
/ rsin(y)dy.
0

Finally, consider Figures (e) and (f) and the possible approach directions between the
two figures. Note that Figure (f) is similar to Figure (a) but with an opposite approach
direction. We can determine p by using the trigonometric rule sin(vy) is equal to opposite
divided by hypotenuse. The length of the hypotenuse can be determined from the
triangle representing the camera, which is an isosceles with angle 0, and two sides of
length 7. The third side and the hypotenuse has length 2rsin (6/2). Therefore, we

obtain the equation

p

@) or p=2rsin <g) sin(7), (2.2.4)

sin(y) =
2r sin

which is the exactly as equation (2.2.1). In Figure (e) 75 = 60, and the angle 46 can be
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found. Since angles of a triangle add up to m we get m = 6 + 2v4. Rearranging gives

T—0
2

Y6 =

The profile arising from the transition between Figures (e) and (f) is given by equation

2.2.4. The angle v7 = /2. The contribution to the average directions between Figures

(e) and (f) is 2
/jéQrﬁn(Z)smkﬂdm

2

Therefore, the widths of the profiles, p, and ranges of + for each transition are given by:
transitions from graph (a) to graph (b), and graph (e) to graph (f) 2rsin(6/2)sin(vy),
(m—0)/2 <~ < 7/2; transitions from graph (b) to graph (c) and graph (d) to graph
(e), rsin(y), 0 < v < 7/2; transition from graph (c) to graph (d), r for # approach
angles. REM is derived by integrating the sum of these profiles and averaging across m

approach angles.

2 f(::/_Qe)/Q 27 sin (g) sin(y)dy + 2 feﬂ/z rsin(y)dy + foe rdry
7r
4sin () cos (T52) + 2 cos(6) + 0 2+60
r

=T =
s m

)

which is the total area an animal can cover for contact to occur in a sector-shaped
detection zone. The expected number of contacts between animals and camera traps is
therefore given by

2
N 2t

rtpyD. (2.2.5)

Rearranging we can compute density, D as

p=2__T
t

RN (2.2.6)

where A/t is the encounter rate (see Rowcliffe et al., 2008).
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2.3 Estimating density in REM

In order to estimate density from camera trapping rate, independent estimates of the
population expected speed of movement p, and average group size, g, which is dis-
cussed in Section 2.3.3 are required for each species. Rowcliffe et al. (2008) used day
time photographs to derive an appropriate estimator of the expected speeds, pu,. For
a random sample of speeds {vi,ve,...,v,} of size n, an appropriate estimator of the
expected speed is the sample mean, denoted by ©v. For the remainder of this Chapter
the speed estimator v is used in the encounter rate formula for density estimation. The
data and procedure for estimating the sample average speed and average group size are

given in Section 2.7. From equation (2.2.5) the density in REM is therefore defined as

A T
D=-"—-"—__ 2.3.1
t(2+0)rv’ (2.3.1)

where r and 6 are the dimensions of the camera, and ¢ is duration of the time for which
the camera was functioning. These parameters are all fixed. In Rowcliffe et al. (2008),

density is estimated as

D total no. encounters 7r

x : 2.3.2
total no. camera trap days (2 4+ 0)rv ( )

and the standard error is computed by bootstrapping the camera locations with replace-
ment and taking the variance of a large number of resampled density estimates. REM
is a nonparametric method, which could be derived by assuming a Poisson model for
the number of encounters. The maximum likelihood estimator of the encounter rate,
A is the total number of encounters divided by total number of camera trap days. In

Section 2.3.1 below we provide a maximum likelihood framework for REM.

2.3.1 Maximum likelihood estimation of density in REM

In this Section we provide a maximum likelihood framework for REM. In the two dimen-
sional ideal gas model from which REM is derived, the number of contacts is assumed
to follow a Poisson distribution, however, in Chapter 3 we relax this assumption. The

maximum likelihood approach provides a framework for extending the model from a
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fixed estimate of the speed (as shown in Chapter 3). The parametric framework allows

for estimation of the variance of the density. Let the number of encounters
y;j ~ Poisson(A),

where ¢ = 1,2, ..., ¢, is the ith camera trap; j = 1,2, ...,n is the jth trap day; and A is

the expected encounter rate,
2440
oo

A

oD, (2.3.3)

The detection distance is denoted by r; the detection angle is 6, and v is the sample

mean speed. The probability mass function of the encounters is

e~

Yij!

hpois(yij ‘ )\) = AV, (234)

From equation (2.3.4) the likelihood can be constructed. We assume the encounters,
y;j are independent for all 7 and all j. That is, all animals are captured independently
of each other, and independently at each camera trap. The assumptions in REM are
based on the assumptions from the ideal gas model. A key assumption in the ideal gas
model is that the movement of particles are independent, random and equally likely in
all directions. In REM camera traps are placed randomly and the traps are not baited

nor are the animals lured to the traps in any way. Therefore, the likelihood is,

e ANVis

Yij!

L(yij; A) =[]

i=17=1

The log-likelihood is given as

C n
£(yij; A) = constant — cnA + Z Z yijlog(A).
i=1 j=1
Differentiating with respect to A and setting equal to zero, we have an estimator of A

such that
C n
Z’L:l Z]’:l Yij

cn

A= (2.3.5)

Using equation (2.3.5) an estimator of the density, D, conditional on the mean speed,
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¥ in equation (2.3.1) is therefore

S C n
[):% L _ 2im 2y 1

X — = i
K cn K’

where K = {(2+0)/7}rv, and D is the maximum likelihood estimate conditional on

¥. An estimate of the standard error is computed from the inverse Hessian matrix. An

example of the R-code for the log-likelihood function above used to estimate density is

given in appendix A.1l.

The encounter data at WWAP were collected on a daily basis, that is for a fixed camera
trap time period, t = 1 (day). Hence, we have organised the encounter data as y;; (i =
1,2,...c, 7 =1,2,...,n), the number of encounters per camera per day to facilitate later
modelling that includes habitat and camera location, which are discussed in Chapter 4.
However, regardless of the time scale used to aggregate the data the likelihood would
be the same. This is true since the sum of independent Poisson random variables is
a Poisson random variable with parameter equal to the sum of the individual Poisson
parameter means. Therefore, the maximum likelihood estimate and its variance do not
depend on the time scale used. We demonstrate below in Section 2.3.2 that the time

scale used to aggregate the data has no effect on estimated density and its variance.

2.3.2  Varying the time scale used to aggregate encounter records

The data could be aggregated on a daily basis, over two days or a week, depending
on the observers’ choice, or alternatively, the data could be aggregated per camera
as in Rowcliffe et al. (2008). Regardless of the way in which the data is aggregated
the estimates of the density and its variance will be identical. To see this, let y;; be
the number of encounters recorded on the ith camera trap (i = 1,2,...,¢) and jth (=
1,2,...,n) camera trap time period, which could be in hours, in days or in weeks. Here
we let the time scale the data is collected be defined as ¢; (for example ¢; = 1 so that j
is per unit time). Let x;; be the number of encounters recorded on the ith camera trap
(i =1,2,...,c) and collected under a different time scale to (for example, to = 2 days,
so that j is per two-days). Let Y; be the number of encounters recorded in total for

the ith camera, then let t. be the number of days the cameras are out. The total
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number of encounters is S = >3 > 0Ly = Do 02 @y = > Yi, where ny is
the total number of ¢; time periods, for example the number of days; and ns is the total
number of to time periods, for example the number of two-day period. We assumed
the number of encounters are Poisson distributed with means, \; = D1 2ty yij/ena,
Xo =39, > i21wij/cng, and Ae = 32¢_, Yi/c, respectively. The total length of camera
times used to record the y;;, w;; and Y; encounters are T' = ctiny, T = ctong, and

T = ct., respectively. Estimates of density, Dy, Dy, and D, can be computed as

b i 21 Vi L1_sS 1
1= cnity K T K’
b C 2im1 2 W LS5 1
2= Chaty K T K’
and,
oYY, 108 1
D:Z; _ - = .
¢ 4. K T K

respectively. These results are a standard for Poisson random variables, where the sum
of two independent Poisson random variables is a Poisson random variable with mean
equal the sum of the parameters of the individual Poisson random variables. Also, since
A and D depend on the total number of encounters the results, bl = DQ = ﬁc follow
immediately. Here D, is exactly equal to equation (2.3.2) K = {(2+ 0)rv} /. Since
Dy = Dy = D, then the variances are equal and can be computed directly. Let y;; be
the number of encounters recorded on the ith camera for a time period of ¢ = 1 day.

The variance of estimated density D can be computed as follows:
&

n Yii S
5o Yii _ S
Z en  cn’

i=1 j=1

iy Z;‘Zl yij = S. The density D is

15 s
K oentK TK’

U)
I

| >
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where T = cnt. The variance of \ is

DY
Var(/\)f&.
Var(D) = Var [ 2 L var(d)
r = r|\ — | = ——=Var
Kt (tK)?
A s S

T 2K2n  2K2¢2n2  T?K?

2.3.3 Estimating density for animals found in groups

To estimate density in REM an independent estimate of average group size for each
species is required, if animals are found to be moving in groups. However, there are
inherent difficulties with the use of camera traps in assessing group sizes. Buckland
et al., (2001, Ch. 1), state that the detection probability of groups is dependent on both
the distance from the point (in this case the camera trap) and the group size. And, if
the centre of the group is inside the detection zone, then the count of the size of the
group must include all individuals in the group, and distances should be measured from
the point to the geometric centre of the group. But in camera trapping analysis the
distance from the camera to the centre of the group is unobservable, and it becomes
impossible to quantify the detection zone, particularly for larger, more dispersed groups
and estimation of the density becomes difficult. However, if a count of the number of
individuals in each observed group can be made, one can estimate the average group
size in the population, and, in which case the density of individuals can be expressed as
a product of density of the groups times the average group size; the simplest estimate
of the average group size is the mean size of number of detected groups but detection

may be a function of group size (see Buckland et al., (2001, ch. 1, page 13)).

Rowcliffe et al. (2008) tested REM using a small test data set, which we describe in
Section 2.7, where group size was independently observable and was small enough to
record accurately. In this case a count of the number of individuals was made, and
average group size was estimable. Rowcliffe et al. (2008) suggest that the formula
in equation (2.3.1) must, therefore, be modified for animals that move in groups, in

which case the independent unit recorded by the camera is the group rather than the
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individual. The parameter D in equation (2.3.1) is the density of the group (here
we will denote density of the group as ﬁg) and must be multiplied by an unbiased
independent estimate of average group size, g, to give the density of individual animals
(as in Buckland et al. (2001)). As discussed in Section 2.7, average group sizes were
estimated by conducting 10 watches (for each species), which were distributed evenly
between 08:00 to 18:00 to control for any variation in movement patterns over the day,
and systematically recording the numbers of individuals encountered along transects
through the study area. With an estimate of the density of the group and group size,

the density of the individual, D is estimated as

D= D¢ x §.

2.3.4 Estimating animal density split by habitat

Animals generally respond to each other and their physical environment, so they may
spend more time in some habitats than others and be restricted to partially overlapping
home ranges (Hutchinson and Waser, 2007). As such the density of animals can vary
with habitat type. In REM the encounter rate depends on the density and since REM
is a nonparametric method Rowcliffe et al. (2008) estimated the density in each hab-
itat separately. Here we provide a covariate framework for incorporating habitat into
the model, which is also straightforward and can allow for the incorporation of other
covariates such as camera random effects (as is done in Chapter 4), and other continu-
ous covariates such as climatic conditions, which can include temperature and rainfall,
elevations among others. Since the encounter rate cannot be negative, we use a log-

link function and the covariate (habitat) enters the model through the encounter rate, A.

Let the habitats be denoted by p such that p = 1,2,..., H. The model structure in
equation 2.3.3 can be modified to incorporate habitat into the model in the following

way

A= (2 * 9m> exp(XA3), (2.3.6)

where X (= A\, x1) is a vector of expected encounter rates, and n is the number of camera

trap days; r and 6 are the distance of detection and angle of detection, respectively;
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t = 1 day is the camera trap time period across habitats, and v is the mean speed of the
animals, which is assumed to be same in each habitat. These parameters are all fixed.

The matrix containing the habitat-specific covariates

1 r12 X138 ... IT1H
1 o2 X23 ... I2H
X —
_1 ITn2 Tpgy ... an_ nx H
where
1 observation j is from habitat p.
Lip =
observation j is not from habitat p.
and
exp(1 for p = 1.
b, { )

exp(f1+ Bp) forp=2,3,...,H.

The parameter 81,5 = (51, f2, ...,ﬁH)T is the vector of regression coefficients. The

mean density for a given species, D can be computed as

H H
Dr=% Apexp(By) _ 2p=1 ApDy

= Ar Ar

where A, (p = 1,2,...,H) is the area of habitat p in the vicinity of the traps; and
Apr = Ay + Ay + ... + Ap is the total area surveyed. For known variance of D, the

variance of D can be computed directly as

H
_, A,D
Var(Dr) = Var (Zp_l P p)

Ar
_ i A?,Var(Dp)
2
p=1 Az

2.4 Estimating variance

In this section we provide the different ways in which the variance of the density can
be estimated. Rowcliffe et al. (2008) used a nonparametric bootstrap approach to ap-

proximate the variance of estimated density. We also adopt a nonparametric bootstrap
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approach for estimating the variance of estimated density, which is discussed in Section
2.4.2. In Section 2.3.2 above we showed that the variance of the density can be estim-
ated directly. However, this method cannot be extended to later Chapters. As such we
use the inverse Hessian matrix from the optimization routine optim in R to approximate
the variance. In Section 2.4.1 we also provide an adjusted variance method where the

expected animal speed, v, is not fixed.

2.4.1 Adjusted variance

The average animal speed of movement, v, is an estimated constant from the given
data. REM assumes @ to be a fixed constant. Hence, the variance of estimated density

is computed directly from equation (2.3.1),

N 2
Var(D) = Var (?(2 fe)rv) = (t(2 fem) Var(}), (2.4.1)

where the variance of ) is known. The variability of animal speed is not considered,
which may cause the variance of estimated density to be underestimated. To correct
for this underestimation in the variance, we assume that average animal speed, v, is

not a constant. Using Taylor series expansion we can find an approximate variance of

) , (2.4.2)

estimated density such that

Var(D) = (M)QVM(

S>>

where

E2()\) | Var(\) _Cov(\,o) Var(d)
CE2(0) [E2(0)  E(VE@ EXD) (243
A2 [ Var()) Cov(\,0)  Var(?)
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(see Van Kempen and Van Vliet, 2000). In equation (2.4.3) the covariance Cov (), )
is zero. This is so because the expected encounter rate, ;\, and average animal speed,
v, are assumed to be independent of each other. This is true for the WWAP data set
discussed in Section 2.7 and in Rowcliffe et al. (2008), an underlying assumption of REM
is that the data sets are independent of each other. To find an approximate variance of

the sample mean animal speed, the formula given below is used

2

Var(v) = % (2.4.4)

where o, is the sample standard deviation of animal speed; and m is the sample size of

animal speed data.

2.4.2  Nonparametric Bootstrap Method

It is also possible to use bootstrapping to estimate the variance of the estimated dens-
ity. Rowcliffe et al. (2008) used a nonparametric bootstrap approach to estimate the
variance of the estimated density. This was done by resampling camera locations with
replacement and taking the variance of a large number of resampled density estimates.
Note that the current REM formula lacks the potential to account for the sampling
variability in the speed of movement. So, to allow for some variability in the animal
speed, which would improve estimation precision we use an alternative nonparametric
bootstrap approach, resampling both the speed data and the encounter data. Non-
parametric resampling allows us to estimate the sampling distribution of a statistic
empirically without making assumptions concerning the distribution of, or model for,
the data. Here we give the general algorithm for a nonparametric bootstrap. Suppose
we have a vector x of m independent observations, and we are interested in estimating
a parameter é(x) and its variance. The general nonparametric bootstrap algorithm is

as follows:

1. Sample m observations randomly with replacement from x to obtain a bootstrap

data set, denoted by x*.
2. Calculate the bootstrap version of the statistic of interest, 6* = 6(x*).
3. Repeat steps 1 and 2 a large number of times, say B, to obtain an estimate of the
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bootstrap distribution
4. calculate the average of the bootstrapped statistics, Zle 0" )/ B

5. compute the variance of the estimator é(x) through the variance of the set 6% ), b =

1,2,..., B, given by

S (0 — 0%())”
(B-1)

where 0% () = Zszl 0" )/ B (see Carpenter and Bithell, 2000).

2.5 Constructing Confidence Intervals for Density

A traditional approach to statistical inference is to make assumptions about the struc-
ture of the population, for example an assumption of normality, and to use these as-
sumptions to derive the sampling distribution of a statistic, for example population
density, on which classical inference is based. If the assumptions of the population
are wrong, then the corresponding sampling distribution of the statistic may be seri-
ously inaccurate. On the other hand, if the asymptotic results are relied upon, these
may not hold to the required level of accuracy in a relatively small sample (see Fox,
2002). Since the density, D cannot be negative we consider approaches other than
the normal — theory interval to construct appropriate 95% confidence intervals. We
consider logarithmic transformations and the percentile method to provide appropriate

confidence intervals of the density.

2.5.1 Natural Logarithm Transformation

For small to moderate amounts of data, the distribution of a statistic may be asym-
metrically skewed toward large values. To counteract the skewness, we can set the
confidence limits on the log scale (that is, after a logarithmic transformation). For the

density we can use the following equation to determine a 95% confidence interval.

{(In(Dy), In(Dy)} = In(D) + 1.96 x SE {m(D)} , (2.5.1)



where the variance is approximated by the inverse Hessian matrix from optim in R, and
hence, the standard error of the logarithm of the density, SE {ln(f))} is computed. The
term In() is the natural logarithm transformation, D, is the lower confidence limit and
Dy is the upper confidence limit. Because this equation (2.5.1) gives the confidence
limits on the log scale, the limits need to be converted back to the D scale after they
are calculated, by reversing the transformation, which involves taking antilogarithms.

Therefore, for a 95% confidence interval of the density we have

{ﬁL,ﬁU} _ e(ln(D):tl.96><SE{1n(D)})' (2.5.2)

(Rothman, 2012, Ch. 8, pages 161-162).

2.5.2 Percentile Method

The percentile method is a method for approximating bootstrap confidence intervals.
The percentile method makes no assumption about the distribution of the observations.

The procedure for finding the percentile confidence interval is outlined below.

e Suppose we draw a sample x = {X;, Xo,..., X;,} of size m from a population
P = {x1,x9,...,2)}, sampling with replacement. Call the resulting bootstrap
sample x1* = {X11", X12%, ..., X1,n"}. And, suppose we are interested in some
statistic T = ¢(x) as an estimate of the corresponding population parameter
0 = t(P). We repeat this procedure a large number of times, B, selecting
many bootstrap samples; the bth such bootstrap samples is denoted by xp* =
{Xp1", Xp2*, ooy Xom "}, and computing the statistic 7" for each bootstrap sample,
that is Tp* = t(xp"). Then the distribution of 7;* around the original estimate 7'
is analogous to the sampling distribution of the estimator 1" around the population
parameter 6. Therefore, the average of the bootstrap statistics,

= T T
B

e Using the percentiles /2 and 1 — /2, where « is the significance level, compute
the interval. To do this sort the estimates T, as T < T™9 < ... < T™p and use

T*95 to estimate the 2.5th percentile of T and use T*g75 to estimate the 97.5th
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percentile of T%, so that the desired 95% confidence interval is

T*25 <0< T*975

To obtain sufficiently accurate 95% bootstrap percentile confidence intervals, the
number of bootstrap samples, B, should be on the order of 1000 or more. The
percentile method implicitly assumes the sampling distribution of T' = ¢(x) is sym-
metric, but not necessarily normal, and centred at § = ¢(P) (unbiased). However,
the coverage error is often substantial if the distribution of § is not nearly sym-
metric, however, other methods such as the Bias-Corrected and Bias-Corrected
Accelerated can be used to address this issue, but these are not considered here

(see Fox, 2002; Davison and Hinkley, 1997; Carpenter and Bithell, 2000).

2.6 Assumptions in REM

The assumptions in REM are based on the assumptions from the ideal gas model dis-
cussed in Section 2.1. A key assumption in the ideal gas model is that the movement of
particles is independent, and equally likely in all directions. In REM the movement of
animals is assumed to be random and independent relative to one another. Clearly, this
is unrealistic in natural settings as animals respond to one another and their physical
environment. However, even though animals respond to each other and their natural
settings the results from the Whipsnade Wild Animal Park field test by Rowcliffe et al.
(2008) provided an adequate approximation of the detection process with no apparent
bias in density estimates for three of the four species. This suggests that the REM
method is reasonably robust to typical behaviour patterns that may violate underlying
model assumptions. Rowcliffe et al. (2003) applied an equivalent method to model rates
of capture by snares and found it to be successful across a wide range of species. Some
animals are also found in pairs or family groups, which may violate model assumptions.
This evidence suggests that REM is robust to typical behaviour patterns that may vi-

olate model assumptions.

Another important assumption of REM is that animals move independently of cameras.

37



For example, if animals are trap-shy, that is, they avoid the camera units themselves or
the flash then this assumption may be violated. Some animals may also be attracted to
the camera traps and may consistently return to a camera trap unit. The assumption
will also be violated in this case. Note that some camera trapping methods use baits to
attract animals, which may significantly increase capture rates (see for example du Preez
et al., 2014; Thorn et al., 2009). However, baiting and luring of animals to camera traps
violates the underpinning assumption of REM. To solve the problems where animals
are trap shy or trap-attracted Rowcliffe et al. (2008) suggested using infra-red imaging
instead of flash photography or, if the animal of interest is at least partly diurnal, by
disabling the flash and relying on natural light and day-time photographs only. Also,
the camera traps can be set up in a such a way that they are protected by tree covers to
avoid them being too conspicuous. REM does not allow cameras to target focal species,
instead REM requires randomized placement of camera traps. However, too rigid ran-
domization of camera placements will be unrealistic in many situations as some species
are highly elusive and rare; the probability of detection is minimal and the data collec-
ted will be too sparse to be of any use. Rowcliffe et al. (2008) suggest that a camera
traps must be carefully randomized relative to the distribution, giving each camera a

clear view to provide a reasonable chance of detecting animals.

Rowcliffe et al. (2008) state that the data collected must be in the form of numbers
of independent contacts between animal (individual or group) and camera. To obtain
independent contacts between animals and camera traps, it is required that an animal
leaves the camera detection zone after a contact, and that the same or a different
animal later re-enters in order to give a second independent contact. However, there
is the problem of having several photographs from a single effective contact because
of an animal lingering in the detection zone, or a large group passing the trap zone,
which Rowecliffe et al. (2008) addressed by limiting the amount of film in the camera.
This is done by setting the camera to be inactive for 2 minutes after each photograph.
Rowcliffe et al. (2008) pointed out that a long latency period runs the risk of missing
independent contacts occurring in quick succession, and they have suggested little or no

camera latency, and that further work on camera latency would be useful.
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2.7 The data

In Rowcliffe et al. (2008) REM was tested using data from a survey carried out over
a 6 weeks period from 13 June to the 24 July 2005 at Whipsnade Wild Animal Park
(WWAP), located in Bedfordshire, south England. The advantage of this data set is
that it is from a zoo with a known number of animals. There was a total of n = 42
camera trap days. The park houses several free-ranging species but only four of these

species were considered for the purposes of the analysis:

e red necked wallaby (Macropus rufogriseus)
e Chinese water deer (Hydropotes inermis)
e Revee’s muntjac (Muntiacus reevesi), and

e mara (Dolichotis patagonum).

Note that for brevity, the common names: wallaby, water deer, mara and muntjac will
be used in the rest of this thesis. The park was divided into four areas of contrasting

habitat. The first two areas are open grasslands with scattered scrub:

1. Downs open grassland with scattered scrub and a steep scarp slope;
2. Institute Paddock with gentle slopes;

3. Old Farm, which is an area of rough grassland and thicket on largely level but

highly broken ground; and

4. Central Park, which is an area of mixed lawns, roads, buildings and enclosures

housing large animals with scattered trees.

2.7.1 Estimating Speed and Group Size

The calculation of density requires independent estimates of speeds, which could only
be obtained during the day, and average group size. Rowcliffe et al. (2008) used day
range to derive an approximate estimator of speed. To derive estimators of speed and

average group size Rowcliffe et al. (2008) conducted 10 focal watches, for each species,
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distributed evenly between 08:00 and 18:00 in order to control for any variation in move-
ment patterns over the day. For the speed estimator, Rowcliffe et al. (2008) arbitrarily
select individuals following each individual for 30 minutes during each focal watch and
recording the total distance travelled during that time as the sum of all straight-line
movements. Day range for each species was then calculated as the mean across all focal
watches for that species. So the distribution of the speed data over a day was used as
the distribution of speeds over the trapping period. It was observed that some animals
were not moving during the period they were watched, hence, a zero speed was recor-
ded. While the probability of observing a zero speed would be sensitive to observation
timescale, tending to zero as timescale increases, the aim was to derive an estimate of
average speed, which is insensitive to timescale, and not to obtain an unbiased estimate

of the probability of observing a zero speed.

Average group sizes were estimated by systematically recording the numbers of indi-
viduals in groups encountered along transects through the study area. In Table 2.7.1
we give a summary of the fixed parameters required to estimate the density. Note that
the angle of detection, # in Table 2.7.1 is quite narrow since the camera traps used
was a model called DeerCam, which has this limitation. These results are taken from

Rowcliffe et al. (2008).

We also provide the coefficient of variation (C,) of the speed estimators for each species.
The coefficient of variation is a measure of dispersion of the data relative to the mean.
It is defined as the sample standard deviation, o divided by the mean, that is C, = o/p,
where p is the mean speed. Often the C), is expressed as a percentage, which corresponds

to the following formula

C\% = 100(c/p1). (2.7.1)

The C, is useful for comparing the variability of two or more samples of data from
different variables or from the same variables when the means are very different (Brown,
1998). In Table 2.7.1 the C,% is quite large for the encounter rate and the speed

estimators of the four species suggesting that the speed of movement variation among
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animals and the variability in the encounters are substantial.

Table 2.7.1: Summary of fixed parameters required to estimate density (standard error
in parentheses), which is taken from Rowcliffe et al. (2008).

mara muntjac wallaby water deer
Mean encounter () 0.06 (0.02) 0.35 (0.07) 4.78 (0.47) 1.51 (0.19)
C»% of encounter 389% 239% 117% 154%

Average day range (7, in km day™") 2.56 (1.08) 8.27 (1.92) 0.71 (0.36) 1.17 (0.49)

Cy% of day range 133% 73% 160% 127%
Average group size () 1.8 (0.63) 1.5 (0.53) 1(0) 1(0)
Sample size of speed (m) 10 10 10 10
Detection arc (6, radians) 0.175
Detection distance (r, km) 0.012

2.7.2 Animal Census

A census, counting the number of animals, was carried out at the end of the camera
trapping period between 09:30 and 14:00 by a team of 12 counters. A systematic co-
ordinated line approach (to avoid double counting), was adopted to cover areas in three
of the four habitats (Downs, Institute Paddock, Old Farm) in a single sweep, while in
the Central Park area small teams systematically counted central areas, co-ordinating
movements to ensure complete coverage without double counting (see Rowcliffe et al.,
2008). Since the census was taken during a specific time period, and animals moved
among habitats there were observed zero census count in some habitats for some species,
for example, the census of the mara species in Old Farm. However, during the camera
trapping period there were records of the mara species in Old Farm (see Table 2.7.2).
Table 2.7.2 gives the summary of the census data split by habitats for the four species
at WWAP.
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Table 2.7.2: Summary of the census data split by habitat, which is taken from Rowcliffe et al. (2008).

Habitat
Downs Institute Paddock Old Farm Central Park  Total

Area (km?) 0.49 0.28 0.23 1.26 2.26
Camera hours (day time) 898 440 543 317 2198
Census count
mara 15 2 0 136 153
muntjac 3 0 5 22 30
wallaby 544 213 185 120 1062
water deer 36 10 133 91 270

Density (animals km?)

mara 30 7 0 108 68
muntjac 6 0 22 18 13
wallaby 1101 760 803 96 468
water deer 73 36 577 72 119
Day-time camera trap photos
mara 3 1 2 3 9
muntjac 10 1 4 23 38
wallaby 225 195 78 38 536
water deer 32 3 89 23 147

2.8 Application of REM to field data at WWAP

This section gives the results of REM applied to the Whipsnade Wild Animal Park data
set. Section 2.8.1 gives the results of Rowcliffe et al. (2008). In Section 2.8.2 the results
of estimated density using maximum likelihood estimation are given. The model was
fitted using the optim function in the R software package (R version 3.2.4 or earlier)

using the Brent algorithm. Density estimates split by habitat are given in Section 2.8.3.

2.8.1 Results of Rowcliffe et al. (2008)

Rowcliffe et al. (2008) observed that animals generally did not move about much, par-
ticularly the wallabies, and like the water deers were not seen in cohesive groups. The
muntjacs, however, were considerably more mobile than the other species, and like the
maras were frequently found in pairs or family groups. REM has shown to perform
well in extracting absolute densities from encounter rate data. Rowcliffe et al. (2008)

found that the estimated densities for muntjac, wallaby and water deer did not differ
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significantly from, and were within 22% of the census results. The problem with the
mara estimates is a result of poor survey design. The mara like to inhabit open areas,
and during the WWAP survey the mara were mostly seen in Central Park, which is
an open area most frequented by people. So in order to avoid crowding camera traps
with too many human photographs, camera placements were located away from these
crowded areas, and where the maras did not graze frequently. Hence, limited capture

data were recorded, leading to the severe underestimation of the density.

2.8.2  Results from maximum likelihood method

Table 2.8.1 below compares the density from the census with estimated density for the
four species at WWAP. Here we give the estimated standard error of density from the
direct method, inverse of the negative Hessian matrix, the adjusted variance method,
and bootstrap method where 1000 bootstrap samples of animal speeds and encounter
data are used in the estimation process. We assume the encounters are Poisson distrib-

uted (with mean and variance being equal).

The results (Table 2.8.1) show that estimated standard errors from the adjusted vari-
ance method and bootstrap method are substantial compared with the estimates from
the direct method and the Hessian matrix. In particular, the bootstrap estimates, which
are considerably larger than those from the adjusted variance method, are skewed as
can be seen from the average of the estimated densities and the estimate of the median
density value. However, when compared on the log-scale, the similarity of the stand-
ard errors are clear, as expected, since both methods are attempting to account for
the variability that comes from using an estimate of the mean speed. As can be seen
in Table 2.7.1 above, the variability in the speed data and encounter data is high, as
shown by the huge values of the coefficient of variation C,%. As such, we expect the
estimated standard errors from the adjusted variance method to be high, particularly
for the wallaby and water deer species (see Table 2.8.1). For the direct method and the
Hessian method, the estimated standard errors are the same, as expected, and consid-
erably smaller that those from the other methods. It is worth noting that the inverse

of the negative Hessian is an estimator of the asymptotic covariance matrix and, the
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standard error estimates based on the Hessian of the log-likelihood function are guar-
anteed to be valid asymptotically, under general regularity conditions, as sample sizes
become infinite. However, for finite sample sizes the standard error estimates based
on the Hessian may be biased. So the difference between the standard error estimates
from the Hessian and the standard error estimates from the adjusted method and the
bootstrap method is due to finite sample sizes, as well as possible non-normality of the
sample. The data set may have come from a distribution with heavier tails than that

of the corresponding normal distribution.

We also provide 95% confidence intervals of the density from the four methods. We use
logarithm transformations described in Section 2.5.1 to obtain confidence intervals from
the direct variance method, adjusted variance method and the inverse of the negative
Hessian matrix. The percentile method, discussed in Section 2.5.2 is used to obtain
bootstrap confidence intervals of the density. The mara and muntjac species were found
to be moving in family groups during the WWAP survey, as such REM is modified,
using equation (2.3.3) to obtain estimated density of the individual. The 95% confidence
intervals from the adjusted variance method and the bootstrap method are comparable
and are wide, and the density from the census for three of the four species are captured
within the interval for the bootstrap method; and for two of the four species within
the interval for the adjusted variance method. Again, the confidence interval from the
Hessian is biased given that it relies on asymptotic theory. When sample size is not large
enough bootstrap standard errors and confidence intervals may be more appropriate
(Hall, 2013). As shown in Table 2.8.1 the density from the census, for all species, is
not captured within an approximate 95% confidence interval based on the Hessian and
the direct method. Finally, the estimated density for each species is different from the
mean density from census because the Poisson REM developed in this Chapter does not
account for variability in the density in heterogeneous habitats. Therefore, in Section

2.8.3, we incorporate habitat in the model to determine its effect on the density.
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2.8.3 Density estimates split by habitat

This section gives the results of density split by habitat. Estimated standard error
from the inverse Hessian matrix is compared with estimated standard error from the
bootstrap method. We use 1000 bootstrap samples of animal speed and encounter data
to compute the standard error, and an approximate 95% confidence interval is given.
Logarithm transformation is used to compute confidence intervals based on the Hessian
of the log-likelihood function and the percentile method is used to compute bootstrap
confidence intervals of the density. As noted in Section 2.7.2 the census data was col-
lected at the end of the trapping period and since animals moved among habitats there
were records of zero census counts in some habitats for some species, even though there

were encounter records during the trapping period (see Table 2.7.1).

Table 2.8.3 gives the results for the mara species from including habitat as a covariate
in the model. We provide estimates of the density using the standard method and boot-
strap method, comparing the average density estimate with median density estimates.
The estimated standard errors from the bootstrap method are substantial compared
to estimates from the Hessian because the bootstrap estimates are very skewed (huge
differences between the average density estimates and the median density estimates).
We therefore compare standard errors on the log-scale. Table 2.8.3 shows that the mean
estimated density is 8, an increase of 6 when habitat is incorporated in the model (es-
timated density from a Poisson REM without habitat is 2; see Table 2.8.1 in Section
2.8.2). However, this estimate is still nowhere near the density from the census. Also, in
Old Farm where the observed census is 0, an estimated density of 5 is obtained due to
the fact that encounters were recorded during the trapping period (see Table 2.7.2), and
the fixed term, C' = {(2 + 0)/7}rtv in the encounter rate estimator in equation (2.3.6).
As expected, the bootstrap standard error is larger than the error obtained from the
Hessian since some of the variability in the speed data is included in the model. Also,
given that the standard error estimates from the Hessian relies on asymptotic theory,
these may be biased for finite sample sizes. Even though the bootstrap confidence in-
tervals are wider than the confidence intervals based on the Hessian, for both methods

the density from the census in only one habitat is captured within an approximate 95%
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confidence interval.

Similar results are obtained for the muntjac species in Table 2.8.4. The standard error
estimates and confidence intervals from the bootstrap method are larger and wider,
respectively, compared with those based on the Hessian of the log-likelihood function
since bootstrapping the data accounts for the variability in the data, and, given that
the the standard error estimates from Hessian rely on asymptotic theory, these might be
biased for finite (and particularly small) sample sizes. For the muntjac species there was
a zero census record in Institute Paddock but there were records of encounter during
the trapping period (see Table 2.7.2 above). This is because animals can move between
habitats, and because of this we have a non-zero estimate of density in this habitat.
This is also due to the fixed term in the encounter rate estimator in equation (2.3.6)
above. Incorporating habitat in REM has improved the mean density estimate across
habitats, and density from the census in three of the four habitats and the mean density
from the census are captured within an approximate 95% confidence interval based on

the Hessian matrix and a 95% confidence interval based on the bootstrap method.

For the wallaby species (Table A.2.1, appendix A.2) incorporating habitat in the model
improved the mean density across habitats as this is closer to the density from the
census. However, the confidence intervals based on the Hessian does not capture the
mean density from the census within an approximate 95% confidence interval. Also, the
standard error estimates and confidence intervals based on the Hessian are smaller and
more narrow, respectively, compared with those from the bootstrap method. This is
due to the fact that the estimates from the Hessian rely on the assumption that sample
size approaches infinity, which would be biased for finite (small) sample sizes. Only the
density from the census in Old Farm is captured within an approximate 95% confidence
interval based on the Hessian. For the bootstrap method the density from the census
in three of the four habitats, and the mean density from the census are captured within

a 95% confidence interval.

Like the wallaby species in Table A.2.1, appendix A.2 the mean density from the census
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of the water deer species (Table A.2.2, appendix A.2) is not captured within an approx-
imate 95% confidence interval based on the estimates from the Hessian. As expected,
wider confidence intervals are obtained from the bootstrap method, and density from
the census for two of the four habitats, and the mean density from the census are cap-
tured within a 95% confidence interval. These results suggest that accounting for the
variability in habitats is important in estimating the density. The mean density across
habitats are much closer to the density from the census compared with the estimated
density when habitat is not included in the model; see Table 2.8.1 in Section 2.8.2. Also,
the standard errors from the bootstrap method are always larger than those based on the
Hessian, which are typically quite inaccurate when sample sizes are not large enough.
As such, bootstrap standard errors and confidence intervals may be more appropriate

when sample sizes are small.
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2.9 Discussion

In this Chapter we introduced the Random Encounter Model developed by Rowcliffe
et al. (2008). The main focus of the Chapter has been on the development of a maximum
likelihood framework, which can later be extended, to estimate density of unmarked an-

imals from camera trap data in REM.

We started by explaining the ideal gas model for which REM is based, and gave the
derivation of REM by Rowcliffe et al. (2008). The ideal gas model is a model for col-
lision rates or encounters, which depends on three things: the size and speed of the
particles and their density (Yapp, 1956). REM uses this concept to determine the
rate of encounter between animals and camera traps. The encounter rate in REM is a
function of the dimensions of the camera, the density and an estimate of animal speed
of movement, which is treated as a fixed value. In this Chapter we have illustrated
the maximum likelihood REM formula using a small data set from Whispsnade Wild

Animal Park, and the results were compared with the results from Rowcliffe et al. (2008).

Rowcliffe et al. (2008) used the total encounters divided by the total number of camera
trapping days and multiplied by a constant term, which includes the average speed and
the dimensions of the camera trap. This formula gives the equivalent of a maximum
likelihood estimate with an underlying assumption of a Poisson model, which we have
shown. To estimate the variance of the estimated density Rowcliffe et al. (2008) used
bootstrapping by resampling camera locations with replacement and taking the variance
of a large number of resampled density estimates. Our approach is different from Row-
cliffe et al. (2008) in that we modelled the encounter data using a Poisson REM while
assuming a fixed value of animal speed as in Rowcliffe et al. (2008). We have estimated
the variance of estimated density using four methods: inverse of the negative Hessian
matrix, which comes from the optim function for minimizing the negative log-likelihood
in R; an adjusted variance method, which uses Taylor expansion to approximate the
variance; bootstrap method, which involves resampling the animal speed data and en-

counter data, and the direct standard error method.
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Testing REM using the WWAP data Rowcliffe et al. (2008) found that the estimated
densities for three of the four species (wallaby, water deer and muntjac) did not differ
significantly from, and were within 22% of the census results. The underestimation
of the mara species was a result of nonrandom placements of camera traps in areas
where the mara frequented during the survey period. The estimates of the density from
the maximum likelihood framework and the density from the census differ substantially
since the model does not account for the variability in the density in heterogeneous
habitats. Also, the current REM formula does not account for the variability in animal
speed, which would have an effect on standard error estimates. Estimates of the stand-
ard error based on the direct method and the Hessian of the log-likelihood function are
the same, as expected, and are guaranteed to be valid asymptotically, as the sample
size becomes infinite. However, the standard error estimates are biased since the sample
size is small, as well as possible non-normality of the sample. The confidence intervals
based on the Hessian are also narrow and do not capture the density from the census
within an approximate confidence for all species. The standard error estimates based
on the adjusted variance method and the bootstrap method are comparable, and the
density from the census is captured within an approximate 95% confidence interval.
The variability in the speed is huge, and the standard error estimates of the estimated
density from the adjusted variance method is dominated by this uncertainty, which res-
ulted in wider confidence intervals. The bootstrap method also allows for the variability
in the speed as well as the variability in the encounter data. The advantage of using
the adjusted variance method and the nonparametric bootstrap method for estimation
precision is that they do not assume any distribution for the data. However, it is worth
noting that the adjusted variance method and the direct method are limited in their
use and cannot be used to estimate standard errors of the density for more complex
models. For example, it may be possible to use the adjusted variance method for the

Poisson REM with habitat, but it may not be easy to do so.
We have considered including habitat as a covariate in REM to determine whether it

would have an effect on estimated density. We found that for the mara species the

estimated mean density across habitats increased but the increase is nowhere near the
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density from the census. For the muntjac and wallaby species the estimated mean dens-
ity improved substantially when habitat is considered as it is closer to the density from
the census, and the density from the census for the muntjac species is captured within a
approximate 95% confidence interval based on the Hessian of the log-likelihood function
and the bootstrap method. For the water deer species the mean density is overestimated
and the bias is larger compared with the bias when habitat is not included in the model.
The mean density from the census is also not captured within an approximate 95% con-
fidence interval based on the estimates from the Hessian and the bootstrap method. It
is worth noting that the adjusted variance method is limited in its flexibility. While
it may be possible to estimate variance within and across habitats using the adjusted

variance method, it may not be easy to do so.

The method adopted by Rowcliffe et al. (2008) for estimating density of individuals
moving in groups, from camera trap data, is limited to the case that group sizes are
small and counts of the number of individuals in each group is possible. There is an
inherent difficulty with camera traps in that it is not possible to measure true group
size. Also, if the group size is dependent on the detection distance, there would be dif-
ficulties in obtaining an unbiased estimate of the expected group size. This dependence
arises because large groups are more likely to be detected further away from the camera,
while small groups might remain undetected. Buckland et al. (2001) suggest that this
phenomenon would cause an overestimation of the expected group size because too few
small groups are detected (that is, they are under-represented in the sample). Another
complication is that large groups near the camera would be detected but it is possible
that their centres would lie outside of the detection zone; for instance, all animals in
the group might not be detected given the narrow width of the detection zone near the
camera. According to Buckland et al. (2001), if the centre of the group is located inside
the detection zone then the count of the size of the group must include all individuals in
the group, even if some animals are beyond the detection zone; and if the centre of the
group is outside the detection zone, then no observation is recorded. The difficulty with
this in camera trapping is that even if groups detected have their centres within the
detection zone the distance from the camera to the centre of the group is unobservable.

Buckland et al. (2001) suggest that a possible approach would be to replace a group of
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a given size by objects with the same size of the group at the same distance. In this
case there would be no need to estimate mean group size. But the issue of violation
of the independence assumption arises, invalidating analytical variance estimation and
model selection procedures. However, if robust inference methods for variance estima-
tion are adopted this difficulty can be avoided, but the issue of model selection remains.
This approach would require exploration, and remains an avenue for future research in

camera trapping analysis.

We have also shown that varying the time scale in aggregating the data from camera
traps (that is over 1 day, 2 days or a week) has no effect on estimated density and its
standard error. In this Chapter we have organized the encounters data in the form
per camera per day to facilitate later modelling which would include covariates such as

habitat and the random location of camera traps.

We have concluded that REM is relatively accurate but precision is dependent upon the
method of variance estimation used. Therefore, we consider an integrated likelihood
approach (iREM), which is comprehensive as it combines all of the data sets in one
coherent framework, accounting for the variability in the observed data. This iREM
approach is a more general and flexible approach in estimating density and its standard
error. We could easily include covariates such as habitat or weather, and other inde-
pendent variables required to estimate density into the model. iREM is discussed in
Chapter 3. This approach corrects the precision, and allows for the accurate treatment

of correlation in the estimators.
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Chapter 3

integrated Random Encounter Model iIREM)

In this Chapter we develop an integrated likelihood method to estimate animal density.
The integrated Random Encounter Model (iREM) builds on the Random Encounter
Model (REM) discussed in Chapter 2. Rather than using a fixed estimate of animal
speed as REM does, iREM simultaneously models the encounter data and animal speed
data in one coherent framework. iREM utilizes an integrated population modelling
(IPM) approach to estimate animal density, which is discussed in Section 3.1. The
Chapter then continues with Section 3.2, which provides a description of the model. In
Section 3.3 and Section 3.4 descriptions of the parametric distributions used to model
animal speed of movement and the encounters, respectively, are given. Some species
generally move around in pairs or family groups, so we also show how iREM can be
extended to include group data in Section 3.2, and the model for the group data is
given in Section 3.5. Examples of the likelihood function are given in Section 3.6.
The performance of the models is tested via simulations in Section 3.7. To conclude
the Chapter, Section 3.8 provides an illustration of the application of iREM using the
Whipsnade Wild Animal Park (WWAP) data set.

3.1 Integrated Population Modelling (IPM)

Demographic and survey information at the population and individual levels are often
simultaneously available when monitoring wildlife populations. The information col-

lected is often analysed separately or in isolation, and separate results are presented.
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For example, a survey may be designed to provide information on population abund-
ance, while another survey may be designed to provide information about survival for a
specific life stage. These surveys, however, may provide overlapping information about
demographic processes or abundances; and analyses that utilize that overlap would be
more powerful, and would provide more information, than multiple piecemeal analyses.
One such approach which utilizes overlapping information is an integrated population
model (IPM) (Newman et al., 2014, Chpt. 9; McCrea and Morgan, 2014, Chpt.12).
Integrated population modelling provides a single, coherent analysis framework for a
range of data sets collected from different surveys, all relating to the same species. By
combining all sources of information in a single analysis, integrated population models
simultaneously describe all the data, and consequently generally result in more precise
parameter estimators (McCrea and Morgan, 2014, Chpt. 12). Early work on integrated
population modelling was done by Fournier and Archibald (1982), who presented the
idea for fishery data. Fournier and Archibald (1982) developed a flexible model to in-
clude extra information regarding the aging procedure of a fishery. Since then there have
been several developments in that area. In fisheries research, the approach is termed

integrated analysis (McCrea and Morgan, 2014, Chpt. 12).

Besbeas et al. (2002) developed an integrated analysis of different types of census and
demographic data on animals of the same species. They devised a state-space model
forming a combined likelihood for census data and data on survival from ring-recovery,
under the assumption that the data sets are independent. The likelihood is formed by
means of the Kalman filter, using appropriate normal variables to approximate Poisson
and binomial random variables. By maximizing the combined likelihood the paramet-
ers estimated provided a simultaneous description of both data sets, and parameters
such as productivity, which could not be estimated from the data sets separately were
estimable under the combined likelihood framework. But to overcome a potential de-
ficiency in combining likelihoods that are formed using specialist computer programs,
which is an obstacle to the joint analysis, Besbeas et al. (2003) suggested a multivariate
normal approximation, which was evaluated on data sets of two birds species, lapwings
and herons, and which has been shown to be efficient and accurate. Extending this

work Besbeas et al. (2005) adopted a multivariate normal approximation for the form
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of the likelihood of the survival data, making use of parameter estimates and corres-
ponding estimates of error obtained from analysing the survival data alone. In this
case, the particular computer programs or packages need only be run once, to obtain
maximum-likelihood estimates of the relevant parameters, and of their standard error
and correlation. Schaub et al. (2007) argued that these integrated population mod-
els, however, have been applied to species without the lack of demographic data, so
Schaub et al. (2007) have demonstrated the flexibility of integrated population models
to estimate demographic parameters from sparse data, with a relictual colony of greater
horseshoe bats (Rhinolopbus ferrumequinum). Schaub et al. (2007) applied a Bayesian
integrated population modelling approach to the data and found that if the data were
analysed separately, they would not have been able to estimate fecundity, the estimates
of survival would have been less precise, and the estimate of population growth would

have been biased.

As described above integrated population models have the advantage over the piece-
meal approach of estimating parameters that are otherwise inestimable, and obtaining
more precise parameter estimates. Cole and McCrea (2016) for example, demonstrated
that aside from the natural advantages of improved precision of parameter estimates
and reduced correlation, integrated population models have the additional advantage of
making it possible to estimate some parameters that were not estimable from modelling

the data individually.

There are some problems, however, with the use of integrated population models. For
instance, as in the case of Besbeas et al. (2002), the specialist computer programs or
packages in which the separate component likelihoods are constructed and combined
would be an obstacle to the joint analysis. Also, integrated population models rely on
the assumption that different data sets are independent, which is frequently violated in
practice (Abadi et al., 2010). Besbeas et al. (2009) for example, showed that the danger
of combining recovery information with dependent census data is increased root mean
square errors compared with the case of combining with independent census data. But
Abadi et al. (2010) used simulation methods to assess how the violation of the assump-

tion of independence affects the statistical properties of the parameter estimators. They
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found that this violation had only minor consequences on the precision and accuracy of

the parameter estimates.

This thesis is particularly interested in estimating animal density and its variability
correctly. The integrated Random Encounter Model (iREM) developed in this Chapter
uses an integrated population modelling approach, which combines the speed data and
the encounter data in a single framework. The iREM method is advantageous over
piecemeal approaches as it accounts for the sampling variability of the estimator of
animal speed of movement. iREM also allows for accurate treatment of precision and
correlation in the estimators. The encounter data and animal speed data at WWAP were
collected from separate sources, therefore, they are considered statistically independent,
so their contributions to the likelihood could be multiplied. The next section describes

the iREM method used to estimate animal density.

3.2 The Model

This Section describes the integrated REM for estimating animal density. iREM is
a combined likelihood that simultaneously models the encounter data, y;;, and the
animal speed observations, x = {z1,..., 2}, where i = 1,2,...,c is the camera traps;

j=1,2,...,n is the number of camera trap days. The assumptions of the iREM are
e encounters between animals and camera are independent
e animals move randomly and encounter camera traps independently of each other
e speeds are independent and identically distributed

In an integrated population framework it is assumed that the separate data sets are
independent. In the case of the WWAP data discussed in Chapter 2, Section 2.7, the
encounter data y;; for ¢ = 1,2, ..., c camera traps, and j = 1,2,...,n camera trap days;
and the speed observations x = {z1, z2, ..., zp, } are independent as they were collected
from separate sources (see Rowcliffe et al., 2008). In Section 2.1.1 we derived the
encounter rate formula (as in Hutchinson and Waser, 2007) for animals with variable

speeds, © = {1, 2, ..., Ty, }, showing that the fixed speed (constant speed) is replaced
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by the expected speed, and that the encounter rate formula in REM can be expressed

as

5= (2+0)

rtpyD, (3.2.1)

where p,, is the population mean speed, which is an unknown quantity; ¢ is the duration
of time for which the camera was functioning; 8 is the detection angle of the camera
trap; r is the detection distance; and D is the density (see equation (2.2.5) in Section
2.2). As discussed in Section 2.2, Rowcliffe et al. (2008) used an appropriate estimator,
Z (which is treated as a fixed value) for py. In this Chapter, however, we model the
speed observations, * = {z1,22, ..., %y} and the encounter observations y;;, obtaining

estimates of the density, D and expected speed, pi,.

