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Abstract: 

Convoluting the elements of Frequency Selective Surfaces produces resonating 

structures with very small unit cell dimensions. This feature is attractive when 

the FSS is to be used at low frequencies, mounted on a curved surface, or when 

placed in the proximity of compact radiators. The characteristics of single and 

dual polarised convoluted FSS are analysed and measured. The development of 

novel convoluted elements derived from the square loop slot is traced and their 

performance is examined. A novel technique of interweaving convoluted loops 

allows for further cell size reduction, while increasing the passband width, 

introducing flexibility in wideband FSS design, particularly for tailoring the 

Electromagnetic Architecture of buildings, and mobile communications in the 

built environment. Simulated transmission responses of the convoluted 

structures are in good agreement with the measurements. 

 

Index Terms— Convoluted elements, fractals, frequency selective surfaces, 

Electromagnetic Architecture, built environment 

 

1.  Introduction 

 

There is an increasing interest in applying frequency selective surface to wireless 

communications systems with the purpose of controlling the Electromagnetic 

Architecture of Buildings (EAoB) [1-4]. One problem that FSS encounter when 

applied to buildings is that the wavelengths in the bands used by most of the mobile, 

radio and wireless technologies employed in indoor communications are not 

insignificant when compared with the size of an ordinary office room. For example, 

the 400 MHz band employed for general mobile radio systems (GMRS) in the USA 

and personal mobile radio systems (PMR446) and the emergency TETRA in Europe 

has a corresponding wavelength of 750mm, only 4 times smaller than the average 

floor-ceiling height in a building. 

 

Convoluting array the elements of an FSS [5] could play an important role in the 

future EAoB as they can considerably reduce the size of the unit cell and perform well 

when incorporated into curved surfaces. In addition, convoluting FSS elements 

improves the angular stability of the frequency responses of the surface, moving the 

operating bands away from the grating region determined by the periodicity of the 

array [5-8]. 

 

The Hilbert curves are a family of space filling curves that can be produced using 

simple mathematical formulation [9]. The Hilbert curve offers the attractive property 

of being able to compact an electrically long wire within a very small space. The 

geometry has been applied to produce compact antennas [10 – 12], frequency 

selective surfaces [5] and high impedance surfaces (HIP) [13]. 

 

 



 
 

Previous research studies of convoluted frequency selective surfaces [5-8] include 

single and dual polarised versions of these structures. It was in [5] where the term 

“convoluted” was first used to describe complex arrays of printed RF structures which 

exhibit long wavelength resonances in a surface with small periodicity. From simple 

arrays of linear dipoles [6], the concept was further developed using Hilbert curves in 

[5] and cross dipoles in [7]. The effectiveness of this process was judged by the figure 

of merit �1/p and the ratio L/1, where 1 is the corresponding free space 

wavelength, p is the lattice periodicity and L is the total length of the conductor in the 

element. 

 

Recently, several papers [14], [15] have presented convoluted frequency selective 

surfaces whose elements extend beyond the unit cell into the neighbouring cells using 

a method termed as “interweaving” in [15]. The characteristics of these structures are 

similar to those exhibited by square spiral elements described in [16] which were 

developed in Mission Research Corporation, Dayton, Ohio. Interweaving was initially 

applied to high impedance surfaces (HIP) [17] in [18] using the convoluted cross 

dipoles of the type described in [7]. In [18], miniaturisation was achieved at the 

expense of a reduction in the bandwidth of the HIP. This is in contrast with the 

bandwidth enhancement properties of these configurations when employed as FSS 

[14, 15]. 



 

This paper studies the miniaturization of the unit cells of frequency selective surfaces 

and their transmission responses. The first section adds a further iteration of the 

Hilbert geometry to the sequence previously published in [5]. Note, though, that in 

this paper, the elements are in slot form, to give bandpass transmission responses. 

Later sections look at novel developments of convoluted loops, and interweaving. The 

paper ends with a case study of the application of interwoven elements. 

