
Computer Science at Kent

Second European Workshop on Model
Driven Architecture (MDA)
with an emphasis on Methodologies and
Transformations

September 7th-8th 2004
Canterbury, UK

Proceedings

Edited by
D.H.Akehurst

Technical Report No. 17-04
September 2004

Copyright © 2004 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

Organisation Committee
David Akehurst, University of Kent, UK
Anastasius Gavras, Eurescom GmbH, Germany
Anneke Kleppe, Klasse Objecten, The Netherlands
Octavian Patrascoiu, University of Kent, UK
Marten van Sinderen, University of Twente, The Netherlands
Jos Warmer, De Nederlandsche Bank, The Netherlands

Programme Committee
Asier Azaceta, ESI, Spain
Marc Born, Fraunhofer Fokus, Germany
Tony Clark, Xactium Ltd, UK
Andy Evans, Xactium Ltd, UK
Catherine Griffin, IBM, UK
Sune Jakobsson, Telenor, Norway
Belaunde Mariano, France Telecom, France
Ian Oliver, Nokia, Finland
Luis Ferreira Pires, University of Twente, Netherlands
Luiz Renuncio, iO-Software, France
Paul Sammut, Xactium Ltd, UK
James Willans, Xactium Ltd, UK

 i

Contents

Preface...1

Keynote ...2

If model transformation is the answer, what was the question?
Tracy Gardener

Methodologies...3

Enabling Model Driven Product Line Architectures ..4
Toacy C. de Oliveira, Ivan Mathias Filho, Carlos J.P. de Lucena, Paulo
Alencar and Donald D. Cowan

Costs and Benefits of Multiple Levels of Models in MDA Development12
João Paulo Almeida, Luís Ferreira Pires and Marten van Sinderen

A M3-Neutral Infrastructure for System Engineering ...21
Olivier le Merdy

A formal MDA approach for mobile health systems...28
Val Jones, Arend Rensink, Theo Ruys, Ed Brinksma and Aart van Halteren

Composition rules for PIM reuse...36
Salim Bouzitouna and Marie-Pierre Gervais

MDA-Driven Development of standard-compliant OSS components: the OSS/J
Inventory Case-Study...44

Nektarios Georgalas, Manooch Azmoodeh, Tony Clark, Andy Evans, Paul
Sammut and James Willans

Enterprise Change Methodology with MDA...61
Tony Mallia

Enterprise MDA or How Enterprise Systems Will Be Built69
Oliver Sims

Relating MDA and inter-enterprise collaboration management................................84
Lea Kutvonen

MDA and Real-Time Java: The HIDOORS Project..89
Jean-Noël Meunier, Frank Lippert, Ravi Jadhav and Nigel Harding

Middleware Unaware Software Development and Interoperability using MDA96
Nelly Bencomo and Gordon Blair

Practical Model Driven Development Process ..99
Xabier Larrucea, Ana Belen García Díez and Jason Xabier Mansell

New Roles in Model-Driven Development ...109
Jan Øyvind Aagedal and Ida Solheim

Memops: Data modeling and automatic code generation in multiple languages116
Rasmus H. Fogh, Wayne Boucher, Wim F. Vranken, Anne Pajon, Tim J.
Stevens, T.N. Bhat, John Westbrook, John M.C. Ionides and Ernest D. Laue

 ii

Transformations ...124

Why IT veterans are sceptical about MDA..125
Graham Berrisford

What do we do with re-use in MDA? ..136
Nathalie Moreno and Antonio Vallecillo

Supporting Model Reusability with Pattern-based Composition Units...................146
Andrey Nechypurenko and Douglas C. Schmidt

Typing Relationships in MDA...154
Jim Steel and Jean-Marc Jézéquel

OMELET : Exploiting Meta-Models as Type Systems...160
Edward D. Willink

Coral: A Metamodel Kernel for Transformation Engines165
Marcus Alanen and Ivan Porres

ADT: Eclipse development tools for ATL...171
Freddy Allilaire and Tarik Idrissi

Model-Driven Testing with UML 2.0..179
Zhen Ru Dai

Model Abstraction versus Model to Text Transformation188
Jon Oldevik, Tor Neple and Jan Øyvind Aagedal

MOLA Language: Methodology Sketch ...194
Audris Kalnins, Janis Barzdins and Edgars Celms

Automated Generation of Metamodels for Web service Languages203
Behzad Bordbar and Athanasios Staikopoulos

Reports from Breakout Sessions..211

 iii

Preface
The Model-Driven Architecture1 (MDA) is an approach to IT systems development
fostered by the Object Management Group (OMG). It is based on forming a
separation between the specification of a systems essential functionality as a platform
independent model (PIM) and the realisation of the system using more detailed and
specific platform specification (PSM).

The MDA approach to the development of distributed IT systems will affect the
current methods and techniques employed to manage the development process. It is
recognized that specifying the mappings from transformations from a PIM to a PSM
is a key enabling aspect of the MDA approach. This is substantiated by OMG's
current Request for Proposals (RFP) on techniques and facilities to enable
transformations.

In this workshop we explore how the MDA approach affects or impacts on
methodologies for system development, and explore the techniques available for
specifying transformations, in particular taking a look at tools (or potential tools) for
supporting such specifications and methodologies.

This workshop is following on from two previously successful workshops:

- Metamodelling for MDA held in York, November 2003, and

- First European Workshop on Model Driven Architecture with Emphasis on
Industrial Application held in Enschede, March 2004.

This two track, two day workshop on Methodologies and Transformations provides
the opportunity for in depth discussion regarding each topic whilst allowing
interaction between experts in each area.

The first day is dedicated to setting the scene, involving presentations on some of the
accepted submissions. Based on the topics covered by the submissions, specific
problems in the areas of transformations and methodologies are identified.

The second day of the workshop is targeted at "doing some work" (after all this is a
'work'shop) and the delegates divide into groups for smaller scale discussion on the
selected problems. The goals of the discussion groups are clearly defined and each
group is expected to report back on the results of the discussion The results are
included in this proceedings.

1 Model-Driven Architecture, MDA, UML, XMI, and their corresponding logos are registered
trademarks or trademarks of the Object Management Group, Inc. in the United States of America, in
the European Union, and in other countries.

 1

Keynote

If model transformation is the answer, what was the question?
Tracy Gardener, IBM

Abstract
This talk sets out the problem domain for model transformation and introduces a set
of use cases for transformation including model differencing, pattern expansion,
model merging and weaving, alternate views and generation of platform specific
artifacts from a platform independent model. The talk also discusses where model
transformation fits into the development process and who we can expect to be
building and using model transformations.

Biography
Dr Tracy Gardner has a PhD in the area of programming/modelling language design
which was a winner of the CPHC/BCS Distinguished Dissertations award 2000. Tracy
has been a user of OO modelling languages since 1993 and has worked with UML
from the beginning. While working for the UK Office for Library and Information
Technology (UKOLN) Tracy was involved in two collaborative EU projects in the
digital libraries domain (the latter part of DESIRE and the early part of RENARDUS).
Tracy has spent time as a practitioner of model-driven development, using the UML-
based Rational Rose Real-Time product while working for Marconi
Telecommunications Ltd. Since joining IBM in 2001 Tracy has been involved in
model-driven component technologies for business integration.
Dr Gardner's current work is on applying Model-Driven Development to the Business
Integration domain; she was the main contributor to a UML profile for automated
business processes with a mapping to BPEL4WS and is now collaborating on IBM's
response to the OMG's Business Process Definition Metamodel and MOF
Queries/Views/Transformations RFPs. Tracy has presented on model-driven
development at a number of industry conferences (including the OMG MDA?
Implementers' Workshop, Enterprise UML 2003) and will also present at the 1st
European Conference on Model-Driven Software Engineering. Tracy Gardner is also
a member of the program committee for the second OMG MDA? Implementers'
workshop. She has recently been involved as a reviewer for UML 2.0 (for the Activity
modelling chapter) and as a subject matter expert for a UML 2.0 professional
certification exam.

 2

Methodologies

 3

Enabling Model Driven Product Line Architectures

Toacy C. de Oliveira 0, Ivan Mathias Filho 1 , Carlos J.P. de Lucena 1,
Paulo Alencar 2, Donald D. Cowan 2

0 Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga
6681 , Porto Alegre – RS , Brazil

1 Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de
São Vicente 225, 22453-900, Rio de Janeiro, Brazil

{toacy, ivan, lucena}@inf.puc-rio.br
2 University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.

{palencar, dcowan}@csg.uwaterloo.ca

Abstract
Product Lines Architectures and Model Driven Architectures are techniques to achieve reuse of
software assets. Combining these approaches facilitates the specification of platform independent
models that can be used at stakeholders level to indicate computation independent functionality and at
developers level to assist the generation of applications by means of transformations. In this scenario,
our work proposes the use of Model Driven Product Lines by integrating the Features Model, which
is a high-level specification approach, and Object Oriented Frameworks, in a way that elements in the
two models can be represented and related. Moreover we propose a semi-automatic approach to
obtaining the final application code (the actual product), using a description that guides application
developers during the product derivation process.

1. Introduction

Software development industry is typically driven by business opportunities. In such
scenario, the ability to increase market share and decrease time-to-market are important
issues that strengthen two aspects present in software development processes: i) the
capability to use past experiences and; ii) the ability to achieve independence from the
underlying hardware and software platforms. Those aspects are related to reuse in different
levels of abstraction and raise important questions. How to achieve reuse from high-level
specifications? How to relate specifications found in different levels of abstraction? How
to automate the generation of software artifacts from high-level specifications? How to
guarantee some properties along the development process?

To cope with these issues, Software Engineering practitioners and organizations, such as
OMG, have developed ways to systematize the construction of software assets, for instance
Product Line Architectures [1] and Model Driven Architectures [18], which can be

4

combined [19] to achieve large scale reuse by means of structured and configurable
representations of platform independent software assets.

Product Line Architectures (PLA) are designs for families of applications [1]. They intend
to facilitate the realization of software artifacts (products) from a highly configurable and
adaptable representation that contains variable and constant aspects about an application
domain. Therefore a PLA achieves reuse combining the bits and pieces that represent the
domain assets, typically frameworks and/or components, in subsets (products) that meet
business opportunities [8]. On the other hand, Model Driven Architectures (MDA)
advocate the use of high level models and transformations to produce platform independent
assets that can be used to generate an application[18]. As a result, the combination of PLA
and MDA approaches allows reuse in two dimensions: horizontal and vertical. Horizontal
reuse can be achieved when defining different applications (i.e., products) from a common
set of assets. Vertical reuse can be attained when defining such products in a platform
independent manner.

In this context, this paper presents ongoing work [15][20][16][13] that intends to assist the
use of Model Driven approach when developing Product Line Architectures, using a set of
high-level notations such as Features Models [9][10] and UML diagrams[17], and a
language to specify horizontal and vertical reuse transformations to product specific design.

The paper is organized as follows. Section 2 describes an overview of the approach. In
Section 3 we depict the underlying technologies. Section 4 contains an example of the
approach. Section 5 contains the Conclusions and Future Work.

2. An Overview of the Approach

Our approach intends to combine Model Driven Architecture (MDA) and Product Line
Architecture (PLA) so that software can be developed in a platform independent manner
and generated from high level models. To accomplish such goal, we combine Features and
Framework Models so that software products, i.e., frameworks instances, can be obtained
in a semi-automatic way by means of assisted transformations from Features Models to
application models and code. For that reason, we describe a PLA as an artifact composed of
three types of documents: a Features Model, an Annotated Framework Design, and an
Instantiation Script (Figure 1).

5

Figure 1 - Approach Overview

The Features Model is used as the original formulation but with a complete integration with
the UML metamodel [4]. The integration of the Features Model with the UML language
proved to be a good strategy to precisely describe the mechanisms used to associate the
characteristics of an application domain with the design elements that realize such
characteristics. This occurs because the selection of a given feature will trigger a series of
reuse actions that will adapt the design of a framework taking into account the requirements
of a specific application of a domain.

The annotated framework design is the representation of object-oriented framework models
using UML. Actually, in order to represent all flexible characteristics embedded in the
framework models, we have developed and adopted UML-FI (UML for Framework
Instantiation), which is a UML profile designed to emphasize the flexible elements in a OO
design (the hotspots).

The last document is an Instantiation Script that represents the instantiation process that is
responsible to transform UML-FI models to UML models representing the target
application. With this script, a software developer can be guided on how to accommodate
the product specific needs into the framework’s hotspots. In order to achieve a succinct
process description we have developed RDL (Reuse Description Language), which is a
script language that allows the specification of order and state dependencies between well

6

known object oriented programming activities that are commonly used when instantiating
an incomplete design.

To integrate the three types of documents, Features, Framework Models and the
Instantiation Script, we have created a mapping technique that relates the flexibility
represented by optional and alternative features in the Features Model, to extension points
(hotspots) in the framework design. In this context, the framework instantiation begins with
the stakeholders selecting the characteristics (Capabilities, Domain Technologies and
Operating Environments) that they want to include in a specific produce (Figure 1). The
selected characteristics, together with the annotated class models, will generate an
instantiation script containing all necessary steps to instantiate an application with the
desired characteristics.

To finish the proposed approach it is necessary to execute the generated instantiation script
with the help of a RDL execution environment, which will adapt the original framework
design, inserting some design elements to adapt the hotspots. It is worth mentioning that
this last step is not entirely automatic and that it will be necessary for the application
developers to provide some additional information, such as class names, attribute names
and types, methods names, etc.

To finalize this overview it is important to make one additional remark: the documents used
in this approach are XML-based. According to our past experience [14][16], XML models
are suitable for program manipulation and can be translated to formal models that can be
validated. Moreover, the use of XML lets us perform structural analysis in the design [12]
in order to discover signs of best practices violations [2][11], structural regularities
conformity [12] and refactoring smells [5].

3. Underlying technologies

3.1. The Features Model
The Features Model [10] is a suitable approach for representing system’s characteristics at
different levels of abstraction. Its ability to capture the “capabilities (services, operations,
attributes, etc…), domain technologies (methods, theories, etc…) and operating
environment (HW platform, O/S, DBMS, etc…) of an application family”, and organize
their structural relationships by means of a graphical notation, facilitates system
understanding for non-software development practitioners. Furthermore, Features can be
interpreted from a Software Development Process perspective, as the domain specification
that delineates the design that must be realized in the underlying application (see Section 4
for an example).

3.2. Design Representation - UML-FI
Our approach focuses on instantiation of object-oriented models (Framework Models) and
so we need to express the nature of hotspots and the related instantiation activities in terms

7

of OO programming techniques. To provide such representation, we have developed UML-
FI (UML for Framework Instantiation), which is a profile for UML. This representation
uses stereotypes (i.e., an UML extension mechanism) to indicate, at the design level, the
object oriented activities that should be performed.

With UML-FI it’s possible to indicate most basic object oriented programming activities
such as class extension, method redefinition and value assignment (useful for Blackbox
framework [3] instantiation) by means of annotations (stereotypes) in class diagrams (see
Figure 2).

Figure 2 – Class Extension Stereotype

.

UML-FI is also able to represent the concept of “Pattern Instantiation”. Pattern Instantiation
specifies a group of correlated actions that can be seen as one as is the case of Design
Patterns [6].

In addition, hotspots can also be mandatory or optional. Therefore the reuser has the ability
to decide if the associated design element will (or will not) be present in the final
application. UML-FI indicates optional and mandatory aspects as a tagged-value named
presence that can assume the values OPTIONAL or MANDATORY (Figure 3).

Figure 3 – Optional representation.

3.3. Instantiation Representation - RDL
The representation provided by UML-FI models does not guarantee that a valid framework
instance is produced. Some information, such as what patterns to apply, was deliberately
omitted to avoid graphical complexity. In addition class diagrams cannot provide the
sequence of instantiation actions that should be applied to obtain the final product. To make
this missing information and sequencing explicit, we have developed a representation that
adds this information to the instantiation process specifications. We call this representation

8

RDL (Reuse Description Language). RDL is a domain specific language that enables
framework developers to express how framework instantiation should be performed by
listing the instantiation tasks in a detailed script-like document. We have adopted a
language to represent the process with a view to making it to easy to read by an ordinary
reuser.

In order to organize RDL statements, we have adopted the concept of cookbook and recipes
[7]. Cookbooks contain a set of recipes. Recipes can be traced to functions in an imperative
programming language and contain the instantiation code itself (see Section 4 for an
example).

4. An Example
The instantiation process consists of the selection of a group of related Features that
implement the desired characteristics and the further adaptation of the framework’s original
design, based on the selected features, to produce a framework instance. Thus, the adapted
design contains the mandatory elements of the original design, plus the elements included
due to feature selection, plus the elements that the framework reusers include during the
instantiation process (the product increments).

In order to produce the framework configuration, we claim that the reuser must be guided
through an interactive and semi-automatic process that captures the design elements that
will represent the design increments. This process is specified in terms of a RDL script that
will be generated from the Framework’s Feature Model.

In Figure 4, the features that will be included in the final application are shown in dark
gray. For example, the feature Figure is related to a UML-FI element, the class Figure, by
means of an association table. This class indicates that the reuser should create a subclass
from Figure class to incorporate product specific needs.

Figure 4– The Features Diagram of an instance of the DTFrame Framework.

Drawning
Tool

Persistency

RDB XMI-DB REC-DBOODB Exportation

GIF TIF BMP

Figure

Figure
Persistency

Figure
Exportation

Oracle MS SQL
Server

requires

requires

Legend

alternative
optional

mandatory

dependency

Figure
Shapes

9

Based on the selected Feature (Figure), and its trace to the UML-FI design element, it’s
possible to generate a RDL script that specifies the required Class Extension activity as
shown in bold in Listing1.

COOKBOOK DTFrame
 RECIPE MAIN;
 LOOP
 V1=CLASS_EXTENSION(Figure);
 METHOD_EXTENSION(Figure,V1,save);
 METHOD_EXTENSION(Figure,V1,createAction);
 METHOD_EXTENSION(Figure,V1,createData);
 END_LOOP;

 END_RECIPE;

END_COOKBOOK;

Listing 1 The Resulting Script.

5. Conclusions & Future Directions

This paper presents a detailed description of a framework instantiation process that tackles
the problem of deriving specific products from an architecture designed to meet the
requirements of a family of applications. The approach intends to represent such
architecture with a set of models that can be used at the stakeholder level, to provide high-
level reasoning, and at a developer level, to facilitate product derivation.

The presented approach is in conformity with the MDA recommendation for flexibility in
implementation. The use of framework technology meets the flexibility in implementation
providing hotspots to adapt a software product to a specific platform. This is what we call
Vertical Reuse: the application functionality is not extended; only new platforms are aimed.
Moreover, the frameworks can also meet the objectives of Product Lines Architectures as
new functionalities are added to a software product attaching specific components to the
hotpots. This is what we call Horizontal Reuse: the production of applications that meet
distinct subsets of the requirements of a domain.

As future work we intend to enhance the xFIT (XML-based Framework Instantiation Tool)
tool to integrate the models adopted. We also plan to use Ontology Techniques to provide
consistency among the terms used to describe Product Line Architectures.

References
1. Batory, D., Cardone, R., Smaragdakis, Y.,Object-Oriented Frameworks and Product

Lines,Proceedings of the First Software Product Line Conference,p227--247, 2000.
2. Beck, K. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

10

3. Fayad, M.E.; Schmidt, D.C., Johnson, R., 1999. Application Frameworks. In: Fayad, M.E.
Schmidt, D.C., Johnson, R. (Eds.), Building Application Frameworks – Object-Oriented
Foundations of Framework Design, John Wiley, New York, New York.

4. Filho, I.M., Oliveira, T.C., Lucena, C.J.P., 2002. A Proposal for the Incorporation of the
Features Model into the UML Language. In: Proceedings of the 4th International Conference
on Enterprise Information Systems (ICEIS2002), Ciudad Real, Spain.

5. Fowler, M et al.. Refactoring: Improving the Design of Existing Code, Addison Wesley,
1999.

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts.

7. Johnson, R.E., 1992. Documenting Frameworks Using Patterns, ACM SIGPLAN Notices,
vol. 27, n. 10, September, 63-76.

8. Chastek, G., Donohoe, P., Kang, K., Steffen Thiel, Product Line Analysis: A Practical
Introduction, Technical Report CMU/SEI-2001-TR-001

9. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M., 1998. FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architecture. In: Annals of Software
Engineering, vol. 5, 143-168, Kluwer Academic Publishers, Dordrecht, Holland.

10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1993. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

11. Meyers, S. , Effective C++, Addison Wesley, 1992
12. Minsky, N. H., Law-governed regularities in object systems; part 1: An abstract model.

Theory and Practice of Object Systems (TAPOS), 2(1), 1996.
13. OLIVEIRA, T. C., LUCENA, C. J. P., COWAN, D. D., MATHIAS , I. F., ALENCAR, P.

Feature Driven Framework Instantiation In: Ecoop, 2003, Darmstad. Workshop on Modeling
Variability for Object-Oriented Product Lines. , 2003.

14. Oliveira, T.C., Alencar, P., Cowan, D. , Towards a declarative approach to framework
instantiation Proceedings of the 1st Workshop on Declarative Meta-Programming (DMP-
2002), September 2002,Edinburgh, Scotland, p 5-9

15. Oliveira, T.C., Alencar, P., Cowan, D. Filho, I.M., Lucena, C.J.P. , Software Process
Representation and Analysis of Framework Instantiation, IEEE-Transactions in Software
Engineering, March 2004 p145-159.

16. Oliveira, T.C., 2001. Uma Abordagem Sistemática para a Instanciação de Frameworks
Orientados a Objetos, Ph.D. Thesis, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), Rio de Janeiro, Brazil. (In portuguese).

17. UML specification found at http://www.omg.org/technology/documents/formal/uml.htm

18. MDA specification found at http://www.omg.org/mda
19. Deelstra, S., Sinnema, M., Gurp, J. , Bosch, J. Model Driven Architecture as Approach to

Manage Variability in Software Product Families. Workshop On Model Driven Architecture:
Foundations And Applications June 26-27, 2003, University of Twente, Enschede, The
Netherlands

20. Filho , I. F., Oliveira, T. C., Lucena, C. J. P. A Framework Instantiation Approach Based on
the Features Model. Journal Of Systems And Software. , to appear.

11

Costs and Benefits of Multiple Levels of Models
in MDA Development

João Paulo Almeida, Luís Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{almeida, pires, sinderen}@cs.utwente.nl

Abstract. In Model-Driven Architecture (MDA) development, models of a
distributed application are carefully defined so as to remain stable in face of
changes in technology platforms. As we have argued previously in [1, 3],
models in MDA can be organized into different levels of platform-
independence. In this paper, we analyze the costs and benefits of maintaining
separate levels of models with transformations between these levels. We argue
that the number of levels of models and the degree of automation of
transformations between these levels depend on a number of design goals to be
balanced, including those of maximizing the efficiency of the design process
and maximizing the reusability of models and transformations.

1 Introduction

The development of a distributed application can be regarded as the process of
building a realization of the application that satisfies user requirements. In most
traditional development cultures, application developers are instructed to produce
intermediate models to facilitate bridging the gap between requirements and
realization. These intermediate models are mainly regarded as a means to obtain a
realization of the system, with different models addressing different design concerns.
The ultimate product of the development process is the realization, which can be
deployed on available implementation technologies (platforms). Any intermediate
models produced during the development processes are considered means and not
ends.

In the case of Model-Driven Architecture (MDA) development [8], however,
intermediate models that are used to produce the final realization are also considered
final products of the development process. These models are carefully defined so as to
remain stable in face of changes in platform technologies, and are therefore called
platform-independent models (PIMs).

In MDA development, models can be organized into different levels of platform-
independence [1]. Models at a particular level of platform-independence can be
realized into a number of platforms. When multiple levels of platform-independence
are adopted, successive (automated) transformations may be used that lead ultimately
to platform-specific models (i.e., models at the lowest level of platform-independence
with respect to a particular definition of platform).

12

An indispensable activity in early stages of MDA development is to determine
which levels of models and which (automated) transformations are necessary. This
activity is part of the preparation phase of the MDA development process [4]. In the
preparation phase, (MDA) experts define the metamodels, profiles and
transformations that are to be used in the execution phase by application developers.

The organization of the execution phase in terms of levels of models depends on a
number of design goals to be balanced, including those of maximizing the efficiency
of the design process and maximizing the reusability of models and transformations.
In this paper, we analyze the factors that should be considered in order to determine
the organization of the execution phase. We claim no conclusive or concrete
guidelines on the use of different levels of models and transformations. We rather aim
at setting the stage for further discussion on this very important issue for MDA
development.

The concept of abstract platform we have proposed in [1, 3] supports us in the
discussion. An abstract platform is an abstraction of infrastructure characteristics
assumed for models of an application at a certain level of platform-independence. An
abstract platform is represented through metamodels, profiles and reusable design
artifacts [3]. For example, if a platform-independent design contains application parts
that interact through operation invocations (e.g., in UML [10]), then operation
invocation is a characteristic of the abstract platform. Capabilities of a concrete
platform are used during platform-specific realization to support this characteristic of
the abstract platform. For example, if CORBA [5] is selected as a target platform, this
characteristic can be mapped onto CORBA operation invocations.

This paper is further structured as follows: section 2 discusses how the automation
of transformations between two levels of models can be justified; section 3 considers
the use of intermediate levels of models, and section 4 provides some concluding
remarks.

2 Introducing Automated Transformations

During the execution phase of an MDA project, an application developer derives
models at a lower-level of platform independence from models at a higher-level of
platform independence. In order to increase the efficiency of the application
development process, the developer may use automated transformations to bridge
between different levels of models.

A requirement to the automation of transformation is the specification of
transformation in the preparation phase. Full automation of transformation between
two levels of models requires the transformation specifier to define rules to transform
all possible source models into appropriate target models. The transformation
specifier must fully understand the relation between source and target metamodels,
and express these rules in a suitable transformation language, supported by a
transformation tool. For these reasons, transformation specifications should be
produced by a knowledgeable (MDA) expert.

When transformation is automated, the creative design activities that would
normally be executed manually by a designer are generalized and moved to the

13

specification of the transformation itself and to the application of marks (marking).
The costs of defining an automated transformation between two related levels of
models A and B must be compensated by reusing the transformation. The following
conditions contribute to the reuse of the transformation:
- the number of applications built using models at level A and targeting B is high,

i.e., the (abstract) platform at level B is popular for targeting applications that can
be expressed in terms of (abstract) platform at level A;

- changes in application requirements are frequent, but these changes do not affect
the stability of the (abstract) platform at level A;

- the development process is cyclic, and the number of design iterations is high,
i.e., the model of the application in A is modified several times during the
development. In this case, manual manipulation of models would have required
manual propagation of changes applied at level A.

The bottom-line is that the cost of building an automated transformation between
levels A and B must be lower than the costs of manually deriving models at level B
(from designs at level A) over (a long period of) time. Therefore, the stability of the
(abstract) platforms at level A and B should be considered. The stability of the
(abstract) platform at level A allows more applications to be developed in terms of
this platform and the stability of (abstract) platform at level B is required to reuse the
transformation, since transformation from A to B is specific to the platform at level B.

It is possible that models obtained manually and automatically differ significantly
with respect to relevant qualities. These qualities should be considered when
justifying automation. For example, depending on the transformation, automated code
generation may result in implementations of lower time performance. When this is the
case, this can be reflected in cost estimates by lowering the cost of manual coding to
account for the benefits of obtaining implementations that perform better. Automated
code generation may also lead to improving the correctness of implementations. In
this case, cost estimates should include the costs incurred by testing, both for testing
the transformation and testing the code obtained manually.

3 Introducing Intermediate Levels of Models

We envision two different extreme approaches to organizing the development process
with respect to platform-independence levels:
i. an approach with minimal use of levels of platform-independence, in which one

level of platform-independent models and one level of platform-specific models
are related (through a fully or partially automated transformation), and;

ii. an approach with exhaustive use of intermediate platform-independence levels
and several (fully or partially automated) transformations between these models.

We argue that a combination of these extreme approaches is the most effective way to
handle the problem. In the sequence, we consider the costs and benefits of introducing
an intermediate level of models between two arbitrary levels, a source level and a
target level. This allows us to consider the full range of combinations of the extreme
approaches (i) and (ii), since the recursive introduction of intermediate levels

14

eventually leads to an exhaustive use of intermediate levels. In the discussion, we
distinguish between fully or partially automated transformations.

3.1 Fully automated transformations

Figure 1 depicts the alternative situations which we contrast for fully automated
transformations: (a) a situation in which a transformation T produces models at level
B from models at level A, and (b) a situation in which a transformation T1 produces
models at level X from models at level A, and a transformation T2 produces models at
level B from models at the intermediate level X. The arrows in Figure 1 represent the
execution of a transformation.

Model MA

(a) Direct transformation
(without intermediate model)

T

Model MB

Model MA

T1

Model MX

T2

Model MB

(b) Transformation with
intermediate model

Level B

Level A

Level A

Level B

Level X

Fig. 1. Direct transformation and transformation with intermediate model

Considering solely the effort spent in the preparation phase to specify the
transformations in situations (a) and (b), we cannot formulate a general rule to decide
whether an intermediate step should be introduced. In some cases, it may be easier to
define two transformations using an intermediate model, and, in some other cases,
direct transformations may be easier to define.

Nevertheless, it is possible to draw some general conclusions on the consequences
of introducing intermediate levels of models for the reuse of transformations. In this
respect, an intermediate level of models may be beneficial since:
1. it may be possible to reuse the transformation from source models to

intermediate models, even if the original transformation from intermediate
models to target models cannot be reused (e.g., because of platform change); and,

2. it may be possible to reuse the transformation from intermediate models to target
models in new projects, since there may be transformations from different source
levels to the intermediate level.

15

A transformation between levels A and B is specific to the (abstract) platform of level
B. Therefore, the stability of (abstract) platform at level B is required to reuse the
transformation. Introducing an intermediate level of models may serve to factor out
parts of the transformation that are less platform-specific, capturing unstable
transformation X to B separately from stable transformation A to X. For example,
consider that the level A consists of models in an application-domain-specific
language [2], and that level B consists of middleware platforms, such as
CORBA/CCM [5, 9] and Web Services [14, 15]. Instead of defining a transformation
directly from A to B, one may consider the introduction of EDOC CCA models [11]
as intermediate models at level X, capturing a transformation from the domain-
specific language to a solution that is more stable than middleware platforms.
Additional transformations that do not have to consider the specificities of the
domain-specific language can be used to transform the EDOC CCA models to
CORBA/CCM or Web Services PSMs. Clearly, this solution requires the stability of
the intermediate level X, in the example, EDOC CCA models. This solution is
depicted in Figure 2(a).

A transformation between levels A and B is also specific to the (abstract) platform
of the source level A. Introducing an intermediate level of models may also lead to the
reuse of the transformation from the intermediate model to the target model. For
example, consider that the level A consists of models in different application-domain-
specific languages, and level B consists of Web Services. Introducing an intermediate
level X, e.g., populated with EDOC CCA models allows us to reuse the general-
purpose EDOC to Web Services transformation. This transformation is not
“contaminated” with application-domain-specific issues. Again, this solution requires
the stability of the intermediate level X. This solution is depicted in Figure 2(b).
While we have presented the two solutions separately, they could be combined, as
depicted in Figure 2 (c).

(a) Reuse of transformation from
source to intermediate levels

Model MA

T1

Model MX

T3

Model MB

(b) Reuse of transformation from
intermediate to target levels

Model MA’

T2

T3

Model MX

Model MA

T4

Model MB Model MB’

T1

π = DSL1

π =
EDOC
CCA

π = WS π = CORBA π = WS π = CORBA π = WS

π =
EDOC
CCA

π =
EDOC
CCA

π = DSL1 π = DSL2 π = DSL1 π = DSL2

Level B

Level X

Level A

Model MA

T1

Model MX

Model MA’

T2

(c) Combination of (a) and (b)

Model MB

T4

Model MB’

T3

Fig. 2. Reuse of transformations due to introduction of intermediate level of models

16

In order to justify the introduction of the intermediate levels of models X, the abstract
platform of the level X must be suitable for a large number of applications that can be
described at level A and realized on platforms at level B. In our example, the
consequence of this observation is that the abstract platform at level X should be
independent of application domains at level A and independent of technology
platforms at level B. In addition, standardization of this abstract platform may be
necessary to increase the opportunities for the reuse of transformations to and from
the intermediate level. The EDOC CCA is an example of such an abstract platform,
allowing the description of distributed application in terms of components and their
interconnection in terms of messages exchanged through ports.

The same pattern of transformation reusability can be observed when considering
the transformation of EDOC CCA models at level X to models at the level of
programming languages such as Java. In this case, level B in Figure 2 can be regarded
as an intermediate level in the transformation, consisting of CORBA and Web
Services-specific models. These models are transformed into Java interfaces, stubs
and skeletons through standardized transformations [7, 12]. These transformations are
executed through tools such as the one available in [13] and the ones listed in [6].

3.2 Partially automated transformations

It may be necessary to introduce an intermediate level of models between a source
and a target level when no automated transformation can be defined directly, or when
automated transformations produce results that do not satisfy non-functional
requirements. By introducing an intermediate level of models, intermediate models
can be elaborated upon, e.g., incremented, modified, combined with additional
models and marked. The intermediate level can be regarded as a means to
systematically lowering the degree of automation, and introducing opportunities to
insert design decisions in the transformation from source to target models.

For example, let us consider again level A consisting of models in application-
domain-specific languages, level X consisting of EDOC CCA models and level B
consisting of CORBA/CCM and Web Services-specific models. This situation is
depicted in Figure 3. In this example, marking EDOC CCA models manually is a
means to specify properties that are not stated in source nor intermediate models and
that may be required for the realization of the application on a target middleware
platform. These properties may be requirements on the replication of components to
satisfy availability requirements, requirements on the potential location of
components in the distributed environment to satisfy time performance requirements,
requirements on the persistency mechanisms required, etc. These requirements refer
to specific components in the EDOC CCA models and cannot be specified
meaningfully at level A or derived directly from EDOC CCA models.

17

Model MA

T1

Level A

Level B

Level X

Model MX’

π = DSL1

π =
EDOC
CCA

Model MB Model MB’

Manual modification,
marking, or

combination with
additional models

π = CORBA π = WS

T3 T4

Model MX

Fig. 3. Intermediate models as means to introduce design decisions

Reducing the level of automation of transformations incur additional costs on the
introduction of an intermediate level of models. Changes in models at a high-level of
platform-independence may lead to changes in all intermediate models and their
associated markings. If intermediate models affected by changes need to be modified
or marked manually, propagation of changes may lead to high costs. In contrast, in
fully automated transformation chains, changes are automatically propagated through
transformation. Since the state-of-the-art still requires significant developer
intervention along transformation chains, the propagation of changes contributes to a
large portion of the costs incurred by introducing separate levels of models. These
costs should ideally be contained by appropriate traceability mechanisms in MDA
tools.

With the introduction of an intermediate level of models, it may be necessary to
develop specific languages, metamodels, profiles or marking models for that level.
This incurs some additional effort for the preparation activities. For the case of
partially automated transformation, developers using the intermediate models in
execution activities must learn how to use the specific metamodels, profiles, or
marking models required at that level, which usually incurs training costs and
increases the threshold for developers to apply the particular model-driven
development process.

18

4 Concluding remarks

In MDA development, opportunities for reuse of transformations play an important
role in deciding the organization of the execution phase in terms of levels of models
and transformations. A single transformation from high-level models to
implementations may be costly to develop and is rendered useless in the face of
technology platform changes. Given that technology platforms are generally regarded
as unstable, it is important to attempt to recognize (intermediate) stable abstract
platforms that can be used for a large number of applications. This allows
transformations to and from this intermediate abstract platform to be reused.

In the example we have presented, we have considered an intermediate level of
models based on the EDOC CCA UML profile, which enables the modeling of
distributed applications as recursive compositions of abstract components. Recently,
similar modeling capabilities have been incorporated in UML 2.0, with the
introduction of composite structures [10]. Consequently, UML 2.0 and the EDOC
CCA Profile can be seen as alternatives for modeling distributed applications. The
proliferation of different (incompatible) intermediate levels of models reduces the
opportunities for large-scale reuse of intermediate models and transformations to and
from intermediate models. This calls for the standardization of a small number of
abstract platforms that are, to a great extent, application-domain-neutral and platform-
independent.

A conclusive study with respect to the costs and benefits of introducing different
levels of models requires empirical verification. Such a study should consider a
multitude of application requirements, as well as the opportunities for reuse across
different instances of model-driven development projects.

In the absence of such an empirical study, we have discussed, in general terms, the
benefits and costs of introducing different levels of models and transformations. We
believe this forms a basis to enable trade-off analysis between the different factors in
the preparation phase of MDA development.

Evaluating these trade-offs at early stages of development remains nevertheless a
challenging activity, since the benefits of the separation PIM/PSM must be considered
on the long run, particularly due to the role of reuse of models and transformations.
Important open issues are how to estimate the stability of concrete platforms,
application domains and applications and how to define stable abstract platforms that
should be standardized.

Acknowledgements

This work is part of the Freeband A-MUSE project. Freeband
(http://www.freeband.nl) is sponsored by the Dutch government under contract BSIK
03025. This work is also partly supported by the European Commission within the
MODA-TEL IST project (http://www.modatel.org).

19

References

1. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proceedings 7th IEEE Intl.
Enterprise Distributed Object Computing Conference (EDOC 2003), IEEE Computer
Society, Los Alamitos, CA (Sept. 2003) 112–123

2. van Deursen, A., Klint, P., and Visser, J.: Domain-Specific Languages: An Annotated
Bibliography. In: ACM SIGPLAN Notices 35(6), (June 2000) 26–36

3. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: On the Notion of
Abstract Platform in MDA Development. In: Proceedings 8th IEEE Intl. Enterprise
Distributed Object Computing Conference (EDOC 2004), IEEE Computer Society, Los
Alamitos, CA (to appear)

4. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based
development methodology for distributed applications. In: Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-
IA 2004), CTIT Technical Report TR-CTIT-04-12, University of Twente, ISSN 1381 -
3625, Enschede, The Netherlands (March 2004) 43–51

5. Object Management Group: Common Object Request Broker Architecture: Core
Specification, Version 3.0, formal/02-12-06 (2002)

6. Object Management Group: Getting Specs and Products, available at
http://www.omg.org/gettingstarted/specsandprods.htm#GetProds

7. Object Management Group: IDL to Java Language Mapping, v1.2, formal/02-08-05 (2002).
8. Object Management Group: MDA-Guide, v1.0.1, omg/03-06-01 (June 2003)
9. Object Management Group: CORBA Component Model, Version 3.0, formal/02-06-65

(2002)
10. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
11. Object Management Group: UML Profile for Enterprise Distributed Object Computing

Specification, ptc/02-02-05 (2002)
12. Sun Microsystems, Inc.: JSR-000224 Java API for XML-Based RPC 2.0 (June 2003).
13. Sun Microsystems, Inc.: Java Web Services Developer Pack (Java WSDP), available at

http://java.sun.com/webservices/jwsdp/index.jsp
14. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003), available at http://www.w3.org/TR/soap12-part1
15. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001), available at http://www.w3.org/TR/wsdl

20

1

A M3-Neutral Infrastructure for System Engineering

Olivier le Merdy (olivier.lemerdy@free.fr)

Sodius SAS (Nantes, www.sodius.com) and Ecole des Mines de Nantes (www.emn.fr)

Abstract

In this paper we report on some of the research
activities at the Sodius Company in the domain of
model-based system engineering. We start from
the idea that even if Systems Engineering and
Software Engineering, it is possible to create
bridges at the highest level of abstraction and thus
create correspondence at lower levels. The main
message of this paper is that it is possible to con-
sider software engineering and system engineer-
ing as two similarly organized areas, based on
different metametamodels (M3-level). Conse-
quently building bridges between these spaces at
the M3-level seems to offer some significant ad-
vantages that will be discussed in the paper. We
illustrate the space of system engineering with the
well established CORE set of standards.

1 Introduction
Model engineering (or MDE for Model Driven
Engineering) is being considered as an important
departure from traditional techniques in such ar-
eas as software engineering, system engineering
and data engineering. In software engineering, the
MDA™ approach proposed by OMG in Novem-
ber 2000 allows separation of platform dependent
from platform independent aspects in software
construction and maintenance. More generally
MDE is proposing to use models to capture spe-
cific aspects of a system under construction or
maintenance, not only the business and platform
aspects.

In the system engineering domain, a similar
organization has been used for the last twenty
years, mainly based on the TRW standard. How-

ever the overall organization was more implicit
than explicit.

This paper describes one ongoing project at
the Sodius Company in Nantes. The goal is to
define a generic experimental advanced model
management platform for system engineering.
The idea is to consider that we have similarly or-
ganized technical spaces (MDA, CORE,
Step/Express, Grammarware, XML, DBMS,
XML, etc.). For each of these we have an implicit
or explicit so-called M3-level. The MOF notation
for MDA or the EBNF notation for grammarware
play this role of defining, with different precision,
the representation system for the entire technical
space. In addition to this general M3-level organi-
zation, each space offers, at the M2-level, a rich
set of specific domain specific languages (DSLs).
These DSLs may be called grammars, metamod-
els, ontologies, DTDs, XML schemas, etc. Since
these DSLs are used to capture specific aspects of
systems, their relations or combinations is pres-
ently an important research concern. Transforma-
tion of programs written in various DSLs is one
current very active research activity.

In this paper we propose the idea that it
should be possible to establish generic coordina-
tion between different technical spaces by making
explicit the M3-level properties and providing
domain-independent transformation facilities at
this level. This would be more efficient than pro-
viding ad-hoc, case by case transformation be-
tween various DSLs belonging to the same or
different technical spaces.

This paper is thus organized as follows. In
section 2 we introduce some general considera-
tions on the three layer conjecture. Section 3 pre-
sents the domain of system engineering and the
CORE set of standard. In Section 4, we show how
the idea of defining bridges between these spaces
at the M3-level may bring a lot of significant
economies and other advantages. Finally we con-

21

2

clude by summarizing the project goals and
sketching possible extension paths.

2 The 3-Layer Conjecture
In this section we recall the main characteristics
of the three layer conjecture and we introduce one
important technical space, namely the software
engineering (MDA).

2.1 The OMG MDA Space
Each technical space is organized on a
metametamodel (explicit or implicit) and a collec-
tion of metamodels. For the OMG/MDA the MOF
and the collection of standard metamodels and
UML profiles play this role.
In November 2000 the OMG proposed a new ap-
proach to interoperability named MDA™ (Model-
Driven Architecture) [8]. MDA is one example of
a much broader approach known as Model Driven
Engineering encompassing many popular research
trends like generative programming, domain spe-
cific languages, model-integrated computing,
model management and much more.

The basic assumption in MDE is the consid-
eration of models as first class entities. A model is
an artifact that conforms to a metamodel and that
represents a given aspect of a system. These rela-
tions of conformance and representation are cen-
tral to model engineering [1]. A model is
composed of model elements and conforms to a
unique metamodel. This metamodel describes the
various kinds of contained model elements and
the way they are arranged, related and constrained.
A language intended to define metamodels and
models is called a metametamodel.

The OMG/MDA proposes the MOF (Meta
Object Facility) as such a language. The Eclipse
metametamodel is part of EMF and is compatible
with MOF 2.0. This language has the power of
UML class diagrams complemented by the OCL
assertion and navigation language.

2.2 Technical spaces
There are other representation systems that

may also offer, outside the MDA strict boundaries,
similar model engineering facilities. We call them
technical spaces [7]. They are often based on a
three level organization like the metametamodel,
metamodel and model of the MDA. One example
is grammarware [7] with EBNF, grammars and

programs but we could also consider XML docu-
ments, Semantic Web, DBMS, ontology engineer-
ing, etc. A Java program may be considered as a
model conforming to the Java grammar. As a con-
sequence we may consider strict (MDA)-models,
i.e. MOF-based like a UML model but also more
general models like a source Java program, an
XML document, a relational DBMS schema, etc.

The main role of the M3-level is to define the
representation system for underlying levels. The
MOF for example is based on some kind of non-
directed graphs where nodes are model elements
and links are associations. The notion of associa-
tion end plays an important role in this representa-
tion system. Within the grammarware space we
have the specific representation of abstract syntax
trees while within the XML document space we
have also trees, but with very different set of con-
straints.

Associated to the basic representation system,
there is a need to offer a navigation language. For
MDA the language that plays this role is OCL,
based on the specific nature of MDA models and
metamodels. OCL for example know how to han-
dle association ends. For the XML document
space, the corresponding notation is XPath that
takes into account the specific nature of XML
trees. As a matter of fact OCL is more than a
navigation language and also serves as an asser-
tion language and even as a side-effect fee pro-
gramming language for making requests on
models and metamodels.

At the M3-level when the representation sys-
tem and corresponding navigation and assertion
notations are defined, there are also several other
domain-independent facilities that need to be pro-
vided. In MDA for example generic conversion
bridges and protocols are defined for communica-
tion with other technical spaces:
• XMI (XML Model Interchange) for bridging

with the XML space
• JMI (Java Model Interchange) for bridging

with the Java space
• CMI (Corba Model Interchange) for bridging

with the Corba space
 Obviously these facilities may evolve and

provide more capabilities to the MDA technical
space. We may even see many other domain-
independent possibilities being available at the
M3-level like general repositories for storing and
retrieving any kind of model or metamodel, with
different access modes and protocol (streamed, by

22

3

element navigation, event-based, transaction
based, with versioning, etc.).

3 System engineering
The system engineering technical space will be
illustrated here by the CORE set of standards.

We provide in this section a metametamodel
of this space and describe some specific DSLs by
metamodels based on this CORE M3-level facility.

First assumption is that Systems Engineering
gets very specific challenges in comparison to
Software Engineering.
The role of the Laws of World: Systems are ruled
by laws of Physics and Sociology. The influence
of the System on its own context has to be taken
into account.
The multiplicity of the disciplines and cultures:
Systems involve lots of different actors who can
have different interpretations of the same notions
(e.g. Interface, Function).
The stake of the design vs integration: It is nearly
impossible to test Systems at implementation
level, for various physical, social or political rea-
sons. Systems have to be validated at design level,
before implementation.
The management at the Life Cycle level: The sys-
tem desing shall take into account the evolution
and the future ruptures and transitions within the
life cycle.

Assuming these fundamental differences in
terms of challenges, M2 level languages are also
completely different. However, it is possible to
identify for each of these sets of languages some
common properties allowing to specify a compli-
ant meta-meta-model. The comparison between
M3-level language of Systems Engineering and
Software Engineering shows similarities and thus
bridgeability.

It is thus possible to define mapping rules be-
tween meta-meta-models in order to make meta-
models transformation automatic.

The idea of metamodel agnostic systems has
been accepted. We suggest here the idea that
metametamodel agnostic systems are not much
more difficult to handle and that they could bring
significant advantages.

Furthermore we are presently convinced that
the technological level has reached the point
where it should be feasible to build a common
open model engineering platform capable of han-
dling artifacts based on different meta-meta-
models.