So suppose we have observed m independent speed observations, i.e., i.i.d, z = {x1, z2, ..., Zm }
from the same density f(x; | piz, v), where l =1,2,...,m, pu, is the expected speed and
v represents any additional parameters in the model. And suppose the encounter ob-
servations have probability mass function h(y;; | A, 7) where X is the encounter rate
formula defined in equation 3.2.1 above, and 7 represents any additional parameter in

the model. Then the joint log-likelihood can be constructed as follows

(= ZZlog h(yij | A, T) + Zlog flz | pay v), (3.2.2)
=1

i=1 j=1
Possible models for the speed data, f(-), are given in Section 3.3. We also provide
possible models for the encounter data, h(-), in Section 3.4. At WWAP some animal
species were found to be moving in pairs or family groups. But as discussed in Chapter
2 (Sections 2.3.3, and 2.9) it can be problematic to estimate average group sizes. It is
worth noting that WWAP study data was a special case, where the group sizes were
independently observable using the cameras (see Section 2.7.1). Group sizes were small
family units (on average 1.80) and it was possible to make counts of the number of
individuals in the group. Rowcliffe et al. (2008) obtained an estimate of average group
size by computing the mean size of the number of detected groups, a method also
recommended by Buckland et al. (2001). In this section we assume study groups are

small, given that the probability of detection depends on the size of the group, and the
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distance. Note that small groups (and their centres) are more likely to be detected within
the detection zone. We assume the group size data follows some discrete distribution
whose support is the set of positive integers. The data for animals moving in groups
is s; where j = 1,2,...,5 is the groups. Suppose the group size data has probability
mass function k(s; | ¢), where ¢ represents the parameters of the model. Then the joint

likelihood becomes

c n m S
0= "> log h(yij | A, )+ log f(xi | pay v) + D log k(s; | ), (3.2.3)
=1

i=1 j=1 j=1

One possible model for the probability mass function of group data, k(-), is given in

Section 3.5.

3.3 Models for animal speed of movement data

We propose four non-negative probability density functions to model animal speed data.

These are as follows:

A gamma distribution with probability density function

(e

foalz | 0, v) = FZE )xo‘_le_”x x, v, a >0, (3.3.1)
«

with expected speed of movement, p, = a/v, and shape parameter, v.

A lognormal model with probability density function

__ 1 _ [log(x) — ¢ .
fon(@ | po, v) = wmexp ( 57 > > 0, (3.3.2)

and with mean u, = exp(e + %V2), and v is the scale parameter;

A Weibull distribution with probability density function

Y £ N O 3.3.3
fwezbull( | aﬁ) B B ) ( )
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and with mean p, = I (1 + %) , and v is the shape parameter;

and finally, a zero-adjusted gamma distribution (ZAGA). Zero-adjusted distributions
are suitable for data where there are animals that are observed to not move, such as in
the WWAP data discussed in Chapter 2, Section 2.7. The probability density function

of the zero-adjusted gamma is

w, for z = 0.
fzaga(l' | w, «, V) = (334)

(1—-w)x %xa_le_”, for z > 0,

where v is the shape parameter, and w is the probability that an animal does not
move. The mean of the ZAGA model is given as p = (1 — w) X v. Whilst the pos-
sibility of forming a zero-adjusted distribution is not limited to a gamma distribution,
as a demonstration we have only considered the gamma distribution. A zero-adjusted
Weibull model or zero-adjusted lognormal model could also be used. Note that zero-
adjusted distributions on zero and the positive real line are a special case of mixed
distributions where the component at zero is a point mass. These distributions are
appropriate when the response variable X takes values from zero to infinity including

zero, that is, [0, 00).

3.4 Models for encounter data

The underlying assumption of REM used in Chapter 2 is that encounters between an-
imals and camera traps follow a Poisson distribution. The Poisson distribution assumes
that the mean and variance are the same but in most cases the variance would be
greater than the mean, and therefore, the distribution would no longer be Poisson. This
is known as overdispersion. For instance, the detection distances of animals generally
vary over the environment since visibility depends on the vegetation. And, according
to Hutchinson and Waser (2007) using a mean detection distance in the encounter-rate
formula for two dimensions would still be valid but this would result in a higher variance
in the encounter rate, and the distribution would no longer be Poisson. For example,
in 2.1.1 we showed that it is possible to use a negative binomial distribution in REM

to estimate the density. Cox (1983) also confirmed that the effects of overdispersion
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include larger variance of summary statistics, and the possible loss of efficiency in using
statistics appropriate for the single-parameter family. If there is overdispersion an ap-
propriate model is a negative binomial (NB) distribution. The negative binomial model
has one parameter more than the Poisson model that adjusts the variance independently

from the mean.

Sometimes the data set may contain more zeros than the expected number from a Pois-
son distribution. For instance some animals may be less mobile than others or the
placement strategies of the camera traps, such as in the WWAP survey and data set
discussed in Chapter 2, Section 2.7 would result in records of more zeros than is expec-
ted for a Poisson model. In this case a zero-inflated Poisson (ZIP) distribution would
be more appropriate to model such data. In other cases, the data may contain more
zeros than usual and also show additional signs of overdispersion. In such situations
a zero-inflated negative binomial (ZINB) distribution would be more appropriate given

its flexibility in modelling both the zeros and the non-zero counts.

Suppose the encounter data, v;;, has probability mass function h(y;; | A, 7). The four
probability mass functions, A(-), proposed for the encounter data are given below. In
each case the parameter \ is replaced by equation (3.2.1) to link to the parameters for

density (D) and animal speed (py).

Poisson REM

A Poisson model with mean A, has probability mass function

e~

Yij!

hpois(yij ‘ )\) = )\yijQ (341)

with variance, Var(y;;) = .

Negative binomial REM (NB REM)

For the negative binomial model case, we take the NB-2 form (Ismail and Zamani, 2013)

with mean A, and probability mass function
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My [ A #) = r(ijii@@ ()\ T m) K ()\ i K)%’a" (3-4.2)

1

where 1/k denotes the dispersion parameter. The variance Var(y;;j) = A + —\2. The
K

NB REM model reduces to a Poisson REM in the limit as 1/k — 0, and displays

overdispersion when 1/x — oco.

Zero-inflated Poisson REM (ZIP REM)

A zero-inflated Poisson (ZIP) model with mean A(1 — p), has probability mass function

p+(1—ple?, fory; =0,

fzip(yij | py A) = (3.4.3)
(1= p)e Vi

N , for yij > 0,
Yij:

where 0 < p < 1 is the probability which inflates the zero response category. The ZIP
REM has variance, Var(y;;) = (1 — p)(A + pA?). The ZIP REM reduces to a Poisson
REM when p = 0 and displays overdispersion when p > 0 .

Zero-inflated negative binomial REM (ZINB REM)

A zero-inflated negative binomial REM (ZINB REM) with mean A(1—p), has probability

mass function

p+(1—p) (/\in)n, for y;; = 0,

f(yij ’ Ky A, P) =

G-I i () () e >o
(3.4.4)

where 0 < p < 1 is the probability which inflates the zero response category; 1/k > 0
is the dispersion parameter. The ZINB REM has variance, Var(y;;) = (1 — p)A + (1 —
p)(p+1/k)A2. When p = 0 the ZINB REM reduces to a NB REM, and reduces to a
ZIP REM when k — oc.
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3.5 Model for group size data

For the data to be considered group data, there must be at least one observed individual,
as in the case of the WWAP data set, discussed in Chapter 2, Section 2.7. Here we
consider a zero-truncated Poisson model (ZTP) to model the group size data whose

support is the set of positive integers. A zero-truncated Poisson (ZTP) distribution

which has mean, g = (1:2_(]5), is defined as
fen(sj | @) = ma 55> 0, (3.5.1)

where ¢ is the mean before truncation. Whilst the possibility of forming a zero-truncated
distribution is not limited to a Poisson distribution, as a demonstration, we have used a
zero-truncated Poisson distribution to model group size data. A zero-truncated negative
binomial distribution could also be used to model group size but this is not considered

in thesis.

3.6  Examples of log-likelihood functions

Below we give an example of the R-codes for the iREM log-likelihood function without

group data and with the group data.

Example 1

In this example we give the log-likelihood function for a poisson iREM for the encounter
data and a gamma model for the speed data. The parameters to estimate density are
held fixed: r = 0.012 (km), 6 = 0.175 (radians), and ¢t = 1 (day). The function estim-
ates the average speed and shape parameter from a gamma model and the density. The
scale parameter is estimated using the estimated average speed and estimated shape
parameter. Using the fixed parameters required for density estimation, estimated aver-
age speed parameter and estimated density parameter, the encounter rate is computed.
The function “gamma.fits” can be optimized using an optimizer such as optim, which

minimizes the negative joint log-likelihood.
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#loglikelihood function to estimate density. Fitting a gamma model

#to animal speed data, x, and a Poisson model to encounter data,y.

theta = 0.175 #fixed detection angle
r = 0.012 #fixed detection distance
t =1 #camera trap time period

#gamma.fits returns the negative loglikelihood

gamma.fits <- function(param,x,y){

mean.speed = exp(param[1])
nu = exp(param[2])
Density = exp(param[3])
alpha = mean.speed*nu
lambda = ((2+theta)/pi)*r*t*mean.speed*Density

-sum(dpois(y,lambda,log=TRUE))-sum(dgamma(x,alpha,nu,log=TRUE))}

Example 2

In this example we add the log-likelihood function for group data to the log-likelihood
functions of the encounter data and the speed data given in example 1 above. The
function “gamma.group” returns the negative joint log-likelihood function. Using the
function optim in R, we can minimize the negative log-likelihood, estimating average
speed, the shape parameter, v, from a gamma model, the mean from the Poisson model

before truncation, ¢, which is used to estimate the average group size, g, and the density.
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#loglikelihood function to estimate density for animals

#moving in groups. Fitting a ZTP to group data, s, a gamma model
#to animal speed data, x, and a Poisson model to encounter data,y.
gamma.group <- function(param,x,y, s){

mu_x = exp(param[1])

nu = exp(param[2])

phi = exp(params[3])

g = phi/(1-exp(-phi))

Density = exp(param[4])/g

alpha = mu_x*nu; lambda = ((2+theta)/pi)*r*t*mu_x*Density

-sum(dpois(y, lambda,log=TRUE))-sum(dgamma(x, alpha, nu, log=TRUE))-

(s*phi - sum(s)*log(phi)+(s*log(l-exp(-phi))))}

3.7 Simulation Study

This simulation study explores the performance of the models, looking at the six fol-

lowing cases:

(i) Firstly, we verify that iREM can be used in realistic settings by fitting a Poisson
iREM and a Poisson REM to encounter data drawn from a Poisson REM (Section
3.7.1).

(ii) Secondly, we explore how important it is to account for overdispersion in encounter
data. To do this we fit a Poisson iREM and a Poisson REM with encounters fol-
lowing a NB REM. We also fit a NB iREM and a NB REM to the same encounters
(Section 3.7.2).

(iii) Thirdly, we explore how important it is to account for zero-inflation in encounter
data. To do this we fit a Poisson iREM and a Poisson REM with encounters
following a ZIP REM. We also fit a ZIP iREM and a ZIP REM to the same

encounters (Section 3.7.3).

(iv) Fourthly, we explore how important it is to account for both zero-inflation and
extra variation in encounter data. To do this we fit a Poisson iREM and a Poisson

REM to encounters simulated from a ZINB REM. We also fit a NBiREM and a NB
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REM to the same encounter data. We compare these models with a ZINB iREM
and a ZINB REM. These results are shown in Section (3.7.4), and in appendix
B.1.3.

(v) Fifthly, we verify that iREM can be used in realistic settings to estimate group
size by fitting a Poisson iREM to encounters simulated from a Poisson REM and

we fit a ZTP to data simulated from the relevant model (Section 3.7.5).

In these five cases we fit a gamma model, a lognormal model or a Weibull model

to animal speed data simulated from the relevant models.

(vi) Sixthly, we verify that iREM can be used in realistic settings where animals are
observed to not move by fitting a Poisson iREM to encounters simulated from a
Poisson REM. As discussed in Section 3.3, some animals are generally less mobile
than others, and therefore, a ZAGA model would be appropriate for data where
there are animals that are observed to not move, as in the case of the WWAP

data discussed in Chapter 2, Section 2.7 (Section 3.7.6).

For the simulations we generate scenarios in which the true density and true animal
speed are plausible ecologically for our motivating WWAP data set. The joint likelihoods
were maximized using the optim function in the R software package (version 3.2.4) with
the default Nelder-Mead algorithm. For each simulation case, the average parameter
estimates (standard error in parentheses), Standard deviation (Sd) and Root Mean
Square Error are computed from 200 simulation runs. Under all scenarios, estimates
from iREM are compared with the maximum likelihood REM framework proposed in
Chapter 2. We use the formula in equation (2.5.2) proposed in Chapter 2 Section 2.5.1

to computer approximate 95% confidence intervals. That is,
(-ﬁLv-DU) — e(ln(ﬁ):ﬁ:l.96XSE{ln(b)})' (371)

where the variance of estimated density is approximated from the inverse Hessian matrix
in optim in R and, therefore the standard error of the logarithm of density (SE {ln(f)) })

can be computed.

68



3.7.1 Testing the performance of the Poisson iREM

The true values and sample sizes used in the simulation process are given in Table 3.7.1

Table 3.7.1: Sample sizes and true values used to simulate data.

Sample sizes True values
trap days (n) speed (m) D e (km/day ™)
1. 40 40 20 0.60
2. 100 100 20 0.60
3. 40 40 100 0.60
4. 100 100 100 0.60
5. 40 40 20 4.60
6. 100 100 20 4.60
7. 40 40 100 4.60
8. 100 100 100 4.60

Table 3.7.2 illustrates the performance of the Poisson iREM under different parameter
settings and sample size conditions. The simulation results show that the Poisson iREM
works under different parameter settings and with small and large sample sizes. When
the sample size is small there can be a small positive bias but, as expected, with larger
sample sizes this bias is minimal and estimation precision improves. REM also provides
similar estimates of the density compared with iREM, however, the estimated stand-
ard errors are smaller in REM than in iREM. The variability in animal speed is not
considered in REM, therefore, as expected, the standard error is underestimated. To
evaluate the performance of iREM the RMSE is calculated, and the results show that
the RMSEs are broadly similar but in most cases the RMSEs from iREM are lower than
REM. For large expected animal speed, the density is accurately estimated with lower
estimates of the standard error compared with a lower value of expected animal speed.
The simulations also show that there is no real difference between the three speed data
models. In Table B.1.1, in appendix B.1, we give the results of estimated density, ex-
pected animal speed and the additional parameters from the speed data models. The
simulation results show that all parameters are estimated well, for example all the true

values are captured within an approximate 95% confidence interval.
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Table 3.7.2: Average density estimates from iREM compared with REM for p, = 0.60 (km/day ')
or gy = 4.60 (km/day™') (average standard errors in parentheses). The Standard deviation (Sd)
and Root Mean Square Error (RMSE) are given.

gamma lognormal Weibull
iREM REM iREM REM iREM REM
D D D D D D
pae = 0.60
D =20;n=m=40
estimate 23 (13.66) 24 (12.58) 23 (13.27) 23 (12.31) 23 (14.52) 24 (12.94)
Sd 9.44 14.00 11.85 12.11 11.91 15.82
RMSE 9.79 14.53 12.18 12.55 12.20 16.41
D =20; n =m = 100
estimate 20 (7.94) 20 (6.68) 20 (7.37) 20 (6.72) 21 (8.36) 20 (6.86)
Sd 6.07 7.75 7.15 7.36 7.34 8.46
RMSE 6.09 7.75 7.16 7.36 7.36 8.51
D =100; n =m = 40
estimate 106 (42.28) 106 (24.32) 105 (36.56) 106 (25.58) 109 (47.97) 112 (25.80)
Sd 45.54 45.18 37.30 38.66 50.15 52.16
RMSE 45.92 45.53 37.55 39.17 50.87 53.34
D = 100; n = m = 100
estimate 102 (25.55) 102 (14.62) 100 (21.68) 102 (14.66) 102 (28.26) 104 (14.90)
Sd 26.41 26.41 21.17 22.47 26.94 29.07
RMSE 26.47 26.46 21.17 22.57 27.01 29.29
pa = 4.60
D =20;n=m =40
estimate 20 (3.84) 20 (3.70) 22 (8.25) 23 (4.11) 20 (3.82) 20 (3.68)
Sd 3.75 3.76 8.13 8.85 3.73 3.74
RMSE 3.76 3.77 8.38 9.21 3.74 3.74
D =20; n =m = 100
estimate 20 (2.38) 20 (2.30) 20 (4.90) 21 (2.41) 20 (2.38) 20 (2.29)
Sd 2.33 2.33 4.90 5.73 2.44 2.44
RMSE 2.33 2.33 4.91 5.79 2.44 2.44
D =100; n =m =40
estimate 100 (8.23) 100 (8.10) 101 (10.68) 101 (8.15) 100 (8.23) 100 (8.11)
Sd 7.95 7.96 10.28 10.28 7.79 7.79
RMSE 7.95 7.96 10.29 10.30 7.79 7.79
D =100; n =m = 100
estimate 100 (5.21) 100 (5.13) 100 (6.79) 101 (5.14) 100 (5.21) 100 (5.13)
Sd 5.33 5.31 6.88 6.85 5.23 5.23
RMSE 5.35 5.32 6.90 6.87 5.24 5.24
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3.7.2 Investigating the importance of accounting for overdispersion in encounter

data

The performance of the Poisson iREM is also investigated when there is extra variation
in the data. Encounter data are simulated from a NB REM and we fit a Poisson iREM
and a NB iREM to the encounters, for n = 40 or n = 100 camera trapping days and
m = 40 or m = 100 animal speed observations, where for illustration the parameter
values used were based upon reasonable values that might be applicable for real species.
We set k = 0.25, to illustrate large variance in the encounters, and for expected animal
speed, we set p, = 2.60 (km/day ') or p, = 8.60 (km/day~'). The encounter rate
is a function of expected speed, therefore, the smaller the value of y, the smaller the
encounter rate, particularly, for small density values. Therefore, appropriate values of
1, were chosen to generate encounters plausible from a NB REM. The density was set

to D =20 or D = 100 to represent small and large densities of animals.

Table 3.7.3 gives the estimated density from fitting a Poisson iREM and a NB iREM
to encounter data. Estimated densities from iREM are also compared with estimates
from REM proposed in Chapter 2. The simulation results reveal that induced-variation
in the Poisson iREM introduced a negative bias for large density values and an under-
estimation of the standard error of the density that is at least 2.5 times lower than the
estimated standard error from the NB iREM. For small density values, however, the
Poisson iREM gave similar estimates of the density to the NB iREM but the standard
errors are underestimated, however, this underestimation is not as severe (at least 1.5
times lower) as in the case of large density values. In all scenarios, REM gave similar
estimates of the density from iREM but REM gave smaller estimates of the standard
error of the density. As expected the NB iREM gave smaller RMSEs, and, as sample

sizes increase, the RMSE reduces.

We also investigated the performance of the Poisson iREM for a larger expected speed of
movement. The simulation results are given in Table 3.7.4, which show smaller estimated
standard error of the density compared with the results from a smaller expected speed,

e in Table 3.7.3. As in the case of the lower expected speed (p, = 2.60 km/day 1),
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under large density conditions the estimated standard error of the density from fitting a
Poisson iREM to encounter data is at least 2.5 times lower than the estimated standard
error from fitting a NB iREM to the same encounter data, and at least 2 times lower
under small density values. As expected, REM gave relatively accurate estimates of
the density but obtained smaller estimates of the standard error, and in all cases, the
RMSEs from the NB iREM is lower that those from the Poisson iREM or REM. Also,

increasing sample size improves estimation and its precision.

In appendix B.1.1 we give the estimates of the density, the dispersion parameter, ex-
pected animal speed and the additional parameters from the speed data models. Table
B.1.2 gives the parameter estimates from a Poisson iREM, while Tables B.1.3 and B.1.4
give the parameter estimates from a NB iREM. The simulation results show that all
parameters are estimated with reasonable accuracy, for example all the true values are

captured within an approximate 95% confidence interval.

Finally, under all parameter settings, the simulation results reveal that there is no real

difference between the three speed data models.
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3.7.3 Investigating the importance of accounting for zero-inflation in encounter

data

To be able to test the performance of the Poisson iREM in the case of zero-inflation, we
fit a Poisson iREM to encounter data simulated from a ZIP REM. For the probability
of the zero-response category, we set p = 0.30, and for the expected animal speed, we
set py = 4.60 (km/day~!). The survey effort is n = 40 or n = 100 camera trapping

days, and m = 40 or m = 100 animal speed observations.

Table 3.7.5 illustrates the performance of the Poisson iREM when there is zero-inflation
in the encounter data. The simulation results (Table 3.7.5) show that induced-zero-
inflation introduced a strong negative bias in estimated density from the Poisson iREM,
and an underestimation of the standard error of the density under all scenarios. The
bias introduced in REM is similar to iREM but the estimated standard errors of the
density are substantially smaller. The simulation results also reveal that there is no real

difference between the three speed data models.

Table B.1.5 (in appendix B.1.2) gives the simulation results of the estimated parameters
from fitting a Poisson iREM to encounters simulated from a ZIP REM. These include
average estimates of the density, expected animal speed and the additional parameters
from the three speed data models. While Table B.1.6 (in appendix B.1.2) gives the
estimated parameters from a ZIP iREM, which includes the density, the probability of
the zero-response category, p, expected animal speed, p,, and the additional parameters
from the three speed data models. The results show that all parameters, except in
the case of the density estimated from the Poisson iREM, are estimated well and are

captured within an approximate 95% confidence interval.
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3.7.4 Investigating the importance of accounting for zero-inflation and overd-

ispersion in the encounter data

We also test the performance of the Poisson iREM and the NB iREM by fitting these
models to data simulated from a ZINB REM. Simulations are conducted for survey
efforts of n = 40 or n = 100 camera trapping days, and m = 40 or m = 100 animal
speed observations. We set k = 0.10, and the probability of the zero-response cat-
egory p = 0.10. For the density, and expected speed we set D = 20 or D = 100, and
tte = 6.60 (km/day '), respectively.

The simulation results are given in Table B.1.7 and Table B.1.8, in appendix B.1.3. The
simulation results reveal that induced-variation and induced-zero-inflation in a Poisson
iREM introduced a slight negative bias and an underestimation of the standard error
that is at least 3 times smaller than that from the ZINB iREM model for small density
values. But for larger density values, the bias is much larger and the underestimation
of the standard error is even worse, the estimated standard error of the density from
a Poisson iREM is at least 6 times lower than that from the ZINB iREM. REM gave
similar estimates of the density as the iREMs but it underestimates the standard error

of the density.

The NB iREM and ZINB iREM gave similar estimates of the density and standard error
for small density values, but for larger density values a negative bias is introduced from

the NB iREM and the standard error of the density is underestimated.

Based on these results it can be argued that the use of the underlying Poisson model
in REM should be taken with care as larger variance and zero-inflation can induce
estimation bias and underestimation of variance for scenarios that can be considered
ecologically realistic. In particular, when zero-inflation is allowed in the Poisson iREM,
the true density is not captured within an approximate 95% confidence interval. If the
variance of the encounters is large the Poisson iREM would give stable estimates of the
density but the standard error would be underestimated. Therefore, it is advisable to

take this into account when deciding on a suitable distribution to model counts observed

7



on camera traps, rather than assuming that the underlying Poisson model in REM is
generally the best model for encounter records. A similar conclusion can be drawn for
the use of REM, which gave stable estimates of the density but gave smaller estimates of
the standard errors compared with iREM. It is worth iterating that REM does not take
into account the sampling variability of speed, therefore, we expect an underestimation

of the standard error in REM.

3.7.5 Testing the performance of the Poisson iREM where animals move in groups

The simulation results for animals moving in groups are given in this section. Group
size data were simulated from a zero-truncated Poisson (ZTP), and as a demonstration
we fit a Poisson REM to encounter data, and we fit a gamma model to the animal speed

data. For group data, s;(j = 1,2,...,n), the mean from a ZTP model is given as

____ ¢
1 —exp(—¢)’

where ¢ is the mean from the Poisson model before truncation. In the simulations, es-

E(sj) =g

timations are obtained for the mean, ¢, of the Poisson model before truncation and this
is used to compute average group size, g. For the mean before truncation parameter,
we set ¢ = 2.65, hence, average group size, g = 2.85. For the density, we set D = 100 or
D = 20, and the sampling design has n = 40 or n = 100 camera trapping days, m = 40
or m = 100 animal speed observations, and group data sample size S = 10 or S = 50.
The parameters used to estimate density are » = 0.012 (km), § = 0.175, t = 1 (day),

and expected speed, ji, = 0.70 (km/day1).

Table 3.7.6 gives the simulation results for a small sample of S = 10 group sizes.
The simulations show that the model works well under different scenarios for small
sample sizes of groups. Increasing the sample size improves estimation and precision,
as expected. When the sample sizes of groups is large (S = 50) estimated standard
errors are smaller compared with smaller sample sizes of groups (S = 10). These results
are given in Table 3.7.7, with the estimated standard error (in parentheses), Standard

deviation (Sd) and Root Mean Square Errors (RMSE).
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3.7.6  Testing the performance of the Poisson iREM for animals with observed zero

speed of movement

As discussed in Section 2.7.1 Rowcliffe et al. (2008) used day range to derive an approx-
imate estimator of speed. Ten (10) focal watches, for each species, distributed evenly
between 08:00-18:00 were conducted to monitor movement, and control for variation in
movement patterns. Arbitrary animals were selected and followed around for 30 minutes
during each focal watch, recording the total distance travelled during that time as the
sum of all straight-line movements. Day range was then calculated as the mean across
all focal watches for that species. Hence, the distribution of speeds over this short-time
period was then used as the distribution of speeds over the entire trapping period. It
was noted that during the period the animals were followed around, some of them were
observed to not move, hence, there are records of zero speeds. We expect that these
observed zero speeds would have an effect on estimated density. Note that in REM
density is estimated as

A A s

D= ¥m, (3.7.2)
where r and 0 are the detection distance and detection angle of the camera trap, re-
spectively, and ¢ is the camera trap time period. These parameters are held fixed.
The parameter v is the mean speed. So including the observed zero speeds would
result in a smaller estimate in the average speed, and hence, a larger estimate of
the density compared with the density estimated density from excluding the observed
zero speeds. For example, suppose we have m = 4 speed observations such that
v = {0.453,0,1.865,0}. Let o = 0.5795 (km/day '), the mean speed including the
observed zeros, and 7, = 1.159 (km/day '), the mean speed excluding the observed

zeros, therefore, we would expect the density D, estimated using v to be larger com-

pared with the density Dy estimated using v1.

In this section we explore how a zero-adjusted gamma model works in estimating the
density. As a demonstration we fit a Poisson iREM model to the encounter data. We also
examine the fit of the gamma model with the observed speeds, excluding the zeros, and

we compare estimates from iREM with estimates from REM. First, we test the ZAGA
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model using large and small values of the density; D = 100 (km?) or D = 20 (km?) with
a probability of the zero-response category set to w = 0.30, and sampling effort of the
camera trap days and speed observations set to n = 40; m = 40 or n = 100; m = 100.
The number of speed observations, m, is considered to be reasonably large, that is,
greater than 30. The results are given in Table 3.7.8. The simulation results (3.7.8)
indicate that the model works well in estimating the density for the given set of para-
meter values and sample sizes. Also, estimation precision improves when sample sizes
increase. REM and iREM gave similar estimates of the density but REM gave smaller

estimates of the standard errors and larger RMSEs.

Second, we examine the fit of the ZAGA model and the gamma for parameter values
and sample sizes that reflect our WWAP data set. In Table 3.7.9 we give the results
from fitting iREM and REM where animal speed is assumed to follow a ZAGA model
or a gamma model. The density D = 468 (km?) or D = 119 (km?); the expected speed
is 1, = 0.71 (km/day 1) or p, = 1.17 (km/dayil), respectively, and the probability
of the zero-response category is w = 0.21 or w = 0.40, respectively. For each scenario,
we set the number of the speed observations to m = 10, which is the sample size of the
observed speeds for the WWAP data. We compare estimates of the density for larger
sample sizes of the speed observations: m = 40 or m = 70. The number of camera
trapping days, n = 42, which is the number of camera trapping days for the WWAP
survey, is held fixed. The results (Table 3.7.9) show that for the ZAGA model, a pos-
itive bias is introduced for all scenarios and this bias is substantial for smaller sample
sizes of the speed observations, in particular, when the density is large (D = 468 km?).
But for the gamma model the bias introduced when the sample size is small is much
smaller, and the model appears to provide better estimates of the density compared
with the ZAGA model. It is worth reiterating that including the observed zeros would
give smaller estimates of the mean speed and, hence, inflate the density. This implies
that the estimated mean speed from excluding the zeros would be larger, and hence,
provide a smaller estimate of density. We give the sample sizes of the speed observa-
tions, excluding the zeros, for the first 6 simulation runs in Table 3.7.11. For example
when D = 119 (km?) (Table 3.7.9), the first sample size simulated for the speed ob-

servations, excluding the zeros, and used in the gamma model is 4 (Table 3.7.11, Case
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(4)), which suggests that 6 out of the 10 simulated speeds are zeros. A sample size
of 4 is a rather small sample size, therefore, we would expect a larger estimate of the
mean speed, hence, a smaller estimate of the density, compared with the estimated
mean speed for this same scenario from a ZAGA model which would provide a larger
estimated density. In Table 3.7.9 average estimated densities with the true sample size,
m = 10 used in the simulation process are: D = 166.08 (0.27) (km?) for the ZAGA
model and D = 92.68 (39.23) (km?) for the gamma (average estimated standard errors
in parentheses). On the other hand, the evidence shows that the ZAGA model provides
reasonably accurate estimates of the density when m increases but a negative bias is

introduced from the gamma model, which increases with sample size (see Table 3.7.9).

Finally, we examine the fit of the ZAGA model and the gamma model for a small fixed
sample size of the speed observations m = 10 and increasing probabilities of the zero-
response category. We set D = 68 (km?) or D = 468 (km?), which reflects the density
from the census for two species at WWAP. The probability of the zero-response category
is set to w = 10, w = 20, or w = 30. The number of camera trap days is set to n = 42.
The results are given in Table 3.7.10. The simulation results show that for small m and
small w (= 0.10) the bias introduced from a ZAGA model when D (= 68 km?) is much
smaller (and positive) compared with larger values of the density (D = 468 km?). Also,
the bias increases with increasing values of w. For the gamma model, when the density
is small a negative bias is introduced, which increases with increasing values of w, and
the bias is larger compared with the bias from a ZAGA model. On the other hand,
when the density is large the bias introduced from the gamma model is smaller (and
positive) compared with the bias produced by the ZAGA model, in particular, when
w = 0.20. Note that we expect to have more non-zero speed observations in the sample

for reasonably small values of w (see for e.g., sample Case (11) in Table 3.7.11).

Based on these simulation results we can conclude that the size of the density, the sample
size of the speed observations and the size of the probability of the zero-response category
would have an effect on estimated density. If there are observed zeros in the speed data,
it is important to model these but we would recommend, where possible to increase

survey effort, particularly for the speed observations and, if there are more zeros than
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expected. One important point to note is that the WWAP survey is a special case where
independent estimates of the speed and average group size were obtained by following
the animals around, and during this time period some animals were observed to not
move. As discussed in Section 2.1 the speed of movement of an animal is assumed to be
constant but this speed may vary between animals. However, whether an animal varies
it speeds or move at a fixed speed (or stop altogether) is not as important as the total
distance covered by the individual over the trapping period, since this is what determines
the probability of encounter. And since we are interested in the mean across animals
of the mean speed over time for each individual, we need to include the observed zero
speeds in estimating that mean, to avoid bias. But as shown, at least 60 observations are
required to provide reasonably accurate estimates of the density when the probability of
the zero-response category is high, and when the density is large. But for small density
values, and if the probability of observing zero speeds is low then smaller sample sizes

can provide reasonably accurate estimates of the density.

Table 3.7.8: Average parameter estimates for animals with observed zero
speed of movement (average standard errors in parentheses). The following
are the true values; u, = 0.71 (km/day~!) and w = 0.30. The Standard
deviation (Sd) and Root Mean Square Error (RMSE) are also given.

Poisson iREM Poisson REM

D [ w D
D =100, n=m =40
estimate 103 (31.79) 0.73 (0.17) 0.29 (0.10) 105 (21.79)
Sd 29.27 0.16 0.07 32.47
RMSE 866.81 0.03 0.005 1079.09
D =100, n =m = 100
estimate 101 (19.61) 0.72 (0.10) 0.30 (0.07) 102 (13.28)
Sd 17.12 0.09 0.04 18.43
RMSE 294.20 0.01 0.02 342.58
D =20, n=m =140
estimate 21 (10.96)  0.74 (0.17)  0.29 (0.10) 22 (10.71)
Sd 8.07 0.17 0.06 11.28
RMSE 65.77 0.03 0.004 129.76
D =20n=m =100
estimate 20 (6.65)  0.72 (0.10) 0.30 (0.07) 20 (6.11)
Sd 5.33 0.10 0.04 6.12
RMSE 28.37 0.01 0.002 37.54
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3.8 Application of iREM to WWAP data set

Here we illustrate the application of iREM using the WWAP data set for the four
species: wallaby, which is discussed in Section 3.8.1; water deer, which is discussed in
Section 3.8.2; muntjac, which is discussed in Section 3.8.3; and mara, which is discussed
in Section 3.8.4. Estimates of the density for animals with observed zero speed of move-
ment are given in Section 3.8.5, while estimates of density for species moving in family
groups are given in Section 3.8.6. Given that the underlying distribution in REM is
the Poisson model, estimates from a Poisson REM are compared with estimates from
iREM where encounters are assumed to follow a Poisson model. These results are given
in Section 3.8.7. We use the formula provided in equation (3.7.1) in Section 3.7 above

to compute approximate 95% confidence intervals of the density.

As discussed in Chapter 2, Section 2.7.1 and Section 3.7.6 above Rowcliffe et al. (2008)
conducted 10 focal watches between 08:00 and 18:00 during the WWAP survey to mon-
itor and record movement patterns of animals to estimate average speed and average
group size. During each focal watch, arbitrary animals were selected and followed
around for 30 minutes. It was observed that some animals did not move during this
time period, hence, zero speeds were recorded. We, therefore, illustrate iREM using
the data with the observed zeros and without the observed zeros. Appropriate models
are used to account for the observed zeros, and where the zeros are excluded from the
model. A summary of the speed data, excluding the observed zero speed from Rowcliffe
et al. (2008) is given in Table 3.8.1. The number of animal speed data for each species
is m = 10. This data set is used in the analysis where animal speed is assumed to follow
a ZAGA model. The speed data, excluding the observed zero speeds, is used in the
analysis where animal speed is assumed to follow a gamma model, a lognormal model
or a Weibull model. The coefficient of variation, C,% expressed as a percentage, for
each species is also given. The C,% for each species is huge, and for both cases where
the observed zero speeds are included or excluded from the analysis. This suggests that

the variability in the speed data is substantial.
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Table 3.8.1: Summary of the mean speeds, mean encounters and sample size of speeds
(standard error in parentheses). The coefficient of variation (C,%) expressed as a per-
centage is also given

mean speed Sample size mean speed
without zeros, without zero with zeros, Average group size,
. -1 _. -1
Species ¥, in km/day C.% (m) 7, in km/day Co% g
mara 3.66 (1.35) 97% 7 2.56 (1.08) 133% 1.80 (0.40)
muntjac 8.27 (1.92) 73% 10 8.27 (1.92) 73% 1.50 (0.28)
wallaby 0.88 (0.43) 138% 8 0.71 (0.36) 160% 1(0)
water deer 1.95 (0.60) 75% 6 1.17 (0.47) 127% 1 (0)

3.8.1 Estimated density of the wallaby species

Table 3.8.2 shows the parameter estimates of the wallaby species and the AAIC values.
The three speed data models gave similar estimates of the parameters but the results
suggest that a lognormal model is the best model for the speed data of the wallaby
species (Table 3.8.2). The results also show that a NB iREM model fits the wallaby
data set substantially better than all models, except for the ZINB iREM model which
fits closely to the NB iREM model. NB iREM and ZINB iREM gave similar estimates
to two decimal places. The results also show that a Poisson iREM, NB iREM and ZINB
iREM gave similar estimates of the density but a Poisson iREM slightly underestimates
the standard error. The results show that there is overdispersion in the data, which
may have caused the underestimation of the standard error in a Poisson iREM. Note
that as k increases the variance of the encounter data decreases and the model tends
to a Poisson iREM. While the estimated densities are not close to the density from
the census, the estimated standard errors are large enough to capture the density from
the census within an approximate 95% confidence interval. The AAIC values show no

support for allowing for zero-inflation.
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Table 3.8.2: Parameter estimates of the wallaby species from the different iREM being fitted
to the data (standard error in parentheses). The AAIC values for the different iREM are also

given.

Speed data models

Poisson

Count data models

NB

71P

ZINB

Census (D) = 468

gamma
D 653 (243.20) 653 (249.55) 763 (283.85) 653 (249.51)
[l 0.88 (0.65) 0.88 (0.66) 0.88 (0.65) 0.88 (0.66)
1% 1.03 (0.59) 1.03 (0.59) 1.03 (0.59) 1.03 (0.59)
k - 0.95 (0.14) - 1.06 (0.15)
p - - 0.14 (0.03)  3e-07 (0.0001)
lognormal
D 633 (336.29) 634 (340.70) 739 (392.60) 633 (340.57)
fiz 0.91 (0.50) 0.91 (0.52) 0.91 (0.50) 0.91 (0.52)
v 1.16 (0.29) 1.16 (0.29) 1.16 (0.29) 1.16 (0.29)
k - 0.95 (0.14) - 1.06 (0.15)
p - - 0.14 (0.03)  4.26e-06 (0.0003)
‘Weibull
D 659 (261.70) 659 (267.72) 768 (305.42) 662 (268.92)
fiz 0.87 (0.04) 0.87 (0.10) 0.87 (0.04) 0.87 (0.10)
1% 0.89 (0.23) 0.89 (0.23) 0.89 (0.23) 0.89 (0.23)
k - 0.95 (0.14) - 1.06 (0.15)
p) - - 0.14 (0.03)  9.5¢-05 (0.002)
AAIC values by iREM models
gamma 407.46 1.16 310.96 3.16
lognormal 406.30 0 309.80 2.00
‘Weibull 407.30 1.00 310.82 3.54

3.8.2 Estimated density of the water deer species

The parameter estimates and the AAIC values for the water deer species are given in
Table 3.8.3. The ZINB iREM gave estimates that are reasonably close to the density
from the census (D = 119), in particular when the speed of movement is assumed to
follow a gamma model or a Weibull model. When the speed of movement is assumed to
follow a lognormal model the difference in estimated density and the density from the
census is quite large. The results show strong support for allowing for overdispersion in

the model but no support for allowing for zero-inflation.

90



According to the AAIC values the NB iREM where animal speed is assumed to follow
a Weibull model has been selected as the best model that explains the water deer data
set. But the NB iREM where animal speed is assumed to follow a gamma model and
ZINB iREM where animal speed is assumed to follow a Weibull model fit closely to the
NB iREM where the speed data is assumed to follow a Weibull model, suggesting that
there is no real difference between these models. For all models, the density from the

census is captured within an approximate 95% confidence interval.

Table 3.8.3: Parameter estimates of the water deer species from the different iREM
being fitted to the data (standard error in parentheses). The AAIC values for the
different iREM are also given.

Count data models

Poisson NB ZIP ZINB
Speed data models Census (D) = 119
gamma
D 91 (36.76) 91 (38.29) 174 (70.35) 115 (55.95)
fi 1.95 (2.54) 1.95 (2.58) 1.95 (2.55)  1.95 (2.57)
17 0.54 (0.35) 0.54 (0.35) 0.54 (0.35)  0.54 (0.35)
k - 0.51 (0.10) - 1.21 (0.75)
b - - 0.48 (0.09)  0.27 (0.32)
lognormal
D 59 (47.60) 60 (48.19) 113 (91.00) 75 (63.60)
fio 3.00 (0.70) 2.99 (0.72) 2.99 (0.70)  3.00 (0.71)
17 1.39 (0.40) 1.39 (0.40) 1.39 (0.40)  1.39 (0.40)
k - 0.51 (0.10) - 1.20 (0.74)
p - - 0.48 (0.09)  0.28 (0.32)
‘Weibull
D 92 (33.16) 92 (34.89) 176 (63.56) 117 (52.50)
fi 1.94 (0.10) 1.94 (0.14) 1.93 (0.10)  1.93 (0.14)
D 1.15 (0.41) 1.15 (0.41) 1.15 (0.41)  1.15 (0.41)
k - 0.51 (0.10) - 1.21 (0.75)
b - - 0.48 (0.09)  0.27 (0.32)
AAIC values by iREM models
gamma 143.96 0.14 36.38 1.60
lognormal 146.44 2.62 38.86 4.08
‘Weibull 143.82 0 36.24 1.46
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3.8.3 Estimated density of the muntjac species

The muntjacs were observed to be moving in pairs or family groups, and the density
estimated in REM is that of the group instead of the individual density. To obtain
the individual density, Rowcliffe et al. (2008) multiplied the density of the group by an
independent estimate of average group size, g = 1.50 (Table 3.8.1). Here we multiplied
the estimated density by average group, g, to give the individual density, and the results
and AAIC values are given in Table 3.8.4.

The results from fitting a Poisson iREM, a NB iREM, a ZIP iREM and a ZINB iREM
(Table 3.8.4) show that the ZINB iREM gave better estimates of the density than
the other models with the estimated density from the ZINB iREM being closer to the
density from the census. The results also indicate that the ZINB iREM is the best
model that explains the muntjac data (Table 3.8.4). There is some support for allowing
zero-inflation in the model. For the ZINB iREM and the ZIP iREM the density from
the census is captured within an approximate 95% confidence interval but the Poisson

iREM and the NB iREM fail to do so.
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Table 3.8.4: Parameter estimates of the muntjac species from fitting iREM (standard
error in parentheses). The AAIC values for the different iREM are also given.

Count data models

Poisson NB ZIP ZINB
Speed data models Census (D) = 13
gamma
D 8 (1.94) 8 (2.19) 23 (6.92) 16 (10.65)
fl 8.27 (14.70) 8.27 (14.80) 8.27 (14.77)  8.28 (14.98)
v 0.27 (0.12) 0.27 (0.12) 0.27 (0.12)  0.26 (0.12)
k - 0.37 (0.15) - 0.63 (1.17)
p - - 0.67 (0.20)  0.52 (0.62)
lognormal
D 7 (2.21) 7 (2.43) 22 (7.55) 15 (10.68)
fi 8.52 (0.37) 8.52 (0.43) 8.52 (0.40)  8.52 (0.42)
v 0.74 (0.17) 0.74 (0.17) 0.74 (0.17)  0.74 (0.17)
k - 0.37 (0.15) - 0.64 (1.19)
p - - 0.67 (0.20)  0.52 (0.63)
Weibull
D 8 (1.92) 8 (2.18) 23 (6.86) 16 (10.72)
fi 8.32 (0.15) 8.32 (0.16) 8.32 (0.16)  8.32 (0.16)
v 1.53 (0.36) 1.53 (0.36) 1.53 (0.36)  1.53 (0.30)
k - 0.37 (0.15) - 0.64 (1.20)
p - - 0.67 (0.20)  0.52 (0.63)
AAIC values by iREM models
gamma 21.24 0.08 1.00 0
lognormal 21.62 0.44 1.36 2.00
Weibull 21.60 0.44 1.34 1.98

3.8.4 Estimated density of the mara species

The mara species was also observed to be moving in pairs and family groups, and the
estimate of the density from iREM is the density of the group. The individual density is
obtained by multiplying estimated density of the group by an independent estimate of
average group size, g = 1.8, given in Table 3.8.1 above. At WWAP, camera traps were
not randomized nor were they set on trails in the area where the mara inhabited. These
traps were placed nonrandomly and away from the areas where the mara frequented,
which resulted in low trap rates, and which would explain the dramatic underestimation
of the mara abundance. Table 3.8.5 gives the parameter estimates of the mara species.

The results show that & is substantially large, suggesting a Poisson iREM would be
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more appropriate to fit the data than other models such as a negative binomial model,
and as indicated by the AAIC values. The NB REM proposed in this Chapter for the
encounter observations, y;; has variance, Var(y;;) = A+(1/#)\?, and as 1/& — 0 the NB
iREM tends to a Poisson iREM. It is worth noting that the sample size of the encounter
data for mara species is rather limited (see Table 2.7.1 in Section 2.7.1), which may be
a reason for the huge estimates of x. While the AAIC values indicate that the Poisson
iREM where animal speed is assumed to follow a gamma model is the best model that

explains the data set of the mara species, there is not much difference in AAIC between

the other speed data models.

Table 3.8.5: Parameter estimates of the mara species from fitting various iREMs
(standard error in parentheses). The AAICfor the different iREMs are also given.

Count data models

Poisson NB 71P ZINB
Speed data models Census (D) = 68
gamma
D 4 (2.00) 4 (2.00) 4 (2.00) 4 (2.14)
fia 3.65 (11.26) 3.66 (11.29) 3.66 (11.30)  3.61 (10.97)
v 0.22 (0.14) 0.22 (0.14) 0.22 (0.14)  0.22 (0.14)
k - 1.09e+07 (2.39e+08) - 0.0001 (0.02)
p - - 4e-05 (0.01)  0.01 (0.18)
lognormal
D 3 (2.32) 3 (2.32) 3 (2.52) 3 (2.36)
i 5.03 (0.78) 5.03 (0.78) 5.08 (0.78) 5.01 (0.78)
v 1.46 (1.29) 1.46 (0.39) 1.47 (0.39)  1.47 (0.39)
k - 6.50e+07 (8.27e+08) - 0.0002 (0.03)
p - - 0.03 (0.30)  0.002 (0.09)
Weibull
D 4 (2.02) 4 (2.12) 4 (2.02) 4 (2.02)
flz 3.68 (0.65) 3.68 (0.65) 3.68 (0.65) 3.69 (0.66)
1% 0.89 (0.28) 0.88 (0.28) 0.88 (0.28) 0.88 (0.28)
k - 4.05e+08 (1.79e-+09) - 0.0004 (0.04)
p - - 5e-05 (0.01)  0.001 (0.05)
AAIC values by iREM models
gamma 0 2.00 2.00 4.00
lognormal 0.95 2.95 2.95 4.95
Weibull 0.09 2.20 2.20 4.20
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3.8.5 Estimated density of animals with observed zero speed of movement

Table 3.8.6 gives the estimates of the density of species with observed zero animal speed.
The estimates associated with animals that did not move about much, and therefore,
have a zero record of speed of movement suggest that these zeros do have an effect on
estimated density. As shown by the simulation results in Section 3.7.6 for large density
values and small sample size of the speed observations, estimated density is inflated
because of a smaller estimate of the expected speed. For the wallaby and water species
the density from the census is large and the probabilities of observing a zero speed are
also reasonably large, so we expect the estimated density to be inflated. Note that the
sample size for the speed observations is rather small (m = 10) and the evidence in
the simulation study (Section 3.7.6) showed that for such small sample sizes and, in
particular, for larger values of the density, a positive bias would be introduced, and
this bias would be substantial. When we examine the estimates of the density where
the observed zero speeds are excluded from the model (Sections, 3.8.1, 3.8.2 and 3.8.4
above) we see that the bias introduced is much smaller compared with the bias from
fitting a ZAGA model. These results are expected, and are similar to the results given
in the simulation study (see Section 3.7.6). This evidence suggests that the sample
sizes are too small, and the ZAGA model would provide better estimates of the density
if we sample more speed observations. For the mara species, we expect the estimated
density to be small because of the low trapping rate. Therefore, a Poisson iREM may be
more appropriate to model encounter data with limited data as indicated by the huge
estimate of k. Note that the muntjacs were considerably more mobile than the other
species, and therefore, no record of zero speed of movement. The results also show that
for species with higher trapping rates (wallaby and water deer) there is more support
for models that allow for overdispersion in the data, while the Poisson iREM is more

appropriate for animals with low trap rates such as the mara species (Table 3.8.7).
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Table 3.8.6: Parameter estimates from fitting different iREMs to speed observations
distributed by a ZAGA model (standard error in parentheses).

Count data models

Poisson

S U>tzd S v P

1P

ESTIESIIANY ?5) U>

ZINB

RS TERSNEE NN §> -]

Species
wallaby water deer mara

816 (330.23) 152 (72.73) 5 (3.06)
0.66 (0.76) 0.65 (1.28) 2.56 (2.89)
0.88 (0.33) 1.95 (0.78) 3.66 (1.55)
0.25 (0.20) 0.67 (0.43) 0.30 (0.21)
816 (337.58) 152 (74.89) 5 (3.06)
0.71 (0.80) 1.17 (1.33) 2.56 (2.89)
0.88 (0.33) 1.95 (0.78) 3.66 (1.55)
0.95 (0.14) 0.51 (0.10) 2.00e+05 (3.91e+408)
0.20 (0.16) 0.40 (0.26) 0.30 (0.21)
952 (385.18) 310 (145.41) 5 (3.62)
0.66 (0.76) 0.62 (1.19) 2.55 (2.88)
0.88 (0.33) 1.81 (0.70) 3.63 (1.54)
0.25 (0.20) 0.87 (0.16) 0.30 (0.21)
0.17 (0.04) 0.66 (0.43) 0.03 (0.32)
882 (249.55) 192 (105.55) 5 (3.13)
0.88 (0.66) 1.17 (2.40) 2.54 (131.62)
1.03 (0.59) 1.96 (0.78) 3.63 (1.54)
1.06 (0.15) 1.21 (0.75) 1.62e-8 (7.04e-23)
0.24 (0.18) 0.21 (0.25) 0.30 (0.21)
0.001 (0.01) 0.40 (0.26) 0.003 (1.74)
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Table 3.8.7: AAIC from different iREMs
where animal speed follows a ZAGA.