 

 

II. HIGHLY CONVOLUTED HILBERT CURVE STRUCTURES FOR 

UHF APPLICATIONS 

 

A. Hilbert geometry 

Fig. 1 illustrates the first, second, third and fifth generation of the Hilbert curve [8]. 

The curves are generated by way of Lindenmayer system [19] and each generation is 

composed of segments of length dn and 2dn, where the generation number n, dn and 

the side l of the square are related by 

 

(2
n
-1) dn = l                                    (1) 

 

Frequency selective surfaces based on the first, third and four generations in [5] were 

able to reduce sequentially the unit cell size to below 10 percent of the free space 

wavelength at resonance, illustrated by the figure of merit �1/p. 

 

A slot version of the fifth generation (Fig.1d) has now been developed in order to 

achieve resonant frequencies below 1GHz, with higher figure of merit than reported 

in [5]. The dimensions chosen were d5 = 0.44 mm, l = 13.73 mm, and p = 14.3 mm, 

the periodicity of the regular square lattice. The width of the slot was w = 0.25 mm, 

the influence of the slot width is discussed later. The FSS was etched into a copper 

clad polyester supporting substrate 0.03mm thick, with �r = 3. This material was 

used throughout the work reported here. Simulated and measured transmission 

responses for an array of these fifth generation elements are shown in Figs. 2 and 3. 

Simulations were carried out using the frequency domain solver included in CST 

Microwave Studio
TM

. 

 

B. Measurements 

As the Hilbert curve begins and ends at adjacent corners, the element is not 

symmetrical and therefore is singly polarised. The frequency selective slot structure 

was placed in an aperture of approximately 200mm  200mm, surrounded by a high 

frequency absorbing board of 1.52m  1.95m for testing purposes. At the long 

wavelengths employed here, measured transmission levels are likely to be perturbed 

by scattered signals [4]. Two sets of independent measurements were therefore carried 

out and compared. 

 

 

 

 

 

 

 



 
 

In the first, two log periodic antennas, the signal source and the receiver, were each 

placed 1 metre from the centre of the FSS. Transmission levels were calibrated 

relative to that of the open aperture. Below 1 GHz multipath and leakage problems 

were significant. So as a trial, the log periodic transmitter were replaced by a 

broadband biconical dipole antenna placed in close proximity to the array, at a 

distance of only 5 cm, while the log-periodic receiver remained at 1m from the FSS. 

Fig. 2 shows the transmission response when the electric field was aligned parallel to 

the open side of the element square (Fig.1d). There are resonances at about 1.6 GHz 

and 2.6 GHz, with measurements and plane wave simulations predicting well the 

behaviour of the FSS. There is very little difference between the two sets of 

measurements, although the frequencies of maximum transmission are marginally 

higher than predicted by the simulation. The subsequent measurements in this paper 

were all carried out with the biconical antenna. Fig. 3 shows the transmission curve 

when the electric field was perpendicular to the open side of the square. Resonances 

occur at 0.75GHz and 1.8GHz, with a very high figure of merit at the first resonance: 

 1/p = 28. 

 

Table I summarises the characteristics of singly polarised (SP) arrays presented in [5], 

with the addition of the fifth generation of the Hilbert curve for MHz applications. At 

the time that [5] was written, we were unable to make measurements at the very long 

wavelengths where the presence of the low frequency resonance for the fourth 

generation was suspected to exist, but that problem has been overcome and plane 



wave measurements have now shown that the prediction was correct. The 

corresponding value of 1/p is 16.7 in Table 1. �2 is the wavelength of the second 

resonance, L is the total length of the conductor or slot in the unit cell. 

 

 
 

 



C. Influence of slot width 

In common with less complex elements, such as the square loops, the resonance 

frequency is influenced by the width of the slot/conductor [20]. Fig.4 illustrates the 

changes in the figure of merit (1/p) and the percentage bandwidth as functions of the 

slot width w in the fifth generation of the Hilbert curve. As can be seen from the 

figure, an increase in width of 0.25 mm decreases 1/p, by 23%, together with an 18% 

increase in the bandwidth measured between the -10dB points in the transmission 

response. The results were calculated using the frequency domain solver of CST 

Microwave Studio
TM

 and repeated with the time domain solver included in the same 

software package. 