3.1 CORE meta-meta-model
(M3)

See Appendix A for a UML diagram of CORE
meta-meta-model

CORE is based on the entity-relation-attribute
approach and thus provides a number of meta-
meta-model elements:
• The Schema is the enclosing element of

CORE meta-meta-model. A Schema instance
represents the meta-model itself.

• The ModelElement entity represents the basic
element of a given CORE Schema. It is an
abstract supertype containing common fields
of all meta-model elements, like “name” or
“creator”.

• A Facility instance represents a group of
Class instances. A given Class instance can
be owned by multiple Facility instances.

• The AttributedElement entity is an abstract
supertype representing the ability to own At-
tributes (see thereafter).

• A Class instance represents a given concept
in a meta-model.

• A Relation instance represents a link between
two Class instances. Each Relation instance
has a complement, which is the reverse Rela-
tion.

• An Attribute instance represents a property of
a given AttributedElement instance.

• A PossibleValue instance represents a certain
value that can be taken to given Attribute in-
stance.

• A Target instance comes with a Relation in-
stance and gives every Class instance reach-
able through this relation from a given Class
instance.

3.2 CORE meta-model (M2)
The basic CORE Schema is based on the meta-
model TRW and provides a broad set of elements
usable in modeling systems. This Schema can be
further enriched by adding, modifying or deleting
elements – classes, possible values, relations… –
specific to a given domain. Such an enriched
Schema can then be considered as a DSL and as a
specific meta-model.
For instance, specific metamodels exist for C4ISR
(Control Command Communication Computer
Intelligence Surveillance Reconnaissance) and

23

4

DODAF (Department of Defense Architecture
Framework).
As a DSL, a specific CORE meta-model can own
a large number of elements spread between “es-
sential” – elements common to every meta-model
and undeletable – and “non-essential” ones. Es-
sential elements cover classes necessary to any
meta-model, such as the “System” whose instance
would represent the real system which is modeled.

4 Bridging spaces
We describe here how the previous infrastructure
may be used to define generic bridging facilities
between these spaces.

4.1 M3 to M3 mapping
A Schema instance represents the meta-model
itself and thus can be mapped in UML by a Model
instance. Indeed, we should keep in mind that a
meta-model can be considered as a model ex-
pressed in a meta-model that would be the meta-
meta-model.
There is a correspondence between the notions of
CORE ModelElement and UML ModelElement.
Similarly, there is a correspondence respectively
between notions of CORE Attribute and UML
Attribute and between notions of CORE Class and
UML Class.

4.1.1. Schema of direct correspondences

Some of the links between and fields of these ele-
ments get their equivalent in UML representation:
• CORE Class “parent” link becomes a UML

Generalization.
• CORE Attribute “initialValue” field becomes

a UML Expression linked to the correspond-
ing UML Attribute through the “initialValue”
link.

• CORE ModelElement “abstract” field data is
stored in the equivalent UML ModelElement
“isAbstract” field.

• CORE ModelElement “schema” link which
links each ModelElement instance to the top-
level Schema is mapped by a “namespace”

link between the corresponding UML Mod-
elElement and the top-level UML Model.

A CORE Facility can be mapped with a UML
Package. UML Classes corresponding to this Fa-
cility’s CORE Classes are nested in this Facility
through a UML Dependency.
Mapping a Relation involves to take into account
the CORE Relation itself and its complement.
Each of this relation is mapped by a super-class of
all Classes sources of this relation, and another
super-class of all Classes source of the comple-
ment. The link between super-classes and UML
Classes is done through a UML Generalization.
Depending on whether the couple relation-
complement owns Attributes or not, the mapping
is a direct UML Association between the two su-
per-classes or an intermediary UML Class owning
the UML Attributes

4.1.2. Schema of Relations mapping

Properties of CORE AttributedElement are trans-
ferred to corresponding UML Classes and attrib-
uted Relations. The relation “owner-attributes” is
mapped by a UML Association “owner-feature”.

CORE PossibleValues are mapped with UML
EnumerationLiterals. These literals are attached
to an Enumeration typing the Attribute.

Relation 1 Relation 2

complement

Class 2.1

Class 2.2 Class 1.1

Class 1.2

source
source

source source

Is mapped by

Superclass 1 Superclass 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

association

Or is mapped by

Superclass 1 Superclass 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

Class

Attribute 1
Attribute 2

association association

ModelElement

Class

Attribute

attributes

ModelElement

Class

Attribute

feature

24

5

4.1.3. Schema of Possible Values mapping

CORE elements fields that do not get their
equivalent in UML are stored in UML Tagged-
Value attached to these CORE elements equiva-
lent in UML. For example, CORE ModelElement
“alias” field will be stored in a UML Tagged-
Value named “alias” tagged to the corresponding
UML ModelElement.

4.2 Applications of M3 to M3
mapping

Mapping CORE M3 Infrastructure with MOF M3
corresponding level allows a broad field of appli-
cations. The main purpose is the capacity of auto-
matic meta-model translation by allowing
definition of translation rules from one meta-
meta-model to the other. This means significant
economies in terms of time, making M2-level
manual mapping useless. This also means signifi-
cant gains in terms of quality of the resulting
meta-model, thanks to automatic translation.
This allows then to work with automatically gen-
erated M2-level meta-models and, possibly,
automatically generated M2-level mapping be-
tween both meta-models, with corresponding M1-
level transformation tools.
Example of this M2 level transformation would
be automatic transformation of CORE Compo-
nents and attached CORE Functions through a

link of “allocated to” in stereotyped UML Classes
with attached UML Operations.

4.2.1. Schema of M2-level mapping for Compo-
nent and Functions

As seen is the precedent section, working at M3-
level allows to write clear and simple transforma-
tion rules thanks to the high level of abstraction
and the fewer types of elements.

4.3 Benefits
Discussed mapping and applications offer a num-
ber of benefits:
• Seamless system to software process-

communication
• Increase traceability and reliability.
• Direct interface model and code generation,

since the interface definition belongs to the
system level.

5 Conclusions
We have presented here some work in the applica-
tion of MDE ideas to the domain of system engi-
neering. MDA is probably now the most advanced
and visible technical space of MDE in software
engiennerin, with practical tools like Eclipse EMF
being defined and becoming widely available. We
believe it is possible to conciliate the best of both
worlds (software engineering and system engi-
neering) by a clear and regular framework based
on the idea of technical spaces. Building generic
bridges at the representation level (i.e. the M3-
level) seems a very promising engineering prac-
tice. We have provided some illustrations in sup-
port of this hypothesis. There is still much work to
be done in this area. However if the general
framework is shown feasible in these areas of
system and software engineering, it may probably
also be applied to many other areas as well.

Component A Component B

Function A Function B

allocated to allocated to

built in

Is mapped by

Component A

Function A()

Component B

Function B()

Attribute

Enumeration

PossibleValue 1

PossibleValue 2

type

literal

literal

PossibleValue 1

PossibleValue 1

attribute

attribute

Attribute

Is mapped by

25

6

Acknowledgements

This work has been benefited from the constant
support and encouragements of Jean-Philippe
Lerat, head of the Sodius Company and of other
staff of the company.

About the Authors

Olivier le Merdy is a student at the Ecole des
Mines de Nantes. He has been working for several
months at the Sodius Company.

References

[1] Sodius. Available from www.sodius.com

[2] OMG/MOF: Meta Object Facility (MOF)
Specification. OMG Document AD/97-08-14,
September 1997. Available from
www.omg.org

[3] OMG/RFP/QVT: MOF 2.0
Query/Views/Transformations RFP, OMG
document ad/2002-04-10. Available from
www.omg.org

[4] OMG/XMI: XML Model Interchange (XMI)
OMG Document AD/98-10-05, October 1998.
Available from www.omg.org

[5] Bézivin, J.: In search of a Basic Principle for
Model Driven Engineering, Nova-
tica/Upgrade, Vol. V, N°2, (April 2004), pp.
21-24, http://www.upgrade-
cepis.org/issues/2004/2/upgrade-vol-V-
2.html

[6] Booch G., Brown A., Iyengar S., Rumbaugh
J., Selic B.: The IBM MDA Manifesto The
MDA Journal, May 2004,
http://www.bptrends.com/publicationfiles/05-
04%20COL%20IBM%20Manifesto%20-
%20Frankel%20-3.pdf

[7] Kurtev, I., Bézivin, J., Aksit, M.: Techno-
logical Spaces: An Initial Appraisal. Int. Fed-
erated Conf. (DOA, ODBASE, CoopIS),
Industrial track, Irvine, 2002.

[8] Soley, R. & the OMG staff: MDA, Model-
Driven Architecture, (November 2000),
http://www.omg.org/mda/presentations.htm

[9] Vitech Corporation, founder of CORE tools.
Available from www.vtcorp.com

[10] SysML. Available from www.sysml.org

[11] AP233. Available from
http://step.jpl.nasa.gov/AP233/

26

7

Appendix A: UML Diagram of Core meta-meta-model

ModelElement
name : String
alias : String
creationStamp : String
creator : String
modificationStamp : String
description : String
essential : Boolean
viewerModifiable : Boolean

Boolean

true
false

<<enumeration>>

PossibleValue

value : String

Attribute
type : String
valueType : String
initialValue : String
formula : String
returnVariable : String
readOnly : Boolean

n+possi ble Values n

AttributedElement

n 1

+attributes

n

+owner

1

Facility

Schema

n

1

+facilities
n

+schema1

Target

Relation

internal : Boolean
maximumTargets : String
relationType : String

1
+complem ent

1 n

1

+relations
n

+schema 1

1

n

+relation
1

+targets
n

Class
abstract : Boolean
canBeSubcl assed : Boolea n
canRelateToS elf : Bool ean
abbrevi ation : String
hist ory : String

1

n

+source
1

+target s
n

n

n
+classes
n

+facili ties
nn

1

+classes n

+schema 1

n

n

+targets
n

+sourcesn

0..1

n

+parent
0..1

+children
n

n n

+relations

n

+sources

n

27

A formal MDA approach for mobile health systems

Val Jones, Arend Rensink, Theo Ruys, Ed Brinksma and Aart van Halteren.

Department of Electrical Engineering, Mathematics and Computer Science
PO Box 217, 7500 AE Enschede, The Netherlands

 v.m.jones@utwente.nl

Abstract. M-health systems are safety critical systems intended for use by the
public and are therefore characterized by especially strict requirements relating
to safety, security, correctness, reliability, adaptability and user friendliness.
This position paper proposes a methodology which realizes the MDA approach
by utilizing formal methods to support verification, validation and
transformation. The objective is to investigate the use of MDA enriched by
formal methods to define a generic, evolvable architecture for m-health services
which facilitates the rapid development and deployment of high quality
adaptable m-health services.

1 Introduction

Currently available m-health systems range from simple alarm functions through
patient monitoring functions to complete disease management systems. These systems
tend to be closed, proprietary systems targeted at a single health condition or
physiological measurement. Our vision is of an open and generic m-health service
platform which can support an unlimited and evolving range of m-health devices and
services including applications requiring high speed high bandwidth transmission and
sophisticated analysis and interpretation of time-oriented clinical data [1], [2]. Such
an m-health platform should support any combination of functionality sets allowing
services to be customized to the needs of the individual at a certain point in time. It
should also be accept on-the-fly upgrades to existing applications as well as
completely new services. The service platform must therefore be (hardware and
software) platform independent, flexible and adaptable.

The approach proposed here is a realisation of the MDA approach using formal
methods to provide a sound foundation for the rapid development of mobile health
systems. Formal methods are applied to support validation (by prototyping, model
checking and formally based testing) and model transformation. The resulting
methodology is expected to yield a robust software engineering approach for the
development of mobile health services and applications.

The concept arises out of work undertaken in European projects including two FP5
IST Take Up Actions, MobiHealth (IST-2001-36006) and XMOTION (IST-2001-
36059), which were completed in 2004. The research also draws on work at the
University of Twente on model checking and on automatic test generation,
implementation and execution. In the MobiHealth project a prototype health BAN
(Body Area Network) was developed and trialled in various clinical settings. Many

28

research issues arising from the experience gained are investigated in various new
projects including the Dutch FREEBAND projects A-MUSE and AWARENESS and
European initiatives MOSAIC (FP6-IST-2003-2 004341) and the Ambient
Intelligence_at_Work initiative of the IST New Working Environments Unit. This
paper discusses one of the lines of research arising, relating to software engineering
methodologies. The approach proposed targets the rigorous development of a generic
architecture for evolvable mobile health systems.

2 The m-health vision

2.1 Body Area Networks for healthcare

Body Area Networks [3], [4], [5] combined with wireless communications give a
technology platform for realising the m-health vision. We define a BAN as a network
of wearable devices which communicate amongst themselves (intra-BAN
communication) and which may also communicate externally with a remote location
(extra-BAN communication). A BAN consists of a mobile base unit or MBU (a
central processor and gateway performing computation and external communication
functions) and a set of devices. The MBU could be a PDA or a smart phone.

Specialising this concept, an m-health BAN is defined as a network of wearable
medical devices which communicate amongst themselves (eg via Bluetooth) and
externally (eg. via GPRS or UMTS) with a remote healthcare location such as a
hospital system, a medical call centre or a doctor’s mobile system. Examples of
medical devices which may be incorporated into a BAN are sensors (e.g. electrodes
for measuring ECG, EMG or EEG) and actuators (for example controlling implanted
drug delivery systems or pacemakers). There may be any number of different
specialisations of the health BAN. A specialisation can be thought of as an extension
of the generic health BAN by equipping it with a certain (set of) device set(s) and the
associated software. An example would be a BAN for insulin dependent diabetes
patients. The diabetes BAN could include two devices: a blood glucose monitor
(sensor) controlling an implanted insulin pump (actuator). The diabetes management
application could include of a set of distributed functions running locally on the BAN
or remotely, or a mixture of the two. The distributed nature of the execution should be
hidden from the user. Several specialisations of a health BAN have been trialled
during the MobiHealth project [6], [7], [8], [9], [10].

2.2 Special requirements of m-health systems

Mobile healthcare systems for patients are safety critical systems intended for
(possibly unsupervised) use by the public. These systems are therefore characterized
by strict requirements relating to safety, security, correctness, reliability and user
friendliness. In addition, the prospect of large scale deployment of m-health systems
in the community brings requirements for scalability, run-time adaptation (eg. in
response to changing network conditions) and dynamic evolvability. Finally, m-health

29

systems should be based on a generic architecture. We need robust methodologies to
support the development of such safety critical systems. Here we focus on
correctness, evolvability and genericity properties.

3 The approach

The objective is to contribute to the rigorous development of a software architecture
which is able to support a variety of future BAN-based m-health services. The
intention is to apply OMG’s Model Driven Architecture™ (MDA) [11], [12], [13],
augmented by formally-based software engineering methodologies and tools, to the
m-health application domain. MDA is selected because it addresses the complete
development life cycle and promises portability, cross-platform interoperability, and
platform independence. In particular it is selected to support genericity and
evolvability of the architecture and domain specific modelling. In our application of
MDA to m-health we emphasise the need for formality and make explicit the
activities of verification and validation. MDA is thus enhanced with formal methods
in order to support the critical correctness requirements of health systems. Formal
methods will be used to support verification (by model checking) and validation (by
model-based testing) of critical properties, and to test equivalence between models
and implementations. Model checking enables verification of logical consistency and
correctness properties of a specification and detection of a variety of errors and
undesirable characteristics such as deadlocks and race conditions. Together with
formal testing, model checking can give a high degree of confidence in the
correctness of the design and implementation (ie of PIM, PSM and code).

3.1 Combining MDA and formal methods

Figure 1 depicts a concept space for instantiation of the MDA approach, showing
 Modelling concept space Implementation concept space

Fig. 1. Concept space

 Promela Transformat

ion rules UML meta-model
meta-model J2EE/J2ME

Meta-model
CORBA

meta-model
LTS
meta-model Used to

develop

Promula J2EE/J2ME
executable code UML

model model

LTS CORBA/IDL
/C++ excutable

code
model Code

generation

some candidate formalisms and implementation environments, and the role of meta-
models and model transformation in deriving implementations.

30

The MDA approach is applied by developing a Platform Independent Model (PIM)
and transforming it to one or more Platform Specific Models (PSMs) targeted at
specific implementation environments. Applications are derived from the PSMs for
those specific platforms. Model transformation refers to meta-models (models of the
source and target languages/environments).

Complete proofs of correctness are demonstrably not feasible for realistic sized
systems; however, we propose to use formal methods within the MDA framework to
establish a high quality software production process which can give high levels of
confidence in the correctness of the designed system. Formal validation techniques
used include early prototyping (model execution by simulation); model verification;
and model-based testing of implementations. The guidelines of [14] will be followed
so that the formal verification is performed in a controlled and reproducible way.

Modelling is performed using executable formal or semi-formal languages (e.g.,
UML, OCL, me too). Verification approaches include model checking [15] with tool
support (e.g. SPIN [16], [17]); for validation we use model-based testing (automatic
test generation and execution [18] using tools such as TORX [19]) and rapid
prototyping (e.g. the me too approach [20]). Possible implementation approaches
include the transformation approaches of [21], [22], [23] and model transformation
[24].

3.2 Some anticipated challenges

Although promising a usable software development process targeting interoperability,
reusability and portability, MDA raises some interesting challenges, including:

1. How to represent the dynamic aspects of systems?
2. How to address what we may call the “Lossy transformation” problem; when

the expressive power of the source language exceeds that of the target?
3. How to establish preservation of semantic properties - a problem made more

intractable where the source or target language of a transformation lacks an
explicit formal semantics?

4. How far can we go with auto generation of implementations from models?

3.3 Some proposed solutions

We will consider alternative formalisms to represent behaviour (e.g. process calculus
and models based on generalised transition systems) in order to address problem 1
above. As well as UML we consider other more formally defined languages
(including but not confined to the UML related OCL) in order to detect problem 2 and
to address problem 3. (Adding alternative formalisms to the MDA repertoire implies
development of meta-models, transformation definitions and (possibly) additional
tools.) Problem 4 refers to the point that automatic generation of complete
applications remains an unreachable goal. Generally parts of an implementation must
be hand crafted. We propose to investigate how model transformation using formal
methods can be applied where possible and then augmented by judicious use of
principled software engineering techniques for development and validation of the

31

remainder. A practical and scalable example which can form part of the solution is
verification of the implementation by application of test suites automatically
generated from the (platform independent) model.

Figure 2 shows one possible instantiation of our approach. An m-health application
is modelled in UML, yielding a PIM (Platform Independent Model). Critical
properties derived from the requirements are expressed formally (eg. as assertions).
The UML model is transformed into a PROMELA model. The resulting PROMELA
model together with the properties are input to the SPIN model checker, which
verifies that these properties are met by the PROMELA model. So a degree of formal
verification is achieved by model checking applied to the Promela version of the PIM.
In this example, the target is a Java implementation. Applying model transformation
again, a Java PSM is generated from the PROMELA PIM and Java code is derived
from the Java PSM. A test suite is automatically generated from the PROMELA PIM
using the test generation and execution tool TORX. The test suite is applied not to the
model but to the Java implementation, providing formal validation by checking
behavioural equivalence between model and implementation.

M-health service
platform (mhsp)

Formal
properties

REQUIREMENTS

mhsp MODEL
UML (PIM)

 SPIN
Model checker TRANS RULES

UML MM
->Promela MM

TRANSFORMER TORX
Test generation

Promela
MODEL

TRANSFORMER

TRANS RULES JAVA
 JAVA Promela MM IMPLEMENTATION

MODEL (PSM) IMPLEMENTATION -> JAVA MM

Fig. 2. One instantiation of the approach

We postulate a “Transformer”: a generic model transformation tool which accepts
a set of transformation rules mapping language A to language B, and a model in
language A, and automatically produces a model in language B which is
behaviourally equivalent to the source model. Since as yet we have no such
“omnipotent transformer” guaranteeing correctness preservation, we still need formal
validation of the implementation by model-based testing.

Other possible instantiations of the approach will result, for example, from use of
different modeling formalisms (eg. me too plus process calculus), or because different
implementation platforms (eg Symbian) or languages (eg C#, SQL) are targeted, or by

32

substitution of different validation methods (eg prototyping and/or simulation in place
of model checking).

4 Discussion

The scientific focus of the proposed research lies in the investigation and
advancement of software engineering methodologies for the development of domain
specific services. This is achieved by testing theoretical developments from software
engineering and formal methods against a real and complex engineering problem
from the m-health domain and by instantiating the MDA approach for that domain. It
is hoped that the research will increase understanding of the following issues:

• What are the real engineering challenges encountered by developers of
distributed m-health services?

• How can we best model, validate and implement a software infrastructure
that can be deployed in a distributed m-health service environment?

• What properties must a generic m-health architecture have in order to persist
and support m-health product families (synchronic variation) and evolution
of m-health products and services (diachronic variation)?

• How far can a fusion of the software engineering approaches of MDA and
formal methods address these engineering challenges?

• Where are the boundaries between domain specificity and genericity (of
models, model transformations and solutions)?

By exercising the chosen methods and tools on realistic m-health applications, we
expect to derive a domain specific architecture for m-health services and a formally-
based instantiation of the MDA approach. Hence the expected outputs include:

• A high level architecture for m-health services
• An MDA-oriented methodology for design and development of m-health

services
• A proof of concept in the form of one or more applications of the

methodology through to implementation. This will include models, meta-
models, model transformations and prototype implementations.

The concept is in an early stage of development. Feedback from the MDA
community is welcomed. It is hoped that through the proposed research we can make
a contribution to MDA activities (eg via QVT [25]). Some of the QVT proposals are
amenable to formalisation. It has been noted (eg. [26], [27]) that the theory of graph
transformation appears to be especially suitable for the purposes of model
transformation. If model transformation is defined on a formal footing, one can also
expect to carry over formal verification results from one model to another.

References

1. Shahar, Y., and Musen, M.A. (1993). RÉSUMÉ: A temporal-abstraction system for patient
monitoring. Computers and Biomedical Research 26, 255–273. Reprinted in van Bemmel,

33

http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-92-0457.html
http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-92-0457.html

J.H., and McRay, A.T. (eds) (1994), Yearbook of Medical Informatics 1994, pp. 443–461,
Stuttgart: F.K. Schattauer and The International Medical Informatics Association.

2. Shahar, Y., and Musen, M.A. (1996). Knowledge-based temporal abstraction in clinical

domains. Artificial Intelligence in Medicine 8 (3), 267–298.

3. Zimmerman, T.G., 1999, ‘Wireless networked devices: A new paradigm for computing and

communication’, IBM Systems Journal, Vol. 38, No 4.

4. Van Dam, K, S. Pitchers and M. Barnard, ‘Body Area Networks: Towards a Wearable

Future’, Proc. WWRF kick off meeting, Munich, Germany, 6-7 March 2001;
http://www.wireless-world-research.org/.

5. Schmidt, R., 2001, Patients emit an aura of data, Fraunhofer-Gesellschaft,

www.fraunhofer.de/english/press/md/md2001/md11-2001_t1.html

6. Jones, V. M., Bults, R. A. G., Konstantas, D., Vierhout, P. A. M., 2001a, Healthcare PANs:

Personal Area Networks for trauma care and home care, Proceedings Fourth International
Symposium on Wireless Personal Multimedia Communications (WPMC), Sept. 9-12, 2001,
Aalborg, Denmark, http://wpmc01.org/, ISBN 87-988568-0-4

7. Dimitri Konstantas, Val Jones, Richard Bults, Rainer Herzog, MobiHealth – innovative 2.5 /

3G mobile services and applications for healthcare, 11th IST Mobile Summit 2002,
Thessaloniki, May 2002.

8. Dimitri Konstantas, Val Jones, Richard Bults and Rainer Herzog, "MobiHealth - Wireless

mobile services and applications for healthcare", International Conference On Telemedicine
- Integration of Health Telematics into Medical Practice, Sept. 22nd-25th, 2002,
Regensburg, Germany.

9. Widya, A. van Halteren, V. Jones, R. Bults, D. Konstantas, P. Vierhout, J. Peuscher, 2003.

Telematic Requirements for a Mobile and Wireless Healthcare System derived from
Enterprise Models. Proceedings IEEE ConTel 2003: 7th International Conference on
Telecommunications, June 11-13, 2003, Zagreb, Croatia.

10. Nikolay Dokovsky, Aart van Halteren, Ing Widya, BANip: Enabling remote healthcare

monitoring with Body Area Networks, International Workshop on scientiFic engIneering of
Distributed Java applIcations, November 27-28, 2003, Luxembourg, LUXEMBOURG.

11. Object Management Group, MDA website, http://www.omg.org/mda/

12..MDA Guide Version 1.0.1, © 2003, OMG, omg/2003-06-01,

http://www.omg.org/docs/omg/03-06-01.pdf

13. Anneke Kleppe, Jos Warmer, Wim Bast, (2003) MDA Explained: The Model

Driven Architecture™: Practice and Promise, Addison Wesley
Professional.

14. Theo C. Ruys and Ed Brinksma, Managing the Verification Trajectory, Software Tools for

Technology Transfer (STTT), 4:2, Feb. 2003, pp.246-259.

34

http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-96-0636.html
http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-96-0636.html
http://www.wireless-world-research.org/
http://wpmc01.org/
http://www.omg.org/mda/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.informit.com/isapi/authorid~%7b0045179D-03E2-4348-9CA5-31335D45B129%7d/session_id~%7b51A38013-E90A-44AF-9864-246C9D514CB4%7d/authors/author.asp
http://www.informit.com/isapi/authorid~%7b8428E316-73A1-446B-A971-063A0E8C4A8A%7d/session_id~%7b51A38013-E90A-44AF-9864-246C9D514CB4%7d/authors/author.asp
http://www.informit.com/isapi/authorid~%7b9F3267CF-DEF7-4611-9E58-6055318BC17E%7d/session_id~%7b51A38013-E90A-44AF-9864-246C9D514CB4%7d/authors/author.asp
http://www.awprofessional.com/
http://www.awprofessional.com/

15. Theo C. Ruys, (2001), Towards Effective Model Checking, PhD Thesis, University of
Twente, Enschede, The Netherlands,March 2001.

16. G.J. Holzmann,(1991) Design and Validation of Computer Protocols, Prentice Hall, New

Jersey, 1991, ISBN 0-13-539925-4.

17. G.J. Holzmann, (2003) The Spin Model Checker: Primer and Reference Manual, Addison-

Wesley, ISBN 0-321-22862-6.

18. E. Brinksma, (1999). Formal methods for conformance testing: Theory can be practical! In

N. Halbwachs and D. Peled, editors, Computer Aided Verification (CAV), volume 1633 of
Lecture Notes in Computer Science, pages 44-46, Trento, July 1999. Springer.

19. J. Tretmans and A. Belinfante. Automatic testing with formal methods. In EuroSTAR'99: 7th

European Int. Conference on Software Testing, Analysis & Review, Barcelona, Spain,
November 8-12, 1999. EuroStar Conferences, Galway, Ireland.

20. Alexander H and Jones V (1990). Software Design and Prototyping using me too. London:

Prentice Hall International. ISBN 0-13-820259-1.

21. Correctness Preserving Transformations for the Early Phases of Software Development; T.

Bolognesi, D. De Frutos, R. Langerak, D. Latella.I,IN Bolognesi T, van de Lagemaat J and
Vissers C.A. (ed), LOTOSphere: Software Development with LOTOS, pp. 348-368, Kluwer
Academic Publishers, 1995.

22. Jones V (1995). Realization of CCR in C, In Bolognesi T, van de Lagemaat J and Vissers

C.A. (ed), LOTOSphere: Software Development with LOTOS, pp. 348-368, Kluwer
Academic Publishers, 1995.

23. Jones VM (1997) Engineering an implementation of the OSI CCR Protocol using the

information systems engineering techniques of formal specification and program
transformation. University of Twente, Centre for Telematics and Information Technology
Technical Report series no. 97-19. ISSN 1381-3625.

24. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL

model transformation language: Transforming XSLT into XQuery. OOPSLA 2003
Workshop, Anaheim, California, October 27, 2003

25. OMG MOF 2.0 Query / Views / Transformations Request for Proposals. URL:

http://www.omg.org/cgi-bin/doc?ad/2002-4-10

26. Sabine Kuske, Martin Gogolla, Ralf Kollmann, Hans-Jörg Kreowski, An Integrated

Semantics for UML Class, Object and State Diagrams Based on Graph Transformation. In
Butler et al., Integrated Formal Methods, Third International Conference, LNCS 2335,
Springer 2002, pp. 11-28.

27. T. Mens. Conditional graph rewriting as a domain-independent formalism for software

evolution. In Nagl et al, editors. Applications of Graph Transformations with
IndustrialRelevance, volume 1779 of Lecture Notes in Computer Science. Springer-Verlag,
2000, pages 127–143.

35

http://spinroot.com/spin/Doc/popd.html
http://spinroot.com/spin/Doc/Book_extras/
http://fmt.cs.utwente.nl/~brinksma/
http://www.cs.utwente.nl/~tretmans/
http://www.cs.utwente.nl/~belinfan/

 Composition rules for PIM reuse

Salim Bouzitouna1 and Marie-Pierre Gervais1, 2
1Laboratoire d’Informatique de Paris 6
8 rue du Capitaine Scott, F-75015 Paris

{Salim.Bouzitouna, Marie-Pierre.Gervais}@lip6.fr
2Université Paris X

Abstract: In order to reduce the cost of the evolution of companies’ applications, this
evolution should be led in a systematic way by reusing existing applications. In MDA
approach, this should be done by the reuse of PIM and PSM of the concerned applications.
Indeed, the reuse of models exploits those that already exist and which have been checked and
maintained. It aims to construct new applications by composing, extending or modifying
existing distributed applications. To this end, we propose a new initiative of distributed
applications’ construction by reusing models in MDA approach. Our initiative is based on two
principal points: the expression of the reuse of PIM and the automatic generation of glue
binding their corresponding PSM from this expression. In this paper we focus on the first
point which is the expression of the reuse in terms of composition, extension and modification
of PIM.

1. Introduction:
To make the migration of company’s applications towards new platforms easier, MDA approach
[OMG 03] recommends a well-delimited separation between business aspects and implementation
details aspects of an application. This separation is expressed via two models: PIM (Platform
Independent Model) which specifies business aspects of a distributed application and PSM (Platform-
Specific Model) which specifies implementation details on a specific platform. However, we can
observe that the merge and reorganization of companies requires the evolution of their applications.
For instance, in the case of fusion of two companies, this evolution can be expressed in terms of
composition of applications. It can be also expressed in terms of extension or modification if the
functionalities of existing applications are respectively extended or modified. In order to reduce the
cost of these evolutions the reuse of existing applications is essential. In MDA approach, this reuse
consists in reusing PIM and PSM of the existing applications.

Many approaches are interested in the problem of reuse. If we consider known levels such as MDA
PIM, MDA PSM or code, none of the current approaches deal with the reuse in these levels. The
majority of the approaches provide reusability in terms of code and not of abstract models. Examples
of such approaches are Subject Oriented Programming [Harrison 93], Aspect Oriented Programming
[Kiczales 97] or Component Oriented Programming [OMG 99] [Sun 99]. Only few approaches
provide reusability of abstract models, similar to PIM, such as the Subject Oriented Design [Clarke
01]. Moreover their means carry out direct changes on the reused models. This does not guarantee a
good traceability of the evolution of the reused models.

We present a new initiative based on the reuse of models for the construction of new distributed
applications in MDA approach. Our initiative is based on two principal points: the first one is the
expression of the reuse of PIM in terms of composition, extension, and modification while the
second one concerns the automatic generation of the glue from this expression. This glue binds
PSM corresponding to the reused PIM. As it depends on the platforms considered for PSM, it could be
considered as the component that will be used for the assembly of these PSM. Figure 1 shows the idea
of composition of two applications.

36

Figure 1. Our approach for the composition of MDA applications

Through this initiative, we propose a solution which deals with the reuse of MDA applications on all
levels. It allows the reuse of models that already exist and which have been checked and maintained.
At PIM level, the expression of the reuse of models is only used to describe how they are composed,
extended or modified, but does not change them. This allows a suitable stability of reusable PIM by
keeping good traceability of their evolution - which is the basic principle of MDA approach - since it
supposes that the PIM of a given application remains stable. At PSM level, the glue allows the
corresponding PSM to be kept unchanged, which therefore makes it possible to exploit the codes
corresponding to these PSM in new applications with no change. Moreover, it allows to use the same
PSM to build several new applications according to the intentions' of reuse expressions of PIM.

In this paper we focus on the first point of our initiative which is the expression of the reuse of PIM.
For that, we study the different types of reuse of PIM. From these, we then define a set of rules for
reuse expressions for composition as well as for extensibility of PIM. The last section concludes the
article and presents some future works.

2. Integration of the reuse of PIM in MDA approach

2. 1 Expressions of PIM
PIM considered in MDA approach are expressed in a well-defined precise modeling language. This
describes the structural aspect as well as the behavioral aspect of the application. The OMG
recommends within the context of MDA approach the use of UML language [OMG97]. In this article,
we are particularly interested in UML class diagram and UML collaboration diagram. These diagrams
are very appropriate for expressing the structure and behavior of an application respectively. Using
these two diagrams, we propose to describe an application independently of any platform. The class
diagram represents the set of entities interacting in a given application, as well as the relations between
them. It also expresses the progress of different operations defined by the entities used in the
collaboration diagram. As UML recommends the gathering of these diagrams in packages according to
application’s functionalities they describe, we consider that applications are packaged.

2.2 Reuse of PIM
Generally, the reuse of a software unit can be expressed by several intentions, illustrated in figure 2:

Figure 2. Different intentions of unit's reuse.

App 1 App 2

App 1 + App 2

PIM1

PSM1

PIM2

PSM2

PI
M

PS

M

Automatique
generation

Glue

Expression of
Composition

Reuse

Composition

Extensibility

Behavioral
Composition

Structural
Composition

Based on

37

A first aspect of units’ reuse is composition. It expresses the way in which this unit is assembled with
others in order to form a new application. We consider two types of compositions: structural
composition and behavioral composition. The structural composition aims at modifying elements of
the units, while the behavioral composition aims at the expression of interactions between the various
operations of the units. In our context the units correspond to PIM.

Applying structural composition at PIM level consists in focusing on UML class diagrams. The
composition consists of merging different elements belonging to these models, such as classes and
attributes. This merge consists in putting these elements together. However in order to avoid
redundant elements, the elements which correspond to the same entity (the classes’ elements for
example) or the same property (the attributes’ elements for example) will be represented by only one
element among them.

We also consider modification as a form of structural composition. Basically, it consists in defining all
the changes to be brought on a PIM, in another separate model. Then, it is a matter of replacing
elements of the first model by those defined in the second one.

The behavioral composition is related to UML collaboration diagrams which correspond to the various
PIM. It describes the interactions between the operations defined in the classes of these models. This
composition consists, for example, in combining a set of operations belonging to different models by
coordinating them in a given order.

The second aspect of units’ reuse is extensibility. This consists in adding new functionalities to units.
Most of reuse approaches recommend adding a new component such as Subject Oriented
Programming [Harrison 93], Aspect Oriented Programming [Kiczales 97]. Their idea consists in
placing all functionalities to be added in a new unit, and then composing it with the original units.
Similarly to extend PIM functionalities, we propose to specify the new functionalities in a separate
model and then compose them with the original model. This approach has many advantages. It will
allow to keep a good traceability of the evolution of PIM. Furthermore, it allows to apply several
extensions to same the PIM, which do not depend on others. We thus note that the composition of
models also encompasses extensibility.

To express structural as well as behavioral composition, we define a set of rules. As these rules,
applied on PIM, are abstractly defined, we call them patterns of composition. Thanks to these patterns,
a designer can model the application he wants to build, modify or extend. However, contrary to the
major trend, we do not advocate the elaboration of new PIM. Actually, many approaches, such as
Subject Oriented Design [Clarke01], propose to apply rules on existing models in order to obtain new
PIMs that replace current ones. In this way, latest changes are carried out on the current models. This
does not guarantee a good traceability of the evolution of the reusable models. This compromises the
basic principle of MDA approach which supposes that the PIM of a given application remains stable.
To face these disadvantages, we propose to keep PIM unchanged when they are reused. Indeed, our
rules do not apply to the PIM source model for building a new PIM. They are only used to express the
composition between existing original models. The resulting model is composed of PIM original
models and the newly defined composition rules. Figure 3 compares our step with those of other
approaches.

38

Figure 3. The composition according to our step vs

the composition in the other approaches

Our rules of composition are defined as being composition patterns. This approach enables their later
implementation by using any language that allows parsing models. This is proposed by many model
transformation languages. To this end, we consider in the near future the use of MOF QVT [OMG 02]
suggested by OMG. The choice of such a language allows compliance with OMG standards.

The set of the mentioned rules are presented in the next section.

3. Rules for PIM composition
To identify different compositions between PIM, we studied application construction approaches
aiming at conceptual model’s reuse as well as and those aiming at the code reuse such as [Clarke 01]
[Van 99] [IBM 03a] [IBM 03b] [AspectJ 03]. We examined more particularly the means and
techniques which they offer to make the composition of their component units. This enabled us to
define a set of composition rules which allow to specify many types of composition of PIM.

For structural composition, these rules allow to identify more precisely, in models to be composed,
different packages to be integrated, as well as elements that specify the same concept and which thus
must be combined. For behavioral composition, these rules specify combination of operations defined
in models to be composed. This combination consists in running all these operations when one of them
is activated. However, control structures can be defined to modify the behavior of this run. We
classified the rules which we defined in the three following categories.

3.1. Correspondence rules
Correspondence rules establish relation between elements (packages, classes, operations, attributes)
of the models which will be later composed. These elements must be of the same type, and specify the
same concept, but each element belongs to its own model. Correspondence rules do not specify how
these elements can be combined. This is carried out by other rules which are defined in the second
category.

Contrary to the Subject Oriented Design [Clarke 01], or Subject Oriented Programming [Kiczales 97],
all correspondences must be expressed explicitly through correspondence rules. Elements having the
same name in different models are not necessarily in correspondence. This avoids implicit
compositions which are not wanted by the designer.

The following rule has been defined for expressing the correspondence between several packages:

• CorrespondPackages [package1, package2...]

 Composition
Rules 1. To express Composition Rules

2. To carry out these Composition Rules

PIM 1 PIM 2

1. To express Composition Rules

PIM 1 PIM 2

PIM 3 = PIM 1 + Composition Rules + PIM2

New PIM 3

Composition
Rules

Composition in other approaches Composition in our approach

39

PIM 1 PIM 2

PIM 1 PIM 2

Figure4. Expression of correspondence between two packages

Figure 4 shows an expression of correspondence between two packages, each one belonging to
separate model.

The expression of correspondence between packages is insufficient to express the composition
between two models. We also need to specify the correspondence between their elements. This
correspondence can be related to their sub-packages. In this case, it will be expressed with the same
CorrespondPackages rule. On the other hand, it may be related to the classes of the elements. For this
case, we define the following rule to express such correspondence:

• CorrespondClasses [package1.Class1, package2.Class2...]

Figure 5. Expression of correspondence between two classes

Figure 5 shows the expression of correspondence between two classes: ClassAA defined in packageA
and ClassBA defined in PackageB. These classes represent a priori the same entity. Note that this
correspondence can be specified only if the correspondence between packages in which these classes
are defined is also specified.

We can also express correspondences between attributes and operations defined in classes which have
already been put in correspondence. Correspondence between attributes means that they represent the
same property. Likewise, correspondence between operations of classes means that they aim at the
same processing but they may perform it differently. For expressing these two types of
correspondences, we propose the following rules.

Correspondence rule between the attributes:

• CorrespondAttributes [package1.Class1.Att1, package2.Class2.Att2...]

Correspondence Rule between the operations:
• CorrespondOperations [package1.Class1.Op1, package2.Class2.Op2...]

CorrespondPackages [PackageC, PackageE]

packageD

packageE

packageA packageB

packageC

packageB

ClassBA

ClassBB
packageC

packageA

ClassAA

ClassAB

CorrespondClasses [packageA.ClassAA, packageB.ClassBA]

CorrespondPackages [packageA, packageB]

40

3.2. Combination rules
Combination rules are used to express the way in which composition is carried out between a set of
elements (packages, classes, operations). These elements should be put beforehand in correspondence.
Although a correspondence between a set of elements means that these elements represent the same
concept, each one must define its proper sub-elements to specify this concept, according to its
application. Thus, the composition of elements put in correspondence consists in unifying their sub-
elements.

If there is a correspondence between two sub-elements, only one among them will have to be kept in
their union. This is indicated by an expression of combination rules unifying elements which contain
them. This indication is defined by a priority associated with each parameter of a combination rule.
However, if new combination rules are defined between these sub-elements, they will cancel the
priority defined between elements which contain them.

In addition, we regard the composition of a set of operations as being the execution of one or more
operations in a given order. The operations to be executed as well as their order are defined using
control structures which are specified in the combination rules of operations. These control structures
correspond to conditional processing such as if then, switch, or iterative processing ones such as for,
while.
To express a combination between many packages, the following rule is defined:

• JoinPackages [package1, package2...]

This rule expresses the union of classes (sub-elements) defined in each package package1, package2…
In this union, classes which are in correspondence are represented by only one class, which is defined
in the package with the greatest priority. This priority is assigned to each parameter of this rule, and
corresponds to its order of appearance. Thus, classes defined in package1 have more priority than
those defined in Package2 and so on.

We can also express combination between classes. They must be put in correspondence beforehand.
To express this combination we define the following rule:

• JoinClasses [package1.Class1, package2.Class2...]

If a combination rule is expressed between package1 and package2, a priority is assigned between
their elements and thus between Class1 and Class2. By defining the combination rule above, the
priority between these two classes are redefined. Like in a JoinPackages rule, the order of appearance
of JoinClasses rule parameters defines their priorities. This defines the priority between sub-elements
of classes placed in these parameters.

JoinClasses rule described above express the union of sub-elements in terms of operations and
attributes defined in classes package1.Class1 package2.Class2. In this union attributes which are in
correspondence are represented by only one attribute defined in Class1. Conversely, operations which
are in correspondence are maintained while unifying their processing. This consists in executing all
these operations when one of them is activated. The execution is carried out according to the order of
priorities. Therefore, the execution of operations of Class1 will precede the execution of that of
Class2.

However, we can express the execution process of operations which are in correspondence differently
from the one imposed by combination rules defined between their classes. This process may express
the execution of some operations under certain conditions. It may also express the execution of one or
more operations several times. To this end, we define a combination rule of operations. This rule
introduces an execution process of these operations into a new operation which we call
ControlOperation. It expresses the execution process of operations by using control structures such as
if then, switch, for etc. Combination rule of operations is defined as follows:

41

• JoinOperations[ControlOperation, package1.Class1.Op1, package2.Class2.Op2...]

3.3. Replacement rules
Replacement rules are used to express updates of elements defined in a given model. These elements
can be packages, classes, attributes or operations. An update of an element consists in replacing it by a
new element of the same type, i.e. a class can be replaced only by one class, idem for operations and
attributes. The definition of new elements instead of the updating of existing ones offers a good
traceability of the evolution of the models.

Thus, we recommend to specify all updates of an existing model, in a separate model which we call
substitute model. This one defines all new elements which will replace those defined in the original
model. Therefore, it is also necessary to establish correspondences between the elements to be
replaced in the original model and those of the substitute in model. This will allow the identification
of the relation (source element, substitute element). Thus, for expressing replacements we define a set
of rule which we present as follows:

• OverridePackage [sourcePackage, updatePackage]

This rule expresses a replacement of elements defined in sourcePackage by their correspondents
defined in updatePackage. Elements defined in updatePackage which do not have correspondents in
sourcePackage will be added in this one.

• OverrideClass [package1.Class1, package2.Class2]

This rule expresses that properties of Class1 replace those which correspond to them in Class2.
These properties are considered in terms of attributes and operations. Thus, if we want to replace an
attribute or an operation of a given class, it is necessary to define a new class which specifies new
attributes or new operations. This happens because in UML model, we cannot define an attribute or an
operation apart from a class.

Generally, the rules defined in the three categories presented above can be combined. This makes
possible to express the combination of two or several models while replacing some elements of the
original models by elements of other models. To this end, it will be necessary to first use
correspondence rules in order to define the relationship between elements that can be further combined
or updated in models. Then, combinations or replacements between should be expressed by using
combination or replacement rules.

4. Conclusion and future works
In this paper we have presented a solution to face the evolution of distributed applications in MDA
approach. We propose in this solution the reuse of already established PIM and PSM of these
applications. This solution is based on two main points: the expression of the reuse of PIM, and the
generation of glue which binds their corresponding PSM. This solution is particularly useful for the
reuse of existing MDA applications, in terms of composition and extensibility, without changes of
their PIM and PSM.

This paper covers the first point of our solution which is the expression of the reuse of PIM. A few
approaches found in the literature also propose the reuse of abstract models similar to PIM. However,
the means they offer introduce direct changes on the reusable models. This compromises the basic
principle of MDA approach which supposes that the PIM of a given application remains stable.
Considering these observations, we have proposed a solution based on the expression of PIM reuse.
To this end, we have defined three categories of composition rules: correspondence rules,
combination rules and replacement rules which allow the expression of different intentions for reusing
of PIM, considered in UML.

42

This article summarizes the first part of our proposal. We are currently working on its extension and
improvement by considering the following parts:

• Refinement of the reuse rules we have defined. Different types of reuse in terms of composition,

extension and modifications could be specified. For example, we aim at defining composite rules
which combine those defined in the various categories (correspondence, combination and
replacement). This will help the designer to express composition, extensibility and modifications
of PIM.

• Identification of the relation between the expression of the PIM composition and its mapping on

PSM i.e. the so-called glue. For this we are considering specific platforms such as CCM [OMG99]
or EJB [Sun 99].

• Development of the glue generation tool. This tool consists of two parts: an analysis part which

examines the set of input rules to identify the glue to be generated, and a generation part that
effectively generates the identified glue. The choice of having two parts allows the generation of
glues for different platforms.

References

[AspectJ 03] Eclipse:AspectJ Team, “The AspectJTM Programming Guide”, http://eclipse.org/aspectj/.

[Clarke 01] S. Clarke, “Composition of Object-Oriented Software Design Models“, PhD thesis, School
of Computer Applications, Dublin City University, January 2001.

[Harrison 93] W. Harrison, H. Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,
Proceedings of OOPSLA’93, ACM Press SIGPLAN, Washington, USA, pp. 411-428, October 1993.

[IBM 03a] IBM Research: Subject-oriented Programming, “Support for subject-oriented programming
in C++ on IBM VisualAge for C++ v. 4”, http://www-3.ibm.com/software/awdtools/vacpp/version4/.

[IBM 03b] IBM Research: Subject-oriented Programming, Group: “Hyper/JTM: Multi-Dimensional
Separation of Concerns for JavaTM ”, http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

[Kiczales 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda C. Lopes, J. Loingtier, and J. Irwin.
“Aspect-Oriented Programming”. In Proc. of ECOOP, pp. 220–242, 1997.

[OMG 02] OMG, Request for Proposal MOF2.0 Query /Views /Transformations, ad/2002-04-10,
www.omg.org, April, 2002.