Count data models
Poisson NB ZIP ZINB

Species

wallaby 406.30 0 690.18  2.14
water deer  155.96  12.14  48.47 0
mara 0 2.00 2.01 4.00

3.8.6  Estimated density of animals moving in groups

At WWAP the maras and muntjacs were the only species to be found moving in pairs
or family groups. We provide estimates of the density by including group size data in
iREM. Table 3.8.8 gives the results of the mara species. The results show that including
group size data in iREM to estimate density of the mara species induced a moderate, but
even worse, change in density estimation across all models. Also, including group size
in the model for the muntjac species induced an underestimation of the density when
allowing for zero-inflation and overdispersion (Table 3.8.9), compared with the estimates
resulting from multiplying density and a fixed value of average group size. However, by
only allowing for zero-inflation the density estimated from the model improves and is
nearer to the density from the census. For models which do not allow for zero-inflation
(Poisson iREM and NB iREM) estimated density is less accurate, which resulted in
the density from the census not being captured within an approximate 95% confidence
interval. The average group size, g, is estimated exactly as that in Rowcliffe et al. (2008)
for both species but it is worth noting that ¢ is relatively small (less than 2), which

might suggest that animals are still moving individually.
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Table 3.8.8: Parameter estimates from fitting different iREMs to the mara species
data. Estimates of average group size are given (standard error in parentheses).

speed data models

gamma lognormal Weibull
P0i§son
D 2 (1.17) 1(1.32) 2 (1.17)
e 3.66 (1.55) 5.03 (4.00) 3.68 (1.59)
1 0.22 (0.14) 1.46 (0.39) 0.88 (0.28)
g 1.80 (0.30) 1.80 (0.30) 1.80 (0.30)
NAB
D 2 (1.16) 1(1.32) 2 (1.17)
[ie 3.65 (1.55) 5.02 (3.99) 3.67 (1.59)
1 0.22 (0.14) 1.46 (0.39) 0.88 (0.28)
k 0.0002 (0.02) 0.00001 (0.001) 0.00003 (0.002)
g 1.80 (0.30) 1.80 (0.30) 1.80 (0.30)
Z{P
D 2 (1.17) 1(1.32) 2 (1.17)
e 3.65 (1.55) 5.02 (4.00) 3.68 (1.59)
1 0.22 (0.14) 1.46 (0.39) 0.88 (0.28)
g 1.80 (0.30) 1.80 (0.30) 1.80 (0.30)
p 0.00001 (0.004) 0.00001 (0.0002) 0.00001 (0.02)
ZIlAVB
D 2 (1.19) 2 (1.35) 2 (1.18)
e 3.58 (1.51) 5.03 (3.99) 3.68 (1.59)
1 0.22 (0.14) 1.46 (0.39) 0.88 (0.28)
k 0.01 (0.17) 0.005 (0.13) 0.002 (0.07)
g 1.80 (0.31) 1.80 (0.31) 1.80 (0.31)
p 0.000003 (0.003) 0.01 (0.18) 0.001 (0.06)
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Table 3.8.9: Parameter estimates from fitting different iREMs to the
muntjac species data. Estimates of the average group size are also given
(standard error in parentheses).

speed data models

gamma lognormal ‘Weibull
Poisson
D 5 (1.46) 5 (1.60) 5 (1.45)
iz 8.27 (1.76) 8.52 (2.25) 8.32 (1.76)
b 0.27 (0.12) 0.74 (0.17) 1.53 (0.36)
§ 1.50 (0.06) 1.50 (0.06) 1.50 (0.06)
NB
D 5 (1.59) 5 (1.74) 5 (1.70)
fix 8.27 (1.77) 8.68 (2.35) 8.31 (1.67)
b 0.26 (0.12) 0.75 (0.17) 1.62 (0.37)
k 2.90 (1.16) 2.85 (1.14) 3.00 (1.19)
g 1.50 (0.06) 1.49 (0.06) 1.57 (0.06)
ZIP
D 15 (5.16) 15 (5.49) 15 (5.12)
iz 8.27 (1.76) 8.52 (2.25) 8.32 (1.76)
b 0.27 (0.12) 0.74 (0.17) 1.53 (0.36)
§ 1.50 (0.06) 1.50 (0.06) 1.50 (0.06)
p 0.68 (0.07) 0.68 (0.07) 0.68 (0.07)
ZINB
D 9 (8.13) 9 (7.72) 9 (8.17)
fix 8.27 (1.76) 8.48 (2.23) 8.32 (1.76)
b 0.27 (0.13) 0.74 (0.16) 1.53 (0.36)
k 1.06 (2.12) 0.92 (1.76) 0.94 (1.91)
g 1.50 (0.06) 1.50 (0.06) 1.50 (0.06)
p 0.43 (0.51) 0.46 (0.43) 0.46 (0.47)

3.8.7 Density estimates from iREM compared with REM

To compare estimations from REM with estimations from iREM, we fit a Poisson iREM
to the data since the Poisson model is the underlying distribution in REM. We have
shown previously in the simulation study (Section 3.7) that there is minimal difference
in density estimates between the three speed data models, therefore, as a demonstration
we fit a gamma model to the animal speed data. Estimates associated with including

the observed zero speeds in REM are compared with estimates from fitting a ZAGA
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model to animal speed in iREM. While estimates associated with excluding the ob-
served zero speeds in REM are compared with estimates from fitting a gamma model
to animal speed in iREM. Table 3.8.10 compares estimates of the density from iREM
with estimates from REM. The results show that there is minimal difference in the
density estimates between REM and iREM but clearly REM underestimates the stand-
ard error. REM does not account for the variability in speed observations, hence, the
underestimation of the standard error of the density. As shown in Table 3.8.1 above the
coefficient of variations (C,%) of the speed estimator, with and without the observed
zero speed, are huge suggesting that the variability in the speed is high. Incorporating
this high variability in the speed in the modelling process would influence the standard
error estimates as shown by the estimates from iREM. There is a huge difference in the
density estimates between the models including and excluding the observed zero speeds.
We expect the density to be inflated when the observed zero speeds are included in the
model as incorporating these would reduce the estimated mean speed, hence, increasing

the density.

We compute the confidence intervals from using the Hessian estimates of the standard
error and the results are given in Table 3.8.11. Note that there is no result from the
ZAGA model for the muntjac species since there were no observed zero speeds. The
results from REM show that the density from the census for all species is not captured
within an approximate 95% confidence interval. It is worth reiterating that the sampling
variability in speed is not considered in REM, therefore, the standard errors of the dens-
ity would be smaller, and hence the confidence interval would be narrow. Modelling
the variability in the speed observations provides larger standard errors of the density
and wider confidence intervals, but the density from the census for only two of the four
species is captured within an approximate 95% confidence interval. The estimates from
Hessian rely on the assumption that sample size approaches infinity, therefore, finite
sample properties are sometimes less than optimal, for example maximum likelihood es-
timates (parameter estimates and standard error estimates) may be biased. And, given
that the sample size of the data set for each species is small, we would expect some
bias in the estimates from the information matrix. We therefore consider bootstrap

estimates and estimates of the standard error from the adjusted variance method, and
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the results are given in Table 3.8.12. The bootstrap method and the adjusted variance
method incorporate the sampling variability in the speed data and the encounter data,
and as shown in Table 3.8.1 above the variability in the speed is high, given the huge
coefficient of variation (C,%). Therefore, we expect larger standard errors and wider
confidence intervals. As discussed in Section 2.8.2 in Chapter 2, the bootstrap estimates
of the standard error from REM were very skewed, resulting in larger estimates com-
pared with those from the adjusted variance method. However, the similarities between
the estimates from the two methods are more clear when computed on the log-scale.
This is also the case for the bootstrap estimates from iREM (see Table 3.8.12). Again,
for most cases, bootstrap standard error estimates from iREM are larger compared
with the standard error estimates from REM, however, the difference in the estimates
between the REM and iREM is not substantial as that from using the Hessian matrix.
Therefore, we can consider using REM for density estimation but the bootstrap method
would be required to estimate the standard error of the density. This is supported by
the fact that the density from the census for three of the four species is captured within

a 95% confidence interval for both REM and iREM; see Table 3.8.12.

Table 3.8.10: Density from the census compared with estimated density from iREM and
REM (standard error from the inverse Hessian matrix in parentheses).

Species Census REM iREM
Speed data Speed data
without zero speed  with zero speed gamma 7ZAGA
D D D D D
wallaby 468 654 (24.93) 816 (31.10) 653 (243.20) 816 (330.23)
water deer 119 91 (6.26) 155 (10.52) 91 (36.76) 152 (72.73)
mara 68 4 (1.23) 5 (1.76) 4 (2.00) 5 (3.06)
muntjac 13 8 (1.07) 8 (1.07) 8 (1.61) -
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Table 3.8.11: Comparing standard errors from Hessian matrix for REM and iREM.
Approximate 95% confidence intervals are also given.

Species Census REM iREM
Hessian Hessian gamma model ZAGA model
Standard error Standard error Hessian Hessian
D without zero speed  with zero speed Standard error Standard error
wallaby 468 24.88 31.10 243.20 330.23
water deer 119 6.31 10.52 36.76 72.73
mara 68 1.23 1.76 2.00 3.06
muntjac 13 1.07 1.07 1.61 -
Approximate 95% Confidence Interval
wallaby 468 (606.02, 703.63) (757.53, 876.54)  (315.80, 1350.13)  (368.97, 1804.36)
water deer 119 (81.64, 106.49) (136.06, 177.44) (42.73, 203.24) (60.77, 397.33)
mara, 68 (1.93, 7.12) (1.61, 8.53) (2.95, 9.49) (1.70, 16.44)
muntjac 13 (5.74, 10.00) (5.74, 10.00) (4.99, 11.51) )
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3.9 Discussion

In this Chapter we developed an integrated Random Encounter Model (iREM), which
simultaneously models the encounter data and animal speed data, to estimate density.
In particular, we developed a Poisson iREM, where the Poisson model is the underlying
distribution in REM and alternatively other iREMs that allow for zero-inflation and
overdispersion; these include an integrated NB iREM, a ZIP iREM, and a ZINB iREM.

We found that a Poisson iREM works well in estimating the density. The simulation
results indicated that precise estimates can be obtained for small and large sample sizes
and therefore, a Poisson iREM can be used in ecological studies with limited resources.
The simulation results also revealed how important it is to account for overdispersion
and zero-inflation in the data. We have shown how disregarding overdispersion and
zero-inflation can induce bias in the density estimator and an underestimation of the

standard error of the density.

We have also demonstrated that modelling the speed data and accounting for its variab-
ility is relevant in correctly estimating the standard error of the density. We found that
REM correctly estimates the density but the integrated Poisson REM is more appropri-
ate than REM since the REM does not account for the variability in speed. However,
when the bootstrap method is used to estimate the standard error of the density compar-
able estimates are obtained from REM and iREM. We have also shown the importance
of accounting for the observed zero speed of movement. However, we would recommend,
if possible, to sample more speed observations when there are observed zero speeds, since
including the zero speed observations in the estimation process would inflate the dens-

ity and larger sample sizes would allow for more accurate estimates and better precision.

The use of integrated population modelling for density estimation in REM opens the
door to a number of different model developments, including the extension of iREM de-
scribed to account for animals moving in pairs or family groups, animals with observed
zero speeds of movement, and the variation in density by habitat, which we investigate

next in Chapter 4. It is also interesting to note the parallelism of the different iREMs
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developed here with integrated population models used in other applications. Cole and
McCrea (2016) and Besbeas et al. (2002) for example used integrated population mod-
elling in discrete state-space models to estimate parameters that are redundant and or
are otherwise inestimable, accounting for the variability in other related parameters of

the same species while obtaining more precise estimates of the relevant parameters.

While the underlying model in REM is a Poisson distribution, our analysis of the WWAP
data set provides a nice illustration of how accounting for overdipsersion and zero-
inflation can change the conclusions regarding the underlying encounters distribution.
Hutchinson and Waser (2007) have shown that the deviation from the straight-line
pattern of movements by animals has no effect on the expected encounter rate, and
therefore, a more variable distribution from the underlying Poisson model can be used
for encounters. When we analysed the data using alternative models such as a NB
iREM, a ZIP iREM and a ZINB iREM, there was strong support for models that allow
for overdispersion, in particular for species with larger data sets such as the wallaby
and water deer. For species with fewer encounters such as the mara and muntjac, there

was support for a Poisson iREM.

We also found that the estimates of the density from the different iREM are not close
to the density from the census. This is because the density from the census is the mean
density across habitats, and in this Chapter we have not considered habitat in the mod-
els. So some of the variation in the estimates might be explained by spatial covariates

such as habitat. In the next Chapter we incorporated covariates such as habitat type

in iREM.

In estimating average group size using the joint likelihood developed in Section 3.2 we
assumed group sizes are small and are detected within the detection zone. But as ex-
plained in Chapter 2, estimating group sizes can be problematic, particularly with the
use of camera traps. But if groups are small and counts of the number of individuals in
each observed group can be made then an estimate of average group size can be made

and estimation of the density becomes straightforward. However, the groups must be
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considered to be the object of interest. But given that the probability of detection de-
pends on both the distance from the camera and the group size (Buckland et al., 2001),
all animals may not be detected, particularly for large groups. For camera traps the
area of detection increases with increasing distances, so more animals would be detected
at some distance away from the camera. Another complication is that distances should
be measured from the camera to the centre of the group, and since distance between the
camera and group centre is unobservable, it therefore becomes impossible to quantify
the detection zone, particularly for larger, more dispersed groups. One solution could
be to treat each individual in the group as a detection but as pointed out by Buckland
et al. (2001) the independence assumption would be severely violated, compromising
the analytic variance estimates and model selection procedures. While the difficulty of
obtaining analytic variance estimates can be overcome by using robust methods for vari-
ance estimation, the issue of model selection remains. To overcome the model selection
problem Buckland et al. (2001) suggest, in distance sampling, selecting a model taking
groups as the sampling unit, then refitting the model to the data with individuals as
the sampling unit. However, as far we are aware, there are no methods available for
estimating average group size in camera trapping, particularly for large groups, given

that the distance from the camera to the centre of the group is unobservable.
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Chapter 4

iIREM With Covariates

The underlying model for REM, discussed in Chapter 2, and iREM discussed in Chapter
3, is the “ideal gas” model. The ideal gas model assumes that molecules are distributed
randomly, and move with uniform velocity (speed) in straight lines. Movement is also
assumed to be independent and equally in all directions (see Maxwell, 1860), and the
space which these animals occupy is large (Hutchinson and Waser, 2007). By contrast,
however, animals respond to each other and their physical environment. They may
spend more time in some habitats than others, deviate frequently from straight line
patterns of movement, and are often restricted to partially overlapping home ranges

(Hutchinson and Waser, 2007, pages 336-337).

In this Chapter we provide a framework for incorporating covariates in iREM. Since
abundance can vary with habitat, we incorporate habitat-specific covariates in iREM
to assess the potential of this relationship. In Chapter 2, Section 2.3.4, we provided
a framework for incorporating habitat in REM, using a fixed value of animal speed to
estimate density. Because REM lacks the potential to account for the variability in
animal speed, thereby underestimating the standard error of the density, we address
this problem by using an integrated REM to assess the potential relationship between
abundance and habitat type. In this Chapter we also consider whether there are cam-
era random effects. Placement strategies of camera traps are crucial in REM. Typical
placement strategies involving baiting and luring, or on trails, cannot be used to obtain
unbiased estimates in REM as these violate the underlying assumptions of REM. REM

requires that placement strategies of camera traps be randomized. It is worth noting
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that camera traps placed at random could end up in areas where animals often are,
whereas other camera traps could end up where animals do not frequent. Therefore,

the placement strategy of camera traps could have some effect on abundance estimation.

The motivation for this Chapter is the data set at Whipsnade Wild Animal Park
(WWAP), which is discussed in Chapter 2, Section 2.7. The number of species was
expected to vary across WWAP, given that the park has a diverse topography. The
park can be divided readily into four areas of contrasting habitats: two areas of open
grassland with scattered scrub (the Institute Paddock with gentle slopes, and with size
0.28 km?, and the Downs with a steep scarp slope, and with size 0.49 km?), one area of
rough grassland and thicket on largely level but highly broken ground (the Old Farm,
with size 0.23 km?) and one area of mixed lawns, roads, buildings and enclosures hous-
ing large animals with scattered trees (Central Park with size 1.26 km?). The Wildlife
Park houses several free-ranging species, which are enclosed within an area of 226 ha by
an outer perimeter fence but which otherwise move freely throughout the park. Each
free-ranging species uses these areas differentially in a predictable way, giving rise to
contrasting densities of each across the park (see Rowcliffe et al., 2008). For the purpose
of the analyses we focused on the four species given in Chapters 2, and 3: wallaby, water

deer, mara and mutjac.

The Chapter begins, in Section 4.1, with the proposed model to incorporate covariates in
iREM, for which habitat is a motivating example. We test this model via simulations in
Section 4.2. In Section 4.3 we illustrate the application of this model by fitting it to the
WWAP data set for four species: wallaby, water deer, mara and muntjac. At WWAP
Rowcliffe et al. (2008) adopted a randomized approach for camera placement strategies.
In Section 4.4 we propose a model for camera random effect and we investigate camera
random effect on estimated density via simulations. An application of the model with
random effects to WWAP is given in Section 4.5. It is expected that some of the variation
in abundance is likely to be explained by both habitat type and camera random effects,
therefore we incorporate both habitat type and random effects in iREM to assess this
relationship. We illustrate the application of this model by fitting it to the WWAP data

set in Section 4.6.
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4.1 Introducing covariates in iREM

In the ideal gas model, the assumption of large abundance of animals in random mo-
tion, travelling in straight lines between encounters, and occupying very large spaces
(Hutchinson and Waser, 2007, pages 336-337) is likely to be violated. Quite often this
quantity varies with diverse factors, some of which may be recorded in the field. The
iREM model structure discussed so far can be modified to incorporate covariates to
describe how abundance changes with these factors. Animal abundance (density) can
vary with the characteristics of the space (or site) which they occupy, and the behaviour
of animals. Some of these characteristics are habitat type or climatic conditions. In
fact often the primary objective of the study is to assess these potential relationships.
Using the log link function, the encounter rate in REM can be expressed as a function

of covariates

A= <2j;0umrt> exp(X3), (4.1.1)

where A (= A\,x1), and n is the number of camera trap days, is a vector of expected

encounter rates for each camera day, and

1 11 212 13 ... T
1 21 X922 X23 ... I2H
X —
1 ®p1 T2 Tng ... TnH
- - nxH
is a matrix of H covariates. The vector B,y = (81,52, ..., ﬁH)T contains the regression

coefficients. In equation (4.1.1) the camera dimensions are r and 6; the expected speed

is py, and t =1 day.

4.1.1 The Model

Suppose the encounter observations, y;;, has probability mass function h(y;; | X, 7)
where A is a vector of encounter rates defined in equation (4.1.1), 7 represents any
additional parameters in the model, and where 7 = 1, 2, ..., ¢ is the ith camera trap and
Jj =1,2,...,nis the jth camera trap day. We assume independence of y;; for all 7 and all

j. And, suppose m independent speed observations, x = {z1, ..., Zs, } , have probability
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density function f(z; | py, v) where | = 1,2,...,m, p, is the expected animal speed,
and v represents any additional parameters in the model. Therefore, the density and

expected animal speed can be estimated by maximizing the joint likelihood function

(& n m
0= "log h(yij | A, 7)+ > log f(z; | pras v). (4.1.2)
i=1 j=1 I=1

In this Chapter habitat type is a motivating example, and under the assumption that
speed of movement is constant across habitats we provide the integrated likelihood

function, which incorporates habitat-specific covariates.

4.1.2 iREM with habitat

In this section we provide an iREM with habitat-specific covariates. The Whipsnade
Wildlife Animal Park was divided into four areas of contrasting habitats: Central Park,
Downs, Institute Paddock, and Old Farm, which we denote as p = 1,2, 3,4, respect-
ively. Rowcliffe et al. (2008) estimated the density within each habitat by fitting REM
separately to the data set in each habitat. In Chapter 2, Section 2.3.4, we provided a
framework to incorporate habitat-specific covariates in REM, modelling the encounter
data per habitat simultaneously but using a fixed value for animal speed. Here we incor-
porate habitat-specific covariates in iREM. The covariates are then indicator variables

representing each habitat. We arbitrarily set habitat 1 to be the null habitat and let

1 observation j is from habitat p
Ljp =
0 observation j is not from habitat p,

so that for other habitats
1 z12 =13 z14

1 xo0 a3 T4

1 Tu2 Tn3 Toa
- - nx4

The vector B,.4, = (b1, B2, Ps, B4)T contains the regression coefficients, and the

density in each habitat is computed as follows
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exp(f1) for p = 1.

D, =
exp(f1 + Bp) for p=2,3,4.

The mean density for a given species, Dp can be computed as

4
Do — 24: Apexp(5p) _ zp=l ApDy
’ = Ar Ar

where A, (p = 1,2,3,4) is the area of habitat p in the surveyed area; and Ap =
A1+ Ao + Az + Ay is the total area. For known variance of D, the variance of D7 can

be computed directly as

4
_,A,D
Var(Dr) = Var (Zp_l P p)

Ar

24: AQVar
The distributions used for the count data and animal speed data in Chapter 3 are used
here. For the count data we use 1) a Poisson REM, 2) a negative binomial REM (NB
REM), 3) a zero-inflated negative binomial REM (ZINB REM), and 4) a zero-inflated
Poisson REM (ZIP REM). And, for the animal speed data we use 1) a gamma model, 2)

a lognormal model, 3) a Weibull model, and 4) a zero-adjusted gamma model (ZAGA).

4.1.3 iREM with covariates and group density

In this section we provide a framework for incorporating habitat-specific covariates in
iREM for animals moving in family groups. As described in Chapter 2, Section 2.3.2,
some animals were found to be moving in family groups at WWAP, and to estimate
the density of the individual animal Rowcliffe et al. (2008) multiplied the density of the

group by an unbiased independent estimate of average group size, g, to give
D = D¢ x g, (4.1.3)

where D¢ is the density of the group. In Chapter 3, Section 3.2 we have shown how

we can estimate the density of the individual animal if they are found to be moving
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in pairs of family groups. We assume group sizes are small and all individuals within
the groups are detected within the detection zone. We extended iREM to incorporate
data for animals moving in groups. In this Chapter we extend the model in (4.1.2) to
include group data and estimate density within and across habitats for animals moving

in groups with the same assumptions made in Chapter 3.

Suppose the group data is assumed to follow some discrete distribution whose support
is the set of positive integers. The data for group size is s;, where j = 1,2,...,5
is the number of groups. Suppose the group size data has probability mass function
k(s; | ¢), where ¢ is the parameter that represents the mean of the untruncated discrete
distribution, which the group data is assumed to follow. Then the joint likelihood

becomes
c n m S
(= ZZlog h(yij | A, 7) —|—Zlog [z | pay V) —|—Zlog k(s | @), (4.1.4)
i=1 j=1 =1 j=1

where A is a vector of expected encounter rates defined in equation (4.1.1) above. The
distribution, k(+), is a zero-truncated Poisson (ZTP) used to model the group size data,

which is discussed in Chapter 3.

4.2 Simulation study

This simulation study explores the performance of the models by looking at the seven

following cases:

(i) Firstly, we verify that a Poisson iREM with habitat can be used in realistic settings

by fitting it to encounter data simulated from a Poisson REM (Section 4.2.1).

(ii) Secondly, we explore how important it is to account for variation in encounter
data across habitats. To do this we fit a Poisson iREM with habitat to data
simulated from a NB REM. We also fit a NB iREM to these encounters under

different parameter settings (Section 4.2.2).

(iii) Thirdly, we explore how important it is to account for zero-inflation in the en-

counter data across habitats. To do this we fit a Poisson iREM with habitat to
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(vi)

(vii)

encounters simulated from a ZIP REM, and we compare the results with a ZIP

iREM with habitat fitted to the same encounter data (Section 4.2.3).

Fourthly, we explore how important it is to account for overdispersion and zero-
inflation in encounter data. To do this we fit a Poisson iREM with habitat to
encounters simulated from a ZINB REM. We also fit a NB iREM with habitat
and a ZINB iREM with habitat to the same encounter data (Section 4.2.4).

Fifthly, we verify that an iREM with habitat can be used in realistic settings for
animals moving in pairs or family. We fit a Poisson iREM with habitat to encoun-
ters simulated from a Poisson REM, and we fit a zero-truncated Poisson (ZTP)

to group data simulated from the relevant fitted model (Section 4.2.5).

In all cases we fit a gamma model, a lognormal model or a Weibull model to

animal speed data simulated from the relevant fitted models.

Sixthly, we investigate the relevance of incorporating habitat-specific covariates
into iREM. To do this we simulate data with habitat covariates and fit an iREM
with habitat and an iREM without habitat. For illustration we fit a Poisson iREM
with habitat and a Poisson iREM to encounters simulated from a Poisson REM

and we assume animal speed follows a lognormal model (Section 4.2.6).

Seventhly, we verify that an iREM with habitat, which accounts for observed zeros
in speed of movement, can be used in realistic settings. To do this we fit a Poisson
iREM with habitat to encounters simulated from a Poisson REM and we fit a
zero-adjusted gamma model (ZAGA) to speed data simulated from the relevant

fitted model (Section 4.2.7).

For the simulations we generate scenarios in which the true mean encounters in each

habitat are based upon reasonable values that might be applicable for data for real

species in our motivating WWAP data set. The average parameter estimates (stand-

ard error in parentheses), Standard deviation (Sd) and Root Mean Square Error are

computed from 200 simulation runs. The parameters used to estimate animal density:

r = 0.012 (km) and 6 = 0.175 (radians), and camera trap time ¢ = 1 (day) are held

fixed. Here r and 0 are detection zone dimensions of the camera. In the simulations the
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models were fitted using the optim function in the R software package (version 3.3.2 or
earlier) using the default Nelder-Mead algorithm, except where otherwise stated. In the

simulation study we used the true parameter values and sample sizes given in Table 4.2.1.

Table 4.2.1: Sample sizes and true parameter values used in the simulation process. The mean
encounters in each habitat, and the sample sizes are given in the first section. The regression
coeflicients are 3 = {f1, B2, B3, B4} . The densities within habitats, Dy, are derived parameters
from B,. Here (1 is the null habitat.

Regression coefficients

Sample sizes Habitat 1 Habitat 2 Habitat 3 Habitat 4 Expected speed

n m B B2 B3 Ba Ha
40 40 4.62 0.31 3.13 0.30 0.71
100 100 4.62 0.31 3.13 0.30 0.71
40 40 3.56 1.61 0.18 0.40 0.71
100 100 3.56 1.61 0.18 0.40 0.71

Density within habitats

Dl D2 D3 D4
101.49 138.38 2321.57 137.00
35.16 175.91 42.10 52.46

4.2.1 Investigating the performance of a Poisson iREM with habitat-specific cov-

ariates

The simulation results from fitting a Poisson iREM with habitat and from fitting a
lognormal model to animal speed data are given in Table 4.2.2. The simulation results
show that the regression estimators are reasonably accurate with slight bias under small
sample sizes, and as expected the bias is minimal with larger sample sizes. The para-
meter estimates from the alternative models used to fit the speed data show minimal
differences. The results from the gamma model (Table C.1.1) and Weibull model (Table

C.1.2) are given in appendix C.1.1.
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4.2.2 Investigating the importance of accounting for variation in encounter data

To simulate data from the NB REM we set 3 = {4.62, 0.31, 3.13, 0.30 }; x = 0.56; and
pz = 0.71 (km/day~1); the number of camera trapping days, n = 40 or n = 100; and the
number of animal speed observations, m = 40 or m = 100. Here we give the results from
fitting a lognormal model to animal speed in Table 4.2.3. The estimates from a gamma
model (Table C.1.3) and a Weibull model (Table C.1.4), which show similar estimates
as a lognormal model are given in appendix C.1.2. The simulation results (Table 4.2.3)
reveal that while the parameters are well estimated, ignoring variation in encounter data
can introduce an underestimation of the standard error of the density. The standard
errors from a Poisson iREM with habitat are consistently smaller, and are larger from
a NB iREM with habitat, which may be anticipated as a consequence of accounting
for overdispersion. As expected, increasing the sample size improves estimation and

precision.

Table 4.2.3: Average parameter estimates from fitting a Poisson iREM with habitat and a NB iREM
with habitat to encounters simulated from a NB REM (standard error in parentheses). Animal speed
is assumed to follow a lognormal model. The parameters are set to 51 = 4.62, B2 = 0.31 , 83 = 3.13
, Ba = 0.30; pr = 0.71 (km/day '); and k = 0.56. The sample sizes are n trap days, and m animal
speed data. The Standard deviation (Sd) and Root Mean Square Error (RMSE) are also given.

Parameter estimates
Habitat 1 Habitat 2 Habitat 3 Habitat 4

B Ba Bs B e K

n=m = 40

Poisson iREM 4.59 (0.23) 0.31 (0.28) 3.13 (0.22) 0.31 (0.28)  0.71 (0.06) -

Sd 0.32 0.42 0.38 0.38 0.07 -
RMSE 0.33 0.42 0.38 0.38 0.07 -
NB iREM 4.59 (0.31) 0.32 (0.42) 3.13 (0.37) 0.31 (0.41) 0.71 (0.11) 0.59 (0.11)
Sd 0.33 0.42 0.39 0.39 0.07 0.07
RMSE 0.33 0.42 0.39 0.39 0.07 0.07
n=m = 100

Poisson iREM 4.60 (0.14)  0.32 (0.17) 3.16 (0.13)  0.31 (0.17)  0.71 (0.04) -

Sd 0.18 0.24 0.21 0.25 0.04
RMSE 0.18 0.24 0.21 0.25 0.04
NB iREM 4.59 (0.20)  0.31 (0.26) 3.16 (0.23) 0.31 (0.26) 0.71 (0.07) 0.57 (0.07)
Sd 0.18 0.25 0.21 0.26 0.04 0.07
RMSE 0.18 0.25 0.21 0.26 0.04 0.07
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4.2.3 Investigating the importance of accounting for zero-inflation

To investigate the importance of accounting for zero-inflation in the encounter data
we fit a Poisson iREM with habitat to data simulated from a ZIP REM, and compare
the results from fitting a ZIP iREM to the same encounters. We set g1 = 4.62, 5y =
0.31, B3 = 3.13, B4 = 0.30; p, = 0.71 (km/day~!) and p = 0.35, respectively. We
give the results from a lognormal model in Table 4.2.4, and the results from a gamma
model (Table C.1.5) and a Weibull model (Table C.1.6), which gave similar estimates as
the lognormal model are given in appendix C.1.3. The simulation results (Table 4.2.4)
illustrate how induced-zero-inflation in the data can introduce bias in the regression
estimators from a Poisson iREM with habitat, in particular in Habitat 1 which is the
null habitat, and hence, bias in the mean encounter in other habitats. Increasing the
sample sizes does little in improving estimations in Habitat 1. Therefore, we recommend

a ZIP iREM where there is zero-inflation in the encounter data.

Table 4.2.4: Average parameter estimates from fitting a Poisson iREM with habitat and a ZIP iREM
with habitat to encounters simulated from a ZIP REM (standard error in parentheses). Animal
speed is assumed to follow a lognormal model. The parameters are set to 51 = 4.62, S = 0.31,
B3 = 3.13, B4 = 0.30; p, = 0.71 (km/day™'); p = 0.35. The sample sizes are n trap days, and m
animal speed data. The Standard deviation (Sd) and Root Mean Square Error (RMSE) are also
given.

Parameter estimates
Habitat 1 Habitat 2 Habitat 3 Habitat 4

B B2 Bs Ba iz p

n=m = 40

Poisson iREM 4.14 (0.28) 0.35 (0.35) 3.18 (0.27) 0.33 (0.27) 0.71 (0.06) -

Sd 0.30 0.40 0.32 0.41 0.07 -
RMSE 0.57 0.40 0.33 0.41 0.07 -
ZIP iREM 4.58 (0.31) 0.33 (0.38) 3.18 (0.31) 0.32 (0.38) 0.70 (0.06) 0.35 (0.10)
Sd 0.33 0.41 0.33 0.41 0.07 0.07
RMSE 0.33 0.41 0.33 0.41 0.07 0.07
n=m = 100

Poisson iREM 4.17 (0.17)  0.33 (0.21) 3.15 (0.17)  0.30 (0.22)  0.71 (0.04) -

Sd 0.17 0.23 0.18 0.25 0.04
RMSE 0.48 0.23 0.18 0.25 0.04
ZIP iREM 4.62 (0.19) 0.31 (0.24) 3.14 (0.19) 0.29 (0.24) 0.71 (0.04) 0.35 (0.06)
Sd 0.18 0.23 0.18 0.23 0.04 0.04
RMSE 0.18 0.23 0.18 0.23 0.04 0.04
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4.2.4 Investigating the importance of accounting for zero-inflation and variation

in encounter data

To assess the impact that zero-inflation and extra variation can have on the estimation
of animal density we fit a Poisson iREM with habitat to encounters simulated from a
ZINB REM with parameters g1 = 4.62, 85 = 0.31, 3 = 3.13, 54 = 0.30; p = 0.35,
pz = 0.71 (km/day 1) and x = 0.56; and the estimates are compared with estimates
from fitting a NB iREM with habitat and a ZINB iREM with habitat to the same data.

The simulation results are given in appendix C.1.4.

The results from fitting a gamma model to animal speed data are given in Table C.1.7
and Table C.1.8 for small and large sample sizes, respectively. Table C.1.9 and Table
C.1.10 give the results from fitting a lognormal model to speed data for small and large
sample sizes, respectively. Table C.1.11 and Table C.1.12 give the results from fitting
a Weibull model to the speed data for small and large sample sizes, respectively. The
parameter estimates from the alternative speed data models show minimal differences,
but the simulation results reveal that not allowing for zero-inflation and variation in
encounter data can introduce strong bias and underestimation of the standard errors of
the regression estimators from a Poisson iREM with habitat. For the NB iREM with
habitat, bias is introduced but the estimated standard errors are close to the estimated
standard errors from a ZINB iREM with habitat. As expected, increasing sampling

effort improves estimation and its precision.

4.2.5 Performance of the Poisson iREM with habitat and group size

Some animals generally move around in pairs or family groups, and using capture records
of groups in REM would give rise to the density of the group instead of the individual.
To estimate the density of the individual and the group size we simulate scenarios with
the integrated likelihood specified above in equation (4.1.4). The parameters are set to
81 =4.62, B3 =0.31, B3 =3.13, B4 = 0.30; g = 2.50; p, = 0.71; and group size S = 10
or S = 50. We fit a zero-truncated Poisson (ZTP) model to the group size data, and for
illustration we fit a Poisson iREM. The results show minimal differences between the

three speed data models, so for illustration we give estimates from the gamma model
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in Table 4.2.5, while estimates from the lognormal model (Table C.1.13) and estimates
from the Weibull model (Table C.1.14) are given in appendix C.1.5.

Table 4.2.5 gives the parameter estimates for animals moving in groups within habitats.
The results show some bias in the parameter estimates but with large standard errors the
true values are captured within an approximate 95% confidence interval. It was observed
at WWAP that the animals moving in family groups had higher expected speeds of
movement. For illustration, we investigate the performance of the Poisson iREM with
habitat using a higher expected animal speed, p, = 4.60, and the same regression
parameters and average group size with a smaller expected speed. Animal speed is
assumed to follow a gamma model. Table 4.2.6 gives the results for the regression
estimators in habitats and group size. The simulation results show that the parameter
estimates and precision improve for animals with higher expected speeds, and estimated

average group size is closer to the true value.

Table 4.2.5: Average parameter estimates from fitting a Poisson iREM to encounter data simulated
from a Poisson REM (standard errors are in parentheses). The parameters are set to 81 = 4.62,
By = 0.31, B3 = 3.13, B4 = 0.30; p, = 0.71 (km/day ™ '); and g = 2.50. The sample sizes are n trap
days, m animal speed observations, and group size, S = 10 or S = 50. The Standard deviation
(Sd) and Root Mean Square Error (RMSE) are also given.

Estimated Parameters

pr B2 Bs Ba fo g
n=m=40; S =10
Estimate 4.64 (0.18) 0.39 (0.23) 3.20 (0.13) 0.33 (0.23) 0.69 (0.12) 2.69 (0.59)
Sd 0.08 0.20 0.09 0.20 0.05 0.17
RMSE 0.08 0.22 0.11 0.20 0.05 0.25
n=m = 100; S =10
Estimate 4.62 (0.11)  0.37 (0.15) 3.19 (0.09) 0.33 (0.15) 0.69 (0.07) 2.58 (0.40)
Sd 0.05 0.16 0.06 0.17 0.04 0.10
RMSE 0.05 0.17 0.08 0.17 0.04 0.13
n=m =40; S =50
Estimate 4.68 (0.15)  0.35 (0.23) 3.23 (0.12) 0.30 (0.23) 0.72 (0.12)  3.01 (0.24)
Sd 0.11 0.23 0.12 0.22 0.07 0.22
RMSE 0.13 0.23 0.15 0.22 0.07 0.56
n=m = 100; S =50
Estimate 4.64 (0.10)  0.35 (0.14) 3.22 (0.08) 0.33 (0.14) 0.69 (0.07) 2.74 (0.26)
Sd 0.06 0.16 0.07 0.17 0.04 0.13
RMSE 0.06 0.16 0.11 0.18 0.05 0.27
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Table 4.2.6: Average parameter estimates from fitting a Poisson iREM to encounter data sim-
ulated from a Poisson REM (standard errors are in parentheses). The parameters are set to
B = 4.62, B = 0.31, B3 = 3.13, Bs = 0.30; pp = 4.60 (km/day~'); and g = 2.50. The sample
sizes are n trap days, m animal speed observations, and group size, S = 10 or S = 50.

Estimated Parameters

B1 B2 B3 Ba i g
n=m =40; S =10
Estimate 4.61 (0.05)  0.36 (0.09) 3.17 (0.05) 0.34 (0.09) 4.56 (0.14) 2.55 (0.14)
Sd 0.03 0.10 0.04 0.09 0.18 0.07
RMSE 0.03 0.12 0.06 0.10 0.19 0.09
n=m =100; S =10
Estimate 4.61 (0.02) 0.33 (0.05) 3.15 (0.03) 0.32 (0.05) 4.58 (0.12) 2.52 (0.04)
Sd 0.02 0.06 0.03 0.06 0.11 0.04
RMSE 0.02 0.06 0.04 0.06 0.11 0.05
n=m =40; S =50
Estimate 4.62 (0.07) 0.35 (0.09) 3.17 (0.05) 0.31 (0.09) 4.56 (0.14) 2.60 (0.26)
Sd 0.04 0.11 0.04 0.12 0.19 0.10
RMSE 0.04 0.12 0.06 0.12 0.20 0.13
n=m = 100; S = 50
Estimate 4.62 (0.04) 0.31 (0.06) 3.13 (0.04) 0.30 (0.06) 4.59 (0.02) 2.51 (0.06)
Sd 0.01 0.03 0.02 0.04 0.05 0.03
RMSE 0.01 0.03 0.02 0.04 0.05 0.03

4.2.6 Investigating the importance of incorporating habitat-specific covariates

Here we investigate the importance of incorporating habitat-specific covariates in iREM
when estimating density. We used the true values in Table 4.2.1 in the simulation
process. We set the values for the four areas (in km?) of the habitats to A; = 1.26; Ay =
0.49; A3 = 0.28; A4 = 0.23 and total area A = 2.26. For illustration we fit a Poisson
iREM with habitat where animal speed is assumed to follow a lognormal model. Table
C.1.15 in appendix C.1.6 gives the simulation results for the parameters u, = 0.71;
b1 = 3.56, 5o = 1.61 , B3 = 0.18 , 54 = 0.40. Table 4.2.7 gives the simulation results
for pu, = 0.71; 1 = 4.62, By = 0.31 , B3 = 3.13 , B4 = 0.30. The simulation results
(Table C.1.15; Table 4.2.7) reveal that, under all scenarios, if there are habitat-specific
covariates, it is relevant to incorporate these in iREM when estimating density. The
results show that a large positive bias can be introduced if habitats are ignored when
estimating density. The sign of this bias depends on the specifics of the relative areas

and density. For example, if less dense areas are oversampled the bias will be negative.
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4.2.7 Investigating the performance of the Poisson iREM for animals with ob-

served zero speed

During the WWAP survey it was observed that the animals did not move about much,
except for the muntjac species which was considerably mobile. And given that the an-
imals were followed around recording their travelled distance to derive an estimate of
the speed, in some cases a record of zero speed was observed. These are genuine zeros,
which can have an effect on estimated density. As shown in Section 3.7.6 including the

observed zeros would have an effect on the density.

For illustration, we investigate the performance of a Poisson iREM for animals with
observed zero speed of movement via simulation from a Poisson REM for the encounter
data, and a Zero-adjusted gamma model (ZAGA) for animal speed data. We assess the
output for parameters and sample sizes in Table 4.2.1 in Section 4.2 above with probab-
ility of zero-response category, w = 0.25. The simulation results are given in Table 4.2.8.
The simulation results (Table 4.2.8) illustrate how well the Poisson iREM and ZAGA
model work in estimating the parameters under small and large sample size conditions.
Based on the simulation results in Table 4.2.8, we would recommend a ZAGA model if
a design allows observations of immobile animals. But it is worth noting that adjusting
for zeros in continuous data is not limited to a ZAGA model. Other useful models
include a zero-adjusted Weibull model or a zero-adjusted lognormal model, which are

not considered here.

We also examine the fit of the ZAGA model and the gamma model when habitat is
included in the model assuming the encounter data follows a Poisson REM. We con-
sider parameter values and sample sizes that reflect those of the WWAP data set. We
increase the sample size of the speed observations to illustrate the effect on estimated
density. We set 1 = 4.56, B2 = 7.00, B3 = 6.63, B4 = 6.69; pp = 0.71 (km/day~'); and
w = 0.21. The sample sizes are n = 42 camera trap days, m = 10 or m = 40 animal
speed observations. We generate speed observations from a ZAGA model, and we fit a
ZAGA model to the data. We also fit a gamma model to the data, excluding the zeros.

The results for these parameters are given Table 4.2.9. The results show that a slight
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positive bias is introduced by the ZGA model. For the gamma model, a negative bias
is introduced for the parameter estimate of the reference habitat (Habitat 1), but the
parameters from the other habitats are estimated with reasonable accuracy. Hence, we
expect that the mean density across habitats would be lower compared with the mean
density from the ZAGA model. Increasing the sample size improves the estimates and

precision from the ZAGA, and precision from the gamma model.

Table 4.2.10 gives the results for the following parameter values and sample sizes: 51 =
4.29, By = 3.58, B3 = 6.36, B4 = 4.28; p, = 1.17 (km/day~'); and w = 0.40; and n = 42
camera trap days, m = 10 or m = 40 animal speed observations. These parameter
values are associated with smaller density values. The results show that it is relevant
to account for the observed zero speeds. A strong negative bias is introduced in the
parameter estimate of the reference habitat (Habitat 1), hence, the density within the
other habitats and the mean density would be underestimated. Increasing the sample

size of the speed observations improves estimation and precision.
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4.3 Application of iREM with habitat to the WWAP data set

Here we illustrate the application of iREM with habitat model proposed in this Chapter
with the analysis of the 4 habituated mammals data set from Whipsnade Wild Animal
Park. The data were analysed in Chapter 2, initially assuming that the Park where
the data came from was not divided into habitats, and when habitat is incorporated in
Rowcliffe et al. (2008) REM. The data were also analysed in Chapter 3 assuming that
the Park where the data came from was not divided into habitats. In this section we

present the results of an analysis with habitats in iREM.

We give the results for each of the four species obtained from iREM with habitat. These
results are compared with the results from iREM given in Chapter 3, and the density
from the census in Rowcliffe et al. (2008). The models were fitted using the optim func-
tion in the R software package (version 3.3.2 or lower) using the default Nelder-Mead

algorithm.

The results for the wallaby species are given in Section 4.3.1. It then goes on, in Section
4.3.2 to give the results for the water deer species. The results for the munjac and mara
species are given in Section 4.3.3, and Section 4.3.4, respectively. To determine whether
the density from the census is captured within an approximate 95% confidence, we use

the natural logarithm method discussed in Chapter 2 Section 2.5.1.

4.3.1 Estimated density of the wallaby species

The results show minimal differences between the three speed data models, so for il-
lustration, we give the results from fitting a gamma model to the speed data in this
section, and the results from the lognormal model (Table C.2.1) and the Weibull model

(Table C.2.2) are given in appendix C.2.1.

Table 4.3.1 gives estimates for the wallaby species where animal speed follows a gamma
model. Looking in isolation at the results from iREM, which does not consider the vari-
ation in density within habitats, would suggest that including habitat in the modelling

process is very relevant for the wallaby data set. Estimated density from the ZIP iREM
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is inflated but with large standard errors the density from the census is captured within
an approximate 95% confidence interval. It is worth noting that the probability of the
zero-response category from the encounter data for the wallaby species, p ~ 0.1458 and
the encounter rate, A =~ 3.429. The variance of the encounter data computed from a ZIP
REM, Var(y;;) ~ 1.464. Since Var(y;;) < E(yi;), the ZIP REM suggests underdispersion
and it is expected that a Poisson REM would show a better model fit to the encounter
data. From fitting a gamma model to animal speed and ZIP REM to encounter data,
the probability of the zero-response category is estimated as p = 0.126 (0.284) does
have an effect on estimated density as shown in Table 4.3.1. The lognormal and Weibull
models gave similar estimates of the parameters. The results also show that density
estimated in Central Park is large for all models, which might suggest that the animals

generally frequented this area.

Table 4.3.2 compares the AAIC values from iREM with habitat and iREM. The iREM
with habitat had the lowest AIC values and the most favoured models are the NB iREM
where animal speed is assumed to follow a lognormal model, but all three alternative
models for the speed data have close AIC values. It is worth noting that the sample
size for the animal speed data is small, which may explain why the AIC values are
close. Note that the AAIC values from the ZINB iREM are close to the AAIC values
from the NB iREM, particularly, where animal speed is assumed to follow a lognormal
model. This suggests that the ZINB iREM where animal speed follows a lognormal

model would also be a suitable model in practice.
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Table 4.3.2: Model selection for wallaby species. The AAIC values from fitting different iREM
with habitat models and iREM models for the wallaby species.

iREM with habitat iREM
Poisson NB 71P ZINB Poisson  NB VAL ZINB
Speed data models
gamma 346.22 1.16 286.86  6.40 416.70  10.40 320.20 12.40
lognormal 345.06 0 285.82  2.08 415.54 9.24 319.04 11.24
Weibull 346.06 3.66 273.18 3.74 416.54  10.24 320.06 12.78

4.3.2 Estimated density of the water deer species

Table 4.3.3 gives the results from fitting a Weibull model to animal speed data, while
the results from a lognormal model (Table C.2.3) and a gamma model (Table C.2.4) are

given in appendix C.2.2.

Estimates of the density from a Poisson iREM, a NB iREM and a ZINB iREM (Table
C.2.4) show minimal differences, but there is a large difference between estimated dens-
ity within three of the four habitats and the density from the census. Overall estimated
density from the three count data models is close to the density from the census. Es-
timated density from the ZIP iREM within habitats is different from the other count
data models, and the overall density is overestimated. If there is a problem with over-
dispersion a ZIP iREM would be a better fit than a Poisson iREM but like the wallaby
species the data reflects underdispersion where Var(y;;) ~ 0.908 < E(y;;) = A ~ 1.932
and a Poisson iREM would be a better fit. However, despite the poor fit of the ZIP
iREM the standard errors are large and capture the density from the census within
an approximate 95% confidence interval. For all models, the density from the census
for only two of the four habitats (Central Park and Downs) is captured within an ap-
proximate 95% confidence interval. Except for the ZINB iREM with habitat, which
obtained similar estimate of the density as a ZINB iREM without habitat, the models
with habitat obtained better overall estimates of the density. The results show that

there is support for the Weibull model for animal speed (Table 4.3.4).
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Table 4.3.4: Model selection for water deer species. The AAIC values are given for iREM
with habitat and iREM models.

iREM with habitat iREM
Poisson NB Z1P  ZINB Poisson  NB Z1P  ZINB
Speed data models
gamma 58.66 0.14 1792 214 192.90 49.08 85.32 50.54
lognormal 61.44 3.02 21.00 4.62 195.38  51.56 87.80 53.02
Weibull 58.50 0 17.78  0.70 192.76  48.94 85.18 50.40

4.3.3 Estimated density of the muntjac species

In this section we give estimates of the density for the muntjac species. Here we give
the results from a Weibull model in Table 4.3.5, used to model the animal speed data.
Estimates from the three speed data models show minimal differences, therefore, we
give the results from a lognormal model (Table C.2.5) and gamma model (Table C.2.6)
in appendix C.2.3.

The results (Table 4.3.5) show that non-zero density is estimated in the habitat (Insti-
tute Paddock) where the observed census count was zero, and that incorporating habitat
in iREM has improved estimated density substantially, particularly for a Poisson iREM
and a NB iREM. Estimations from a ZIP iREM with habitat and ZINB iREM with
habitat remained practically the same as the iREM without habitat but precision im-
proves when habitat is added to the model. The AAIC values are given in Table 4.3.6,
and they suggest the best model is a NB iREM with habitat where animal speed is
assumed to follow a Weibull model. But the difference in AAIC values between the
other iREM with habitat models is minimal because the sample sizes in the speed data

are small.
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Table 4.3.6: Model selection for muntjac species. The AAIC values from iREM with habitat
models and iREM models for the muntjac species are given.

iREM with habitat iREM
Poisson  NB ZIP  ZINB Poisson  NB Z1P  ZINB
Speed data models
gamma 3.90 13.50 0.92 292 41.72 20.56 21.48 20.48
lognormal 4.26 0.08 1.28 2.56 42.10 20.92 21.84 2248
Weibull 4.26 0 1.28  1.98 42.08 20.92 21.82 22.46

4.3.4 Estimated density of the mara species

At WWAP, Central Park was the largest habitat and was heavily frequented by people.
In this habitat the camera traps were strategically placed to avoid human interference
and film wastage due to overcrowding of cameras with human photographs. This place-
ment strategy coupled with the fact that around 90% of the mara were observed in the
Central Park area during the census counts at WWAP explains the dramatic underes-

timation of the mara species (see Rowcliffe et al., 2008).

Here we give estimates of the density of the mara species where animal speed is assumed
to follow a gamma model, shown in Table 4.3.7. The results from the lognormal model
(Table C.2.7) and the Weibull model (Table C.2.8) are given in appendix C.2.4. The
results show that estimation of the density is highest in Central Park for the speed
data models (Table 4.3.7, Table C.2.7, and Table C.2.8), and estimated density in Old
Farm is non-zero, which has observed census count of zero. The gamma model (Table
4.3.7) and Weibull model (Table C.2.8) obtained similar estimates of the density, but
the lognormal model (Table C.2.7) is less accurate than these models. Adding habitat
as a covariate only marginally improved the estimated density of the mara species. The
results show support for a Poisson iREM where animal speed is assumed to follow a

gamma model, but the difference between a Weibull model is small (Table 4.3.8).
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Table 4.3.8: Model selection for muntjac species. The AAIC values for iREM with
habitat models and iREM models for the mara species are given.

iREM with habitat iREM
Poisson NB Z1P  ZINB Poisson NB ZIP  ZINB

Speed data models

gamma 4.27 6.27 8.27 10.30 0 2.00 2.01 4.00
lognormal 5.12 712 912 11.22 0.95 295 295 497
Weibull 4.37 6.37 8.45 10.43 0.09 2.09 2.09 4.09

4.3.5 Estimated density of species with observed zero speed of movement

In Chapter 2, Section 2.7 we discussed the data at WWAP where it was observed that
animals generally did not move about much. And given that the survey design involved
following the animals around for 30 minutes recording the distance travelled and dura-
tion of passage, some animals did not move during this period, hence, zero speeds were
recorded. In Chapter 3, Section 3.3, we gave a ZAGA model for data where there are
animals that are observed to not move. In this section we fit this model to the speed
data to estimate density within habitats and overall density. At WWAP three of the
four species, wallaby, water deer and mara, were observed to not move in one or more
speed samples. We fit a Poisson iREM, a NB iREM, a ZIP iREM, or a ZINB iREM to
the data. Estimates of the density from iREM with habitat are compared with estim-
ates of the density from iREM, and the density from the census. Tables with the results
are given in appendix C.2.5. As shown in the simulation study in Section 4.2.7 above it
is relevant to include the observed zeros to avoid bias in the estimates. The simulation
results (Section 4.2.7) showed that not accounting for the observed zeros in the speed
of movement can introduce a negative bias in the estimate in the reference habitat, and

hence, and underestimation of the mean density across habitats.