 

 
 

III. DUAL POLARISED CONVOLUTED LOOPS 

A. Design and Measurements  

The “four-legged loaded element” as defined in [16] is a frequency selective structure 

which offers significant advantages such as bipolarisation, compactness and angular 

stability. A convoluted version of this element has been developed and is illustrated in 

Fig.5b, together with its original structure in Fig.5a. Each arm has eight stubs on each 

side. The length of the cross employed was l = 19 mm, the element periodicity p = 20 

mm, the width of the slot in the simulations was w = 0.22 mm, the width of the stubs 

was c = 0.56mm, and their periodicity was 2c. In the fabricated FSS the slot widths 

varied slightly across the array by approximately ± 0.02mm. The measured 



transmission response of a slot array is shown in Fig. 6. It compares well with the 

plane wave simulation (grey curve) calculated using CST Microwave StudioTM, but 

again the latter curve is slightly lower in frequency. There are two clear passbands 

with transmission peaks at 925MHz and 2260MHz with -10dB fractional bandwidths 

of 50% and 10% respectively. The insertion losses were approximately 2dB at the 

lower band and 4dB at the (narrower) higher band, consistent with the insertion 

loss/bandwidth concept discussed in [21]. The corresponding figure of merit at 925 

MHz was 1/p = 16.3, which is a substantial improvement on that of the element in 

Fig. 5a (1/p =3.2) and the convoluted square (1/p = 6.8) previously reported in [5]. 

In general, these closed loop elements appear to present lower efficiency from the 

point of view of the total slot length (L/p) than the open wire structures in Table 1, 

influenced by reactive coupling within and between individual stubs. In the case of 

the novel convoluted element in Fig. 5b, L/1 =1.92. 

 

 



 
The square loop slot (Fig.7a) is another element that can be convoluted [8]. As a 

comparative study, a periodic array of the slot elements in Fig. 7b, with similar 

dimensions to the convoluted element in Fig. 5b (l = 19mm, p = 20mm, c = 0.56mm 

and w = 0.22mm) was simulated, fabricated and measured. Its transmission response 

had a first resonant frequency at 1GHz and a second at about 2.75GHz. In the 

simulations, the -10dB widths were 68% and 11% respectively. The insertion losses 

were just below 2dB at the lower band and around 5dB at the higher one. The 

corresponding figure of merit is 1/p = 15 and the efficiency of the loop L/1 = 2.1.  A 

real advantage of this structure is that adjacent elements can be interwoven, to modify 

the transmission response, as described in section IIIC. 

 

B. Effect of the number of stubs 

The influence of the number n of stubs present in elements of the form shown in Fig. 

7b is illustrated in Figs. 9 and 10. The parameter 1/p increases steadily with n but 

slows asymptotically to about 15 when more than about 10 stubs are inserted. 

Similarly, L/1 increases sharply up to n = 5, increasing gradually after that. In Fig. 10 

the addition of just one stub to the basic square produces a large reduction in the - 

10dB width of the passband – the fractional bandwidth decreases by a factor of about 

2, subsequently fluctuating between 50% and 60%. 

 

C. Interwoven convoluted loop elements 

The unit cell of a convoluted square loop structure can be interwoven with its 

neighbouring unit cell as shown in Fig. 11a, generating the array in Fig. 11b. 

Essentially, half of the cycle has been extended beyond the unit cell while the other 

half has been shortened to allow for the extended cycle from the adjacent cell. An 

array structure with dimensions (l = 19 mm, p = 20mm, c = 1.12mm and w = 



0.22mm) similar to the equivalent convoluted square loop slot configuration in section 

2 (Fig.7b) was fabricated and measured.  

 

 
 



The element interweaving fraction was 0.85 (Fig.11a, b), with 0.0 representing the 

convoluted square loop in Fig.7b. The interweaving fraction is defined on Fig.11c by 

the location of the ends of the stubs between the extremes 0.0 and 1.0 on the diagram. 