[OMG 03] OMG, Model Driven Architecture Guide version 1.0, Document Number : omg/2003-05-
01. May 2003.

[OMG 97] OMG “Unified Modeling Language Specification v1.1” TC. Document ad/97-11-03.
OMG. 1997. http://www.omg.org

[OMG 99] OMG “CORBA Component Model Volume 1”. TC Document ad/99-01-01 OMG 1999.
http://www.omg.org

[Sun 99] Sun: EJB, “Entreprise JavaBeans”, http://java.sun.com

[Van 99] G. Vanwormhoudt, “CROME : un cadre de programmation par objets structurés en
contextes“, PhD thesis, Laboratoire d’Informatique Fondamentale de Lille I, Lille, 1999

43

MDA-Driven Development of standard-compliant OSS
components: the OSS/J Inventory Case-Study

Nektarios Georgalas1*, Manooch Azmoodeh**

BT Group, UK
Tony Clark***, Andy Evans***, Paul Sammut***, James Willans***

Xactium Ltd, UK

*georgan@acm.org

**manooch.azmoodeh@bt.com

***[firstName.surname]@xactium.com

Abstract: The telecommunications-oriented Operational Support Systems (OSS) industry have
recognised the value of technology independent modelling of OSS solutions as a way to reduce cost,
add agility, validate and verify solution designs against architectural guidelines of an enterprise and
most importantly provide traceability in the design methodology process. The challenges faced by the
OSS community is how MDA tools can deliver the promise of advanced meta-modelling, model
definition and validation and model transformation for both OSS software components and integration
logic in the larger OSS landscape. This paper describes how an advanced extensible meta-modelling
tool is used to build an OSS component following best practice industry guidelines. Extended MOF,
extended executable OCL and a powerful transformation language are used to capture the constraints
in the meta-models as well as models followed by complete, 100% code generation from models.
Furthermore, meta-models are also developed to capture graphical user interface elements in
conjunction with the inventory data models, which are then automatically translated into code. This
work is the precursor for defining extensive meta-models for a component-based OSS infrastructure
based on industry best practice, for adding high degree of formality to model specifications and for
enabling the verification of domain requirements by executing the models through model snapshot
creation, way before system implementation takes place.

Keywords: OSS, OSS/J, NGOSS, TMF, Component, Contract, OMG MDA, TNA,TSA, meta-modelling
executable OCL, Inventory System, IP VPN

1 Introduction
Developing and operating Operational Support Systems (OSS) for
telecommunications companies (telcos) is a very expensive process whose const
continuously grows year on year. With the introduction of new products and services,
telcos are constantly challenged to reduce the overall costs and improve business
agility in terms of faster time-to-market for new services and products. It is
recognised that the major proportion of overall costs is in integration and maintenance
of OSS solutions. Currently, the OSS infrastructure of a typical telco comprises an
order of O(1000) systems all with point-to-point interconnections and using diverse
platforms and implementation technologies. The telcoms OSS industry has already
established the basic principles for building and operating OSS through the TMF
NGOSS programme [NGOSS] and the OSS through Java initiative [OSSJ]. In
summary, the NGOSS applies a top-level approach through the specification of an
OSS architecture where:

• Technology Neutral and Technology Specific Architectures are separated
• The more dynamic “business process” logic is separated from the more stable

“component” logic

1 Address: Adastral Park, Orion Building – Ground Floor pp13, Martlesham Heath, Ipswich, IP5 3RE,
UK

44

mailto:**manooch.azmoodeh@bt.com

• Components present their services through well defined “contracts”
• “Policies” are used to provide a flexible control of behaviour in an overall

NGOSS system
• The infrastructure services such as naming, invocation, directories, transactions,

security, persistence, etc are provided as a common deployment and runtime
framework for common use by all OSS components and business processes over a
service bus.

Complementary to NGOSS is the low-level approach of the OSS/J, which provides a
set of standard Java-based interface specifications with a roadmap for producing APIs
covering the entire landscape of the OSS space (Trouble Ticketing, QoS monitoring,
Inventory, Billing, SLA management, etc.). These specifications provide a technology
specific set of OSS functional capabilities and as such can be a basis for building an
implementation view of an OSS using J2EE platform.

Business System

ImplementationDeployment

Service Providers
View

Service Developers
View

Technology
Neutral
View

Technology
Specific

View

Business Capabilities,
Constraints & Context

System Capabilities,
Constraints & Context

Implementation Capabilities,
Constraints & Context

Deployment Capabilities,
Constraints & Context

Figure 1 - NGOSS lifecycle methodology

In addition to the above, NGOSS has defined a methodology for developing OSS
solutions emphasising separation of concerns so that different actors in the overall
design process are freed from polluting their models with details and aspects of other
areas. Figure 1 shows four different lifecycle stages or views identified by the
NGOSS methodology, namely, business, system, implementation and deployment
view. The top row shows the logical views of the systems, which are technology
neutral. The business view captures business contracts, business processes, entities
and interactions (using the eTOM [eTOM] and SID [SID] standards) without
reference to how they are realised using automated computer systems. The System
view provides the computational interactions among automated components,
processes and policies. The bottom row shows the physical view of system, which are
intrinsically technology specific, where on the right, the implementation view
contains the hardware and software to construct the system and on the left the
deployment view captures the instance level operating systems and active monitoring
of the system.

One of the main goals of the NGOSS lifecycle is to provide traceability from business
requirements to systems descriptions to implementation details and finally to
deployed systems, thus traversing from the top-level, technology neutral NGOSS
specifications to the low-level, Java-based APIs and J2EE architectural principles of

45

OSS/J. The MDA technology [MDA] is identified as the key enabler for providing
such automated traceability in an NGOSS environment. The main goal of our research
is to use MDA standards and tools to define meta-models and transformation rules
around the lifecycle so that various models and views in the lifecycle can be verified
for correctness and completeness as well as auto-generating these models and
systems. First research results presented in [Georgalas 2004] focused upon the
applicability of an MDA enabled OSS architecture in a telcoms environment and a
generic technology independent NGOSS component specification.

In this paper, we describe how an advanced meta-modelling toolkit, the XMF from
XACTIUM [XACTIUM] in particular, can be practically used to specify and
automatically generate a complete system implementation of a single OSS
component. As an example, the component at issue is based on the OSS/J Inventory
API specification and can manage models as well as instances of products, services
and resources within a telco environment. The paper, also, shows the use of a
constraint language, which is a version of OCL extended with imperative constructs
making it a powerful formalism for representing complete behavioural specifications
at the modelling level. Furthermore, meta-model transformations that automatically
derive the component implementation are demonstrated and specified in XMap, a
transformation rule language embedded in XMF with a powerful pattern matching
capability.

The remainder of the paper is structured as follows. Section 2 will introduce the
rationale for choosing the OSS/J Inventory API, present an inventory domain-specific
language meta-model with an example inventory PIM that instantiates the meta-model
and describe a mapping of the inventory language onto a Java and tool meta-model in
order to drive the automatic generation of an inventory application tool. Section 3 will
discuss a number of lessons learned from this study. Section 4 finally will complete
the paper with concluding remarks on the presented work and a description of further
research plans.

2 A Case-Study: the OSS/J Inventory
The merits of MDA have been formally recognised by the TMF as it is signified, on
one hand, by the recently announced strategic alliance between TMF and OMG and,
on the other, by the similarities encountered between MDA and the NGOSS
methodology [Strassner 2004]. This leaves little doubt that MDA will play a
significant role in the telcoms industry and in particular in the development process of
telcoms OSS. Nevertheless, however much appraised at a strategic level, there is no
evidence for the use of MDA in practice to develop OSS solutions2. With intent on
investigating the full power of MDA in the context of OSS solution design, we
embarked upon a small scale case-study aiming to generate a fully functional OSS
component implementation driven solely by technology neutral model specifications.

The case-study was based upon OSS component APIs specified in Java and J2EE by
OSS/J. OSS/J have issued a document with standard J2EE architectural patterns and
design guidelines all OSS component specifications [Gauthier 2001] should comply

2 The authors have not found any case-studies reported in the relevant literature. Furthermore, even
within the TMF’s Catalyst programme, where TMF member companies collaborate to build
demonstrators that apply the TMF standards in practice, no project has been setup as of yet with clear
focus on the use of MDA to develop OSS solutions.

46

with. In order to test conformance to the defined specifications and guidelines in
practice, OSS/J additionally produce reference component implementations and
technology compatibility kits. The case-study was specifically driven by the OSS/J
Inventory component API [Gauthier 2004] and set as its goal to prove the ability to
automatically conduct such compliance tests by means of MDA. This end acquired
more value by the fact that this particular API specification lacks, as of yet, a
reference implementation and compatibility kit that would permit its practical
validation. Given short project budget and timescale limitations, the study made
careful assumptions, where necessary, in order to simplify the API’s complexity
without compromising its results.

The exercise targeted to a twofold outcome, as shown in Figure 2:

• Automatic generation of PSMs conformant to the eTOM SID standard: The

OSS/J Inventory specification document includes a UML class diagram of an
inventory meta-model and some textual, i.e. informal, description of its semantics.
The meta-model defines the types of information/content the inventory will
manage, such as products, services and resources. These types stem from a bigger
model, namely, the Core Business Entities [Reilley 2004], that OSS/J have
defined in line with entities and interfaces encountered in eTOM SID for use by
the OSS/J component APIs. In the case-study, we will be capturing the meta-
model and some of its semantics in an MDA environment and instantiate it with
example PIMs. Based on transformation rules, technology-specific representations
for entities of an inventory PIM will be automatically generated. These
representations collectively form a PSM. The PSM entities in this case will
actually be Java classes or EJBs (entity beans) representing, one for one, the
inventory PIM entities. While the case-study generated technology specific
outputs in Java and EJB, the paper will focus only on the Java ones.

• Automatic generation of a system implementation conforming to standard

OSS/J architectural patterns and design guidelines: While the PSM entities,
i.e. Java classes or entity beans, bear the structure and deliver the behaviour of
inventory entities as described in the original inventory PIMs, end-users should
not interact directly with these entities. Rather, entities should be accessed through
a single interface that exposes a simple set of management methods and hides
their complexity. This is a standard OSS/J design guideline, which conforms to
the façade design pattern and influences the architectural design of OSS/J
components. In order to comply with the OSS/J guideline, the case-study aims at
implementing an application tool that allows users to manage the inventory
content through a simple GUI. Example users of such a tool may be front-desk
operators who respond to customer calls and access the inventory to setup a new
or change the state of an existing product/service instance. The case-study uses
MDA to automatically generate the tool and associated GUI in Java and J2EE
(session bean) in order to deliver the required OSS/J pattern and design guideline.
Again, this paper only concentrates on the Java outputs.

47

R
E
P
O
S
I
T
O
R
Y

R
E
P
O
S
I
T
O
R
Y

Core Business
Entities

meta-model PIMs

PSMs
J2EE meta-
model

Inventory DB

Service Entity Beans

Product Entity Beans

Resource Entity Beans

BEA WebLogic Server

JVTInventorySession Bean

Client

Service

Xactium
XMF toolkit

Java Classes

Product

Resource

Client

Java meta-
model

Transformation
models

Figure 2 – The OSS/J Inventory case-study

Before embarking on the study, a brief evaluation of available MDA tools was carried
out, such as iUML, Arcstyler, OptimalJ, Objecteering as well as XMF. It was found
that for this particular application area, XMF offered advanced meta-modelling
capabilities for expressing semantic aspects of models and definition of tools for any
arbitrary language expressed using the MOF standard.

The XMF toolkit [Clark 2004] is a generic meta-programming environment that aims
to support a wide variety of MDA development scenarios. To achieve this, XMF
provides a variety of rich meta-modelling languages including: a package of OO
meta-modelling concepts called EMOF, an executable version of OCL called XOCL,
and a mapping language called XMap. Each of these languages has a well-defined
executable semantics that is run on the XMF virtual machine.

Figure 3 shows how XMF was used to support the OSS/J Inventory MDA scenario.
Firstly, a platform-independent domain specific language for inventories was defined
by extending the EMOF meta-model. XOCL was used to specify meta-model
constraints so that models written in the inventory language can be checked for
correctness. That is, by means of XOCL, the meta-model semantics can be formally
captured and automatically enforced, in contrast to the informal, textual description of
the semantics presented in the OSS/J Inventory API specification document. Next,
mapping rules written in XMap were constructed to transform the inventory meta-
model into meta-models of two target platform specific languages: EJB and Java. This
enables any model written in the inventory language to be translated into models that
corresponded to programs written in EJB and Java. The former generates plain EJB
code, which can then be manually deployed onto the BEA Weblogic application
server. The latter is more sophisticated in that it generates a fully deployed Java tool
for instantiating the generated models and for checking constraints and running
operations on the models. The aim is to show that the source language was rich
enough to be translated into sophisticated domain specific applications.

48

Inventory-specific
language Java

Rules

XMap

IPVPN Inventory PIM

IPVPN
Classes

Augmented
with XOCL
constraints

Inventory System
Application

Tool

Inventory
tool

EMOF
Meta
models

Figure 3 – Using XMF to deliver the Inventory tool

2.1 Domain-specific language
Figure 4 shows the inventory domain specific language meta-model. As mentioned
earlier, it includes concepts from the OSS/J Core Business Entities, which are a subset
of TMF’s SID. The inventory language consists of the following constructs:

• Entity, that represents any type of information included in the inventory.

According to the specification, three types of inventory content are defined,
namely, Product, Service and Resource, which extend type Entity.

• EntitySpecification, that represents configurations of Entities, i.e. constraints, such
as range of values or preconfigured setting on features of the Entity. Again, the
API specification defines three subtypes of EntitySpecification, namely,
ProductSpecification, ServiceSpecification and ResourceSpecification, each
representing specifications for Service, Product and Resource, respectively.

• EntityAttribute, that represents relationships between Entity types.

To represent this inventory domain specific language, a meta-model is constructed
with classes that specialise classes of the XMF embedded EMOF package, each of
which EMOF classes has a well-defined executable semantics. More specifically:

• Entity specialises the class EMOF::Class, hence it can be instantiated and contain

attributes, operations and constraints.
• EntitySpecification inherits from EMOF::Constraint. It can, therefore, be owned

by an Entity and contain an evaluate-able XOCL expression. In the Inventory API
specification document, EntitySpecification is represented as a UML class, which
has a simple semantics, and thereby great modelling incapacity to express in full
potential the concept semantics as an Entity configuration constraint. Therefore,
by modelling EntitySpecification as a pure constraint, rich expressive power is
conveyed to the concept enabling it to represent complex Entity configurations.

49

• EntityAttribute specialises the class EMOF::Attribute and is used to associate
different Entity types.

A number of constraints (well-formedness rules) apply to the inventory language.
These are expressed in OCL. As an example, the following OCL constraint states that
if an Entity specialises another Entity it must be of the same type as the parent entity.
That is, entity IPStream_S of Figure 5, for instance, can inherit from IPStream, as
both are of type Service, but cannot inherit from IPVPN that is of type Product. Here,
of() is an XOCL operation that returns the meta-class of the entity (i.e. the class that
the entity is an instance of).

context Entity
 @Constraint SameParentType
 parents->select(p | p.isKindOf(Entities::Entity))->forAll(p |
 p.of() = self.of())
 end

Another noteworthy constraint formally delivering an important semantic property of
the inventory meta-model, as per the OSS/J Inventory API specification document,
involves the association of an Entity type with the correct type of EntitySpecification.
In other words, classes of type Service, for instance, can only have specifications of
type ServiceSpecification and not of type ProductSpecification or
ResourceSpecification. Checking this and other similar constraints on a model that
instantiates the inventory language meta-model can quickly and automatically
validate the model for semantic correctness. The XOCL for the constraint follows.

context Entity
 @Constraint CorrectSpecs
 self.constraints->forAll(c |
 let ctype = c.of()
 in @Case ctype of
 [IML::Entities::ServiceSpec] do
 self.isKindOf(IML::Entities::Service)
 end
 [IML::Entities::ProductSpec] do
 self.isKindOf(IML::Entities::Product)
 end
 [IML::Entities::ResourceSpec] do
 self.isKindOf(IML::Entities::Resource)
 end
 end
 end)

Once the inventory language has been defined it is possible to create models that
instantiate the language meta-model. An important question at this point is how this
model can be visualised. One approach supported by XMF is to create a model of its
diagrammatical syntax, which is then used to create a language specific diagram
editor for the language. This has the advantage of being able to support very rich
diagram types, but requires further modelling work.

A much simpler approach is to make use of a mechanism known as a metaPackage.
Meta-packages allow a package to be represented as an instance of another package
(its meta-package). Because XMF understands that the metaPackage represents a
package of language definitions, it can provide appropriate stereotypes in the model

50

package. Note that metaPackages represent a stronger variant of profiles [UML 2003]
because the stereotyped elements are real instances of meta-model elements (as
opposed to being virtual instances). This way, NGOSS architectural guidelines,
patterns and standards can be captured in a rigorous manner so that designers are
capable of continuously validating their models against NGOSS artefacts.

Inventory-specific language metamodel

Figure 4 – Inventory-specific language

In Figure 5 a model is presented that is an instance of the inventory meta-model (its
meta-package). It is based on an IP Virtual Private Network (IPVPN) product
provided by BT and, in favour of simplicity, it only illustrates a subset of entities
comprising the product3. The example IPVPN product, inter alia, would require a
broadband link service between the connected customer ends. Hence, the model in
Figure 5 shows IPVPN containing (containedServices attribute) many IPStream
entities, a BT ADSL service that comes in different offerings for home and for office
premises represented by IPStream_S and IPStream_Office, respectively. IPStream_S
is further subclassed by IPStream_S500, IPStream_S1000 and IPStream_S2000,
entities differentiating on the downstream bandwidth of the link that is, respectively,
500, 1000 and 2000 kbps. Individual features of the latter entities are defined in the
accompanying ServiceSpec constraints, namely, S500Spec, S1000Spec and
S2000Spec. Similarly, features of the IPVPN product and the IPStream_S service are
specified in the IPVPNSpec and IPStream_SSpec specification constraints.

3 In reality, the IPVPN product at issue could come in different versions packaged with additional
features to the broadband link, such as, equipment for the customer premises and/or frontdesk support.

51

Inventory PIM

Figure 5 – Inventory PIM

All above model entities have as their types meta-classes defined in the inventory
language meta-model of Figure 4. Hence, all entities in the model diagram of Figure 5
are shown as stereotyped classes constituting instances of the inventory domain
specific meta-classes, for example, IPStream_S2000 is an instance of meta-class
Service. This way a PIM has been designed for the inventory using modelling
constructs and semantics customary to the specific domain of interest.

Because all model entities of Figure 5 are instances of inventory meta-classes that
specialise Entity, which, in turn, extends class EMOF::Class, they inherit the ability
to have constraints, attributes and operations (and their associated specialisations,
namely, Specifications and EntityAttribute). As an example, the IPStream_S2000 is
associated with S2000Spec, which has the following OCL body:

self.upStream = 250 and self.downStream = 2000 and self.unitType = "kbps"

In addition, XOCL can be used to write operations on the PIM model. XOCL extends
OCL with a small number of action primitives, thus turning it into a programming
language at the modelling level. As an example, the following operation creates an
instance of an IPStream and adds it as a containedServices attribute to an IPVPN:

52

context IPVPN
 @Operation addIPStream(up,dwn,unit,con)
 self.containedServices :=
 self.containedService->including(IPStream(up,dwn,unit,con))
 end

Finally, because the entities in the model are themselves instantiable, it is possible to
create an instance of the IPStreamModel and check that the instance satisfies the
constraints that are defined in the PIM model. This is a further level of instantiation
that is possible because of the metaPackage relationship between the inventory PIM
model and the inventory language meta-model. Such a "snapshot" mechanism allows
the validity of the model to be established early in the development process without
the need to generate a prototype. In many respects it is more powerful than
prototyping because it allows the construction and checking of counter-scenarios, that
is behaviour that the system should not exhibit at runtime. This gives the designer
confidence that the system eventually generated will function in the required manner.
An example snapshot is shown in Figure 6.

Figure 6 - A snapshot of the IPVPN model

2.2 Transformations of PIMs to PSMs

53

Using XMap, two mappings were defined from the inventory language. The first was
to generate EJBs, whilst the second focused on the generation of Java and a Java class
tool. We concentrate on the second one here.

The model of Figure 7 shows the mappings that were used to generate Java. Rather
than mapping directly from the inventory language meta-model, a more generic
approach was taken in which the mapping was defined from EMOF classes. Because
the inventory language extends the EMOF meta-model, they therefore also apply to
inventory models (and any other language specialisations defined in the future).

Figure 7 – Mapping of Inventory language to Java

Every element in the EMOF package has a mapping to a corresponding element in the
Java meta-model. In XMap, mappings are represented by an arrow from source
objects (the domain) to target objects (the range), and contain pattern matches
between their values. An example of simple pattern match is described by the
following XMap code:

context TranslateClass
 @Clause Class2Class
 EMOF::Class[name = N, attributes = A]
 do
 MicroJava::Structure::Class[name = N, features = F]
 where
 F = A->collect(a | TranslateAttribute()(a))
 end

Here, a Class is mapped to a Java Class, where the name of the Java Class matches
the name of the Class and the attributes of the Class are mapped to fields belonging to
the Java Class. Because the bodies of EMOF operations are also mapped, the mapping

54

results in generating an executable Java program that precisely implements the
behaviour of the PIM. This Java code constitutes the PSM representation of the
entities in the inventory PIM.

2.3 Tool Generation
Whilst the above mapping generates a standalone Java program corresponding to an
inventory model, it would more useful to users of the language if the model it
represents could be interacted with via a user interface. To achieve this, a mapping
was constructed from EMOF to a meta-model of a class tool interface for managing
object models. The meta-model of the class tool interface is shown in Figure 8. A
class tool provides an interface that supports a standard collection of operations on
objects, such as saving and loading objects and checking constraints on objects. In
addition, a class tool defines a number of managers on classes, which enable instances
of classes to be created and then checked against their class’s constraints or their
operations run.

Figure 8 – Tool meta-model

For any EMOF model, a mapping can be defined to the class tool meta-model, which
generates a tailored user interface for creating and manipulating instances of a meta-
modelling language such as the inventory language. An overview of the mapping is
shown in Figure 9. For each class in the source model, a user interface element is
created which provides access to operations to create new instances of the class and to
manage the operations and constraints provided by the class.

55

Figure 9 – Mapping of meta-modelling language to class tool meta-model

Applying this mapping to the IPVPN model shown in Figure 5 results in the
generation of the class tool in Figure 10. Here, buttons have been generated for each
of the entities in the model. These allow the user to create new instances, edit their
slot values and delete instances. As the figure shows, a button for invoking the
addIPStream() method defined earlier has also been added in the GUI executing
functionality that implements in Java the method’s behaviour described in the model
with XOCL.

56

Figure 10 – Inventory tool

3. Lessons learned
A number of very interesting lessons were learned during the conduct of the case-
study:

• Models can be validated against precise meta-models. The use of MOF and its

well-defined, rich semantics for the definition of language meta-models allows for
the construction of precise, non error-prone design models. All these models will
be checked for validity against rules and constraints captured in the meta-models
leaving no room for mistakes and ambiguity. The case-study demonstrated this
through the example inventory PIM of the IPVPN product in Figure 5, which
when checked against the semantics of the inventory language meta-model it
sussessfully passed the validity tests as both meta-model constraints, namely
SameParentType and CorrectSpecs are satisfied. What is more interesting is that
tools, like XMF, are already available to provide the necessary automation in
support of this process. This becomes more important in a large industrial
environment, where solution desigers and developers constantly exchange models
involving implementation and integration of complex OSS solutions and a correct
understanding of the designs in one go can save in costs (no bouncing for
explanations), produce results faster and minimise the possibility of error.

• Models can be executed. Models include full specification of structure and

behaviour. Given an interpreting environment, a designer can execute the models
and test them against different scenarios. The snapshot mechanism and the

57

interpreting environment of XMF facilitates just-in-time instantiation of models
and running/simulating “what-if” situations. This eliminates the requirement of
implementing a system prototype first before one can test the durability and
robustness of a model. Executing the models is actually a form of rapid
prototyping that takes place in the modelling space and very early in the
development lifecycle. This capability is very useful in the context of OSS as with
a little more effort spend in modelling early on, solutions and ideas can enter a
fast-track testing stage before even a single line of code is put together.

• Automatic generation of platform-specific implementations out of PIMs. With

a bit of more effort invested in the modelling phase, most part of a system’s
implementation can be automatically generated. This is ideal for the development
of tactical solutions since systems are rapidly produced out of PIMs. Moreover,
systems can survive through paradigm shifts and technology changes because
PIMs remain intact. This is expected to have great effect in the gradual migration
of legacy OSS onto new platforms. Additionally, existing systems can evolve as
requirements change since every new feature or change introduced in the
technology neutral model can be automatically reflected in the implemented
system after re-generating the code. In other words, the use of MDA achieves
synchronicity between models and system implementations as it is demonstrated,
for instance, by reflective changes in the inventory tool GUI as soon as a new
operation, e.g. addIPStream(), was added in the PIM.

• Domain-specific languages can be standardised. With the rigorous definition of

appropriate meta-models one can unambiguously specify architectural styles,
design patterns and guidelines. This is especially important in the environment of
a large enterprise, which needs to apply company-wide and standardise across the
business a particular set of system development principles or requires to precisely
define a catalogue of reusable system capabilities, without room for interpretation.
With special regards to the current NGOSS meta-modelling we could go far
beyond its informal description in UML diagrams and specification documents, by
capturing its full semantics using XOCL and by completely generating platform
specifc models using XMap. This allows the architectural guidelines expressed in
the NGOSS Technology Neutral Architecture be specified and enforced by
automated tools, like XMF.

• Specifications and standards can be verified for correctness very early in the

lifecycle. Ambiguities are removed. For instance, in the absence of a reference
implementation and compatibility kit for the OSS/J Inventory, using MDA we
could achieve fast validation of the specification both by executing the models to
check model and meta-model constraint satisfaction and by generating an
executable system in a technology of choice that would completely conform to the
semantics captured in meta-model and PIM.

• Standards and specifications can obtain full tool support from the very start

of their textual definition. This is due to the use of rigorous meta-modelling
techniques with fully-defined and executable semantics based on OMG standards,
such as MOF and OCL. Tools, such as XMF, which are based on these OMG
standards, can be easily extended and customised to support new standards and
specifications, such as NGOSS and OSS/J. The study, in particular, demonstrated

58

XMF’s support of an important architectural OSS/J design guideline, the façade
pattern, through the rigorous definition of the inventory language, the generic
class tool meta-model and the eventual automatic generation of a front-end system
that provides access to and management of inventory entity instances.
Furthermore, the complete generation of executable systems out of meta-models
and PIMs can rapidly provide prototype technology-specific reference
implementations for practical tests of standards on criteria such as performance
and scalability.

• The richer the definition of the platform independent language (including

semantics) the richer the mapping can be to platform specific modelling
languages. In particular, it is possible to generate 100% of the code necessary to
support the execution of the translated model. In our case-study the inventory
domain specific language is fully executable, hence 100% code generation was
achievable.

• MDA has the power to integrate many different types of languages and

technologies. The case-study, for instance, showed clearly the integration of a
domain specific language (inventory meta-model) with a platform specific
language (Java meta-model) and a user interface tool (class tool meta-model).

• MDA tools are currently maturing towards constituting a viable and robust

solutions used to capture all the complete structural and behavioural aspects
of a system in a model. Despite the small scale of the presented case-study, there
was clear evidence that MDA supporting tools are viable, robust and worth be
tested to a more extreme extent of an industrial scale.

4 Conclusions and future work
In this paper, we described how XMF, an advanced meta-modelling tool, can be used
to develop, verify and generate models, code and GUI interface of an inventory
system based on OSS/J standards. We demonstrated that a complete system
description covering structural and behavioural aspects of the system can be captured
in an executable model using extended meta-modelling and constraint languages,
which are based on OMG standards.

We have demonstrated the power of the XMF meta-modelling tool producing an OSS
component completely based on well-defined precise and accurate models. This has
raised our confidence in the maturity of the MDA technology in a rich and complex
OSS environment. Of course, OSS is more than merely a single component. Often it
is made of diverse set of components based on varying platforms interconnected
through complex integration hubs, business process, workflow and policy engines.
Thus, the ongoing work aims at using MDA tools to provide fully automated support
in all stages of an OSS methodology lifecycle.

Initially we intend to extend the model definitions to cover a few OSS/J components
(such as trouble ticketing, QoS monitoring and service activation) and aim to capture
integration logic of these components in an MDA tool. The integration logic will be
captured at business and system view models of the lifecycle together with mappings
to implementation and deployment views. An important aspect of the overall
methodology is to encourage more reuse of the modelling artefacts in the entire

59

lifecycle and hence means are required to store model elements in meta-data
repositories and enable designers and architects to discover suitable model fragments
for use in their designs. This necessitates a method of expressing requirements for
OSS components and business processes in a precise language before searching meta-
data repositories.

In an OSS environment, code generation is not necessarily a prime driver for adopting
MDA. This is due to the fact that the OSS industry is moving towards a plug and play
architecture based on available COTS components as a way to reduce the cost of in-
house development and reducing vendor lock-in risks. Hence, the greater emphasis is
on development of rigorous architectural guidelines and frameworks capturing an
enterprise’s computing policies together with automated tool support so that the
designs of OSS solutions (integration and OSS components, business process
definitions and policies governing the behaviour of components and processes) can be
validated and verified. This work thus is the first step towards building meta-models
that capture the NGOSS lifecycle views, including various forms of components,
contracts, process definitions, policies and their inter-relationships.

In conjunction with COTS components, it is recognised that operators tend to
customise as much as 80% of COTS software resulting in high costs and use of
proprietary tools. As part of the COTS modelling exercise, we intend to capture the
customisation of COTS components in high-level models, where any modifications
can be done at the model level and then using suitable transformations to apply the
necessary changes on the COTS-specific development environment.

References
[Ashford 2004] Ashford C., “OSS through Java as an Implementation of NGOSS”, White Paper, April
2004, http://www.ossj.org/learning/docs/wp_technologycomparison1.0.pdf
[Clark 2004] Clark T., Evans A., Sammut P., Willans J., “Applied Metamodelling”, book to be
published
[eTOM] TeleManagement Forum – enhanced Telecom Operations Map (eTOM),
http://www.tmforum.org/browse.asp?catID=1647
[Gauthier 2001] Gauthier P., “OSS/J through Java J2EE Design Guidelines”, OSS/J Architecture
Board, October 2001, http://www.ossj.org/downloads/design_guidelines.shtml
[Gauthier 2004] Gauthier P., “OSS Inventory API – Overview (Part 1)”, Public Draft version 0.9, OSS
through Java Initiative, April 2004
[Georgalas 2004] Georgalas N, Azmoodeh M, “Using MDA in Technology-independent
Specifications of NGOSS Architectures”, First European Workshop on MDA (MDA-IA 2004),
Enschede, The Netherlands, March 2004
[MDA] Model Driven Architecture, http://www.omg.org/mda
[NGOSS] TeleManagement Forum - New Generation Operations Systems and Software,
http://www.tmforum.org/browse.asp?catID=1911
[OSSJ] OSS through Java Initiative, http://www.ossj.org
[Reilley 2004] Reilley J.P., Gauthier P., “Core Business Entities Concepts and Principles”, 2004,
http://www.ossj.org/downloads/cbe.shtml
[SID] TeleManagement Forum - SID Overview, http://www.tmforum.org/browse.asp?catID=2008
[Strassner 2002] Strassner J., Fleck J., Huang J., Faurer C., Richardson T., “TMF White Paper on
NGOSS and MDA”, TeleManagement Forum / Object Management Group, February 2004,
http://www.tmforum.org/browse.asp?catID=1875&sNode=1875&Exp=Y&linkID=28972
[UML 2003] Object Management Group – The UML Specification, version 1.5 (final), March 2003,
http://www.omg.org/docs/formal/03-03-09.pdf, pp 73-85
[XACTIUM] http://www.xactium.com

60

http://www.ossj.org/learning/docs/wp_technologycomparison1.0.pdf
http://www.tmforum.org/browse.asp?catID=1647
http://www.ossj.org/downloads/design_guidelines.shtml
http://www.omg.org/mda
http://www.tmforum.org/browse.asp?catID=1911
http://www.ossj.org/
http://www.ossj.org/downloads/cbe.shtml
http://www.tmforum.org/browse.asp?catID=2008
http://www.tmforum.org/browse.asp?catID=1875&sNode=1875&Exp=Y&linkID=28972
http://www.omg.org/docs/formal/03-03-09.pdf
http://www.xactium.com/

Enterprise Change Methodology with MDA

Tony Mallia

Principal Consultant

CIBER Inc. Federal
7900 Westpark Drive, Suite A515

McLean, VA 22102, USA
e-mail amallia@ciber.com

Abstract. This paper describes the practical application of MDA and UML tools in the development of large multi-
system projects or system of systems involving multiple development organizations, platforms and tools. A change
engineering architectural framework is described with its three view dimensions and how it relates to enterprise
architecture. The roles of models at both the change management and methodology views and the separation and use
of CIM, PIM and PSM are described in relation to the establishing of integration contracts during the life cycle
process. Particular attention is focused on the political reality of multi-organizational development and the delegation
of technical decisions. A focus on specifications in the methodology view covers the CIM models (both Ontology
and Business Process) and how they transform into PIM Message Templates (Sometimes called a document model)
and Component models. Then these PIM models are transformed into PSM component contracts. This paper does not
cover PIM and PSM to executable code transformation which is widely covered by current papers. These concepts
are illustrated in the implementation of a US Federal Health project which is in operation and in current work being
implemented with an XML Schema Factory which shows current off the shelf tools performing transformations.

Introduction

In a large multi-system environment, selection of a single application development tool for all application
development is unlikely due to the diversity of language and communications platform technologies and the preference
and experience of the various development teams involved.

Successful techniques to produce a coherent implementation across the environment rely on delegation and de-
coupling approaches such that the effort can be spread across the teams but that when the parts are assembled together
there is high probability of successful integration. Not only will the development be successful but the organization can
respond to changes in a routine way maximizing systems development agility.

Change Engineering Architectural Framework

A change engineering framework
proposed here has three view dimensions:
Perspectives, Focus and Transformation.
As shown in figure 1, they provide a space
in which to describe the degrees of
Transformation:

1. Operational system
2. Change management system
3. Change methodology system
4. Change engineering
These transformation views are applied

to the Perspective and Focus dimensions.

Transformation

Focus

Perspective

Operational System
Change Management System

Change Methodology System

Fig. 1.

Change Engineering

61

Transformation Views

In effect, the organization must look to a Change Management System to make the activities and procedures for
change well understood and managed. The Change Management System produces the required Operational System
which is used in the Enterprise in day to day activities and is equivalent to the Functioning Enterprise in the Zachman
Framework. The development and maintenance of a Change Management System is by a Change Methodology System.
MDA provides techniques and tooling to be used by a Change Methodology System to implement the Change
Management System.

A system implemented at one transformation view is specified by the model in the higher view. Thus the Operational
System is specified by the Change Management Model and the Change Management System is specified by the Change
Methodology Model.

Perspective

A number of approaches have defined the perspectives which
are targeted towards different players in the organization. A set of
4 perspectives have been found to work in the large multi-system
environment. They are shown as the colors in Figure 2.
• The Business perspective defines the environment for the

system and contains the manual and computer assisted
activities of the operations and their degrees of transformation.

• The Enterprise System Perspective, sometimes called the
superordinate system, is the enveloping harness which applies
end to end integration around the application systems.

• The Application Systems Perspective, subordinate or
subsystems, are the components either bought or built which
provide the functionality.

• The Technology Perspective is the language or transport
platform on which the application systems and enterprise integration run.

While these perspectives are not exactly the same as the CIM, PIM, PSM and Platform views of MDA, they provide

a better alignment with the organization of the enterprise and the responsibilities for managing large complex systems.

Focus

Focus has been derived from the Zachman Framework but is different in a fundamental way. Where the Zachman
framework separates the specification of the system (to be) into the different focus categories, the Enterprise
Architecture in this paper defines the focus to be actual instance parts of the system at the appropriate transformation
view. The specification is in the model (“What” focus) of the higher transformation view. Thus the Models in the
Change Management View describe the 6 focus categories in the Operations View but are not necessarily organized in
these categories. The “How” of the Change Management View are the actual activities to produce the Models which
describe the Operations View.

The “What” focus defines artifacts or work products which are produced or consumed by the system activities (the
“How”). The Where, Who, When and Why define location, participants, schedule and reason for the activities. Thus the
Enterprise Change System row describes the project plan and execution of the Enterprise System Change.

Language
Technology

Language
Technology

Transport
Technology

Application
System

Business

Integration

Enterprise System

Application
System

Fig. 2.

62

Transformation and Focus for Enterprise System Perspective

Figure 3 extracts a horizontal slice
through the Enterprise Architecture for
the Enterprise System perspective layer
showing the Transformation and Focus
dimension Views. The Enterprise
Change System is described by the
Enterprise System Change Models
commonly known as Software
Development Life Cycle (SDLC) for
the Enterprise System.

Execution of the Change
Methodology System results in a
definition and deployment of the
Enterprise Change System and
execution of the Enterprise Change
Management System results in the
Enterprise System Models and the
implementation of the required
Enterprise System.

Models of the SDLC can be defined
in UML using techniques out of the
Systems Engineering Models such as
the UML SPEM Profile. The Change
Management System is the actual

instances and actions of the change process which results in the operational system. Thus a horizontal line of cells
represents a system realization.

MDA and Change Management

The roles of models at the change
management system and the coherence of CIM,
PIM and PSM allow the bridging between the
perspectives. This allows coexistence between
MDA and Component Based Architecture
where the contracts between Application
Systems must be taken to the PSM level to
ensure interoperability without platform
bridging.

In the Change Management View which is
now a vertical slice of the Architecture
Framework as shown in Figure 4, model
instances of the systems at each perspective are
so far disconnected. Coherence between the
Business models, Enterprise System Models
and Applications System Models would ensure
that there is alignment between the Business
and the systems implementation and between
the Application Systems and the Enterprise
Integration Contracts.

By providing the Enterprise System Contracts at both the
PIM and PSM levels to the Application Systems developers,
integration can be facilitated. Some of the PIM model
instances from the Enterprise System can be reused in the

What How Where Who When Why

Focus

Technology
System

Transformation

Application
System

Transformation

Enterprise
System

Transfomation

Business
Change

Transformation

C
ha

ng
e

M
an

ag
em

en
t P

er
sp

ec
tiv

es

Business
Change
Models

Enterprise
Change
Models

Application
Change
Models

Technology
Change
Models

Technology
Models

Technology
Change

Change
Management

Location

Change
Individuals
and Roles

Technology
Change

Schedule

Technology
Change
Decision

Application
System
Models

Change
Activity

Change
Management

Location

Change
Individuals
and Roles

Application
Change

Schedule

Application
Change
Decision

Enterprise
System
Models

Change
Activity

Change
Management

Location

Change
Individuals
and Roles

Enterprise
System
Change

Schedule

Enterprise
System
Change
Reason

Change Management View and Models

Business
Models

Change
Activity

Change
Management

Location

Change
Individuals
and Roles

Business
Change

Schedule

Business
Change
Reason

Fig. 4.

Fig. 3.

WhatWhatWhat How Where Who When WhyWhatWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyWhat How Where Who When WhyHow Where Who When WhyHow Where Who When WhyHow Where Who When Why

Focus

Enterprise
System

Enterprise
Change System

Enterprise
Methodology

System

Enterprise
Engineering

System

Tr
an

sf
or

m
at

io
n

V
ie

w
s

Enterprise System Perspective

Change Methodology Layer

Enterprise
System

Engineering
Models

Enterprise
System

Engineering
Change

Enterprise
System

Engineering
Location

Enterprise
System
Change

Engineer

Enterprise
System

Engineering
Schedule

Enterprise
System
Change
Reason

Enterprise
System
Change
Models

Methodology
Change

Methodology
Management

Location

Methodology
Individuals
and Role

Methodology
Change

Schedule

Methodology
Change
Reason

Enterprise
System
Models

Change
Activity

Change
Management

Location

Change
Individuals
and Roles

Enterprise
System
Change

Schedule

System
Change
Reason

Components
and

Messages

Use Cases
and

Collaboration

Systems
Location User Enterprise

System Event

System
Decision
Reason

Operation Layer

Change Methodology Layer

Change Management Layer

Project Plan

SDLC

63

Application Systems development and some examples to show the models which are reusable.
Although the details of the organization are not discussed here, it is assumed that there is a central architecture group

which is able to develop and govern the Enterprise System and its models. Distributed Applications Systems
development groups would work with the Enterprise Systems development group to facilitate reuse of models and
negotiate integration contracts.

In the same way, Technology Systems need to be selected and integrated in a coordinated fashion whether single
technologies are selected or multiple technologies must be bridged. It has been found that it is not necessary to generate
code in the Application Systems to provide a high degree of Application Systems independence from the Transport
Technology rather a binding layer of the Enterprise System can provide interfaces to the Application System where the
nature of the Transport Technology is transparent.

Using MDA in the Methodology
Model

The MDA CIM, PIM and PSM model types
are aligned to the Business, Enterprise and
Application System perspectives as shown in
Figure 5. The CIM maps to the Business
perspective and the Models contain concepts
which exist without a computer system. The
PIM maps to both the Enterprise and
Application System Models as does the PSM.
Since the focus of this paper is the Enterprise
System Methodology and the development of
the integration contracts to allow successful
collaboration between Application Systems,
the role of the Enterprise System Models used
in development will be explored.

The CIM model type as defined in the Methodology System Model is separated into an Information View and a
Behavioral View. Both can be defined in
UML. Table 1 shows the models involved in
the Enterprise System Methodology.

 Information View
(What in Operations)

Behavioral View
(How in Operations)

CIM Business Business Domain Model
(Ontology) Business Process Model

PIM Enterprise Message Template Model Component Model and
Collaborations

PSM Enterprise Message Payload Schema
(e.g. XML)

Component Interfaces and
Methods

Table 1.

The CIM Information View Domain Model defines the concepts and relationships of the Business. In this sense it is
a lower level ontology and can be governed by a middle level ontology as a UML Profile. An example of a CIM
Domain Profile (also in the Methodology System Models) might contain Entity, Role, Act and Identity stereotypes.
These stereotypes can be used to mark classes which can be use to transform the Domain model to the Component
Model – an Act class might generate a “Process Component”. However no tool has been investigated which can do this
but it might be possible with user defined transformation languages to achieve this.

Language
Technology

Models

Language
Technology

Models

Transport
Technology

Models

Application
System Model

Perspectives and MDA

Business ModelsCIM

PIM

Integration
 Contract

Enterprise System Model

PSM

Platform

Application
System Model

Transform
Transform

Fig. 5.

64

Typically the Domain model will contain packages for Subject areas as well as Datatypes and Terminologies. The
Domain Model requires careful construction because elements will find their way transformed to the PSM of the
Integration Contract. The contents of the model are the concepts that exist in the business which are independent of the
computers systems.

The Business Process model contains Activities and Object Flows representing the actions caused by business
events. Some of these activities can be Enterprise Systems Use Cases where an actor is interacting with the external
boundary to initiate or respond to an Enterprise System event. The effect of the system on the business environment can
be modeled and a superficial message identification as an Object Flow can be defined. The more fine grained actions in
the Use Case are added when showing the interaction of the actor to the system boundary and their linkage to the
Component Model Collaborations.

At the Enterprise PIM level again the models are separated into an Information View Message Template model and a
Behavioral View Component Model.

The Message Template model represents the payloads of messages being exchanged over the integration transport. A
number of techniques have been tried to represent the structure and scope of the payload and the most effective has been
found to be a UML class diagram showing a message root class associated with the first content class from the CIM
Domain model and limiting the scope through the visibility of elements in the diagram. If the element is not visible then
it will not be in the scope of the message.

The Component Model shows both the subsystems which will collaborate along with the collaborations which will
realize the Use Cases on the system boundary. Since the Enterprise System is superordinate, it provides the behavioral
roadmap for the subsystems interactions. Subsystems are considered as black boxes with external interfaces and
behavior – their internal structure or behavior is hidden.

At the Enterprise PSM level the Information View Message Payload is defined in the transport platform’s language
such as an XML Schema and the Behavioral View is expressed in UML as the specific interfaces and methods which
will be used such as Home and Remote Interfaces in the J2EE platform.

Model Transformations

Transformations discussed here in this example Methodology include Domain models and how they transform into
PIM Message Templates (Sometimes called a document model) and how the Message Templates transform into the
Message Schemas. This paper does not cover PIM and PSM to executable code transformation which is widely covered
by current papers.

Business Domain to Message Template Transformation

The transformation from Business Domain to Message template is a selection and restriction process which is
performed by hand in the UML tool. The restriction is that any concept or relationship introduced in the message
template must have existed in the Domain model. No new concepts other than the type of message can be introduced in
the Message template and all structures must be referenced in a Domain package.

Message Template Model to Message Payload

A number of ways of performing the transformation from the Message template to the Payload schema have been
tried which include custom scripts to process the content of the model including the generation of CORBA IDL and
dictionary descriptions to feed into message transformation bridges.

A commercial tool has been used to convert marked UML Enterprise Message Template and Domain models into
XML schemas. This will be described more fully in the XML Schema factory example.

65

CIM Instance Example

These concepts are illustrated in the implementation of the US Federal Health Information Exchange project which is
in operation. The project involves an integration server which exchanges health records between two US Federal

Agencies. The records are
normalized into standard
structures controlled by
Message Templates which are
derived from the Business
Domain model.

An example of a Domain
package is shown in Figure 6.
The package contains concepts
about Person and their roles as
Patient and Practitioner as
required by the scope of the
project.

The relationships show the
semantic paths which are
permitted.

Message Template

The Message Template
example in Figure 7 shows a
fragment of the Patient
Encounter message template
where the diagram includes only
the classes and relationships

which are included in the message. The Message root is at the lower left of the figure and is associated with a single
instance of PatientEncounter class. The Patient Encounter can have an appointment, admission, discharge and
procedures. If you walk all the semantic paths from the message root you get all the semantic concepts which can be

included in the message.
In this project the platform was

Java and the transport uses
serialized Java objects as graphs
to convey the PatientEncounter
message and the model is used to
generate the well formed graph at
run time. In this case the run-time
bridge reads the model to
understand how to construct the
graph and transformation is
therefore by interpretation.