We give the results of the wallaby species in Table C.2.9, in appendix C.2.5. Note that
the census in Institute Paddock and Downs is recorded this way but are actually ob-
served the other way around. The results show that the observed zeros of animal speed

does have an effect on estimated density. Estimated densities within all the habitats,
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except Central Park, are similar to the census (considering the observed data in Downs
and Institute Paddock and the recording of these data). Also, the estimated density of
the wallaby species at WWAP improved substantially when habitat is included in the

model.

For the water deer species (Table C.2.10, appendix C.2.5) a Poisson iREM with hab-
itat does considerably better than the other three iREM with habitat models, with the
estimated density of the water deer species at WWAP (124 per km?) being close to the
density from the census. This is a considerable improvement compared with a density
of 152 per km? from a Poisson iREM. For the NB iREM with habitat, ZIP iREM with
habitat and ZINB iREM with habitat, estimations of the density in Central Park are
quite large, and given that Central Park is the largest area the density of the water deer

species is expected to be large overall.

Table C.2.11, in appendix C.2.5, compares estimated density from iREM with habitat
with estimated density from iREM without habitat for the mara species. When the
observed zero speeds of the mara species are considered estimated density in Central
Park improves, a result which is consistent with the behaviour of the mara species. The
iREM with habitat model does better in estimating the density of the mara species than
iREM without habitat. The AAIC values are given in Table 4.3.9. The NB iREM best
explains the observed data for species with a larger data set (wallaby and water deer),
while the Poisson iREM best explains the observed data of the mara species. Note that
the AAIC values of NB iREM are relatively small compared with best model for the

mara species. Therefore, we might be able to use a NB iREM if the data set increases.
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Table 4.3.9: AAIC values from iREM with habitat and from iREM adjusting for
zeros in animal speed. The AAIC values are given for the wallaby species, water
deer species and mara species.

iREM with habitat iREM
Poisson NB 71P ZINB Poisson NB 7ZIP ZINB

Species
wallaby 406.30 0 309.82 2.14 335.82 149.96  284.42 4.10
water deer 181.58 0 17.88 1.98 192.74 48.92 85.28 36.78
mara 4.28 6.30 6.30 8.55 0 2.00 2.01 4.00

4.4 iREM with random effect

The model structure in Section 4.1.1 may readily be adjusted to allow the encounter
rate (A) to dependent upon some random components, such as camera random effects.
As with the covariate model, the random effects are introduced via a log-linear link on

the encounter rate.

Suppose the encounter records is defined by y;; where j = 1,2, ..., n is the jth observation
on the ith (= 1,2,...,¢) camera trap. With random effect b;, the probability mass

function of the encounter data is given as h(y;; ; A;), where

Ai = (2—7:9,uwrt> exp{log(D) + b;} (4.4.1)

is expected encounter rates of each camera day; b; is a vector of camera random effects;
the camera dimensions are r and 8; t = 1 day; p, is the expected animal speed; D is
the density with or without the camera random effect since the density from equation
(4.4.1) is exp{log(D)} = D. We expect the location of the camera trap to have an
effect on the expected encounter rate. As discussed in Section 2.6, REM does not allow
camera traps to target focal species - if, for example, traps are baited or set on trails,
this would violate the underpinning assumption of REM - but rather REM requires
randomized placement of camera traps to avoid bias in the estimate of the density. As
we have seen in Chapters 2, and 3 for the mara species, the location of the camera trap

had an effect on the expected encounter rate as shown by 1) the limited capture records
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and 2) the dramatic underestimation of the density.

Here we assume that the random camera effect, b;, follows a normal distribution with

mean 0 and variance ag, that is
bi ~N(0, av°),
with probability density function

1 —b‘2 9 2
bi | 02%) = ———ebi /(2007).
olbi | %) =
Then to obtain the marginal likelihood of y;;, the random effect b; must be integrated

out. That is, the observed encounter distribution is obtained after integration as

h(yij) = /OO h(yij; Ai) g(bi | %) db;. (4.4.2)

—00

No closed-form solution for this integral is available, therefore to obtain the maximum
likelihood estimate numerical approximation of the integral is required. There are sev-
eral approximation methods but in this thesis we used the Gauss-Hermite quadrature,
which is a form of Gaussian quadrature for approximating the value of integrals of an

unknown function over a specified domain such as

o0 5
/ e f(x). (4.4.3)

—00

The Gauss-Hermite approximation for the function in equation (4.4.3) is

Z w; f (), (4.4.4)

where w; are called weights and x; are called abscissas. In the next section we show
how the function, h;; above can be written in the form of equation (4.4.3), and the

approximation in equation (4.4.4) can be used.
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4.4.1 Gauss-Hermite quadrature

The starting point for the Gauss-Hermite quadrature is the integral

h(yij) = /oo h(yij i Ai) g(bi | o%)dbi. (4.4.5)

—00

where \; is the expected encounter rates of each camera day as defined in equation
(4.4.1). The function h(-) cannot be solved by analytical methods. By assuming an
appropriate change of variable equation (4.4.5) can be brought into form as in equation

(4.4.4). Let us consider the probability density function h(y;; ; A;) where b; ~ N(0, o2})

- oG}

The expectation of h(y;;) corresponds to

! 1<b">2 h(yii 3 Ai)db
eXpy 5|\ — ij 3 \i)@O;.
\V2moy, P 2\ op Yig

Using a change of variable b; to v where v = b;/v/20}, and coupled with integration of

such that

B{h)) = [

substitution we have
© 1
E{h(yij)} = N h(yij 5 Ai)dv,

which is of the form in equation (4.4.3) above. Therefore,

Q
E{h(yij)} ~ \/IE > wghij(V20305),
qg=1

where w, are weights and v, are evaluation points (Winkelmann, 2008, pages. 286-287).

4.4.2 iREM with camera random effect

In Rowcliffe et al. (2008) camera placement strategies are not allowed to target species,
and camera traps must be randomized, otherwise placement strategies would violate
the underpinning assumption of REM. And the nonrandom location of camera traps

would have an effect on estimated density. In this section we give an iREM with camera
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random effect.

Suppose y;j, the jth (= 1,2,...,n) encounter frequency on the ith (= 1,2,...c) camera
has probability mass function h(y;; ; A;) where \; is the expected encounter rates
given in equation (4.4.1) above. We assume that the encounters, y;;, are independent
for all ¢ and all j. And suppose m independent speed observations x = {z1,...,Zm}
have joint probability density function f(z; | pe, v), where [ = 1,2, ...,m, p, is the
expected speed, and v represents any additional parameters in the model. Using the
Gauss-Hermite quadrature derived above for the approximation of the integral then the

following is the construction of the log-likelihood function for iREM with random effect

KNZlogZH wqhij(V20udy) \[abd —I—Zlog fz | pa, v). (4.4.6)

g=1j=1

where

hij(V204dy) = h(yi; | bi = V203dy; \i)

is the conditional density function of the encounters, evaluated at a camera random
effect, b;. The symbol d, represents the quadrature evaluation points; w, are the quad-
rature evaluation weights; and @) is the number of quadrature points. We use ) = 20
quadrature points following recommendations by Choquet and Cole (2012) and Cole
et al. (2003). As iREM is an extension of REM, the assumptions in REM are also the

assumptions in iREM. In iREM with camera random effect, the assumptions are:

(i) cameras are located in clear view of the area to capture animals
(ii) camera traps are randomly placed relative to the space used by animals

(iii) animals move independently of camera traps.

The distributions used in Chapter 3, Section 3.4 to model the encounters, y;;, and
animal speed observations, x used in Chapter 3, Section 3.3 are used here. We assume

the encounters follow a Poisson REM, a NB REM, a ZINB REM or ZIP REM, and the

speed data is assumed to follow a gamma model, a lognormal model or a Weibull model.
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4.4.3  Simulation Study

In this section we test the performance of iREM with camera random effect via simula-
tions. We use a Poisson iREM for illustration where animal speed is assumed to follow a
lognormal model. The parameter required to generate encounters to fit a Poisson iREM
with camera random effects is the expected encounter rate, \;, which is dependent on
the density, D; camera random effects b;; the camera dimensions, r and 6; expected
animal speed, p,, and the camera trap time, ¢. In the simulation study we assume a

fixed value of the number of camera trap days, n, for ease of computation.

Step 1: First we start with ¢ camera traps, which have been set up for n camera trap
days. Note that n can vary for each trap, which we illustrate in the R codes in appendix
C.3. The random component of the camera, b;, is generated from a normal distribu-
tion with mean zero, and variance 03,2 such that b; ~ N(0,0p2). We then calculate
density, D = exp {log(Ds) + b;}, where Dy is the density value without camera random
effect, and b; is the effect of camera i. Next we calculate the expected encounter rate,
Ai = ((2+4 0)/m)rtvD, where r (km) and 6 (radians) are the dimensions of the cam-

era trap; v is the mean animal speed and ¢ is the camera trap time, which are held fixed.

Step 2: Next we generate encounters, Y, on each camera trap from a Poisson distribu-

tion with encounter rate, \;, computed in Step 1.

Step 3: For m animals moving at speeds x = {z1, ..., z;, }, we generate speeds x, which
are random numbers from either a gamma distribution X ~ Ga(a;v), a lognormal dis-
tribution X ~ InN(p; o) or a Weibull distribution X ~ Wei(r; 3). We then fit a Poisson
REM with camera random effect to the encounters data, Y, and a Poisson REM without
random effect to the encounters, Y. As a demonstration we use a lognormal model from

which the speed, X, is generated, and we fit a lognormal model to X.
For the simulations we generate scenarios in which the density and the camera random

effect are plausible ecologically for real species. We set D = 200; u, = 0.60 (ms™1);

op = 0.10 or o, = 1.10, n = 40 or n = 100; and m = 40 or m = 100. For each simulation
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case, we compute the average parameter estimates (standard error in parentheses),
Standard deviation (Sd) and Root Mean Square Error (RMSE) for 100 simulation runs.
The parameters used to estimate density: r = 0.012 (km); # = 0.175 (radians), and
camera trap time period t = 1 (day) are held fixed. Under all scenarios, estimates from
iREM with random effect are compared with estimates from iREM without random
effect. Both methods are fitted to encounter data with camera random effect. For
illustration we give the results from fitting a Poisson iREM with random effects, and
a Poisson iREM without random effects where animal speed is assumed to follow a
lognormal model. We also compute the coefficient of variation (C,%), expressed as a
percentage, using the equation (2.7.1) given in Chapter 2 Section 2.7.1. The percentage
bias (% bias) of the parameters is also given, which is computed as

average parameter estimate — true parameter value

%bias = x 100.

true parameter value

Table 4.4.1 compares the estimated parameters from a Poisson iREM with random effect
with a Poisson iREM without random effect. The simulation results (Table 4.4.1) show
that the parameter estimates from the two methods have minimal differences when the
camera random effect is small, and the estimated random effect is not different from
zero at the 5% significance level. Also, for both methods the bias in the density is
negligible (less than 3% of the true population density, on average) for small sample
sizes, and 1% or less for larger sample sizes. The C,% of the density is also small,
suggesting low variability in estimated densities. However, the C,% of the estimated
camera random effect (65) is huge suggesting that the variability in the estimates is
high. Increasing the camera random effect results in a large difference in the estimated
density between the two methods, and the bias is substantial for the model without
camera random effect (more than 60% of the true population parameter) for small
sample sizes. Increasing sampling effort does not improve the density estimate. The
estimated camera random effect (63) is different from zero (that is, an approximate 95%
does not contain zero), suggesting that accounting for the random location of camera
traps is relevant in estimating the density. Also, the C,% of the density estimator from
the model without camera random effect is huge (more than 30% for both small and

large sample sizes) suggesting high variability in the estimates.
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4.5 Application of iREM with random effects to WWAP data set

We illustrate the application of iREM with random effect proposed in this Chapter
with an analysis of the data sets for the four species (wallaby, water deer, mara and
muntjac) at WWAP, which consists of the location of the camera traps in habitat p and
the number of encounters recorded on each camera trap. We fit a Poisson iREM, a NB
iREM, a ZINB iREM, or a ZIP iREM. In each case a gamma model, a lognormal model
or a Weibull model is fitted to animal speed data. Guass-Hermite quadrature is used to
approximate the marginal likelihood of the encounters. We use the natural logarithm
in equation (2.5.1) in Chapter 2, Section 2.5.2 to compute approximate 95% confidence
intervals of the density. We also compare models using AIC criteria as described in

Chapter 1. We defined the AIC criteria as

AIC = —2logL + 2p

where p is the ’degrees of freedom’ correction, or the number of parameters in the
model. But Vaida and Blanchard (2005) state that the definition of the AIC is not
straightforward when random effects are contained within the model under considera-
tion. Questions such as what likelihood should be used (marginal likelihood or condi-
tional likelihood), and should the random effects be counted as parameters are often
raised. Vaida and Blanchard (2005) argued that the answer to these questions depends
on the focus of the research. If the focus is on making inference about population
parameters, then the likelihood is the marginal likelihood, and p is the number of fixed
parameters, counting the mean parameters and the variance components. Here our in-
terest is estimating density and determining the overall effect of the random location
of the camera traps on the encounter rate, and hence, the density. Therefore, the AIC
formula in current use, which Vaida and Blanchard (2005) defined as the marginal AIC,

mAIC, is appropriate to use in our context: mAIC = —2logL + 2p.

4.5.1 Estimated parameters of the wallaby species

In this section we give the results of the wallaby species. Table 4.5.1 compares estimates

from iREM with random effect with estimates from iIREM without random effect. We
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assume the speed data without observed zeros follows a gamma model and the speed

data with observed zeros follows a zero-adjusted gamma (ZAGA) model.

The results (Table 4.5.1) show that ignoring estimation uncertainty in the random ef-
fects covariance matrix induces a much larger bias in the density estimator. Moreover,
the effect of the random placement of camera traps on the density estimator is signi-
ficant (that is, an approximate 95% confidence interval of o}, does not contain zero),
particularly when the observed variation in the encounter data is unaccounted for (i.e.,
using a Poisson iREM with random effect and from a ZIP iREM with random effect).
In fact the estimated &3 is larger for these models compared with the estimated &y
from a NB iREM and a ZINB IREM. Note that including the camera random effect
can account for unobserved variation in the data (Gschlol and Czado, 2008), hence,
smaller estimates of the camera random effect from a NB iREM with random effect and
a ZINB iREM with random effect. These results correspond with the simulation results
in Section 4.4.3 above, giving clear indication of the importance of accounting for the

randomness in the placement of camera traps when estimating the density.

We also compare the results from modelling the observed zero speeds with the results
from excluding these zeros in the estimation the process (Table 4.5.1). We expect the
observed zero speed of movement to have an effect on estimated density. As discussed
in Chapter 3 and as shown in Section 4.2.7 not accounting for observed zero speeds can
induce a negative bias in the density estimator. As can be seen in Table 4.5.1 estimates
from iREM with random effect (without zero speed) is smaller compared with estimates
from iIREM with random effect (with zero speed). Note that the sample size of the speed
observations is small, and therefore, including the observed zero speeds would inflate
the density (see, for example, Section 3.7.6). Also, it worth reiterating that the density
from the census at WWAP is the mean density across habitats so we expect that the
estimated density and the density from the census will be different since the variation

in habitat is not accounted for.

The results (Table 4.5.1) also suggest that it is relevant to account for the sampling
variability in the data (NB iREM) as indicated by the AAIC values but the density
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estimate from the Poisson iREM with random effect (without zero speed) is closer to
the density from the census. Note that the probability of selecting models that have too
many parameters using the AIC method increases when the sample size is not many
times larger than the square of the number of parameters in the model, that is, overfit-

ting (see Bedrick and Tsai, 1994), and the WWAP data set is a rather small data set.

The results from the lognormal model (Table C.4.1) and from the Weibull model (Table
C.4.2) are given in appendix C.4. The difference in estimated density and the density
from the census from the lognormal model (C.4.1, in appendix C.4) is considerably smal-
ler compared with the difference from the gamma model (Table 4.5.1). For example, for
a Poisson iREM with random effect the difference in estimated density from the gamma
model is 2 times more than the difference in estimated density from the lognormal model
and the density from the census. Including the camera random effect can account for
unobserved variation in the data (Gschlofl and Czado, 2008), hence, smaller estimates
of the camera random effect from a NB iREM with random effect and a ZINB iREM
with random effect. The results from a Weibull model (Table C.4.2; appendix C.4) show
that this model does not perform well in estimating density when camera random effect
is incorporated in the model. For all count data models, the difference in estimated
density and the density from the census is substantially large. For a Poisson iREM in
particular, the estimated &y is larger than the estimated camera random effect from the

gamma and lognormal models, and it is statistically different from zero.

The AAIC values from iREM, iREM with habitat and iREM with random effect used
to estimate density of the wallaby species are given in Table 4.5.2. The results show
that there is support for accounting for variation in the encounter data. The best model
does not include camera random effect but includes habitat. It is also worth noting that
camera random effect will account for some of the variation in habitat. The results show
no support for the underlying Poisson iREM and the ZIP iREM. The AAIC values for
the alternative speed data models are close but the best model selected is the lognormal
model for the speed data and the NB iREM with random effects for the encounter data.
When we account for the observed zero speeds the model that bets describes the wallaby

data set is iREM.
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4.5.2 Estimated parameters of the water deer species

The results of the water deer species are given in this section. Table 4.5.3 compares
the estimated parameters from iREM with random effect models with the estimated
parameters from iREM without random effect models. We also give the estimates from
iREM (with zero speed) and iREM (without zero speed) for comparison purposes. The
results show that it is relevant to account for the uncertainty in the random placement
of camera traps as this can have a significant effect on the density estimator (i.e., an
approximate 95% confidence interval of o}, does not contain zero). Also, more support is
given to models that allow for zero inflation when the uncertainty in the random effects
variance-covariance matrix is considered (see the AAIC values for ZIP iREM with or
without the observed zero speeds). One possible reason for this could be as result of the
behaviour of animals in terms of their movement and the area they frequent, and given
that camera placements are randomized (not set on trails). For example, some camera
traps may be placed where animals do not frequent, and hence, zero capture records

would be observed.

Including the observed zeros inflated the density estimator for all models, except the ZIP
iREM. Note that the number of speed observations for the water deer species is m = 10
but 4 of these observations are zeros, hence, the estimated mean speed would be smaller
compared with the mean speed estimated when these zeros are excluded. Therefore, we
expect the density estimator to be inflated. However, the estimated standard errors are
large and the density from the census is captured within an approximate 95% confidence
interval; this is the case for all models, except ZIP iREM with random effect. The Pois-
son iREM with random effect (without zero speed) gave a dramatic underestimation
of the density and the standard error. Also, for the Poisson iREM with random effect
and the ZIP iREM with random where the observed zero speeds are not included, the

density from the census is not captured within an approximate 95% confidence interval.
Again, it is worth reiterating that the density from the census is the mean density across

habitats, and since the variation in habitat type is not accounted for then we expect

the estimated density and the density from the census to be different.
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The lognormal model (Table C.4.3, in appendix C.4) performs better than the gamma
model as three of the four count data models gave estimates than are similar to the
density from the census. The difference between estimated density from a ZIP iREM
and the density from the census is substantially large, but the density from the census
is just captured within an approximate 95% confidence interval. The AAIC value shows
that a ZIP iREM is the best model, however, estimated density from a Poisson iREM,

which has an AIC of at least 18 units more, is more accurate.

For the Weibull model there is a positive difference between the estimated densities from
a Poisson iREM, a NB iREM, a ZINB iREM, and the density from the census, while the
difference between estimated density from a ZIP iREM and the density from the census
is negative (Table C.4.4, appendix C.4). The best model according to the AAIC values
is a ZIP iREM. However, the difference between estimated density from a ZIP iREM
and the density from the census is almost 2 times more than the difference between
estimated density from a NB iREM and the density from the census, but a NB iREM
has an AIC of at least 10 units more. The estimated camera random effect, &, from all
models are different from zero, since zero is not contained within an approximate 95%

confidence interval.

Table 4.5.4 gives the AAIC values across all models for the water deer species. The
results show that a NB iREM with habitat is the best model where animal speed is
assumed to follow a Weibull model. However, the difference between the minimum AIC
value and the AIC values from a ZIP iREM with random effect is minimal. This suggests
that accounting for the variation in the random location of camera traps is relevant in
estimating the density of the water deer species. Also, when we account for the observed

zero speeds the results indicate that there is more support for iREM with random effect.
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4.5.3 Estimated parameters of the muntjac species

Table 4.5.5 presents the results from fitting a gamma model to the speed data. The
results from fitting a lognormal model (C.4.5) and Weibull model (Table C.4.6) to an-
imal speed data are given in appendix C.4. Note that the muntjac species was the only
species observed to be moving throughout the period when they were followed around
so as to derive an estimator of the speed of movement. Hence, there were no observed
zero records.

Estimated density (D = 15) from a Poisson iREM is better than the other count data
models, with a minimal positive difference between estimated density and the density
from the census (Table 4.5.5). There is a larger negative difference between estimated
density and the density from the census from the other models. According to the AAIC
values a NB iREM is the best model for the muntjac data but it gave the largest dif-
ference between estimated density and the density from the census.. The estimated
camera random effect, &3, is different from zero for all models, since an approximate

95% confidence interval does not contain zero.

The lognormal model (Table C.4.5, appendix C.4) and Weibull model (Table C.4.6, ap-
pendix C.4)gave similar estimations as the gamma model, with a NB iREM being the
best model that explains the muntjac data set. A Poisson iREM does well in estimating

the density but its AIC is almost 13 units higher than the AIC from a NB iREM.

Table 4.5.6 gives the AAIC values from the three iREM methods for the muntjac species.
The AAIC values show that an iIREM with habitat model best explains the muntjac
data where animal speed is assumed to follow a Weibull model and the encounters are
assumed to follow a NB REM model. But the difference between AAIC values from
an iREM with habitat model and an iREM with random effect where animal speed is
assumed to follow a Weibull model and encounters are assumed to follow a NB REM is

minimal.
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4.5.4 Estimated parameters of the mara species

The results from a gamma model are given in Table 4.5.7, while the results from a
lognormal model (Table C.4.7) and a Weibull model (Table C.4.8) are given in ap-
pendix C.4.

The results show that the difference in parameter estimates between the three speed
data models is minimal (Table 4.5.7, Table C.4.7, appendix C.4) and Table C.4.8, ap-
pendix C.4). Also, the results suggest that it is relevant to account for the variation in
the random placement of camera traps, the estimated &, is significant (i.e., zero is not
contained within an approximate 95% confidence interval). Large estimates of x from a
NB iREM suggest that a Poisson iREM would be more appropriate. Note that as 1/x
— 0 an NB iREM reduces to a Poisson iREM.

The AAIC values between the three methods iREM with habitat, iREM with random
effect and iIREM (Table 4.5.8) indicate that a Poisson iREM where animal speed is
assumed to follow a gamma model is the best model that explains the mara species
data set but the difference in AAIC values between a Poisson iREM and a Poisson
iREM with habitat is minimal. The iREM is more supported when we account for the

observed zero speeds.
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4.6 iREM with random effects and habitat

In this section we assess the potential relationship between abundance and habitat type
and camera random effect. In Section 4.1.2 we introduced habitat-specific covariates
in iREM, investigating the potential relationship between abundance and habitat type,
and as discussed in that section, at WWAP there were four areas of contrasting hab-
itats, p: Central Park, Downs, Institute Paddock, and Old Farm, where p = 1,2, 3,4,
respectively. And, in each of these habitats there were four camera traps. In REM it is
required that camera traps be placed randomly, and therefore, we expect that abund-

ance estimation could depend on the location of the camera traps and habitat type.

Here we expand on the model structure in Section 4.4 to allow the encounter rate to

depend on habitat type and camera random effect, using a log link function

A= (21-0;%7“0 exp{X3 + b;}, (4.6.1)

where A is a vector of encounter rates for each camera day; b; is a vector of random
effects; the camera dimensions are r and 0; ¢t = 1 (day) is the camera trap time period; p
is the expected animal speed. As discussed earlier in Section 4.1.2 the covariates, X, are
indicator variables representing each habitat and camera random effect. We arbitrarily

set habitat 1 to be the null habitat and let

1 observation j is from habitat p
Ljp =
0 observation j is not from habitat p,

so that for other habitats

1 712 T3 714

1 w99 o3 wos

1 ZTpo Tp3 Tpa
- - nx4

The vector B4 = (b1, B2, 53, ﬁ4)T contains the regression coefficients, and the density
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becomes exp{X3 + b;}.

Suppose encounters, y;;, for jth (= 1,2,...,n) day on the ith (= 1,2, ...,¢) camera trap,
has probability mass function h(y;;; A), where X is a vector of encounter rates defined
in equation (4.6.1). And, suppose there are m animal speed observations, such that
x = {x1,...,om}, has probability density function f(z; | u, v), , where | = 1,2,...,m,
and p is the expected speed and v represents any additional parameter in the model.
Then using Gauss-Hermite quadrature discussed in Section 4.4.2 to approximate the

marginal likelihood of the encounter data, the joint log-likelihood function is

(= ZlogZH wqhis(V204dy) \[abd —|—Zlog flay | w, v), (4.6.2)

q=1j=1

where

hij(V204dg) = h(yi; | bi = V203dg; A)

is the conditional density function for the encounters, evaluated at a camera random
effect. The symbol d, represents the quadrature evaluation points and w, are the
quadrature evaluation weights where we set ) = 20 as recommended by Choquet and
Cole (2012) and Cole et al. (2003), which we discussed in Section 4.4.2. The assumptions

of the models discussed in Section 4.1.2 and Section 4.4.2 are held here.

4.6.1 Application of iREM with random effect and habitat to WWAP data set

In this section we illustrate the application of iREM with random effect and habitat
to WWAP data set. For illustration we fit a Poisson iREM with habitat and random
effect to the data assuming the speed data follows a gamma model, a lognormal model

or a Weibull model. We give results for the wallaby species and water deer species.

It is sometimes not possible to make meaningful inference about population abund-
ance using classical methods due to the inability to estimate, or estimate well, all the
parameters of a model. This may be because of lack of data or in some instances, para-
meters may be confounded and only ever appear as a product. In such cases a model

is termed non-identifiable or parameter-redundant (see Cole et al., 2010). According to
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Cole and McCrea (2016) and Cole and Morgan (2010) models are said to be parameter-
redundant when they contain too many parameters to be estimated, however much
data are collected, so that using classical inference it would not be possible to estim-
ate all the original parameters. In practice, a model that is parameter-redundant will
cause problems with the estimation of parameters, because the likelihood surface will

not possess a unique maximum and the standard errors will not exist (Cole et al., 2014).

There are several approaches to determine whether a model is parameter-redundant.
But one approach is the use of a symbolic algebra computer package, which involves
forming a suitable derivative matrix and then calculating its symbolic rank (Cole and
Morgan, 2010; Cole et al., 2010). With this approach, a model will be parameter-
redundant if and only if this derivative matrix is singular, which occurs if and only
if the row rank of the derivative matrix is less than the number of parameters. If a
model is parameter-redundant then the question of which (if any) of the parameters
are estimable is solved by considering components of the eigenvectors of the derivative

matrix corresponding to the zero eigenvalues (Catchpole et al., 2001).

In our model, if there was only one camera per habitat this model would be parameter
redundant since there would not be enough distinct information to separate out the
fixed effects (habitat) from the the camera random effect. However, there are actually
4 cameras in each habitat, giving a total of 16 camera traps but the model is near
redundant (near-singular). A model is near-singular if the smallest eigenvalue of the

expected information matrix is small rather than zero (see Catchpole et al., 2001).

The data sets for the muntjac and mara species are rather small and the likelihoods from
the data for all four species are fairly flat with various local maxima, which provides a
poor fit of the model. For the wallaby species and water deer species, however, there is
enough data available for model fitting, and it is still possible for the maximum likeli-
hood to be maximized on a nearly flat ridge or plane (Catchpole et al., 2001). Therefore,
for the purpose of analyse we fit an iREM with random effect and habitat model to the

wallaby and water deer species. We compute the eigenvalues of the Hessian matrix,
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which shows that the smallest eigenvalue is small (non-zero), hence, our model is near-

singular (near parameter-redundant).

Table 4.6.1 gives the parameter estimates of the wallaby species from fitting a Poisson
iREM with random effect and habitat, while Table 4.6.2 gives the parameter estimates
of the water deer species. We also give the standardized eigenvalues (all eigenvalues
divided by largest eigenvalue), which we denote by & for the estimated regression coef-
ficients of the habitats, estimated random effect and estimated expected speed. Clearly,
fitting a Poisson iREM with random effect and habitat model to the data sets of both
species produces very poor results of the density within and across habitats. For both
species, the results show that some standard errors are inestimable. Also, we expected
the estimated random effect, 63 from iREM with habitat and random effect to be smal-
ler than those estimated from the less complicated iREM with random effect model, as
in Tables 4.5.1 and 4.5.3 above, since some of the variation in density within habitats
would be mopped up by the camera random effects (Gschlofil and Czado, 2008). But
this is not case for the wallaby species (Table 4.6.1). Also, the eigenvalues are “small”
to the smallest eigenvalue is £; = 0.001 for the wallaby species and & = 0.002 for the

water deer species, suggesting that the model is a near parameter-redundant model.

The AAIC values for the wallaby species are given in Table 4.6.3. We compare a Poisson
iREM with random effect and habitat with other models discussed so far in this Chapter
and Chapter 3. The results show that a NB iREM with habitat where animal speed is
assumed to follow a lognormal model is the best model with the lowest AIC value. It is
worth noting that a NB iREM with random effect and habitat would be impossible to
fit. We also provide the AAIC values across all the models fitted in Chapter 3, and in
the previous sections of this Chapter for the water deer species. These values are given
in Table 4.6.4. The results show, in this case, that a Poisson iREM with random effect
and habitat where animal speed is assumed to follow a gamma model is the best model,
but we note that the difference between the minimum AIC value and the AIC value
from a NB iREM with habitat where animal speed is assumed to follow a gamma model
or a Weibull model is minimal. This suggests that a NB iREM with habitat would work

well in practice, and it also a simpler model to implement.
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4.7 Discussion

In this Chapter we have extended the integrated Random Encounter model developed
in Chapter 3 to incorporate covariates which have some potential relationship with an-
imal abundance. In Chapter 2 we showed how REM can be extended to incorporate
habitat-specific covariates by modelling the encounter data and using a fixed estimate
of animal speed. Our model (iREM) builds on REM accounting for the variation in
travel speed. We have demonstrated that incorporating habitat-specific covariates into
iREM can be relevant when estimating abundance. We have also shown how disreg-
arding zero-inflation and variation in encounter data across habitats can induce bias
in the density estimator and an underestimation of the standard error of the density.
We have proposed models with habitat-specific covariates for animals moving in groups
and animals with observed zero travel speed. One issue with the proposed model for
animals moving in groups is that less precise estimates are obtained for animals with
lower expected speeds. However, our simulations indicated that precise estimates can
be obtained for faster moving species with large sample sizes. But it is worth noting
that, as shown in Chapter 3 with the analysis of the data set for species moving in pairs
of family groups, the difference between estimated density using the iREM with group
size data and estimated density from REM where the density is obtained by multiplying

density of groups by an independent estimate of average group size is minimal.

The application of iREM with habitat to the WWAP data showed how relevant it is
to incorporate habitat as non-zero estimates of the density were obtained in habitats
which had zero values for the density from the census. For three of the four species,
there was support for models which allow for variation in the encounter data but the
parameter estimates from the alternative models show minimal differences. A Poisson
iREM with habitat was shown to be more appropriate for the species with limited data
set, for example the mara species. As in Chapter 3, this Chapter also highlights the im-
portance of accounting for the observed zero speed of movement data. Not accounting
for these zeros resulted in larger estimates of the expected speed, and hence, induced

negative bias in the density estimator.
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When investigating the use of iREM with covariates to analyse data collected from
camera traps, the question of whether camera random effect would influence abundance
estimation was raised. We therefore extended iREM to incorporate camera random
effect. To deal with the problem of the intractable integral in the model component for
the encounter data, we used Gauss-Hermite quadrature to approximate the marginal
likelihood of the encounters and maximize the likelihood. One limitation of the pro-
posed iIREM with random effect model using Gauss-Hermite quadrature to maximize
the likelihood is that it is slightly demanding in terms of computing time, owing to the
large number of quadrature points needed to obtain a close approximation to the like-
lihood. For example, fitting an iREM with Poisson with random effect model with 20
quadrature points to the WWAP data set took in our implementation around 1 minute
(on a 2.20 GHz computer) compared with a few seconds required by an iREM with Pois-
son model without random effect. In the case of the simulation procedure with sample
sizes of 100 camera trapping days, m = 100 animal speed data and 100 simulation runs
took around 50 minutes compared with a several seconds (under 1 minute) required by
an iREM with Poisson without random effect. Our simulation results indicated that
precise estimates of the density can be obtained and an iREM with random effect per-

forms better than an iREM without random effect.

Despite the limitation of the model our analysis of the WWAP data provided an illus-
tration of how accounting for the random location of camera traps can affect abundance
estimation. In camera trapping analysis a potential relationship exists between abund-
ance and habitat type and location of the camera trap within the habitat. We examined
this relationship by fitting an iREM with random effect and habitat model to real data.
This model is a further extension of the iREM. Given the greater complexity of the
iREM with random effect and habitat model, which unlike the iREM with habitat
models data in a particular habitat on a given camera trap, it is understandable that
model fitting becomes increasingly difficult as the complexity increases, particularly be-
cause of the number of Gauss-Hermite quadrature points required to approximate the
integral, and for species with large number of data points. Also, the complexity of
model implies that, unless enough data are available the likelihood can be rather flat

with various local maxima, which can be of similar magnitude while providing different
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explanations for the data. This means that the outcome of the analysis can be sensitive
to the point from which the optimization routine is initialized and that, therefore, it
is a good approach to explore the likelihood function by trying out different starting
values. In our WWAP data analysis we encountered this problem: some of the standard
errors were inestimable, and the some of the parameters were poorly estimated, with re-

latively small eigenvalues, which suggested that the model is near parameter redundant.

Finally, when applying the models proposed in this Chapter, it is important to remem-
ber the appropriateness of interpreting the estimates obtained as abundance estimates is
contingent on how well the model assumptions are met. First of all Rowcliffe et al. (2008)
REM assumes that placement strategies of camera traps are random, and the movement
of animals are independent of camera traps. For instance, we have seen that the viol-
ation of the randomized placements of camera traps can cause an underestimation of
the density, in particular for the mara species. An appropriate method of randomiz-
ation of camera traps is therefore critical for reliable estimates of density. Secondly,
the underlying distribution for encounters in Rowcliffe et al. (2008) REM is a Poisson
model. We have seen in iREM and its extension that not accounting for variation in
the encounter data can cause bias in the density estimator and an underestimation of
its standard error. If some measurable factors are thought to affect encounter rates,
and hence, density appreciably, these can and should be incorporated into the model
as covariates. Thirdly, the models assume that all camera traps are located in clear
view of the area to capture animals. Whether this assumption is satisfied depends on
the characteristics of the study site, and the size of the species. Fourthly, animals are
assumed to move about randomly, and for long distances in straight-line. While for all
species this would be an unusual behaviour, Hutchinson and Waser (2007) have shown
that violation of this assumption does not change the expected encounter rate, and a
more variable distribution can be used to model encounters, as we have shown by the

possible cases of a NB REM, a ZINB REM or a ZIP REM.
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Chapter 5

iIREM With Detection Zone Dimensions

Prior to this Chapter the detection zone dimensions of the camera were assumed to be
fixed. In practice, the camera dimensions vary (Rowcliffe et al., 2011), and as we have
shown in the previous Chapters it is crucial to account for any sampling variability of the
estimators of parameters associated with the density in REM to ensure accurate treat-
ment of precision and correlation in the estimators. The motivation for this Chapter
is the Barro Colorado Island (BCI) data set, which includes detection distance data
and angular data collected from the camera traps. In this Chapter we develop a single
integrated likelihood to estimate animal density, which builds on iREM from Chapter
3, and which includes models for detection distance and detection angle. Our approach,
which adopts distance sampling methodology (Buckland et al., 2001), provides a com-

prehensive framework for abundance estimation of unmarked animals.

This Chapter begins with a discussion of distance sampling theory and its application in
Section 5.1. A description of the detection zone for camera traps is given in Section 5.2.
The BCI data set, which is the motivating factor for this Chapter is given in Section 5.3.
This data set is different from the Whipsnade Wild Animal Park data given in earlier
Chapters since it was collected from a tropical moist forest at Barro Colardo Island
(BCI), Panama and census count is unknown. The BCI data set is used in the remain-
ing core Chapters of this thesis. In Section 5.4 we propose a model for the detection
distance data and provide estimates of the effective detection distance for the species
at BCI, Panama. To account for the variation in the detection distance we develop

an integrated REM with detection distance (iREM-dd), which is given in Section 5.5.
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The model is an extension of iREM developed in Chapter 3, which provides a structure
for estimating abundance accounting for the variation in detection distance data. We
test iIREM with detection distance model (iIREM-dd) via simulations in Section 5.6. An
application of iREM-dd to the BCI data is given in Section 5.7.

It is also likely that the variation in the angle of approach in which the animals enter the
camera trap detection zone would have an effect on estimated density. In Section 5.8 we
consider a model relevant for circular or angular data, which we test via simulations. For
illustration, this model is applied to angular data at BCI, Panama. The Chapter goes on,
in Section 5.9, to give a single integrated likelihood to estimate abundance of unmarked
animals. This model is an extension of the integrated REM with detection distance,
which incorporates the angle to detection data. The integrated Random Encounter with
detection zone dimensions (iIREM-D) merges four independent steps required in REM
to estimate density into a comprehensive framework for abundance estimation using
camera trap data. In the simulation study, in Section 5.10, the performance of iREM-D
and the importance of accounting for variation in the detection zone dimensions are
investigated. Finally, the Chapter concludes with an application of iREM-D to the data

set of a community of terrestrial mammals at BCI, Panama in Section 5.11.

5.1 Distance Sampling and its application

It is rarely practical to count all the objects of interest in a large area. In practice,
we sample, counting the objects in a few small areas called plots and estimating the
density of these objects. It is the idea of these plots on which distance sampling is
based. Distance sampling is a widely used methodology for estimating animal density
or abundance by using measured or estimated distances. There are various analysis
methods used in distance sampling to model these measured or estimated distances.
One such method is point transects (Buckland et al., 2001; Borchers et al., 2002), which
is mostly used in avian surveys, and which, for example, has been used to estimate
density of small mammals and whales (Smith et al., 1975; Royle et al., 2004; Marques
et al., 2010). Point transect sampling, which is discussed in detail in Section 5.1.1,

involves an observer standing at a given position and counting the number of objects
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seen (Buckland et al., 2001). Point transects are similar to camera traps, which are

fixed at a given position, recording images of passing animals.

5.1.1 Point transect sampling

In point transect sampling an observer visits a number of points, which are determined
by a random design (Marques et al., 2010). By recording from the point, the observer
can concentrate on detecting the animals (or plants or species) of interest and recording
the distances to the detected animals. Figure 5.1.1 shows an example of point transect
sampling with five randomly selected points (open circles), detected animals and also
undetected animals. The circles (o) represent the positions of the animals. In this
example 11 animals are detected, which are represented by the (o) connected to the

lines (—) (see Buckland et al., 2001).

Figure 5.1.1: Point transect sampling approach with five randomly spaced points
(k = 5), denoted by the open circles where eleven objects were detected (Buckland
et al., 2001).

Point transects are a generalisation of traditional circular plot surveys. Consider k
circular plots randomly positioned within the survey area, and that objects further than
some distance w from a point are not recorded. Then the surveyed area is a = krw?,

within which n objects are detected. By definition, the density D is the number per
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unit area, which can be estimated by

="

. 5.1.1
kmw? ( )

The assumption of these k points is that they are far enough apart such that the areas
do not overlap. In point transect sampling, however, only the area close to the random
point can be fully censused; a proportion of objects away from the random point but
within the survey area remains undetected, therefore, the density D can no longer be
estimated by equation (5.1.1). If we let P, be the probability that a randomly chosen
object within the surveyed area is detected, and suppose an estimate P, is available.

Then, the density D in point transect sampling can be estimated by

n

D=—"_.
kmw?P,

(5.1.2)

Buckland et al. (2001) showed that P, can be reformulated as a statistical estimation

problem by considering an annulus of width dz at distance z from a point (Figure 5.1.2).

Figure 5.1.2: An annulus of width dz and distance z from a point. The annulus is divided up into
an infinite number of annuli of of infinitesimal width dz, so we can compute the area of the annulus
by taking the difference between the area of the outer circle with radius z + dz and the inner circle
with radius z, i.e., A = 7(z + dz)? — 72% = 72% + 2nzdz + w(dz)? — w22, Since (dz)? is the square
of an infinitesimal quantity, it can be taken as zero, hence an approximate area of the annulus is
2mzdz (see Buckland et al., 2001).

The proportion of the circle of radius w that falls within this annulus is
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which is also the expected proportion of objects in the circle that lie within the annulus.
Hence, the proportion of objects in the circle that are both in the annulus and detected
is
2mzdz

Tw? ’

g(z) x

where g(z) represents the probability of detecting an object, given it is at distance z
from the point. The unconditional probability of detecting an object that is in one of

the k circular plots is

(5.1.3)

Substituting equation (5.1.3) into equation (5.1.2) and cancelling the w? terms, the

estimator of the density is

~ n
D= - . 5.1.4
2km [y 2g(z)dz ( )
Defining
v = 27r/ zg(z)dz, (5.1.5)
0

which is the critical quantity to be estimated from the distance data, z; (j = 1,2,..., s)
for a point transect survey, then

- n
D=—. 1.
kv (5.1.6)

Note that in a sampled plot it may not be possible to detect all animals within this plot.
In fact the further an animal is from the observer the less likely the observer will record
it. Earlier literature such as Gates et al. (1968) assumed that the detection of animals is
“spiked” close to the transect, and quickly decreases away from the transect. This sug-
gests that the distribution of objects detected is exponential, and inflexible. However,
Eberhardt (1968) suggests that the distribution of the detected animals would change
from survey to survey, and conceptualized a fairly general model where probabilities of
detection decreases with increasing distances from the transect. Therefore, it is usu-

ally assumed that the probability of detection is 1 for objects on the transect, that is,
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g(0) = 1, and the detection function g(z) is decreasing with increasing distance, and
0 < g(z) <1 always (Buckland et al., 2001). Figure 5.1.3 shows the general detection

function, which decreases with increasing distances.

1.0

Proportion of objects
Present which are
detected, g(z)

Radial distance, z

Figure 5.1.3: g(z) equals the probability of detecting an object, given that it
is at radial distance z from the point. It is usually monotonic decreasing and
assumed to start at 1. (Buckland et al., 2001).

In point transect sampling, the relationship between the detection function, g(z) and
the probability density function of the distances of the detected objects, f(z), can be
derived from Figure (5.1.2) above. The area of the ring of incremental width dz at
distance z from the observer is proportional to z. Thus, f(z) is proportional z - g(z).
With the constraint that f(z) integrates to unity, the probability density function of

the distances is defined as

_ 292
f(z) = W, (5.1.7)

(see Buckland et al., 2001).

Sometimes, it is not possible to sample the entire area of interest because of an ob-
struction of some kind. When this happens, a modification of the formula in equation
(5.1.2) is required to estimate the density. If, for instance, there is an obstruction that
obscures the visibility in part of the circle, the full circle will not be surveyed. This is
demonstrated in Figure 5.1.4, which shows a circular plot with an obstruction. Due to
the obstruction a sector with angle v is not visible to the observer. Therefore, any de-
tections in front of the obstruction that fall within this sector are disregarded (Buckland

et al., 2001).
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unobservable area

Obstruction

) observer

observable area

Figure 5.1.4: In point transect sampling, obstructions can reduce the surveyed area around
a point. Buckland et al. (2001) suggest that a simple solution to this problem is to define a
sector of angle v that span the obstructed region, and disregard any detections in front of the
obstruction that fall within this sector. By excluding the detections within the sector shown
here, and calculating the area about the point as (7 — 1/1/2)1027 density can be estimated.

The contribution to the surveyed area from this circle is given below.

The area of a circle = Tw?,

therefore, the area of a sector = 2—7rw2.

™

Given that 0 = 27 — 1,

o —
the area of the sector = %ﬂjwz = (7 — /2w

The density is then estimated by

n
k(m — 1 /2)w?P,’

D= (5.1.8)
which is equivalent to 5.1.1, and where ¢ = 2w — #; n is the number of objects detected;

and w is the known radius. The density is then

n n

_D = = ~ )
k(r —m+¢/2)w?P,  kypw?P,/2

(5.1.9)

where P, is equation (5.1.3) defined above (see Buckland et al., 2001).
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5.1.1.1 Effective Radius in Point Transect Sampling

As only a proportion of animals will be detected from a sampled point, it is important
for the observer to determine an effective detection distance, such that the number of
animals missed within this distance exactly equals that recorded beyond this distance.
Figure 5.1.5 shows the effective detection distance, where the number of animals outside

this distance equals the number of animals missed within this distance.

Effective detection distance

1.0
A « objects within the
Effective distance which are missed
9(2)
B « objects beyond the Effective

distance which are detected
] ;

radial detection distance z

Figure 5.1.5: Effective detection distance from the point (Rowcliffe et al., 2011).

In point transect sampling an estimate of the effective detection distance, say 4 can
be computed from radial distances z; (j = 1,2,...,s), which can then be used in the

estimation of animal density. As shown in equation (5.1.2), the density can be estimated

as
D=—"_. (5.1.10)
km?P,
So replacing w? with 4% we have
D=—"_, (5.1.11)
kn4?P,

which is analogous to equation (5.1.6) and where

2P, =0
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as defined in equation (5.1.5), that is,

- n
D=—. 5.1.12
kv ( )

It is this effective detection distance () that is required in REM to estimate animal

density. Buckland et al. (2001) define the effective detection distance (radius) as
v = \/E , (5.1.13)
T

y= 50) (5.1.14)

which can be estimated by

where h(0) = lim, ,o f(z)/z = 2r /0. Here h(0) is the slope of estimated density f(z)
of the observed detection distances evaluated at z = 0. In the next section we give
the assumptions required in distance sampling theory. The validity of the assumptions
allows the investigator assurance that valid inference can be made concerning the density

of the population sampled.

5.1.2 Assumptions in distance sampling theory

Buckland et al. (2001) suggest that the survey must be competently designed and con-
ducted in order to make valid statistical inferences. The first three assumptions are

critical to achieving reliable estimates of the density from the point transect sampling.

[a—

. objects that are very close to the transect will always be detected
2. objects are detected at their initial location

3. all distances are measured without error

4. sightings of different objects are independent events

5. transects are placed randomly or systematic random

6. there is no movement of objects in response to the observer and none are counted

twice
7. the survey is a “snapshot”
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5.2 Detection zone in camera trapping

In camera trapping analysis, “detection” by an observer is replaced by animals being
caught in camera traps (Buckland et al., 2001). These camera traps are fixed at a
completely random location in the field, and detect moving animals through infra-red
sensors. Unlike point transect sampling, camera traps are set up for a longer period
of time, and can take “snapshots” and video recordings of the same animal multiple
times. From these snapshots and video recordings, the observer can determine the
radial detection distance of the animal from the trap when it first triggers the motion
sensor of the camera, as well as the angle of detection. Figure 5.2.1 gives an example of
the detection zone and the locations of animals when they triggered the camera sensors,

and other animals captured in the camera field view.

—— camera field view

icamera detection zone

Figure 5.2.1: Camera detection zone and camera field view with animals being captured.
Note that the detection zone is not necessarily equal to the camera field view.

The detection zone is the area in which a camera trap is able to detect moving animals
through its sensor. This detection zone is not necessarily equal to the camera field
view, that is, the area included in the actual photograph. The detection zone varies
depending on the type of camera trap; and for some, only a small proportion of the
field view actually corresponds to the cameras’ detection zone. Camera traps can sense
through either a conical shaped detection zone or through a combination of horizontal
bands and vertical axis zones, depending on the technical specifications of the Passive-

Infra-red (PIR) sensor (see Rovero et al., 2013). Note that whether a camera trap has
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a narrow detection width, i.e., smaller than the camera field view, or a large detection
zone, the further away the animal is from the trap the less likely it would be detected.
That is, the probability of detection decreases with increasing distance from the trap.

Hence, an effective detection distance and angle is required to maximize trapping rates.

5.2.1 Effective detection zone in REM

Given that camera detection zones are roughly triangular, with the camera at one
corner with a maximum detection width of 7/2 (see Chapter 2), animals can approach
the camera closely before being detected. This suggests that a distance-based approach
is possible to provide reasonable estimates in practice. Rowcliffe et al. (2011) used a
distance-based approach to estimate the detection dimensions for application in REM.
A critical step was to determine whether the detection distance and detection angle are
independent or whether they are correlated, as the outer edges of the detection zone
becomes weaker at greater distances. Testing their method on the species with the most
records at BCI (agouti species), they found that a weak correlation exists between the
detection distance and angle, which was driven by a small number of extreme records.
Given that such extreme records are generally considered lacking in information and
are frequently truncated in distance analyses, Rowcliffe et al. (2011) concluded that
the correlation is not important in practice. As such, they assumed that the detection
distance and angle are independent of one another, therefore, the declining detectability
patterns in camera trapping can be modelled using standard distance sampling theory.
Rowcliffe et al. (2011) used a line transect model for detection angle and a point transect
model for detection angle assuming two possible models halfnormal, and hazard rate for
describing detection probability as a function of distance and angle, respectively. These
models were fitted to the distance or angle data and the likelihoods were maximized.
Using standard distance sampling theory, the effective detection angle or distance was
estimated by finding the threshold value at which the expected number missed within

is equal to the expected number detected beyond.

In REM density, D, is a function of the detection distance, detection angle, an estimate
of average speed of movement, and the camera trapping time period. Therefore, for

known detection distances z; (j = 1,2,...,s) of animals, we can estimate an effective
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detection distance, 4, which is then used in the estimation of animal density,

= % i (5.2.1)

(24 60)30°
The detection angle # and camera trap time period, t, are fixed. Note that in REM an

independent estimate of the mean speed, v, is required in the estimation process.

5.3 The data

This section describes the data set used in the analysis. The data were recorded in the
years 2008 to 2010 at a tropical moist forest, Barro Colorado Island (BCI), Panama
(see Rowcliffe et al., 2011). Data were collected from 19 species of terrestrial mammals,
however, we concentrate on nine of these species as used in Rowcliffe et al. (2011). The
data collected include: 1) detection distance, 2) detection angle, 3) encounters (trap

records), and 4) speed of movement of animals.