Note that the gap between the stub ends belonging to the two interwoven elements is 

preserved. The transmission response (Fig.12) had peaks near 550MHz and 2050 

MHz. In the simulations, the -10dB widths were 126% and 6% respectively. The 

measured insertion loss at the low band was about 1.8dB, but greater than 10dB at the 

narrow 2 GHz passband. Again, the transmission response simulated for plane wave 

illumination predicted well the behaviour of the FSS. There was a 45% reduction in 

the lower resonant frequency with respect the original convoluted square loop, while 

the bandwidth increased by a factor of 1.8. The figure of merit 1/p increased by 80% 

to 27 and L/1 halved, to 1.14. Note that this is now almost that of the open loop, 

singly polarised 5th generation Hilbert curve, while this closed interwoven convoluted 

structure is a bipolarised element. 

 

 
 

 

 

 

 



 
 



 
 



 
 

D. Effect of interweaving the loop 

Fig.13 illustrates the effect of interweaving on the resonant frequency and the width 

of the lowest passband. The fractional -10dB bandwidth increases almost linearly 

from about 70% for the convoluted square loop in Fig.7b (0% interwoven) to 135% 

for the fully interwoven element. The resonant frequency decreases by just over 50% 

and approximately follows a quadratic equation of the form: 

 

fr = 0.43x2
 - 0.93x + 1.02                             (2) 

 

where x is the percentage bandwidth and fr the first resonant frequency in gigahertz. 

 

E. An application of interwoven convoluted loops 

The dimensions of the interwoven element in section IIIC were scaled by a factor of 

1.35 to encompass the 400 MHz emergency band employed for emergency services in 

Europe, while attenuating the higher section of the radio spectrum. The fractional 

frequency range allocated to various forms of mobile communications is very wide: 

the wideband performance of FSS is probably more important here than for higher 

frequency applications, sometimes imposing constraints over a 10 : 1 wavelength 

range. As pointed out in [22], in the built environment a relatively small interference 

attenuation can result in significant improvements in the system outage probability. A 

15dB increase in the carrier-to-interference ratio can reduce the outage probability by 

a factor of almost 30, and with an inverse square law approximation, just 10 dB 

reduces the cell separation required for frequency reuse by a factor of 3, potential 

enhancements in the efficiency of use of the radio spectrum. 

 

 



 
 

 

 



 
 

Fig. 14 shows the wideband simulated and measured transmission responses. In the 

simulation, there is a transmission peak at around 400 MHz with -10dB bandwidth 

extending from nearly 200MHz to 700MHz. It is followed by two very narrow band 

resonant modes, at 1.5GHz and 2.1GHz, where the measured insertion losses are 10 

dB and 18dB respectively. Simulations using CST Microwave Studio
TM

 showed very 

acceptable angular stability. Between normal incidence, TE45 and TM45 there was 

no appreciable drift at 400MHz, although the two narrow passbands drift in frequency 

between 1.4GHz and 1.55GHz, and from 2.1GHz to 2.3 GHz, consistent with [5]. 

 

IV. CONCLUSION AND DISCUSSION 

Singly and dual polarised convoluted frequency selective structures in slot form have 

been characterised. The unit-cell size needed for operation at a given frequency has 

been reduced dramatically by using highly convoluted elements. The 5th generation 

of the Hilbert family of curves adds a new iteration to previous work, allowing for 

operation below 1GHz with a cell size of less than 15mm, but is singly polarised. Its 

transmission response is influenced by the width of the slot. 

The dual-polarised designs presented here are based on convoluted loops. As with 

FSS with simple element geometries, cascading layers is a technique for tailoring the 

shape of passbands in the transmission responses. The geometry of the convoluted 

square loop provides a further degree of flexibility in wideband design, enabling 

adjacent elements to be interwoven. Here, interweaving decreased the resonant 

frequency by over 50% and increased the -10dB passband width by over 60%. An 

FSS specifically designed for mobile communications in the built environment 

attenuates the mobile and wireless bands between 700MHz and 3GHz while passing 



the general mobile radio systems (GMRS) in the USA, and the personal mobile radio 

systems (PMR446) and the emergency services TETRA band in Europe. 
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