FHIE Person Domain Model
Version 1.05 - 4/24/2001

Military Serv ice

branch : CodedElement
military Status : CodedElement

Telephone
country Code : PlainText
areaCode : PlainText
number : PlainText
extension : PlainText
/ composite : PlainText

PostalAddress

line1 : PlainText
line2 : PlainText
line3 : PlainText
city : PlainText
state : CodedElement
country : CodedElement
postalCode : PlainText
community : PlainText
county : PlainText

CodedElement

a_qualif ied_code : Qualif iedCode
<<Optional>> pref erred_text : String

LanguageProf iciency

language : CodedElement

PlainText
v alue : string
<<Optional>> language : Qualif iedCode

PersonName
pref ix : PlainText
giv enName : PlainText
middleName : PlainText
f amily Name : PlainText
suf f ix : PlainText
nickName : PlainText
dateRange : TimeSpan
motherMaidenName : PlainText

0..n

+degree

0..n

Person
gender : CodedElement
deceasedDateTime : DateTime
hasliv ingWill : Boolean
isDeceased : Boolean
isVip : Boolean
maritalStatus : CodedElement
nationality : CodedElement
religion : CodedElement

<<entity >>

0..1

+businessPhoneVoice

0..10..n
+homePhoneVoice

0..n

0..1

+military Serv ice

0..1

0..1+cellularPhone 0..1

0..1

+pager

0..1

0..1+f ax 0..1

1+birthPlace 1
0..n+businessAddress0..n

0..n

+homeAddress

0..n

0.. n

+of f iceAddress

0.. n

0..1+mailingAddress 0..1

0..n

+other

0..n

0..n

+ethnicGroup

0..n0..n

+race

0..n

0..n

+citizenship

0..n

0..1

+primary Language

0..1
0..n

+languages
0..nQuali fiedName

authority _id : Authority ID
local_name : LocalName

Organization
codedI D : CodedElement

<<Entity ID>>

SponsorIdentity
id : Qualif iedName
f amily MemberPref ix : CodedElement

PatientIdentity
id : Qualif iedName
state : PlainText

PersonIdentity

birthDateTime : DateTime

<<Entity ID>>

1
+legalName

10..1

+alias

0..1

0..1

+tribalID

0..1

0..n
+driv erLicense

0..n

0.. 1

+socialSecurity

0.. 1

NextOf Kin

relationship : CodedElement

<<Role>>

1+play er 1

Practitioner
deaNumber : P lainText

<<Role>>

0..n
+localID

0..n 1

+play er

1

+as_practitioner

0..1+employ er 0..1

Patient

category : CodedElement

<<Role>>

0..1
+sponsorSocialSecurity

0..1

0..n

+externalID

0..n 0..n
+correlatedID

0..n0..n

+internalID

0..n

0..1

1

+as_patient

0..1

+play er

1

0..1

+nextOf Kin

0..1

<<Role_relationship>>

0..1

+primary CareManager

0..1

<<Role_relationship>>

Fig. 6.

ClinicalEvent
/ isAmended : boolean
reason : CodedElement
comments : PlainText
reasonComment : PlainT...

<<Act>>

CodedObserv
codedResult : Cod

dateRange : Time
motherMaidenNam

Qualif iedName
authority _id : Authority ID
local_name : LocalName

Verif ication
<<Act>>

Cancellation
< <Ac t>>

Request
<<Act>>

ClinicalEventAct
codedComments : CodedElem...
dateTime : DateTime
textComments : PlainText
id : PlainText

<<Act>>
0..n

+localID

0..n

+v erif ier
+superv isor

Appointment
plannedDate : DateTime

<<Order>>

+cancellation+request

schedules request

PatientEncounterTemplate0101
pat ientI d : Qualif iedPersonI D
t emplat eN ame : Str ing = DNS_f hie .org/ Patient EncounterTemplate0101
orig ination : Quali fiedN ame
dat eTime : TimeStamp

TextObserv ation
t ex tR es ult : Pla inText

ObservationEvent
c haracteristicObs erv ed : C odedElem...
obs ervationStatus : CodedElement
s ensi tiv ity : CodedElement
s equenc e : Numeric Value

<<Event>>

0..1
+v erif ication

0..1

ObservationResult
1

+observ ationResult
1

Dis charge
<<Act>>

Admission
ty pe : CodedElement

<<Act>>

+admitting

Perf ormance
<<Act>>

+perf ormer

0..1

+perf ormance

0..1

PatientEncounter
number : NumericValue
sty le : CodedElement

<<Event>>
+appointment

0..1+patient Encounter 0..1

0..1
+discharge

0..1+admission0..1

Procedure
ty pe : CodedElement

<<Event>>

0..*

+procedure

0..*

+perf ormance

+procedure

Observ ationReport
f ullText : PlainText

+report

+report

Fig. 7.

66

XML Schema Factory

The second example is current work being implemented with an XML Schema Factory which uses commercial off
the shelf tools performing transformations. Figure 8 shows part of the life cycle with the UML editor on the left, the

Transformer tool in the middle and the
target middleware IDE on the right.

The UML editor exports the Domain and
Message template models together as a
single XMI document which is imported
into the Transformer tool. The Transformer
tool has preset defaults but can read the
marked elements to condition the
transformation.

The XML schemas corresponding to
packages are generated along with all their
external references, namespaces and
include statements and can be validated.

They are then exported into the
middleware development tool which can
use them as the backbone schemas for
mapping against other incoming or
outgoing schemas and can generate sample
documents. The total round trip time is less
than a minute.

Figure 9 shows a fragment of the
Domain model – in this case part of the
Datatypes package and illustrates some
simple problems such as defining
predetermined string lengths and a Number

Datatype which will be generated as a restriction derivation of the XML decimal. The marks appear as stereotypes on
classes and attributes as well as a few tagged values.

The style of schemas produced have
very high re-use of common elements
and cannot determine exactly the scope
for an individual message. The
Message template diagram must be
used in conjunction with the XML
schemas for the Application System
developer to understand the payload.
Some investigation is continuing into
the possibility of the tool developing
XML schemas based on the Message
Template diagram itself. However this
will have to wait for standard diagram
exchange in XMI to be implemented
by the tool vendors.

The XML factory is going into its
first production project and has already
demonstrated the strength to build well
formed XML schemas and apply the
governance needed for successful
Enterprise integration. Notice in the
generated sample below that all the
documentation from the domain model
is carried into the XML schemas.

Midlleware Development

Import Package Schemas

Validate Schemas

Develop Maps

Model Transformer

Validate Generated Schemas

Generate XML Schemas

Import XMI Model

UML Editor

Develop Domain Model

Export Domain Model

Development Schemas: XML Schema

Transformer Model : XMI Document

Package Schemas: XML Schema

Editor Model : Model

: XMI Document

[Error]

[Valid]

[Error] [Valid]

Fig. 8.

Fig. 9.

decimal
{id=decimal}

- = collapse{fixed, id=decimal.whiteSpace}

PersonName

+previous_Last_Name : String150 [0..1]
+academic_Title : String30 [0..1]

+middle_Name : String50 [0..1]
+last_Name : String150 [0..1]

+first_Name : String150 [0..1]

+alternate : String240 [0..1]

+prefix : String30 [0..1]

+suffix : String30 [0..1]
+tiitle : String50 [0..1]

+code_Scheme : QualifiedName [0..1]

(DataTypes01)
ExternalCode

<<XSDsimpleType>>
String150

(DataTypes01)

<<XSDfacet>>+maxLength = 150
<<XSDfacet>>+minLength = 1

<<XSDsimpleType>>
String240

<<XSDfacet>>+maxLength = 10
<<XSDfacet>>+minLength = 1

<<XSDsimpleType>>
String10

(DataTypes01)

<<XSDfacet>>+maxLength = 50
<<XSDfacet>>+minLength = 1

<<XSDsimpleType>>
String50

(DataTypes01)

<<XSDfacet>>+maxLength = 30
<<XSDfacet>>+minLength = 1

<<XSDsimpleType>>
String30

(DataTypes01)

<<XSDfacet>>+maxLength = 15
<<XSDfacet>>+minLength = 1

<<XSDsimpleType>>
String15

(DataTypes01)

+postal_Code : String15 [0..1]
+country : ExternalCode [0..1]

+addr_Line2 : String30 [0..1]
+addr_Line3 : String30 [0..1]
+addr_Line4 : String30 [0..1]

+territory : TerritoryCode [1]

+addr_Line1 : String30 [1]

+city : String30 [1]

(DataTypes01)
PostalAddress

{derivation=restriction}
(DataTypes01)

Money
<<XSDcomplexType>>

+currency : CurrencyCode [1]
+amount : Number [1]

Code
(DataTypes01)

+description : String50 [0..1]
+value : String15 [1]

+namer : AuthorityType [1]
+value : String30 [1]

QualifiedName
(DataTypes01)

<<enumeration>>
AuthorityType

(Terminology01)

+ECLIPSE1
+LAWSON

+DNS
+DB

+H

<<XSDsimpleType>>
Number

(DataTypes01)
{derivation=restriction}

-Y
-N

<<enumeration>>
YNBoolean

(DataTypes01)

67

 <!-- ~~~ -->
 <!-- Class: PersonName -->
 <!-- ~~~ -->

 <xs:element name="personName" type="dt01:PersonName"/>

 <xs:complexType name="PersonName">

 <xs:sequence>

 <xs:element name="prefix" type="dt01:String30" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Salutary introduction, such as Mr. or Herr

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="first_Name" type="dt01:String150" minOccurs="0">

 <xs:annotation>

 <xs:documentation>First name of the person

 </xs:documentation>

 </xs:annotation>

 </xs:element>

Conclusion

Implementation experience has shown the need to clearly define an Architectural Framework which must be aligned
with the development process and organizational structure within an enterprise. A new Change Management
Architectural Framework has been explored which allows the allocation of Systems Change to various teams and where
MDA and transformation or alignment between models provides a coherence between views whether they are between
the Business and the Implemented systems or between systems implemented with contracts in a Component Based
Architecture.

This framework declares the relationship between the methodology system and the change system which it defines.

68

Enterprise MDA®
 or

 How Enterprise Systems Will Be Built

Oliver Sims

Abstract. Success for MDA in the longer term depends on its ability to bring compelling value to
enterprise IT. Neither UML® nor executable UML are currently major players in enterprise IT. They
risk becoming also-rans if their potential fails to be realized in the enterprise context, both in
developing new applications and, arguably more important, in the integration and interoperability of
existing systems. In addition, MDA must inter-work with other present and emerging standards, such as
web services, business process management (BPM), and JCP (Java Community Process) initiatives.
This paper first analyses the OMG’s stated goal for MDA, a goal that is well beyond the oft-heard talk
of model transformations and code generation. It then describes how a small number of disparate but
important advances in the industry can be brought together in a truly synergistic way to achieve that
goal. Lastly, a roadmap for reaching the MDA goal is suggested.

1 MDA - What’s it all about?
MDA often appears on the surface to be all about transformations between four different kinds

of model—a CIM, a PIM, a PSM,1 and code (code being a model of the run-time). Often the code
generated is thought of as being restricted to skeleton code, plus some glue code. And if this is all
it is, then it would certainly not live up to the OMG’s claims. What claims? Well, the home page
of the OMG’s MDA website (http://www.omg.org/mda/), under the heading “How systems will
be built”, presents what might be called the MDA vision:

MDA provides an open, vendor-neutral approach to the challenge of business and
technology change. Based firmly on OMG’s established standards, MDA aims to
separate business or application logic from underlying platform technology. Platform-
independent applications built using MDA and associated standards can be realized on a
range of open and proprietary platforms, including CORBA, J2EE, .NET, and Web
Services or other Web-based platforms. Fully-specified platform-independent models
(including behavior) can enable intellectual property to move away from technology-
specific code, helping to insulate business applications from technology evolution, and
further enable interoperability. In addition, business applications, freed from technology
specifics, will be more able to evolve at the different pace of business evolution.”

Why will systems be built this way? Because achieving MDA’s aims can radically reduce
development, maintenance, and evolution time, provide for enhanced flexibility, and can bring
the solution design much closer to the problem definition.

But how can MDA do this?

The clues lie in these key parts of the vision statement: “separate business from technology”,
“enable IP to move away from technology-specific code”, and “fully-specified PIMs (including
behavior)” on “a range of platforms”. This means that a PIM that includes behavior specified
using an action language could either be the basis for generation of 100% of code, or could be

1 CIM: Computation-Independent Model (often referred to as a business or requirements model); PIM: Platform-

Independent Model; PSM: Platform-Specific Model.

69

http://www.omg.org/mda/

directly executed (or more accurately, interpreted).2 In the enterprise system context, “platform-
independent” means independent of platforms such as J2EE, CORBA, .NET, various databases,
various GUIs, and so forth. Clearly achieving this aim would be of extreme value! Even a partial
attainment of the goal could be highly attractive.

But what factors can enable the aims to be attained? MDA alone cannot do it all. MDA’s scope
is certainly larger than simply defining kinds of model and the relationships among them: it is
based on the sound foundation of MOF™, such that languages other than UML can be used, and
important inter-language capabilities can be managed automatically. However, MDA certainly
does not include all the various aspects needed for scalable, flexible, service-oriented, and
interoperable enterprise systems. So MDA must assume other factors that support its central
vision. What are these factors?

To answer this, let’s re-state the key parts of the MDA vision in terms of questions:

1. How do we separate the business logic from technology logic?

2. What is a good structure for generated code, and therefore of a PIM, such that the necessary
‘ilities (scalability, flexibility, service-orientation, etc.) are delivered?

3. How do we ensure that the “business” in the business logic actually relates well to the
business in the business?

Happily, there are good answers to these questions. Briefly, they are:

1. A product line approach can separate business logic from technology logic.

2. Effective architecture, preferably component-based, can be delivered to application
developers through UML profiles and Domain Specific Languages (DSLs)3.

3. An approach to bridging the “Business/IT Divide” that provides a good CIM-to-PIM
transformation.

And even more happily, these three answers tend to be very synergistic. Indeed, some have
argued that to be successful in addressing enterprise IT challenges with one, you have to address
the other two as well. Of course, other factors such as process and organization must also be
addressed; however, implementing the three approaches just listed tends to lead inexorably to
others, so they’re not forgotten. Meanwhile, let’s consider the three approaches and how they
contribute to MDA goals.

2 Implementing the Goal – MDA’s Enterprise Companions

2.1 Separation – a Product Line Approach

MDA “aims to separate business or application logic from underlying platform technology.”
Business logic can be defined as any development artifact, or part of an artifact, that is unique to
the business. For example, code that calculates a price, or a screen definition that defines how a
sales order record should appear, or a data schema for customers, are all “business logic”. On the
other hand, code that sets up the necessary conditions for a web service to be invoked, or handles
the window creation mechanism at the GUI, or manages an ACID transaction, is “technology
logic.”

2 There is a valid argument that a PIM that is executable is actually a PSM that is specific to whatever engine handles

the execution. However, in the context of enterprise systems, where “platform” generally means the commercially-
available middleware, we prefer retaining the term “PIM” for a model that can be executed on two or more of those
platforms.

3 DSL stands for Domain-Specific Language. DSLs have been addresses in previous MDA Journals (see [5][10])

70

Ideally, the business application development team—whether working on new applications or
integration projects, whether outsourced or in house—should be concerned only with business
logic, everything else being consigned to a COTS (Commercial Off The Shelf) “platform,” as
shown at the top part of Figure 1. However, such a COTS platform does not exist today. Although
much technology logic is, of course, handled by COTS products (middleware, operating systems,
DBMSs, EAI managers, and so on), there is always a gap between the platform provided by a
given set of COTS products and the business logic within any given development project
(“platform gap” in Figure 1).

Ideal:
Business Function

COTS Development and Runtime Platform

Platform Gap:
Business Function

Development and Run-Time COTS Products

Wrong Glue:
Business Function

Development and Run-Time COTS Products

Right Glue:
Business Function

Development and Run-Time COTS Products

Figure 1

The gap comprises both answers to “how to” questions, and specific artifacts that deliver the
answers pre-packaged for business developers. Examples include how to handle concurrency,
transactions, transparency across different communications stacks, and pooling of various sorts
(threads, DB connections)—as well as how to integrate the various COTS products. There are
also how-to questions about the development environment (itself a fairly complex IT system)
such as how to share models effectively, transform models, structure models and code, and define
and collect useful metrics. Finally of course, there are the big issues: how to provide for
flexibility, scalability, re-usability, and so forth.

A specific example of an artifact that helps “fill the gap” is a client-side proxy that enables a
business developer to invoke another component either synchronously or asynchronously with
respect to his or her thread of control, providing a call-back method/operation for an async reply.4
This isolates the developer entirely from the nature of the underlying communications stack.
Another example is a script that enables a model to be transformed into another (for example,
from CIM to PIM).

The gap is often informally filled either by all business application developers learning a great
deal about software technology, or by a few expert software technologists within a project team

4 Experience suggests that most of the time invocations are made synchronously. But occasionally async invocation is

needed—and when it’s needed, it’s really needed!

71

or shared across project teams. However, the filling—often called “glue”—is seldom captured
and re-used by other projects. Hence the technology efforts are often duplicated, and often
projects run late because the technical skills required to fill the gap are underestimated. In
summary, filling the gap on a by-project basis is the wrong way to provide glue (“wrong glue” in
Figure 1).

Platform vendors may argue that the gap is necessary, since they must provide for a very wide
range of customer requirements. This is true as far as it goes; however, such platform vendors do
not seem to have taken on board the fact many applications—or integration projects—are often
technically incredibly similar to each other. This similarity is what makes product lines feasible.
Technically similar systems are often said to conform to the same “architectural style” [1] or
“approach” [2]. Sometimes the similarity derives from similarities in the business area being
addressed, and sometimes from similarities in the technical approach to solving quite different
business problems. In any case, systems built to the same architectural style have very similar
glue requirements. The observation that many systems are technically similar is at the heart of the
product line initiative. The product line concept [3] has been summarized in previous MDA
Journals [4] [5], and there have been other proponents of the same approach, albeit under
different names, including Herzog [2] and Hubert [1].5

Indeed, platform vendors could find it profitable to provide for the common architectural styles
of enterprise systems (“right glue” in Figure 1). Currently, however, this glue must be provided
by the IT organization; and providing it informally within each project is a huge waste of
corporate resource. A product line approach enables the glue to be captured and used (or re-used
if you prefer) for multiple projects.

Separation of business from technology logic can be done in two ways:

• Provide the glue as an addition to the COTS runtime, already deployed, and treated as an in-
house addition to the run-time—for example, a logging service.

• Generate the glue code each time it is needed by a project, and deploy it with the
application—for example, code to log to a common logging database.

In general, one should generate as little code as possible within a given project. The reason for
this is that the more is generated, the more has to be tested. Imagine that much of the technology
logic in a logging service were to be generated for each application. A change to that generated
logic would require that all the applications that embed it will have to be re-tested and re-
deployed. Some might say that the supposedly unchanged business logic does not have to be re-
tested; others would be more cautious, and say that re-compilation or even re-link must be re-
tested even though a large part of the source code has not changed (as far as anyone knows!).

In reality, both approaches will be needed. However, it is clearly much better, wherever
possible, to produce glue once, and to deploy it once, thereby effectively creating a higher-level
platform. Since “platform” normally refers to COTS products, I apply the term virtual platform to
the combination of COTS products (middleware, GUI frameworks, DBMSs, application servers,
etc.) and glue.

Separating application development tasks and artifacts from platform tasks and artifacts,
however, can take a significant management effort. Standardizing on a given set of COTS
products is something that many enterprises already do. However, it’s much better also to
rigorously separate as much of the “glue” as possible. This leads to an organizational structure

5 The product line concept is not new: a good argument can be made that the billions of lines of mainframe COBOL

code that ran the world’s businesses in the last third of the last century were often produced in a similarly-structured
environment.

72

whereby a “platform” (or “infrastructure”) group has as its mission to provide as many
transparencies as possible for a separate application development group. Making that
organizational change is often not so easy. The higher-level virtual platform is created and
maintained by a platform group, whose mission is to “delight” (as one of my clients put it) the
application development group. Application development projects are run within the latter group.
In this way, business change and evolution is separated from that of technology.

Now that we’ve got the business logic as fully separated as possible from technology “stuff,”
we can now consider how MDA applies to business logic by itself. But a “fully-specified PIM”,
with action language providing behavior, should in principle be executable. And executability
requires more than just the business logic: it also requires a specification of the structure being
executed—especially so if the target platform is a distributed system. So: how should the model
be structured—and how should the generated code be structured?

2.2 Enterprise PIMs

It is relatively easy to answer the question of how code generated from an enterprise PIM6
should be structured. It should, of course, be structured following best-practice modularization
(e.g. high cohesion low coupling), where modules interact so as to deliver scalability and to
minimize dependencies for flexibility. It must also conform to the virtual platform so that viable
code can be generated. Best-practice modularization means taking a mature computer-based
software engineering (CBSE) approach. By “mature”, I mean the hard-headed software
engineering approach as opposed to the “let’s buy everything off the shelf and mix-n-match to
magic a solution” approach.

 Structure and Architectural Style

But how should the PIM as a whole be structured? Arguably the best way is to structure the
PIM according to mature CBSE as well. Since each component encapsulates and realizes a
specific business concept, it becomes fairly clear where the business logic fits. The UML2
component provides an ideal model element for this approach, since it “addresses the area of
component-based development and component-based system structuring, where a component is
modeled throughout the development life cycle and successively refined into deployment and
run-time.” [6]

In a product line approach, the question of technical structure is handled by the platform
group—or by a separate architecture group (possibly a third IT organizational element). Such
structural design is usually called an “architecture”, and is the expression of an architectural style.
Of course, there are other forms of architecture; for example, of particular use is a “business”
architecture that provides business patterns—for example, the pattern for design of a Contract,
perhaps as suggested in [7].

Structure—including allowable interactions between components—should be defined by the
platform group, and delivered to the application development group in the form of a tested UML
profile. The profile also defines how a PIM is packaged, so that, for example, a design-time can
be taken as a whole from a repository and plugged into (re-used in) a PIM. Indeed, there is no
reason why, as soon as the component is identified, it should not become “executable” within the
development environment, so that it can be queried, for example, as to its development status, and
also be able to run whatever simple test cases may be available: for example, create an instance
which has a unique key. This approach to “living components” is well described in [1]. It is

6 I say “PIM” singular: but of course a large system may be designed within several models, each at the same level of

PIM-ness.

73

particularly useful in its ability to generate appropriate test data on an ongoing basis as function is
added to the component.

 The PIM’s Profile

In defining a UML profile for PIMs, the architecture group first has to understand the
particular architectural style being addressed. Then a model of this architectural style is created.
Such a model (for example, [8]) might define:

• Distribution tiers

• The kinds of component in each tier and allowable interactions across and within tiers

• The kinds of classes that realize components (such as a “focus” class—a UML-defined
stereotype)

• Patterns for such things as component granularity, scalability, and dependency management

• The kinds of binding (tight, loose, etc.) used for different model elements

• The required structure of the PIM itself, including namespaces (for example, a component
could be required to be a separate namespace)

Second, and always assuming that the business developers are using a modeling tool that can
make use of UML profiles to guide developers when they build their PIMs, the architects create a
UML profile from the architectural style model. (Actually, with the better profiling tools, building
the model also builds the profile). They then test the profile, before shipping it to what might be
called the “development-time platform”. In this way, the developers have architecture delivered
to them through their everyday tools (just as detailed procedures defined by a development
process might be similarly delivered).

A sample fragment of a profile for distributed enterprise component-based systems is shown in
Figure 2, where relationships in red would be specified in OCL and are shown here for
convenience only. The profile makes use of the new Component concept in UML2, which
obviates the need for the more complex profiles that were required to model enterprise
components with UML 1. The figure is addressing component granularity, and defines four
levels, each characterized by a different kind of component. An Application Component is an
application delivered as a component (although seldom as a single artifact). It is realized by a
collaboration of “Business Components”, which is the core concept presented by Herzum [2]. A
Business component encapsulates a business concept such as “Customer” or “Order Manager”
across the distribution tiers, and is realized by a collaboration of Distributed Components. A
Distributed Component is an abstraction of the kind of component provided by EJB, COM+, and
CCM. Two subtypes of Distributed Component (not shown in the figure) allow for
implementation using either a programming language (e.g. EJB, COM+)—the Algorithmic DC,
or using only a declarative script of some sort (e.g. BPM definitions)—“the Declarative DC”.
Finally, a Service Component is a collaboration of distributed components that realizes a closely-
related set of services provided by a given distribution domain, for example, the “logical server”
domain, or the “user interaction” domain. A full discussion of discussion of distribution domains
and tiers is beyond the scope of this paper, but can be found in Sims [8].

Figure 3 shows a fragment of a model using this profile. The figure shows a Service
Component in the “logical server” domain. The model uses standard UML stereotypes (focus and
auxiliary) for the classes that constitute the realization of the Order component. The
implementation of the profile enforces scalability through such things as restricting an ACID
transaction to occur within a single invocation of the logical server domain from other domains
such as user interaction or business process management (BPM) domains.

74

Component

«stereotype»
Distributed Component

«stereotype»
Business Component

«stereotype»
Application Component «stereotype»

Service Component

Figure 2

A modeling tool that enforces a profile can ensure that business logic developers conform to
the defined architectural style. The “ilities” (scalability, maintainability, re-usability, accessibility
as services, flexibility, configurability, manageability. etc.) can be, to a large extent, enforced
through constraints specified within the profile, by the virtual platform, and by code generated
from models that are created via the profile.

A profile of this kind can also provide for “wrapper” components that provide a service
through their interfaces, and internally access legacy applications. Where there is an enterprise
interoperability bus that defines a specific “real time” (as opposed to batch) interface technology
and design (such as a particular usage of WSDL), the profile can be used to define wrappers from
which the appropriate WSDL interfaces can be generated, perhaps wrapping some EAI adapters
or BPM scripts.

 Behavior – the Action Language

To be computationally complete, a PIM must include algorithmic behavior. This can be
achieved through use of the UML Action Semantics (see [9]). Using an existing 3GL would
require that the language be subsetted. In practice, this means that the subset must be
documented, taught, and maintained—probably a much larger job than using an existing action
language. Having said that, it must be pointed out that today, although profile building and action
languages are available on the market in modeling tools, I am not aware of any tool that combines
both.

75

«Service Component»
Store

Person

OrderEntry

Account

OrderableItem

«Distributed Component»
CustomerOrderEntry

«delegate»

«delegate»

«Distributed Component»
Product

OrderableItem

Person

Account

«Distributed Component»
Order

«auxiliary»
OrderHeader

«auxiliary»
LineItem

«focus»
Order

Collection

Figure 3

Figure 4 illustrates use of the action language.7 The figure shows an Account component that
provides an interface, and that has a realization—the focus class “Account”. Some design detail
that would be present in a real PIM has been omitted or compressed, so please do not take this as
a fragment of a real working PIM. The behavior of one operation—createAccount()—is shown,
although a tool would not normally present the action language as a UML comment as the figure
suggests.8

7 UML defines the abstract syntax for Action Semantics, but does not define a specific notation (that is, a concrete

syntax). The concrete syntax shown in the figure is Kennedy Carter’s implementation of Action Semantics. The
content is a modification of a sample taken, with their kind permission, from Kennedy Carter’s tutorial on
Executable UML (xUML—see http://www.kc.com/MDA/xuml.html). However, any errors or omissions in the figure
I claim as my own.

8 See [9] for an example of action language used to fully define a state machine.

76

http://www.kc.com/MDA/xuml.html

«Distributed Component»
Account

«interface»
iAccount

createAccount(…)
validateAccount (…)
getAccountDetails(…)
setAccountDetails (…)

accountId: Integer
customerId: String
dateOpened: Date
balance: Real

«focus»
Account

OPERATION: createAccount
INPUTS: customerId: String, openingBalance: Real
OUTPUTS: newAccount: accountId {key}
create a new account with a unique id & the specified opening balance
newAccount = create unique Account with balance = openingBalance
assign today's date to the 'dateOpened' attribute
today = current-date
newAccount.dateOpened = today
Link newAccount to its owning customer:
newAccount.customerId = customerId

createAccount(CustomerId: String, openingBalance: Real) : accountId
validateAccount(…)
getAccountDetails (…)
setAcountDetails(…)

Figure 4

2.3 Business/IT Bridge

“Perhaps the greatest difficulty associated with software development is the enormous
semantic gap that exists between domain-specific concepts … and standard programming
technologies used to implement them.” [10] This has often been termed the “Business/IT Divide”,
and has often seemed particularly intractable.

However, the CIM-PIM-PSM trichotomy strongly suggests that MDA provides for CIM-to-
PIM generation as well as PIM-to-PSM-to-code. This means removing the business/IT divide.

A CIM is often known as a business model, or as a requirements model. There are many ways
of interpreting what such a model is. To some, it is a model of the enterprise. To others, it is an
idealized model of an application. Since the context for MDA is that of IT systems, I interpret a
CIM to be a computation-independent model of that part of the business that is to be addressed by
an IT system. While parts of a CIM might be simulated (using, for example, the “naked objects”
[17] approach), it cannot, even in principle, be automatically transformed or interpreted such that
it can be directly deployed into an operational system.

I also believe that the work of building a CIM stops when there are no more questions to be
asked about the business in order to build the IT system. This includes low-level business
processes (procedures or algorithms) about, for example, exactly how a price is calculated, or
how stock is to be allocated against a sales order across perhaps several warehouses with different
delivery schedules and shipping routes.

Of course, this does not imply that a CIM must be complete before work on the PIM starts:
they can be gainfully and quite happily be overlapped.

So the problem is this: how can we develop a valid CIM that is also structured such that it can
be straightforwardly transformed into a skeleton PIM, where the skeleton provides the structure
for, and some of the content of, a valid IT system?

77

An answer is provided by the recent EU Combine project [13], which suggested that a business
model can be seen in terms of four categories. The first two are:

• Processes that require human intervention (these are candidates for implementation as
workflow using declarative distributed components that are typically implemented using a
COTS workflow product)

• Processes that do not require human intervention, but where the business requires that a
record be made, for future consultation, of intermediate states. (these are candidates for BPM
approaches using declarative distributed components that are typically implemented using a
BPM or EAI COTS product)

But what about the core business systems that BPM, EAI, and Workflow processes call upon?
This is where the third and fourth categories come into play. The Combine project developed an
approach, based mainly on Taylor’s concept of business engineering [11] and also on my own
early experience with the GUI end of CBSE [12], called “business element analysis”.9 Full
exposition of business element analysis is beyond the scope of this paper; however, the basic idea
is to produce process and information models as usual, then, using a set of defined heuristics,
separate the model into two categories of “business element” as follows:10

• Processes that do not require human intervention and where the business is not interested in
keeping (for future consultation) a record of any intermediate states. These processes—which
can often go down to the procedure level—can often be grouped by the resource they
primarily operate upon—for example, create order, amend order, delete order, and query
order(s). Each such group is a “process business element”,11 and is often the responsibility of
a single organizational unit. (A process business element a candidate for implementation as a
process business component.)

• The “important” entity resources12 (for example, Sales Order, Customer, Addresses) that the
business needs to record for use by processes. Each such important resource is typically a
group of the resources in an information model (for example, Customer has several kinds of
address, various codings such as “major customer”, customer number, and so forth.) Each
such group is an entity business element (and is a candidate for implementation as an entity
business component).

Business element analysis provides a view of the business that is much less cluttered than
many others, since low-level but essential business detail is hidden within each business element.
But it does something more important from the MDA point of view. Given a component-oriented
architectural style of the kind mentioned previously, it becomes clear that business elements can
be nicely—and automatically—mapped into business components, where the type of the business

9 A paper on the Combine approach to business modeling, which included a section on business elements, was

presented at the EDOC 2003 conference. [14]
10 For those familiar with the approach, it is often useful to start with the obvious business elements and derive process

and information models, and further business element models, as you go.)
11 I appreciate the term “element” being used for a group of things is oxymoronic; however, that’s what the term is at

present anyway.
12 The word “important” is being used in a special sense here. A description of the identification process for

“important” resources is presented in [14] and is beyond the scope of this paper. Briefly, however, in an ERP system
(for example) Customer and Order are “important” whereas “Address Line” or “Quantity Ordered” are not. Suffice
to say that business people have no problem with the concept. They will say for example, “Our business deals with
customers, suppliers, orders, pricing engines, etc.” They realize of course that such resources have attributes such as
address line or actually composed people, But they do not say: “Our business handles address lines, quantities
ordered, etc.” A more formal version of this reality is outlined in [14]. Finally, it should be mentioned that Combine
defined two quite different kinds of resource: “artifact” (information or entity) resources, and “actor” resources. For
the purposes of this paper I have ignored the latter.

78

element becomes the type of the UML2 component. Indeed, if not outlawed as just too heretical,
the same model element can flow from CIM right through to code! Now that’s traceability!

Figure 5 illustrates part of a CIM, with business elements represented by stereotypes of the
UML2 component (the “BE” in the stereotypes signifies “business element”). Figure 6 shows a
PIM that could have been generated from the CIM fragment in Figure 5. The “BC” in the
stereotypes refers to the business component concept mentioned previously.

Of course, the PIM is initially very skeletal, and must be greatly refined to approach the kind of
fully-specified PIM discussed previously. For example, each business component is refined into
however many of the architecturally-defined distribution tiers are necessary to properly express
the business concept in the system, each tier being realized by one or a few distributed
components. Service components are also defined for each distribution domain.

The key point is, however, that it is quite possible to generate a PIM from a CIM such that
there is isomorphic traceability. Thus there is a straight-line process from CIM through to code,
which Hubert [1] calls “component metamorphosis.” Note, for example, the similarity between
Figure 5 and Figure 3!

«Delivery BE»
Order Management

«Process BE»
Order Process

«Resource BE»
Customer

«Resource BE»
Product

«Resource BE»
Sales Order

Figure 5

79

«Application Component»
Order Management

Party

OrderEntry

«Process BC»
Order Manager

OrderableItem

«Entity BC»
CustomerOrderEntry

«delegate»

«Entity BC»
Product

OrderableItem

Party

«Entity BC»
Sales Order

Order

Order

Figure 6

2.4 Domain Specific Languages (DSLs)

DSLs are an old idea currently being given a whole new set of rather attractive clothes.
Described in previous MDA Journals [10] [15], they are currently being pursued by both IBM
and Microsoft. There is a real sense in which a UML profile is a DSL. However, the kind of
DSLs being foreseen will have a look and feel quite different than today’s typical UML tools,
even when profiles are applied. This is partly because an enterprise system needs other design
tools than UML alone, and partly because a DSL is likely to be presented to the user as one of a
family of tools, all hosted in a more general tool such as Eclipse.

I have recently been working with a client on DSLs for a particular domain within the finance
industry. The domain is a small part of an enterprise system. Very surprisingly, it seems that it
may be possible to start work now on a product that, in two year’s time, may provide for end
users to define their own applications with only a little help from their IT people. This is an
extremely attractive proposition. It is made (we think) possible first through the constrained
nature of the domain, second by the ideas presented in this paper, and third by the imminent
emergence of mainstream DSL tools.

MDA and MDA-like approaches + Product Line + Architecture + DSLs The Future!

3 Getting there – a roadmap
In this paper, I have tried to show that the MDA vision, in enterprise systems, can only be fully

achieved through a combination of product line, architectural style thinking, and solving the
business/IT divide. This doesn’t mean that things like process engineering, software engineering,
testing, deployment, project management, and so on are not also affected. However, the driving
forces are the organizational and technical directions of the product line approach, and the
structural and simplifying directions of applied architectural styles and CIM-PIM linkage, with
the MDA approach tying them together synergistically.

Although Microsoft is progressing along a slightly technical different road than MDA, its
essential goals for enterprise systems seem to be similar.

80

So how do we get there? In effect, we’re looking at a transition from where we are now to a
much-improved development environment. And although all the capabilities needed are not yet
integrated into commercially available tools, there is certainly sufficient support available now
for early adopters to start the journey. In particular, we can construct UML profiles for enterprise
systems today, and generate at least skeleton code.

The question is, how does an IT organization make the transition to MDA?

Luckily, transition processes are not new. Guttman and Matthews [16] describe a particularly
good one. The key is non-intrusion into current and planned development projects, and certainly
to avoid big bang approaches. Thus the idea is to start small, developing initial capability in the
context of a few (one to three) real projects. These projects might be termed “pilot projects”
because, although real development projects, they are the vehicle to pilot the transition.

But who does the extra work (for extra work there will inevitably be)?

Another key part of the transition is to fund a group that has, or is in the process of gaining,
technical knowledge of the MDA approach, and who share the MDA vision. People in this group,
skilled architects, designers, modelers, and software technology engineers, will devote somewhat
more than 50% of their time to working in the pilot projects as project members, helping to
produce project deliverables. The other part of their time is spent growing the virtual platform,
based on their project experience and on project priorities. This will include capturing the
architectural style in a UML profile, applying that profile through tools, and so forth.

In effect, this group is the genesis of a separate Infrastructure/Architecture/Process unit (what
we called the “platform group” previously) within the IT organization. It is funded to provide and
evolve a high-productivity environment for business application developers. Working within
projects, and developing re-usable “glue” based on project priorities, should prevent this group
becoming an ivory tower; especially when the results of their efforts are deemed null-and-void
unless they are delivered through tools, and unless business application developers—their
customers—like the results. In other words, the IT organization must evolve to one where the
platform group provides high-quality and immediately useful services and “products” to their
customers, who are the business application developers and their managers.

The transition process moves forward from the initial pilot projects through several defined
stages (with go/no-go points built in), ending with phased roll-out of MDA capability to the
whole of the IT development organization. On the way, the platform group will probably evolve
into two groups: an “infrastructure” group responsible for provisioning and maintaining the
virtual platform, and an “architecture” group responsible for designing the virtual platform.
Process may be handled by the architecture group or by a separate group within the platform area.

Experience suggests that the major impediments to success in such a transition are funding
problems and difficulties in making the required organizational changes. Creating a product line
environment that majors on the MDA vision requires a fixed focus on making life easier for the
business application developer. After all, dealing with the awesome intricacies of the reality of
business is challenging enough. Dealing at the same time with forty-eleven services thoughtfully
provided by middleware vendors is a truly Herculean task. We must change to an environment
that does not require each business application developer to be a Hercules.

4 Summary
We asked how the claims made for MDA can be substantiated in the context of enterprise

distributed systems. One answer lies in the synergistic combination of three major approaches:
product line, component-based enterprise architecture, and the business element approach to
resolving the business/IT divide. Product line organization separates technology logic from

81

business logic; clean business logic is structured, and key ’ilities provided for, by a component-
based enterprise architecture; the enterprise architecture defines a structure into which the CIM
business elements can be isomorphically mapped. MDA provides the catalyst. The result is the
prospect of fully specified enterprise PIMs.

Figure 7 illustrates this vision. Within the platform group, the infrastructure group delivers the
development and run-time environments, complete with generators and transformation tools, as
well as the various COTS products. In the figure, the major tools used by business application
developers are represented by the “Modeling and Development Tools” box. Profiles that the
architecture group provides are used to define PIMs and to configure the various tools. Solid
arrows show the main data flow through the development lifecycle where the “data” consists of
artifacts such as the CIM, the PIM, and so on. Dotted arrows show dependencies; for example the
modeling and development tools depend on the enterprise SOA profile.

Enterprise SOA Profiles

xxBilling
Components

Component Technology Platform
Profile

CIM PIM Mapping

PIM
Generator

Code
Generator

PIM Code Mapping

PIM
Interpreter

Platform Group

Modeling &
Development

Tool(s)

Billing
CIM

Billing
Component PIM

(computationally complete)

Application Development Group

Figure 7

Achieving such synergy is not easy. However, a viable way ahead is available for those who
choose to take it. Already today there are many organizations taking the first steps in MDA, and
there are many vendors who provide various aspects of the MDA vision. Indeed, everything
needed to achieve the vision is available today—just not in the same place! This isn’t about being
an early adopter of MDA—it’s too late for that. It’s about being an early adopter of the longer-
term aims of MDA—with which we started this paper.

The end point of this vision is that, perhaps late in this decade, there will be a generation of
application developers, whether in-house or outsourced, who never write programs in today’s
languages. Instead, they will design fully specified PIMs of their business logic and structure,
PIMs that can either be directly executed by an architecture-aware UML virtual machine, or used
as the basis for automatically generated code.

MDA has put a stake in the ground. The stake is a signpost to a most desirable future. Both
IBM and Microsoft have announced their intention of getting there, albeit by different technical
routes. Their chosen tools centre on IBM’s Eclipse with EMF (Eclipse Modeling Framework),
and Microsoft’s Visual Studio with the extensions mentioned by Steve Cook [15]. Steve says that

82

Microsoft will not be using precisely the same MDA technologies (MOF, UML, etc), but will use
variations of them. Both include the concept of DSLs, whether UML-based or not.

However the future unrolls, it is the MDA vision, as opposed to its current technologies, that
points a way out of the current morass of cottage industry approaches to IT, to the broad sunlit
uplands of truly effective, productive, agile, and flexible system development. Today code is
king. Tomorrow design will be king. And the process of bringing innovative solutions to business
challenges will become progressively simpler as more and more of the underlying software
technology that today’s business developers battle with becomes increasingly buried in the
platform—which is the true domain of software technology experts.

5 References
[1] R. Hubert, Convergent Architecture, Wiley 2002.

[2] P. Herzum & O. Sims, Business Component Factory, Wiley 2000.

[3] P. Clements & L. Northrop, Software Product Lines, Addison-Wesley 2002.

[4] D. Frankel, The MDA Marketing Message and the MDA Reality, MDA Journal, March
2004.

[5] J. Bettin, Model-Driven Software Development, MDA Journal April 2004.

[6] OMG Document ptc/04-05-02 UML 2-0 Superstructure Specification (www.omg.org).

[7] H. Kilov, Business Specifications, Prentice Hall 1999.

[8] O. Sims, A Component Model, Cutter Executive Report Vol 5 No. 5, May 2002.

[9] S. Mellor, Agile MDA, MDA Journal June 2004’

[10] G. Booch et al., An MDA Manifesto, MDA Journal May 2004.

[11] D. Taylor, Business Engineering with Object Technology, Wiley 1995.

[12] O. Sims, Business Objects, Wiley 1994 (now out of print but available in pdf form at
http://www.simsassociates.co.uk/books.htm).

[13] The COMBINE Project – See http://www.opengroup.org/combine/overview.htm. Details
of the project results are not yet publicly available.

[14] S. Tyndale-Biscoe, et al., Business Modelling for Component Systems with UML, paper
presented at the EDOC 2002 Conference, Lausanne.

[15] S. Cook, Domain-Specific Modeling and Model Driven Architecture, MDA Journal,
January 2004.

[16] M. Guttman & J. Matthews, Migrating to Enterprise Component Computing, Cutter
Executive Reports, 1998/9.

[17] R. Pawson & R. Matthews, Naked Objects, Wiley 2002.

83

http://www.omg.org/
http://www.simsassociates.co.uk/books.htm
http://www.opengroup.org/combine/overview.htm

Relating MDA and inter-enterprise collaboration management

Lea Kutvonen
Department of Computer Science, University of Helsinki

Lea.Kutvonen@cs.Helsinki.FI

Abstract

The goal of MDA (Model Driven Architecture) approach
is to provide tool chains that support generation of applica-
tion implementations, and interoperability of applications
by ensuring that communication models can be shared by
different components of distributed applications.

This paper discusses the relationship of MDA tools and
components with the inter-enterprise collaboration man-
agement that has become crucial for the success of enter-
prises. The MDA components and tools are seen as lo-
calized, intra-enterprise elements, with structural require-
ments on shared abstract computing platform. That plat-
form is expected to enable inter-enterprise business pro-
cesses to be run, using the MDA provided components as
participants. Essentially, the MDA tools are visioned as fac-
tories taking service descriptions and generating implemen-
tations, metainformation for local management services,
and metainformation used for inter-enterprise collabora-
tion establishment and management.

This relationship between MDA and inter-enterprise col-
laboration middleware induces needs for shared model
and pattern repositories, and ontologies supporting queries
from them. Furthermore, this relationship between MDA
and process-oriented systems reserve MDA techniques on
the (ODP) engineering level solutions, while (ODP) enter-
prise level descriptions are used as metainformation for col-
laboration middleware.

1 Introduction

The OMG MDA (Model Driven Architecture) [1, 2, 6]
aims for tools and solutions that rise expressiveness of pro-
gramming tools and provide interoperability of software
components across platforms. The MDA approach uses a
unified system model by taking the full application network
and capturing it into a single (or composed) model, PIM
(platform independent model). This model is then trans-
formed (stepwise using several refinements and modifica-
tion) into an (partial) implementation. Parts of the unifying

model may be transformed using different set of transforma-
tion rules, giving a solution for a heterogeneous platform.

Looking at the emerging ICT support for inter-enterprise
collaboration, the first necessary step is to the develop-
ment of enterprise systems, and intra-enterprise business
processes within them. For this work, MDA brings a wel-
come and necessary improvement. The three modeling lay-
ers – CIM, PIM and PSM – allow process-aware software
components to be developed and interoperate because they
are developed using the shared CIM model that represents
enterprise operational needs.

However, the second step in enterprise system evolution
is the adjustment to various business networks. New gen-
eration ERP systems, distributed or collaborative workflow
systems, and inter-enterprise business process management
systems require modeling of a "global" collaboration model
within which partners have specific roles to be fulfilled by
their ICT system services.

The inter-enterprise arena is not directly addressed by
MDA. Still, MDA components (component used to refer to
produced software components, MDA tools, transformation
rules etc like in [4]) bring a significant element to the overall
collaboration architecture.

The business networks can be established and managed
in various ways, namely by integration, unification via
shared model, or by federation. Integrated solutions are
what we have seen in EAI and B2Bi solutions [13, 13]. Uni-
fied solutions trust on shared metalevel model for coordina-
tion and interoperability, like in MDA. In an inter-enterprise
setting, MDA tools can be used directly, but only if the
network of enterprises and their collaborative business pro-
cesses can be designed together and participants are willing
to replace their internal process components with new ones
or are able to map new processes on top of existing ser-
vices. Federated solutions require separate facilities to exist
to provide an environment, a breeding environment [5], to
find appropriate process models, negotiate of their use, and
agree on participation on the established network together
with terms and conditions of the operation.

Even in the case of federated solutions, and cases where
the global business process is not used for generating ex-

84

ecutable elements, but for monitoring conformity, the ac-
tual service components need to be created with some tools.
Here, MDA tools are very applicable, as the metainforma-
tion required by both facilities are of the same type.

Relevant points of design include the platform models
assumed. In the following, the shared abstract computing
platform for inter-enterprise business process management
is briefly commented, and its effects on the structure of
MDA components is discussed. Special attention needs to
be placed for communication, and agreement on communi-
cation contents and context; the ODP viewpoints [8] pro-
vide a method for describing what platform elements and
contractual elements need to be involved.

For the inter-Enterprise processes, choreographs be-
tween independent services are relevant. Therefore, the
question arises on how MDA supports production of service
implementations taking both the platform requirements and
the service description (signature, behavior, NFA features)
into consideration.

2 Idea(l) of shared abstract computing plat-
form

The overall architecture model discussed here is the one
used in web-Pilarcos project [12, 11, 9, 10]. In the model,
a federation contract is formed to define the collaboration
processes and roles between enterprise services. The B2B
middleware carries responsibilities of running the partner
discovery, contract management and behavior monitoring
protocols. The service components are independent from
each other and only required to provide the service denoted
in terms of external behavior and information exchange.
The autonomy of service providers is emphasized; the in-
ternal implementation or deployment aspects are strongly
encapsulated.