5.3.1 Placement strategies of camera traps

There were 20 camera traps at randomly selected locations in ten different 1-ha forest
plots. All cameras were mounted around 20 cm off the ground and angled to be parallel
to the slope of the ground. The traps were aimed in the direction of less vegetation or
slope to maximize the view. There was no directed placement of camera traps, baiting
or luring to maximise trapping rates, instead traps were placed relative to the distribu-

tion of animals in the surveyed area (Rowcliffe et al., 2011).

As discussed in Chapter 2, Rowcliffe et al. (2008) REM requires the data collected
to be in the form of independent contacts between animals (individual or group) and
camera traps. Therefore, the cameras were set to be inactive at 2 minutes interval.
This interval period allows an animal (group of animals) to leave the camera trap
detection zone after a contact, and later the same or a different animal re-enters to
give a second, independent contact. Rowcliffe et al. (2008) suggest that this interval is
sufficient to provide independent contact between animals and camera traps. An animal

can approach the camera trap from any direction and enter the trap zone. When motion

182



sensors are triggered the cameras made 10 low-resolution pictures, and without delay
the camera was triggered again producing a short video clip of animals moving in front
of the camera. These provide the detailed information required to estimate parameters
such as detection distance and angle; and distance travelled by the animal and the

duration, that is, the time spent to cover the distance travelled.

5.3.2  Extracting the data from camera trap records

The detection distances, z, and angles to detection, #, come from the photographs taken
by the camera traps. The detection distances and angles were recorded using the posi-
tion of the animal when it first triggered the camera trap. The position of the animal
was obtained by examining a subset of the photographs from a portable card reader
used in the field before removing the camera. The position of the animal was noted
relative to nearby landmarks such as trees and rocks from the camera trap. The de-
tection distance and angle were then measured from the camera trap to that position
using a measuring tape and compass. There are 1555 records of animal positions on

first detection for the 19 species (Rowcliffe et al., 2011).

Unlike the WWAP set used in Chapters 2, 3, and 4, the animal speed data is not
independently observed but comes from the same photo records taken by the camera
traps. Before removing the camera traps in the field the speed of animals moving in
front of the camera traps were measured. Using a measuring tape, the length of each
animal’s path through the environment was measured and recorded, and this distance
was then divided by the time between the first and last image recordings of the animal.
The standard mean of these speed measures was then used as the average speed of the

species in REM fitted in Rowcliffe et al. (2011).

5.3.3  Summary of real data at BCI, Panama

The recording of the data set at BCI, Panama is different from the data recorded
at Whipsnade Wild Animal Park. At WWAP, the number of encounters, y;;, where
i =1,2,...,c is the camera traps and j = 1,2,...,n is the number of camera trap days,

were collected for a fixed camera trap time period of ¢ = 1 (day). However, for the
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BCI data, the encounters, a; (i = 1,2,...,¢), were collected at the camera level, i.e.,
the data were recorded over a period of t; days on the ith camera trap. The total
number of camera trap days is » ;_,t; = 7569.78. Also, for each species, a sample of
the detection distance r, and angle to detection 6 were collected from the camera traps
and an estimate of the detection distance and angle were computed. In Table 5.3.1 we

give the first three recordings of the species with the largest data set at BCI (agouti).

Table 5.3.1: First three data points for agouti species

Camera ID Camera duration Number of encounters

(7) (t: days) (a;) per camera
11 8.975694 3
12 9.025694 19
13 8.92083 16

In our analyses, we concentrate on 9 species investigated in Rowcliffe et al. (2011) for
which at least 40 records of the position on first detection were available. Table 5.3.2
below shows the number of encounters and the sample mean speed (v), and detection
distance (z) for nine species at BCI. An approximate standard error is given in par-
entheses, which is computed as given in Section 1.4. Note, to get an estimate of the

angle to detection, 6 for each species, we compute the mean angle to the detections,

to estimate density for each species. The formula is given below. Let
S S B
Sp = Z sin(f;) and Cp = Z cos(#;). Then 6 = arctan(Sy, Cy).
i i

For brevity, we will use the common names of the species in parentheses in the thesis.
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5.4 Estimating effective detection distance from the BCI data

Most species are substantially more detectable in open areas (habitats) such as farmland
than in closed habitats such as woodland. Therefore, it would be important to have
some measure of detectability when designing surveys. As discussed in Section 5.1.1.1, in
point transect sampling an effective radius -y, which is the radius of the circle around each
point such that as many objects are detected beyond + as remain undetected within -,
can be used (see Buckland, 1992). The effective radius can be computed from the radial
distances, which are assumed to follow some probability detection function. Buckland
(1992) state that the modelling process of the radial distances has two components: 1)
a “key function”, which is selected at the starting point, and is possibly based on visual
inspection of the histogram of distances after truncation of visual outliers; and 2) a
“series expansion”, which is a flexible form used to adjust the key function. In some
cases, however, the key function by itself will be adequate, with no terms in the series
expansion. Buckland et al. (2001) recommended some key functions that are useful in
modelling distance data. One such function is the halfnormal model since it has the

three desired properties of:

e model robustness: this means that the model is a general, flexible function that

can take a variety of plausible shapes for the detection function;

e shape criterion: the detection function should have a “shoulder” near the point

(i.e., detection remains almost certain at small distances from the point);

e estimator efficiency: it is desirable that the model selected provides estimates that

are relatively precise (that is, have small variance).

A halfnormal probability detection function of distances z;; fori = 1,2, ..., c camera trap,
1,2, ..., s observed distances with standard deviation o of the corresponding zero-mean

normal distribution is defined as

NG 52
p(zij | 0) = ﬁexp (— 2Z2> for o >0; z; > 0. (5.4.1)

The mean detection distance E(z) = 0v/2//7 and variance Var(z) = 02 (1 — 2/7). The

parameter o is referred to as the scale parameter. Using equation (5.1.7) to define the
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probability density function of the observed radial distances and equation (5.1.14) given
in Section 5.2.1, we can estimate the effective detection distance (radius) for each species
at BCI, Panama. We adopt the method of maximum likelihood estimation to estimate

the effective detection distance.

So suppose we have s; observed distances such that z;; for i = 1,2,...,c camera traps

and j =1,2,...,s; , then likelihood function can be written as

Lio | z5) =] H 9(zij | o), (5.4.2)

i=1j=1

where g(z;; | o) is the probability density function of the observed distances, which is

defined as

zij - P(zij | o)
ij = —w ) 5.4.3
g(z J | 0) fo pr(zw ‘ O')dzz‘j ( )

where w is the radius of the point (distance of detection of the camera trap). Note that
equation (5.4.3) also holds for infinite w. This equation (5.4.3) is analogous to equation

(5.1.7). The effective detection distance can be estimated as

2
h(0)

"}/ =
where h(0) is the slope of g(-) evaluated at zi; = 0 (see Buckland et al., 2001).

Before attempting to estimate the effective detection distance, we examine the data by
looking at histograms (Figure 5.4.1). At small distances, detection increases because
the detection zone area of the camera trap increases with distance from the trap. As
shown in Figure 5.2.1 and as discussed in Rowcliffe et al. (2011) relatively few animals
are detected near the camera trap where the area of view of the camera trap is small.
And this may occur because small animals may pass under the field of view of the cam-
era, and or larger animals may be unwilling or unable to pass close to the tree where
the camera trap is mounted. To examine how probability of detection falls off with
distance, Buckland et al. (2001) state that we must ”correct” for the increase in area

away from the point (trap) by assigning the jth detection distance on the ith camera
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trap z;; a weight 1/z;;. So scaling frequencies by 1/z;; causes the first histogram bar
(Figure 5.4.2, left panel), corresponding to the few short distances, to increase in size
the most, making these distances appear more influential than they are. Figure 5.4.2
(left panel) gives the estimated detection function (halfnormal) on a histogram of scaled
frequencies. According to Buckland et al. (2001) the detection function may sometimes
appear to fit badly at small distances, see for example graph (a) in Figure 5.4.2 (left
panel), and this arises because of the deceptive nature of point transect data. Note that
relatively few distances are recorded close to the camera trap, where the detection zone

area is small, so the fit of the model is not heavily influenced by distances close to zero.

Estimates of the effective detection distance, 4 for each species at BCI are given in
Table 5.4.1. We also give the estimated mean detection distance, 2. The results show
that effective detection distance increases strongly with the size of the animal (Table
5.4.1) with a difference of 50% between the highest and smallest effective detection
distances. The corresponding (fitted) probability density function (PDF) of observed
distances for the nine species are shown in Figure 5.4.2 (right panel). In the next Sec-

tion (5.5) we use the concept of effective detection distance to estimate density in iREM.
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Table 5.4.1: Estimates of the effective detection distance, v (in
m) and mean detection distance, Z (in m) (standard error in par-

entheses).
Species Parameter estimates
Mean detection distance (2) Effective detection distance (¥ )

ocelot 1.22 (0.07) 1.56 (0.05)
coati 1.41 (0.09) 1.68 (0.05)
rat 0.83 (0.04) 1.29 (0.03)
peccary 1.96 (0.09) 1.98 (0.04)
brocket 1.84 (0.10) 1.92 (0.05)
paca 1.44 (0.06) 1.70 (0.04)
agouti 1.37 (0.02) 1.66 (0.02)
squirrel 1.13 (0.08) 1.51 (0.05)
mouse 0.79 (0.06) 1.26 (0.05)
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5.5 IREM with detection distance (iREM-dd)

In REM the independent parameters required to estimate density are: detection dis-
tance, r, detection angle, 0, expected animal speed, u, camera trap time (in days), ¢,
and average group size g if animals are found in pairs or family groups. The detection
zone parameters are assumed to be fixed. In reality however, these vary and appropriate
estimators are required. In this section, we develop an integrated likelihood, simultan-
eously modelling the encounter data, animal speed data and detection distance data to
estimate animal density. It is worth reiterating that the speed data and the encounter
data at BCI are collected from the same source, hence, there are not independent. So
here we assume independence between the data sets so that their contributions to the

likelihood could be multiplied.

In Chapter 2 Section 2.3 we give the nonparametric model used by Rowcliffe et al.

(2008) to estimate density as

Z?:l aq T

D=
Yoi it X (24 0)rv’

(5.5.1)

where a; is the encounters on the ¢th camera trap for ¢ = 1,2, ..., ¢ camera trap, ¢; is the
camera trapping time period of the ith camera trap, the fixed parameters 6 and r are
the detection angle and detection distance, respectively, and v is the mean speed. We
showed that D in equation (5.5.1) could be derived by maximum likelihood estimation
assuming the encounters follow a Poisson model. Rowcliffe et al. (2008) computed the
standard error by bootstrapping the camera locations with replacement and taking the

variance of a large number of resampled density estimates.

In this Chapter the information required for density estimation in REM is collected at
the camera level, where the camera trap time, ¢; (i = 1,2, ...,¢), for the ith camera is
no longer fixed. Therefore, assuming the rate of encounter, which is dependent on a
variable time period ¢;, is from a Poisson model, we show that the above formula for

the density is a maximum likelihood estimator.
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Suppose a; is a Poisson random variable with encounter rate At;, that is, a; ~ Poisson(At;).

Then the probability mass function is

e—)ﬂfi w
hpois(ai ’ A, ti) = 7()\757,) Y (552)

(2

where

2+6
A= (:) yuD, (5.5.3)

and p is expected speed; 6 is the detection angle, which is held fixed, and the effective
detection distance is v. We assume the number of encounters, a; are independent for all
1. That is, all animals are captured independently of each other at each camera trap.
Note that in an ideal gas model, from which is REM derived, a key assumption is that
movement of individuals is random and independent of each other, and equally likely in
all directions; see Section 2.1. Thus, from equation (5.5.2) the likelihood function is

¢ e—Ati()\ti)ai

L(ai; )\, ti) = H

a;!
i=1 v

Taking the logarithm, we have

l(a;; A, t;) = constant — Z At + Z a;log(At;).
i=1 i=1

Differentiating with respect to A and setting equal to zero, we have

f = D iy G
==
Zz‘:l ti

An estimate of the density, D, from equation (5.5.3) is therefore D = X x 1/C, where
C={(2+6)/7}~yu is a constant. An estimate of the standard error of the density can
be computed using the Fisher Information Matrix. Since density, D=Xx1 /C, the
standard error of the density estimator, D is the standard error of the encounter rate

multiplied by some constant, that is, Se(A) x 1/C. The Fisher Information is

. 0* ol e[ limiw] Xt
I(\) =-E [85\2 logf(ai,)\)] —E[ 5\21 ] = 5\1 .
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The variance is computed by taking the inverse of the Fisher Information, that is,

) = A = T
Ei:l ti (Zi:l ti)

We can therefore find an estimate of the standard error of the density estimator, which
is an alternative method to the bootstrapping method used by Rowcliffe et al. (2008)
in REM. Since D = A x 1/C, then the variance of D is I=*()) x (1/C)?. The standard

error of the density is therefore, \/I=1 x (1/C)?.

5.5.1 The Model

In this section we give the integrated REM for estimating density accounting for the
sampling variability in speed and detection distance. We propose an iREM with detec-
tion distance model (iIREM-dd) to estimate the density of unmarked species. Suppose
the encounter data, a;, has probability mass function h(a; | A\, t;, 7) where i =1,2,...,¢
is the ith camera trap, ¢; is the camera trap time period for the ith camera trap, 7

represents any additional parameters in the model, and

- (2% o, (5.5.4)

And suppose for m speed observations such that x = {x1, 9, ..., 2, }, has probability
density function f(x; | u, v) where | = 1,2,...,m; u is the expected speed and v
represents any additional parameters in the model. Also, suppose the detection distance
data, z;j, has probability density function g(z;; | o) where j = 1,2,...s; is the jth
detection distance on the ith (i = 1,2, ..., ¢) camera trap, o is the scale parameter from
a zero- mean normal distribution. As discussed in Section 3.2 in Chapter 3, certain
assumptions of the combined likelihood are made. These include: 1) encounters between
animals and camera are independent, 2) animals move randomly and they encounter
camera traps independently of each other, 3) speeds are independent and identically
distributed, 4) if animals are found to be moving in pairs or family group sizes, these
are assumed to be small; given that the probability of detection depends on the size of
the group and the distance, we assume groups are small and are detected within the

sector-shaped detection zone of the camera trap. Therefore, the log-likelihood function
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can be constructed as

c m C Sy
(= Zlog h(a; | A, t; 7) + Zlog flxy | w, v)+ ZZlog 9(zij | o). (5.5.5)

i=1 I=1 i=1 j=1
We consider a gamma model, a lognormal model, or a Weibull model for the speed
data as proposed and used in Chapter 3, and a Poisson REM described above for the
encounter data. We could also use a negative binomial model as shown in Section 2.1.1

in Chapter 2. Suppose a; | A ~ Poi(At;) has probability mass function

e~ i @
hpois(ai | A, ti) = T()\tz) ‘, (556)

(3

where A ~ Ga(k, 3) with probability density function

/BK/

m)\a_lexp(—/\ﬁ). (5.5.7)

g(A) =

To obtain the density function of the encounters a; we need to integrate out A.

00 e—)\ti o ﬁn

(At) F(K)Aﬂflexp(—m)dA

h(a;) = /:O h(a; |\, ti)g()\)d)\:/

=0 0 a;!

;B T(k + ai) /OO (ti + B)" T N exp{—A(ti + B)}
aiL(r)(t; + B)F Lk + ;)

tBT (s +a) _ T(aitr) < ; )( : >’H

Cal(8)(ti+ B)" Tlai+ DI(k) \ti+ ti+p

where the probability of encounter, p = 3/(t; + ) and 1 — p = t;/(t; + 3). Therefore,
a; ~ NB (k, B/(t; + 8)) with mean xt; /3. Given that the encounter rate is A\t;, where
A ={(2+0)/7}yuD, and the mean encounters from the Poisson-gamma mixture is
kt;/B, then in this case A = /S and f = k/A. Therefore, the probability density

function of the encounters, a; has NB-2 form

has A, b, ) = —L R F a0 ( K )“( ; )a

C(a; + DI(k) \ At + K& M+ K
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where k is the dispersion parameter. The negative binomial distribution has NB-2 form

as given in Hilbe (2011).

5.6 Performance of the iREM-dd model

In this section we test the performance of the iREM-dd model. We simulate N4 indi-
viduals uniformly and select individuals that are detected based on their distance from
the centre point of a circle. We assume a halfnormal probability detection function
for the distances. For illustration, we fit a Poisson REM to the encounter data, and a
lognormal model is fitted to the speed data simulated from the relevant fitted model.
We assess the output for the true values and sample sizes given in Table 5.6.1 based
upon 100 simulations. We set § = 0.28 (radians). The chosen parameter values are
realistic for real species in our motivating data set. The average parameter estimates
(standard error in parentheses), Standard deviation (Sd), and Root Mean Square Er-
ror (RMSE) are computed. We test the Poisson iREM-dd under various parameter
settings and population size, N4. For each simulation run, the number of individuals
detected varies. Increasing the number of individuals in the population (Ny), is likely
to increase the number of individuals detected. The simulation results show that the
Poisson iREM-dd model is working as it is expected to under all scenarios. As expected,
increasing the number of individuals in the population available for capture, the number
of speed observations, and the camera trapping days improves estimates of the density
and its precision (see Table 5.6.1 below). Note that higher variability in the distance

data means that the value of the effective detection distance would be larger.
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Table 5.6.1: Simulation results from a Poisson iRM-dd. Detection distance is assumed to
follow a halfnormal distribution and animal speed is assumed to follow a lognormal model.

Density, D is estimated in km?, expected speed, y is in ms~

1 and expected effective

radius, v is in m. The number of animals in the population available for detection is
denoted by N4; n is the number of camera trapping days, and m is the number of speed
observations. The standard errors (in parentheses), Standard deviation (Sd) and Root
Mean Square Error (RMSE) are also given.

Estimates
Sd
RMSE

Estimates
Sd
RMSE

Estimates
Sd
RMSE

Estimates
Sd
RMSE

Estimates
Sd
RMSE

Estimates
Sd
RMSE

Increasing D

N, = 100; n = 500; m = 40

D = 0.96; pu = 0.156; v = 1.22

0.99 (0.16)  0.158 (0.01) 1.22 (0.16)
0.16 0.01 0.16
0.16 0.01 0.16

D =15.96; p = 0.156; v = 1.22

16.90 (2.82)  0.154 (0.01) 1.19 (0.19)
3.00 0.01 0.16
3.14 0.01 0.16

D = 30.96; = 0.156; v = 1.22

31.94 (5.36)  0.155 (0.01) 1.80 (0.20)
4.74 0.01 0.15
4.84 0.01 0.15

Increasing Var(z;;)

N4 = 100; n = 500; m = 40

D = 0.96; p = 0.156; Var(z;;) = 0.52; v = 1.70

0.99 (0.19) 0.155 (0.01) 1.70 (0.27)
0.19 0.01 0.29
0.19 0.01 0.30

Ny = 100; n = 500; m = 40

D = 0.96; p = 0.156; Var(z;;) = 3.06; v = 4.10

0.98 (0.16)  0.157 (0.01) 4.07 (0.34)
0.18 0.01 0.55
0.18 0.01 0.55

N, = 100; n = 500; m = 40

D =0.96; p = 0.156; Var(z;;) = 11.40; v = 7.92

1.01 (0.15)  0.154 (0.01) 7.68 (0.41)
0.14 0.01 0.90
0.15 0.01 0.93

Larger Ngy

Ny = 1000; n = 500; m = 40

D =0.96; p = 0.156; v = 1.22

0.98 (0.09) 0.155 (0.01) 1.20 (0.06)
0.08 0.01 0.05
0.08 0.01 0.05

D = 15.96; p = 0.156; v = 1.22

16.32 (1.50)  0.155 (0.03) 1.20 (0.06)
0.29 0.003 0.02
1.36 0.01 0.05

D =30.96; p = 0.156; v = 1.22

31.24 (1.81)  0.156 (0.01) 1.20 (0.06)
3.19 0.01 0.05
3.24 0.01 0.05

Larger survey effort

Na = 1000; n = 2000; m = 200

D = 0.96; u = 0.156; Var(z;;) = 0.52; v = 1.70

0.97 (0.06) 0.155 (0.002) 1.69 (0.10)
0.06 0.002 0.10
0.06 0.002 0.10

Na = 1000; n = 2000; m = 200

D = 0.96; u = 0.156; Var(z;;) = 3.06; v = 4.10

0.97 (0.04)  0.155 (0.002) 4.07 (0.10)
0.04 0.002 0.17
0.04 0.002 0.17

Na = 1000; n = 2000; m = 200

D =0.96; u = 0.156; Var(z;;) = 11.40; v = 7.92

0.98 (0.04)  0.156 (0.002) 7.72 (0.13)
0.03 0.003 0.25
0.04 0.002 0.32
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5.7 Application of iREM-dd to real data at BCI

An application of iREM-dd to the BCI data is given in this section. With the assump-
tion that the encounter data, speed data and detection distance data are independent
we combine the data sets and maximize the likelihood to estimate the density. We fit
an iREM-dd to the data of nine terrestrial Panamanian species at BCI rainforest. We
assume a halfnormal probability detection function for distance data; the speed data
is assumed to follow a gamma model, a lognormal model or a Weibull model that was
used in Chapters 3, and 4, and the encounter data is assumed to follow a Poisson REM

described in Section 5.5 above.

Table 5.7.1 gives the parameter estimates (standard errors in parentheses) and the AAIC
values for each of the nine species. The results show minimal differences between the
estimates from the three speed data models. However, there is more support for the
lognormal as shown by the AAIC values. For large species such as ocelots, paca, brocket
and peccary, the estimated effective detection is larger compared with smaller species
such as mouse and rat for example. Note that larger species tend to be more detectable
at distances further away from the trap, than smaller species. In the next Section we
consider modelling the angle to detection, to an estimate effective detection to estimate

the density.
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5.8 Modelling angle to detection data

Another aspect of the detection zone in camera trapping is the detection angle, which
varies in practice. In REM, this variation is likely to have an effect on the encounter
rate, which is dependent on the angle of detection. Rather than using a fixed value of
the detection angle as REM does, we consider fitting a circular model to the angle to
detection data and estimating an effective detection angle. The angle to detection data
is circular data (angular), which is in the range 0-360 degrees or 0-27 radians. Circular
data are modelled by circular distributions such as a von Mises distribution, which

models the entry directions of animals in camera traps detection zones.

5.8.1 The model

In this section we propose a model for estimating the effective detection angle. A
von Mises model is an appropriate model for fitting angular data and an effective
detection angle can be obtained by maximizing the likelihood. For a vector of detection
angles @ = {61,065, ...,0,,} with mean v, we use a truncated von Mises distribution for 6

(0 £ 0 < 7). The probability density function is defined as

exp{n cos(@ —v)}

/2 ex cos(0—v
(2m)Io(n) |, & %T((m)}dg

p’UM(O) v, 1, 07 7T/2) =

(5.8.1)

_ exp{ncos(d —v)}
fow/2 exp{n cos(6 —v)}do

where v is the mean detection angle which is equivalent to  in equation (5.5.3); 7 is the
concentration parameter; and Iy(n) is the modified Bessel function of order zero and

the first kind, and given by:

2

To(n) = % /0 _ exp(y cos(0)) db (5.8.2)

(Pewsey et al., 2013). The modified Bessel function Ip (of the first kind and order p) is
defined by

L,(n) i L (myr 0,1,2
pT/ = 7"(7> , p=0U,1,4,...
— (r+p)iri\2
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In particular

(see Zhao, 2009, pages 233-234).

We fit the truncated von Mises model described in equation (5.8.1) to the angular data
from BCI, Panama. Estimates of the mean angle to detection and the concentration
parameter are given in Table 5.8.1. Unlike the results obtained for the detection dis-
tance which showed more variation between species (section 5.8) the results in Table

5.8.1 show that there is not much variation in mean direction between species.

Table 5.8.1: Estimated mean angle to de-
tection, ¥ and concentration parameter 7

Species Parameter estimates
0 Ul

ocelot 0.24 (0.02) 26.13 (4.53)
coati 0.20 (0.02)  35.98 (6.86)
rat 0.24 (0.02)  23.86 (3.29)
peccary 0.27 (0.02) 23.38 (3.11)
brocket 0.24 (0.02)  30.06 (4.89)
paca 0.23 (0.02) 27.33 (3.44)
agouti 0.23 (0.01)  29.79 (1.62)
squirrel 0.24 (0.03)  26.95 (5.37)
mouse 0.20 (0.03) 35.75 (8.12)

5.9 IREM with detection zone dimensions (iIREM-D)

The iREM-dd model in Section 5.5 can be expanded to incorporate the angle to detection
data, forming a single integrated likelihood to estimate abundance of unmarked species.
Suppose the encounter data, a; has probability mass function h(a; | A, t;) where i =

1,2, ..., c is the ith camera trap, t; the camera trap time period for the ith camera trap
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and where

A= <2+“> ~uD. (5.9.1)
77
We assume the encounters between animals and camera traps are independent, and
animals move randomly and encounter camera traps independently of each other. The
mean angle to detection is denoted by v; v is the effective detection radius; p is the
expected animal speed; and D is the density. Also, suppose m animal speed observations
such that z = {z1,...,x,,) have probability density function f(z; | p, v) where [ =
1,2,...,m, u is the expected animal speed and v represents any additional parameters in
the model. And, suppose the detection distances, z;;, have probability density function
9(zij | o) where j = 1,2, ..., s; is the jth observed detection distance, on the ith camera
trap, and o represents any additional parameters; and the angles to detections, 0;;,
have probability density function p(6;; | v, n) where j =1,2,...,s; is the jth observed
angle to detection on the ith camera trap, v is the expected angle to detection, and

n represents any additional parameters in the model. Under the assumption that the

data sets are independent, the joint log-likelihood can be constructed as

C m
0=> log h(a; | A, ti, )+ > log fla | p, v)+
=1

i=1

C Sq c S; (592)
> > log glziy [ o)+ D> log by | v, n).

=1 j=1 =1 j=1

5.10 Simulation Study

In this section we investigate the performance of iREM-D, under the assumption that

the data sets are independent, for the two following cases.

(i) Firstly, we investigate the performance of the Poisson iREM-dd and the import-
ance of accounting for the sampling variability in animal speed, detection distance
and angle to detection. To do this we fit a Poisson iREM-D, a Poisson iREM-dd,
a Poisson iREM and a Poisson REM to data simulated from a Poisson REM given
in Section 5.5 above (Section 5.10.1).

(ii) Secondly, we investigate the importance of accounting for the variation in the

encounter data. To do this we fit a Poisson iREM-D, a Poisson iREM-dd, a NB

202



iREM-D, and a NB iREM-dd to encounter data simulated from a NB REM given
in Section 5.5 above (Section 5.10.2).

For the simulations we use parameter values and sample sizes that are plausible ecolo-
gically for real species at BCI, Panama. For illustration we assume a lognormal for the
speed data. As done in Section 5.6 we simulate N4 individuals uniformly and select
individuals that are detected based on their distance and angle from the centre point of
a circle. We assume a halfnormal probability detection function for the distances and a
von Mises model for the angular data. To investigate the importance of accounting for
the sampling variability in distance and angle to detection we simulate data with low
and high variance. For the angle to detection 1/7 is analogous to the variance from a
normal distribution, therefore, the smaller the value of 7 the larger the variance. The av-
erage parameter estimates (average standard error in parentheses), Standard deviation

(Sd) and Root Mean Square Error (RMSE) are computed for 100 simulation runs.

5.10.1 Investigating the importance of accounting for the sampling variability in

speed, detection distance and angle to detection angle data

In this Section we compare estimates from iREM, iREM-dd, iREM-D methods and
the REM method for simulated data. The purpose is to investigate the importance of
accounting for the variation in data for animal speed, detection distance and angle to
detection. We set the expected speed, p = 0.156 ms~! with variance, Var(z;) = 0.11.
In all cases we fit a Poisson REM to encounters simulated from a Poisson REM. A
lognormal model is fitted to the speed data; a halfnormal model is fitted to the distance
data, and von Mises model is fitted to the angular data. For illustration we simulate
camera trap time data from a gamma model, which is used to estimate to encounter
rate, At;. The methods are tested using 100 simulation runs and the parameter estim-
ates, their associated standard errors, the standard deviation (Sd) and the Root Mean

Square Error are computed.

Table 5.10.1 gives the average estimates of the density (standard error in parentheses)
for increasing density, D and increasing variability, Var(z;;) in the distance data. We set

a low value of the concentration parameter, n = 10, so that the variability in the angular
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data would be minimal. We set the number of animals in the population available for
detection to N4 = 100; the number of camera trapping days is set to n = 1500; and the
number of speed observations is set to m = 100. The results (Table 5.10.1) show that
the Poisson REM performs poorly for small values of the density but gave estimates
of the density that are in good agreement with the true values of the density when D
increases. However, the Poisson REM and Poisson iREM achieved smaller estimates
of the standard error compared with a Poisson iREM-dd and a Poisson iREM-D. It is
worth reiterating that REM does not account for the sampling variability in the data
entering the model, while iREM accounts only for the variability in the speed data.
When the sampling variability in the distance data increases the bias in the density
from a Poisson REM and a Poisson iREM increases. The Poisson iREM-dd and a
Poisson iREM-D gave similar estimates but the standard error from the Poisson iREM-
dd is smaller compared with estimates from the Poisson iREM-D. Also, the evidence
shows that the Poisson iREM-D gave larger RMSE compared with the other models.
The reason for this is because the Poisson iREM-D accounts for the sampling variab-
ility in the all parameters, and hence, gave larger estimates of the variance (note, the

RMSE = \/Var(é) + Bias(6,0)? as given in Section 1.4 in Chapter 1). We also give

estimates of the density for increasing variability in the angular data, and increasing
survey effort (Table 5.10.2). For all methods estimates of the density are in good agree-
ment with the true density value. But as expected, increasing variability in the angular
data has an effect on the estimated standard error from the simpler models (Poisson
REM and Poisson iREM). However, there is minimal difference in estimated density
between the Poisson iREMs, and a Poisson REM gave a larger bias compared with the

Poisson iREMs. Increasing survey effort improves the estimates and precision but again.

Based on these results we can conclude that accounting for the variability in the data
entering REM is highly relevant, since ignoring this variation can introduce estimation
bias and can result in an underestimation of the standard error of the density. iREM
is a simpler model to fit compared with iREM-dd and iREM-D and can provide an
adequate description of the data, but as shown in the simulations, iREM-dd and iREM-
D are more appropriate models for data with high variability in detection distance and

angle as they provide more precise estimates and correctly estimates the standard error.
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5.10.2 Investigating the importance of accounting for variation in encounter data

In this section we investigate the importance of accounting for the sampling variability
in the encounter data. We fit a Poisson iREM-dd and a Poisson iREM-D to encounters
simulated from a NB REM described in Section 5.5 above. For comparison we a fit a
NB iREM-dd and a NB iREM-D to the same encounter data. For illustration, we fit a
lognormal model to the speed data, which is simulated from the relevant fitted model.
As in Section 5.6 and Section 5.10.1 we simulate N4 individuals uniformly and select
individuals that are detected based on their distance and angle to the centre point of a
circle. We assume a halfnormal model for the distance data and a von Mises model for
the angular data. We set D = 15.96 (km?); p = 0.156 (ms~!); and x = 0.76. We test
the performance of the models for low and high variability in the detection distance and

angular data, and increasing sample sizes.

Table 5.10.3 compares density estimates from a Poisson iREM-dd, a Poisson iREM-D,
a NB iREM-dd and a NB iREM-D. As expected, the Poisson iREMs gave a larger bias
and/or smaller estimates of the standard error of the density since the variability in
the encounter data is not accounted for. The evidence also suggest that not accounting
for the sampling variability in the detection distance and angle to detection data would

induce bias in the density estimator, and smaller estimates of the standard error.

Based on these results, we would recommend NB-iREMs, as the variability in the data
is accounted for as shown by the estimated standard errors. A Poisson iREM-D would
also provide reasonably accurate estimates of the density but care must be taken since

it would give smaller estimates of the standard error of the density.
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5.11 Application of iREM-D to real data at BCI

In this section we analyse the data at BCI, Panama, for nine terrestrial mammal spe-
cies using an iREM-D. For the speed data we fit the three alternative models (gamma,
lognormal, Weibull) used throughout this thesis. We assume a halfnormal model for

distance data (Section 5.4), and a von Mises model (Section 5.8) for the angular data.

First, we assume the encounters follow a Poisson REM. So we fit a Poisson iREM-D to
the data, and compare the estimates from a Poisson iREM-dd, a Poisson REM and a
REM. We assume independence between the data sets. Rowcliffe et al. (2011) invest-
igated the independence between the detection distance and angle to detection data
by looking at the correlation between the two data sets for the most abundant species
(agouti) at BCI, Panama, and a weak correlation was found to exists between the data
sets (Section 5.2.1). As such an assumption of independence was made. The correlation
between the detection distance and angle is given in Table 5.11.1 for each of the nine
species. A weak negative correlation exists between the data sets for all species, except

mouse, which has a weak positive correlation.

The results (Table 5.11.1) show minimal differences in the estimates from the speed data
models. The estimated effective radius, ¥, is quite low for the rat species and mouse
species. Note that these animals are typically small and are more likely to be missed
if they pass under the field of view of the camera traps; also detectability declines the
further away they are from the trap. The number of detections, particularly for mouse,
was relatively low (43) compared with the other species (see Table 5.3.2 above). For
larger species such as peccary, brocket, paca and ocelot estimated effective detection
radius is larger. We note that detections very close to the trap are low (see Figure 5.4.1
above), which may be because animals are either unwilling or physically unable to pass
very close to the tree to which the trap is attached. This is particularly true for larger
animals. Therefore, a larger number of animals would be detected further away from
the trap, and hence, larger estimates of the effective detection radius (see Buckland

et al., 2001; Rowcliffe et al., 2011).
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In Table 5.11.2 we compare estimates of the density from all four methods: REM, iREM,
iREM-dd and iREM-D. We fit the nonparameteric REM method (Rowcliffe et al., 2008),
given in equation (5.5.1), using the sample averages for the detection distance data, an-
imal speed data, and angle to detection data. Estimates of the density from fitting a
Poisson iREM-D are compared with estimates from a Poisson REM, Poisson iREM and
a Poisson iREM-dd. The results (Table 5.11.2) show that estimates of the density from
the four methods are similar for all species. However, REM and iREM gave smaller
estimates of the standard error. It is worth reiterating that REM does not consider the
sampling variability in the data, and iREM only considers the variability in the speed
data and not the distance and angular data, hence, the underestimation of the standard
error compared with iREM-dd and iREM-D. The difference in estimates of the density
and its standard error between iREM-dd and iREM-D is minimal since the variability
in the angle to detection data is low (see Table 5.8.1). We also note that either of
the speed data models can be used in the model to speed data as these gave similar

estimates of the parameters.

We also fit a NB iREM-D to the the BCI data and the results are given in Table 5.11.3.
Like the Poisson iREM-D the difference in the parameter estimates between the three
speed data models is minimal. We also compare estimates from REM (using equation
(5.5.1)), a NB iREM-D, a NB iREM-dd and a NB iREM and the results are shown
in Table 5.11.4. Again, the four methods gave similar estimates of the density but the
estimated standard errors from REM and iREM are smaller compared with estimates
from iREM-dd and iREM-D. Note that the Poisson REM (in Table 5.11.1 above) and
a NB REM in Table 5.11.3 below can be used to provide estimates of the density but
the estimated standard error of the density from a Poisson REM is smaller compared
with that from a NB REM. This result is confirmed by the simulation study in Section
5.10.2 above. We compare a Poisson iREM-D with a NB iREM-D and the AAIC values
are given in Table 5.11.5. The results show that the a NB iREM-D is selected for all
species with the difference in AICs of at least 100 units between the two models. For
the speed data models, the lognormal model is more supported, followed by the gamma

model.
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Table 5.11.5: AAIC values from fitting a Poisson iREM-D and a NB iREM-
D to the BCI data.

Species

ocelot
coati
rat
peccary
brocket
paca
agouti
squirrel

mouse

Poisson iREM-D NB iREM-D
gamma  lognormal  Weibull gamma lognormal Weibull
122.18 129.14 122.26 0 6.98 0.08
1685.20 1681.06 1690.36 7.00 0 9.30
957.52 944.20 969.32 13.31 0 25.63
10205.28  10253.16  10238.94 15.02 0 10.48
212.29 196.91 221.95 15.38 0 25.63
1366.58 1342.46 1402.88 85.08 145.48
7432.56 7434.26 7495.04 1.69 62.47
7522.94 7437.44 7586.14 85.52 0 148.72
222.34 217.04 229.28 5.29 0 12.22
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5.12 Discussion

The iREM method and its extensions developed in Chapters 3, 4, and in this Chapter
combines multiple data sets into a comprehensive framework (iIREM-D). Consequently,
estimates of the density and additional parameters in the model, in particular effective

detection distance are made with correct estimations of the standard error of the density.

As shown by the simulations, accounting for the variation in the parameters required
to estimate abundance in REM is important. For high variability in the data, REM
is a poor fit for small density values. However, REM can provide stable and relatively
accurate estimates of the density for large density values but ignoring the variability in
detection zone dimensions would result in smaller estimates of the standard error for
scenarios that can be considered ecologically realistic. While iREM is an improvement
over REM in accounting for the sampling variability in animal speed, it does not ac-
count for the sampling variability in the detection distance and angle to detection, and
as shown by the simulation results estimation bias and underestimation of the standard

error can be introduced.

The simulation results also revealed that not accounting for the variability in the rate
of encounter would have some consequences on the standard error, particularly if the
sampling variability in the detection distance is not accounted for. The NB REM ac-
counts for the variability in the encounter rate. This is not included in a Poisson REM

but comparable results to the NB REM are produced despite the simplicity of the model.

An analysis of the BCI data shows obvious variation in detection distance data, and
clear differences in estimated standard error of density between iREM and iREM-dd.
However, we have shown that iREM can obtain relatively accurate estimates of the
density if there is large variation in the detection distance and angle. Since the process
of collecting detection distance and angular data is tedious as described in this Chapter
and Rowcliffe et al. (2011), iREM, which is a simpler model can provide relatively ac-

curate estimates of the density but it would give smaller estimates of the standard error.
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The single integrated model (iREM-D) developed in this Chapter is flexible and has the
advantage of incorporating other factors as covariates such as activity level and habitat
type/land-cover (as shown in Chapter 4), which may describe additional variation in
model parameters, particularly, density. But as shown in the real data at BCI, Panama,
the variation in angle to detection is minimal resulting in similar estimates of the dens-
ity from iREM-dd. We have shown that a weak correlation exists between the distance
and angle data. Hence, the correlation is not important in practice and we can assume
independence between the data sets and their contribution to the likelihood could be
multiplied. While the iREM-dd is a simpler model to fit compared with iREM-D and
can provide an adequate description of our BCI data set, in general, the iREM-D would
be more appropriate for modelling this type of data as it accounts for the potential
variation in the direction of entry of animals into the detection zone, which is relevant

if the variation within species is large.

In REM or an iREM method density is dependent on expected animal speed for the
population. In most cases in practice, a sample of the population is used and an average
of the speed observations are used in the estimation process. However, faster moving
animals are more likely to contact camera traps, and we therefore expect our sample to
be biased towards faster speeds. To correct for this bias, we adopt a size biased sampling
approach in estimating expected animal speed of movement. Chapter 6 describes in
detail, a size biased sampling method that can reduce the bias in expected animal

speed.
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Chapter 6

Measuring Animal Speed From Camera Trap

Data

The motivation for this Chapter is the animal speed of movement data collected from
a survey of terrestrial mammals at Barro Colorado Island (BCI), Panama, which was
discussed in Chapter 5, Section 5.3. The speed of movement of animals is an import-
ant behavioural metric that influences processes such as foraging success, and disease
transmission, and which can be applied to a range of questions in ecology and consev-
ation (Rowcliffe et al., 2016). For example, the estimation of animal abundance in the
Random Encounter Model (REM) developed by Rowcliffe et al. (2008) requires an es-
timate of average animal speed of movement. Also, Rowcliffe et al. (2011) used camera
traps, recording animals to measure movement paths of animals at a very fine scale.
The speed observation was obtained by dividing the length of a passage travelled by
an animal by its duration. From a sample of speeds, an average speed of movement
was computed. The motivation for Rowcliffe et al. (2011) was to provide a means of

estimating detection zone dimensions for application to REM estimation of abundance.

In camera trapping analysis faster moving animals are more likely to encounter cam-
era traps than slower moving animals (Hutchinson and Waser, 2007). As such, the
probability of encounter may differ within species. To correct for this bias in speed of
movement of animals we can use the method of size biased sampling (Patil and Rao,

1978). Size biased sampling arises when a positive-valued outcome variable is sampled
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with a selection probability proportional to its size (Chen, 2010). According to Arra-
tia and Goldstein (2010), a random variable, X, can be size biased if and only if it is
nonnegative. Rowcliffe et al. (2016), for example, used size biased sampling methods
to estimate average speed from camera trap data by fitting size biased models to speed
data and maximizing the likelihood. The purpose is to correct for the bias in average
speed required in Rowcliffe et al. (2008) REM to estimate density. In Chapter 2 we
showed that REM describes a linear relationship between speed and encounter rate,
therefore the probability of sampling a given speed is expected to be proportional to its

speed, and the observed distribution of the speeds is therefore size biased.

Rowcliffe et al. (2016) considered three non-negative probability density functions:
gamma, lognormal, Weibull, to fit the speed data and estimate average speed. The
variance was approximated by inverting the Hessian matrix at the maximum likelihood
estimates, and the AIC method was used to select the best distribution. To test the
models Rowcliffe et al. (2016) generated a sample of d; (i = 1,2,...,n) distances, and
passage durations, ¢; (i = 1,2, ...,n) and computed the ith speed observation, s;, as the
ratio of distance, d; to passage duration t;, that is s; = d;/t;, and using these speeds a
size biased gamma model, a size biased lognormal model and a size biased Weibull model
were fitted and the likelihoods maximized. An application of the size biased models to
animal speed data of 12 terrestrial mammal species at Barro Colorado Island, BCI,
Panama suggested that the method is acceptably accurate with the lognormal model

most strongly supported, particularly for those species with large sample sizes.

In this Chapter, we adopt the method of size biased sampling to correct for the bias in
speed of faster moving animals, and estimate average speed, which is an input parameter
in REM. In particular, we derive the probability of encountering an animal with a
given speed in REM showing that it is approximately proportional to its speed. We
assume four probability density functions for which the probability of encounter could
be derived and test the approximation via simulations. We also test the true probability
of encountering an animal via simulations. The Chapter begins with an introduction
to size biased sampling in Section 6.1. It then goes on, in Section 6.2, to describe size

biased sampling in REM, and the proposed probability models for animal encounters
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used to derive the probability of encounter. To obtain estimates of average speed we
adopt the method of maximum likelihood estimation, which is discussed in Section 6.3.
The harmonic mean method, which is a nonparametric alternative approach that can
be used to estimate the average speed, is described in Section 6.4. The simulation study
is given in given in Section 6.5. The Chapter concludes with an application of the size

biased sampling method to BCI data in Section 6.6.

6.1 Introduction to size biased sampling

The concept of size biased sampling has resulted from the concept of weighted distri-
butions. Suppose that an original observation X has f(x) as the probability density
function, and that the probability of recording the observation z is 0 < w(z) < 1, then

the probability density function of X,,, the recorded observation is

Ju(z) = ———, (6.1.1)

where w(x) is an arbitrary non-negative weight function; and w is the normalising factor
needed to make the probability density integrate to unity. Distributions with arbitrary
w(z) are called weighted distributions. The weighted distribution with w(z) = x is

called a size biased distribution with probability density function

(6.1.2)

(see Patil and Rao, 1978). The prove this let us suppose that m animals with speeds
x = {x1,22,...,xm} such that | = 1,2,...,;m have probability w(x) of being recorded,
and expected speed of movement, E(X) = p. If the distribution is size biased then
w(x) = z, and the probability density function is

zf(x)

w

uw(x) = = kx f(x),

where f(z) is the true probability density function of x and k is a constant. Integrating

over the entire space of z, we have
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/$gw($)dx =1.

Since the random variable z can be size biased if and only if it is nonnegative, the

constant k can be found as follows,

/OOO kxf(x)de = k:/ooxf(:v)dx

0
1=k - dx = kI
/wa(m):v (z)
1=Fku

k=

Therefore,

v/ ()

guw(T) = 0

6.2 Size biased sampling in REM

The Random Encounter Model (REM) describes the rate of encounter between animals
and camera traps, A, as a function of the detection zone dimensions (r, 6), average

animal speed of movement (v) and density (D) such that

246
A=%D (6.2.1)
Vs

Suppose the population size is 1, and the area considered is 1, in appropriate units, this
gives a density, D, of 1 since density = population/area. In this case we then consider

the expected encounter rate of an individual with speed x; to be

9
N 2F0

rtx. (6.2.2)

We can simplify this to
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A= Cux

where C' = {(2+ 60) /m}rt. A linear relationship exists between speed and the encounter
rate, A, therefore, we would expect that the probability of sampling an animal with a
given speed should be proportional to its speed. If the probability of encountering an
animal is proportional to A we can use size biased sampling described above in Section
6.1. An alternative method is the harmonic mean, which is a nonparametric method

and this is discussed in Section 6.4.

Here we propose the probability models used in Chapter 3 for encountering animals,
which include: 1) a Poisson REM, 2)ZIP REM, 3) a NB REM, and 4) a ZINB REM,
and we assume the speeds of movement follow 1) a gamma model, 2) a lognormal model

or 3) a Weibull model described in Chapter 3. If we let

1 if individual [ is encountered,

0 if individual [ is not encountered,

then for animals moving at speeds x; (for [ = 1,2, ..., m) we can show that the probability
of encountering an animal with a given speed is approximately proportional to the
expected encounter rate, A, defined in equation (6.2.2) for the four proposed probability
models. We also provide examples and give the conditions for which the approximation

holds.

6.2.1 Poisson REM

A Poisson model has probability density defined as

e\

;!

P(l‘l; /\) =

The probability that an individual animal is not encountered is



and therefore,

)\2 )\3 (_1m))\m
=1- (1—>\+2!—3!+...+m!>

~ A= Cx x xy,

where C = {(2+6) /n}rtD. As P(A; = 1) X (approximately proportional to) z,
the distribution is size biased and we can apply equation (6.1.2) with w(x) = z, and
normalising constant w = u, where p is the expected animal speed of movement. For
the approximation to hold, A needs to be small. Note that A is a function of several

parameters and the random variable x;, that is,

2+90
)\:—i-

rtx. (6.2.3)

We note that for A to be small, ¢t needs to be small. As a demonstration we compare
the true probability of encounter with the approximation for different parameter values
for: detection distance r (in km), detection angle 6 (in radians), and camera trap
time, ¢ (in days); and animal speed z; (in km/day~'), which we give in Table 6.2.1
below. Table 6.2.1 shows the true probability of encounter and the approximation from
a Poisson REM. For small values of ¢, estimates of A are small and the approximation
holds; the smaller the value of ¢, the smaller A gets. The approximation also holds for
different values of the detection zone dimensions and animal speed of movement for a
short time frame where the encounters occur. It is worth noting that the smaller the
input parameters, the smaller the difference between the approximation, A, and the true

probability.

223



Table 6.2.1: True probability of encounter and its approximation from
a Poisson REM.

Approximate Exact
probability probability
6 r ) t in days
(radians)  (km)  (km/day™!) (hours) A 1—e A
0.175 0.012 30.7584 0.0416667 (1) 0.01091657 0.0108572
0.175 0.012 30.7584 0.104167 (2.5) 0.0272915 0.02692245
0.175 0.012  30.7584 0.22916 (5.5) 0.06003936 0.05827253
0.175 0.012 30.7584 0.4375 (10.5) 0.1146239 0.1082956
0.175 0.012 30.7584 0.854117 (20.5) 0.2237766 0.2005063
0.175 0.012 30.7584 0.0416667 (1) 0.0106474 0.01059091
0.175 0.012 30.7584 0.4375 (10.5) 0.1117976 0.1057748
0.175 0.012 9.849 0.0146667 (1) 0.003400956 0.003403754
0.175  0.012 9.849 0.4375 (10.5) 0.03580035 0.0351671
0.175 0.012 2.7648 0.041667 (1) 0.0009570695 0.0009566116
0.175 0.012 2.7648 0.4375 (10.5) 0.01004922 0.009998897
0.271  0.012 9.849 0.0416667 (1) 0.003560051  0.003553721
0.271 0.012 9.849 0.4375 (10.5) 0.0373805 0.03669048
0.492 0.012 9.849 0.0146667 (1) 0.003906494 0.003898873
0.492 0.012 9.849 0.4375 (10.5) 0.04101815 0.04018829
0.175 0.001 9.849 0.0416667 (1) 0.0003255411 0.0003254881
0.175 0.001 9.849 0.4375 (10.5) 0.003418179 0.003412344
0.175  0.024 9.849 0.0146667 (1) 0.007812987  0.007782545
0.175 0.024 9.849 0.4375 (10.5) 0.0820363 0.07876148

6.2.2 ZIP REM

To account for zero-inflation in the data set we assume encounters of animals with

speeds z; follow a ZIP REM with probability density function

224



p+ (1 —ple?, foraz =0,

fzz'p(wl ‘ 12 )‘) =
(1= p)e

' , forx; >0,
Z]-

where 0 < p < 1 is the probability which inflates the zero response category. Therefore,

the probability of not encountering an individual animal is
P(A4;=0)=p+(1-pe.
From this we can compute the probability of encountering an animal, such that

P(Alzl)zl—{p+(1_p)ef,\}
_1—{p+(1—p)<1—A+§_§+._+(—17:!)X”)}

~1={p+(1-p)A=N}=A1-p),
and we know that A = C'x;. Therefore,
PA=1)=XM1=-p)=C(1 - plz; S,

where C = {(2+0) /m}rtD. As P(A; = 1) X x;, then the distribution is size biased
and we can apply equation (6.1.2) with w(x) = x, and normalising constant w = pu.
The approximation will hold for small values of t. Table 6.2.2 gives an example of
the approximation and the exact probability of encounter from a ZIP REM. For faster
speeds the approximation holds when A and camera trap time period, ¢ are small. The
difference between the approximation and the exact probability increases when p and
t increase. For slower speeds the approximation of the probability of encounter holds

because, A, which is dependent on x, is small.
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6.2.3 NBREM

A negative binomial model with NB-2 form (Hilbe, 2011) has probability density

Pz | A, k) = F(cl;(: Ir)lgf)(ﬂ) ()\ _’i R>N <)\ j\r ﬁ) ,xl (6.2.4)

where £ > 0, and has a dispersion parameter 1/, then the probability of not encoun-

tering an individual is

P(A; =0) = (Aj_ﬁy.

From this we can compute the probability of encountering an individual, which is

P(Alzl):1—<)\i,{>ﬁ

e[}
e
w1 (1w (2) ¢ SOGB4

—1- (1—A+”+1A2+...>
2K

~ A= Cxp o< ay.

where C = {(2+0) /m}rtD. As P(A; = 1) X x;, then the distribution is size biased
and we can apply equation (6.1.2) with w(z) = x, and normalising constant w = u.
Like the Poisson REM, A\ needs to be small for the approximation to hold, and for A
to be small ¢ should be small. We have checked the approximation for small and large

values of x;, and typical values of the dispersion parameter, .

Table 6.2.3 gives the values of the true probability of encounter and the approximation
from a negative binomial REM. The estimations show that for faster speeds and when
K is small the approximation holds for small values of ¢, but as ¢ increases to 5.5 hours

the difference between the exact probability and the approximation increases. A similar
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conclusion can be drawn for a larger value of k. However, the approximation seems to

hold for a larger value of k at increasing camera trap time t for slower speeds.

Table 6.2.3: True probability of encounter and its approximation from a negative
binomial REM.

Approximate Exact
probability probability
0 r x; t in days K
(radians)  (km) (km/day ') (hours) P A 1— < k >
Atk
0.175  0.012 30.75 0.0417 (1)  0.50 0.011 0.0105
0.175  0.012 30.76 0.1042 (2.5) 0.50 0.027 0.026
0.175  0.012 30.76 0.2292 (5.5) 0.50 0.059 0.054
0.175  0.012 30.76 0.0417 (1)  1.50 0.011 0.011
0.175  0.012 30.76 0.1042 (2.5) 1.50 0.027 0.026
0.175  0.012 30.76 0.2292 (5.5) 1.50 0.059 0.056
0.175  0.012 2.76 0.0417 (1)  1.50 0.005 0.005
0.175 0.012 2.76 0.1042 (2.5) 1.50 0.002 0.002
0.175  0.012 2.76 0.2292 (5.5) 1.50 0.005 0.005

6.2.4 ZINB REM

A ZINB probability density function has NB-2 form (Hilbe, 2011) defined as

p+(1—p) (Aj,i), for 21— 0,

f(xl|’%7 A, p):

“‘p)r(l;l(ﬁ)?zm) (Aj—lﬁ)n<)\j\-ﬁ>xl7 for z; >0,

\
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where 0 < p < 1 is the probability which inflates the zero response category, and 1/x
is the dispersion parameter, and where « > 0. The probability of not encountering an

individual is given as

P(Az:o>=p+<1—p>(kiﬁ)ﬁ,

therefore, the probability that an individual is encountered is given as

P(Az—1>—1—{p+<1—p><Aiﬁ)ﬁ}

ol ]

:1—{p+(1—p) <1—A+H;1A2+...>}

K

=1-

~1l—{p+(1-p(1-N}

= (1 =p)A,

and we know that A\ = Cz;, therefore,

P(A=1)=1=p)A=C1 - p)r S a;.

Here C = {(2+0) /m}rtD is a constant. As P(A; = 1) X z;, then the distribution is
size biased and we can apply equation (6.1.2) with w(z;) = x;, and normalising constant
w = u. The approximation will hold for small values of X\. As shown previously in Table

6.2.3 above, A will be small when sampling effort, ¢ is small.

In Table 6.2.4 we give a demonstration of the approximation of the probability of en-
counter under different parameter settings. For the approximation to hold, it is expected
that the camera trap time period ¢ and & should be small. As ¢ increases the difference
between the approximation and the exact probability of encounter increases for faster
speeds. But for slower speeds the approximation of the probability of encounter holds

for higher values of x and for increasing t¢.
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6.2.5 Points to consider in size biased sampling in REM

For all four probability models we show that the probability of encountering an animal
is approximately proportional to its speed, that is P(A4; = 1) & x;, when we consider
an individual encountering a camera trap in a short time frame. But as discussed in
Chapter 1 and as shown in Chapters 2 and 5, camera traps are usually set up for
long time periods and information is usually extracted and aggregated on a daily basis,
rather than in hours as shown in the examples above for which the approximation
holds. An alternative approach would be to use the exact probability of encounter that
can be derived by an analytical approach, which we show in Section 6.3.4. However,
there are limitations with the analytical approach in obtaining the exact probability.
For instance, it may not be possible to obtain the exact probability of encounter for
some models such as a lognormal or Weibull for the speed data, or a NB probability of
encounter model. We note that one possible solution to this problem would be to use
a numerical approximation to obtain the exact probability. In Section 6.3 we give the
size biased probability density functions and the standard probability density functions
used for the speed data using the approximation method: a size biased lognormal and
a standard lognormal (Section 6.3.1), a size biased gamma model and standard gamma
model (Section 6.3.2) and a size biased Weibull model and a standard Weibull model
(Section 6.3.3). We also give the size biased probability density function with the exact
probability of encounter using an analytical approach to derive the exact probability
(Section 6.3.4). We test the approximations for the four probability density functions

using simulations, which does not use the approximation, in Section 6.5.

6.3 Maximum likelihood estimation

This section explores how to reduce the bias of faster moving animals using a parametric
likelihood-based approach. Maximum likelihood estimation is used to work out an
estimate for expected animal speed, p,. Suppose we have m speed observations such
that x = {z1,...,x,} and where [ = 1,2,...,m, then the likelihood function can be

written as

o f(x o V
Lipes v | ) = [T 21202, (63.1)
=1 z
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where p, is the mean speed, f(-) is the true probability density function of speed in
the absence of sampling bias, and v represents any additional parameters in the model.
We use the three probability density functions discussed in Chapter 3 to model animal

speed: a gamma, a lognormal, and a Weibull. The size biased and standard models are:

6.3.1 Lognormal and size biased lognormal models

The lognormal probability density is

2
a9 = — p(gﬂog(xz)_e})

ex
vV 2T 202

with mean p, = exp (e + 1v2). The size biased lognormal probability density function
2

is

v fogle) — o) v [ flog(e) - o)
TvV2m P 202 TV 2T P 202

x;V,E == =
gw( l ) 1 exp (6+%I/2)

_ Wi/% [exp{logm)} X exp (-W) e <_ {E i ;VQDI

_ 1 [exp ( (log(z;) — €)? + 202 (e +30?) — 21/210g(:1:l)>

V2T 202 ’
1 1 2
= exp { —— (log(x;) — (€ 4 1/ },
e { gzl - (e +14)

which is a lognormal distribution with expected value Eg, (2;) = exp(e + %VQ) for x; >

0 (Ratnaparkhi and Naik-Nimbalkar, 2012). Note that for a small v? relative to e,
Eg, (z1) = By, (1)

6.3.2 Gamma and size biased gamma models

The probability density function of a gamma is

VOf

f('zl; v, Oé) = @SEZ

o~ oxp(—vay)
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with mean, E(z) = a/v. A size biased gamma model is given as

ILI/O‘ a—1 o 1
RO exp(—v;) ot (k1)1
guw(z) = = T exp(—vx;)
o ol'(a)
l/aJrl
=7 o (et])-1 _
Mot 1)361 exp(—vy).

Therefore, g, (x;; a+1, v) is a gamma distribution with mean E,, (2;) = («+1)/v and
variance, Var(z;) = (a+ 1)/v? (Mir et al., 2013). Note that the difference between the
mean of a size biased gamma model and the mean of a standard gamma model is 1/v.
If v is large then the difference between the two means will be small, and if v is large
enough Ey (z;) = Ey(2;); the variance will also be small. If v is small (the variance will

be large) the difference between the two means will be large.

6.3.3  Weibull and size biased Weibull models

The probability density function of a Weibull distribution is

flo; v, B) = g(?)y_le_(?)y, (6.3.2)

with mean p = BT’ (1 + %) A size biased Weibull distribution is

far v B = gy (%) (?zue‘(?)u
et () )

(Dey et al., 2015). Note that a size biased Weibull distribution is not a Weibull distri-

bution.

6.3.4 Size biased gamma function with the true probability of encounter from a

Poisson REM

So far we have considered an approximation for the probability of encounter for size

biased sampling. Here we use the true probability of encounter from a Poisson REM
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where animal speed is assumed to follow a gamma model. For a Poisson REM, the

probability of encounter is

PA=1)=1-e?=1-e,

where C = {(2+0) /m} rtD, and z; = {z1, %2, ..., Ty} is the animal speed observations.

The size biased probability density function is given as

guw o (L= e ) f (21 | pa, v)

where f(x; | pg, v) is the true probability density function for the speed observations.
In this case, we assume a gamma distribution. Integrating g,, over the entire space of

T gives

/ guw(xy)dz; = 1.
]

So,

[ R = e | o v = [ RG] oy v = [ ke o | aay )

Ty £

=k <1 —/ e—CIf(xl | Mz, I/)df[?l) )

where k is a constant. We assume animal speed follows a gamma model with shape

parameter v, and scale parameter «, therefore, the constant k£ can be found as follows

oo e
/ e—Cxl l‘la_le_ymldl‘l
0 I'(a)

a/oo xlaflefu+0d

=v — Y 4azxr

o TI(a) :

v CW+0O)" a1 —p4o)

- (V‘i'C)a/o D) ¢ dn

VO!

T O™
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Therefore,

Solving for k£ we have

B (v+0O)°
v+ O) =

The size biased distribution would be

o o KL~ O (a1 |t )
(v+C)* v 1

m( — 6_C$l)7$la_ eXp(—Vﬂfl).

INC)

6.4 Harmonic Mean

The nonparametric alternative to the size biased distribution is the harmonic mean
method, which can be used to estimate averages. Dixon and Chapman (1980) for ex-
ample used the harmonic mean to calculate centres and areas of animal activity, which
was found to have certain advantages such as being insensitive to grid size over previous

methods (such as arithmetic mean) of calculating home ranges.

Let x = {z1, x2,...,x,} be a random sample of speed observations of sample size m.

The harmonic mean speed can be expressed as

m

ST Y

(see Lam et al., 1985). We give an example of the harmonic mean of a data set. Suppose
we have m = 6 animals with speeds X = {0.126,1.562,0.36,2.465,0.228,1.036}. The

harmonic mean speed is computed as

m 6
= = = 0.3506437.
Zf;l Xi (17.11139)

hz
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Table 6.4.1 gives the sample sizes, the harmonic mean speed, the standard mean speed
and the coefficient of variation, expressed as a percentage (C,(%)) of the 9 terrestrial
mammals at BCI, Panama. In parentheses are an approximate standard error of the
mean speed of movement computed from the formula o, = o/y/m. The coefficient of
variation of estimated harmonic mean speed is C,,(v) = 0, /9p, and standard (arithmetic)
mean speed Cy(v) = 0,/v. The C, for most species is less than 10% and is generally
smaller for the estimated harmonic mean. For smaller species such as squirrel and mouse

the C, is 10% or more despite there are 40 recorded observations.

Table 6.4.1: Sample size m, harmonic mean speed (in ms™!) and standard
mean speed (in ms~!), and the coefficient of variation, expressed as a per-
centage (C,(%)), for nine Panamanian forest mammal species (approximate
standard errors in pararentheses).

Averages from real data Coefficient of Variation (Cy (%))

Species  sample size Harmonic Standard
mean speed  mean speed
m Un, v Cy(0n) Cy (D)
ocelot 93 0.27 (0.03) 0.40 (0.04) 10% 10%
coati 125 0.15 (0.01)  0.32 (0.03) 6% 9%
rat 132 0.11 (0.01)  0.22 (0.02) 9% 9%
peccary 265 0.15 (0.01) 0.30 (0.02) 6% 6%
brocket 181 0.15 (0.01)  0.27 (0.02) 6% 7%
paca 195 0.17 (0.01) 0.26 (0.02) 6% 8%
agouti 953 0.14 (0.004)  0.25 (0.01) 3% 4%
squirrel 66 0.12 (0.02) 0.25 (0.03) 17% 12%
mouse 43 0.09 (0.01) 0.17 (0.03) 10% 18%

6.5 Simulation study

In this section we test the size biased sampling method and the approximation of the

probability of encounter via simulations for the five following cases:

(i) Firstly, we explore the approximation of the probability for size biased sampling
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where encounters are simulated from a Poisson REM. We also compare the per-
formance of the size biased models with the standard models and the nonpara-

meteric method (harmonic mean) used for size biased samples (Section 6.5.1).

(ii) Secondly, we explore the approximation of the probability for size biased sampling

where encounters are simulated from a NB REM (Section 6.5.2).

(iii) Thirdly, we explore the approximation of the probability for size biased sampling

where encounters are simulated from a ZIP REM (Section 6.5.3).

(iv) Fourthly, we explore the approximation of the probability for size biased sampling

where encounters are simulated from a ZINB REM (Section 6.5.4).

For all four cases we fit a gamma model, a lognormal model or a Weibull model

to animal speed data simulated from the relevant fitted models.

(v) Finally, we explore the size biased sampling method by simulating data from a
Poisson REM with the true probability of encounter. We fit a gamma model to

animal speed data simulated from the relevant fitted model (Section 6.5.5).

For the simulations, we test the approximation of the probability of encounter and the
true probability of encounter for parameters and sample sizes that are plausible for eco-
logical studies. For 100 simulation runs, the average parameter values (standard error in
parentheses), Standard deviation (Sd) and Root Mean Square Error (RMSE) are given.
The parameters required for estimation are » = 1.25 (m), # = 0.27 (radians) and ¢t = 1

(day). The simulation procedure is outlined below.

Step 1: First we start with M animals, with speeds © = {z1,...,za}. The speeds are
random numbers generated from: a gamma distribution X ~ Ga(a,v), a lognormal
distribution X ~ InN(y,v) or a Weibull distribution X ~ Wei(3,v). Then we calculate
the mean encounter A = {\1, Ag, ..., Aas} where \; = {(2 4 0) /7 } X rtx; for an individual
with speed x; where [ = 1,2, ..., M. The symbol ¢ is the time, e.g, 1 day or 5 days; r (m)
and 0 (radians) are the detection zone dimensions, which are held fixed. As a demon-

stration we use a gamma distribution to simulate animal speed, which is shown below.
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Example
This example consists of a population size of M = 5 with speeds following a gamma
distribution with parameters a = 1.35; v = 3. The parameters required to estimate A

are t = 1; r = 1.25 (m) and 6 = 0.27. The R-code and R-output for this example are:

###generating random speed from a gamma distribution
M <- 5; alpha <- 1.35; nu <- 3
X <- rgamma(M,alpha, nu)

0.0345 0.1460 0.1505 0.0611 0.1655

###computing expected encounter rate, Lambda
r <- 1.25; theta <- 0.27; D<-1; t <- 1
Lambda <- ((2+ theta)/ pi)rtDX

0.0311 0.1319 0.1359 0.0552 0.1495

Step 2: Next, for the M animals with speeds x = {z1,...,xp} generated in Step 1,
we generate the number of encounters a = {aj,as,...,ap } from a Poisson REM a ~
Poi(A), a NB REM a ~ NB(A,k), a ZIP REM a ~ ZIP(A,w) or a ZINB REM
a ~ ZINB(A, k,w). The R-code and R-output for this example are given below. In
this example the first animal with speed z1 = 0.0345 was seen twice, the second animal

with speed x2 = 0.1460 was not seen and so on.

Example continued

###generating the number of encounters from a Poisson model
a <- rpois(M, Lambda)

20212

Step 3: Using the number of encounters generated in Step 2 we then generate the actual
individual speeds recorded by the camera traps, X* = {z*1,2%9, ..., 2%y} where M* is
the sample size of the speeds actually recorded by the camera traps. The R-code and
R-output are shown below. The example shows that the actual sample size of animals

is 7 since 320 a; = 7.
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Example continued

###generating actual speed data observed
Xx <- rep(X, a)
0.0345 0.03449 0.1460 0.1505 0.0611 0.1655 0.1655

Using the actual speeds, X™* generated in Step 3 we fit a size biased gamma model and
estimate the mean speed of movement, fi,. We also fit the standard model to X* and
estimate the mean speed. We estimate mean speed, /i, from the average of r simulation
runs (for example 100 simulation runs), the standard deviations (Sd), and Root Mean
Square Errors (RMSE). From the actual data X*, we compute the harmonic mean and

the standard mean, and an estimate of the average means from r simulation runs.

6.5.1 Simulation results for encounters drawn from a Poisson REM

Table 6.5.1 gives the true values used in the simulation process. We test the model for

different population sizes, M, under different parameter settings.

Table 6.5.1: True values, camera trap time ¢ and the number of individuals, M

Camera trap time Population size True values and variance
t M L Var(z;) e Var(z;) L Var(z;)
1 40 0.15 0.01 0.30 0.11 0.45 0.15
1 160 0.15 0.01 0.30 0.11 0.45 0.15
1 280 0.15 0.01 0.30 0.11 0.45 0.15
5 40 0.15 0.01 0.30 0.11 0.45 0.15
5 160 0.15 0.01 0.30 0.11 0.45 0.15
5 280 0.15 0.01 0.30 0.11 0.45 0.15

For each simulation run the actual sample size, M*, of animal with speeds x = {z1, ...,z }
varies. Therefore, we give an example for the first 2 simulation runs for the different
parameter settings, and the number of individuals in Table 6.5.2. As expected, the
actual sample size of animal speeds, M* recorded by the camera traps increases as the
number of individuals simulated increases. Also, M* increases for larger values of u,

and t¢.
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Table 6.5.2: Actual speed data sample sizes, M™*, for the first 2 simulation runs. We set
e = 0.15, or u, = 0.30, or u, = 0.45, and the speed data population sizes we set M = 40,
M =160 and M = 280, for t = 1 or t = 5 camera trapping days.

M =40 M = 160 M = 280
gamma lognormal Weibull gamma lognormal Weibull gamma lognormal Weibull

t=1
pe = 0.15
7 9 7 20 14 19 33 30 54
9 8 7 25 27 23 45 39 38
ta = 0.30
13 18 8 38 35 33 72 96 79
12 12 10 46 41 42 88 67 63
e = 0.45
10 17 19 57 53 61 123 99 124
19 18 18 67 55 73 118 108 111
t=5
ta = 0.15
29 31 28 107 97 105 193 177 220
34 26 30 112 116 114 192 194 176
pz = 0.30
52 76 56 217 212 210 381 402 394
58 61 41 189 235 209 421 366 325
n=0.45
65 87 91 293 334 322 611 558 603
87 88 86 334 327 316 599 553 555

6.5.1.1 Results where size biased models perform better than standard models

A comparison of the average estimated speed, gz, from fitting a size biased gamma
model and a gamma model to actual sample sizes M* is given in Table 6.5.3. The
Standard deviation (Sd) and Root Mean Square Error (RMSE) are also given. As
expected, the size biased gamma model performs better than a gamma model in estim-
ating mean animal speed. In this case v is small (variance is large), which makes the
difference between the two means, 1/v, large. There is also a slight increase in RMSE as
1y increases. Increasing pu, increases A, and therefore, the approximation gets slightly

worse. But this slight bias is minimal for larger population sizes. Table 6.5.4 compares
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estimations of average expected speed from a size biased lognormal model with estim-
ations from a lognormal model. A size biased lognormal model is a lognormal model,
and if v? is large relative to €, then the difference in estimations between the means will
be large. The results show that the size biased lognormal model performs better than
the lognormal model. Also, as p, increases RMSE increases, but this increase in the
bias is minimal as population size increases. Note that as u, increases, A also increases,
which will cause the approximation to get slightly worse. The results from fitting a size
biased Weibull model and a Weibull model to M* are given in Table 6.5.5. A size biased
Weibull model is not a Weibull model, and therefore, as expected a size biased Weibull
performs better than a Weibull model. There is also a slight increase in RMSE as pu,

increases but this slight bias is minimal for larger population sizes.

Table 6.5.3: Estimates of average expected animal speed g, (in ms™!) from a size
biased gamma distribution compared with estimates from a gamma distribution.

Population size  True value size biased gamma gamma

M L v [ Sd  RMSE [ Sd  RMSE
t=1

40 0.15 15 0.16 (0.05) 0.05 0.05 0.22 (0.04) 0.05 0.08
160 0.15 15 0.16 (0.03) 0.03 0.03 0.22 (0.03) 0.03 0.08
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.02 0.07
40 0.30 2.73 0.36 (0.17) 0.14 0.16 0.66 (0.12) 0.20 0.41
160 0.30 2.73 0.30 (0.10) 0.09 0.09 0.67 (0.08) 0.11 0.39
280 0.30 2.73 0.32 (0.06) 0.07 0.02 0.66 (0.05) 0.08 0.37
40 0.45 3 0.48 (0.14) 0.15 0.16 0.78 (0.12) 0.21 0.39
160 0.45 3 0.45 (0.07) 0.07 0.07 0.78 (0.06) 0.10 0.34
280 0.45 3 0.45 (0.05) 0.06 0.06 0.78 (0.05)  0.08 0.34
t=>5

40 0.15 15 0.15 (0.02) 0.03 0.03 0.22 (0.02) 0.04 0.08
160 0.15 15 0.15 (0.01) 0.01 0.01 0.22 (0.01) 0.01 0.07
280 0.15 15 0.15 (0.01) 0.01 0.01 0.22 (0.01) 0.01 0.07
40 0.30 2.73 0.32 (0.01) 0.10 0.11 0.66 (0.06) 0.18 0.40
160 0.30 2.73 0.30 (0.10) 0.09 0.09 0.67 (0.08) 0.11 0.39
280 0.30 2.73 0.31 (0.06) 0.06 0.07 0.66 (0.05) 0.08 0.37
40 0.45 3 0.46 (0.06) 0.09 0.09 0.77 (0.05) 0.05 0.36
160 0.45 3 0.45 (0.03)  0.06 0.05 0.78 (0.03) 0.08 0.34
280 0.45 3 0.45 (0.02) 0.04 0.04 0.79 (0.02) 0.06 0.34
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Table 6.5.4: Estimates of average expected animal speed j, (in ms™!) from a size biased
lognormal distribution compared with estimates from a lognormal distribution.

Population size  True value size biased lognormal lognormal

M Lha v [oa Sd RMSE s Sd RMSE
t=1

40 0.15 15 0.15 (0.01) 0.01 0.01 0.16 (0.01) 0.01 0.01
160 0.15 15 0.15 (0.01) 0.01 0.01 0.16 (0.01) 0.01 0.01
280 0.15 15 0.15 (0.01) 0.01 0.01 0.16 (0.01) 0.01 0.01
40 0.30 2.73  0.30 (0.03) 0.04 0.04 0.34 (0.03) 0.04 0.06
160 0.30 2.73  0.30 (0.02) 0.02 0.02 0.34 (0.02) 0.02 0.04
280 0.30 2.73  0.30 (0.01) 0.01 0.04 0.33 (0.01) 0.02 0.04
40 0.45 3 0.45 (0.04) 0.05 0.05 0.52 (0.05) 0.06 0.08
160 0.45 3 0.45 (0.02) 0.03 0.03 0.52 (0.03) 0.03 0.08
280 0.45 3 0.45 (0.02) 0.02 0.02 0.52 (0.02) 0.03 0.08
t=>5

40 0.15 15 0.15 (0.01) 0.01 0.01 0.16 (0.01) 0.01 0.01
160 0.15 15 0.15 (0.003) 0.004 0.004 0.16 (0.003) 0.005 0.01
280 0.15 15 0.15 (0.002) 0.003 0.003 0.16 (0.003) 0.004 0.01
40 0.30 2.73  0.30 (0.01) 0.02 0.02 0.33 (0.01) 0.03 0.04
160 0.30 2.73  0.30 (0.01) 0.01 0.01 0.33 (0.01) 0.01 0.03
280 0.30 2.73  0.30 (0.01) 0.01 0.01 0.33 (0.01) 0.01 0.03
40 0.45 3 0.45 (0.02) 0.03 0.03 0.52 (0.02) 0.05 0.08
160 0.45 3 0.45 (0.01) 0.02 0.02 0.52 (0.01) 0.03 0.08
280 0.45 3 0.45 (0.01) 0.01 0.01 0.52 (0.01) 0.02 0.08
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Table 6.5.5: Estimates of average expected animal speed p, (in ms™!) from a size
biased Weibull distribution compared with estimates from a Weibull distribution.

Population size  True value size biased Weibull Weibull
M L v [oa Sd  RMSE s Sd RMSE
t=1
40 0.15 15 0.16 (0.04) 0.04 0.04 0.21 (0.03) 0.04 0.07
160 0.15 15 0.15 (0.03)  0.02 0.03 0.21 (0.02) 0.02 0.07
280 0.15 15 0.15 (0.02) 0.02 0.02 0.21 (0.02) 0.02 0.07
40 0.30 2.73 0.33 (0.08) 0.10 0.10 0.68 (0.08) 0.13 0.40
160 0.30 2.73 0.32 (0.07) 0.08 0.09 0.67 (0.07) 0.12 0.39
280 0.30 2.73 0.31 (0.05) 0.05 0.05 0.66 (0.05) 0.08 0.37
40 0.45 3 0.49 (0.11) 0.14 0.14 0.75 (0.10) 0.17 0.35
160 0.45 3 0.46 (0.06) 0.07 0.08 0.78 (0.06) 0.10 0.35
280 0.45 3 0.46 (0.04) 0.05 0.05 0.77 (0.04) 0.06 0.33
t=25
40 0.15 15 0.16 (0.02) 0.03 0.03 0.22 (0.02) 0.03 0.07
160 0.15 15 0.15 (0.01) 0.01 0.01 0.21 (0.01) 0.01 0.06
280 0.15 15 0.15 (0.01) 0.01 0.01 0.21 (0.01) 0.01 0.06
40 0.30 2.73 0.34 (0.06) 0.09 0.10 0.67 (0.06) 0.18 0.41
160 0.30 2.73 0.31(0.03) 0.03 0.05 0.67 (0.03) 0.08 0.38
280 0.30 2.73 0.30 (0.02) 0.03 0.03 0.67 (0.02) 0.07 0.37
40 0.45 3 0.46 (0.05) 0.09 0.09 0.76 (0.05) 0.05 0.33
160 0.45 3 0.46 (0.03) 0.05 0.05 0.78 (0.03) 0.07 0.34
280 0.45 3 0.46 (0.02) 0.02 0.03 0.77 (0.02) 0.05 0.33

6.5.1.2 Results where estimations from size biased models and standard models

are approximately equal

As shown in Section 6.3, a size biased gamma model and a size biased lognormal model
are a gamma model and a lognormal model, respectively. And, under certain condi-
tions estimations from size biased models are approximately equal to estimations from
the standard models. In this section we test the approximation of the probability of
encounter where estimations from size biased models are approximately equal to es-
timations from standard models. Table 6.5.6 compares estimations from a size biased
gamma model and a gamma model. If the shape parameter, v is large enough the two

means are approximately equal. For a higher mean speed the difference in estimates
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from a size biased gamma model and a gamma model is much smaller compared with a

lower expected speed.

Table 6.5.7 gives estimated mean speeds from a size biased Weibull model and a Weibull
model. Whilst a size biased Weibull model is not a Weibull model there are similarities
in estimations under certain conditions. To compare estimations from the three speed
data models (gamma, lognormal, Weibull), the same variance is used in the simulation
process. For small variances estimations from a size biased Weibull model are similar to
estimations from a Weibull model. Figures 6.5.1 and 6.5.2 shows the probability density
for fitted size biased Weibull models and fitted Weibull models.

Table 6.5.8 shows the results from a size biased lognormal model and lognormal model
where estimated mean speed are approximately equal. If ©? is small relative to e then

the means from the two models would be approximately equal (Table 6.5.8).

Table 6.5.6: Estimates of average expected animal speed p, (in ms™!) from a size biased gamma
distribution compared with estimates from a gamma distribution for t = 1 day.

Population size True value size biased gamma gamma
M L v e [z Sd RMSE [l Sd RMSE
40 0.45 450 202.5 0.449 (0.01) 0.01 0.01 0.451 (0.01) 0.01 0.01
160 0.45 450 202.5 0.450 (0.004) 0.005 0.005 0.452 (0.004) 0.005 0.005
280 0.45 450 202.5 0.450 (0.003) 0.004 0.004 0.452 (0.003) 0.004 0.004
40 0.15 150 225 0.149 (0.01) 0.01 0.01 0.155 (0.01) 0.01 0.01
160 0.15 150 225 0.151 (0.01) 0.01 0.01 0.158 (0.01) 0.01 0.01
280 0.15 150 22,5 0.149 (0.005) 0.006 0.01 0.156 (0.005)  0.006 0.01

Table 6.5.7: Estimates of average expected animal speed p, (in ms™!) from a size biased Weibull
distribution compared with estimates from a Weibull distribution for ¢ = 1 day.

Population size True value size biased Weibull Weibull
M L v B8 [ Sd RMSE [ Sd RMSE
40 045 17.88 0.464 0.451 (0.01) 0.01 0.01 0.453 (0.01) 0.01 0.01
160 0.45 17.88 0.464 0.450 (0.004) 0.005 0.005 0.452 (0.004) 0.005  0.005
280 0.45 17.88 0.464 0.450 (0.003) 0.003 0.003 0.452 (0.003) 0.003  0.004
40 0.15 542 0.163 0.151 (0.01) 0.01 0.01 0.157 (0.01) 0.01 0.01
160 0.15 542 0.163 0.150 (0.01) 0.01 0.01 0.157 (0.01) 0.01 0.01
280 0.15 542 0.163 0.151 (0.01) 0.01 0.01 0.157 (0.005)  0.006 0.01
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6.5.1.3 Comparing estimations from parametric models with estimations from non-

parametric methods

In this section we simulate encounters from a Poisson REM to test the approximation
method and compare estimations from the size biased likelihood model, the stand-
ard likelihood model, the harmonic mean method and the standard (arithmetic) mean
method. For 100 simulation runs, we compute the average parameter estimates (aver-
age standard errors in parentheses), Standard deviation (Sd) and Root Mean Square
Error (RMSE). For illustration, we fit a lognormal model to the speed data and the
results are given in Table 6.5.9. The simulation results (Table 6.5.9) reveal that a size
biased lognormal model and the nonparameteric harmonic mean method and a lognor-
mal model can provide similar estimates when the difference between € and v? is small.
But when this difference increases it would be more appropriate to use a size biased

lognormal model since it would provide more accurate estimates of the average speed.

We also investigate the performance of the gamma models (Table D.1.1) and Weibull
models (Table D.1.2), with the same mean and variance, and the results are given in
appendix D.1. For the chosen parameters the simulation results (Table D.1.1) show
that the size biased gamma model does better than the standard gamma model and the
harmonic mean method under all scenarios. The bias from the gamma model and the
harmonic mean method is much larger when v is small and, hence a bigger difference
between the means of the two models, that is, 1/v is large. Particularly, for lower p,,, the
harmonic mean method performs poorly. As expected, the size biased Weibull model
(Table D.1.2) performs better than the Weibull model, and the nonparametric method
under all scenarios. For lower expected speeds, the bias from the harmonic mean method
is much larger compared with higher values of expected speeds. Based on these results,
if the data follows a lognormal model, we would recommend fitting size biased models
when the sampling variability in the data is high (the difference between ¢ and v? is
large). However, if the sampling variability is low the harmonic mean method can be
used, which is a simpler method and easier to implement. But, if the data follows a
gamma model or Weibull model, and under these scenarios, we recommend fitting size

biased models, which would provide more accurate estimates of the average speed.
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6.5.2 Simulation results for encounters drawn from a negative binomial REM

In this section we test the approximation of the probability of encounter from a NB
REM via simulations. For the simulations we set the camera trap time, t =1 or ¢t = 5;
expected speed, i, = 0.15 (ms™!) with variance Var(z;) = 0.01 or u = 0.45 (ms™!)
with variance Var(z;) = 0.15; population size, M = 40 or M = 280; and dispersion

parameter, Kk = 0.56.

Table 6.5.10 compares estimations from a size biased gamma with estimations from a
gamma model. Overall, stable estimations are obtained, and as expected the size biased
model provides better estimations than the standard model. For this scenario the shape
parameter, v, is small resulting in a large difference in estimated mean between a size
biased gamma model and a gamma model. Also, as u, increases the RMSEs increase
slightly, but this slight increase in minimal for larger population sizes. The expected
encounter rate, A, depends on u,, therefore, as u, increases A\ increases, which causes

the size biased approximation to perform slightly worse.

We also provide estimations from a size biased lognormal model and a size biased Weibull
model, which can be found in Table D.2.2, and Table D.2.3, respectively in appendix
D.2. Accurate estimations are obtained from a size biased lognormal distribution and
a lognormal distribution for all parameter values and for all population sizes, M. In
this case the variance from the normal distribution is small relative to the mean of the
logarithm, which results in estimations from the two models being approximately equal.
Also, the size biased approximation works well for small values of u, but as p increases,
there is a slight increase in RMSE but this slight increase in the bias is minimal for

larger population sizes (see Table D.2.2 in appendix D.2).

A size biased Weibull distribution also performs better than the Weibull distribution.
For a small jz, (= 0.15) (ms~!) accurate estimations are obtained for M = 160 or larger.
The bias is also smaller for larger population sizes. However, as p, increases, the bias
increases slightly but this increase is minimal for larger population sizes. Note that the

expected encounter rate, A, increases for larger values of expected speed, u,, causing
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the approximation of the probability for size biased to be slightly worse (see Table D.2.3
in appendix D.2).

For each simulation run, the actual sample size of animal speed, M*, generated varies,
so as an example we give the results for the first 3 simulation runs in Table D.2.1 in
appendix D.2. The results show M™* increases for larger values of ¢t and pu, since )\; is
dependent on both ¢ and p,, as expected. Also, as population size, M, increases M*

increases.

Table 6.5.10: Estimates of expected animal speed p, (in ms™!) from a size biased
gamma distribution compared with estimates from a gamma distribution.

Population size  True value size biased gamma gamma
M Lha v [ Sd  RMSE e Sd  RMSE
t=1
40 0.15 15 0.17 (0.05) 0.06 0.06 0.22 (0.04) 0.06 0.09
160 0.15 15 0.15(0.03) 0.03 0.03 0.22 (0.03) 0.04 0.08
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.03 0.07
40 0.45 3 0.45 (0.16) 0.15 0.15 0.74 (0.11)  0.19 0.35
160 0.45 3 0.45 (0.07) 0.10 0.10 0.78 (0.06) 0.13 0.36
280 0.45 3 0.46 (0.04) 0.04 0.05 0.77 (0.04) 0.06 0.33
t=5
40 0.15 15 0.15(0.02) 0.03 0.03 0.21 (0.02) 0.04 0.07
160 0.15 15 0.15(0.01) 0.02 0.02 0.22 (0.01) 0.03 0.07
280 0.15 15 0.15(0.01) 0.02 0.02 0.22 (0.01) 0.02 0.07
40 0.45 3 0.48 (0.06) 0.14 0.14 0.78 (0.05) 0.21 0.39
160 0.45 3 0.45 (0.03) 0.07 0.07 0.78 (0.03) 0.12 0.39
280 0.45 3 0.45 (0.02) 0.06 0.06 0.80 (0.02) 0.10 0.36

6.5.3 Simulation results for encounters drawn from a ZIP REM

In this section we test the approximation of the probability of encounter for size biased

sampling from a ZIP REM via simulations. We set a small value of p = 0.10 to test the
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model, since the approximation will hold for small values of p (see Table 6.2.2 in Section
6.2.2). We set the camera trap time, t = 1 or ¢ = 5; population size, M = 40 or M = 280;
expected speed, 1, = 0.15 (ms~!) with variance, Var(z) = 0.01 or u, = 0.45 (ms™!)

with variance, Var(z) = 0.15; and probability of the zero-response category, p = 0.10.

The results from fitting a size biased gamma distribution and a standard gamma dis-
tribution to the speed data are given in Table 6.5.11. The Standard deviation (Sd) and
Root Mean Square Error (RMSE) are also given. The simulation results (Table 6.5.11)
show that under the scenario, small shape parameter, the size biased gamma model
performs better than the gamma model, and as expected, larger sample size improves
estimation and precision. But as u, increases the approximation of the probability of
encounter for size biased sampling is slightly worse with increasing RMSEs, but this

increase is minimal for larger population sizes.

The results from fitting lognormal models (Table D.3.2) and Weibull models (Table
D.3.3) are shown in appendix D.3. Simulation results from the size biased logormal
model and lognormal model are approximately equal (Table D.3.2) but the size biased
Weibull model provides better estimates than the Weibull model (Table D.3.3). But as
expected, as i, increases A increases, and the approximation method performs slightly
worse. The simulation results show that the lognormal models obtained smaller RMSEs

compared with the RMSEs from the gamma models and Weibull models.

Table D.3.1 in appendix D.3 gives the sample sizes of the speeds (M*) captured by the
camera traps for the first 3 simulation runs. The actual sample sizes of animal speed,
M* changes for each simulation run and for larger population sizes, M. For larger pop-

ulation size, M* increases. Also for larger values of u, and ¢, M* increases.
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Table 6.5.11: Estimates of expected animal speed p, (in ms™!) from a size biased
gamma distribution compared with estimates from the gamma distribution.

Population size  True value size biased gamma gamma
M Lha v [ Sd  RMSE e Sd  RMSE
t=1
40 0.15 15 0.15(0.04) 0.05 0.05 0.21 (0.04) 0.06 0.08
160 0.15 15 0.16 (0.03) 0.03 0.03 0.22 (0.03) 0.03 0.08
280 0.15 15 0.15(0.03) 0.03 0.03 0.21 (0.03) 0.03 0.07
40 0.45 3 0.50 (0.14) 0.18 0.17 0.78 (0.12) 0.21 0.39
160 0.45 3 0.46 (0.07) 0.09 0.09 0.78 (0.07) 0.12 0.35
280 0.45 3 0.45 (0.05) 0.07 0.07 0.78 (0.05) 0.10 0.34
t=>5
40 0.15 15 0.15(0.03) 0.03 0.03 0.21 (0.02) 0.05 0.08
160 0.15 15 0.15(0.01) 0.01 0.02 0.22 (0.01) 0.02 0.07
280 0.15 15 0.15(0.01) 0.01 0.01 0.22 (0.01) 0.02 0.07
40 0.45 3 0.45 (0.06) 0.11 0.11 0.78 (0.06) 0.21 0.39
160 0.45 3 0.45 (0.03) 0.06 0.06 0.78 (0.03) 0.10 0.34
280 0.45 3 0.45 (0.02) 0.05 0.05 0.78 (0.02) 0.08 0.34

6.5.4 Simulation results for encounters drawn from a ZINB REM

In this section we investigate the performance of the approximation of the probability
of encounter from a ZINB REM via simulations. Population sizes and true values used
in the simulation process are given in Table 6.5.12. A typical value of the dispersion

parameter, x, and a small value of p for the which the approximation holds are chosen.

Table 6.5.12: True values, population size m and camera trap time t used in the
simulation process from a ZINB REM.

Camera trap time Population size True values and variance
t M uy  Var(z) pe  Var(z) K o
40 0.15 0.01 0.45 0.15 0.56 0.10
160 0.15 0.01 0.45 0.15 0.56 0.10
280 0.15 0.01 0.45 0.15 0.56 0.10
40 0.15 0.01 0.45 0.15 0.56 0.10
160 0.15 0.01 0.45 0.15 0.56 0.10
280 0.15 0.01 0.45 0.15 0.56 0.10
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Table 6.5.13 compares estimations from a size biased gamma model and a gamma model.
The simulation results show that the size biased gamma model performs better than
the gamma model but obtains a positive bias for small population sizes but as expected
the bias reduces for large population sizes. However, as p, increases RMSE increases
and the approximation of the probability method performs slightly worse, but the bias

is minimal for larger population sizes.

Table D.4.2, in appendix D.4, gives the results from fitting a size biased lognormal model
and a lognormal model to animal speed data. The results show that the approximation
method works well and accurate estimations are obtained for both models with smaller

bias compared with the gamma models.

Table D.4.3, in appendix D.4, compares estimations from a size biased Weibull model
with estimations from a Weibull model. The size biased Weibull model performs better
than the Weibull model with lower RMSEs. As expected, as t increases estimations

improve.

For each simulation run the actual sample size, M* varies. In Table D.4.1, in appendix
D.4, we give the actual sample size, M* used in the simulation process for the first 3
simulation runs. As expected, M™ increases as population size, M and the number of

camera trap days, t increase.
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Table 6.5.13: Estimates of expected mean speed j, (in ms™!) from a size biased
gamma distribution compared with estimates from the standard gamma distribution.

Population size  True value size biased gamma gamma
M Lha v [ Sd  RMSE e Sd  RMSE
t=1
40 0.15 15 0.16 (0.04) 0.05 0.05 0.22 (0.04) 0.05 0.08
160 0.15 15 0.15(0.03) 0.03 0.03 0.22 (0.03) 0.04 0.08
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.02 0.07
40 0.45 3 0.49 (0.18) 0.21 0.21 0.75 (0.13)  0.30 0.42
160 0.45 3 0.46 (0.10) 0.12 0.12 0.76 (0.09) 0.15 0.35
280 0.45 3 0.45 (0.09) 0.10 0.10 0.78 (0.07) 0.13 0.35
t=>5
40 0.15 15 0.15(0.03) 0.04 0.04 0.20 (0.03) 0.05 0.07
160 0.15 15 0.15(0.02) 0.02 0.02 0.22 (0.02) 0.03 0.07
280 0.15 15 0.15(0.01) 0.02 0.02 0.21 (0.01) 0.02 0.07
40 0.45 3 0.48 (0.08) 0.16 0.16 0.77 (0.07) 0.28 0.42
160 0.45 3 0.45 (0.04) 0.07 0.07 0.76 (0.04) 0.13 0.34
280 0.45 3 0.45 (0.03) 0.06 0.06 0.78 (0.03) 0.11 0.34

6.5.5 Results from size biased method with true probability and the approximation

In this section we investigate the performance of the size biased method using the
true probability of encounter and the approximation of the probability of encounter
from a Poisson REM. As a demonstration we assume animal speed follows a gamma
model. Table 6.5.14 compares estimated mean speed from using the true probability of
encounter and the approximation of the probability of encounter from a Poisson REM.
The average parameter estimates from the two methods show minimal differences but
as expected, the true probability of encounter method does slightly better that the
approximation method. For low sampling variability the bias introduced from both
methods is inconsequential, and there is no obvious difference in estimates between the
two methods. Increasing the sampling variability introduces a larger bias, particularly
for the approximation method with low survey effort but as expected, increasing survey
effort reduces the bias and improves precision. Based on these results we can conclude
that the approximation method for the probability of encounter from the underlying

Poisson model in REM works well to estimate average speed of movement.
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6.6 Application of size biased method to real data at BCI, Panama

In this section we applied the size biased method to a community of terrestrial animals
at BCI, Panama. For comparison, estimates from the nonparametric harmonic mean

method and parametric models are given.

Table 6.6.1 compares the harmonic means and standard means with estimations from a
size biased Weibull model and a standard Weibull model. The performance of the size
biased Weibull model is better than the Weibull model as shown by the AAIC values.
However, the size biased Weibull model is not always a lot better than the standard
Weibull model, as in the case of the ocelot species. The AAIC values suggest that the

size biased Weibull model is the best model for all species.

Table 6.6.2 compares all size biased models using the AIC method for 9 species at BCI,
Panama. The results suggest that the lognormal model is the best model that fits the
data for most of the species. Figure 6.6.1 shows the histograms of the speed data and
fitted lognormal model (black), fitted gamma model (red) and fitted Weibull model
(blue), which also confirms that the lognormal model is the model that best explains
the data for most species. Also, estimates of the standard error from the size biased
lognormal distribution are generally smaller than the estimates from the size biased

gamma model and the size biased Weibull model.

We give the results from a size biased gamma model (Table D.5.1), and a lognormal

model (Table D.5.2) in appendix D.5.

Table D.5.1, in appendix D.5, compares the harmonic mean and standard (arithmetic)
sample mean with estimates from a size biased gamma distribution, and estimates from
a standard gamma distribution. A size biased gamma model is a gamma model, and
therefore, the likelihoods will always be the same. Therefore, model choice using AIC
method would not distinguish between the two models. From the evidence in Section
6.3.2 and the simulation results in Section 6.5.1.1 above, a size biased gamma model

will obtain better estimations than a standard gamma model when the shape parameter
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v is small. The results in Table D.5.1 show that the difference in estimations between
the two methods is large suggesting that the shape parameter v is small, and hence,
variance is large. Also, the harmonic means are similar to estimations from the size

biased parametric gamma model.

Table D.5.2; in appendix D.5, compares estimations from a size biased lognormal model
with estimations from a lognormal model (standard errors are in parentheses). Simil-
arly, a size biased lognormal model is a lognormal model and the likelihoods will always
be the same, and the AIC method would not distinguish between the two models. Also,
estimations of the variance, 2, from the normal model will always be the same. The
results show that estimations between a size biased lognormal model and a standard
lognormal is large suggesting that 12 is large relative to e (Table D.5.2). Also, the har-

monic mean and the estimates from the size biased model are the similar.
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6.7 Discussion

In this Chapter we have explored the method of size biased sampling to estimate aver-
age speed of movement. A distribution is size biased if the probability of inclusion of
a unit is proportional to a predetermined weight which is equal to the length of that
unit (Patil and Rao, 1978). The main focus of the Chapter has been to reduce the
bias in speed caused by encountering faster moving animals more frequently. Hutchin-
son and Waser (2007) found that faster moving animals are more likely to encounter

camera traps, and as such expected animal speed would be biased towards these animals.

We started by considering the method of size biased sampling adopted by Rowcliffe et al.
(2016) to estimate average speed. Rowcliffe et al. (2016) generated a sample of distances
travelled and passage duration, and have computed the speed of movement by taking
the ratio of distance moved to passage duration. Using the derived speeds Rowcliffe
et al. (2016) fitted size biased models (gamma, lognormal, Weibull) and maximized the
likelihood to estimate average speed. We have however derived the probability of en-
countering an animal in REM showing that it is approximately proportional its speed.
We assumed four probability density functions for which the probability of encounter
could be derived. These included a Poisson REM, a negative binomial model REM, a
zero-inflated Poisson REM and a zero-inflated negative binomial model REM. We have
illustrated how the approximation of the probability of encountering an animal holds
by simulating encounters from the true probability density function (Poisson REM, NB
REM, ZIP REM, ZINB REM) and maximizing the likelihood of the approximation
probability density function of size biased sampling. For parameters and sample sizes
that are realistic for ecological studies the simulations highlighted the value of account-
ing for the bias in speeds of faster moving animals, and of using simulations as a tool for
design. But under certain conditions the simulations revealed that size biased models

and standard models are approximately equal.

We have also considered how the probability density function for size biased sampling
works for the true probability of encountering an animal. For illustration, we considered

the underlying Poisson model in REM for the encounters and a gamma model for the
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speed data. The simulations revealed that the performance of the approximation of
the probability of encounter method and the true probability of encounter method are
similar for parameters and sample sizes that are realistic in ecological studies. The
simulations have also shown that deciding on the use of a parametric likelihood-based
approach or a nonparmetric method for estimation of average speed from size biased
sampling will depend on the distribution of the data and sampling variability. In the case
where the data is lognormally distributed the nonparametric method has been found
to provide accurate estimates as the parametric model when sampling variability in the
data is low (or when the difference between mean of the logarithm and the variance
from the normal distribution is small). But in case where the data is assumed to follow
a gamma model or a Weibull model we would recommend a parametric likelihood-based

approach accounting for the bias in the data.

The application of the size biased sampling method using the approximation method
showed that the bias in the speed of faster moving animals can be reduced, and if this
bias is not accounted for the average speed would be incorrectly estimated as shown
by the large difference in estimations from the real data. While a size biased gamma
model and a size biased lognormal model remain a gamma model and lognormal model,
respectively, the results indicate that it is crucial to consider size biased sampling in
ecological studies as shown in the example where animal speed is assumed to follow
a Weibull model. The results showed that there was more support for a size biased
lognormal model, which generally obtained more precise estimates compared with the

gamma model and Weibull model.
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Chapter 7

iREM With Size Biased Sampling

The objective of this Chapter is to improve estimation of the density by correcting for
the bias in expected animal speed of movement. Size biased sampling, discussed in
detail in Chapter 6, corrects for the bias in average speeds induced by faster moving
animals, which are more likely to encounter the camera traps. An assumption of iREM
is that the encounter data (photographs) and speed data are independent. Whilst the
Whipsnade Wild Animal Park (WWAP) data are independent (see Rowcliffe et al.,
2008, and Section 2.7.1) this may not be the case for the data collected at Barro Color-
ado Island (BCI), Panama, which is used in this Chapter, and which was discussed in
detail in Chapter 5. For the BCI data the encounter records and the speed data were
extracted from the same camera trap record. To ensure that the speed data and en-
counter data are independent it would be required to conduct two independent surveys
simultaneously, where the encounter data would come from one survey and the speed
data would come from the other survey. Since the encounter records and speed data
from BCI, Pananma were collected from the same camera trap record, we investigate
whether this assumption of independence, if violated, would affect estimated density.
As animals captured by camera traps are likely to be faster moving suggest that there
is some dependence, so we adopt the method of size biased sampling to model this de-

pendence.
In this Chapter we develop an integrated Random Encounter Model that includes size
biased sampling (iIREM-SB) to correct for the bias in speed, and hence, estimated

density. The Chapter begins with a description of iREM-SB in Section 7.1, which we test
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via simulations in Section 7.2. Simulations were conducted to investigate the importance
of correcting for the bias in speed of faster moving animals in density estimation, and
to test the assumption of independence between data sets. An analysis of the data for
the 9 Panamanian species at BCI rainforest using an iREM-D developed in Chapter 5

correcting for the bias in the speed of movement is given in Section 7.3.

7.1 The Model

This section describes the integrated likelihood that includes size biased sampling of
animal speed to estimate density. The joint likelihood of the encounter data and size
biased animal speed of movement data is maximized to estimate density and expected
animal speed. As discussed in Chapter 5, the encounters, a;, are assumed to follow a

Poisson model, such that a; ~ Pois(At;) where

2
A= (7T—|_‘9)7“,LLID, (7.1.1)

and t; is the camera trap time in days for i = 1,2, ..., ¢ camera trap. The detection zone

dimensions, r and 8 are held fixed; p, is the expected speed, and D is the density.

Suppose the encounter data a;, has probability mass function h(a; | A, t;, 7) where
i = 1,2,..,c is the number of encounters on the ith camera trap, A is the expected
encounter rate, t; is the camera trap time period (in days) for the ith camera, and 7
represents any additional parameter in the model. And suppose the animal speed data,
x1, has probability density function f(z; | py, v) where [ = 1,2, ...,m is the number of
animal speed data, p, is expected speed and v represents any additional parameter in
the model. Assuming the following: 1) the encounters between animals and camera traps
are independent, 2) the speeds of movement are independent and identically distributed,
3) animals move randomly, and 4) the speed data and encounter data are statistically

independent, the log-likelihood function can be constructed as

c “ (T , V
0= log h(a; | A, ti, 7)+ > _log (W) : (7.1.2)
=1 =1

As in the previous Chapters the speed data is assumed to follow a gamma model, a
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lognormal model or a Weibull model and the encounters are discrete data, which are
assumed to follow a Poisson REM as discussed in Chapter 5. We could also use a a
negative binomial REM for the encounter data, as shown in Chapter 5 but this model

is not considered here.