In environments where enterprise applications become
members of dynamically established inter-enterprise busi-
ness networks, the following metainformation services are
needed:

� identification of the intended network structure, in-
volving the topology of the network for responsibility
distribution and collaborative business process models;

� discovery of potential partners for the roles in the net-
work;

� static verification of interoperability between commu-
nicating partners; and

� contract management (establishment, monitoring, ex-
ception management, termination).

The key element in the infrastructure is contract and con-
tract management facilities. The business network contract

(federation contract) captures the business process models
involved and maps the roles presented in such a way that
each participant has one and only one combined role in the
network. The roles are populated using discovery service
for suggestions, and by assuring the selected service offers
present an interoperable network.

The essential part of the role requirement is that of pro-
vided set of services and required set of services from peers.
Implementation requirements of the service may call for
requirements on service from the local platform; all "side
effects" of processing towards peers should be visible in
the service. Some integration requirements may however
be present: requirements for binding object support and re-
quirement for the use of integrated repositories need to be
set as specific service properties.

Figure 1 illustrates how these services can be seen as
potentially external infrastructure services between enter-
prises. The requirement for each enterprise is to support in-
terfaces for corresponding metainformation exchange pro-
tocols.

The model repositories (type repository and business
process model repository) are to support static verification
steps during the network population phase and during any
repopulation events later in the network lifetime [17, 14].
Therefore, the MDA components need to be present in
the operational infrastructure services. As the contract is
phrased in platform independent terms, all participants need
to be able to reflect their own solutions relationship to the
abstraction. The repositories need to provide an open, incre-
mentable set of transformation both horizontally and verti-
cally. The existence of horizontal transformations (PIM-
PIM, or PSM-PSM transformations) a) requires an under-
lying (implicit or explicitly stored) unifying model to ex-
ist and b) indicates an interoperability relationship to ex-
ist. The existence of vertical transformations a) support
traversal of the relationship tree for analysis purposes and
b) support code generation and dissemination of best prac-
tices knowledge.

The MDA transformation rules and transformation fil-
ters need to be stored into service, information representa-
tion, process model and NFA definition ontologies for run-
time use. Verification of relationships is resource consum-
ing task, and thus needs to be performed separately.

The network of relationships is built by a set of design-
ers, filter programmers, ontology creators etc. New kind of
infrastructure requires an enhanced set of new "professions"
as described for example in [7]. In addition, standardiza-
tion efforts providing standard collaborative processes (like
RosettaNet PIPs [3] or proprietary supply chains processes)
gain from a shared publication method online and thus eas-
ier adoption cycle.

For business network establishment, each enterprise pro-
vide metainformation via traders about the use of those ser-

85

trader

populator

type repository

model repository

 binding object

service
interface

provision

workflow
engine

component
implementation

implementation
repository

binding
endpoint

management

conformance
monitoring

service
interface
provision

workflow
engine

component
implementation

implementation
repository

binding
endpoint
management

conformance
monitoring

Figure 1. Architecture

vices they provide. Traders are supported by type repos-
itories for resolution on whether two interfaces are alike,
replaceable by each other, or not compatible. The populator
fills in a business network with interoperable services.

For the runtime communication, the essential element
in the architecture is that of distributed, open binding ob-
ject. The object is constructed according to a binding con-
tract, which declares the selected distribution transparen-
cies, transaction choreographs, QoS agreements, and end-
point characteristics.

For the runtime verification of model conformant busi-
ness process enactment, monitoring services are needed.
Sensors can become standard elements of the alternative
binding architectures. For the development of pervasive
monitoring services, the language concepts for the moni-
tored phenomenon need to be agreed on. This means on-
tologies of various aspects, like NFA features, dependent
on each business process application domain.

3 Deriving requirements on PIMs from the
business network environment

Within the architecture, three modeling points are of spe-
cific interest: the business network models, the external be-
havior models of service interfaces, and the model for the
service realization within the enterprise. Here, the term re-
alization is selected in favor of implementation, as the real-
ization will often span a group of applications, data reposi-
tories etc.

The MDA processes to be used here would produce ser-
vice realizations, starting from a set of models and pro-
ducing appropriate implementation code (frameworks), and
metainformation to be published in the B2B middleware
repositories. The code should not include binding man-

agement, interoperability tests with peers, partner selection
logic, or other elements provided by the B2B middleware.
Instead, only the application logic should be present and
conform to the external behavior model of its service inter-
face type. Implementation must be parameterizable by NFA
alternatives and other contract values.

The MDA road map from OMG describes MDA process
with three model layers, CIM, PIM and PSM, roughly re-
lated to ODP viewpoints. CIM (computation independent
model) relates to the enterprise viewpoint, PIM (platform
independent model) to computational viewpoint, and PSM
(platform specific model) to engineering model. The pro-
cess is started from top, generating PIM models from the
CIM models, with the advise of some transformation rules.
Likewise, more detailed patterns advise the generation of
PSM models from PIM models.

In the inter-organizational setting, the CIM model of fo-
cus describes the enterprise service internal logic that is
externally visible through the provided service interface.
Thus, in the MDA tool, a new CIM model needs to be ver-
ified against a published external service type. The set of
enterprise business processes is more or less consistent and
preplanned for efficient use of computing solutions. Model-
ing the processes and analyzing the processes as a set (BPA,
BPR, etc) is an important goal in itself, especially combined
with the view of inter-enterprise processes.

This CIM model can be further refined to PIMs. At the
PIM level, also other models should appear in the enterprise
model repository, namely those processes that support as-
pects of computing platform properties (security, trust man-
agement, QoS management, authorization, enterprise poli-
cies, service and binding factory management). These mod-
els should be prepared in such a way that aspects of be-
havior that can be negotiated within the inter-enterprise net-

86

work can be configured either by selecting a suitable service
component or by setting configuration attribute values.

For any enterprise service to be generated starting from
a CIM model, a derivative PIM should be produced us-
ing selected CIM patterns. In addition, a set of PIMs that
represent required computing platform properties should
be joined with that business logic PIM for analysis. For
code generation, the PIMs of computing platform proper-
ties should be dealt with as platform definition, giving the
target concepts to be used by the implementation.

The binding elements should be provided as separate ser-
vice elements. The production of these elements should go
through the same kind of production process as the services
within collaborative business processes.

Information or documents exchanged in the business
processes are not described in all modeling techniques.
However, modeling of information is an essential aspect
that should indeed be modeled explicitly, and as a separate
modeling issue. So, in addition to PIM models, there should
be separate PII models (presentation independent informa-
tion models) that can be mapped down to various represen-
tation formats. Transformations between representations of
the same models could be placed as a responsibility of bind-
ings.

When an enterprise service becomes deployed, it needs
to be made available in the network. This is done by ex-
porting appropriate service offers. For the proper estab-
lishment of dynamic business network contracts, the ser-
vice offers need to capture metainformation that describes
the service from several points of view, capturing the ser-
vice description from ODP enterprise viewpoint and ODP
computational viewpoint in respect of the actual service,
and from ODP engineering viewpoint and ODP information
viewpoint in respect to bindings.

4 Producing new enterprise services

To make the relationship of inter-enterprise collaboration
management and MDA process more concrete, an enter-
prise service production process is briefly sketched. Fig-
ure 2 illustrates the process and the flow of model informa-
tion in the architecture.

For the service elements two sources of model informa-
tion is needed: type repository and realization models. The
type repository is used for retrieving an existing service in-
terface definition with behavioral, syntactic and NFA re-
lated information. Naturally, the MDA process can start by
definition of new service interface type or subtype, and its
publication to the type repository; in the publication phase,
relationships to other existing models can be stated (or gen-
erated) and verified. The realization models should be avail-
able as a repository as well; most likely the repository is em-
bedded into MDA development environment and thus may

be vendor specific although free exchange of models would
be ideal.

The service types can be located either directly browsing
the type repository, or by browsing the business network
models first. When an appropriate business network model
is found, one of the roles can be chosen and service types
associated to it can be picked up. The business network
models can be stored for example as enhanced, abstract
BPEL4WS [16] descriptions, or in a home-brew notation
for ODP enterprise language. Service descriptions can be
stored for example in enhanced WSDL [18].

The service types can then be organized as interfaces,
and several implementation models can be selected to cre-
ate the overall PIM for the service logic. Into this ba-
sic framework, several aspects PIMs can be intertwined
to include for example non-functional property manage-
ment (security, QoS, trust, policy-based protection of ser-
vice abuse). The resulting network of communicating ob-
jects/components/subservices/workflow has to be analyzed
for its viability, and code generated. The platform model
and aspect models need to be available to describe the tar-
get environment onto which code is intended to run. Part of
the platform model form facilities for binding management,
which has to become a standardized, abstract PIM.

When the implementation has been generated and de-
ployed, metainformation has to be provided: service offers
exported to traders describing all service interface proper-
ties, binding requirements, range of nonfunctional proper-
ties that can be adapted to, etc.

5 Conclusion

This paper tries out some initial ideas on how MDA tools
could be used for production of enterprise services that are
autonomous but interoperable within a collaboration envi-
ronment. The environment outline is that of web-Pilarcos
project.

The exercise shows that the MDA process is applicable
when the tools used are able to take several input mod-
els and produce several different kind of output: code and
metainformation for the runtime environment.

Essential for the produced applications is that they use
the abstract services of the collaborative operational envi-
ronment, especially the binding facilities. Other parts of the
computing platform are fairly much isolated.

The federation contract structures that are focal in the
web-Pilarcos architecture capture requirements from all
ODP viewpoint models. Consequently, the MDA stepwise
process running from CIM to PIM and to PSM must pick
up requirements from the contract structures at each step.
Likewise, requirements for information contents and pre-
sentation should follow the same method.

87

service interface

behaviour model

interface syntax

NFA

business network model

business process model

role interactionrealisation
model alternatives

MDA tool

implementations

deployment rules

service offers
with
binding requirements

populator

binding instances

service enactment

local service
management

platform
model

service
logic

aspect
models

trader

type repository b.n.m. repository

Figure 2. Flow of models.

Using the collaborative business network models as a
source of requirements for the enterprise applications cause
the need of identifying some commonly accepted property,
policy, and behaviour alternatives. The ontologies for these
should be presented within the type and model repositories
of the collaboration infrastructure; this provides a method
for disseminating standard ontologies. It is not plausible to
develop a unified ontology for all services, but instead, it
is probable that certain ontologies can have a business net-
work model or a few business domain as their scope.

6 Acknowledgment

This workshop paper stems from work performed in the
web-Pilarcos project at the Department of Computer Sci-
ence at the University of Helsinki. In web-Pilarcos, active
partners have been VTT, Elisa and SysOpen. The web-
Pilarcos< project is a member in national ELO program (E-
Business Logistics) [15].

References

[1] Model Driven Architecture (MDA). ormsc/01-07-01.
[2] MDA Guide Version 1.01., 2003. omg/2003-06-01.
[3] Rosettanet implementation framework: Core specification

v02.00.00, 2004. http://www.rosettanet.org/.
[4] J. Bezivin, S. Gerard, P.-A. Muller, and L. Rioux. Mda com-

ponents: Challenges and opportunities. In Metamodelling
for MDA, University of York, 2003.

[5] L. M. Camarnha-Matos. Infrastructure for virtual organiza-
tions – where we are. In Proceedings of ETFA’03 - 9th inter-
national conference on Emerging Technologies and Factory
Automation, Lisboa, Portual, Sept. 2003.

[6] D. S. Frankel. Model Driven Architecture - Applying MDA
to Enterprise Computing. OMG Press, 2003.

[7] A. Gavras, M. Belaunde, L. F. Pires, and J. P. A. Almeira.
Towards an mda-based development methodology for dis-
tributed applications. In First European Workshop on Model
Driven Architecture with Emphasis on Industrial Applica-
tion, 2004.

[8] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 3: Architecture, 1996. IS10746-3.

[9] L. Kutvonen. Controlling dynamic ecommunities: Develop-
ing federated interoperability infrastructure. In INTEREST
2004 workshop.

[10] L. Kutvonen. Using business network models in web-
pilarcos. In EMOI 2004 workshop.

[11] L. Kutvonen. Automated management of interorganisational
applciations. In EDOC2002, 2002.

[12] L. Kutvonen. B2b middleware for managing process-aware
ecommunities. In submitted manuscript, 2004.

[13] D. S. Linthicum. B2B Application Integration - eBusiness-
Enable Your Enterprise. 2001.

[14] T. Ruokolainen. Component interoperability. Master’s the-
sis, University of Helsinki, Department of Computer Sci-
ence. In Finnish. Manuscript to be accepted in April 2004.

[15] TEKES. ELO program, 2003.
http://www.tekes.fi/programs/elo.

[16] S. Thatte. Business process execution language for web ser-
vices, version 1.0. Technical report, July 2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.

[17] M. Vähäaho. Arkkitehtuurikuvauksia hyödyntävä meklaus.
Master’s thesis, Department of Computer Science, Univer-
sity of Helsinki, Dec. 2002. C-2003-NN.

[18] WSDL Specification. Technical report, 2004.

88

MDA and Real-Time Java: The HIDOORS Project

Jean-Noël Meunier (meunier@aonix.fr)
Frank Lippert (lippert@aonix.de)
Ravi Jadhav (jadhav@aonix.com)

Nigel Harding (nharding@aonix.co.uk)

June 2004, Aonix Europe, Partridge House, Newtown Road, Henley-on-Thames, OXON RG9 1HG

Keywords:
UML, RT modelling, MDA, Profile, Automatic code generation, Java, Safety critical applications, RMA

Abstract:
Embedded Systems very often consist of a number of concurrent tasks, which have to be executed in a given
time frame. Special tools are needed to analyse the schedulabity and to detect the overrun of given time targets
(“Worst-Case-Execution-Time-Analysis“). Standard Java lacks some of the special features, such as
deterministic garbage collection, needed for Embedded Systems.

The HIDOORS (High Integrity Distributed Object-Oriented Real-time System) project is focused on the
development of a RT-Java environment and is funded by the European commission. This includes a UML based
modeling environment and MDA technology, which facilitate the transformation into high integrity real time
systems in Java.

Aonix developed a special RT-Java profile for this project, which is based on the OMG’s SPT Profile
(“Schedulability, Performance and Time“) for embedded systems. This profile is the central part of HIDOORS
and is used by tools such as the modeling tool, the model checker, the WCET Analyser and model
transformation to the Java environment.

This paper will give a brief overview of the HIDOORS project, discuss how UML 2.0 Profiles are used to
describe the required aspects of embedded systems and explain the model transformation process with an
example.

1. Introduction
HIDOORS (High Integrity Distributed Object-Oriented Real-time Systems, http://www.hidoors.org) is a 30-
month project consisting of European companies and research institutions and is partially funded by the
European Commission (IST 2001-32329). The main goal of the project is to bring Java to applications that are
hard real-time, embedded, distributed and safety critical. Additionally, the project aims to include all
technologies and tools related to the development of a hard real-time application, real-time modelling, real-time
analysis and proof of correctness. The project can be considered as being divided into two parts. Firstly, it relates
to real-time Java Platform with an aim to solve problems such as deterministic garbage collection, real-time
network support, fast RMI (Remote Method Invocation) as a means to communicate between components in a
distributed environment. Secondly, it relates to real-time modeling with an intention to consider the question:
how can critical and embedded real-time applications be modeled? This document focuses on the latter part and
tries to at least partially answer this question.

To model an application, whatever the domain (real-time or not), it seems impossible to ignore the UML
notation since it is now a well-known and recognized standard from the OMG group [1]. One of the main
advantages of UML is that it is a generic notation that can address almost any domain (real-time, business, web
applications, etc.). But designers often see this as an important drawback because the notation appears to be too
general and too ambiguous to be used easily and efficiently for a particular domain. Fortunately, UML provides
general extension mechanisms by means of stereotypes, tagged values and constraints to adapt UML to a specific
domain. This is part of the UML profile definition. A UML profile describes the context of use of UML for a
given domain and is defined by a subset of UML and some UML extensions. Profiles help to reduce ambiguity,

89

reduce the complexity of models and to enrich their semantics. Models are then easier to specify, read, and
process (profiles enable better automatic code generation and better model validation). That is why in most
domains, a UML profile needs to be defined and used.

For the real-time domain, a profile already exists; it is the "UML Profile for Schedulability, Performance and
Time" [2] (hereafter referred to as SPT) and has been adopted by the OMG group. This profile provides the basic
constructs for real-time modeling. The feedback from the HIDOORS project related to this SPT profile is that:

1) The profile is too general as it covers all real-time problems both soft and hard.
2) The profile mainly defines the fundamental concepts, in other words the syntax, but it does not provide any

indications concerning ways to use them, just like a dictionary of language that gives the definition of words
but without any indication about how to build sentences by using these words.

3) Some concepts such as the communication means between tasks (see the next section) are missing in the
profile.

For all these reasons, the HIDOORS project introduces a new profile named "HIDOORS profile", compliant
with OMG's SPT and which takes into account the HIDOORS feedback and addresses distributed, critical and
embedded applications.

Section 2 deals with the HIDOORS profile. It presents the objectives of the profile and the two views that the
profile aims to address: the Rate Monotonic Analysis view and the task / inter-task communication view. To
make the paper clearer, an example related to the communication pattern is presented. Section 3 covers the
automatic code generation (a Model Driven Architecture approach) that takes as input a real-time UML model
and generates as output real-time Java source code. More particularly, it shows how the code generation takes
into account the HIDOORS profile concepts and maps them into Java source code.

2. The HIDOORS UML profile
The HIDOORS profile [3] aims to fulfil the following goals:
- to be compliant with the standard OMG's SPT profile
- to provide concepts that enable the specification of a RMA (Rate Monotonic Analysis) view of the model.
- to provide concepts that enable the specification of a task view (including inter-task communication) for the

model.
- to provide a high level representation of asynchronous communication channels by introducing new patterns

(for definition or more details on patterns, see [4] for general patterns and [5] for patterns related to real-
time systems).

- to provide concepts that enable the specification of distribution concepts

Currently, concepts related to distribution have not yet been studied by the HIDOORS profile.

2.1. Rate Monotonic Analysis
There are two reasons for choosing the RMA view capability. First is the schedulability model, which is part of
SPT profile and is mainly based on RMA. Secondly, for the HIDOORS project, one of the project validation
applications is checked against RMA techniques.

The question related to the schedulability analysis is whether tasks can be executed such that all deadlines are
met. RMA is often applied on the source code of a real-time system but performing such timing analysis at the
model level enables the detection of potential specification errors earlier in the development process. If the rate
monotonic analysis performed on the model concludes that the system is not schedulable, it is not worth
continuing so long as the problem is not solved. However, the contrary is not true, that is if the rate monotonic
analysis concludes that the system is schedulable, it does not mean that the final system will be schedulable.
Still, performing this timing analysis at the model level can prevent many errors and has many benefits.

For a single processor/multiple threads system, the compliance of a model to rate monotonic analysis relies on
describing the system from a concurrency point of view and as a set of scheduling jobs. Each job is composed of
one trigger and one response. This description is called a real-time situation [6]. A trigger is principally
described by an occurrence pattern (e.g. periodicity or statistical distribution) and figures as events of typical
real-time modelling. A response is a set of sequential actions, which are principally described by their duration
and the resources they need to access. They can be nested as sub-actions of an action, similar to the nested
statements of a source code. A resource is any logical or physical item necessary to perform the action. Actually,

90

it is not mandatory for designers to describe all resources used by the system. From the RMA point of view, the
only relevant items are the shared resources that are resources, which are potentially used by several concurrent
actions.

As a consequence, the goal of the HIDOORS profile is to define a set of elements and a set of rules that will
allow the UML model to show scheduling jobs and consumed resources (see figure 1):

• A real-time system is a set of scheduling jobs.
• A scheduling job is made of one trigger and one response.
• A response is a set of actions.
• A trigger contains event timing information and is associated with one or more actions.
• An action contains duration information and is associated with zero or more resources. An action can also be

made of sub-actions.

Figure 1. Scheduling jobs, triggers, actions and resources

The HIDOORS profile defines a set of elements based on the basic concepts of SPT: triggers are messages
stereotyped as <<SATrigger>>, actions are messages stereotyped as <<SAAction>>, resources are objects
stereotyped as <<SAResource>> (see figure 2). Thus, the HIDOORS profile gives more assistance to designers
by providing these elements for re-use in models and defining which diagrams can be used for that purpose.

Figure 2. HIDOORS profile excerpt – triggers, actions and resources

2.2. Task view and inter-task communication
Another goal of the HIDOORS profile is to increase the level of abstraction of models thereby simplifying the
effort of designers particularly when specifying asynchronous communication between tasks. New stereotypes,
model elements and rules have been defined for this purpose. Three communication patterns are taken into
account in accordance with the ARINC 653 standard in Avionics [7]:

- Buffer: messages are transmitted via queues with predefined capacity in FIFO order. This provides a
communication channel with a "First In First Out" type of service (refer to ARINC 653 standard for more
details).

- Blackboard: A message is put in a board and is either read by the receiver or overwritten by the next written
message. There is no queuing of messages, but a message may be lost. This provides a communication
channel with a "Last Message Only" type of service (refer to ARINC 653 standard for more details).

Trigger Action Resource

Scheduling Jobs

1..*

1

0..*

1

91

- Event: the event represents a simple synchronization channel (refer to ARINC 653 standard for more
details) that can be used to notify another task that something happens. It works like a flag.

In the following, only the buffer communication pattern is presented, as the other communication patterns work
in a similar manner.

The stereotype <<HIBuffer>> is an association between two classes representing both concurrent units
(stereotyped <<HIConcurrent>>), conceptually using an instance of the class ARINCBuffer (see figure 3). It is
important to understand that this template class instance is completely hidden, that it is implicit information that
does not need to be specified in the model by designers and that will never appear in the generated Java source
code. However, this information is useful for the automatic code generation to produce the correct source code
corresponding to the communication pattern specification (see next section).

��������	
��

���������	

���������������������

����
�������	�
������

����
�������������

����������������� �	

Figure 3. Implicit class for buffers

The type parameter of the ARINCBuffer template class must correspond to the type of the messages. This
parameter can be set as a UML association class or as an association name. The size parameter should
correspond to the maximum number of messages allowed simultaneously in the FIFO buffer. This value can be
set from system specification or from simulation. The default value is infinite. This parameter can be set as a
HIBufferSize UML tagged value, or within the association name (multiplicity). Figures 4 and 5 give an example
of the use of this communication pattern. In the static view (figure 4), a task ("Sender") sends messages to
another task ("Receiver"). The buffer size is set to 512. The message exchanged between the two tasks is of type
"Message" (association class). In the dynamic view (figure 5), for a period the "Sender" sends two messages,
however, the "Receiver" gets only one during that period (which means that the period of "Receiver" will have to
be half that of "Sender" otherwise messages could be lost).

Figure 4. Example of buffer specification - static view

Figure 5. Example of buffer specification - dynamic view

Figure 6 gives an excerpt of the HIDOORS profile related to the three communication patterns: buffers,
blackboards and events.

�	�	

!!"#$��
�		���%%

�	�	��	

!!"#$��
�		���%%

�	����	

 ����
�����

!!"#&�''�	%%�
("#&�''�	����)*�+,

��� ��

!!"#$��
�		���%%

��	�	
 ��	�	��	

!!"#$��
�		���%%

����������

����������

���	�
������

92

Figure 6. HIDOORS profile excerpt – the communication patterns

3. Automatic code generation
The Model Driven Architecture (MDA) approach is recommended by the OMG who recognised the need to
improve software quality and to reduce development costs (see [8] for more details). The OMG place emphasis
on model transformation and particularly the mapping of a Platform Independent Model (PIM) into a Platform
Specific Model (PSM). The role of the automatic code generation is crucial to such an approach. In the
HIDOORS project the automatic code generation consists of transforming the real-time model into real-time
Java source code. The main work in the HIDOORS project is to add rules relating real-time behaviour to the
general UML modeling approach (and also to translate UML concepts into Java concepts). The added value is
then on the generation of source code from the HIDOORS profile constructs. More particularly, the role of
automatic code generation is to break down the high level modelling and to make explicit constructs, which are
implicit in the model. Figure 7 shows how the buffer communication pattern is handled. The abstract model of
the example in figure 4 is mapped into a low level model taking into account the implicit information
concerning the ARINCBuffer (see figure 3). Figures 8 and 9 give the resulting Java source code.

Figure 7. Part of model transformation - the example of the buffer communication pattern

�	�	

!!"#$��
�		���%%

�	�	��	

!!"#$��
�		���%%

�	�	
�	�	��	
����	

������-���. �����*�+�
�	�
������
�������

��� ��

93

Figure 8. Java source code for the Sender and Receiver class

Figure 9. Java source code for the SenderReceiverBuffer class

4. Conclusion
UML has a standard way to extend its semantics by stereotypes, constraints and tagged values. A collection of
these is called a 'profile'. With the help of profiles, UML can be adapted to application domains for which
standard UML is not specific enough.

This paper shows the development and application of a UML profile suitable for real-time modelling. The profile
is largely compliant with standards and at the same time meets the specific needs of the HIDOORS project. To

public class Sender {

 // --
 // instance attributes
 // --
 private SenderReceiverBuffer out;

 //#ACD# M(UDAT::UID_65c15e75-0000067a-3ee5acf3-000626c6-00000004)
 //user defined code to be added here ...

 //#end ACD#
 ...
}

public class Receiver {

 // --
 // instance attributes
 // --
 private SenderReceiverBuffer in;

 //#ACD# M(UDAT::UID_65c15e75-0000067a-3ee5acfa-000aca45-0000000b)
 //user defined code to be added here ...

 //#end ACD#
 ...
}

public class SenderReceiverBuffer {

 // --
 // instance attributes
 // --
 /**
 * The buffer array holding the messages.
 */
 private Data[] queue = null;

 // --
 // methods
 // --
 /**
 * Obtains the next message from the message FIFO queue.
 */
 public void receive() {
 ...
 }

 /**
 * Puts a message at the last position in the message FIFO queue.
 */
 public void send() {
 ...
 }

94

meet these requirements it uses a subset of the SPT real-time profile developed by the OMG and communication
patterns from the ARINC 653 standard.

From an implementation point of view, the profile is implemented in a modelling tool through a profile editor as
specified in the UML 2.0 standard. Also implemented is a Java code generator that makes use of the real-time
profile by evaluating extensibility items applied to model elements. The modelling tool and the code generator
StP (Software through Pictures), like the other tools for the HIDOORS project, are integrated into the Eclipse
framework [9].

The HIDOORS profile and its corresponding automatic code generation are currently both used and tested by
one of the three real-time applications aiming to validate the HIDOORS project.

One topic not covered by this paper is the analysis and validation of real-time models using a Worst Case
Execution Time (WCET) tool . This work is performed by a HIDOORS partner.

5. Bibliography
[1] "OMG Unified Modelling Language Specification", Version 1.5, OMG group, March 2003,
(http://www.omg.org/cgi-bin/doc?formal/03-03-01)

[2] "UML Profile for Schedulability, Performance and Time", Proposed Available Specification, OMG group,
April 2003, (http://www.omg.org/cgi-bin/doc?ptc/2003-03-02)

[3] "A UML Profile for High Integrity Distributed Object-Oriented Real-time Systems (HIDOORS)", internal
document, HIDOORS project, January 2003

[4] Gamma E., Heml R., Johnson R., Vlissides J., "Design Patterns", Addison-Wesley, 1995

[5] Douglass B. P., "Real-Time Design Patterns", Addison-Wesley, 2002

[6] Klein M. H., Ralya T., Pollak B., Obenza R., Gonzalez Harbour M., "A Practitioner's Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems", Kluwer Academic Publishers,
1993

[7] ARINC specifications 653: http://www.arinc.com

[8] Model Driven Architecture (MDA) resources: http://www.omg.org/mda/

[9] The Eclipse platform website: http://www.eclipse.org

95

Middleware Unaware Software Development and Interoperability
using MDA

Nelly Bencomo, Gordon Blair

Computing Department, Lancaster University,
 Bailrigg, Lancaster, LA1 4YR, UK

nelly@acm.org, gordon@comp.lancs.ac.uk

Abstract. The main interest of this position paper is how to separate the development of distributed
applications from specific middleware technologies. Unfortunately, the large number of middleware
technologies conspires against this purpose – the development and maintenance of distributed
systems have become coupled to the constant evolution and changes of middleware technologies.
Authors back the idea that the Model Driven Architecture (MDA) gives the basis to tackle this
problem. Our proposed research focuses on interoperability among applications relying on different
platforms and the necessity that transformations and mapping of concepts between different PSMs
should be address according the context given by the Domain Problem.

1. Introduction

The goal of middleware is to provide an integration means for diverse computing platforms. Middleware
makes the development of distributed applications much easier, providing the abstractions to cope with
distribution and its coordination. Currently, we have different middleware technologies such as CORBA,
Java/RMI, EJB, Jini, Web Services (XML/SOAP) and .Net. All share the purpose of given the
infrastructure for distributed application development by providing abstraction over the complexity and
heterogeneity of the underlying distributed environment with its multitude of network technologies,
machine architectures, operating systems and programming languages [6]. Unfortunately, the
proliferation of middleware technologies has brought a new difficulty to distributed software
development – the constant change and evolution of middleware technologies. Software Engineers are
then challenged both in the area of development of new and scalable middleware systems, where open
and adaptable platforms should offer richer functionality and services, and in the area of application
development, where developers have to worry about constructing distributed applications that are able to
evolve with the underlying middleware technologies. Our interest focuses on the latter challenge, how to
manage the differences among Middleware Technologies when developing software applications, where
the main idea is to study how software development can be carried out unaware of middleware concerns.
The Model Driven Architecture (MDA) has been proposed as a good solution for this research problem.
MDA applies the basic principle of separation of concerns by separating the specification of the system
functionality from its specification on a specific platform. The former is defined as a Platform
Independent Architecture (PIM), the latter as Platform Specific Model (PSM). The mapping from PIM to
PSMs is performed using transformation rules. Interoperability among applications relying on different
platforms can be realized by tools that not only generate PSMs, but the bridges between them. We
support the idea that bridges need to focus on the context of specific Domain Problems. Our proposed
research focuses on the identification of pertinent Domain Problems and the consequent definition of
mappings and transformation between the abstractions of different Middleware Technology Models.

2. Middleware technologies à la carte

CORBA, Java/RMI, EJB, Jini, Web Services (XML/SOAP) and .Net. address, in general, the same
problems but with different approaches. For example, the Common Object Request Broker Architecture
(CORBA) is the Object Management Group's specification for achieving interoperability between distributed
computing nodes. Their objective was to define an architecture that would allow heterogeneous environments
to communicate at the object level regardless of who designed the two endpoints of the distributive
application. A cornerstone of CORBA is its support for multiple programming languages like C, C++,
Java, COBOL, Smalltalk, and Python. The CORBA standard includes mappings from IDL for each

96

mailto:nelly@acm.org
mailto:gordon@comp.lancs.ac.uk

supported programming language [5]. Currently Web Services present another alternative distributed
computing infrastructure; an alternative that is being strongly promoted (commercially and from the
point of view of research) as preferable to the use of distributed object middleware such as Java RMI or
CORBA. This new distributed computing solution exploits the openness of specific Internet technologies to
address many of the interoperability issues of CORBA and other former solutions.

For years it was assumed that a clear winner would emerge and stabilize this state of flux, but the time has
come to admit openly: The string of emerging contenders will never end! And, despite the advantages
(sometimes real, sometimes imagined) of the latest middleware platform, migration is almost always
expensive and disruptive [9]. On the other hand, companies have to preserve their software investments as the
middleware landscape changes underlying it.

3. MDA: a solution

The first step in MDA is to construct a model with a high level of abstraction that is independent of any
middleware technology, obtaining the Platform Independent Model (PIM). Within a PIM, the system is
modeled from the viewpoint of how it best supports the business [2]. Whether the system is going to be
implemented using CORBA, Java/RMI or Web Services technologies plays no role in a PIM. In the next
step, the PIM is transformed into one or more Platform Specific Models (PSMs). In our specific case, the
PIM is mapped (transformed) to one or more Middleware Technologies Models via OMG Standard
Mappings. This transformation might be made by a MDA tool that applies a standard mapping to
generate a PSM from the PIM. Depending on the tool, code production will be partially automatic,
partially hand-written. Finally, each PSM is mapped (transformed) to code. Because a PSM fits its
technology rather closely, this transformation is relatively straightforward [2].

4. Interoperability: mapping between the concepts

One important aspect to take into account is interoperability of applications that use different middleware
technologies. This is achieved in MDA using bridges between PSMs. It is necessary to transform
concepts from one platform into concepts used in another platform. The results of these transformations
will be used to construct the bridges between the PSMs. If we are able to transform one PIM into two
PSMs, all the information we need to bridge the gap between the two PSMs is available [2]. For each
element of one PSM we know from which element in the PIM it has been transformed. From the PIM
element we know what the corresponding element is in every PSM. We can therefore deduce how
elements from one PSM relate to element in other PSMs. So, we have all the information we need to
generate a bridge between every pair of PSMs.

Interoperability among applications relying on different platforms can be realized by tools that not only
generate PSMs, but the bridges between them. The idea of the OMG is that transformation definitions
should be in the public domain, perhaps even standardized and tunable to the individual needs of its users
[2].

5. Proposed Research

We support the idea that bridges need to focus on the context of specific Domain Problems instead of
using proposed generic PSM-to-PSM transformations [3]. We think that a standard bridge between
CORBA and Web Service applications, for example, is difficult, if not impossible to develop. Bridges
should address different Domain Problems, for example, Banking, E-commerce, Telecommunications,
etc. PSMs must model the target platforms with sufficient precision. The use and definition of general-
purpose concepts might lead to unsuccessful results due to their latent complexity. We are investigating a
formal definition of Domain Problems to consequently start defining mappings and transformation
between the abstractions of different Middleware Technologies.

 97

References

1. Gray N.A.B.: Comparison of Web Services, Java-RMI, and CORBA service implementations, Fifth
Australasian Workshop on Software and System Architectures, Melbourne, Australia, April, 2004

2. Kleppe A., Warmer J., Bast W.: MDA Explained The Model Driven Architecture: Practice and Promise,
Addison-Wesley, 2003

3. Kovse J.:Generic Model-to-Model Transformations in MDA: Why and How?, Workshop Generative
Techniques in the Context od Model Driven Architecture, OOPSLA 2002

4. Mellor S., Scott K., Uhl A., Weise D.: MDA Distilled Principles of Model-Driven Architectures, Addison-
Wesley, 2004

5. Vinoski S.: It’s just a mapping problem, IEE Internet Computing, pp. 88-90, May/June 2003
6. http://dsonline.computer.org/middleware/
7. http://www-106.ibm.com/developerworks/webservices/library/ws-arc3/
8. http://www.xs4all.nl/~irmen/comp/CORBA_vs_SOAP.html
9. http://www-106.ibm.com/developerworks/rational/library/403.html

 98

http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-arc3/
http://www.xs4all.nl/~irmen/comp/CORBA_vs_SOAP.html
http://www-106.ibm.com/developerworks/rational/library/403.html

Practical Model Driven Development process

Xabier Larrucea, Ana Belen García Díez, Jason Xabier Mansell

European Software Institute
Xabier.Larrucea@esi.es, anabelen.garcia@esi.es, jason.mansell@esi.es

Abstract. Nowadays many organizations are adopting MDA to describe their
systems. This fact forces organizations to transform their software development
process into a Model-Driven Development process. This paper proposes a
software development methodology focused on MDA, and describes both the
MDD process as well as the main process workflow. The UML Profile SPEM is
used to describe the process. In this paper we present a MDD process and a set
of System Family Engineer concepts to adapt the MDD process according to
user and functional requirements. This methodology has been developed in a
European IST project (MASTER project IST-2001-34600)

Introduction

Many organizations have already realized that the UML usage is becoming more

and more important to define their systems. In fact this modelling language is a core
concept within the MDA (Model Driven Architecture [11]) standard defined by the
OMG (Object Management Group). When these organizations put into practice the
MDA philosophy, they need to adopt a Model-Driven development process and the
appropriated tools to support it. This paper is focused in the MDD process.

Nowadays many software development processes (SDP) like RUP (Rational
Unified Process) are being applied in the industry. However these processes are not
taking into account MDA concepts and they must be fit into this context. Others SDP
like XP (eXtreme Programming), are also being applied. This SDP is an agile method
and therefore the design phase is code-oriented whereas MDA is model-oriented. In
[4] Stephen J. Mellor et al. combine the notion of “agile” and “model” and other work
related with processes has already been published, such as [8] and [7].

This paper presents a methodology developed in the MASTER project, a European
IST project (IST-2001-34600). In this paper we present a MDD process and a set of
System Family Engineer concepts to adapt the MDD process according to user and
functional requirements. The process is described in SPEM [12] (Software Process
Engineer Metamodel) notation. This paper completes the work presented in [6].

99

This paper is structured in three main sections; Section 2 provides an overview of
the MDD process; Section 3 outlines the adaptative process. Finally section 4
concludes the paper with future research action lines.

100

The MDD process

Many software development processes are considered as heavyweight processes.
Moreover processes like RUP (Rational Unified Process) could be adaptable to Model
Driven Architecture. For example, in [5] Chris Raistrick et al. have demonstrated how
MDA could be applied (“Using MDA in a typical project”). However their process is
a heavyweight process, it’s focused in eXecutable UML(xUML) formalism and they
do not take account the architectural layers. Our main process could be also
considered as a heavyweight process but with some differences. Our process is based
on the different architectural layers defined to describe and model a domain [3].
These layers are well-defined through the different metamodels definition.

In this section the MDD process is defined outlining the different phases with a
brief description. Each phase contains a set of activities that are deeply explained in
MASTER project deliverables [2]. The phases and the activities are tightly related
with PIM layers definition. The basis of the architectural layers are already described
in others works [10].

Figure 1 and Figure 2 provide an overall picture of the methodology proposed.
Figure 1 provides an overview of the phases of the methodology whereas Figure 2
provides a more detailed overview of the MDD process workflow, describing the
work products required and derived in each phase of the methodology.

ProcessPerformer

Capture user requirements

PIM Context Definition

PIM Requirements Specification

PIM Analysis

Design

Coding & Integation

Testing

Deployment

Figure 1 : Phases overview

101

 : Deployment Plan

Start

End

PIM Analysis

Design

Coding &
Integration

Testing

Deployment

Capture user
requiremetns

 : Requirements
Specificartion (SSS)

[Initial]

 : Requirements
Specificartion (SSS)

[Final]

 : Software Architecture & Design

[Initial] : Analysis PIM

 : Design PIM

. : CCM PSM

 : Software Architecture & Design

[Final]

 : Product

 : Test Evaluation Summary

 : Test Results

 : Test Model

 : Test Scripts

 : Deployment Unit

PIM Context
Definition

PIM Requirements
Specification

 : Glossary

[Initial]

 : Context PIM

 : Application PIM

[Derived from Family PIM]

 : Product Manuals

 : Application PIM

[Final]

 : Deployment Model

 : Requirements PIM

 : Release Record

Figure 2: MDD process workflow

Figure 1 provides and overview of the phases that make up the methodology
proposed. The phases are:

• Capture User Requirements: The objective of this phase is to elicit,
agree and document the customer requirements that the software system
needs to fulfill. This includes establishing a common understanding with
the customer on functional and non-functional requirements. This phase
includes the following activities: formalize the customer requirements in
an Application Model and derive an initial Application PIM and an initial
functional requirements specification from the common infrastructure of
reusable assets.

102

• PIM Context Definition: The objective of this phase is to clearly define
the scope of the software system to be developed. The result is an
unambiguous definition of the system, its objectives, and scope following
a black-box approach. Main activities are:

o Establish the system goals and business principles.

o Describe the external actors that interact with the system.

o Identify the high-level services offered by the system and their
key behaviour.

o Define the business events, and exchanged business objects.

• PIM Requirements Specification: The objective of this phase is to build
a model of customer requirements clear and complete and to have a
unique requirements description that all subsequent models will use. In
order to model the system functional and non-functional requirements, the
main activities of this phase are:

o Refine the PIM Context

o Identify services, events and business objects produced and
consumed by the system and the actors interacting with the
system

o Specify capabilities (use cases), forces (non-functional
requirements), and atomic requirements

o Identify and model the relationships between functional and non-
functional requirements.

• PIM Analysis: The objective of this phase is to model the internal view
of the system without any technological consideration and maintaining the
separation of concerns between functional and non-functional aspects.
The main activities of this phase are:

o Describe the system functionalities: the objects (with classes,
attributes, packages, etc.), the functions (with operations), the
system boundary (with interfaces), the behaviour (with sequence
diagrams), etc.

o Describe the system QoS aspects (refine the classes) and their
application to the functional elements of the model.

o Maintain traceability with the Requirements PIM.

• Design: The objective of this phase is to model the detailed structure and
behaviour of the solution (software application) that fulfils the system
functional and non-functional requirements. This implies making
decisions on how the system will be implemented and which architectural
style, patterns, standards and platforms will be used. Following an MDA
approach, the design is performed in two steps:

103

o Specify and design a platform-independent solution (how) for all
the requirements (what). The PIM will be defined with different
elements depending on the architectural style selected for the
solution, e.g., for a Components Design PIM the solution is
expressed in terms of software components (component,
interface, port, connector).

o Specify and design the platform-specific solution by refining the
platform-independent solution. The PSM is intended to be
automatically derived from the PIM through transformation
engines. The PSM contains models specific of the platform (e.g.,
CCM, EJB, .NET) and is detail and complete enough to allow
the codification and deployment of the solution

• Coding & Integration: The objective of this phase is to develop and
verify the software code that implements the software design fulfilling the
software requirements. This phase includes activities such as: develop the
components and classes (according to the models used as inputs), define
the organization of the code, execute unit tests, and integrate components
and subsystems. Following a MDA approach, the code is intended to be
automatically produced from the PSM through transformation engines.

• Testing: The objective of this phase is to demonstrate that the final
software system satisfies its requirements. This phase includes activities
such as: plan tests, prepare test model, test cases and test scripts, execute
tests, correct defects and document testing results. Test models are
traceable to PIM models (specially to PIM Requirements) and, following
an MDA approach, test models will be refined from the PIM and test
cases and test scripts will be automatically produced from the test model
through transformation engines.

• Deployment: The objective of this phase is to ensure a successful
transition of the developed system to the final users (including resources,
environment, schedule planning and execution). This phase includes
activities such as: create a deployment plan (dates of installation,
resources, etc.), create a deployment model (derived from the PSM
Deployment model and adapted to the specific execution environment of
the customer), create the product manuals, maintain records of the product
that is being delivered to the client, and provide the installation of the
product in the client premises

In this Model Driven Development process a set of roles are also described.
Moreover each phase is described through a workflow diagram in SPEM notation.
The purpose of this paper is not to give a deep and exhaustive description of the
elements of the entire process. However these elements are described in the MASTER
deliverables [1] and [2].

104

Adaptative Process

In the previous section a MDD process is described. This process is shown as
standard software process (SSP). Many organizations adapt their SSP to their specific
needs and requirements to provide software development plans. These plans have a
set of items that have common aspects and predicted variabilities [9] (a process
family). Therefore System Family Engineering concepts can be applied in this
domain. The MDD process could be adapted to user requirements establishing
relationships between application models (the MDD process and functional model).

Figure 3 provides an overview of the system familiy engineering process, in which
based on a detailed analysis of a domain, a set of decisions can be defined which
identify univocally any product of a domain. These set of decisions are captured in a
decision model which captures the variability of a domain. Once this variability is
solved by using the user requirements, an application model is produced. This
application model captures user requirements and is used in order to inititate the
derivation process by transformations in which the specific requirements are
introduced within the derivation process and the application variabilities are resolved.
As a result of the derivation process, in which all variabilities within a domain are
solved, the application assets for a specific customer are produced.

Application
assets

Application
assets

Input Output

Capture

Instance

Derivation
Process

Flexible
components

Application
Models

Application
ModelsDecision

Model

Decision
Model

User
Requirements

Domain
Analysis

Domain
Analysis

Figure 3: System Family Engineering overview

The main purpose of this paper is not describe how the MDD is produced step by

step but how the MDD process described in the previous section is tailored with user
needs and how some activities are removed or added depending on the requirements
(derivation process). This customization process is defined through variability
management, described in Figure 3. Within ESI a tool suite called V-Manage is used
to define and to implement the variability of the MDD process.

105

Figure 4 provides an overview of how Model Driven Engineering and System
Family Engineering have been used to produce a MDD adapted process.

System Family
Engineering (SFE)

good practices

Model Driven
Engineering (MDE)

good practices
SFE & MDE
standard
software
process

software project

MDD
adapted
process

Application
Engineering

Domain
Engineering

main view
Application
Engineering

Domain
Engineering

main view

Tailoring

Customer decisions
(Application Model)

System Family
Engineering (SFE)

good practices

Model Driven
Engineering (MDE)

good practices
SFE & MDE
standard
software
process

SFE & MDE
standard
software
process

software project

MDD
adapted
process

MDD
adapted
process

Application
Engineering

Domain
Engineering

main view
Application
Engineering

Domain
Engineering

main view

Tailoring

Customer decisions
(Application Model)

Figure 4: MDD adapted process

106

Conclusions and future work

This work has been developed in a European IST project called MASTER project
(IST-2001-34600) and it has also been applied in the context of Air Traffic
Management jointly with Thales ATM.

In this paper a Model Driven Development process has been described. Some parts
of this methodology like roles and work products description have been omitted to
limit the size of the paper. Moreover SFE has been applied to take into account user
requirements to customize the general process. However to complete the overall
process an appropriate tool suite must to be provided. Actually, it would be suitable to
have an IDE (Integrated Development Environment) supporting the domain analysis
phase throughout the deployment phase. Many tool vendors have MDD compliant
tools but do not provide support for the overall process or do not provide features
such as non-functional aspects (Rational XDE Modeller) related with behavioral
features.

In the context of methodology an emergent initiative related with MDA, agile
modelling (AM) [13] is growing. However tool vendors must improve their tools to
be able to execute models. Methodologies related with this “agile” area will be the
focus of our future work.