7.2 Simulation Study

In this section we investigate the performance of iREM-SB. The main assumption of
iREM-SB is that the speed data and the encounter data are independent of each other.
As the data sets are generally collected from the encounter records from camera traps,
it would be required to conduct parallel surveys, one for each data set, in order to
obtain independent information from camera traps. However, this would be expensive
and time consuming in ecological surveys, therefore, the same data source is used to
extract information and the assumption of independence is made. Also, as discussed in
Section 5.3 Chapter 5, extracting the data, particularly the speed data from the camera
trap records is tedious and time consuming, which involves the reconstruction of the
movement path of animals using a measuring tap or hip chain. This reconstruction is
done by viewing images in the field before removing the camera traps and measuring
distances travelled relative to nearby landmarks such as trees and rocks (Rowcliffe et al.,
2011). Therefore, in this Section the independence assumption and random selection
of a sample of the speed data are motivating examples for the simulations. We explore

the performance of iREM-SB, looking at the four following aspects

(i) Firstly, we investigate the independence assumption of the data in iREM-SB us-
ing all possible speed data. To do this we first simulate speed data from the
alternative speed data models, and using these data we generate encounters from
a Poisson REM. We fit a Poisson REM to the encounter data and a size biased
model to the speed data. Next we generate a separate set of speed data from
the alternative speed data models and fit a size biased model to these speed data

and a Poisson REM model to the same encounters generated before (Section 7.2.1).

(ii) Secondly, we investigate the independence assumption in iREM-SB as in the first

case but instead we use a random sample of the speed data (Section 7.2.2).
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For these first two cases we compare estimations from Rowcliffe et al. (2008) REM

with size biased sampling (REM-SB) with estimations from iREM-SB.

(iii) Thirdly, we investigate the importance of accounting for the bias in the speed of
faster moving animals using all of the speed data. To do this we fit size biased
speed data models and standard speed data models to data simulated from the

speed data models and compare estimations (Section 7.2.3).

(iv) Fourthly, we investigate the importance of accounting for the bias in the speed of
faster moving animals as in the third case but instead using a random sample of

the speed data (Section 7.2.4).

For the last two cases we compare estimations obtained from iREM-SB and iREM with
estimations from REM-SB and REM. The nonparametric REM formula of the density

discussed in Chapters 2 and 5 is defined as

Zf:l aq T

D=
Yot X (24 0)rv’

(7.2.1)

where a; is the encounters on the ith camera trap for ¢ = 1,2, ..., ¢ camera trap, t; is
the camera trapping time period of the ¢th camera trap, the fixed parameters 8 and r
are the detection angle and detection distance, respectively, and v is the mean speed.
The variance of the density is computed using the Fisher Information matrix as given

in Section 5.5

For the simulations the parameters and sample sizes chosen are considered plausible
for ecological surveys. Each simulation was repeated 100 times and the average of
the parameter estimates was computed. The parameters required to estimate density
are the detection distance r = 0.0125 (km); detection angle § = 0.10 (radians), and
the mean camera trap time, 7.59 which are held fixed. From the camera trap time,
T = {ti1,ta,...,tc}, where i = 1,2,...c is the ith camera, we can compute the mean
camera trap time as » ;_; T'//c. For each simulation we also compute the total camera

trap time as > ;_; t;.
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Step 1: First we start with M animals, each moving at a speed of z; (I = 1,2,..., M).
The speeds, z; are random numbers generated from either a gamma distribution X ~
Ga(a,v), a lognormal distribution X ~ InN(ug,v) or a Weibull distribution X ~
Wei(B,v). We also generate the camera trap days, T = {t1,to,...,t.} with size ¢
from a gamma distribution T ~ InN(7, 3%). Then we calculate the mean encounter
A ={(2+0)/7}rt;x;D where A is an ¢ x M matrix of mean encounters of individuals
with speed z; for t; camera trap days; r (km) and 6 (radians) are the detection zone
dimensions, which are held fixed. The symbol D = 1 is animal density. Suppose that

the population size is 1; then the animals being considered results in a density of 1.

Note that the camera trap time, T', is not limited to a lognormal model. Other relevant
distributions such as a Weibull are also applicable. In the simulation study, we use a
gamma model as a demonstration to the simulate the speeds. This is shown in the

example below.

Example

This example consists of a population size of M = 4 animals with speeds (in km/day ')
following a gamma model with parameters o = 388.8; v = 30, recorded on ¢ = 3 camera
traps. The camera trap days, T, are simulated from a lognormal model with parameters
B = 0.0577 and 7* = 2.0251, where 7* is the mean of the logarithm;. The parameters
required to estimate the mean encounter rate are r = 0.0125 (km) and 6 = 0.10 (radi-

ans). The R-code is given below.
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###generating speeds for 4 individual animals
M <- 4; alpha <- 388.8; nu <- 30
X <- rgamma(M,alpha,nu)

12.47096 12.84364 13.57303 13.60024

###generating camera trap days from a gamma model
c <- 3; taux <- 2.0251; beta <- 0.0577
T <- rlnorm(c,tau*,beta)

7.753769 8.315009 7.665734

###computing the constant term in the expected encounter rate
D <-1; r <- 0.012; theta <- 0.10

C <- ((2+ theta)/ pi) x r x D

###computing the expected encounter rate
Lambda <- C x (sapply(X, function(a) sapply(T,function(b) axb)))
[,1] [,2] [,3] [,4]
[1,] 0.7756456 0.7988251 0.8441906 0.8458830
[2,] 0.8317890 0.8566463 0.9052954 0.9071103

[3,] 0.7668390 0.7897553 0.8346057 0.8362789

Step 2: Next, for the M individuals moving at speed z; generated in Step 1, we generate
the number of encounters from a Poisson distribution a ~ Poi(A), where a is a ¢ x M
matrix of encounters. We then calculate total encounters, a*, on the ith camera by com-
puting the sum over i(j). We also compute the total number of times, a™, an animal was

seen as the sum over j(i). The R-code and the R-output are shown in the example below.
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Example continued

###generating encounters from a Poisson distribution
for(k in 1 :c){
for(j in 1 :M){
alk,j]l = rpois(1l,Lambda)
ax=rowSums (a) }
a+ =colSums(a)}
### c x M matrix of encounters of animals
a
(.11 [,2]1 [,3] [,4]
[1,] 0 2 2 1
[2,] 1 0 0 1
[3,] 0 1 0 0
###total encounters on the ith camera trap
ax
521

###total number of times an animal was recorded

at

1322

Step 3: Using the number of encounters generated in Step 2 we then generate the ac-
tual individual speeds recorded by the camera traps, X* = {x*1,2%9,...,2* -} where

M* is the actual sample size. The R-code and R-output for this example are given below.

Example continued

###generating actual speed data
Xx <- rep(X,a+)

12.47096 12.84364 12.84364 12.84364

13.57303 13.57303 13.60024 13.60024

At this point we can either use all of the speed data generated or a random sample

of the speed data as is usually done in practice. As discussed previously, extracting
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the speed data from camera trap records is not a simple task, therefore, we generate a
random sample of the speed data in our simulations to test the model. The example is
continued below with the selection of random sample of speed data. We give the R-code

and R-output.

Example continued

#i#t#selecting a random sample X1* of size M from X*
X*
12.47096 12.84364 12.84364 12.84364
13.57303 13.57303 13.60024 13.60024

X1* <- sample(X*, size=M,replace=TRUE)
12.84364 13.57303 12.84364 12.84364

Step 4: Fit an iREM-SB with a Poisson distribution for the encounter data, a¢*, and a

gamma distribution for the speed data, using either X™* or X*;.

To investigate the assumption of independence between data sets we generate an inde-
pendent random sample from a gamma distribution, which represents an independent
set of animal speed data, Z (km/day~!). Using this new data set, Z (km/day ') we
compute the expected encounter rate, A in Step 1 and then repeat Step 2. The example

for this is given in the R-code and R-output below.
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Example continued

###generating new set of speed data from a gamma model
M <- 4; alpha <- 388.8 ; nu <- 30 ;
Z <- rgamma(M,alpha,nu)

13.07493 13.69886 12.98350 12.75520

###computing the constant term in the expected encounter rate
D <-1; r <- 0.012; theta <- 0.10

C <- ((2+ theta)/ pi) x r x D

###computing the expected encounter rate

Lambdal <- C x (sapply(Z, function(a) sapply(T,function(b) axb)))
[,1] [,2] [,3] [,4]

[1,] 0.8132102 0.8520166 0.8075239 0.7933246

[2,] 0.8720726 0.9136879 0.8659747 0.8507477

[3,] 0.8039772 0.8423429 0.7983554 0.7843173

###generating encounters from a Poisson model

for(k in 1 :c){for(j in 1 :M){allk,j] = rpois(1,Lambdal)
al*=rowSums(al)}
al+ =colSums(al)}

al

(.11 [,2]1 [,3] [,4]

[1,] 1 0 0 1

[2,] 0 0 1 1

(3,1] 2 3 1 2

###total encounters on the ith camera trap
al* = 228

###total number of times an animal was recorded

al+ = 3324
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Using a3 ™, generated in the example above we then generate the actual speed data Z*
(km/day) to be used in the estimation process. At this stage we also select a random

sample, Z1*, of animal speed from Z*. The R-code and R-output for this is shown below.

Example continued

##t#tgenerating actual speed data Zx*

Z*x <- rep(Z,al+)

13.07493 13.07493 13.07493 13.69886 13.69886 13.69886
12.98350 12.98350 12.75520 12.75520 12.75520 12.75520

###selecting a random sample of speed Z1* from Zx
Z1* <- sample(Z*, size=M,replace=TRUE)
Z1%

13.69886 12.75520 13.69886 12.75520

We then fit a size biased gamma to the independent speed data Z* or Z7*.

7.2.1 Investigating independence assumption with all possible speed data

In this section we investigate the independence assumption using the simulation al-
gorithm described in Section 7.2. We test the performance of the model for small
density, D = 10 (km?), and low expected speed i, = 0.150 (ms~!) where the variance
of animal speed is low, Var(z;) = 0.05, or high, Var(z;) = 0.31. We also test the per-
formance of the model for a larger density value, D = 100 (km?) and higher expected
speed, p1; = 0.466 (ms—') where the variability in speed is low, Var(z;) = 0.005, or
high, Var(z;) = 0.35. For each scenario we set the number of camera traps to ¢ = 10 or

¢ = 100.

In Table 7.2.1 we compare results from REM with size biased sampling (REM-SB) with
an iREM-SB using independent data and dependent data. We generated scenarios in
which the true density value, D = 100 (km?), was such that animals moving at a fast

rate have expected speed of p, = 0.466 (ms—!) with low or high sampling variability;
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Var(z;) = 0.005 or Var(z;) = 0.35, respectively. The standard errors are in paren-
theses, and the Standard (Sd) and Root Mean Square Error (RMSE) are also given.
The simulation results show that violating the independence assumption has minor con-
sequences on estimated density and its precision. That is, the difference between the
density estimates from the independent data and the dependent data is minimal. Also,
it is worth reiterating here that the method of size biased sampling accounts for the
dependence introduced by faster moving animals that are more likely to be captured on
camera traps, hence, minimal differences in density estimates between dependent and
independent data. The results also show that REM-SB gave similar estimates of the
density as iREM-SB but the standard error estimated from REM-SB is smaller than
the standard error estimated from iREM-SB, particularly when the sampling variability
in the speed is high. Increasing the number camera traps, hence, the number of camera

trapping days improves estimation precision.

In Table E.0.3, appendix E, we show alternative scenarios for smaller true density values,
D = 10 (km?) and low expected speed, f1, = 0.156 (ms~!) with low variability, Var(z;) =
0.05 or high variability, Var(x;) = 0.31 in the speed data. Similarly, there are minor
consequences on the density estimator and precision if the independence assumption
is violated. While REM-SB and iREM-SB gave similar estimates of the density, the
difference in estimated standard of the density between REM-SB and iREM-SB is more
obvious. REM-SB consistently gave smaller estimates of the standard error, particularly

when the variability in the speed data is high.
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7.2.2 Investigating independence assumption using a random sample of speed

data

Generally, it is not practical to extract information regarding the speed from all camera
traps over the survey period, particularly for large scale survey designs. Therefore, a
random sample that is considered large enough to provide relevant information in eco-
logical studies is selected (see Rowcliffe et al., 2011). In this section we investigate the
independence assumption using the simulation algorithm outlined in Section 7.2 using
a simple random sample of the speed data. We generated scenarios in which the true
density values, D = 10 (km?) or D = 100 (km?), was such that animals moving at a

slow rate has expected speed of p; = 0.150 (ms~!) and Var(z;) = 0.05.

Table 7.2.2 gives the results from using a random sample of independent data and
dependent data to estimate animal density from iREM-SB and REM-SB. Analysing
the data assuming independence in encounter and speed of movement data provides
relatively accurate estimates of the density for smaller sampling effort. Again, there
is minimal difference in the density estimator between the dependent and independent
data. Correcting for the bias in the speed of faster moving animals accounts for depend-
ence of these animals being more likely to encounter the camera trap. Also, REM-SB
gave similar estimates of the density as iREM-SB, but the estimated standard error of

the density is smaller compared with the estimated standard error from iREM-SB.
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7.2.3 Investigating the importance of accounting for bias in the speed of faster

moving animals using all possible speed data

To assess the impact that unaccounted bias in animal speed of faster moving animals
can have on the estimation of density in iREM we simulate scenarios with iREM-SB
and iREM without size biased sampling. Table 7.2.3 gives the true values used in the
simulation process, which are ecologically plausible for our motivating BCI data set.
We test the size biased sampling method under different parameter settings and sample
size conditions, looking at the effect on density when the variance is large or small. We

generate independent data sets to test the size bias method.

As shown in Chapter 6, a size biased gamma model remains a gamma model but with
mean (o + 1)/v and variance (o +1)/v? (note that the mean of a gamma model is a/v
and variance o/v? ). The difference between the size biased mean and the standard
mean is 1/v, and therefore, it is the shape parameter v that will determine how large
the difference between a size biased mean and a standard mean is. So as v gets larger, the

difference between the two means gets smaller, and hence, the variance also gets smaller.

Table 7.2.3: True values used in the simulation process.

Density  Camera traps Parameters and Variance

Ha v fe! Var(z;)

Low speed, increasing variability

10 10 0.150 15 194.4 0.01
10 10 0.150 3 38.88 0.05
10 10 0.150 1.5 19.44 0.10
10 10 0.150 1 12.96 0.15

Higher speed, high variability

10 10 0.466 0.78 31.37 0.60
100 10 0.466 0.78 31.37 0.60
10 100 0.466 0.78 31.37 0.60
100 100 0.466 0.78 31.37 0.60
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Table 7.2.4 gives the results from fitting iIREM-SB and iREM for expected speed,
pz = 0.150 (ms™!) and increasing variability of the speed. As discussed above when
the variability in the speed data is low, hence, v is large, we expect the difference in
estimates between a gamma model and size biased gamma model to be minimal. The
simulation results show that this is true for Var(z;) = 0.01. Increasing the variability
in the speed results in a larger bias in the density estimate from a standard gamma
model. Additionally, estimated standard error of the density is smaller compared with
the estimates from a size biased gamma model. The results also show that REMs gave
similar estimates of the density as iREMs but the estimated standard from REMs is
smaller compared with iREMs. Note again that REM does not account for the sampling

variability in the speed data but rather uses a fixed estimate of the expected speed.

We test the models using a higher expected speed, j, = 0.466 (ms~!) with high vari-
ability in the speed data and the results are shown in Table 7.2.5 . We expect a size
biased model to perform better than a standard model when variance is large, and
hence, large shape parameter, v. The simulation results (Table 7.2.5) show that the
size biased model performs better than the standard under all scenarios in terms of
the parameter estimates and precision. Again, REMs can gave similar estimates of the
density as iREM but the estimated standard error of the density is smaller compared

with the estimated standard error from iREMs a
Based on these results we would recommend a size biased model for estimation of average

animal speed, particularly if the sampling variability of the data is high, since this model

reduces the bias in the density estimator as well as the mean speed estimator.
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7.2.4  Investigating the importance of accounting for bias in the speed of faster

moving animals using a random sample of speed data

In this section we investigate the importance of accounting for the bias in the speed
of faster moving animals using a random sample of size m = 70 of the speed data as
described in the simulation algorithm outlined above in Section 7.2. For illustration,
we test the model for j, = 0.466 (ms~!) and increasing sampling variability. We set
Var(z;) = 0.15; Var(z;) = 0.30; Var(z;) = 0.45 or Var(x;) = 0.60. The results are given
in Table 7.2.6. We expect the size biased model to perform better than the standard
model as the sampling variability increases. The results (Table 7.2.6) show that the bias
from the size biased gamma is consistently smaller compared with the bias in estimated
density from the standard gamma model. Also, the estimated standard error of the
density from a standard gamma is smaller compared with that from the size biased
gamma model. REMs and iREMs gave similar estimates of the density but REMs gave
smaller estimates of the standard error of density since the variability in the speed data
is unaccounted for in REM. Finally, using a random sample of the speed data gave
relatively accurate estimates of the density, for example when Var(z;) = 0.60 as is the
case in Table 7.2.5 above. Therefore, we can conclude that using a random sample of
the observed speed data in practice would have minimal effect on the density and its

precision.
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7.3 Application of iREM-D with size biased sampling model to BCI data

In this section we fit the iREM-D developed in Chapter 5 to the BCI data, accounting
for the bias in the speed of faster moving animals. As discussed in Chapter 6, faster
moving animals are more likely to encounter camera traps and the probability of en-
counter may differ within species. We have illustrated that the speed estimator can be
biased towards these faster animals. To correct for the bias introduced by faster anim-
als, we adopted the method of size biased sampling. We believe that the bias introduced
from faster animals would bias the density estimator. We assume the models discussed
in Chapter 5 for the speed data (gamma, lognormal or a Weibull), a halfnormal model
is assumed for the distance data; a Poisson REM is assumed for the encounter data,

and a von Mises model is assumed for the angle to detection data.

Suppose the encounter data, a;, is assumed to follow a Poisson distribution, such that
a; ~ Pois(At;) where X is the expected encounter rate defined in equation (7.1.1) above,
and t; is the camera trap time in days for ¢ = 1, 2, ..., ¢ camera trap. Then the probability
mass function can be defined as h(a; | A, t;, 7) where 7 represents any additional
parameters in the model. Suppose also that m speed observations, with expected speed,
iz, have probability density function f(z; | py, v) wherel = 1,2, ..., m, and v represents
any additional parameters in the model. So for s; observed detection distances which
have probability density function g(z;; | o) where j = 1,2,...,s; is the jth observed
detection distance, on the ith camera trap, and o represents any additional parameter
in the model, and the corresponding angles to detection 6;; with probability density
function p(6;; | v, 1), where v is the expected angle to detection and 7 represents any

additional parameters in the model, the log-likelihood can constructed as follows

E:Zlog h(a; | A, ti, 7) +Z1Og (‘Elf(xl’/w) n
=1

‘ Mo
=1
C Si C S5 (731)
> log gz | o)+ > Y log p(Bis | v, n).
=1 j=1 =1 j=1

The model assumes the following: 1) the encounters at each camera trap are independ-

ent, 2) the speed observations are independent and identically distributed, and 3) the

284



encounters, speeds, detection distance and angle to detection are independent so that
their contribution to the likelihood could be multiplied. We showed in the simulations
in Section 7.2 that a violation of the independence assumption between the speed data
and encounter data has minimal effect on the density and its standard error. Also, as
shown in Section 5.11 and as discussed in Rowcliffe et al. (2011) a weak correlation
was found to exist between the detection distance and angle to detection data, hence,
the assumption of independence is made. For comparison estimates from fitting the
nonparametric REM formula, described in equation (7.2.1) above, to the data using an
estimate of the mean speed computed from the harmonic mean formula described in
equation 6.4 and the standard (arithmetic) mean formula are computed. Table 7.3.1
gives the estimates from lognormal models. Table 7.3.2 gives the results from gamma

models, while Table 7.3.3 gives the results from Weibull models.

The three speed data models (Table 7.3.1, Table 7.3.2, Table 7.3.3) gave similar estim-
ates of the parameters for all species. The evidence also shows that REM and iREM-D
gave similar estimates of the density but the estimated standard errors from REM are
smaller. It is worth reiterating here that REM lacks the potential to account for the
sampling variability in the parameters required to estimate density, hence, we expect
iREM-D to give better estimates of the standard error. The size biased models also
perform better than the standard models, as expected, as the bias in animal speed is
accounted for. Note that the density estimator is defined as

D="x

| >
3

where )\ is the expected encounter rate, 4 is the effective detection distance, U is the
mean angle to detection and fi, is the expected animal speed. So for larger values of
i1, we would expect the estimated density, D, to decrease as shown by the results in
Table 7.3.1, Table 7.3.2 and Table 7.3.3. According to the AAIC values in Table 7.3.4
there is more support for a lognormal model. As discussed in Chapter 6 a size biased
gamma model or size biased lognormal model is a gamma model or lognormal model,
respectively, but with different parameters, while a size biased Weibull model is not a

Weibull model.
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7.4  Discussion

The iREM with size biased sampling model proposed in this Chapter allows for novel
investigation of the effect of the sampling variability in the speed of faster moving an-
imals on density estimation of unmarked animals. The model deals with the problem
of induced-bias in the density estimator by accounting for the bias in the speed of
faster moving animals. In particular, the integrated population model developed in this
Chapter uses a Poisson REM process to estimate density from data sets that can be

assumed to be independent.

In practice, demographic data about a population used in analyses are generally collec-
ted from a single survey and independence between the information is usually assumed.
We found that disregarding the independence assumption between data sets does not
appear to have strong effects on the density estimator in REM despite the fact the degree
of the dependence in the data sets was strong, with all the data coming from the same
source. This result is promising for ecological studies and is aligned with conclusions
reached in other integrated population modelling approaches, which investigated the
independence assumption between data sets (see for example Abadi et al., 2010). We
considered the cases for all the speed data generated in our hypothetical survey and for
a random sample of the speed data, as is the case of the real data at BCI, Panama. We
also showed that correcting for the bias introduced by faster moving animals is crucial
when estimating the density. Note that the model structure developed and tested via
simulations assumes fixed values of the detection zone dimensions of the camera trap,
hence, it is an iREM framework as developed in Chapter 3 but corrects for size bias.
So, explorations of the iREM-D developed in Chapter 5, which accounts for the bias in

animal speed is an avenue for future research.

To deal with the problem of accounting for the bias in animal speed and its effects on
estimated density we adopted the size biased sampling method (Patil and Rao, 1978),
which we have discussed in Chapter 6. We have shown in Chapter 6 that under cer-
tain conditions (small difference between the two means) estimations of expected speed

from a size biased gamma model and a gamma model are approximately equal. In this
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Chapter we have also shown that the difference in estimated expected speeds as well as
estimated densities between an iREM-SB and an iREM could be small or large under
certain conditions. If the sampling variability of the speed data is large, the difference
in the estimated parameters from the two models is more pronounced compared with
low sampling variability. The simulation results suggested that it is crucial to account
for the bias in speed of faster moving animals as this bias can introduce bias in the
density estimator. Also, the bias from using a random sample of the speed data is
larger compared with the bias from using all of the speed data. This was expected since

higher survey effort would improve estimation and its precision.

In this Chapter we have considered the encounter data to arise only from a Poisson
distribution. In Chapters 2, 3, and 4, a negative binomial model, a zero-inflated Pois-
son model and a zero-inflated negative binomial model were also considered, and in
Chapter 5 we also considered a negative binomial model and likelihood approaches were
derived, but these alternatives for describing variation in the encounter data could be
explored, for example to account for overdispersion and zero-inflation. Also, further
work is needed to explore the effect of the detection zone dimensions on density for

variable camera trapping time period.

An application of an iREM-D with size biased sampling model to real data at BCI
produced realistic estimates of the density and provided a nice illustration of how ac-
counting for bias in the speed of faster moving animals and the sampling variability in
the detection zone dimensions can change the conclusions regarding the density estim-
ator. The model structure assumes independence between the data sets and as shown
in the simulation results ignoring the independence assumption has minor consequences
on the parameter estimates and their standard errors. An analysis of the data assuming
independence showed strong support for models that account for the sampling variab-
ility of faster species as shown in the case where animal speed is assumed to follow a

Weibull model.

291



Chapter 8

Conclusions

In this thesis we have developed new approaches for density estimation of unmarked
animals from camera trap data. During a period of habitat loss, climate change and loss
of biodiversity, the availability of accurate and efficient modelling techniques is crucial
for monitoring species, particularly those that cannot be identified to the individual
level, and estimating population abundance. The novel models described in this thesis
provide a basis for new and exciting future studies in camera trapping analysis for dens-
ity estimation of unmarked species. The models developed in this thesis build on REM
(Rowcliffe et al., 2008) for density estimation of unmarked animals from camera trap

data.

We have first introduced REM, which is based on the “ideal gas” model from physics
and we have demonstrated how REM can be used to estimate density using a small data
set from WWAP with known census. As described in Chapter 1 abundance and density
estimation of species, particularly of unmarked species, from camera trap data has
become increasingly important in ecology. Of particular note is that the methods that
use camera trap data for abundance and density estimation are restricted to capture-
recapture analysis. The REM method described in this thesis is a recently developed
modelling framework that aids in monitoring of unmarked species, and estimation of
population density using camera trapping analysis. The WWAP data set, which was
one of the primary data sets considered in this thesis, was used as the test data for

REM, and the analysis of this data set raised several questions:

(i) Can REM, which simply applies the formula linking density with encounter rate,
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animal speed, and detection zone parameters, using bootstrapping to estimate
variance, adopt a maximum likelihood framework that allow for more robust

model-based inference?

(ii) Is it possible to develop a unified statistical modelling framework that integrates
the independent steps required to derive all the necessary components of the ana-

lysis (encounter rate, speed, detection distance, detection angle, and activity)?

(iii) How can REM be extended to account for variation in abundance in heterogeneous

habitats?

(iv) The current REM approach is based on a flawed approximation of the detection
process. Can a more valid process model be developed to improve estimation of

the detection zone dimensions?

(v) There are multiple sources of variance in the analysis in the REM formula, each
of which contributes to the overall precision of the density estimate. How does
variance partition between the different sources empirically, and how do sample

sizes in the difference sources affect overall precision?

(vi) Given that animal speeds and camera detection zones generally vary, what are the

implications for unbiased estimation of the density in this situation?

In this thesis we addressed these six issues. The key to our work is to model the data
entering REM to obtain unbiased estimates of the parameters and to correctly estimate
the standard errors in REM. Maximum likelihood estimation approach in this context is
attractive as it provides a unified framework for modelling data to estimate parameters
and their variance. This approach provides a means to combine multiple data sets to
estimate additional demographic parameters that are otherwise inestimable if separate
analyses are conducted. Regarding the first question, we have developed a maximum
likelihood framework for REM, which serves as a basis for further extension to estimate

density.

The extended REM models developed for density estimation of unmarked animals are

summarized by Figure 8.0.1. We started with REM, which is simple nonparametric

293



model for density estimation of unmarked species, assuming fixed values of the detec-
tion zone dimension parameters and an estimate of average animal speed, and built up
more complex models taking into account the sampling variability in animal speed, and
the detection zone dimensions, and incorporating covariates such as habitat type and
camera random effect, which explain additional variation in population abundance. The
model that accounts for the sampling variability in animal speed, and detection zone
dimensions (iIREM-D) is the most general model among those studied, with the others

being particular or limiting cases of this one.

v’ Density
REM
D,0,rV,t
v' Density v' Density v Density
v’ Expected speed v’ Expected speed V' Size biased expected speed
v’ Effective detection distance -
iREM
iREM-dd D, 6,1, t iREM-SB
D, eIYl wt / \ D, B,r, Bt
v' Density v' Density per habitat v' Density
v’ Expected speed v' Overall Density v Camera random effect
v’ Effective detection distance v’ Expected speed v’ Expected speed
v’ Effective detection angle
© iREM with habitat iREM with random effect
iREM-D
D, VY, 1, t DT' Dp el nu t DI Op 9, L t

|

v' Density per habitat and overall density
v’ Camera random effect
v’ Expected speed

iREM with random effect and habitat
Dy, Dy, 0y, 0,npt

Figure 8.0.1: Summary diagram of the extended REM models developed in this
thesis. Parameters are as defined in the corresponding Chapters. REM is given in
Chapter 2, iREM is given in Chapter 3, whereas iREM with habitat, iREM with
random effect, and iREM with random effect and habitat are given in Chapter 4.
The models, iREM-dd and iREM-D are given in Chapter 5 and finally, iREM-SB is
given in Chapter 7.

As described in Chapter 2 Section 2.7, WWAP data were collected from separate sources,
therefore, they are considered statistically independent, so their contribution to the like-
lihood could be multiplied. We showed in Chapter 2 that REM, although a nonparamtric
method, could be derived by assuming a Poisson distribution for the encounter data with
a maximum likelihood estimate. We also showed that the maximum likelihood estim-

ation method can provide meaningful results of the density. Of particular note is the
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flexibility of the maximum likelihood framework to incorporate heterogeneous habitats
where animals will use some habitats more than others. This variation in space could
vary with time, particularly time of day, and we have shown that modelling this vari-
ation can be relevant when estimating animal density. There are some limitations of
REM in estimating density and its precision, which were given in detail in the discussion
of Chapter 2. We have pointed out that REM would give accurate estimates of the dens-
ity but it would underestimate the standard error, since the sampling variability in the
speed information is not accounted for. And, using the direct method and the inverse
Hessian matrix for variance estimation may bias the estimated standard error for finite
(small) sample sizes since these rely on asymptotic theory. However, a nonparametric
bootstrap method or an adjusted variance method for ratio estimation would be useful
in accounting for some of the variability that comes from using an estimate of the mean
speed. These methods are advantageous since they do not assume any distribution
for the data. However, there are some limitations of these methods. For the bootstrap
method the most important limitation is the assumption that the distribution of the data
represented by the sample is a reasonable estimate of the population function. If this
assumption is violated the random sampling performed in the bootstrap procedure may
add another level of sampling error, resulting in invalid statistical estimations (Haukoos
and Lewis, 2005). In the WWAP survey the placement strategy of camera traps was
random in all habitats, except in Central Park where the mara species inhabited, traps
were not baited nor set on trails, and animals were arbitrarily selected to be followed
around to gather the speed information. As discussed in Chapter 2, the case of the mara
species is unique as the area surveyed (WWAP) is a park that is commonly traversed
by humans, therefore the underestimation of the density is a direct result of the poor
survey design adopted to avoid crowding the cameras with human photographs. Aside
from this, there is no evidence to suggest that the data represented by the sample is not
a reasonable estimate of the population function. Another limitation of the bootstrap
is the smaller the original sample the less likely it is to represent the entire population,
thus the more difficult it becomes to compute valid confidence intervals. Note that the
bootstrap relies heavily on the tails of the estimated sampling distribution when com-
puting confidence intervals, and using small samples may jeopardize the validity of this

computation. In our WWAP data set the speed data, for example, is rather limited (10
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observations for each species) and as shown by the results in Chapter 2, the confidence
intervals from the direct method and the inverse of the negative Hessian is narrow and
does not contain the density from the census, particularly when the variation in habitat
type is not incorporated into the model. Finally, the sampling distribution of the boot-
strapped statistics is frequently not symmetric as is the case of our estimates and the
median value seemed to be a more valid estimate. But there is no simple method for
calculating the 95% confidence interval for the median, and it is not valid to use a 95%
confidence interval calculated from the standard error to represent the 95% confidence
interval for the median value, unless the distribution of the underlying data is normal
(see Haukoos and Lewis, 2005) and even so the mean and median would have different
standard errors. For the adjusted variance method, the variance of the ratio is only
asymptotically unbiased, also if the mean of the denominator is small then the variance
of the ratio will be large. For the WWAP data set the average speed of movement
for three of the four species is quite small, hence, a large estimate of the variance, for
example the wallaby species. Also, it is important to note that when the population
of the realizations of the random variables is heterogeneous, the variance estimator will
mask such heterogeneity - for instance, the huge C,% of the speed and encounter data
for the species at WWAP (see Van Kempen and Van Vliet, 2000). Finally, it is difficult
to adopt the adjusted variance method for variance estimation in more complex models,
such as the REM with habitat or random effects. However, the maximum likelihood
REM framework developed in this thesis is flexible and can be extended to incorporate
multiple sources of data such as animal speed, detection distance and detection angle
into one coherent framework, as we have shown in Chapters 3, 4, 5, 6, and 7 allowing for
new analyses to be possible. It is worth reiterating here that the REM maximum like-
lihood framework developed in Chapter 2 does not account for the sampling variability
in animal speed, and given the fact that the proposed variance estimation methods can
be unreliable we developed an integrated Random Encounter Model (iREM) to account

for the sampling variability in the data and variance estimation.

The integrated Random Model (iREM), which serves as a basis for further develop-
ment of a more unified framework for density estimation, was developed in Chapter 3

to answer the second question. We have considered a variety of approaches for density
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estimation in iREM. These different methods were designed to be broadly applicable to
various types of species, each with its associated advantages and disadvantages. Given
the variation between different animal species, we anticipate that the best modelling
approach may vary according to individual species, as well as data available and study
purpose. In this Chapter we have shown that integrating multiple sources of data al-
lows the estimation of not only density but also parameters associated with the density.
iREM has been shown to improve estimation accounting for the sampling variability in
animal speed. The underlying Poisson model in REM has been shown to work well but
the negative binomial REM, zero-inflated Poisson REM and zero-inflated negative bi-
nomial REM provide alternative approaches for model fitting for cases of zero-inflation
and variation in the encounter data. It is hoped that the methods developed in this
Chapter would provide attractive alternatives to modelling camera trap data for density
estimation in iREM, and highlight potential issues associated with density estimation

if certain features in the data are not accounted for.

In the case of the WWAP data set, our analysis revealed some limitations on the ro-
bustness of the abundance estimates from iREM. In this connection, we would like to
highlight that, if the data set is large enough iREM can obtain meaningful parameter
estimates. However, for species with limited data and if the sampling variability in the
data is unaccounted for iREM would perform poorly as seen in Section 3.8.3 Chapter
3 for the muntjac species, but the development of more variable iREM models such as
ZINB iREM can correct for this problem. However, if the real focus of the study is to
obtain a precise estimation of population abundance, then an iREM that incorporates
spatial covariates that can explain additional variation in the density would be more
appropriate. In this Chapter we also extended iREM to model group size data but
the model is limited to small family groups where counts of the number of individuals
in each group is possible. The WWAP survey is a small survey where animals were
moving in small family groups. In the discussions of Chapters 2 and 3 we described in
detail the limitation of REM and iREM for density estimation of the individual found
in groups. If all animals in a group are detected within the detection zone of a camera
trap, and a count of the number of individuals in the observed group can be made, then

it becomes possible to estimate average group size in the population (Buckland et al.,
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2001). While larger groups tend to be more detectable than smaller groups, all animals
within the observed group may not be detected given the limited view of a camera trap
(i.e., maximum detection angle is 7/2), and a narrow detection zone closer to the trap.
Buckland et al. (2001) argued that estimation of average group size requires the location
of the centre of observed groups and the number of individuals in the group to be recor-
ded. In camera trapping analysis, however, the centre of the group is unobservable and,
therefore, it becomes impossible to measure true group size. Also, if a group is replaced
by objects of the same size as suggested by Buckland et al. (2001) the issue of violation
of the independence assumption would arise, invalidating analytical variance estimation
and model selection procedure. A recommendation by Buckland et al. (2001) if groups
occur but are not well-defined is for the observer to record each individual animal, and
its location, and use robust variance estimation methods. While this thesis offers some
practical solutions, with rather strong assumptions, for modelling group size data and
estimating average group size from camera trap data, the development of more robust
modelling approaches is required. Chapter 3 also highlights the importance of account-
ing for observed zero speed of movement. We showed that including the observed zero
speed would inflate the estimated density (hence, underestimation if unaccounted for),
particularly for small sample sizes as is the case of our WWAP data set. We, therefore,
recommend where possible to sample a large number of observations of the speed when
there are observed zeros, especially when the density is large. The current iREM frame-
work has the possibility of using zero inflated distributions to model the observed zero
speeds, however, another possibility would be to actually model the process of animals
not moving using a moving-resting process model as is done in Yan et al. (2014), for
example. This approach requires further exploration, and also remains an avenue for

future research.

In Chapter 4 we explored the flexibility of iREM developed in Chapter 3 by incorpor-
ating covariates such as habitat type and random effects of the camera location. This
new model can provide insights into the effect of spatial variation and unobserved het-
erogeneity of camera location on abundance estimation. The estimation of abundance
for species that cannot be identified to the individual level from camera trap data has

received limited attention, hence, from the iREM with covariates model density can be
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estimated for various species, and also compared within and across habitats. Our model
tackles the problem posed in question (iii) regarding abundance estimation in hetero-
geneous habitats. We have illustrated how not accounting for the variation in habitat
type can result in poor estimation of the density. However, the iREM developed for
random effect and for both random effect and habitat can be further refined for ef-
ficiency. First of all, the numerical method adopted to approximate the intractable
integral requires a large number of quadrature points to obtain a close approximation
to the likelihood. Consequently, the method can be computationally intensive as we
have experienced in the simulations and analysis of the WWAP data set, and partic-
ularly, if there are a large number of random effects (Crouch and Spiegelman, 1990;
Rabe-Hesketh et al., 2002). The approximation can also be poor if the responses are
conditionally Poisson distributed (Albert and Follmann, 2000) as can be seen, for ex-
ample, in the case of the water deer species. Moving to simpler approximation methods
such as an adaptive Gauss quadrature, which uses a single quadrature point (mode)
(Lesaffre and Spiessens, 2001) or a simple matrix transformation (Crouch and Spiegel-
man, 1990), or a Bayesian framework (King et al., 2016; Reynolds et al., 2009), which
may be more straightforward are avenues for further research. Secondly, the results of
the more complicated iREM with random effect and habitat model suggested that the
model is near parameter redundant, which behaves poorly in terms of the maximum
likelihood estimates and relevant standard errors. Therefore, models to address the is-

sue of near parameter redundancy in this type of study is an avenue for further research.

To tackle the problems posed in questions (iv) and (v) we explored a more general
model that accounts for the sampling variability in animal speed and the detection zone
dimensions (iREM-D). Our approach represents an attractive alternative to Rowcliffe
et al. (2008) REM, which requires five independent steps to derive all the necessary
components of the analysis (encounter rate, speed, activity level, detection distance
and detection angle). Our model provides a description that incorporates the steps,
into a single integrated framework, which allows the estimation of not only density but
also of the independent parameters required to estimate density. This is, as far as we
know, the first comprehensive model, which considers a functional relationship between

a camera index and animal density (Jennelle et al., 2002) of unmarked animals, that
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accounts for the sampling variability in the independent parameters required for density
estimation. However, one feature for further consideration is the influence of activity
level on estimated density, which is not currently accounted for by the single integrated
model (iIREM-D), since animals that are more active are more likely to be captured by
camera traps. In Chapter 5 it was shown that the underlying Poisson model in REM
produces meaningful estimates of the density but the negative binomial model provides
an alternative approach, particularly to account for variation in the encounters. While
a ZIP model or a ZINB model are, theoretically, other approaches to account for zero-
inflation and additional variation, their application to this type of data is an avenue for
further research. It is hoped that the results in this Chapter can inform guidance on
minimum and optimal survey effort required to achieve a given power in detecting dens-
ity difference in time or space, and highlight the importance of accounting for sampling

variability in the parameters required for density estimation.

It is unfortunately not only within a given model structure that inferential problems
arise. Since the density is a functional relationship with the speed of movement, and
given that an average speed is required in the estimation process, this average is likely to
be biased towards faster moving species. In connection with this, the size biased models
in Chapter 6 were proposed to account for the bias in the speed of faster moving animals.
We have illustrated how not accounting for this bias, unless where the sampling vari-
ability of speed data is low, can be problematic in terms of induced bias in the average
speed, and consequently the density estimator. We proposed models for the probability
of encountering animals with given speeds, and showed that this probability is approx-
imately proportional to its speed. We considered the underlying Poisson model in REM,
and other alternative models including a negative binomial, a zero-inflated Poisson and
zero-inflated negative binomial from which the probability of encounter could be de-
rived. And, we considered nonnegative probability density functions such as a gamma
model, a lognormal model and a Weibull model for animal speed. We showed that the
approximation method for the probability of encounter for size biased sampling works
for all models, but we have only derived the size biased gamma model with the true
probability of encounter from a Poisson, which was proven to work well. The derivation

of size biased models where the true probability of encounter comes from a negative
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binomial or a zero-inflated Poisson or a zero-inflated negative binomial is an area for

further research, since these cannot be achieved easily by analytical methods.

The size biased models proposed in Chapter 6 for the speed data were also relevant in
the development of models suitable for describing population abundance of unmarked
species in Chapter 7. We have shown how induced-bias in the average speed from faster
moving animals can bias the density estimator. A key challenge when using integrated
population models to describe demographic variables in ecological studies is the inde-
pendence assumption of the data sets. Generally, this assumption is ignored or violated,
and this violation can have some consequence on the parameters (Besbeas et al., 2002).
In Chapter 7 we considered two approaches: 1) using dependent sources, and 2) using
independent sources for modelling abundance of unmarked species. These approaches
were designed to determine whether this assumption, if violated, would have an affect
on the density estimator. Despite the strong degree of dependence in the data sources

there was only minor consequences on the parameter estimations and precision.

There are some important comments, worth reiterating, regarding the use of REMs
developed in this thesis. First and foremost, REMs require randomized placements of
camera traps. If traps are placed on trails, for example, or not placed randomly in
the surveyed area, this would violate the underpinning assumption of REMs resulting
in biased estimates of the density. A classical example of this is the estimates of the
density of the mara species from REMs. Secondly, random encounters of animals with
camera traps are necessary for density estimation. Thus, REMs do not allow baiting of
traps or luring of animals to traps in any way. The data required for REMs must be in
the form of numbers of independent contacts between animal (individual or group) and
camera. One way to acquire this is to set camera traps to become inactive for 2 minutes
after each photograph. This allows for an animal or a large group of animals to leave the
camera detection zone, and that same animal (or group) or a different animal (or group)
later re-enters to give a second independent contact. From testing and implementing
REMs in this thesis we showed the importance of, and recommend the following when

using REMs:

1. Modelling the speed data - this resulted in improved precision since the variability

301



is accounted for.

2. Accounting for the variation in the encounter data - estimated density and its
precision improve when this variability is accounted for, e.g., use of NB REM and

ZINB REM.

3. Incorporating measurable factors such as habitat type/land cover or random ef-
fects in the modelling process - this is necessary in estimating the density as these

would explain some of the variation in the density.

4. Accounting for the variability in the detection zone dimensions (whether low or

high variability) - this resulted in improved estimates of the density and precision.

5. Accounting for the bias introduced by faster moving animals - this is necessary
regardless if the variability in the speed data is low. The coefficient of variation of
the estimated average speed for the BCI data is as low as 3% as shown in Chapter
6 but the bias in the density introduced from faster moving animals is substantial

as shown in Chapter 7.

All analyses in this thesis were made using maximum likelihood estimations. But many
of these modelling suggestions may be most feasible within a Bayesian framework, which
can readily incorporate hierarchical models, and fitting of complex models, which in-
clude random effects, for example, may be more straightforward. Also, if there are some
prior beliefs by ecologists about demographic parameters a Bayesian approach might
be more straightforward. Reynolds et al. (2009) for example developed an integrated
Bayesian analysis framework that uses valuable prior information about the model para-
meters. Reynolds et al. (2009) showed that it is feasible to obtain reasonable estimates,
including parameters that were otherwise inestimable if the data sources were analysed

separately from this comprehensive process model.

Although we have provided some of the associated R code within this thesis, and the
appendix of the thesis, the possibility of developing a free, easy to use, statistical package
in R, which incorporates general frameworks for abundance estimation of unmarked
animals, could encourage the wider application of these methods by producing more

accessible tools for users.
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Appendix A

A.1 Maximum Likelihood Estimation of the Density in REM

Here we provide an example of the the R-code for the log-likelihood function above used

to estimate density.

###loglikelihood function to estimate density in REM
###y is the encounter data

densitys <- 468 #starting value for density

r <- 0.012 #fixed detection distance

theta <- 0.175 #fixed detection angle

v.bar <- 0.71 #fixed mean speed from speed data

t <-1 #camera trap time period

loglike <- function(par,y){
Density <- exp(par)
lambda <- ((2+theta)/pi)*r*t*v.bar*Density

-sum(dpois(y, lambda, log=TRUE))}

###minimizing the negative loglikelihood using optim
max.like <- optim(f=loglike,log(densitys) ,method="Brent",

lower=1,upper=1000,y=y,hessian=TRUE)
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A.2  Density split by habitat in REM

This section is linked to Section 2.8.3 where the estimated density for wallaby, water
deer, mara and muntjac species are given. Here we give the estimates of the density
split by habitat for the wallaby and water deer species. Table A.2.1 gives the results
of the wallaby species, while Table A.2.2 gives the results of the water deer species.
For the wallaby species the density from the census in three of the four habitats is
captured within an approximate 95% confidence interval from the Hessian matrix and a
95% confidence interval using bootstrap, but the bootstrap confidence interval captures
the mean density from the census. For the water deer species, the density from the
census in only two of the four habitats, and the mean density are captured within a

95% confidence interval.
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Appendix B

B.1 Investigating the fit of the Poisson iREM

In Chapter 3 Section 3.7.1 we test the Poisson iREM under different parameter settings
and sample size conditions. In the simulations we investigate the importance of account-
ing for the variation in animal speed. The results reveal that the Poisson iREM works
well in estimating the density and for given sample sizes, although in some cases small,
can be used for ecological studies with limited resources. Here we give the parameter

estimates from the Poisson iREM, and these are shown in Table B.1.1.

The simulations indicate that precise estimates are obtained for all parameters and there
is no difference between the three speed data models used. But large expected animal
speeds obtained smaller estimated standard error of the density compared with smaller

values of expected speed of movement.
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Table B.1.1: Average parameter estimates obtained from fitting a Poisson iREM to encoun-
ters simulated from a Poisson REM. The expected speed is set to p = 0.60 (km/day™') or
pu = 4.60 (km/day~'). The standard errors (in parentheses), Standard deviation (Sd) and Root
Mean Square Error (RMSE) are given.

speed data models

gamma lognormal Weibull
D Q D Q D !
u=0.60
D =20;n=m =40
estimate 23 (13.66) 0.61 (0.20) 23 (13.27) 0.61 (0.15) 23 (14.52) 0.64 (0.24)
Sd 9.44 0.19 11.85 0.14 11.91 0.25
RMSE 9.79 0.19 12.18 0.14 12.20 0.26
D =20; n=m =100
estimate 20 (7.94) 0.59 (0.12) 20 (7.37) 0.61 (0.10) 21 (8.36) 0.60 (0.14)
Sd 6.07 0.12 7.15 0.10 7.34 0.14
RMSE 6.09 0.12 7.16 0.10 7.36 0.14
D =100; n =m = 40
estimate 106 (41.69) 0.62 (0.20) 105 (36.06) 0.61 (0.24) 108 (47.40) 0.63 (0.23)
Sd 45.18 0.19 37.16 0.17 50.17 0.25
RMSE 45.53 0.19 37.42 0.17 50.86 0.25
D =100; n = m = 100
estimate 102 (25.46) 0.61 (0.12) 100 (21.68) 0.61 (0.10) 102 (28.26) 0.61 (0.14)
Sd 26.41 0.13 21.17 0.10 26.94 0.14
RMSE 26.47 0.13 21.17 0.10 27.01 0.14
n=4.60
D =20;n=m =40
estimate 20 (3.84) 4.59 (0.23) 22 (8.25) 4.64 (1.51) 20 (3.82) 4.61 (0.23)
Sd 3.75 0.24 8.14 1.53 3.73 0.24
RMSE 3.74 0.24 8.38 1.53 3.76 0.24
D =20; n =m = 100
estimate 20 (2.38) 4.59 (0.15) 20 (4.90) 4.71 (0.99) 20 (2.38) 4.61 (0.15)
Sd 2.33 0.15 4.90 1.04 2.44 0.15
RMSE 2.33 0.15 4.91 1.05 2.44 0.16
D =100; n =m =40
estimate 100 (8.23) 4.60 (0.07) 101 (10.68) 4.59 (0.31) 100 (8.23) 4.60 (0.06)
Sd 7.95 0.07 10.28 0.33 7.79 0.06
RMSE 7.79 0.06 10.29 0.33 7.75 0.07
D =100; n = m = 100
estimate 100 (5.21) 4.60 (0.04) 101 (6.78) 4.60 (0.20) 100 (5.21) 4.60 (0.04)
Sd 5.33 0.04 6.88 0.20 5.23 0.05
RMSE 5.35 0.04 6.90 0.20 5.24 0.05
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B.1.1 Investigating the importance of accounting for overdispersion in encounter

data

In Chapter 3, Section 3.7.2 we investigate the importance of accounting for overdisper-
sion in encounter data. We fit a Poisson iREM to encounters simulated from a NB REM
and the results are compared with estimations from fitting a NB iREM to the data. The
simulation results reveal that the Poisson iREM can estimate the density well but not

accounting for this overdispersion can induce underestimation of the standard error.

Table B.1.2 gives the parameter estimates from the Poisson iREM and Table B.1.3 gives

the parameter estimates from a NB iREM.
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Table B.1.2: Average parameter estimates obtained from fitting a Poisson iREM to encounters sim-
ulated from a NB REM. The expected speed is set to pu = 2.60 (km/day ") or u = 4.60 (km/day ™).
The standard errors (in parentheses), Standard deviation (Sd) and Root Mean Square Error (RMSE)

are given.
speed data models
gamma lognormal Weibull
D o D o D o
©n=2.60
D =20 n=m =40
estimate 21 (5.35) 2.61 (0.13) 21 (5.29) 2.60 (0.05) 21 (5.42) 2.59 (0.13)
Sd 8.31 0.13 8.58 0.06 8.79 0.14
RMSE 8.35 0.13 8.64 0.06 8.86 0.14
D =20; n=m = 100
estimate 20 (3.21) 2.60 (0.08) 21 (3.76) 2.60 (0.25) 20 (3.20) 2.61 (0.0.08)
Sd 5.23 0.09 5.75 0.26 5.25 0.09
RMSE 5.24 0.09 5.79 0.26 5.26 0.09
D =100; n =m = 40
estimate 98 (12.09) 2.60 (0.13) 98 (18.73) 2.63 (0.40) 96 (12.03) 2.60 (0.13)
Sd 31.29 0.13 35.53 0.42 30.34 0.13
RMSE 31.39 0.13 35.57 0.42 30.55 0.13
D =100; n =m = 100
estimate 98 (7.56) 2.60 (0.08) 98 (11.74) 2.63 (0.26) 99 (7.61) 2.59 (0.08)
Sd 22.20 0.09 24.07 0.26 22.72 0.09
RMSE 22.27 0.09 24.16 0.26 22.75 0.09
u=4.60
D =20;n=m =40
estimate 20 (3.16) 8.62 (0.64) 20 (3.59) 8.71 (0.98) 20 (3.15) 8.64 (0.64)
Sd 6.69 0.68 6.57 1.01 6.66 0.61
RMSE 6.70 0.68 6.57 1.02 6.66 0.61
D =20; n =m = 100
estimate 20 (1.95) 8.57 (0.41) 20 (1.91) 8.56 (0.36) 20 (1.94) 8.62 (0.41)
Sd 4.32 0.42 4.29 0.36 4.33 0.43
RMSE 4.32 0.42 4.30 0.37 4.34 0.43
D =100; n =m =40
estimate 98 (9.62) 8.60 (0.65) 98 (12.79) 8.64 (0.98) 98 (9.54) 8.60 (0.64)
Sd 33.92 0.67 37.57 0.93 34.24 0.67
RMSE 33.99 0.67 37.60 0.93 34.29 0.67
D =100; n = m = 100
estimate 98 (6.02) 8.59 (0.41) 98 (5.67) 8.62 (0.37) 97 (5.93) 8.63 (0.41)
Sd 18.37 0.42 19.15 0.42 19.33 0.44
RMSE 18.47 0.42 19.24 0.43 19.53 0.44
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B.1.2 Investigating the importance of accounting for zero-inflation in the encounter

data

We have shown in Chapter 3, Section 3.7.3 that disregarding zero-inflation in the en-
counter data can induce a negative bias and an underestimation of the standard error

of the density.