107

Reference:

[1] Deliverable D3.1 “Enriched PIM with project management information”. MASTER project:
IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D3.1)

[2] Deliverable D3.2 “Process model to engineer and manage the MDA approach”. MASTER
project: IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D3.2)

[3] Deliverable D2.1 “PIMs Definition and Description to model a domain”. MASTER project:
IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D2.1)

[4] MDA Distilled. Principles of Model-Driven Architecture. Stephen J. Mellor, Kendall Scott,
Axel Uhl, Dirk Weise. Addison-Wesley. Series Editors. Object Technology Series

[5] Model Driven Architecture with Executable UML. Chris Raistrick, Paul Francis, john
Wright, Colin Carter, Ian Wilkie. Cambridge

[6] Process Engineering and Project Management for the Model Driven Approach. Ana Belen
Garcia Diez, Xabier Larrucea. First European Workshop Model-Driven Architecture with
Emphasis on Industrial Applications , Enschede, the Netherlands , March 17-18 2004

[7] Application of MDA for the development of the DATOS Billing and Customer Care System
(Case study on the use of MDA for the development of a larger J2EE System). Jorg Guther,
Chris Steenbergen. First European Workshop Model-Driven Architecture with Emphasis on
Industrial Applications , Enschede, the Netherlands , March 17-18 2004

[8] Towards an MDA-based development methodology for distributed applications. Anastasius
Gavras, Mariano Belaunde, Luis Ferreira Pires, Joao Paulo A. Almeida. First European
Workshop Model-Driven Architecture with Emphasis on Industrial Applications , Enschede,
the Netherlands , March 17-18 2004

[9] Software Product-line Engineering. A family based software development process. David

M.Weiss,Chi Tau Rober Lai. Addison-Wesley

[10] PIM Definition and Description. Daniel Exertier, Benoit Langlois, Xavier Leroux. First

European Workshop Model-Driven Architecture with Emphasis on Industrial Applications ,
Enschede, the Netherlands , March 17-18 2004

[11] MDA Guide v1.0.1. Object Management Group, omg/03-06-01, June 2003

[12] Software Process Engineering Metamodel v1.0 (SPEM), Object Management Group,

formal/02-11-14 November 2002

[13] Agile modeling http://www.agilemodeling.com

108

New Roles in Model-Driven Development

Jan Øyvind Aagedal and Ida Solheim

SINTEF Information and Communication Technology, Forskningsvn 1, N-0314 Oslo, Norway
{jan.aagedal|ida.solheim}@sintef.no

Abstract. In this paper we outline a set of roles that are needed in model-driven
development (MDD). The set of roles are based on state-of-the-art component-
based methodologies, and we add new roles to accommodate the new activities
of meta-modelling, transformation specification and method engineering.
Finally, we list a set of tools to support the proposed roles.

1 Introduction

Model-driven development (MDD) has been advocated by academia and industry for
many years. Today, most of the popular and widely used software engineering (SE)
methodologies use models as the primary tool to develop software, and can thus claim
to follow a model-driven approach (e.g., [1, 2]). This trend has increased as a
consequence of the Model Driven Architecture initiative (MDA®) [3] launched by
the Object Management Group (OMG). During its relatively short lifetime, MDA has
gained a lot of attention by SE researchers, practitioners, tool vendors and others.
MDA promises an integrated framework for model-driven software development.
Since the Unified Modeling Language (UML™), the Meta Object Facility (MOF™)
and the Common Warehouse Metamodel (CWM™) are in the core of the MDA, the
models are the core artefacts of an MDA-based development process. An important
part of the MDA vision is to equip developers with fully integrated tools to support
the development of system models as well as executable code. These tools should
provide synchronization of code and models, cope with different model views and
abstraction levels, and provide utilities for model transformation and code generation.

General adoption of such advanced tools implies a new practise in systems
development. In addition to the activities and responsibilities defined in current
model-based methodologies, someone must be responsible for 1) specifying the meta-
models of the chosen PIM and PSM levels, 2) defining appropriate transformations
between the PIMs and the PSMs, and 3) checking the consistency between models,
both on different levels of abstraction and between viewpoints on the same level of
abstraction. The new responsibilities call for new roles to be included in an MDA
process. In the following, we outline the responsibilities of these new roles and
specify their contributions to the systems development process.

109

2 Additional MDD Roles

2.1 Background

From the MDA Guide [3], one gets the strong impression that OMG’s current vision
of model-driven architecture is still open for some interpretation. Indeed, in relevant
forums, much effort is used to discuss the meaning of central concepts such as
"platform", "independent", "transformation" and "architecture". Despite these
sometimes philosophical discussions, practical tools and techniques are emerging
which assist software developers moving towards the MDD vision. When these tools
are introduced into an organisation, one soon discovers that they assume new ways of
working that requires new skills in the organisation. These skills build upon, but are
not similar to, existing skills that one needs in traditional model-based development.
The MDD community assumes that the investments an organisation has to make in
order to get these new skills are outweighed by the returns in software productivity,
maintenance and flexibility.

In the MDA Guide and elsewhere, it is explicitly stated that the OMG will not
propose any standard methodology or process; it will only provide standardised
building blocks for making domain- or organisation-specific methodologies. In [4],
the assumption is that MDA will fit with most state-of-the-art methodologies,
including agile software development, extreme programming and more heavy-weight
processes like the Rational Unified Process. In the EU project MODA-TEL [5],
efforts have been made to define a MDD methodology, the results of which are
summarised in [6]. This is a general methodology that spans the identified phases of
project management, preliminary preparation, detailed preparation, infrastructure
setup, and project execution. However, in this paper we focus on the additional skills
that are needed in an MDD project, and that may for instance be positioned in the
methodology outlined in [6].

2.2 The meta team

We have grouped a number of skills into what we call "the meta team". These skills
are needed to define modelling languages, domain and platform concepts, and to
customise tools. In the following we detail these skills. Note that we use the term
"platform" to denote any coherent and agreed-upon set of concepts, not limited to a
computing platform such as J2EE or .Net. A PIM is independent of the concepts in
the platform, whereas a PSM is dependent on them. Note also that when we refer to
"the PIM level" or "the PSM level", we do not indicate that there is only one such
level. Indeed, we appreciate the recursive structure of "PIMness"; a PSM may be a
PIM with respect to another platform.

110

2.2.1 The domain expert

Domain experts are necessary irrespective of how the software is developed. The
domain expert is a person with detailed understanding of the application domain and
who is able to abstract and categorise the required concepts and their relationships in
the domain. In MDD, the domain expert should also to be able to capture this
knowledge in a domain model that can be used as a baseline for the PIM meta-model.
In [7], this skill is referred to as ontological meta-modelling since it focuses on the
meaning of things instead of the form, which linguistic meta-modelling does.

2.2.2 The platform expert

This expertise is also necessary irrespective of software development techniques and
processes. Detailed knowledge about the platforms is needed in order to produce
quality software that utilises the features of the platforms. In MDD, platform experts
need to be able to specify the essential platform properties in a platform model that
can be used as a baseline for the PSM meta-model. Again, this is an ontological
meta-model, with the subject matter being the platform.

2.2.3 The language engineer

The language engineer creates customised modelling languages suited for a purpose.
This may be to identify a UML subset or to design a new domain-specific language.
In any case, in MDD, the language engineer needs to use a meta-meta-modelling
framework, such as the MOF from the OMG or the Ecore in Eclipse, to define the
language(s) in a uniform manner if the concepts in each language are to be related in a
transformation process. The language engineer performs linguistic meta-modelling,
creating languages that are able to express the concepts from the platform model(s)
and the domain model(s). Thus, the language engineer creates the PIM and PSM
meta-models. In addition, the language engineer may create mapping languages, i.e.,
languages used to annotate PIMs so that they can be the source of transformations to
PSMs. The language engineer needs to have expert knowledge in language design to
define the abstract syntax of the languages, and needs knowledge in semiotics to
create the concrete syntax of the languages, especially if they are diagrammatic. If a
language is related to, or a subset of, another language (such as the UML), the
language engineer also needs intimate knowledge of that language definition.

Note that we assume existing modelling languages can be used without the
involvement of a language engineer. This is especially important for special-purpose
modelling languages that are designed to support different kinds of model analysis.
For instance, a real-time modelling language may support schedulability analysis for
an organisation without the involvement of a language engineer, unless this modelling
language should be tailored to specific needs.

111

2.2.4 The transformation specifier

From the crucial role of model transformations in MDD, it follows that the skills of
the transformation specifier are extremely vital for an MDD organisation. It is the
responsibility of the transformation specifier to define the relationships between PIMs
and PSMs. This can be done at the model level or at the meta-model level by relating
the PIM meta-model to the PSM meta-model. In any case, the transformation
specifier needs to know both source and target of the transformation, and needs to
know the transformation language (e.g., the language which is emerging from the
QVT-Merge proposal [8]). In addition to creating the transformation, the
transformation specifier also defines what should be recorded from the transformation.
These records are essential to support traceability and round-trip engineering. The
transformation specifier is the one to bridge the worlds of the domain expert and
platform expert, and must as such understand both worlds in sufficient depth to be
able to relate the concepts. It is absolutely essential that the transformation utilises
the features of the platform, which may be hard to obtain without intimate knowledge
of the platform. Therefore, in many cases one person will play the roles of both the
transformation specifier and the platform expert.

A transformation may not only be to take one PIM and turn that into a PSM. In
many cases, several models are weaved together on the PIM level and then turned into
a PSM. The ability to weave together models requires insight into the different
domains of the models so that consistency criteria can be defined. In the terms of
IEEE 1471 [9] that is used in the MDA Guide, model weaving may be regarded as
view integration. This can be done at the meta-model level by defining consistency
criteria between the different meta-models, or, in IEEE 1471 terms, between the
different viewpoints. It remains to be seen whether the result of the QVT process is
suitable to also address the issue of model weaving and viewpoint consistency.
However, the transformation specifier needs to handle this issue irrespective of
whether standardised mechanisms exist.

2.2.5 The method engineer

The final skill needed in the "meta group" is that of the method engineer. The
responsibility of the method engineer is to identify and orchestrate the activities
needed in the MDD software development project. The method engineer needs to
identify the modelling artefacts that should be produced during the project, and relate
them with appropriate transformations. Furthermore, the method engineer should
customise the tools to support the individual tasks in the software development.
Finally, the method engineer should organise the activities into a process and possibly
customise a process support tool to support the enactment of the process. In [10], the
authors define the notion of MDA Component as a collection of know-how about the
individual tasks in a MDD process. Using this term, the responsibility of the method
engineer is to identify and organise the MDA Components available in an
organisation.

112

2.3 The project team

The project team does the application development. They base their work on the
foundations of the meta team, and applies the MDD tools and techniques in each
project. Their skills do not differ substantially from a regular development team; they
need to use state-of-the-art tools to solve complex problems. In the following we
briefly outline the skills that are pertinent to MDD.

2.3.1 The application designer

We group all aspects of application construction under this role. Requirements
capture, architectural design, detailed design, coding and testing are all activities
performed by the application designer. The difference in an MDD setting is that the
designer should use the modelling languages provided by the language engineer when
performing their activities. Moreover, the application designer should use the
transformations provided by the transformation specifier instead of performing the
transformations manually as in the traditional approaches. The application designer
needs to understand the transformations that are used during application construction
so that the consequences of different design choices are known. The use of (semi-)
automatic transformations also assumes that the application designer uses one or more
marking languages to mark the PIMs to become transformable.

2.3.2 The system analyser

Again, this role is part of traditional application development. System analysis may
include analysis of the system's real-time behaviour, scaleability, maintainability, etc.
The distinguishing feature in MDD is that the models are the primary artifacts, not the
code, so system analysis can be done at the model level instead of at the system level.
This means that the system analyser needs to be able to instrument the models in
order to get them analysable.

2.3.3 The system tester

The system tester is the final role that requires additional skills in an MDD approach.
As opposed to the traditional approaches, the models can also be tested in an MDD
approach since model transformation steps are made explicit and can be verified.
Note the difference between testing the models and generating tests that can be used
for testing the system. Model-based test generation is already part of state-of-the-art
approaches, whereas model testing is still largely unexplored. Model simulation is a
technique to support model testing. Some modelling languages have accompanying
simulation tools, but this is not the case for the UML. The skills needed for model
testing is largely those needed for testing in general. The difference is that one tests
the models, and for this the system tester needs to interpret the testing results in terms
of modelling concepts instead of as system concepts. However, most of this should

113

be supported by tools and most good traditional testers should be able to become good
model testers.

3 MDD Tools

To support the activities outlined in the previous section, a number of useful tools can
be identified. Below we list and briefly characterise the tools we have identified.

• Model editor. The obvious tool in a MDD approach is a model editor that
supports creation and manipulation of models. The model editor should not
care whether the models are application models or meta-models, a model is a
model as far as the model editor is concerned. However, the model editor
should perform conformance checks so that the modeller only can produce
models that are according to the relevant meta-model. Preferably, a model
editor should be able to be customised to support any modelling language that
the language engineer produces.

• Model repository. The models need to be stored and managed; this is the
responsibility of the model repository. The model repository should support
management of models in any modelling language according to the meta-
meta-modelling approach that is chosen, in addition to traditional repository
services such as persistence and browsing.

• Model transformers. The model transformations should be encoded in a tool
so that the transformations can be as automatic as possible. Note that total
automation is in many cases not achievable or desired, human intervention is
often needed in each case to decide some of the issues that the transformation
addresses.

• Model analysis tools. Many kinds of analysis can be performed, and existing
analysis tools can in most cases be used, perhaps tailored to deal with the
chosen modelling approach.

• Model simulator. Finally, a model simulator is useful for certain tests. Many
modelling languages already have simulator tools that can be used, but for
UML this is still not available.

4 Conclusions

 In this paper we have identified and discussed the different skills needed in MDD.
We have also outlined some necessary tools needed to support the roles that an MDD
approach prescribes.

If a manager in a software developing organisation reads this list, some concerns
may arise, especially with respect to the meta team. Most software developing
organisations look at method engineering as unproductive work that preferably
someone else should do for them, and they should be able to pick up an appropriate
methodology from a book or a course. In MDD, this is in general not the case since
one of the basic ideas is to have specific tools and techniques (hereunder languages

114

and transformations) for each application domain. However, most software
developing organisations are not alone in their problem domain, and one can foresee
standardised (de facto or more formal) techniques that are useful for many kinds of
software development organisations.

Large organisations, however, may want to use a proprietary language to protect
their investments from being directly transferable to competitors. Such organisations
may want to have all roles in the meta team filled by internal resources.

Acknowledgements. The work reported in this paper is carried out in the context
of MODELWARE, an EU IP-project in FP62003/IST/2.3.2.3.

References

1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Object Technology Series, ed. G. Booch, I. Jacobsen,
and J. Rumbaugh. 1999: Addison-Wesley. 463.

2. Atkinson, C., et al., Component-based Product Line Engineering with UML.
Component Software Series, ed. C. Szyperski. 2002: Addison-Wesley. 506.

3. Miller, J. and J. Mukerji, eds. MDA Guide Version 1.0.1. 2003, Object
Management Group: Needham.

4. Kleppe, A., J. Warmer, and W. Bast, MDA Explained. Object Technology
Series, ed. G. Booch, I. Jacobson, and J. Rumbaugh. 2003: Addison-Wesley.
170.

5. MODATEL, www.modatel.org.
6. Gavras, A., et al. Towards an MDA-based development methodology. in

First European Workshop on Software Architecture (EWSA 2004). 2004. St
Andrews, Scotland: Springer Verlag.

7. Atkinson, C. and T. Kühne, Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 2003. 20(5): p. 36-41.

8. QVT-Merge Group, Revised submission for MOF 2.0
Query/Views/Transformations RFP. 2004, Object Management Group.

9. IEEE, Std 1471-2000, Recommended Practice for Architectural Description
of Software-Intensive Systems. 2000. p. 23.

10. Bézivin, J., et al. MDA Components: Challenges and Opportunities. in First
International Workshop on Metamodelling for MDA. 2003. York, UK.

115

Memops: Data modeling and
automatic code generation in multiple languages

Rasmus H. Fogh1, Wayne Boucher1, Wim F. Vranken2, Anne Pajon2, Tim J.
Stevens1, T.N. Bhat3, John Westbrook4, John M.C. Ionides2 and Ernest D. Laue1

1Department of Biochemistry, University of Cambridge,
80 Tennis Court Road, Cambridge, CB2 1GA, UK
{r.h.fogh, wb104, tjs23, e.d.laue}@bioc.cam.ac.uk

2MSD group, EMBL-EBI, European Bioinformatics Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK

{wim, pajon, jmci}@ebi.ac.uk
3Biotechnology Division (831), NIST,

100 Bureau Drive, Stop 8310, Gaithersburg, MD 20899-8314, USA
bhat@nist.gov

4Department of Chemistry and Chemical Biology, Rutgers University, Rutgers,
State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA

jwest@rcsb.rutgers.edu

Abstract The Memops framework is a tool for data modelling and the fully automatic
generation of subroutine libraries for data access in multiple computer languages. The data
model is entered in a UML subset similar to XMI. Code is generated automatically for
several languages, with Python and Java being supported so far, and C/C++ and Perl support
planned. The product includes an object-oriented data interaction API and its implementation,
complete with data validation and checking and a notifier facility. Data storage in either XML
files or relational databases is integrated in the data access subroutines. XML and database
schemas and documentation is also generated from the UML model.

To achieve long-term maintainability across different platforms, Memops uses a single
platform-independent model directly as the basis for code generation. Platform-specific
information, which cannot be completely dispensed with, is entered in the UML model as a
series of tagged values. As an example, model-specific, language-specific code is kept in the
model as code snippets. These amount to less that 1 per cent of the final generated code. The
approach is successful because Memops is targeted to a limited field - data modelling and
data access. Memops is currently used for a data model in the structural biology field with
300 classes. A Python API (250 000 lines), and a number of applications based on it have
been released.

1 Introduction

1.1 Project Goals

Memops is a product of the CCPN project [1], which was funded by the BBSRC
to create a data exchange standard for the field of macromolecular NMR
spectroscopy. Such a standard should allow a conforming application to modify data
in a plug-and-play manner, with all modifications being kept for eventual database
deposition. As might be expected in a developing scientific field, the situation facing
CCPN was characterised by a substantial agreement on the kinds of data that needed
to be stored, a great variety of potential uses and algorithms for exploiting the data,

116

and the expectation of significant future changes for both. Organisationally, existing
software in the field was developed by a large number of poorly resourced academic
groups, each making its own choices with respect to platforms, programming
languages, and data representation and storage. The resulting programs tended to be
closely attuned to the needs of local users, but to have severe problems with respect
to interoperability and long-term maintenance because of the lack of coordination
and resources. With the rise of structural biology and high-throughput methods,
however, there was an increasing need for automation, for joining different analysis
programs together into software pipelines, and for large-scale harvesting and
deposition of data.

1.2 MDA and Autogeneration

Model-Driven Architecture and automatic code generation seemed the only way
of achieving a data exchange standard capable of being adopted and used in the
field. In the absence of a mechanism for enforcing compliance, a standard could only
hope to be adopted if it allowed programmers to continue working with their
favourite platform. To make the changeover attractive the model must come with
enough functionality in its subroutine libraries to actually make it easier to develop
applications with the Memops libraries than without them. With MDA the
underlying model could be precisely specified to serve as a standard, and at the same
time implementations could be provided for a variety of programming languages and
storage platforms. As a corollary, something very close to fully automatic code
generation is indispensable to allow supporting highly functional subroutine libraries
across multiple platforms with a realistic expenditure of resources. Not finding a
suitable application at the start of the project, we decided to develop Memops to
meet the twin requirements of simultaneous multi-platform support and 100%
automatic code generation.

2 The Data Model

A data model is a description of the data for a particular subject area, how they are
defined and organized, and how they relate to one another. In Memops, the data
model serves as the specification for all generated code, in keeping with the Memops
strategy of providing a data access layer rather than a complete application

2.1 Model organization - packages

A Memops data model is represented as a platform-independent model in UML.
Memops uses a UML subset very similar to the XMI subset used for metamodel
definition, with some additional tagged values. The model is generated with a
standard UML editing program.

The model is subdivided in packages, which ideally should represent separate
domains of knowledge and be loosely coupled to other packages. Packages serve to
organize both the model description, the generated subroutine libraries, and the
storage of the actual data. The purpose of this organization is to allow an application
(or a data modeler) to work on part of a multidisciplinary project without having to
consider either code or data for packages that are not relevant in the context. This

117

also facilitates the production of integrated data standards for large areas of
knowledge, since widely separated domains can have full control over their own
packages, while sharing packages for domains that are in common.

Fig. 1 A simplified part of the CCP macromolecular Data Model. Only
composition (‘parent’) links, attributes making up the class key, and some of the
more important links are shown. Dotted lines separate different model packages.

2.2 Model Organization - Relationships between Classes

There are some constraints on the allowed models to permit simple and efficient
API implementations (see Fig. 1 for an illustration). All classes must have a
composition association to another class, known as the ‘parent’ class (not to be
confused with inheritance). The ‘parent’ links connect all data objects into a tree
with a single root object. This has the dual purpose of providing a clear navigation
path between any pair of objects, and of specifying a containment hierarchy for

118

XML storage. There is a further requirement that any class must have a set of
attributes (or links) that uniquely identifies each object relative to sister objects with
the same parent. If no natural key is present, an integer ‘serial’ must be provided.
Combined with the tree of ‘parent’ links this provides a unique, persistent, composite
identifier for each object without relying on absolute URLs or locally generated
random integers, either of which may change with time. These identifiers are used to
specify inter-file links between objects for XML storage.

2.3 Methods and Constraints

Class methods are mostly implicit in the model, as the methods needed for data
access (see section 4.5) can be generated fully automatically once the data type and
cardinalities of an attribute are known. Methods are specified explicitly if their
behavior differs from the standard, or if it is desired to provide additional
functionality. A case in point is derived attributes and links. These are specified to
behave like normal attributes as far as the interface is concerned, but are calculated
on-the-fly rather than stored; here the necessary derivation functions must be
specified. When specifying a method (or a constraint) code snippets are added for the
supported languages (currently Python and Java). For the future it is considered to
enter code snippets in OCL, and to provide automatic translation to the supported
languages [2].

Constraints may be entered on attributes, links, classes and data types, in the same
way as for methods. These constraints are then evaluated either before modifying .
ed/data or in a validity checking step, and serve to prevent illegal data from being
entered.

3 Automatic Code Generation

As illustrated in Figure 2, subroutines for data interaction (APIs), data storage,
and documentation are all generated automatically from the abstract data model.
Autogeneration guarantees that all of the generated documents are synchronized,
greatly simplifying the maintenance of the project. For API implementations, I/O
routines, and even documentation, over 99% of the final code (or documentation)
can be generated fully automatically from the data model itself. The remaining 1%
is added to the model in the form of tagged values with code snippets or
documentation strings, or written to a separate file as backward-compatibility I/O
code. As a result there is no post-generation editing, and the generated code is ready
for use immediately after generation.

3.1 The Generation Process

The automatic code generation is a two-stage process. In the first stage the
information describing the model is extracted from the UML modeling tool
(ObjectDomain [3]), transformed into a set of Python objects in memory, and then
written to a set of files. In the second stage these files are read to recreate a set of in-
memory Python objects, which then form the basis for the various generation scripts.
This approach decouples the generation process from the UML modeling tool, and

119

allows the substitution of other tools at the price of changing only a single module of
the generation software.

Fig. 2 Implementation of Memops code generation. Users interact with
applications or deposition tools as before, while software developers use the APIs to
interact with the underlying data. The actual data model is written by domain
experts in a separate process with limited programming input. APIs and their
implementations, storage format descriptions, I/O routines and documentation are all
generated automatically from the UML data model, to the extent of over 99%. The
APIs will remain stable over time even when the underlying data formats or data
model change, thus insulating application programs from future changes.

3.2 Generated Libraries

Generated libraries include Python and Java API implementations, XML and SQL
schemas, subroutines and mappings for I/O, and documentation. Most of these are
essentially one-to-one mappings of the model. A class in the model will correspond
to a Java or Python class, an XML element, or an SQL table. The same name, or an
automatic derivation of it, is used throughout, to avoid the need for special mapping
files. Given the nature of the platforms a one-to-one mapping is not, however,
enough. XML requires extra elements for some attributes and links, relational
databases require extra tables for many-to-many associations etc., but in each case
the extra code follows directly from the nature of the model without requiring (or
allowing) extra input. There is of course an infinite number of ways of making e.g.
Python API implementations or XML schemas that correspond to a given data
model. The goal of MEMOPS is in each case to derive one useful implementation in
a simple and fully automatic way, rather than to make the process customizable by
the application programmer or data model developer.

120

4 The API implementation

The use of APIs (rather than data formats or models) as the invariant target for
application programmers’ efforts has a number of advantages for software
integration and interoperability. APIs can be designed to be less tied to the precise
detail of the underlying model than e.g. a parser would be, as they represent a higher
level of abstraction. This allows the API to protect applications that use it from
having to modify their code even as the data model changes. Additions to the model
are especially easy to handle, since the addition of new functions to an API does not
interfere with the existing ones. Changes in names, or in which data are stored and
which are calculated on the fly are also relatively unproblematic, and it will
frequently be possible for the API to accommodate even more fundamental changes
in the structure of a data model.

4.1 General Architecture

For an application programmer the impact of using the Data Model is determined
mainly by the APIs. The quality and ease of use of the API implementations is
therefore extremely important. Memops API implementations are optimized for
querying, for maintaining consistency in the presence of continuously changing data,
and for supporting multiple projects with multiple users using different approaches
and techniques. Automatic code generation in itself reduces the potential for bugs
and guarantees a consistent style across the entire body of code. In addition, the
APIs have been designed to include a wide range of functionality. Comprehensive
validity checking is incorporated in all operations that modify data, to ensure that the
data remain in a consistent and legal state. Data loading is done automatically, and
the API keeps track of which data packages are modifiable, or have been modified
and thus require saving.

The Memops APIs were designed as interfaces not to a specific XML file, but to a
single, consistent representation of the data in a project. The prototype use case in
structural biology research, where applications should be able to work directly off
the generated API, accessing all relevant data, leaving the project accessible to any
other conformant program, with information carried along towards an eventual
deposition of the data. The emphasis on consistency checking, on persistent
identifiers, and the decision not to use URL-based link mechanisms, arise from these
considerations.

4.2 Notifiers

A notification facility is built into the API, to facilitate the building of graphical
user interfaces (GUIs). The notifier registers a function to be called, with the
relevant object as a parameter, when a given method is executed or when a given
type of object is created, modified, or deleted. This can be a great simplification for
GUI coding. By registering a notifier for e.g. creation and deletion of e.g. Molecule
objects, a GUI could keep a list of all current molecules without having to change the
code actually handling the molecule objects.

121

4.3 Storage management

The current API interacts with data stored in a mixture of XML files and local or
remote databases. The price for this flexibility is that data must be loaded essentially
one file at a time, which would be appropriate for situations where each project is
accessed mainly by one person at a time. Data storage is by package, and each
package may be stored in an XML file or database, locally or remotely. The
Implementation package, which is loaded first, contains the storage locations for all
other data. These are then loaded automatically by the API when the data they
contain are needed. The API keeps track of which packages have been loaded and
which have been modified (and should therefore be saved). Packages can also be
marked as read-only, which will prevent attempts to modify the data they contain.

An alternative API implementation (currently in alpha test) provides concurrency,
security and fine-grained control for simultaneous, multi-user access, transaction
control, and roll-back, but this implementation depends on all the data being kept in
a single database.

4.4 Derived Attributes

‘Derived’ attributes and roles follow the same syntax as real attributes and roles,
but are in practice a convenient way of executing function calls. In a data model for
person data, for instance, one could store each person separately, with links from
children to their parents. A derived attribute ‘mothersMaidenName’ could then
return the appropriate value without making it necessary to store the mother’s
maiden name in the model. If the model is changed so that an attribute is no longer
stored explicitly, a derived attribute that mimics it can be added to avoid breaking
existing code. Derived attributes and roles are especially useful since it is
recommended that models be fully normalized, so that each piece of information is
stored in only one place. If a piece of data is of interest in several places, derived
attributes can make it available in all of them without duplication of the stored
information.

4.5 Example - the Python API

The Python API consists of a Python class for each class in the model. Each class
comes with a creation method (an __init__ in Python parlance), a delete method, and
a checkValid method. Attributes and roles can be accessed and set using the normal
Python ‘object.attribute=value’ syntax, but the code is organized using the Python
‘properties’ mechanism, so that these accesses are intercepted and passed to the
relevant ‘set’ and ‘get’ methods. Access methods are generated from the model
depending on the cardinality of the attribute/role. A single attribute, e.g. ‘name’, will
give rise to methods ‘getName’ and ‘setName’, as will a single role. Multiple
attributes will have two additional methods, so that you have e.g. getKeywords,
setKeywords, addKeyword, and removeKeyword methods. Multiple roles will have
a further three, e.g. findFirstAtom, findAllAtoms, and pickAtom; these methods
select one or more atoms, either by filtering on their attribute and role values (the
two ‘find’ methods) or by index (the ‘pick’ method).

122

Data are organized for fast retrieval rather than fast modification. Associations
are stored at both ends, so that an employer knows his employees and an employee
his employer, as it were. The API makes sure that the two ends of associations are
kept consistent even if only one of them is explicitly modified, so that
employer.addEmployee(newEmployee) and newEmployee.setEmployer(employer)
will have the same effect. Validity checking code is built into all commands that
modify attributes and roles, so that modifications that make the data illegal are
prevented. Newly created objects are checked for validity after creation. The delete
method works in a different way: If deleting object A makes object B invalid (e.g.
because there was a mandatory link from B to A), object B will be deleted as well in
a cascading delete.

5 Conclusions

5.1 Project Status

The Memops project has already matured sufficiently to prove that the approach
works. The autogenerated Python API has been released, in the version based on
XML data storage. It serves as the foundation for a couple of major scientific
applications developed by CCPN, and is being interfaced with a number of other
applications in the core area of CCPN, macromolecular NMR spectroscopy. The data
model is being expanded into the area of (bio)chemical laboratory information
management, and a Java API based on database storage is released in an alpha
version. To illustrate the size of the project, the current model contains 318 classes,
with 290 000 lines of code in the Python API implementation and 819 000 lines of
HTML documentation.

5.2 Discussion

The decision to use a single platform-independent model as the basis for
automatic code generation for several platforms has proved to work in practice, and
has contributed greatly to the maintainability of projects using Memops. Of course it
could be argued that the use of implementation-specific tagged values has confused
the issue. The crucial factor, in our opinion, is that Memops is limited to generating
data access layers, in a broad sense. This makes the problem sufficiently small and
well-defined to allow the generation of efficient code from the platform-independent
model with an efficiency of over 99%. It does not follow that a similar approach
would be appropriate (or successful) in projects with a wider scope.

References

1. http://www.ccpn.ac.uk and references mentioned therein.
2. Akehurst D.H., and Patrascoiu, O.: Tooling Metamodels with Patterns and
 OCL. Proceedings of ‘Metamodelling for MDA’, York, UK, November 2003.
3. http://www.objectdomain.com

123

Transformations

 124

 Why IT veterans are sceptical about MDA

 Graham Berrisford
 Atos Origin (UK)
 graham.berrisford@atosorigin.com

Abstract: This paper identifies problems with the MDA approach to specifying transformations, and barriers to MDA
adoption such as the scale of the enterprise problem domain, the skills and knowledge required, and the distributed
system problem.

The paper addresses question such as: What kind of detail is best suppressed from a model? What level of granularity
is best for modelling business rules? How to capture all the essential business rules in a model? How to make UML
more helpful to analysts looking to build a PIM or CIM? How to build enterprise-scale models?

The paper promotes the importance of understanding where and how persistent data is divided between discrete data
stores and where units of work can be rolled back. It suggests models that are to be completable by business analysts
yet also transformable by forward engineering must be event-oriented as well as object-oriented.

Introduction
An enterprise may own and maintain millions of lines of software code. We all know how difficult it is to read code and
understand its purpose. Even the most extreme of extreme programmers agree that we need to maintain abstract
specifications that are more concise than the code.

A never-ending fascination of our business lies in the immense variety of answers to three questions: What kind of
abstract specification is best? How many levels of abstract specification do we need? How tightly do we maintain the
abstract specifications in alignment with the code?

Many believe an abstract specification should take the form of a model. Readers of this paper will already have heard
of the OMG’s MDA (Model-Driven Architecture) and its three levels of model: CIM (Computation-Independent Model),
PIM (Platform-Independent Model) and PSM (Platform-Specific Model). What these terms might mean is explored in
the paper.

There is something to be said for an MDA scheme that is vaguely defined. Interest groups and vendors can use such a
scheme as a springboard to invent new ways to be more efficient and effective in the analysis, design and construction
of software systems. Even if they only reshape their existing ideas to fit the scheme, they are likely to clarify and
elaborate those ideas.

There is value in the promoting and discussing MDA as a device to bring together interest groups and vendors from
different realms. This encourages cross-fertilisation and new ways of thinking and working. It may help to improve UML
and to reinvigorate efforts to define higher level or more universal programming languages. This last appears to be
what many are focused on.

Nevertheless, the pedants amongst us hanker for more clarity in and wider agreement about the definitions of CIM and
PIM. And the veterans amongst us are wary of people using MDA to recycle ideas that have not proved successful in
the past. This paper sets out some reasons why some pedants and veterans are sceptical about MDA.

Two challenges facing MDA
Taking UML as a starting point, MDA is expected to meet the challenges of those wanting more abstraction and those
wanting more detail. Let me quote the practical experience of a software engineer who religiously maintained an
abstract specification of his software in the form UML diagrams.

125

mailto:graham.berrisford@atosorigin.com

“The [UML] models I produced were useful to me, but far too detailed to be helpful for talking about the
design with someone else. I had to produce more simplified views for this, but I was proud of the fact that my
models always represented the state of the code. Unfortunately, maintaining a very detailed model is really
no easier than maintaining the code. My models tended to become rigid, even though I was working with
UML diagrams. Finally, I have decided that working with too detailed a model is a trap. Basically this is the
same trap that we were trying to avoid by working with UML in the first place. It's very important to work at
the correct level of abstraction. I won't be going back to using forward code generation from a model.”

This most earnest of software engineers concluded that higher-level or more abstract specifications are needed. So,
MDA has to meet the challenge of analysts and designers who want languages that are abstract enough for their
specification purposes.

At the same time MDA has to meet the challenge of analysts and designers who want languages that are semantically
rich enough to specify all the necessary business rules. To code any process we need to know not just its inputs and
outputs, but its preconditions and post conditions as well.

How can we build models that meet these apparently conflicting challenges (abstraction and comprehensive business
rule specification) at once? Will MDA help?

On models
A model is an abstraction of the real world. A model can represent only tiny part of the real world, usually a part we
want to monitor if not control. A comprehensive model has both structural and behavioural aspects; it features both
persistent entities and transient events; it defines the business rules that are supposed to apply in the relevant part of
the real world.

A business rule may be invariant (guaranteed to hold true at any time) or transient (guaranteed only immediately
before or immediately after a discrete event). An invariant business rule may be declared as a property of a persistent
entity. A transient business rule may be declared as a property of a transient event.

A running data processing system is itself model, it is an abstraction of the real world. So, a logical model of the real
world model can be abstracted from the platform-specific definition of a data processing system. You may abstract
logically discrete entities from physical database tables. You may abstract logically discrete events from physical
database transactions or units of work.

On abstraction
Three abstraction tools can be used to raise the abstraction level of a model.

• Generalisation means creating a super type. This can save us from having to know about several subtypes. One

might look to the OMG for a super type programming language, or a super type platform or operating system. (By
the way, does a super-type platform help us to build a PIM? Or does it remove the PIM-PSM distinction?)

• Suppression of detail means delegating elaboration to another person or a machine. This can save analysts,
designers and programmers from much tedious effort. E.g. we have long worked with platforms that automate the
functions of data storage, indexing, sorting and transaction management. Suppressing the detail of transaction roll
back is important in the conclusions of this paper.

• Composition means grouping details and hiding them behind the interface of a larger component. This enables
people to manage large and complex systems. This has been a tenet of most if not all analysis and design
methods since the 1970s.

These three devices are often combined and entangled in practical software engineering. Consider a class library
whose classes offer general infrastructure operations that form or extend the platform and enable us to suppress detail
from our applications. But it is useful to recognise them as three separable ideas.

126

On business rule specification
Business rules embrace business terms, facts, constraints and derivations. Terms are the names of things; they
appear in software as the name of entities and their attributes, of events and their parameters. Facts are relationships
between things; they appear in software as pointers, foreign keys and message-passing interactions. Constraints
appear in software as data types, domain value ranges, relationship multiplicity constraints and validation tests.
Derivations appear in software as the calculation of a data item value, the sub division of one data item, the
concatenation of several data items.

Business rules of all these kinds appear in data structures and processes at every level of software engineering, from
user interfaces to databases. They might be specified as preconditions and post conditions of processes at any level of
software engineering, in conditions governing a step-to-step transition in a business process, and in conditions
governing the commit/rollback of a database transaction.

Forward and reverse engineering transformations
A good way to explore the meaning and usefulness of the three levels of model in MDA is to consider possible CIM<-
>PIM<->PSM transformations, while recognising that these transformations may never be fully automated.

Automated transformations sell tools. Transformations that require human intervention are no less interesting, and they
sell training courses. Of course we look for automated support wherever it is possible. But most of the transformations
that I am interested in require some human intervention.

When people transform a model at one level into a model at a lower level or higher level, they often call this forward
engineering or reverse engineering. Reverse engineering is a process of abstraction; it abstracts by suppression of
detail, generalisation, or composition, or a combination of those three devices. Forward engineering is a process of
elaboration; it elaborates by adding detail, specialising or decomposing, or a combination of those three.

For human beings, reverse engineering is infinitely easier than forward engineering. It is easier to remove detail than to
add it. It is easier to generalise from than to create specialisations. It easier to group details into a composition than to
detail the members of a group.

MDA brings the possibility of two reverse engineering transformations (PSM-to-PIM and PIM-to-CIM), and two forward
engineering transformations (CIM-to-PIM and PIM-to-PSM). I will discuss all four, though intending to focus on
transformation from the highest level of model, the CIM, to a PIM.

PSM-to-PIM reverse engineering
PSM-to-PIM transformations have been around for decades. Take a database schema, erase some of the DBMS or
platform-specific details and you can express the database design as Bachman diagram. Erase some more detail and
you have an entity-attribute-relationship model (aka data model).

This illustration shows that there are degrees of platform independence. Abstracting upwards from a PSM, there is not
one level of PIM but many. And even at the first level of abstraction, we may choose to abstract in different directions,
so there are potentially many branches as well as many levels of PIM.

Most of the people interested in MDA are interested in process structures more than data structures. (Indeed, some in
the data management community are yet to be convinced the OMG or MDA are relevant to the issues of data
management.)

Some are interested in abstraction by generalisation of coding languages. Where the PSM is a model of Java or C++
code, then the PIM could employ a more generic OOPL. An even higher level PIM could abstract between a generic
OOPL and a procedural language like COBOL. But what MDA may deliver by way of a programming language is likely
to be more complete rather than more abstract. Stephen Mellor has said:

“What UML calls a computationally complete "action language" will have at least the following features:

127

• complete separation of object memory access from functional computation. This allows you to re-organise
data and control structure without restating the algorithms--critical for MDA

• data and control flow, as opposed to purely sequential logic. This [enables you to] distribute logic across
multiple processors on a small scale (e.g. Between client and server, or into software and hardware)

• map functions and expansion regions that let you apply operations across all the elements of a collection in
parallel. This … maximizes potential parallelism, again important for distribution, pipelining, and
hardware/software co-design.

While not huge linguistic advances, these properties enable translation of complete executable models into any
target. In my view, that is the key reason we build models of the more-than-a-picture kind.”

I am less interested in turning UML into a more complete programming language than in building models that abstract
by suppression of infrastructure detail. E.g. where the PSM defines all the details of transaction start, commit and
rollback processes, then the PIM can be a model that is very much simpler because it includes only hooks for these
platform functions.

Hmm … that last so-called PIM contained hooks for the transformation to a PSM. So it is not purely platform-
independent, it posits the existence of a platform with transaction start, commit and roll back functions. I think this
particular postulation is vital to the making of a CIM that can in practice be related to a PIM. I will return to this later.

Aside on true platform-independence
On the one hand, we want to build platform-independent models. On the other, we want those models to be
transformable with minimal effort into software systems. The trouble is that software systems can be implemented in
many ways and using many technologies. So, to ease forward engineering, people do in practice model with their
chosen technology in mind.

A model that somebody claims to be a PIM may be more tied to a specific platform than the claimant recognises. When
building a PIM for coding in C++, does the modeller ask: Would I draw this model the same way if we were to code in
Java? And when building a PIM for coding in either C++ or Java, does the modeller ask: Would I draw this model the
same way if we were to code in PL/SQL? Or VB.Net?

The meta model underlying UML looks, at its heart, to be a model of an object-oriented programming languages. If we
want a truly universal modelling language, designed to model a truly platform-independent model, then the meta model
might need some revision. I will come back to this later.

PIM-to-PSM forward engineering
It is possible to reverse the abstraction examples discussed above, and to employ a tool that will automate some of the
forward engineering elaboration. This kind of PIM-to-PSM transformation dominates many people's view of MDA. So
much so that one wag round here renamed MDA as MDCG (Model-Driven Code Generation). Allan Kennedy has, in
an OMG discussion, defined MDA thus

“In a world where MDA is the dominant development paradigm, all that most developers will work with is an
MDA development environment supporting executable UML as the new whizzy programming language
supplemented by a number of commercially available model compilers for popular platforms.

Platform specialists and software architects will work with tools for building custom model compilers which
might even be based on whatever emerges from the current QVT process. The need for the majority of
developers to fill the 'gaps in their IT knowledge' will have been eliminated by the move to "platform-
independent" UML as the abstraction level for specifying system behaviour.”

Generation of lower-level code from a higher-level language is often presented as being an unquestionably good thing.
The presenter may put down a challenge from the audience by reminding us of the luddites who wanted to continue
coding in Assembler after COBOL was introduced.

128

But the resistance of those luddites faded in the 197Os. Several attempts were made in the 1980s and 1990s to move
up from the level of COBOL. Several 'application generators’ were sold on the basis that you could write in a general
'business rules' language, and from that generate either COBOL or C. Veterans bear the scars of these attempts.

(I ought to exclude here data model driven tools like Visual Data Flex that, when used with a data dictionary that
captures the business rules, can be good for generating business data maintenance applications with relatively simple
graphical user interfaces.)

Yes, we can forward engineer by specialisation. We could build a PIM using a generic programming language and/or
assuming generic platform infrastructure, then transform this into Java or C++ or C or COBOL using platform-specific
infrastructure. But it is far from obvious that the benefits outweigh the costs and risks.

Portability benefit? In practice, portability between programming languages or platforms is rarely a requirement you can
clearly establish up front. Then, trying to anticipate the requirement can cost more than meeting the requirement if and
when it arises. Transformation between closely related languages (e.g. dialects of SQL) costs little – probably less
than efforts to anticipate the requirement. Transformation between very different languages (e.g. COBOL and Java) is,
as far as I know, either impossible to anticipate or counter-productive because it denies the programmer opportunities
to use the very features the language was designed to offer.

Productivity benefit? I recall an application generator salesman making a sale on the basis that the tool's 'business
rules' language was up to 50 times more concise than COBOL. But actually, he compared the source code with the
tool's generated COBOL. His business rule language was no more concise than COBOL; his generator simply wrote
clumsy, long-winded code (be it COBOL or C).

It has previously turned out that the benefits promised by code generators (with the possible exception of data model
driven tools when used for appropriate applications) were outweighed by the costs and risks listed below:
• forward engineering tools generate clumsy long-winded code that is less efficient, sometimes too inefficient to

meet non-functional requirements.

• you become dependent on the vendor of a niche-market tool

• you become dependent on relatively scarce programmer resources, people who know the code generator’s
specific language, and other product-specific features

• when things go wrong, you have to refer to the generated code anyway, meaning you remain dependent on
programmers who understand that level also

• the code generator inserts invocations to infrastructure services when and where you don't want them

A colleague, while enthusiastically proposing we try a specific MDA tool/product, added the rider that “you need to be a
Java, J2EE, struts, UML, MDA and product expert to properly leverage the product.” How do we find or train these
people? Veterans will need a lot of convincing that mainstream projects should use a tool that requires designers to
understand all that, the MOF (Meta Object Facility), and tool-specific patterns and transformations.

Veterans, listening to a presentation on MDA tools, are likely to worry about the potential costs and risks above.

A kind of forward engineering that yields real productivity benefits is based on suppression of detail. We don't want
programmers having to model or write code that a general-purpose machine can do for them. So we look to automate
forward engineering by getting a machine to elaborate, add detail, add generic infrastructure.

e.g. PIM-to-PSM transformers that add in the detail of platform-specific transaction management or database
management functions enable us to limit our modelling effort to more business domain-specific concerns.

Having said that, IT veterans have been modelling and coding in ways that assume the support of transaction
management and database management functions since about 1980. So marketing PIM-to-PSM transformation tools
on the grounds that they add functions of this kind can raise something of a wry smile.

129

PIM-to-CIM reverse engineering
Two kinds of CIM have surfaced in OMG discussions. The first kind of CIM is a model of a business enterprise, a
stand-alone CIM, independent of data processing and of potential software systems. A purely conceptual or domain
model of this kind is interesting per se. It can be used to define some business rules. But forward engineering
transformation is problematic. In my experience, the majority of software engineers do not find such models helpful
when it comes to practical software projects. We do sometimes need to steer systems analysts away from paralysis by
analysis and towards defining a CIM that is useful to software system designers.

The second kind of CIM is definitively related to one or more data processing systems. It can be transformed into
software systems that consume input data and produce output data. Such a CIM may be thought of as a very abstract
PIM. And given there are degrees of PIMness, there must surely be degrees of CIMness. As one person's PIM is
another person's PSM, so one person's CIM may be another person's PIM.

It is always possible to abstract upwards or backwards. And again, reverse engineering is infinitely easier than forward
engineering. Some people focus on abstraction by generalisation of variant forms into a common or shared form. But I
propose abstraction by composition and suppression of detail will prove more profitable.

We can envisage abstracting one CIM from one PIM. This focuses the CIM on the domain and requirements of a single
data processing system. We can then realistically ponder the forward engineering transformation from CIM to PIM. It
might be interesting to explore this, but my concern here is to focus on the problem of the large enterprise with
hundreds of distributed and loosely-coupled data processing systems.

We can construct one CIM by abstraction from many application-specific PIMs. We can use abstraction not only to
reduce the number of business rule variations (by generalisation), but also to reduce the number of rules (by
composition and suppression of detail). For example:

• If one application's PIM includes an EmailAddress (must include an @ sign) and another application's PIM

includes TelephoneNumber (must be numeric), then we might define in a CIM a more generic ContactDetails item
with a more generic data type.

• If one application's PIM includes an orderValue formula that calculates sales tax one way and another
application's PIM includes orderValue formula that calculates sales tax another way, then we might define in a
CIM a simpler orderValue calculation that suppresses the detail of tax calculation altogether.

• If a CustomerAddress has 3 lines in a regional application, has 5 lines in a global application, and has a structured
set of attributes in another application (that uses name, town and postcode for other purposes), then we might
define in a CIM a single composite CustomerAddress data item.

Still, we have to face two awkward questions about the enterprise-scale CIM.

First: How to resolve the million-rule problem? The large enterprise has hundreds of applications and a million
business rules. We cannot maintain an enterprise CIM with that many rules. This has classically led enterprise ‘data
architects’ (really, ‘data abstracters’) to define an abstract data structure containing a few generalised entities such as
party, contract, place and event. They define for each entity a few attributes that appear in several applications. They
may perhaps define a few business rules associated with those few attributes. Similarly, enterprise process architects
have defined abstract business processes, each with a generalised sequence of business process steps such as
register, authorise, process, deliver and close.