Table B.1.5 gives the parameter estimates from fitting a Poisson iREM to encounters
simulated from a ZIP REM, and Table B.1.6 gives the parameter estimates from a
ZIP iREM where encounters are simulated from the ZIP REM. The simulation res-
ults reveal that the models obtained precise estimates of the expected speed but the
Poisson iREM underestimates the density, and the true density is not captured within

a 95% confidence interval, while the ZIP iREM obtained precise estimates of the density.
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Table B.1.5: Average parameter estimates obtained from fitting a Poisson iREM to encounters
simulated from a ZIP REM. The expected animal speed is set to u = 4.60 (km/day~'). The
standard errors (in parentheses), Standard deviation (Sd) and Root Mean Square Error (RMSE)

are given.

D =20;n=m =40
estimate
Sd
RMSE

D =20; n =m = 100

estimate
Sd
RMSE

D =100; n =m = 40

estimate
Sd
RMSE

D = 100;n = m = 100
estimate
Sd
RMSE

speed data models

gamma lognormal ‘Weibull
D I D o D o
14 (3.41) 4.60 (0.47) 14 (3.26) 4.61 (0.36) 14 (3.39) 4.62 (0.46)
3.35 0.43 3.15 0.38 3.50 0.48
6.92 0.43 6.92 0.38 7.02 0.49
14 (2.13) 4.62 (0.30) 14 (1.97) 4.60 (0.14) 14 (2.14) 4.59 (0.29)
2.06 0.30 1.90 0.13 2.05 0.28
6.35 0.30 6.29 0.13 6.22 0.29
70 (9.89) 4.60 (0.47) 69 (8.72) 4.61 (0.36) 70 (9.76) 4.62 (0.46)
11.78 0.43 10.76 0.38 12.29 0.48
32.30 0.43 32.36 0.38 32.65 0.49
70 (6.25)  4.62 (0.30) 70 (4.80) 4.60 (0.14) 70 (4.80) 4.57 (0.29)
7.20 0.30 5.95 0.13 7.19 0.28
30.64 0.30 30.36 0.13 30.01 0.29
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B.1.3 Investigating the importance of accounting for overdispersion and zero-

inflation in encounter data

In this section we give the parameter estimates from fitting a Poisson iREM to en-
counters simulated from a ZINB REM, which is discussed in Chapter 3, Section 3.7.4.
We investigate the importance of accounting for overdispersion and zero-inflation in the

encounter data.

The simulation results from the Poisson iREM are compared with the results from a
ZINB iREM in Table B.1.7, while Table B.1.8 compares estimations from a NB iREM
and a ZINB iREM. The simulations reveal that both the Poisson iREM and the NB
iREM obtained similar estimates of the density to the ZINB iREM for small density
values but the Poisson iREM underestimates the standard error. Larger density values
resulted in an underestimation of the density and the standard error from both the
Poisson iREM and NB iREM but the underestimation is worse from the Poisson iREM.
In all cases the true values are captured within an approximate 95% confidence interval.
The parameter estimates from a Poisson iREM are given in Table B.1.9, Table B.1.10
gives the parameter estimates from a NB iREM, and the parameter estimates from a

ZINB REM are given in Table B.1.11.
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Table B.1.9: Average parameter estimates obtained from fitting a Poisson iREM to encounters
simulated from a ZINB REM. The expected speed is set to ;1 = 6.60 (km/day~*). The standard
errors (in parentheses), Standard deviation (Sd) and Root Mean Square Error (RMSE) are given.

speed data models

gamma lognormal Weibull
D o D i} D o
D =20;n=m =40
estimate 18 (3.44) 6.60 (0.35) 18 (3.48) 6.59 (0.37) 18 (3.42) 6.58 (0.35)
Sd 10.28 0.40 10.44 0.37 10.11 0.33
RMSE 10.52 0.40 10.64 0.37 10.36 0.33
D = 20; n =m = 100
estimate 18 (1.99) 6.60 (0.22) 18 (1.94) 6.60 (0.15) 18 (1.98) 6.60 (0.22)
Sd 5.72 0.23 5.67 0.15 5.69 0.22
RMSE 6.02 0.23 5.97 0.15 6.06 0.22
D =100; n =m = 40
estimate 90 (8.69) 6.60 (0.35) 89 (8.79) 6.64 (0.37) 90 (8.67) 6.58 (0.35)
Sd 46.48 0.42 46.28 0.42 46.75 0.34
RMSE 47.63 0.43 47.49 0.42 47.86 0.34
D = 100;n = m = 100
estimate 88 (5.15)  6.60 (0.22) 89 (4.68) 6.60 (0.15) 89 (5.18) 6.61 (0.22)
Sd 30.01 0.24 30.72 0.19 31.72 0.25
RMSE 32.25 0.24 32.76 0.19 33.74 0.25
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Appendix C

This section of the appendices is linked to Chapter 4 in the main thesis. Here we provide
additional results from those given in the Chapter. The appendix begins, in Section C.1
with some simulation results from iREM with habitat models as discussed in Section
4.2. Tt continues in Section C.2 to give some analyses of the application of iREM with
habitat models to WWAP data as discussed in Section 4.3. We give an example of the
R codes for iREM with random effect in Section C.3. Finally, we provide some analyses
of WWAP data set using an iREM with random effect model in Section C.4, and as

described in Section 4.5.

C.1 Simulation results from iREM with habitat models

This section of the appendices is linked to Section 4.2. The results are given for iREM
with habitat where animal speed is assumed to follow a gamma, lognormal or Weibull
model. Section C.1.1 gives the results from fitting a Poisson iREM with habitat and
Section C.1.2 investigates the importance of accounting for variation in the encounter
data. This is done by fitting a NB iREM with habitat and a Poisson iREM with habitat
to encounter data simulated from a NB REM. It continues in Section C.1.3 to investigate
the importance of accounting for zero-inflation in the encounter data. To do this we fit a
Z1P iREM with habitat and a Poisson iREM with habitat to encounter data simulated
from a ZIP REM. The importance of accounting for both zero-inflation and variation
in encounter is investigated in Section C.1.4 by fitting a Poisson iREM with habitat, a
NB iREM with habitat and a ZINB iREM with habitat to encounter data simulated
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from a ZINB REM.

C.1.1 Simulation results from a Poisson REM with habitat

The results from a gamma model and a Weibull model are given here in Table C.1.1,
and C.1.2, respectively. The results from the lognormal model are given in Table 4.2.2 in
Chapter 4, Section 4.2.1. Broadly the patterns are similar for each speed data model but
the lognormal model (Table 4.2.2, Section 4.2.1) generally obtained smaller standard
errors and lower RMSEs compared with the gamma model and Weibull model. The
simulations show that the regression estimators have some bias when sample sizes are

small, but this bias is minimal when sample sizes increase.

334



€00 62°0 1€°0 €20 €20
c0'0 62°0 1€°0 €20 €20

(00) 120 (62°0) 070 (0€0) ST0  (¥2°0) 19T  (€2°0) 85°¢
L0°0 0r'0 67°0 ceo ceo
L0°0 070 67°0 ceo ceo

(80°0) 020  (2¥0)or0 (0g0) 10  (0F0) SOT (8€0) 1€
€00 LT°0 er’o LT°0 910
€00 LT°0 eT’o LT°0 9T°0

(g00) 120 (210) 620 (€T0)¥Te (L10)2e0 (¢10) 19F%
60°0 920 12°0 120 ¥2°0
60°0 920 12°0 120 ¥20

(600) 120 (Lz'0) eg0  (12°0) 91°¢  (LT'0) 2¢€'0 (¥2°0) 09F
=1 g g o iy

¥ 1eNqeH € JeyqeH g eHqeH T Yejqeq

SOJRUII}SO IojoUIRIR

HSINY

PS
ayewIrIsy

00T = w =u

HSINY
PS

Q)eWIISH
oF=w="1u
1L°0="*pue ‘0p'0="7g QI 0= ‘ 19T =% ‘96'¢ = ¢

HSINY
PS

ayewr)sy
00T =w=1u

HSINY

PS
ojeTuIySH

op=w=1u

TLo="pue ‘og0="¢ ‘ere="% ‘1€0=72 29V ="1¢

‘UoATS os[e o1e (SINY) 1011y oIenbg uesy 100} pue (PS) UOIIRIAGD pIepurlg o], "ejep poods [ewrue w pue ‘sfep del) u oare sozls
o[dures ayJ, *(seseoyjuared Ul 10110 PIRPUR])S) [OPOUT POIIY JURAS[AI 9} WIOI] PIJR[NUIILS BIRD 0} P93}y SI [pouwl vwwes © pue NHY
UOSSIOJ ® WOIJ PIJe[NIS SIOIUNOIUS 0} Py SI JBIIqRY UM JAHYT UOSSIOJ B 2I9yM sojewr}se Iojowrered afeloay :1'T°D) 9[qe],

335



€00 62°0 1€°0 €20 €20
€00 62°0 1€°0 €20 €20

(L0'0) 220 (62°0) 070 (0£0) ST0 (¥2°0) 19T (£5°0) gg'¢
80°0 0%'0 670 ve0 ce0
80°0 0%°0 670 v€0 7€0

(60°0) 220 (L¥'0) 070 (02°0) LT'0 (0F'0) G9T (8€°0) 6%°€¢
S0°0 L1°0 €10 L1°0 a1'0
€00 LT°0 er’o LT°0 cro

(0°0) 120  (L1°0) 6270 (€1°0) ¥T°¢  (LT°0) €0 (ST°0) 19F
60°0 920 12°0 1270 €20
60°0 920 12°0 1270 €20

(80°0) 120 (Lz'0) ¥¢0 (12°0) 91°¢  (LT'0) €0 (¥T°0) 6S¥
o vg eg eg el

v oeyqeH g edqed g Yedqeq T yedqeH

SOIRUIISO I0JOUIRIR ]

dSINY
PS

ayewr)sy
00T =w=1u

HSINY

PS
ojewIISH

Oﬂ =W =Uu
1L0=""pue ‘gp0=" ‘81 0==% ‘19T =72 ‘96°¢ = 1¢

HSINY

PS
ojeuIySH

336

T =w=mu

HSINY
PS
ayewIr)sy
Oﬂ =W =Uu

1L0="1:0¢0="J ‘¢re==%‘1¢0=72 09y =1¢

"U9AT3 os[e are (SINY) 1011y aIenbg ues]y 100y pue

(PS) uolyeIASD pIepuUR)G O, “elep poads rewrtue w pue ‘sAep dery u ore sozis s[dures oy, *(seseyjuered ur I01Ie
pIepue)s) [9POW Py JURAJ[OI AT} WO PIJe[NUIIS B)eP 0} PIY)J ST [OPOU [[NGIOA\ © pUR NHY UOSSIOJ © WOI]
PoJR[NWIS SISJUNOOUS 01 PIIIY ST JRIIqRY M NHYT UOSSIOJ © 9IoTM S9)RmIISe Iojourered o3eIaAy g 1) 9[qeL



C.1.2 Investigating the importance of accounting for variation in encounter data

The results from the gamma model (Table C.1.3) and Weibull model (Table C.1.4) are
given in this section. In Chapter 4, Section 4.2.2 we give the results from the lognormal
model. The simulation results show minimal differences between the three speed data
models. However, the simulations reveal that ignoring the variation in encounter data

can induce an underestimation of the standard error of the density.
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C.1.3 Investigating the importance of accounting for zero-inflation in encounter

data

In this section we give the results from fitting a gamma model (Table C.1.5) and a
Weibull model (Table C.1.6) to data simulated from the relevant fitted models. The
results from the lognormal model are given in Table 4.2.4, Section 4.2.3 in Chapter 4.
The Simulation results (Table C.1.5 and Table C.1.6) show that not accounting for zero-
inflation in encounter data can introduce bias and an underestimation of the standard

error of the density.
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C.1.4 Investigating the importance of accounting for zero-inflation and variation

in encounter data

In this section we account for zero-inflation and variation in the encounter data when

habitat is incorporated into iREM.

The results from fitting a gamma model to animal speed data are given in Table C.1.7
for small sample sizes, and Table C.1.8 for large sample sizes. Table C.1.9 and Table
C.1.10 give the results from fitting a lognormal model to animal speed for small and
large sample sizes, respectively. While Table C.1.11 and Table C.1.12 give the results
from fitting a Weibull model to the speed data for small and large sample sizes, re-
spectively. The simulation results reveal that not accounting for zero-inflation and/or
variation in the data can introduce bias and an underestimation of the standard error.

The speed data models obtained similar estimates of the parameters.
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C.1.5 Simulation results for animals moving in groups

In this section we give results for animals moving in pairs or family groups within
habitats. We give the results from fitting a lognormal model (Table C.1.13) and a
Weibull model (Table C.1.13) here, and the results from fitting a gamma model to
animal speed data are given in Table 4.2.5 in Section 4.2.5 in the main thesis. The results
show some bias in the regression estimators for animals with low expected speeds. But
for larger expected speeds precise estimates are obtained for large sample sizes (Table

4.2.6, Section 4.2.5).
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C.1.6  Performance of iREM with habitat

The results from fitting iREM with habitat and iREM for data simulated from a Poisson
iREM with habitat is given in this section. We set pu, = 0.71; 81 = 3.56, $2 = 1.61 ,
B3 =0.18 , B4 = 0.40; D; = 35.16, Dy = 175.91, D3 = 42.10, D4 = 52.46; D1 = 68.30.
The results suggests that the model is working well under these conditions. The results
of using larger regression coefficients, and hence, higher density values are given in Table

(C.1.15 in Section 4.2.6.
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C.2 Application of iREM with habitat to WWAP data set

This section is linked to Section 4.3, in Chapter 4. Estimates of the density within and
across habitats are given in Section C.2.1 for the wallaby species, while Section C.2.2
gives the estimates for the water deer species. It then goes on to give the results for the

muntjac species in Section C.2.3 and the mara species in Section C.2.4.

C.2.1 Estimated parameters for the wallaby species

The results from a gamma model are given in Table 4.3.1, in Section 4.3.1. Here we give
the results from fitting a lognormal model (Table C.2.1) and a Weibull model (Table
C.2.2). Estimates of the density from the alternative speed data models show minimal
difference, which is confirmed by the AAIC values in Table 4.3.2, Section 4.3.1. The
results also show that incorporating habitat in iREM is highly relevant as estimates
of the density improved. There was support for models allowing for variation in the

encounter data and iREM with habitat model over iREM.
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C.2.2 Estimated density for the water deer species

In this Section we give the results for the water species where animal speed is assumed
to follow a lognormal model or a gamma model. The results from the Weibull model

(Table 4.3.3) are given in Section 4.3.2, in the Chapter 4.

Estimates of density from the gamma model and Weibull model are similar with inflated
density in Central park and an underestimation of the density in Institute Paddock.
These results might suggest that the water deer frequented Central Park during the
survey period. The lognormal model performed poorly compared with the gamma model
and Weibull model, particularly when allowing for variation in the encounter data.
However, this may be a reflection of the small speed data set for which a lognormal
model may not be appropriate to fit. There is support for incorporating habitat in
iREM, and for accounting for variation in the encounter data as shown by the AAIC

values in Table 4.3.4, Section 4.3.2.
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C.2.3 Estimated density of the muntjac species

Table 4.3.5, in Section 4.3.3, compares estimated density from iREM with habitat model
with an iREM model of the muntjac species where animal speed is assumed to follow
a Weibull distribution. Here, in Tables C.2.5 and C.2.6, we give the estimates of the
density of the muntjac species where animal speed is assumed to follow a lognormal

distribution or a gamma distribution, respectively.

Like the wallaby and water deer species, estimates of the density of the muntjac species
improved when habitat is included in the model. For all iREM with habitat models
estimated density is non-zero in Institute Paddock. Note that the census for the muntjac
species is zero in Institute Paddock. These results suggest that a flexible model that
incorporate habitat-specific covariates is the best model to estimate densities for species
where the data set is small. There is support for models allowing for variation in
encounter data within habitats as confirmed by the AAIC values (Table 4.3.6, Section
4.3.3)
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C.2.4 Estimated density of the mara species

The results from the lognormal model (Table C.2.7) and the Weibull model (Table C.2.8)
are given here. The results from the gamma model (Table 4.3.7) are given in Section

4.3.4.

For all models, estimated density improved when habitat is incorporated, even in the
habitat where there are no census records, an iREM with habitat obtained non-zero
estimates of the density within the habitat. However, there was support for the un-
derlying Poisson REM without habitat with the gamma model as the best model that

explains the speed data of the mara species.
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C.2.5 Analysis of data for species with observed zero speed

This section is linked to Section 4.3.5. Here we give the results for the species with
observed zero speed of movement. The results of the wallaby species are given in Table
C.2.9. The results of the water deer species are given in Table C.2.10, while the results

of the mara species are given in Table C.2.11.
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C.3 Example R codes for iREM with random effect

Example

This example is a survey design with ¢ = 3 camera traps, which were set up for n = 10

camera trap days. The parameters required to computer the encounter rate, \;;, are

r = 0.012 (km) and 6 = 0.175 (radians); true density, D = 100; camera trap time

period, t = 1 (day), and mean animal speed, v = 0.60 km/day".

1

b k]

Dens[

Ydata

Y

Camera  <-
n <-
Density <-
sigmab  <-
theta <-
r <-
t <-
v.bar <-
##t#creating
Y <-
b <-
Dens <-
lambda <-

k]

lambda [k]

3

10
100
0.10
0.175
0.012
1

0.60

###generating encounters, Y, on each camera from a Poisson model
###with a random effect of the camera location drawn from a

###normal distribution with mean O and variance sigmab™2.

#number of camera traps

#number of camera trap days (same for all cameras)
#starting value for density

#starting value for random effect

#fixed detection angle

#fixed detection distance

#camera trap time period

#mean animal speed

vectors to store information

cO

numeric (k)
numeric (k)

numeric (k)

for(k in 1:Camera){

#stores encounters from
#all cameras as a vector
#stores the random effects
#stores the density values

#stores the encounter rates

<- rnorm(1,0,sigmab)

<- exp(log(Density) + b[k])

<= ((2 + theta)/pi)*r*t*xv.bar.Dens [k]

<- rpois(n,lambdalk])

<-c(Y,Ydata)}
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Example continued
If the number of camera trap days varies for each trap, we show how this can be

accommodated in the model in the R code below.

###generating encounters, Y, on each camera from a Poisson model
###with a random effect of the camera location drawn from a

###normal distribution with mean O and variance sigmab™2.

Camera <- 3 #number of camera traps

Density <- 100 #starting value for density
sigmab <- 0.10 #starting value for random effect
theta <- 0.175 #fixed detection angle

r <- 0.012 #fixed detection distance

t <-1 #camera trap time period

v.bar <- 0.60 #mean animal speed

###If the number of days each camera was out varies, we can accommodate

###this also in the model. First we can generate the number of days each
###camera was out from some discrete distribution, say a zero truncated

###Poisson model N is a vector of camera days, where 2 represents the

### minimum number of days and 8 represents the mean camera trap days

N = rktp(Camera, 2 ,8)

for(k in seq_along(N)){

b [k] rnorm(1,0,sigmaE)

Dens [k]

exp(log(Density) + bl[k])
lambda[k]= ((2+thetal)/pi)*r*t*velocity*Dens [k]
Y=rpois(N[k],lam)

Ydata = c(Ydata,Y)}
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Example continued
This example consists of sample size of m = 10 with speeds (in km/day ') following
a lognormal distribution with parameters e = —1.09 and, the standard error from the

normal distribution, o = 1.08.

###generating animal speed data from a lognormal model

m <- 10 #number of animal speed data
epsilon <- -1.09 #starting value for mean of the logarithm
sigma <- 1.08 #starting value for variance from

#the normal distribution

X <- rlnorm(m, epsilon, sigma)

C.4 Application of iREM with random effect to WWAP data set

In this section of the appendix we give results from iREM with random effect models
fitted to real data at WWAP for the four species of interest. Section C.4.1 gives estimates
of the density of the wallaby species while Section C.4.2 gives estimates of the density
of the water deer species. It then goes on, in Section C.4.3, to give estimates of the
density of the muntjac species and finally, Section C.4.4 gives estimates of the density

of the mara species.

C.4.1 Analysis of the wallaby species

In this section we give the results from fitting a lognormal model (Table C.4.1) and a
Weibull model (Table C.4.2) to animal speed data. The results from fitting a gamma
model (Table 4.5.1) are given in Section 4.5.1. The results show that the gamma model
and lognormal model obtained stable estimates of the density with the lognormal ob-
taining smaller differences in estimated density and the density from the census. The
Weibull model performed poorly obtaining large differences between estimated density
and density from the census when camera random effect is incorporated in the model.
The results also show that there is support for models accounting for variation in the
encounter data but an iREM with habitat has been selected as the best model that
explains the wallaby data set (Table 4.5.2, Section 4.5.1).
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Table C.4.1: Estimated parameters for the wallaby species from iREM with ran-
dom effect models where animal speed data is assumed to follow a lognormal
distribution (standard error in parentheses).

Census density D = 468

Poisson

Count data models

NB

71P

ZINB

D 483 (260.48) 597 (325.36) 711 (378.54) 594 (324.82)
fix 0.91 (0.48)  0.91 (0.48)  0.91 (0.48) 0.91 (0.48)
v 1.16 (0.29)  1.16 (0.29)  1.16 (0.29) 1.16 (0.29)
&b 0.54 (0.11)  0.30 (0.18)  0.53 (0.08) 0.31 (0.18)
k - 1.03 (0.17) - 0.97 (0.16)
P - - 0.12 (0.03)  0.0002 (0.001)
(=) 549.93 389.28 516.91 389.28
AIC 1109.86 790.56 1049.82 792.56
AAIC 319.30 0 258.64 2
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Table C.4.2: Estimated parameters for the wallaby species from iREM with ran-
dom effect models where animal speed data is assumed to follow a Weibull distri-
bution (standard error in parentheses).

Count data models

Poisson NB ZIP ZINB
Census density D = 468

D 691 (276.58) 620 (258.36) 738 (295.60) 610.50 (264.80)

[l 0.87 (0.35) 0.87 (0.35) 0.87 (0.35) 0.90 (0.38)

1 0.89 (0.23) 0.89 (0.23) 0.89 (0.23) 0.86 (0.23)

G 0.60 (0.11) 0.30 (0.18) 0.53 (0.08) 0.26 (0.22)

k - 1.03 (0.17)) - 1.01 (0.17)

p - - 0.12 (0.03) 0.005 (0.01)
(—0) 551.44 389.79 517.42 389.71
AIC 1112.88 791.58 1058.84 793.42
AAIC 321.30 0 267.26 1.84

C.4.2 Analysis of the water deer data set

In this section we give the results of the water deer species. The results from fitting a
gamma model to animal speed data are given in Table 4.5.3, Section 4.5.2, while Table
C.4.3 gives the results fitting a lognormal model to animal speed data and Table C.4.4
gives the results from fitting a Weibull model to animal speed data. The results show
that the lognormal model generally obtained better estimates of the density compared
with the other speed data models. The results also show that accounting for the vari-
ation from the random location of camera traps in estimating density is important when
interpreting the results. The AAIC values suggest that an iREM with random effect

model best explains the water deer data set.
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Table C.4.3: Estimated parameters for the water deer species from iREM
with random effect models where animal speed data is assumed to follow
a lognormal distribution (standard error in parentheses).

Count data models

Poisson NB ZIP ZINB
Census density D = 119
D 122 (97.53) 117 (94.10) 46 (37.73) 121 (97.33)
fi 2.99 (2.38)  2.55 (1.89) 3.01 (2.41) 2.98 (2.38)
7 1.39 (0.40)  1.47 (0.40) 1.39 (0.40)  1.39 (0.40)
1 1.76 (0.18)  1.93 (0.28) 1.54 (0.31)  1.80 (0.25)
k - 2.21 (1.04) - 0.20 (0.13)
p - - 0.14 (0.07)  0.09 (0.08)
(—0) 232.04 225.46 221.81 223.91
AIC 474.08 462.92 455.62 461.82
AAIC 18.46 7.30 0 6.20
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Table C.4.4: Estimated parameters for the water deer species from iREM with
random effect models where animal speed data is assumed to follow a Weibull
distribution (standard error in parentheses).

Count data models

Poisson NB ALY ZINB
Census density D = 119
D 188 (68.11) 144 (48.28) 71 (28.56) 186 (70.32)
[z 1.93 (0.68)  2.37 (0.68) 1.94 (0.69) 1.94 (0.69)
1% 1.15 (0.41)  1.65 (0.51) 1.15 (0.41) 1.15 (0.41)
O 1.77 (0.18)  1.51 (0.30) 1.54 (0.31) 1.80 (0.25)
k - 2.07 (0.81) - 0.20 (0.13)
p - - 0.14 (0.07)  0.09 (0.08)
(=0) 230.73 225.59 220.50 222.60
AIC 471.46 463.18 453.00 459.20
AAIC 18.46 10.18 0 6.20

C.4.3 Analysis of the muntjac species data set

In this section we give estimates of the density of the muntjac species within and across
habitats where animal speed is assumed to follow a lognormal model (Table C.4.5) or
a Weibull model (Table C.4.6). The results from fitting a gamma model to animal
speed are given in Table 4.5.5, in Section 4.3.3. The results show that the difference
in parameter estimates from the alternative speed data models is minimal. A Poisson
iREM does well in estimating the density compared with the other iREM but the AAIC
values suggest that a NB iREM best explains the muntjac species data. Also, accounting

for the variation the from the random location of camera traps has proven to be relevant

in this case.
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Table C.4.5: Estimated parameters for the muntjac species from iREM
with random effect models where animal speed data is assumed to follow a
lognormal distribution (standard error in parentheses).

Count data models

Poisson NB ZIP ZINB
Census density D = 13
D 14 (6.23) 4 (1.88) 4 (2.64) 3 (2.48)
fl 8.27 (2.24) 852 (2.25) 8.50 (2.24) 8.52 (2.25)
v 0.78 (0.18)  0.74 (0.17) 0.74 (0.17)  0.74 (0.17)
61 1.81 (0.55) 1.33 (0.37) 1.34 (0.49) 1.33 (0.37)
k - 1.70 (1.38) - 0.39 (0.76)
p - - 0.27 (0.21)  0.11 (0.41)
(—0) 134.22 126.81 127.17 126.78
AIC 278.44 265.62 266.34 267.56
AAIC 12.82 0 0.72 1.94
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Table C.4.6: Estimated parameters for the muntac species from iREM
with random effect models where animal speed data is assumed to follow
a Weibull distribution (standard error in parentheses).

Count data models

Poisson NB ZIP ZINB
Census density D = 13
D 15 (4.27) 4 (1.86) 6 (2.63) 3 (3.68)
fla 8.32 (1.76) 8.32 (1.76) 8.32 (1.76) 8.26 (1.75)
v 1.53 (0.36) 1.53 (0.36) 1.53 (0.36) 1.52 (0.36)
6 2.17 (0.39) 1.33 (0.36) 1.86 (0.82) 1.33 (0.36)
k - 1.70 (1.38) - 0.43 (1.66)
p - - 0.24 (0.21)  0.08 (0.95)
(—0) 133.64 126.81 127.42 126.78
AIC 278.44 265.62 266.34 267.56
AAIC 12.82 0 0.72 1.94

C.4.4 Analysis of the mara species data set

Estimates of the density of the mara species from fitting a gamma model are given in
Table 4.5.7, in Section 4.5.4 while the results from fitting a lognormal model (Table
C.4.7) and a Weibull model (Table C.4.8) are given here. Estimated density from the
three speed data models show minimal differences but the density is underestimated
in all cases since the camera placement strategies adopted in the area where the mara
frequented (Central Park) were not randomized, which is critical in REM. There is
support for a Poisson iREM as shown by the AAIC values in Table 4.5.8. Note that
there were a small number of encounter records of the mara species and therefore it may
not be possible to make precise inference about the population parameters; see for in-
stance the huge estimate of the parameter x, which suggests that the NB iREM may be
non-identifiable. Also the relationship between a Poisson iREM and a NB iREM exists

through the variance, and larger values of k indicate that the variance of a NB iREM
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would be approximately equal to the mean, hence, a NB iREM tends to a Poisson iREM.

Table C.4.7: Estimated parameters for the mara species from iREM with random effect
models where animal speed data is assumed to follow a lognormal distribution (standard
error in parentheses).

Count data models

Poisson NB 7Z1P ZINB
Census density D = 68

D 1 (1.98) 1 (1.46) 1 (1.46) 1 (1.44)

fia 5.03 (4.00) 5.03 (4.00) 5.02 (4.00) 5.09 (4.09)

v 1.46 (0.39) 1.46 (0.39) 1.46 (0.39) 1.47 (0.39)

&b 1.34 (0.62) 1.34 (0.62) 1.34 (0.62) 1.34 (0.62)

k - 9.66e+09 (1.69e+10) - 0.001 (0.03)

p - - 1e-06 (1.6e-14) 1e-04 (0.01)
(=0 48.74 48.74 48.74 48.74
AIC 107.84 109.48 109.48 111.48
AAIC 0 2 2 4
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Table C.4.8: Estimated parameters for the mara species from iREM with random effect
models where animal speed data is assumed to follow a Weibull distribution (standard
error in parentheses).

Count data models

Poisson NB ZIP ZINB
Census density D = 68

D 2 (1.55) 2 (1.58) 2 (1.62) 2 (1.58)

[ 3.68 (1.59) 3.68 (1.59) 3.69 (1.61) 3.67 (1.58)

1% 0.88 (0.28) 0.88 (0.28) 0.88 (0.28) 0.88 (0.28)

Ob 1.34 (0.62) 1.34 (0.62) 1.34 (0.62) 1.34 (0.62)

k - 7.19e+06 (3.52e+08) - 4e-04 (0.02)

p - - 2e-04 (0.01)  4e-04 (0.02)
(—0) 48.31 48.31 48.31 48.31
AIC 106.62 108.62 108.62 110.62
AAIC 0 2 2 4
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Appendix D

The results discussed in Chapter 6, and additional results from Chapter 6 are given in

this section of the appendix.

Section D.1 compares estimations of expected animal speed from parametric likelihood-
based methods with estimations from nonparametric based methods such as the har-
monic mean formula and the standard mean formula. Encounters are simulated from a
Poisson REM to test the approximation of the probability of encounter. This section
gives the Tables with the results for the gamma model and Weibull model discussed in

Section 6.5.1.3 in the main thesis.

Section D.2 gives the results from fitting a lognormal model and a Weibull model model
to animal speed data where encounters are drawn from a NB REM. The findings from
these models and from fitting a gamma model to animal speed are discussed in Section

6.5.2 in the main thesis.

In Section D.3 we give the results from fitting a lognormal model and a Weibull model
to animal speed data for encounters simulated from a ZIP REM. The findings from
these models and from fitting a gamma model to animal speed can be found in Section

6.5.3 in the main thesis.

Section D.4 gives the results from fitting a lognormal model and a Weibull model to

animal speed data where encounters are drawn from a ZINB REM. The findings from
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these models and from fitting a gamma model to animal speed are discussed in Section
6.5.4 in the main thesis. Finally, Section D.5 gives estimates from fitting size biased

models to real data at BCI, Panama.

D.1 Comparing estimations of expected speed from parametric models and

nonparametric methods for encounters simulated from a Poisosn REM

This section gives the results from the gamma models and Weibull models discussed
in Section 6.5.1.3 in the main thesis. In Section 6.5.1.3, we discussed the findings
from fitting a size biased lognormal model and a lognormal model to animal speed
data. Estimations from these models are also compared with estimations from the
harmonic mean formula and the standard mean formula. The results show that under
certain conditions (small difference between v? and €) estimations from the size biased
parametric likelihood-based method are approximately equal to estimations from the
nonparametric harmonic mean method. But when this difference increases it would be
more appropriate to use a size biased parametric likelihood-based method to estimate
average speed. Table D.1.1 gives the results from fitting a size biased gamma model
and a standard gamma model to animal speed data. We also compare the estimated
harmonic mean and the estimated standard (arithmetic) mean. Estimates obtained
from the size biased gamma model are better than the estimates from the standard
model. However, the harmonic mean formula underestimates the expected animal speed,
and more so when expected speed is low. Hence, we would recommend a parametric
likelihood based approach to estimate animal speeds accounting for the bias is the
speed of faster moving animals, if the data is assumed to follow a gamma distribution.
Table D.1.2 gives the results from fitting a size biased Weibull model and a standard
Weibull model to animal speed data. These results are compared with estimates from
the harmonic mean formula and the standard mean formula. Like the gamma model,
the size biased Weibull model performs better than the standard Weibull model in
obtaining relatively accurate and stable estimations of expected animal speed. But the
harmonic mean method underestimates the expected speed, and therefore, we would not
recommend the use of the harmonic mean method to estimate expected animal speed

in practice if the speed data follows a Weibull model.
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D.2  Simulation results for encounters drawn from a negative binomial REM

This section is linked to Section 6.5.2 in the main thesis where we fit a gamma model,
a lognormal model and a Weibull to animal speed data with probability of encounters
coming from a NB REM. In this section we give the Tables with the results from fitting
a lognormal model and a Weibull model to animal speed data. The results of the actual
sample sizes, M* for the first three simulation runs used in the simulation process are

also given in this section.

Table D.2.1 gives the sample sizes from a negative binomial REM for the first 3 simu-
lation runs used in the estimation process. As population size, M increases, the actual
number of speeds recorded by the camera traps increase. Also, M™* increases for larger

values of expected animal speed, u, and camera trap time, ¢.

Table 6.5.10, given in Section 6.5.2 in the main thesis, gives the results from fitting a
gamma model to animal speed data. The results suggest that the size biased gamma
model performs better than the standard gamma model. The results also suggest that
the approximation works well but as expected animal speed increases, expected en-
counter rate increases and the size bias approximation does slightly worse. However,

the slight increase in RMSE is minimal for larger population sizes, M.

Table D.2.2 gives the results from fitting a lognormal model to the speed data. The
approximation works well for small values of expected animal speed, ;. The RMSE
increases slightly for larger values of u, but this slight increase is minimal for larger
population sizes. Also, estimations from a size biased lognormal model and a lognormal
model are approximately equal, suggesting that the variance from the normal model is

small relative to the mean of the logarithm.

Table D.2.3 gives the results from fitting a size biased Weibull model and a standard
Weibull model to animal speed data. The results show that the size biased Weibull
model performs better than the standard Weibull model, and that the approximation

works well.
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Table D.2.1: Actual speed data sample sizes M*, for the first 3 simulation runs used in the

estimation process where u, = 0.15 and u, = 0.45. These are given for t = 1, ¢ = 5 and speed
data population sizes of M = 40, M = 160 and M = 280 .

M =40 M =160 M = 280

gamma lognormal Weibull gamma lognormal Weibull gamma lognormal Weibull

t=1
pe = 0.15
7 8 7 28 25 26 48 31 36
10 9 10 19 15 20 30 34 54
7 7 7 24 17 20 33 38 38
e = 0.45
17 22 24 49 83 79 137 82 103
9 21 10 59 62 74 118 102 129
9 13 35 63 59 68 126 106 83
t=5
pe = 0.15
29 39 29 102 122 136 262 173 191
17 28 21 113 101 97 194 186 219
17 22 50 99 104 91 154 177 169
e = 0.45
77 100 86 246 354 383 746 579 446
70 75 82. 305 301 340 479 562 618
78 95 81 419 298 382 515 500 412
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Table D.2.2: Average estimates of expected speed p, (in ms~!) from a size biased lognormal
distribution compared with estimates from the lognormal distribution.

Population size  True value size biased lognormal lognormal

M Lo v [ Sd RMSE s Sd RMSE
t=1

40 0.15 15 0.15 (0.001) 0.001 0.001 0.15 (0.001) 0.001 0.001
160 0.15 15 0.15(0.0002) 0.0003 0.0003 0.15 (0.0002) 0.0003 0.0003
280 0.15 15 0.15(0.0001) 0.0002 0.0002 0.15 (0.0001) 0.0002 0.0002
40 0.45 3 0.45 (0.01) 0.01 0.01 0.45 (0.01) 0.01 0.01
160 0.45 0.45 (0.002) 0.003 0.003 0.45 (0.002) 0.003 0.003
280 0.45 0.45 (0.001) 0.001 0.001 0.45 (0.001) 0.001 0.001
t=5

40 0.15 15 0.15 (0.0004)  0.001 0.001  0.15 (0.0004)  0.001 0.001
160 0.15 15 0.15(0.0001) 0.0002 0.0002 0.15 (0.0001) 0.0002 0.0002
280 0.15 15 0.15(0.0001) 0.0001 0.0001 0.15 (0.0001) 0.0001 0.0001
40 0.45 0.45 (0.003) 0.01 0.01 0.45 (0.003) 0.01 0.01
160 0.45 0.45 (0.001) 0.002 0.002 0.45 (0.001) 0.002 0.002
280 0.45 0.45 (0.0004)  0.001 0.001  0.45 (0.0004)  0.001 0.001
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Table D.2.3: Average estimates of expected animal speed p, (in ms™!) from a size
biased Weibull distribution compared with estimates from a Weibull distribution.

Population size  True value size biased Weibull Weibull
M s v [ Sd  RMSE e Sd  RMSE
t=1
40 0.15 15 0.17 (0.04) 0.06 0.07 0.22 (0.03) 0.06 0.09
160 0.15 15 0.15(0.03) 0.03 0.03 0.21 (0.02) 0.03 0.07
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.02 0.06
40 0.45 3 0.51 (0.12) 0.19 0.20 0.75 (0.10)  0.20 0.36
160 0.45 3 0.47 (0.06)  0.09 0.09 0.77 (0.06) 0.11 0.34
280 0.45 3 0.46 (0.04) 0.04 0.05 0.77 (0.04) 0.06 0.33
t=5
40 0.15 15 0.16 (0.02) 0.04 0.04 0.21 (0.02) 0.04 0.07
160 0.15 15 0.15(0.01) 0.02 0.02 0.21 (0.01) 0.02 0.07
280 0.15 15 0.15(0.01) 0.02 0.02 0.21 (0.01) 0.02 0.07
40 0.45 3 0.48 (0.05) 0.13 0.14 0.74 (0.05) 0.18 0.34
40 0.45 3 0.46 (0.03) 0.06 0.06 0.76 (0.02) 0.09 0.33
280 0.45 3 0.45 (0.02) 0.06 0.05 0.77 (0.02) 0.08 0.33

D.3  Simulation results for encounters drawn from a ZIP REM

The results given in this section are linked to the results and discussion given in Section
6.5.3 in the main thesis. The actual sample sizes, M* used in the simulation process for
the first three simulation runs are given in Table D.3.1. As population size, M, camera

trap time, ¢t and expected animal speed, u, increase, M* increases.

The results from fitting a gamma model to animal speed data are given in Table 6.5.11
in the main thesis. The findings suggest that the approximation of the size bias works,
and better estimations are obtained from a size biased gamma model compared with a

standard gamma model.

The Tables with the results from fitting a lognormal model and a Weibull model to
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animal speed data are given in this section.

Table D.3.2 gives the results from fitting a size biased lognormal model and a lognor-
mal model to animal speed data. Accurate estimations of expected animal speed are
obtained from the size biased lognormal model, which suggests that the approxima-
tion of the size bias works well. Also, estimations from both models are approximately
equal, and the RMSEs are much smaller compared with the RMSEs from the size biased

gamma model and the size biased Weibull model.

Table D.3.3 gives the results from fitting a size biased Weibull model and a Weibull
model to animal speed data. The performance of the size biased Weibull model is
better than a Weibull model, with relatively accurate and stable estimations provided
by the size biased model. The results also suggest that the approximation of the size

bias works well.
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Table D.3.1: Actual speed data sample sizes M* for the first 3 simulation runs used in
the estimation process where p, = 0.15 and p, = 0.45. These are given for t =1,¢ =15
and speed data population sizes of M = 40, M = 160 and M = 280 .

M =40 M =160

gamma lognormal Weibull gamma lognormal Weibull

M = 280

gamma lognormal  Weibull

t=1
e = 0.15
8 9 7 9 9 13 15 11 27
9 7 7 9 14 12 27 20 19
8 7 7 9 10 14 19 13 20
pe = 0.45
13 15 11 30 23 29 59 49 70
7 17 7 28 34 34 57 61 48
7 7 10 25 44 28 51 44 40
t=5
pe = 0.15
17 21 13 48 46 52 86 75 121
15 16 20 61 59 66 99 99 87
21 12 8 49 64 65 93 78 80
pe = 0.45
25 42 47 134 144 162 314 261 323
42 46 44 152 161 175 293 284 256
50 39 27 162 173 159 247 274 219
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Table D.3.2: Average estimates of expected animal speed s, (in ms™!) from a size biased
lognormal distribution compared with estimates from a lognormal distribution.

Population size  True value size biased lognormal lognormal

M Lo v [ Sd RMSE s Sd RMSE
t=1

40 0.15 15 0.15 (0.001) 0.001 0.001 0.15 (0.001) 0.001 0.001
160 0.15 15  0.15(0.0003) 0.0003 0.0003 0.15 (0.0003) 0.0003 0.0003
280 0.15 15 0.15(0.0001) 0.0002 0.0002 0.15 (0.0001) 0.0002 0.0002
40 0.45 3 0.45 (0.01) 0.01 0.01 0.45 (0.01) 0.01 0.01
160 0.45 0.45 (0.002) 0.002 0.002 0.45 (0.002) 0.003 0.002
280 0.45 0.45 (0.001) 0.001 0.001 0.45 (0.001) 0.001 0.001
t=5

40 0.15 15 0.15 (0.0005)  0.001 0.001  0.15 (0.0005)  0.001 0.001
160 0.15 15 0.15(0.0001) 0.0002 0.0002 0.15 (0.0001) 0.0002 0.0002
280 0.15 15 0.15(0.0001) 0.0001 0.0001 0.15 (0.0001) 0.0001 0.0001
40 0.45 0.45 (0.003) 0.01 0.01 0.45 (0.003) 0.01 0.01
160 0.45 0.45 (0.001) 0.001 0.001 0.45 (0.001) 0.001 0.001
280 0.45 0.45 (0.0005)  0.001 0.001  0.45 (0.0005)  0.001 0.001

392



Table D.3.3: Average estimates of expected animal speed p, (in ms™!) from a size
biased Weibull distribution compared with estimates from a Weibull distribution.

Population size  True value size biased Weibull Weibull
M Lha v [ Sd  RMSE e Sd  RMSE
t=1
40 0.15 15 0.16 (0.04) 0.05 0.0 0.21 (0.03) 0.04 0.08
160 0.15 15 0.16 (0.03) 0.03 0.03 0.21 (0.02) 0.03 0.07
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.02 0.07
40 0.45 3 0.50 (0.12) 0.16 0.17 0.77 (0.11)  0.18 0.37
160 0.45 3 0.46 (0.06) 0.08 0.08 0.78 (0.06) 0.10 0.35
280 0.45 3 0.46 (0.05) 0.06 0.06 0.77 (0.05) 0.06 0.33
t=5
40 0.15 15 0.15(0.02) 0.03 0.03 0.21 (0.02) 0.03 0.07
160 0.15 15 0.15(0.01) 0.02 0.02 0.21 (0.01) 0.02 0.07
280 0.15 15 0.15(0.01) 0.01 0.01 0.21 (0.01) 0.01 0.06
40 0.45 3 0.47 (0.05)  0.09 0.09 0.75 (0.05) 0.14 0.33
40 0.45 3 0.46 (0.03) 0.05 0.05 0.78 (0.03) 0.08 0.34
280 0.45 3 0.46 (0.02) 0.04 0.04 0.77 (0.02) 0.05 0.33

D.4  Simulation results for encounters drawn from a ZINB REM

This section is linked to Section 6.5.4 in Chapter 6. The Tables with the results from
fitting a size biased and standard lognormal models and Weibull models to animal speed
data are given in this section. We also give the actual sample sizes for the first 3 simu-

lation runs used in the simulation.

Table D.4.1, shows the actual sample sizes used in the simulations for the first 3 sim-
ulation runs. The results show that as population size, M increases, the actual animal
speeds, M* recorded by the camera traps increases. The results show that the size bias
approximation works well, and in this case estimations from the size biased model and
the standard model are approximately equal. The RMSEs are small but as u, increases,

and hence, A, the size bias approximation does slightly worse since the bias increases
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slightly. However, this slight increase in the bias is minimal for larger population sizes

The estimations from a size biased Weibull model, given in Table D.4.2, are better than
the estimations from a Weibull model. The bias is smaller for the size biased model,

which shows that the approximation of size bias works.

Table D.4.1: Actual speed data sample sizes M* for the first 3 simulation runs used in
the estimation process where p,, = 0.15 and p, = 0.45. These are given fort =1,¢t =5
and speed data population sizes of M = 40, M = 160 and M = 280 .

M =40 M = 160 M = 280

gamma lognormal  Weibull gamma lognormal Weibull gamma lognormal Weibull

t=1
ta = 0.15
8 9 9 10 13 15 9 28
9 7 7 8 14 12 29 20 19
9 8 7 9 9 14 18 12 21
e = 0.45
14 16 9 30 19 30 55 53 72
7 17 28 35 37 58 64 47
10 7 27 45 32 51 48 38
t=5
pe = 0.15
15 22 15 47 42 51 79 73 122
16 16 21 57 60 67 108 101 85
24 14 8 47 64 72 96 75 83
pe = 0.45
19 44 53 144 129 159 308 251 331
39 45 51 161 161 189 294 292 243
53 39 26 159 185 165 249 266 199
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Table D.4.2: Average estimates of expected animal speed j, (in ms™!) from a size biased
lognormal distribution compared with estimates from a lognormal distribution.

Population size  True value size biased lognormal lognormal

M Lo v [ Sd RMSE s Sd RMSE
t=1

40 0.15 15 0.15 (0.001) 0.001 0.001 0.15 (0.001) 0.001 0.001
160 0.15 15  0.15(0.0003) 0.0003 0.0003 0.15 (0.0003) 0.0003 0.0003
280 0.15 15  0.15(0.0002) 0.0002 0.0002 0.15 (0.0002) 0.0002 0.0002
40 0.45 3 0.45 (0.01) 0.01 0.01 0.45 (0.01) 0.01 0.01
160 0.45 0.45 (0.002) 0.002 0.002 0.45 (0.002) 0.002 0.002
280 0.45 0.45 (0.001) 0.001 0.001 0.45 (0.001) 0.001 0.002
t=5

40 0.15 15 0.15 (0.0005)  0.001 0.001 0.15 (0.001) 0.001 0.001
160 0.15 15 0.15(0.0001) 0.0002 0.0002 0.15 (0.0001) 0.0002 0.0002
280 0.15 15 0.15(0.0001) 0.0001 0.0001 0.15 (0.0001) 0.0001 0.0001
40 0.45 0.45 (0.003) 0.01 0.01 0.45 (0.003) 0.01 0.01
160 0.45 0.45 (0.001)  0.0001  0.002 0.45 (0.001) 0.002 0.002
280 0.45 0.45 (0.0005)  0.001 0.001  0.45 (0.0005)  0.001 0.001
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Table D.4.3: Average estimates of expected animal speed p, (in ms™!) from a size
biased Weibull distribution compared with estimates from a Weibull distribution.

Population size  True value size biased Weibull Weibull
M s v [ Sd  RMSE i Sd  RMSE
t=1
40 0.15 15 0.17 (0.04) 0.05 0.05 0.21 (0.03) 0.05 0.08
160 0.15 15 0.16 (0.03) 0.03 0.03 0.22 (0.02) 0.03 0.07
280 0.15 15 0.15(0.02) 0.02 0.02 0.21 (0.02) 0.02 0.07
40 0.45 3 0.51 (0.12) 0.16 0.17 0.76 (0.11)  0.20 0.36
160 0.45 0.47 (0.06)  0.09 0.09 0.78 (0.06) 0.11 0.35
280 0.45 0.46 (0.05) 0.06 0.06 0.78 (0.05) 0.07 0.33
t=5
40 0.15 15 0.16 (0.02) 0.03 0.03 0.21 (0.02) 0.04 0.07
160 0.15 15 0.15(0.01) 0.02 0.02 0.21 (0.01) 0.02 0.07
280 0.15 15 0.15(0.01) 0.01 0.01 0.21 (0.01) 0.02 0.07
40 0.45 0.47 (0.05) 0.13 0.10 0.73 (0.05) 0.15 0.32
40 0.45 0.46 (0.03) 0.06 0.06 0.78 (0.03) 0.09 0.34
280 0.45 0.46 (0.02) 0.05 0.05 0.78 (0.02) 0.07 0.33
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D.5 Analysis of real data at BCI using size biased sampling

This section is linked to Section 6.6. Here we give the results from fitting a size biased
gamma model and a gamma model to speed at BCI in Table D.5.1. In Table D.5.2 we
give the results from fitting a size biased lognormal model and a lognormal model to
speed data at BCI. The results show big differences between the estimated mean speeds
from size biased models and standard models. For a gamma model, when the shape
parameter is small (variance is large), the difference between estimates from size biased
models and standard models will be large, and a size bias model will perform better.
For a lognormal model, when the variance from the normal distribution is large relative
to the mean of the logarithm, then the difference between the means of the two models

will be large (variance will be large also).
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Appendix E

In this section of the appendix, we give additional results from Chapter 7, in the main
thesis. One important assumption of REM is that the encounter data and animal speed
data are independent. We investigate, using simulations, the effect of violating the
independence assumption on the density estimator. This section is linked to Section
7.2.1 in Chapter 7. In this section we give some results of testing the independence
assumption using the simulation algorithm in Section 7.2, in the main thesis. This is
done by simulating dependent data and independent data and fitting size biased models
to these data. Table E.0.3 gives the results for small value of the density (D = 10)
and expected animal speed p = 0.150 (ms™!) with low variability, Var(z;) = 0.05, or
high variability, Var(z;) = 0.31 . The results show that violating the independence
assumption has minor consequences on the parameter estimates and precision. Note
that correcting bias in speed of faster moving animals accounts for the dependence of
these animals being more likely to encounter the trap. As expected, REM-SB and
iREM-Sb gave similar estimates of the density but REM-Sb gave smaller estimates of

the standard error, particularly when the variability in the speed is high.
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