In practice, I haven’t found people making good use of such a highly abstract enterprise-scale CIM. How to separate
the business rules that are somehow most essential or important from the impossibly vast multitude of necessary
business rules? I don't see people successfully grappling with specifying business rules in an enterprise architecture (in
the sense I mean enterprise, that is 'enterprise-scale', rather than simply 'business level') other by being highly
selective, by focusing on only a tiny part of the enterprise problem domain.

Second: How to resolve the loose-coupling problem? The large enterprise works with many distributed and loosely-
coupled systems in which different, perhaps conflicting, business rules apply. The enterprise's business processes
have to work despite the fact that data in discrete data stores will be inconsistent. Surely an enterprise CIM (if it is to be
useful for forward engineering into more than one PIM) must acknowledge that consistency cannot be guaranteed

130

across all the discrete business data stores maintained by the enterprise?

Wherever the infrastructure does not exist to roll back a mistaken process across discrete data stores, then we have to
design all manner of error handling and undo processing, and our models of the code have to incorporate all this
design.

Where the infrastructure does exist, where we know a transaction can be automatically rolled back, we certainly don’t
want to model the error handling and roll back processes by hand. We can/should/must suppress the roll back details
from our abstract models. Surely we can do this only by employing the corresponding abstract concept of a "unit of
work" or "discrete event" in our models?

CIM-to-PIM forward engineering
I propose we cannot realistically envisage forward engineering from a purely conceptual CIM. We can however
envisage forward engineering from a CIM that abstracts from data processing systems, and we can recognise this kind
of CIM because it will:

• acknowledge the divisions between data in discrete loosely-coupled data stores

• define what units of work clients invoke or require on each distinct data store, with the preconditions and post
conditions of each unit of work

• define what data must persist in each discrete data store for those units of work to be completable.

To put it another way: whatever paradigm you follow or platform you use, to build model that can be transformed into a
data processing system, you must answer two requirements-oriented questions:

Q1) what units of work do clients invoke or require? A “unit of work” is a service. It is a process that acts on persistent
data, or, if the necessary conditions are not met, it does nothing but return/output a failure message. A “client” could be
a user, or a user interface, or an I/O program, or an actuator or sensor device.

Q2) what data must persist in a coherent data structure for those units of work to be completable? Every software
system of note maintains some persistent data. The data structure could be anything from a handful of state variables
representing the state of a few devices in a process control system, to millions of business database records
representing the orders by customers for products.

In specifying the business rules of software systems, the persistent data structures and the units of work on them are
fundamental. Whether your coding language is Java or PL/SQL, you will have to specify them.

Conclusions and remarks
How can MDA meet our two apparently contradictory challenges – to abstract from detail and to comprehensively
specify business rules?

What kind of detail is best suppressed from a model?
A good way to keep a model simple is to postulate that a process can be rolled back automatically. This means we can
ignore the design and specification of the backtracking needed when it is discovered that a processes' precondition has
been violated. Indeed, it would be futile to model undo processing where we know our platform can automate the roll
back of a process.

What level of granularity is best for modelling business rules?
A high-level abstract business process model can be recursively decomposed many times before we get to executable
code. At which level of granularity should business analysts specify business rules, given we want these rules to be
coded more or less directly from the specification?

The components and processes of a PSM must be defined down to the level of granularity dictated by our target

131

programming language and platform.

The best level of granularity for a PIM or CIM is more open to debate. I propose we have to model the components and
processes of a PIM with some minimal knowledge of the target platform's transaction management capability. We
should know and declare two kinds of platform-related information in a PIM:
• the units of system composition - the discrete systems across which the chosen platform can automate roll back

of a process - a discrete system has a discrete structural model and often maintains a discrete data store
• the units of work on each discrete system - the roll-backable services offered by each discrete system

People sometimes try to capture business rules by documenting the preconditions and post conditions of a use case.
Often they get this wrong, because they specify for the whole use case what are rightly the preconditions and post
conditions of one or more discrete back-end services. See FOOTNOTES below.

More controversially, I propose we may have to model the components and processes of a CIM with the same things in
mind. We have to recognise discrete system boundaries. We have to model discrete events as well as discrete entities.
We have to work on the assumption that discrete events can be automatically rolled back. At least, we have to do
these things if we want the CIM to be readily transformable into a PIM. We cannot hope to do forward engineering from
CIM to PIM if we cannot envisage the former as a reverse engineered abstraction of the latter.

How to capture all the essential business rules in a model?
An entity-oriented approach, defining a structural model, seems the natural way to analyse and specify invariant
business rules. Some have proposed that a CIM should be defined using only a structural model. But if we want to
model all the business rules, then this way lies the madness of defining every unit of work as an entity type and
elaborating the model to include history of every attribute value over time.

So, an event-oriented approach, defining a behavioural model, seems the natural way to analyse and specify transient
business rules. And to specify these business rules, we should define the preconditions and post conditions of
processes at a specific level of granularity - the unit of work - the level where we assume roll back can and will be
automated by the given platform.

(We can specify preconditions and post conditions for processes (say use cases) at a higher level of granularity than
the unit of work. But most business rules belong at the unit of work level, since units of work act directly on stored
business data, and one unit of work can be shared by several use cases. We can specify preconditions and post
conditions for processes (say operations) at a lower level of granularity than the unit of work. In fact we can recast
every condition and action within a unit of work as a precondition or post condition of a lower-level process. But let us
not confuse the work of programmers, who have to work at the lowest level, with the work of analysts who must specify
the business rules at the level users are conscious of.)

How to make UML more helpful to analysts looking to build a PIM or CIM in the ways indicated above?
Do we want a truly universal modelling language or method? Are we serious about building truly platform-independent
models? Do we want to capture requirements in models? Do we want to help systems analysts document what
matters?

I propose that units of system composition (discrete systems) and units of work (discrete events) should be first-class
concepts in the UML meta model, not merely stereotypes of 'class' and 'operation'.

To define a forward engineerable CIM, we have to define the persistent data structures, the units of work on those data
structures and the transient rules (preconditions and post conditions) of those units of work. Why?

• we have to capture what domain experts understand of how persistent data constrains processes and is changed

by processes
• an enterprise's data is distributed, and it is vital to define which data stores the business requires to be consistent

and which data stores need not be consistent
• business people should understand the effects of the units of work that they invoke from a system's user interface
• if we define invariant rules in a structural model, and postpone defining transient business rules to a lower level of

design, then we are simply overlooking an important set of the business rules

132

• if we don't build a model on the assumption that unit of works can be automatically rolled back, then we are forced
to model all manner of complexities, error handling and undo processing.

Its is difficult to teach event-oriented analysis and design techniques within the context of an OO methodology. UML
does not include the unit of work. OO models contain operations at every level of granularity, and roll-backable
operations are not marked out. People teach instead fuzzy concepts like the “responsibilities” of a class or component.
For me, this is a limitation of the OO paradigm as currently taught. I want people to take both object and event-oriented
views equally seriously - at least during the building of a CIM or a PIM.

I propose we teach people that event-oriented unit-of-work-level services are fundamental analysis and design
artefacts, as important in an OO design as the entity-oriented components. We should teach that it is a good idea to
identify the roll-backable units of work that clients invoke or require, and consider the effects of each unit of work on the
entities in the persistent data structure. This analysis should reveal to OO designers the responsibilities of entity
classes and the business rules that operations must apply to objects.

If the OMG truly wants UML to be a truly universal modelling language, then making units of work explicit in the UML
meta model might help. This will make for a more complex meta model, since one unit of work may trigger operations
on many entities, and the effect of one unit of work on one entity can involve more than one operation, but it will also
make for a more universal meta model, one that embraces event orientation and object orientation as equals.

How to build enterprise-scale models?
We should not pretend an enterprise is a single coherent system, or is supported by a single coherent data processing
system. We have to model a large enterprise as a set of discrete systems, with potentially conflicting business rules.
Then we have to model each system model with much abstraction.

If we are to work at the highest possible level of abstraction, reduce the number of things to be modelled, produce the
most concise specifications, then we must maximise the scope of the discrete systems we regard as units of
composition, and maximise the size of the discrete events that we regard as units of work on those systems. How to
maximise the size of discrete systems and discrete events is beyond the scope of this paper.

If we are to reduce the number of business rules to be modelled, then we have to further suppress detail somehow.
Specifying rules using one or more derived data items is one way to hide the elementary input and/or stored data
items. Some detail of a derivation rule can be suppressed by defining it using a derived data item calculated from
lower-level data items. Some detail of a constraint rule can be suppressed by defining it in terms of a derived data item
(e.g. and most fatuously, a "PreconditionsMet" boolean) that sums up the result of lower-level processes.

It is hard to think what abstraction devices to use beyond this, other than arbitrarily omitting business rules that we
intuitively regard as unimportant, and using informal rather than formal syntax.

Finally: Is CIM-to-PIM-to-PSM a sensible basis for a software development methodology?
I fear MDA has confused in one scheme modelling the real world per se with modelling a data processing system
(which is itself a model of the real world). The two are related, but nobody I know in the IT industry looks to define a
PIM from a purely conceptual CIM. They define a PIM from a statement of data processing system requirements. And
these requirements are better expressed in terms of use cases and input and output data structures, rather than in the
form of a CIM. Inputs and outputs are an aspect of system theory that MDA seems, curiously, to have overlooked.

FOOTNOTES

On design by contract
 I have no space here to discuss Bertrand Meyer¹s “Design by Contract”, but let me suggest that the opposite strategy
of “Defensive Design” is better for multi-user database systems.

133

On why use cases are not enough
Extremist disciples of the distributed object paradigm and the relational database paradigm take a surprisingly similar
view of their task. They both envisage building general-purpose components (be they distributed objects, web services,
or databases) that sit there waiting. Waiting for clients to find them and make use of them. Waiting for requirements
they can service. Waiting for their general services to be extended with additional features or specific variations.

It is a good thing in system design to anticipate future requirements a little and to generalise for future clients a little.
But since we have to deliver systems to time and budget, our analysis and design method has to emphasise and
prioritise the known requirements of current users. For this reason, most systems analysts nowadays define something
akin to use cases during requirements analysis.

Use cases are far from object-oriented. They are procedural. They are also outward facing, user-task or HCI oriented.
They define the flows of control that govern what users do at the user-system interface. Conventional use case
definitions contain very little of what is needed to develop or generate code. We are likely to need also:
• the UI design, its appearance, fields and commands
• the I/O data structures (an XML schema-like grammar or regular expression notation might be useful for serial

data flows)
• the state date of a user session (which may be stored on the client machine)
• any state transition constraints on the user session (state machine notations may be used here)
• the preconditions and post conditions of each unit of work that is invokable.

Use cases involve, or better, invoke, units of work. This isn’t functional decomposition so much as client-server design.
You can think of use cases and units of work as being arranged out-to-in rather than top-down.

A use case is a usage of a software system to facilitate a task in a business process - typically a one-person-one-
place-one-time user-system dialogue or function – or a process to consume or produce a major data flow.

A unit of work is a process that is a success/commit unit, usually acting on a coherent data store. You might call this a
“service use case”. My company calls it a “business service”. But I call it a “unit of work” here because this term implies
roll-backableness, and that is essential to the concept I am promoting.

Other challenges facing MDA
There are many practical obstacles to successful forward engineering from one level of MDA to the next. Some are
mentioned above. Other barriers to MDA (mostly suggested to me by Chris Britton) include:

• Existing systems: current tools generate UML from code - not much help really. Are there tools to reverse

engineer PIMs and CIMs from legacy systems?
• System integration: how to build CIMs and PIMs for message brokers and adapters?
• Verification: how to verify models than have not yet been implemented?
• Abstraction from the distributed object paradigm: aren't user requirements essentially event-oriented rather than

object-oriented? Aren't outline solution components (subsystems) really rather different from programming level
components (DCOM objects, whatever)?

• Non-functional requirements: these constrain the results of a PIM-to-PSM transformation
• Primitive data types: how to define basic or generic constraints on data item values in a CIM or PIM?

On reuse
Use cases and units of work are not products of object-oriented analysis; they are products of event-oriented analysis.
And after identifying what use cases and units of work are needed, an important task in detailed design is to optimise
reuse.

Every discrete software system can be defined as a process hierarchy (though hierarchy here means a network rather
than a strict hierarchy, since a lower-level process can be part of several higher ones). e.g. A use case may involve
zero, one or more units of work, and a unit of work may be reused in several use cases.

134

You can also factor out common processes at one level. You might find two use cases share a common process, or
two units of work share a common process. Sometimes, that common process is wanted on its own in another context,
so it can be defined as discrete use case or unit of work. The lowest level common processes in units of work are
operations on the lowest level encapsulated entities.

There is a formal event-oriented technique for defining reuse between units of work. In this technique, the unit of work
is called a discrete "event" which has an “effect” on each of one or more “entities”. Two discrete events can share a
common process, known as a "super event". The OO concept of a responsibility is akin to an effect, or more
interestingly, to a super event.

In short: You identify events. You identify where two or more events have same preconditions and postconditions wrt
an entity (that is, the several events appear at the same point in the entity's state machine and have the same effect).
You name the shared effect as a super event. You analyse to see if the super event goes on from that entity (where
the events’ access paths come together) to have a shared effect on one or more other entities, and if so, you adopt the
super event name in specifying those other entities’ state machines.

I don't mean to promote this specific “super event” analysis and design technique. I am only wanting to indicate that
event-oriented analysis and design has a respectable and successful history, since many OO designers are unaware
of this history.

By the way, you may be able to generalise two similar units of work into one, but you have to define the two distinct
requirements before you can know this is possible.

On practical experience of using UML as the programming level
 “On some previous projects, I went full-scale for using Rose to produce detailed models and generate code from them.
 When I needed to extend the design, I would always return to the Rose model and make the change there, forward
generate the code, and then fill in the details. I worked for several years this way and advocated for it strongly among
my peers, although few took me up on the approach, at least in part because of the steepness of the learning curve for
Rose with code generation in C++.

The models I produced were useful to me, but far too detailed to be helpful for talking about the design with someone
else. I had to produce more simplified views for this, but I was proud of the fact that my models always represented
the state of the code.

Unfortunately, maintaining a very detailed model is really no easier than maintaining the code. My models tended to
become rigid, even though I was working with UML diagrams. Finally, I have decided that working with too detailed a
model is a trap. Basically this is the same trap that we were trying to avoid by working with UML in the first place.

It's very important to work at the correct level of abstraction.

In my current project, we have taken the simple design and refactoring approach. We develop in three week iterations.
 We draw the designs we need for each iteration on a whiteboard. When we all understand them well enough, we
code them. We refactor continuously, driven by code smells and design considerations. At the end of an iteration, we
reverse engineer our code (using Rose) and produce simplified views that we use to inform our designs on the
whiteboard in the next iteration.

This seems to have worked very well, and I feel our design is quite good. Partly, this represents that I have more
experience as a designer.

However, I also see that this way of working keeps us focused on the right level of detail at the right time. In other
words, a white board can be a more effective tool than Rational Rose for working out a high level design, and
refactoring using the code can be a very effective tool for improving a design. The reverse engineering works well
enough and the model is always up to date. We have a team of three that has been working for 15 months in this way,
and the design and code have not become rigid. I won't be going back to using forward code generation from a model.”

135

What do we do with re-use in MDA?

Nathalie Moreno and Antonio Vallecillo

Dpto. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain
{vergara,av}@lcc.uma.es

Abstract. MDA seems to be one of the most promising approaches
for designing and developing software applications. It provides the right
kinds of abstractions and mechanisms for improving the way applica-
tions are built nowadays: in MDA, software development becomes model
transformation. MDA also seems to suggest a top-down development
process, whereby PIMs are progressively transformed into PSMs until a
final system implementation (PSM) is reached. However, there are situa-
tions in which a bottom-up approach is also required, e.g., when re-use
is required. Here, re-use means for instance using pre-developed COTS
components to build applications, or dealing with legacy systems. Mo-
reover, many times we are not interested in the creation of new systems
but in the maintenance or evolution of existing ones. How to deal with
these issues within the context of MDA? How much benefit will MDA
bring to those problems? In this paper we try to introduce the main pro-
blems involved in dealing with re-use in MDA, identify the major issues,
and propose some ways to address them, particularly in the context of
Component-based Software Development.

1 Introduction

The Model Driven Architecture (MDA) [16, 19] is an OMG initiative that pro-
vides an approach to system development based on models. It is model-driven
because it provides a means for using models to direct the course of understan-
ding, design, construction, deployment, operation, maintenance and modification
of systems. It provides an approach for specifying a system independently of the
platform that will support it (Platform Independent Model, PIM); specifying
platforms (Platform Models, PM); choosing one or more particular platforms
for the system; and transforming the PIM into one (or more) Platform Specific
Models (or PSM)—one for each particular platform.

Platform independence is the quality of a model to be independent of the fea-
tures of a platform of any particular type. This aims at separating the business
logic and rules from the technology and middleware platform(s) on which the
system is implemented, protecting part of the organization investment in soft-
ware development from changes in the fast-pace evolving software technologies.

Model transformation is the process of converting one model to another model
of the same system. In MDA, software development becomes an iterative model
transformation process: each step transforms one (or more) PIM of the system

136

at one level into one (or more) PSM at the next level, until a final system
implementation is reached. (Here, an implementation is just another PSM, which
provides all the information needed to construct a system and to put it into
operation.)

This process seems to imply a top-down development process, by which mo-
dels at different levels of abstraction of the system are progressively transformed
(merged and/or refined) until the implementation code is finally generated. Ho-
wever, there are situations in which a bottom-up approach is also required. For
instance, how to use and integrate pre-developed COTS components into the
application? How to deal with pieces of legacy code, or with legacy applica-
tions? Furthermore, many times we are not interested in the creation of new
systems but in the maintenance or evolution of existing ones. How to deal with
these re-use issues within the context of MDA? How much benefit will MDA
bring to those problems? For MDA to become mainstream, the current re-use
issue has to be properly addressed.

In this paper we try to introduce the problems involved in dealing with
re-use within the MDA, identify the major issues, and propose some ways to
address them in the particular context of Component-based Software Develop-
ment (CBSD). More precisely, the structure of this document is as follows. After
this introduction, Section 2 describes the major problems that we think that
need to be addressed in order to deal with re-use within MDA. Then, Section
3 presents a solution based on a set of assumptions. The feasibility of such
assumptions is discussed in Section 4, which analyzes how far we currently are
to overcome the problems that each assumption faces. Finally, Section 5 draws
some conclusions and outlines some future lines of research.

2 The problems

There are many different problems that need to be addressed in order to deal with
re-use in the context of MDA. There are general problems of system modeling
and of MDA, and specific problems of COTS components and legacy systems.

2.1 Problems related to the modeling of systems and MDA

The first kind of problems are general to all system modeling approaches, and
in particular to MDA: What kind of information should the model of a software
system contain? How do we express such information? (Not to speak about the
methodology or approach to derive the model from the user’s requirements.)

First, there seems to be no consensus about the information that comprises
the model of a system, a component, or a service. In this paper we will suppose
that this information contains three main parts: the structure, the behavior, and
the choreography [20]. The first one describes the major classes or components
types representing services in the system, their attributes, the signature of their
operations, and the relationships between them. Usually, UML class or compo-
nent diagrams capture such architectural information. The behavior specifies the

137

precise behavior of every object or component, usually in terms of state machines,
action semantics, or by the specification of the pre- and post-conditions of their
operations (see [14] for a comprehensive discussion of the different approaches for
behavior modeling). Finally, the choreography defines the valid sequences of me-
ssages and interactions that the different objects and components of the system
may exchange. Notations like sequence and interaction diagrams, languages like
BPEL4WS, or formal notations like Petri Nets or the π-calculus may describe
such kind of information.

Most system architects and modelers currently use UML (class or component
diagrams) for describing the structural parts of the system model. However, there
is no consensus on the notation to use for modeling behavior and choreography.
This is something that somehow needs to be resolved.

2.2 Problems related to COTS and legacy systems

The second set of problems is related to the COTS components or legacy systems
that we need to integrate in our system. The kind of information that is available
from them will allow us to check whether they match our requirements or not,
as described by the system model. More precisely, this information should be
able to allow us to:

(a) model the component or legacy system (e.g., by describing its structure,
behavior, and choreography);

(b) check whether it matches the system requirements (this is also known as the
gap analysis problem [8]);

(c) evaluate the changes and adaptation effort required to make it match the
system requirements (i.e., evaluate the distance between the models of the
“required” and the “actual” services, see e.g., [15]); and

(d) ideally, provide the specification of an adaptor that resolves these possible
mismatches and differences (see e.g., [5, 6]).

Figure 1 shows these processes in a graphical way.
The problem is that both COTS components and legacy applications are

usually back-box pieces of software for which there is no documentation or mo-
deling information at all. Even worse, if a model of a component or legacy system
exists, it may correspond to the original design but not to the actual piece of
software. The current separation between the model of the system and its final
implementation usually leads to situations in which changes and evolutions of
the code do not reflect in the documentation—same as it happens in a building
that gets refurbished but nobody cares to update the floor and electricity maps.

Some people propose the use of reverse engineering to obtain the information
we require about legacy systems (basically, obtain their models from their code,
whenever the code is available). Thus, a reverse transformation would convert
the code of the legacy application into a fairly high-level model with a defined
interface that can be used to perform all the previous tasks.

138

COTS
(BLACK BOX)

COTS

 SPECIFICATION

ADAPTER

SPECIFICATION

STRUCTURE BEHAVIOR

ADAPTER

NO NO NO

BUSINESS COMPONENT

PIM

LANGUAGE

PSM

LANGUAGE

CODE

BEHAVIORAL MODEL STRUCTURAL MODEL CHOREOGRAPHY MODEL

nnnn

nnnn

MDA TRANSFORMATION/

IMPLEMENTATION

DOCUMENTATION OR

MDA TRANSFORMATION/ REV.

ENGINEERING

< ?

CHOREOGRAPHY STRUCTURE BEHAVIOR CHOREOGRAPHY

ADAPTABLE?

YES YES YES

YES

NO

NO

COMPONENT

SPECIFICATION

MDA TRANSFORMATION/

IMPLEMENTATION

GENERATED
COMPONENT

WORTH DEVELOPING?

YES

NO

REVIEW

ADAPTABLE?
NO

STRUCTURE BEHAVIOR CHOREOGRAPHY

< ? < ?

ADAPTABLE?

STRUCTURE BEHAVIOR CHOREOGRAPHY

MDA
TRANSFORMATION

MDA
TRANSFORMATION

MDA
TRANSFORMATION

Fig. 1. Integrating COTS into the MDA chain

But the problem is that reverse engineering can only provide a model at the
lowest possible level of abstraction. In fact, you can’t reverse engineer an archi-
tecture of any value out of something that did not have an architecture to begin
with. And even if the original system was created with a sound architecture,
very often the original architecture tends to get eroded during the development
process. So, what you usually get after reverse engineering is essentially just an
execution model of the actual software in graphical form. At that point, most of
the high level design decisions have been wiped out.

Our proposal is then to model just the interfaces to legacy systems and leave
them as code—not to reverse engineer their contents. In this way we can deal
with them as if they were COTS components, whose internals are unaccessible.

With regard to adaptation, an old rule of thumb claims that if more than
80% of the functionality of a component needs to be modified in order to be

139

Table 1. Examples of software elements and available notations for expressing their
structural, behavioral, and choreography models.

Software element Structure Behavior Choreography

Web Service WSDL RDF BPEL4WS [9]

CORBA object CORBA IDL SDL [11] Message Sequence Charts [10]

CORBA object CORBA IDL Larch-CORBA [12] CORBA-Roles [7] or Petri-nets [2]

Java Class Java JML [13] UML seq. diagrams

.NET assembly C# contracts [1] BPEL4WS [9]

integrated into our system, it is faster (and cheaper) to develop it from scratch.
In other words, if a legacy component can be wrapped and then successfully de-
ployed with a “minor” repair/upgrade effort, then this is a reasonable approach.
If any more than a “minor” effort is needed to make it match our high-level
system requirements (as stated by the system PIM), then it is a strong candi-
date for forward engineering—of course using the existing legacy component as
conceptual input.

Summarizing, the main problems related to the re-use of COTS components
and legacy systems that we perceive are: the definition of the information (set
of models) that needs to be provided/obtained for a piece of software in or-
der to understand its functionality, and how to re-use it; the evaluation of the
effort required to adapt it to match the new system’s requirements; and the
(semi)automatic generation of adapters that iron out the mismatches.

3 Assumptions for addressing these problems

This Section discusses how to address some of the issues mentioned above, ma-
king certain assumptions.

(1) First, we will suppose that we count with a model of the COTS component
or legacy system that we need to re-use, with the information about its struc-
ture, behavior, and choreography. Table 1 shows some examples of software
elements and the notations in which the information can be expressed. These
models will constitute our target PSM.

(2) We will also suppose that the PIM of the application we are developing des-
cribes the system as a set of interacting parts, each one with the information
about its structure, behavior, and choreography. (This information can be
either individually modeled, or obtained for each element from the global
PIM—by using projections, for example.)

(3) Third, we will assume that there are MDA transformations defined between
the metamodels of the notations used in the PIM for describing the system
structure, behavior and choreography, and those used in the PSM. For ins-
tance, MDA transformations from Message Sequence Charts to BPEL4WS.

(4) Fourth, we will suppose that associated to each notation for describing struc-
ture, behavior and choreography at the PSM level, there are a set of match-
making operators that will implement the substitutability tests. These tests

140

are required to check whether the required business component (as specified
in the PIM, and then “translated” into the PSM) can be safely substituted
by the existing component or piece of legacy software. For simplicity, we will
use the name notation (≤) for referring to all these operators.
For example, at the structural level given two interfaces A and B, we shall
say that A ≤ B if A can replace B, i.e., if A is a subtype of B using the
common subtyping relations for interface signatures [21]. At the behavioural
level, this operator can be defined to deal with the behavioral semantics
of components, following the usual subtyping relations for pre-post condi-
tions [22], for instance. Operator ≤ can also be defined for choreography
models expressed using process algebras [6, 7, 17].

(5) An finally, we need to count on the existence of (semi) automated derivation
of software adaptors (e.g., wrappers) that resolve the potential mismatches
found by the substitutability tests.

Using all these assumptions, our approach is graphically depicted in Figure 1.
As we can see, our starting point is the PIM of a business service or component.
This PIM comes from the PIM of the global system, that we suppose composed
of individual business services or components interacting together to achieve the
system functionality. The PIM of each business service comprises (at least) three
models with its structure, behavior, and choreography.

At the right hand side of the bottom of the Figure 1 we have the piece of soft-
ware that we want to re-use, let it be a COTS component or a legacy application
(for example, think of an external Web Service that offers the financial services
we are interested in, or a COTS component that provides part of the functiona-
lity that our business requires). From its available information and/or code we
need to extract its high-level models, that will the constitute the PSM of the
software element. This PSM will be constructed using the information available
from the COTS component or legacy application, and probably complemented
with some information obtained using reverse engineering. The Platform in this
case will be the one in which we express the information available about the
element. Let us call P to that platform, and let Ms, Mb and Mc the models of
the structure, behavior and choreography of the software element to be re-used,
respectively.

Once we count with a PIM of the business service (our requirements) and
the PSM of the available software in a platform P , we need to compare them,
and check whether the PSM can serve as an implementation of the PIM in that
platform. In order to implement such a comparison, both models need to be
expressed in the same platform. Therefore, we will transform the three models
of the PIM into three models in P , using MDA transformations. Let they be
M ′

s, M ′
b and M ′

c, respectively.
Once they are expressed in the same platform and in compatible languages,

we can make use of the appropriate reemplazability operators and tools defined
for those languages to check that the software element fulfils our requirements,
i.e., Ms ≤ M ′

s, Mb ≤ M ′
b, and Mc ≤ M ′

c. If so, it is just a matter to use the PSM
software element as a valid transformation from the PIM to that platform.

141

But in case the software element cannot fulfil our requirements (i.e. its PSM
cannot safely replace the PSM obtained by transforming the PIM), we need to
evaluate whether we can adapt it, and if so, how much is the effort involved
in that adaptation. Some recent works are showing interesting results in this
area [5, 6, 15]. The idea is, given the specifications of two software elements,
obtain the specification of an adaptor that resolves its differences. If such an
adaptor is feasible (and affordable!) we can use some MDA transformations to
get its implementation from the three models of its PSM. Otherwise, it is better
to forward-engineering the component, using MDA standard techniques from
the original business component’s PIM (left hand side of Figure 1).

Alternatively, the original PIM of the system might have to be revisited in
case there is a strong requirement of using the software element, which does not
allow us to develop it from scratch (e.g. in the cases of a financial service offe-
red by an external provider such as VISA or AMEX, or of a Web Service that
implements a typical service from Amazon or Adobe). In those cases, we must
accommodate the software design and architecture of our system to the exis-
ting products, maybe using spiral development methods such as those described
in [18].

4 Dealing with the assumptions

We have presented an approach to deal with COTS components and legacy code
within the context of MDA, based on a set of assumptions. In this Section we will
discuss how far we currently are from achieving these assumptions, and the work
that needs to be carried out for making them become true. The assumptions were
introduced in Section 3.

The first one had to do with obtaining the PSM of the piece of software
to be re-used, and in particular the models of its structure, behavior and cho-
reography. Examples of such models were presented in Table 1. Some of this
information is not difficult to obtain, specially at the structure level: the sig-
nature of the interfaces of the software elements are commonly available (e.g.
WSDL descriptions of Web Services, IDLs of CORBA and COM components,
etc.). However, the situation at the other two levels is not so bright, and only
for Web Services we think that it will resolve in a near future—this information
is definitely required if re-use is to be achieved, and we perceive a clear support
from software developers and vendors to re-use Web Services. Proposals for des-
cribing the choreography and behavioral semantics of Web Services are starting
to be developed, and we expect to see them widely agreed soon. For the rest
of the COTS components there are some small advances (see, e.g., the work by
Bertrand Meyer on extracting contract information from .NET components [1])
but most of the required information will probably never be supplied [3], unless
a real software marketplace for them does ever materialize.

Regarding legacy systems, the use of reverse engineering may be of great
help, although it also presents strong limitations, as we previously discussed in
Section 2. Basically, the result after reverse engineering is essentially just an

142

execution model of the actual software in graphical form, without most of the
high level design decisions and architecture.

The second assumption was about counting with a PIM of the individual
business services that form part of the system, with information about their
structure, behavior, and choreography. Again, there seems to be no major pro-
blems with the structure, but we see how the software engineering community
currently struggles to deal with the modeling of behavior and choreography of
business components and services (a quick look at the discussion happening at
the MDA, Business Processes, and WS-Choreography mailing lists is very illus-
trative).

Although there is no agreed notation for modeling behavior (or even consen-
sus on a common behavioral model), we expect UML 2.0 to bring some consensus
here: even when UML 2.0 proposed behavioral and choreography models are far
from being perfect, we expect the “U” of UML to do its job. However, this also
strongly depends on the availability of tools to support the forthcoming UML
2.0 standard.

The third assumption relied on the availability of MDA transformations bet-
ween the metamodels of the notations used in the PIM for describing the system
structure, behavior and choreography, and those used in the PSM. We expect
MOF/QVT to be of great help here. In fact, there are some proposals already
available that provide transformations between different languages, such as UML
(Class diagrams) to Java (interfaces), EDOC to BPEL4WS, etc. [4]. They are
still at a fairly low level, but they are very promising when considered from the
MOF/QVT perspective.

We also supposed, as fourth assumption, the existence of formal operations
(≤) and tools for checking the substitutability of two specifications. The situa-
tion is easy at the structure level, since this implies just common subtyping of
interfaces. However, there is much work to be done at the behavior or choreo-
graphy levels, for which only a limited set of operators and tools exist (basically,
the works by Gary Leavens on Larch [13, 12], and the works by Carlos Canal et
al. for choreography [6, 7]).

Finally, there is also plenty of work to do with regard to the (semi) auto-
mated derivation of software adaptors (e.g., wrappers) that resolve the potential
mismatches found by the substitutability tests. There are some initial results
only, but most of the problems seem to be unsolved yet: defining distances bet-
ween specifications [15], deciding about the potential existence of a wrapper that
resolves the mismatches, generating the wrappers at the different levels, etc.

5 Concluding Remarks

In this position paper we have discussed the issues associated to re-use within the
context of MDA. We have also presented a proposal, based on a set of assump-
tions. The problem is that these assumptions are not feasible yet. However, their
identification has helped us detect some areas of research that may help solve the

143

problems associated to re-use, or at least alleviate it in some particular contexts,
e.g., CBSD or Web Engineering.

The general problem of re-use is much more complex, though. We have over-
simplified it by just concentrating on three aspects of the systems: structure,
behavior and choreography. These models allow the specification and imple-
mentation of most of the “operationalizable” properties of systems: basically,
its functionality and some QoS and security requirements. However, how to
deal with the extra-functional requirements (e.g. robustness, stability, usability,
demonstrability, maintainability,etc.)? Many of these requirements are more im-
portant than functionality when it comes to reuse or upgrade an existing system.
As usual, we will leave them for future research.

Acknowledgements . This work has been partially supported by Spanish Project
TIC2002- 04309-C02-02.

References

1. K. Arnout and B. Meyer. Finding implicit contracts in .NET components.
In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors,
Formal Methods for Components and Objects (First International Sympo-
sium, FMCO 2002), number 2852 in Lecture Notes in Computer Science,
pages 285–318, Leiden, The Netherlands, 2003. Springer-Verlag, Heildelberg.
http://www.inf.ethz.ch/ meyer/publications/extraction/extraction.pdf.

2. R. Bastide, O. Sy, and P. Palanque. Formal specification and prototyping
of CORBA systems. In Proceedings of ECOOP’99, number 1628 in Lecture
Notes in Computer Science, pages 474–494, Lisbon, Portugal, 14–18 June 1999.
Springer-Verlag, Heildelberg.

3. M. F. Bertoa, J. M. Troya, and A. Vallecillo. A survey on the quality information
provided by software component vendors. In Proc. of the 7th ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE
2003), pages 25–30, Darmstadt, Germany, 21 July 2003.

4. J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. An experiment in mapping
web services to implementation platforms. Reserach Report 04.01, University of
Nantes, Mar. 2004.

5. A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, Special Issue on Automated Component-Based
Software Engineering (in press), 2004.

6. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services
choreographies. In Proc. of the 1st International Workshop on Web Services
and Formal Methods (WS-FM’04), volume 86 of Electronic Notes in Theoretical
Computer Science, pages 1–20, Pisa, Italy, Sept. 2004. Elsevier.

7. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
CORBA objects. IEEE Trans. Softw. Eng., 29(3):242–260, Mar. 2003.

144

8. J. Cheesman and J. Daniels. UML Components. A simple process for specifying
component-based software. Addison-Wesley, Boston, 2000.

9. IBM. Business Process Execution Language for Web services (BPEL4WS)
1.1. IBM and Microsoft, May 2003. Available at http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

10. ITU-T. Message Sequence Charts. International Telecommunications Union,
Geneva, Switzerland, 1994. ITU-T Recommendation Z.120.

11. ITU-T. SDL: Specification and Description Language. International Telecommu-
nications Union, Geneva, Switzerland, 1994. ITU-T Recommendation Z.100.

12. G. T. Leavens. Larch-corba. http://www.cs.iastate.edu/ leav-
ens/main.htmlLarchCORBA.

13. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999. JML
web page: http://www.cs.iastate.edu/ leavens/JML.html.

14. A. McNeile and N. Simons. Methods of behaviour modelling, Apr. 2004.
http://www.metamaxim.com/download/documents/Methods.pdf.

15. R. Mili, J. Desharnais, M. Frappier, and A. Mili. Semantic distance between
specifications. Theoretical Comput. Sci., 247:257–276, Sept. 2000.

16. J. Miller and J. Mukerji. MDA Guide. Object Management Group, Jan. 2003.
OMG document ab/2003-05-01.

17. O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, pages 99–121. Prentice-Hall, 1995.

18. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115–117, Mar. 2001.

19. OMG. Model Driven Architecture. A Technical Perspective. Object Management
Group, Jan. 2001. OMG document ab/2001-01-01.

20. A. Vallecillo, J. Hernández, and J. M. Troya. New issues in object interoperability.
In Object-Oriented Technology: ECOOP 2000 Workshop Reader, number 1964 in
Lecture Notes in Computer Science, chapter 21, pages 256–269. Springer-Verlag,
Heidelberg, 2000.

21. A. M. Zaremski and J. M. Wing. Signature matching: A tool for using software
libraries. ACM Trans. on Software Engineering and Methodology, 4(2):146–170,
Apr. 1995.

22. A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Trans. on Software Engineering and Methodology, 6(4):333–369, Oct. 1997.

145

Supporting Model Reusability with Pattern-based Composition Units
Andrey Nechypurenko

Siemens Corporate Technology
Munich, Germany

andrey.nechypurenko@siemens.com

 Douglas C. Schmidt
Vanderbilt University,

Nashville, TN, USA
 d.schmidt@vanderbilt.edu

Abstract

The growing complexity and criticality of distributed sys-
tems motivates software developers to raise the level of
abstraction used to develop these systems. A promising
approach for improving the quality and productivity of
software development is to (1) assemble applications from
higher-level building blocks that represent solution tem-
plates for certain application domains and (2) apply
model-driven development techniques and tools to manipu-
late the building blocks and automate key tasks related to
system specification, implementation, configuration, and
deployment, rather than (re)writing the applications manu-
ally using third-generation programming languages. To
simplify the manipulation of component building blocks,
however, requires a well-formed set of rules and relation-
ships. This paper contributes to the study of these topics by
describing pattern inheritance relationships, showing how
pattern inheritance can improve the reusability of models,
and illustrating our approach with a concrete example.

Keywords
Model-Driven Development (MDD), patterns, inheritance.

1. Introduction
Emerging trends. The growth in the size and complexity
of large-scale distributed systems is exceeding the ability of
IT professionals and organizations to develop software for
these systems with acceptable and affordable time and ef-
fort. To address this problem requires new technologies
that enable developers to improve the productivity and
quality of the software development process. A promising
approach involves the combination of (1) component mid-
dleware [21], which provide mechanisms to configure and
control key distributed computing aspects (such as connect-
ing event sources to event sinks and managing transac-
tional behavior) separately from the functional aspects of
applications, with (2) model driven development (MDD)
[1][22], which is a generative technology that helps reduce
complexity by raising the level of abstraction at which
software is developed.
The technical foundations of component middleware con-
sist of various patterns and frameworks that have been cov-
ered extensively in earlier publications [4][5][10][14][17].
The technical foundations of MDD are less well codified,
but the emerging consensus [11][22] is that the MDD para-
digm involves (1) metamodeling, which define type sys-

tems that precisely express key characteristics and con-
straints associated with particular application domains,
such as e-commerce, telecommunications, and automotive
control, (2) domain-specific languages, which provide pro-
gramming notations that formalize the process of specify-
ing business logic and quality of service (QoS)-related re-
quirements, and (3) model transformations and code gen-
erators, which help to automate and assure the consistency
of software implementations using analysis information
associated with functional and QoS specifications captured
by models. Although there are various approaches [1][20]
to realizing the MDD paradigm, MDD tools and techniques
share a common goal of reducing complexity by raising the
level of abstraction used to specify, implement, configure,
and deploy software systems.

Unresolved problems.Despite improvements in third-
generation programming languages (such as Java or C++)
and run-time platforms (such as component middleware),
the levels of abstraction at which application logic is typi-
cally integrated with the set of rules and behavior dictated
by component models remains low relative to the (1) con-
cepts and concerns within the application domains them-
selves and (2) advanced technologies available in the solu-
tion space described below:
• Gap between domain and implementation abstrac-

tion levels. A large gap exists in the levels of abstrac-
tion between (1) mainstream programming languages
used by software engineers versus (2) the domain-
specific terminology used by systems engineers to de-
scribe applications that are being built. The conven-
tional solution is to apply a design process (such as ob-
ject-oriented design or structured design) to map from
the higher-level domain-specific abstractions to the
much lower-level abstraction provided by mainstream
third-generation programming languages. This map-
ping has historically been performed manually by con-
ventional software development methodologies, such
as RUP [25], which introduces various problems, rang-
ing from simple implementation errors to missing cus-
tomer requirements [22].

• Gap between state-of-the-art and state-of-the-
practice. Another gap exists between the levels of ab-
straction and composition that represent (1) the state-
of-the-art in software engineering R&D versus (2) the
state-of-the-practice applied by most developers. In
particular, mainstream third-generation languages do

146

not intuitively reflect the concepts used by cutting-
edge software researchers and developers [9], who in-
creasingly express their system architectures and de-
signs using languages and tools that support higher
level concerns, such as persistence, remoting, and syn-
chronization.

Both these gaps can be narrowed by introducing intermedi-
ate abstraction layers, where the distance between problem
domain abstractions and available solution domain abstrac-
tions is much smaller. As discussed [22], this approach
motivates the development of generative MDD technolo-
gies that create families of domain-specific languages
(DSLs). These DSLs can then be applied to express do-
main-specific problems more effectively and intuitively
than general-purpose programming languages, thereby en-
hancing software productivity and quality.
Despite the promising benefits of MDD, other unresolved
problems remain due to the fact that models of distributed
systems can themselves be large and complex as applica-
tions grow in size and scope. In particular, it is hard to
change and maintain models using conventional Model-
Driven Architecture (MDA) techniques [1][20], which pro-
vide only a slightly higher level of abstraction and plat-
form-independence than third-generation programming
languages, such as C++ or Java.
Solution approach Compose software systems from
higher-level building blocks that are solution templates
for certain problems. In previous work [2][3] we moti-
vated the need for higher-level MDD abstractions that
combine patterns, component middleware, and aspect-
oriented software development (AOSD) techniques [13] to
• Resolve recurring distributed system development

problems so they have fewer dependencies on plat-
form-specific details, such as communication proto-
cols, object models, and threading models, and

• Automate key system evolution tasks, such as imple-
menting new customer requirements, refactoring cer-
tain parts of the system, and migrating to the newer
versions (or versions from other vendors) of libraries
and middleware used for development.

Our previous work, however, does not show how the pat-
tern-based composition of different aspects and models
could be implemented in component-based systems. This
paper therefore explores another point in the solution
space: illustrating a new design and problem decomposi-
tion approach that applies patterns for modeling different
aspects of distributed systems to simplify model transfor-
mations and code generators for component-based systems.
In particular, we investigate the relationships between pat-
terns that can improve their substitutability and compos-
ability, thereby contributing to methodologies that can be
applied to manipulate role-based solution templates as first
class system composition units. We introduce the concept
of pattern feature inheritance relationships and use a con-

crete example to illustrate the benefits gained from using
the substitutability property of feature inheritance. It is our
position that formalizing sets of composition and manipula-
tion rules will enable greater automation of key modeling
and code generation concerns that are hard to automate
with conventional MDD technologies.
Paper organization. The remainder of this paper is organ-
ized as following: Section 2 describes how inheritance rela-
tionships between patterns help to support variability with-
out degrading software symmetry [26][27]; Section 3 ex-
amines a concrete example that illustrates the applicability
of concepts presented in Section 2 to solve the problems
outlined in Section 1; Section 4 compares our approach
with related work; and Section 5 presents concluding re-
marks and outlines future work.

2. Pattern Inheritance as a Key Mechanism
to Encapsulate Variability and Improve
Reusability

To manage software development effort and enhance soft-
ware productivity and quality, the IT industry is continually
trying to improve reusability and localize the impact of
variability found in product families [8]. The paradigms
developed over the past 3-4 decades range from functional
decomposition to object-oriented decomposition and re-
cently aspect-oriented decomposition [6][13]. Each para-
digm prescribes a methodology for modularizing different
dimensions of software systems. A theme that pervades all
these software development paradigms is patterns
[12][10][14], which are technology-independent, role-
based descriptions of common ways of resolving key
forces associated with recurring problems encountered
when developing software.
Based on our experience developing and applying pattern-
based [10][12][14] frameworks [4][5] and middleware plat-
forms [16][17] for distributed systems over the past two
decades, we believe that patterns are a valuable addition to
the portfolio of higher-level system building blocks avail-
able to software developers. To enable patterns to become
first-class citizens in MDD environments, it is necessary to
define a set of composition rules and express relationships
between patterns precisely. As discussed in [26], it is pos-
sible to substitute implementation artifacts that have inheri-
tance relationships without affecting key properties of an
entire system. This type of transformation can be treated as
a symmetry [29], which is a special type of model trans-
formation that preserves the key properties of a model.
Examples of key model properties include persistence,
which is the ability to read/write the state of an object to
persistent storage and remoting, which is the ability to
communicate with other system components over the net-
work.
Coplien and Zhao [26] describe how object-oriented inheri-
tance can also be treated as a symmetrical transformation

147

because it preserves key behavioral aspects defined by base
class. In turn, the concept of pattern feature inheritance
introduced in this paper also preserves the key properties of
the “base” pattern, so that substituting “derived” patterns
provide variability without changing key system properties.
This section describes how inheritance relationships be-
tween patterns help to support variability without degrad-
ing software symmetry. In particular, we treat transforma-
tion and inheritance as enabling mechanisms to simplify
the substitution of certain system components without af-
fecting other key system properties. These mechanisms
therefore help make it easier to handle the types of variabil-
ity typically encountered when developing MDD tools that
support product-line architectures.

2.1 Handling Variability via Inheritance
Inheritance is a powerful mechanism for shielding certain
parts of applications from side-effects caused by the need
to customize certain functional aspects. To illustrate in-
heritance, consider the following classical Observer pattern
[12] example shown in Figure 1. In this example, the Sub-
ject class is shielded from the variability introduced by
different implementations of the Observer interface. The
enabling mechanism in this case is inheritance, which in
accordance to the Liskov Substitutability Principe (LSP)
[7] allows Observable to work uniformly with all Ob-
server subclasses, such as Notifier and Logger.

It would be nice to achieve the same level of substitutabil-
ity with pattern-based building blocks. We therefore need
to identify similar relationships between patterns. These
relationships, in turn, should be used to facilitate the devel-
opment of MDD tools that can automate pattern manipula-
tion tasks and support the level of substitutability needed to
address the challenges presented in Section 1.

2.2 Inheritance Relationships between Pat-
terns

To explore the value of expressing inheritance relationships
between patterns, we will examine the following set of
patterns:
• Observer [12], which defines a one-to-many depend-

ency between objects so that when one object changes
state, all its dependents are notified and updated auto-
matically.

• Reactor [10], allows event-driven applications to de-
multiplex and dispatch service requests that are deliv-
ered to an application from one or more clients.

• Interceptor [10], which allows services to be added
transparently to a framework and triggered automati-
cally when certain events occur.

Figure 1. Observer Pattern Structure

There are common roles and responsibilities that cross-cut
these patterns, e.g., there are certain events that can occur
in a system, certain entities that need to be notified when
such events occur, and certain ways these entities can ex-
press their desire to handle certain events by registering
their interest. While this description is similar to the Ob-
server pattern it does not mean that Reactor and Interceptor
are simply different variants of Observer since each pattern
has different forces and goals. Yet there are similarities that
stem from the fact that these patterns share a higher-level
relationship than just “different variants of Observer.” We
contend that this relationship can be represented by feature
inheritance.
To explore feature inheritance relationships between pat-
terns more concretely, consider again the Observer exam-
ple presented in Section 2.1. The Notifier and Logger
subclasses have different functionality and goals, i.e., no-
tify users via a pop-up window and an output trace record,
respectively. But they still conform to the “is a” relation-
ship to the Observer base class. There are similar rela-
tionships for the Observer, Interceptor, and Reactor pat-
terns, as shown in Figure 2.

Figure 2. Relationships between Patterns

The pattern feature inheritance tree shown in Figure 2 de-
fines the relationships between four patterns. At the root of
the hierarchy is the Callback pattern, [30], which de-
fines the basic mechanism (feature) used by all the rest

148

related patterns – control inversion. In the Observer pat-
tern, all registered Observers are called back by a regis-
tered Subject. Likewise, for the Reactor and Interceptor
patterns the registered Event Handlers and Inter-
ceptors are called back, respectively, when the certain
triggering conditions occur.
Despite the similarities between these four patterns, there
are also some differences that bear mentioning because
they motivate the Observer pattern as a basis for the set
of related patterns and allow a cleaner connection between
the patterns at Figure 2. In particular, a key difference be-
tween the Reactor and Interceptor patterns is the event
source. The Reactor’s event source is a demultiplexor, such
as the select() or WaitForMultipleObjects()
system calls, where-as the Interceptor’s event source is
incoming control flow, such as callback method invocation
by CORBA Portable Interceptors [28] that are triggered
during the remote invocation request/response flow. There
is, however, no such role as event source in classical Ob-
server pattern description – instead, that role is merged
with the subject role. We therefore suggest the Observer
pattern be extended, as shown in Figure 3.
The new EventSource role is responsible for monitor-
ing possible condition changes and then initiating a notifi-
cation propagation mechanism by triggering the Subject
implementation, e.g., by invoking the triggerUp-
dates() method on the Subject. Introducing the
EventSource role allows a cleaner separation of respon-
sibilities for the Observer pattern. Moreover, compared
with the previous approach shown in Figure 1, the Sub-
ject role is now only responsible for maintaining observ-
ers list and iterating over this list when notifications are
propagated.

Figure 3. Extending the Observer Pattern with the

Event Source Role

To illustrate different implementations of the Event-
Source role, the following cases could be considered:

• Different implementations of EventSource, e.g.,
example the family of different reactors, such as the
ACE_Select_Reactor, ACE_WFMO_Reactor,
and ACE_Dev_Poll_Reactor [5].

• A GUI event loop, which typically blocks on an OS
demultiplexer, such as select() or WaitForMul-
tipleObjects(), to detect incoming events (e.g., a
mouse click) and then dispatch this event to the corre-
sponding handlers (e.g., a button) , which in turn noti-
fies observers about a change in state (e.g., button
down).

• Hardware interrupt handlers can also be considered as
event sources, which typically delegate event process-
ing to observers in the OS kernel.

The Visitor pattern [12] could be also viewed as inheriting
from Observer, where the event source is the traversing
algorithm visiting various concrete nodes. For example, the
Boost Graph Library (BGL) uses Observer pattern termi-
nology (notify) for their generic visitor implementations of
graph traversing algorithms [19].
We have identified other examples of inheritance relation-
ships between patterns, as shown in Figure 4, which illus-
trates the set of patterns that solve similar problems using
different methods.

Figure 4. Example of Inheritance Relationships Be-

tween Patterns
Despite differences, the core mechanism used in these pat-
terns is the indirection between two collaborating parties,
which is why the Indirection pattern forms the root of
this feature inheritance tree. The second level in the tree
shows the Remodularization pattern, which enables
collaboration between two objects even if a mismatch oc-
curs between a provided interface and an interface ex-
pected by a collaborator. In turn, there are different circum-
stances and types of remodularization required in each con-
crete case, which is why the three other patterns in Figure 3
are specializations of the Remodularization pattern.

2.3 Applying Feature Inheritance in Practice
Section 2.2 shows how feature inheritance relationships
between concerns can be presented in the form of patterns

149

or other role-based definitions. Using this concept, we can
provide a powerful mechanism to encapsulate variability at
a higher level of abstraction than is possible with third-
generation programming languages, such as C++ and Java.
For example, we can encapsulate the impact of variability
in the communication infrastructure (such as standard mid-
dleware or custom frameworks) on the rest of large-scale
distributed systems.
The primary advantage of using feature inheritance in this
way is to systematically introduce changes to a system us-
ing roles defined by certain role-based solution descrip-
tions. For example, if a developer wants to add a Visitor
pattern implementation to the code, a wizard provided by
MDD tools could guide the user through the role mapping
process to make sure that all roles defined by the Visitor
pattern are mapped by the developer to the appropriate
classes. The benefit of expressing feature inheritance rela-
tionships in this case is that after the mapping for base pat-
tern role is done, subsequent substitutions of this pattern
with concrete patterns can either be done automatically or
semi-automatically (e.g., guided by wizards).
Figure 5 shows a high -level view of the complete model-
ing process described above.

Figure 5. Concern-based Modeling Process

This figure shows how domain-specific models are used as
an input for various modeling tools. Next, the set of prede-
fined role-based solutions can be introduced by means of a
role mapping step. Finally, after completing the role map-
ping process, platform-specific models can be generated,
followed by a runnable application.

3. Remote Button Example
This section presents a concrete example that further illus-
trates how the approach presented in Section 2 could be
applied in practice.

3.1 Scenario
Consider a standalone application that is based on the
refactored Observer pattern shown in Figure 3. This appli-
cation has a simple GUI in the form of dialog box with a

single button. Pressing this button causes the invocation of
a method that implements application-specific functional-
ity. As shown in Figure 6, the button plays the Subject
role in the Observer pattern and the application-specific
class plays the Observer role (with the application-
specific processing implemented in the Observer’s no-
tify() method), and the GUI event processing loop
plays the EventSource role.

This figure represents the mapping between roles defined
by Observer pattern (i.e., Subject, Observer and Event
Source) and the application-specific classes (i.e., Button
and GUI event loop implementation). As a result of feature
inheritance, the Observer pattern can be replaced with de-
rived patterns without breaking the key functional proper-
ties of this example system, i.e., “business class should be
notified whenever the button is pressed.” This example
illustrates how pattern feature inheritance supports trans-
formation without breaking symmetry.

Figure 6. GUI Example Structure

3.2 Introducing the Remoting Aspect
The initial implementation of the GUI program shown in
Section 3.1 was a standalone application. To work in a
broader environment, assume that the scenario’s require-
ments change so that it is necessary to split this application
in two parts that communicate across a network. The first
part (i.e., the GUI client) should be able to receive the push
button event and then send this event over the network to
the second part (i.e., the business server), which will then
process this event the same way as in the initial scenario.
After this substitution, sample GUI application will be split
into two parts that communicate with each other across a
network. We thus introduce the Remoting aspect to the
application, without changing key properties of the applica-

150

tion, the i.e., BusinessClass will be notified when a
button push event occurs.
We now analyze the impact of these changes on our initial
application, in particular, on server-side of the new applica-
tion. At one level, little has changed except for the event
source, i.e., the source of the event notifications occurring
in the system. In the standalone version, the event source
was the GUI event loop that sent the mouse click notifica-
tion to the standalone application. In the client/server con-
figuration, conversely, the event source for the server-side
will arrive from the network, i.e., the event source now is
an OS demultiplexing, such as select() or WaitFor-
MultipleObjects().
Naturally, the Reactor pattern implementation is only
part of the necessary interprocess communication (IPC)
infrastructure. Introducing the Remoting aspect for larger
application will therefore require more pattern implementa-
tions and associated aspects [17]. For the sake of clarity,
however, this example assumes that the Reactor pattern
implementation provides sufficient functionality to support
our simple interprocess communication infrastructure.

3.3 Substituting Observer with Reactor
Based on the discussion in Section 2.2, if the Reactor
pattern inherits from the Observer pattern, we can sub-
stitute our Observer-based implementation with a Reactor-
based implementation without affecting the business com-
ponents, i.e., Button and BusinessClass classes,
which is written in terms of the Observer base class. The
following list summarizes steps made as a result of the sub-
stitution mentioned above, focusing on the server-side
modifications, which can be performed as follows:
1. Instead of running GUI event loop, the server needs to

call the Reactor’s run_event_loop() method,
which will substitute the event source in the server ap-
plication. Since this portion of the application is not
part of the business logic and it will not require
changes to application functionality, i.e., the imple-
mentation of Observer’s notify() method by
BusinessClass need not be changed.

2. The business logic implementation (i.e., the Ob-
server role) contains registration logic (sub-
scribe()) for events of interest. With the Reactor-
based implementation the same step is required, i.e.,
event handlers should be registered with a reactor and
need to pass an event mask that describes what types
of events are of interest (e.g., the fact that there is data
available in a socket). Once again, nothing should
change in the application functionality.

3. The Observer (i.e., the event handler) will be noti-
fied by the reactor when there data is available in a
socket registered with the reactor. After the reactor
dispatches the handler, the handler can access the in-

coming data and perform the required processing
steps.

Based on this analysis, it is clear that the processing steps
for the original application functionality remain the same
before and after adding the remoting aspect.
In a larger example, it may also be desirable to devise a
solution that affects as little of the infrastructure software
as possible. The approach described above does not pro-
vide this level of transparency due to differences in the
APIs used for various tasks, such as accessing the event
attributes, which in the case of GUI events come from GUI
toolkit supplied data structures associated with the event
and in the case of network events come from a socket.
There are ways to further enhance the solution to minimize
code perturbation, including:
• Using a patterns-oriented software library that is de-

signed for composition and thus using uniform meth-
ods for accessing notification information. For exam-
ple, the ACE [4][5] and TAO [15, 16] middleware
platforms could be applied to our example application
to minimize infrastructure rework.

• Remodularize the base code using aspect-oriented
techniques. For example, [9] proposes an approach
that uses the notion of collaboration interfaces for re-
modularization of interfaces that were not designed to
interact with each other initially.

We believe that the second approach is more flexible and
will concentrate our future research work in this direction.

4. Related Work
This section reviews work related to our approach.
Generative programming (GP) [23] is a type of program
transformation concerned with designing and implementing
software modules that can be combined to generate special-
ized and highly optimized systems fulfilling specific appli-
cation requirements. The goals of GP are to (1) decrease
the conceptual gap between program code and domain
concepts (known as achieving high intentionality), (2)
achieve high reusability and adaptability, (3) simplify man-
aging many variants of a component, and (4) increase effi-
ciency (both in space and execution time). GP is typically
concentrates on single classes which could be parameter-
ized to achieve the required functionality. Despite the pow-
erful customization mechanisms, GP still remains at the
level of abstraction supported by programming languages
like C++, Java or C#. In contrast, our approach focused on
higher level building blocks like design patterns which
could be instantiated by using the approach which is simi-
lar to the way how templates are parameterized in GP.
Role-based description of the solution could be treated as
the kind of template which spans across multiple classes.
Aspect-oriented software development (AOSD) is a GP
technology designed to more explicitly separate concerns
in software development. AOSD techniques [13] make it

151

possible to modularize crosscutting aspects of complex
distributed systems. An aspect is a piece of code or any
higher level construct, such as implementation artifacts
captured in a MDA PSM, that describes a recurring prop-
erty of a program that crosscuts the software application,
i.e., aspects capture crosscutting concerns. In our approach,
the role-based solution could represent either cross-cutting
concern or concern which could be modularized using OO
technique. In case of cross-cutting concern we will need to
implement the special model transformation to distribute
the particular functionality over the business code. This
task is similar to the task typically performed by weavers in
AOP.
Scope, Commonality, and Variability (SCV) analysis [24]
is related work on domain engineering that focuses on
identifying common and variable properties of an applica-
tion domain. SCV uses this information to guide decisions
about where and how to address possible variability and
where the more “static” implementation strategies could be
used. Our approach naturally supports SCV and provides
the possibility to capture commonality and variability at the
level which is much closer to the problem domain then it is
possible using general purpose programming languages. In
addition, pattern feature inheritance provides the powerful
mechanism to deal with variability at the higher abstraction
level end enables the substitutability of the pattern-based
system building blocks similar to the substitutability at the
class level provided by inheritance in object-oriented ap-
proach.
In [18] the authors describe the role based approach to for-
ward and reverse-engineering in order to introduce or find
pattern instances in existing code. This idea is very similar
to what we suggesting in this paper. Our main contribution
to the topic is the feature inheritance relationships between
patterns which are required to allow better level of substi-
tutability and composability at the model level.

5. Concluding Remarks
This paper presents the novel approach to pattern classifi-
cation and composition by introducing the feature inheri-
tance relationships between patterns. We also demonstrate
how patterns can be used as higher-level building blocks to
support the introduction of new aspects without affecting
the main application logic. This approach is possible be-
cause of relationships between patterns that are analogous
with inheritance in OO programming languages.
The work described in this paper provides the conceptual
foundation for a certain type of model transformation that
preserves key properties of applications being developed.
This type of transformation can be treated as a symmetrical
transformation and used to allow better substitutability of
model parts defined as role-based solution templates. Our
work also enables the automation of role-mapping process
by MDD tools based on feature inheritance relationships

between patterns. Pattern feature inheritance is an example
of symmetrical transformation that is important for the next
generation of modeling tools, which need to manipulate
higher-level building blocks, such patterns or other role-
based solutions.
The ultimate goal of our work is to create an Integrated
Concern Manipulation Environment (ICME) [2][3], which
is an MDD toolsuite that allows manipulation (i.e., adding,
removing, and specializing) different aspects of large-scale
distributed software systems using higher level building
blocks (such as patterns and aspect-oriented techniques) to
merge these blocks unobtrusively with the application logic
implementations. To provide such ICME manipulation
functionality we need to determine how to formalize pat-
tern composition rules. In the pattern literature, forces,
benefits, and liabilities are mentioned as key factors to
make decisions about which pattern to use in which con-
texts and how to combine patterns together effectively. Our
future work will analyze these descriptions in various pat-
terns and devise MDD-based formalisms and tools that
support automated and/or semi-automated analysis of pat-
tern usage and composability. For example, MDD wizards
can guide users through decision processes by asking ques-
tions and navigating through a graph of patterns to select
suitable patterns.

References
[1] OMG: “Model Driven Architecture (MDA)” Document num-

ber ormsc/2001-07-01 Architecture Board ORMSC1, July 9,
2001.

[2] A. Nechypurenko, T. Lu, G. Deng, D. C. Schmidt, A. Gok-
hale. “Applying MDA and Component Middleware to Large-
scale Distributed Systems: A Case Study,” Proceedings of
First European Workshop on Model Driven Architecture
with Emphasis on Industrial Application, University of
Twente, Enschede, The Netherlands, 2004.

[3] A. Nechypurenko, T. Lu, G. Deng, E. Turkay, D. C.
Schmidt, A. Gokhale. “Concern-based Composition and Re-
use of Distributed Systems.” Proceedings of the 8th Interna-
tional Conference on Software Reuse, 2004.

[4] D. C. Schmidt, S. D. Huston. C++ Network Programming:
Mastering Complexity Using ACE and Patterns. Addison-
Wesley Longman, 2003.

[5] D. C. Schmidt, S. D. Huston. C++ Network Programming:
Systematic Reuse with ACE and Frameworks. Addison-
Wesley Longman, 2003.

[6] P. Tarr, H. Ossher, W. Harrison,S.M. Sutton Jr., “N Degrees
of Separation: Multidimensional Separation of Concerns,”
Proceedings of the 21st International Conference on Soft-
ware Engineering, ACM, New York, 1999, pp. 107--119.

[7] B. Liskov, “Data Abstraction and Hierarchy”. SIGPLAN
Notices, 23,5, May 1988, p. 25.

[8] D. M. Weiss. “Defining Families: The Commonality Analy-
sis,” Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, 1999, pp. 671 - 672.

[9] M. Mezini and K. Ostermann. “Integrating Independent
Components with On-Demand Remodularization,” Proceed-

152

ings of the 17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOSPLA), Seattle, Washington, USA, November 4-8,
2002.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
“Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects”, Volume 2, Wiley & Sons,
New York, 2000.

[11] J. Gray, J. Sztipanovits, T. Bapty Sandeep Neema, A. Gok-
hale, and D. C. Schmidt, “Two-level Aspect Weaving to Sup-
port Evolution of Model-Based Software,” Aspect-Oriented
Software Development, Edited by Robert Filman, Tzilla El-
rad, Mehmet Aksit, and Siobhan Clarke, Addison-Wesley,
2003.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object-Oriented Software.”
Addison Wesley, 1995.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. “Aspect-oriented pro-
gramming”, Proceedings of ECOOP’97, Jyvaskyla, Finland,
1997.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-Oriented Software Architecture—A System
of Patterns”, John Wiley and Sons, 1996

[15] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design
and Performance of Real-Time Object Request Brokers”
Computer Communications, vol. 21, no. 4, pp. 294–324, Apr.
1998.

[16] D. C. Schmidt et. al, “TAO: A Pattern-Oriented Object Re-
quest Broker for Distributed Real-time and Embedded Sys-
tems”, IEEE Distributed Systems Online, vol. 3, no. 2, Feb.
2002.

[17] M. Völter, A. Schmid, E. Wolff. Server Component Pat-
terns: Component Infra-structures Illustrated with EJB,
Wiley and Sons, 2002.

[18] Gert Florijn, Marco Meijers, and Pieter van Winsen, “Tool
Support for Object-Oriented Patterns” Proceedings of
ECOOP’97, Jyvaskyla, Finland, 1997.

[19] J. G. Siek, L. Lee, A. Lumsdaine. “Boost Graph Library, the
User Guide and Reference Manual”. Addison Wesley.

[20] “eXecutable UML (xUML),” Kennedy Carter,
http://www.kc.com.

[21] George T. Heineman and Bill T. Councill, “Component-
Based Software Engineering: Putting the Pieces Together”,
Addison-Wesley, Reading, Massachusetts, 2001.

[22] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent,
“Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools”, John Wiley & Sons, New
York, 2004.

[23] Krzysztof Czarnecki, Ulrich Eisenecker. “Generative Pro-
gramming: Methods, Tools, and Applications”. Addison-
Wesley Pub Co.

[24] J. Coplien, D. Hoffman, D. Weiss, "Commonality and Vari-
ability in Software Engineering", IEEE Software, Novem-
ber/December 1999, pp. 37-45.

[25] I. Jacobson, G. Booch, J. Rumbaugh. “The Unified Software
Development Process”. Addison-Wesley Professional, 1999.

[26] J. Coplien and L. Zhao. “Symmetry Breaking in Software
Patterns,” Springer Lecture Notes in Computer Science Se-
ries. , 2001.

[27] J. Coplien. “The Future of Language: Symmetry or Broken
Symmetry?” Proceedings of VS Live 2001, San Francisco,
California, January 2001.

[28] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-
Smith, “Using Interceptors to Enhance CORBA,” IEEE
Computer, July 1999.

[29] J. Rosen, “Symmetry in Science: An Introduction to the
General Theory,” pp 9-10. New York: Springer-Verlag,
1995.

[30] Steve Berczuk, A Pattern for Separating Assembly and Proc-
essing, Pattern Languages of Program Design: Volume 1,
Addison-Wesley, 1995.

153

Typing Relationships in MDA

Jim Steel, Jean-Marc Jézéquel

IRISA, Campus universitaire Beaulieu
35042 Rennes cedex France
{jsteel, jezequel}@irisa.fr

Abstract

As the OMG’s Model-Driven Architecture matures from a field of research and specification into
one of system engineering, it faces all of the challenges endemic to the practice. Among the foremost
of these is the need to support re-use of its artifacts as they evolve. As systems begin to be built
upon the basic ideas of models interrelated by model transformations, it will become increasingly
important to have appropriate definitions for the typing relationships that can exist between models
and metamodels, since it is these definitions that will determine the substitutability characteristics of
these artifacts in model transformations. This paper seeks to enumerate a number of these relation-
ships, to provide initial characterisations of them in terms of their significance to the goal of re-use
in MDA.

1 Introduction

The Model-Driven Architecture[14] uses model transformations to describe (and probably to en-
force) the relationships between models, as described by metamodels.

However, the metamodels (and by consequence the models) that are used in model-driven systems
are diverse, they evolve, and they are frequently overlapping in their domains, even when they are
not in their definitions. For all of these reasons, when we write model transformations, we want
them to apply over a wide range of models. This feature, much studied in software engineering, is
known as re-use.

The languages currently used to write model transformations, including but not limited to those
proposed in [5, 1, 8] are dramatically diverse, as illustrated in [7, 4, 6], a situation that is unlikely to
be completely remedied by the eventual arrival of an adopted specification for their definition[11].
All these approaches build on the notion of model element, seen as an instance of a specific class
of a given meta-model MM1. A model M is made of model elements linked between themselves
to form an arbitrary complex graph, conforming to the meta-model MM1. Such a model M can be
provided as an input parameter to a transformation T.

In this paper we explore various cases of relationships between model elements, models and
meta-model, in order to discuss under which conditions a transformation T can be safely applied
to a model M. We start by presenting three main motivations for this work before entering into the
details of model typing and conformance.

Clearly, the study of type systems is not a new one. In particular, much research has been con-
ducted and validated within the functional languages community, and particularly the ML languages.
Closer in heritage to MDA is the field of object-oriented systems. Some of the earliest work was by
Liskov [9], in the form of the much-referenced substitutability principle. This was built upon for-
mally by, notably, Cardelli & Wegner in [2], and further by Castagna in [3], as extensions of lambda

154

calculus. Also relevant are the typing strategies that have been implemented in O-O languages such
as Java, Eiffel, and dynamic languages such as Python and Ruby.

However, it is important to note that their important differences between the underlying data struc-
tures of object- and model-based systems. Most significant of these is the linking of fields/properties
as opposites (represented in earlier versions of MOF as associations). This feature means that mod-
els form much more tightly-coupled graphs than objects, which could often be treated as atoms in
isolation. In particular, this graph-ness has important implications for typing relationships, in that
the the relationship between a model element and a class will generally involve the analysis of the
types of the other model elements and classes in the respective graphs. It also introduces the need to
deal with the inevitable circular dependencies that arise in evaluating type relationships across these
graphs.

2 Motivation

We argue that the need for a flexible mechanism for re-use in model-driven engineering comes
from the inevitable separation of the metamodels used to describe models. There are a number of
reasons for this separation, a number of which are detailed here.

2.1 Physical vs Logical metamodel

For many reasons, it is not always possible to ensure that all models of the same notional meta-
model are defined in terms of the same physical definition of that metamodel. For example, the
physical metamodel may be in a serialized form, such as XMI, whereas a given transformation re-
quires it in an object form, or vice versa. Ideally, these issues should not affect the ability of a
transformation to apply equally to models whose metamodels are logically equivalent but physically
distinct. This issue is also highlighted by the increasing application of models in the design and
implementation of distributed systems, on such platforms as CORBA and web services.

2.2 Extension

There are number of mechanisms provided for extension of metamodels. In the 1.x versions of
MOF[10], these included package import, extension and clustering. In MOF 2.0, there are additional
mechanisms such as package merge and package combine. These relationships are established at the
package level, and have varying implications for the corresponding relationships at the class level.
While a full discussion of these relationships is not the domain of this paper, we will briefly analyse
the package combine mechanism, since it is the most challenging form of metamodel extension in
terms of re-use.

Package combine, as defined in the UML 2 Infrastructure submission, is a form of package merge,
whereby all classes in the original package are copied into the new package. Any classes defined
with the same names are "merged": the new set of features for the class is the union of the sets
of each of the original classes. After application of the package merge, all relationships between
the packages, and between the classes therein, are removed, so that the new package can be used
independently of the original.

Strictly speaking, package combine is not a relationship, but an operation, but this does not di-
minish its usefulness in modelling. Moreover, its use should not prohibit a transformation defined in
terms of the original metamodel from working with the extended one.

2.3 Evolution

Metamodels evolve over time, as do the models that they describe. In general, the problem of
model evolution and versioning is very complicated, and is still the subject of active research.

However, simple changes such as the addition of an extra attribute to a class should not impact on
the ability of a transformation defined in terms of the original version of the metamodel to work with

155

the modified version. This should be possible regardless of whether the heritage of the metamodel,
in terms of version history, has been properly preserved or not[12].

3 Relationships

We present here a number of relationships that can exist between classes and model elements,
that might be used in typing models.

For the purposes of this section, we use definitions for model element, model, and metamodel
as commonly understood in the OMG, and as mentioned briefly in the introduction. We charac-
terise relationships using a number of properties, such as their normal modes of interaction (are they
generally requested, or affirmed, and are they qualified with respect to a certain domain), and their
relationships to one another in terms of supersets and subsets.

3.1 Instantiation

Model elements in model-driven systems are created from a class, be it directly or using a factory.
In this way, the model element is given slots for each of the properties of the class and, typically,
will delegate the semantics of an operation to a method attached to the method definition.

This relationship is the basic building block for the definition of other, more flexible typing rela-
tionships. Specifically, it defines the "provided type" that is used in comparison to the required type
for the purposes of type-checking. Of itself, it offers little by way of flexibility, and addresses none
of the issues raised in section 2.

This relationship is typically requested, rather than affirmed, and is always absolute, never quali-
fied, since there can be only one correct response.

3.2 Reflection

Reflection is the process of asking a model element for a description of itself. More specifically,
it involves learning what are the operations and properties provided/supported by the model element
including, by extent, their types, and thus potentially extending over a large graph of types reachable
from that of the original.

It should be noted that the type system in MDA, given by MOF, has no separation between
between types and classes, and thus reflection provides a class. This includes details, such as the
class name, that may not be relevant to the definition of reflection given here.

In theory, reflection is slightly more flexible than "instantiated by", since one may have multiple
metamodels that equally describe the capabilities of the model element, through techniques such as
collapsing subclasses. However, it is unable to handle substitutability problems such as instances of
subclasses, or of structural subtypes.

This relationship, like "instantiated by", is typically requested, rather affirmed, and is usually
absolute, although in theory could be qualified, such as by policies for collapsing subclasses. The
"instantiated by" relationship is a subset of the reflection relationship.

3.3 Conformance By Inheritance

Inheritance, also known as generalization/specialization is an explicit relationship between classes
dictating, among other things, that all features defined on the superclass will be available on instances
of the subclass. In this relationship, a model element is conformant to a class iff its instantiated class
is the same as the required class, or is an explicit subclass (either directly or transitively) of the
required class.

This is the same relationship as is commonly seen in programming languages such as Java, and
is the most common relationship presently used in model transformation languages. Moreover, it is
the relationship used by OCL[13] and thus, by association, MOF and UML.

156

It has the advantage that it is more flexible than either instantiation or reflection, since it allows
for instances of subclasses to be accepted, in addition to those of the specified class. Also, since it is
explicitly defined, it is efficient to compute and well-suited to static evaluation.

Conformance relationships are affirmed, rather than queried, and as such are typically absolute
rather than qualified. This relationship is a superset of instantiation, but not of reflection.

3.4 Structural Conformance

Structural conformance bears some similarity to reflection, in that it deals with the set of features
(operations and properties) that are supported by the model element. In this way, a model element is
structurally conformant to any class that is a subtype of its instantiating class, where the definition
of subtype is based on that defined by Cardelli & Wegner in [2]. In fact, since Cardelli & Wegner’s
definition is based on objects, some small extensions need to be made to apply it to the realm of
models, such as treatment of multiplicities. We present a summary of the definition.

A class A is a subtype of a class B iff:
�
property P of B, � property P’ of A, such that

P’.name == P.name
the type of P’ is a sub-
type of the type of P (covariance)
the multiplicity of P’ conforms to the mul-
tiplicity of P
P.isReadOnly == false im-
plies P’.isReadOnly == false�

operation O of A, � operation O’ of B, such that

the return type of O’ is a sub-
type of the return type of O (covariance)�
parameter R of O, � parame-

ter R’ of O’, such that

the type of R is a sub-
type of the type of R’ (contravari-
ance)
the multiplicity of R con-
forms to the multiplicity of R’

Structural conformance of classes is characterized by covariance with the types of properties and the
return types of operations, and contravariance with the types of parameters to operations.

The multiplicities, consisting of cardinality ranges, orderedness and uniqueness, of the properties,
operations and parameters of the classes must also be considered. The simplest, but most restrictive,
approach is to consider only exactly equal multiplicities as conformant. Alternatively, one can im-
pose a hierarchy, whereby ordered collections are a subtype of unordered ones (but not vice versa),
and cardinality ranges are given a priority order such as [0..*, 0..1, 1..1], where each range is con-
formant of any range that follows it. Such an approach would cover 90% of cases, although for
full coverage, a more sophisticated heuristic such as partial orders would be needed to handle other
ranges such as 1..*.

In a general purpose programming language, the failure to consider the behaviour of the oper-
ations would mean that structural conformance falls short of true substitutability. However, it is
important to remember that MOF is not a general purpose programming language. In fact, it bears
more resemblance to signature languages such as java interfaces, C++ templates, or CORBA inter-
faces. As such, any consideration of operation behaviour, such as would be required in terms of
Liskov’s substitutability principle[9], is out of scope.

157

Like inheritance-based conformance, this relationship is affirmed rather than qualified, and is
generally not qualified. Structural conformance is a superset of direct instantiation, reflection, and
conformance by subclassing. (That is, conformance by subclassing implies structural conformance;
a useful axiom for implementation.)

Structural conformance offers considerable advantages over conformance by subclassing in terms
of flexibility. In particular, with respect to the motivations presented in Section 2, it is much better
able to handle the issues of evolution and extension, including package merge. Its disadvantage is
that it is significantly more intensive to evaluate, and is less amenable to static evaluation.

4 Future Work And Conclusions

The contrast between inheritance-based and structural conformance for models is clearly one of
efficiency versus flexibility. To evaluate these criterion in more detail, we now propose to prototype
the different approaches and apply them to various examples of model transformation.

To this end, we have developed a MOF repository using the Ruby programming language[15].
Ruby is notable for its flexible approach to typing, which is often described as “duck-typing” (if it
walks like a duck, and it quacks like a duck, then it must be a duck). The lack of any real type-
checking in Ruby makes it well-suited for the evaluation of different typing strategies.

A possible subsequent avenue for exploration is that of typing strategies within models them-
selves. The relationship between the type of a property and the type of a model element that might
fill it, for example, is very similar to the relationship between a transformation specification and
those models that might be permitted as input. Moreover, a number of transformation languages,
such as [5] and [1] are based largely on the population of functional or relational models (sometimes
called traceability models) as the determining factor for creating, deleting, or modifying model ele-
ments. As such, any approach to structural type conformance in these languages would need support
for structural conformance within these models.

References

[1] David H. Akehurst and Stuart Kent. A relational approach to defining transformations in a
metamodel. InUML 2002 - The Unified Modeling Language, 5th International Conference,
Proceedings, pages 243–258, 2002.

[2] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.ACM
Computing Surveys, 17(4):211–221, 1985.

[3] Giuseppe Castagna.Object-Oriented Programming: A Unified Foundation. Birkhäuser, 1997.

[4] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the
Model Driven Architecture, Anaheim, USA, October 2003.

[5] K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, and J. Steel. Model transformation: A
declarative, reusable patterns approach. InProc. 7th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2003, pages 174–195, September 2003.

[6] Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. A review of OMG MOF 2.0
query / views / transformations submissions and recommendations towards the final standard,
August 2003. OMG Document: ad/03/08/02.

[7] A. Gerber, M.J. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The missing link
of MDA. In Proc. 1st International Conference on Graph Transformation, ICGT’02, volume
2505 ofLecture Notes in Computer Science. Springer Verlag, 2002.

158

[8] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h. UMLAUT:
an extendible UML transformation framework. InProc. Automated Software Engineering,
ASE’99, Florida, October 1999.

[9] B. H. Liskov and S. N. Zilles. Programming with abstract data types.SIGPLAN Notices,
9(4):50–59, April 1974.

[10] Object Management Group (OMG). Meta Object Facility (MOF) specification. OMG Docu-
ment ad/97-08-14, September 1997.

[11] Object Management Group (OMG). MOF 2.0 Query/Views/Transformations RFP. OMG
Document ad/2002-04-10, October 2002.

[12] Object Management Group (OMG). MOF 2.0 Versioning RFP. OMG Document ad/2002-06-
23, June 2002.

[13] Object Management Group (OMG). The object constraint language (OCL), 2003.
http://www.omg.org/docs/ptc/03-08-08.pdf.

[14] R. Soley and the OMG Staff. Model-Driven Architecture. OMG Document, November 2000.

[15] David Thomas and Andrew Hunt.Programming Ruby: A Pragmatic Programmer’s Guide.
Addison-Wesley Professional, 2000.

159

OMELET : Exploiting Meta-Models as Type Systems

Edward D. Willink

Thales Research and Technology (UK) Ltd
EdWillink@iee.org

Abstract. Meta-modelling is now well established for individual models. The MOF
QVT proposal should support meta-model-based transformation between models.
However, meta-model compatibility poses a major threat to the successful exploitation
of transformation technology. We therefore introduce OMELET, a next generation
'make', that supports integration of diverse transformations and uses meta-models as a
type system to ameliorate the threat and pave the way for automated composition of
transformations.

1 Introduction

Activities such as the QVT proposal, XSLT schema support and the MDA have provided
much needed impetus to model transformation. A model transformation supports the
conversion of one (or more) input models into one (or more) output models, and each model
is based on an associated meta-model as depicted in Fig. 1.

Fig. 1. Typical transformation invocation

In this paper we are interested in the problems that arise with multiple transformations, in
particular the problem of meta-model compatibility between two transformations in a chain
as depicted in Fig. 2.

Fig. 2. Typical transformation interconnection

We seek to ensure that the intermediate model, produced by an instance of a
Producer transform and consumed by an instance of a Consumer transform, is indeed
based on the IntermediateMM meta-model.

It is convenient to say that our models are instances of our meta-models. However this is
inaccurate; a meta-model is a package containing a variety of useful elements, some of which
may be useful in a particular application. Bézivin [1] draws the distinction that a model is
based on a meta-model. It is the elements in a model that instantiate elements of its meta-
model and also comply with the associated constraints expressed in the meta-model.

We will briefly review the need for and hazards of multiple transformations, discuss some
of the limitations of current technologies and suggest how the next generation of tools can
address some of the problems.

160

2 Multiple Transformations

In [2] we introduced the Side Transformation Pattern as a technique to make model
transformations modular and re-usable. This was achieved at the expense of changing a
typical monolithic transformation involving two meta-models (input and output as in Fig. 1),
into a composite transformation with four meta-models and three sub-transformations as
shown in Fig. 3. The pattern therefore introduces two intermediate meta-models and four
extra opportunities for incompatibility.

Fig. 3. Side Transformation Pattern

Increasing numbers of stages of transformation will be required as Model-Driven
approaches are adopted with greater abstraction in a Platform Independent Model or in some
Domain Specific Language in front of a PIM. These transformations will be more
manageable if each stage resolves the concerns of a single form of abstraction. We may
therefore expect the Model Driven Architecture to involve a chain of transformations to
weave the various PIM, Platform Model and Mark Model concerns into a coherent Platform
Specific Model. We can also expect the intervening stages in the chains to involve many
distinct meta-models, or at least many distinct sub-sets of a smaller number of shared and
often standard meta-models.

With many meta-models arising from transformation chains and further meta-models
arising from using the Side Transformation Pattern to promote modularity and re-use, the
integrity of these meta-models becomes critical to our endeavours. The problems of XMI
dialects between early UML tools should act as a salutary warning.

3 Current Technology

Ensuring that models really are accurately based on their meta-models is difficult with
current technology, and so there is rather too much reliance on the best endeavours of
programmers and their intuition in choosing appropriate sub-sets of inconveniently large
meta-models, such as UML. This provides ample opportunity for a joint development of

161

Producer and Consumer transformations to experience a rather troubled development.
Problems are almost guaranteed when a more widespread attempt to re-use these pragmatic
transformations is made.

The XML standard provides a good compromise between a human-accessible and a
computer-accessible file representation. This makes it very appropriate for interchange
between transformations where it is produced and consumed by computers, but needs to be
intelligible by humans for at least debugging and sometimes manual interventions.

However, experienced XML users have discovered that XML conformance is a very weak
discipline. It is all too easy for the conformant XML dialect of Producer and Consumer to
differ, and as a consequence of the eXtensibility of XML, the difference in dialect is only
detected after a number of intervening activities have conspired to make diagnosis difficult.

DTDs and now XSDs are therefore increasingly used to validate that the intervening files
exhibit both semantic as well as syntactic consistency. This enables detection of errors in the
Producer such as generation of spurious constructs and omission of mandatory constructs.
However neither DTD nor XSD allow for more subtle validation of constraints on optional
constructs. And of course no validation of the input can validate that the Consumer dialect is
compatible.

XSLT provides its transformation capability within the XML Technology Space.
Unfortunately the absence of comprehensive schema-aware support in current XSLT
processors prevents diagnosis of seriously errant XPath expressions. This severely erodes the
benefits that XSLT2 (or more readably, NiceXSL[4]) can offer.

Within the Modelling Technology Space, MOF-derived models provide for more accurate
modelling in which OCL constraints capture subtle semantics. The lack of a direct model
transformation capability should be addressed by the MOF QVT proposal. This should
provide inherent rather than accidental compliance with the input and output MOF models
and so introduce much needed discipline and efficiency to transformation programming.

When MOF models are converted to Java models to exploit the Program Technology
Space, some inaccuracies in a Java-based Producer or Consumer can be avoided at compile
time.

Until all transformations are defined in some language such as QVT that enforces model
compliance, it is essential to perform as much model validation as possible in order to
establish integrity for each intermediate model, and assist in diagnosis of inadequate
transformations.

4 Tool Support

make and more recently Ant have established themselves as important parts of a
programmer's tool kit. Both enable a number of programs to contribute to the solution of a
larger problem. make also allows for some automated discovery of appropriate sequencing
and invocation of those programs. However the composition of programs lacks discipline.

In Ant, the control flow (depends) defining the program sequencing is independent of
the data flow (the task-specific input and output commands), so there is ample opportunity
for typographic mistake and no inherent reason why the output of one program should be
suitable as the input of another.

In make, the control flow is deduced from the file dependencies, so the control and data
flow are consistent although sometimes surprising. The typical use of file name extensions to
identify the data content of intermediate files encourages consistent usage, but there is still
no inherent guarantee that the file extension correctly describes the content.

For transformations, we require the same ability to exploit a mix of custom and standard
contributions, and we need to ensure that the usage of the transformations is valid. Meta-
modelling provides the solution to these problems, since the appropriate meta-model

162

provides a strict definition of the permissible type of each intermediate 'file' in the
composition.

We may therefore look towards a next-generation make in which rules are defined by
registering the capabilities of particular model transformations in terms of the acceptable
input and satisfied output meta-models. Using a very simple make-like example; given a
pair of transformation signatures (name = input-model-name : input-meta-
model -> output-model-name : output-meta-model)

 compile = c_file : c_MM -> o_file : o_MM
 link = o_file : o_MM -> exe_file : exe_MM

and a request to produce a model based on the exe_MM from a model based on the c_MM,
we can deduce a suitable transformation chain to comprise compile followed by link.
We can augment the chain with validation of input, intermediate and output meta-model
compliance.

Many practical transformations are only appropriate for a sub-set of the syntax or
semantics of particular meta-models. For instance simplified support for UML state charts
might exclude History States, and an executable profile must exclude facilities with ill-
defined semantics. This inhibits arbitrary model-independent chaining of transformations,
but if the transformation chain is deduced within the context of the models to be transformed,
the actual meta-model sub-sets are known and sub-set transformations can be exploited
reliably.

We therefore require transformations to accurately define the sub-set meta-models that the
transformation supports. Since this information will not be automatically available for many
transformation technologies, we must be able to assert this as part of a transformation
declaration.

Determination of the sub-sets in use by particular models should be a relatively
straightforward model analysis to be performed by the transformation tool.

We must allow the user to specify a transformation chain, explicitly when they need
complete control, implicitly when automation is acceptable, partially when they need to exert
some influence, and historically when they need to repeat a previous sequence.

The non-implicit specifications provide intermediate way-points in the transformation
chain, between which a transformation chain must be established. The tool must enable the
user to view the actual chain, understand why certain transformations are necessary, and
more importantly understand why certain transformations are unsafe.

This is the goal of the Eclipse/OMELET project [3]. Upgrading the capabilities of make
to adopt meta-models provides the opportunity to deduce powerful transformation
compositions. Adopting the Java extensibility approaches underlying Ant provides the
opportunity to integrate transformations arising from a wide range of differing technologies.
Using meta-models allows the transformation intermediates to be validated and
transformation chains deduced.

At the time of writing a preliminary OMELET release is available that demonstrates the
ability to register and invoke a diversity of transformations and meta-models. A rather more
useful release should be available by the time this paper is presented.

5 Acknowledgements

The author is grateful to Thales Research and Technology for permission to publish this
paper, which is influenced by work done on the SPEAR and GSVF-2 projects.

163

6 Conclusions

We have shown how meta-models can introduce discipline to transformation chains and
motivated the development of OMELET, a next generation make-style program that uses
meta-models to impose a type system on transformations that are implemented in a diverse
range of technologies.

7 References

1 Jean Bézivin, MDA : From Hype to Hope and Reality, Guest talk at UML'2003.

http://www.sciences.univ-nantes.fr/info/perso/permanents/bezivin/UML.2003/UML.SF.JB.GT.ppt

2 Edward D. Willink and Philip J. Harris, The Side Transformation Pattern - making transforms
modular and re-usable, submitted to SETra-2004, October 2004.

http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/omelet-home/doc/SETra2004/SETra2004-Pattern.pdf

3 The Eclipse OMELET Project.

http://dev.eclipse.org/omelet

4 The SourceForge NiceXSL Project.

http://nicexsl.sourceforge.net

164

Coral: A Metamodel Kernel for Transformation Engines

Marcus Alanen and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Computer Science,

Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland
e-mail:{marcus.alanen,ivan.porres}@abo.fi

Abstract. A metamodel kernel is a program library or application framework
that is used to manage models described in user-defined modelling languages.
Metamodel kernels provide the basic functionality to create models, add, delete
and update elements in an existing models and to store and retrieve models from
a XMI document.
Coral is a metamodel kernel that is used to try in practice new research ideas
in modelling technology. In this short paper, we describe Coral, our own im-
plementation of a modelling tool and some discoveries related to modelling and
metamodelling that we have found.
Keywords: Modelling Frameworks, Model Driven Engineering, Metamodelling,
Modelling

1 Introduction

The advance of modelling techniques both in academia and industry has lead to the de-
velopment of several commercial modelling tools. However, the research area of mod-
elling tools is still relevant as solid frameworks are required to empower software de-
velopers to actually use the benefits of a model driven architecture. In this paper, we
present the idea of a metamodel kernel and our work on Coral, a generic open source
metamodel kernel.

A metamodel kernel is a program library or application framework that is used
to manage models described in user-defined modelling languages. Metamodel kernels
provide the basic functionality to create models, add, delete and update elements in an
existing models and to store and retrieve models from a XMI document. Examples of
metamodel kernels are the Eclipse EMF project and the Netbeans Metadata Repository.

All metamodel kernels are based on a specific metamodelling language. This meta-
modelling language defines the building blocks of all modelling languages support by
the kernel. An example of a metamodelling language is the OMG Meta Object Facil-
ity (MOF) [4]. All the existing metamodel kernels implement at least a subset of MOF.
However, MOF is not a metamodel kernel as such since it is not a software tool. Eclipse
uses EMF as its metamodelling language that is comparable to EMOF, a simplified ver-
sion of MOF. Coral uses its own Simple Metamodel Description (SMD) language. SMD
is quite similar to EMOF but contains some extensions to deal with models described
in multiple modelling languages.

165

A metamodel kernel can be used to implement model transformations as defined in
the Model Driven Architecture (MDA) but, as such, the features provided by a kernel are
too basic. In many cases, it is necessary to implement a transformation engine that can
be used to execute model transformations defined in a high-level model transformation
language. Examples of transformation engines are the implementation of rule-based
transformations presented in [6] or the transformation tool for relational mappings pre-
sented in [1]. Although these tools implement different transformation languages, they
share many common features related with basic model management that could be im-
plemented by an independent kernel.

The discussion about model transformations is quite often centred on model trans-
formation languages. However, we consider that is equally important to discuss the
features and development of model transformation engines and metamodel kernels that
support interesting model transformation languages. Coral is an attempt to seek practi-
cal and theoretical issues in these topics and provide a working solution for researchers.

In the rest of the paper, we present the more important features of Coral, and how it
manages to create a flexible approach to querying and manipulating models that can be
used to implement a transformation engine.

2 A Dynamic Metamodelling and Modelling Tool

The Coral kernel is based on few but important principles. The most fundamental is the
notion of being metamodel-independent, i.e., metamodels and models can be created at
runtime. In several other modelling tools, there is only one or a few static metamodels to
choose from; in Coral, metamodels are first-class citizens. Large parts of Coral try to be
as ignorant of the underlying metamodel as possible, and several interesting algorithms
and problems arise from this.

Even though Coral can create any metamodel at runtime, there are still some pre-
defined metamodel elements (metaelements) for primitive datatypes such as integers,
strings and floating-point values.

A Coral modelling language is represented as a model in a language called the Sim-
ple Metamodel Description language. SMD can be seen as analogous to MOF. When-
ever Coral needs the definition of a modelling language, the SMD model for this lan-
guage is loaded dynamically and converted to a metamodel internally. Naturally this
arrangement creates a chicken-and-egg problem in practice with respect to the SMD
language in itself. This is circumvented by bootstrapping Coral with a hand-written
SMD metamodel which is statically linked into Coral.

An interesting feature of the dynamic nature of the metamodelling layer is the con-
cept of importing the contents of one metamodel into the namespace of another meta-
model. This allows us to form hierarchies of metamodels. For example, a tool vendor
uses its own namespace as the combination of UML 1.4 and XMI-DI 2.0. In Coral, this
compatibility is achieved by creating the metamodelsseparatelyand then importing
their contents into a third metamodel.

166

2.1 Mutually Independent Property Characteristics

In our opinion, the expressive power of metamodels does not come from the actual
metaelements, but rather from the different characteristics of the interconnections be-
tween metaelements. An element’s possible connections (slots) are described by its
metaelement’sproperties. Two properties can be connected together to form a bidirec-
tional meta-association.

In Coral, a property consists of several characteristics and describes the restrictions
for each slot. Using a combination of characteristics several common constructs can
be modelled, as well as more esoteric ones. It is important to notice that this part is
static in Coral, i.e. users cannot change what characteristics are available. The various
characteristics are:

– anamefor convenience
– a multiplicity range[l ,u] defining how many connections to instances of the target

the slot (instantiated property) should have to be well-formed. Common values are
[0..1] for an optional element,[1..1] for exactly one,[0..∗] for any amount and[1..∗]
for at least one element

– a target, telling what the type (metaelement) of every element in the slot must be
– a booleanorderedtelling if the order of the elements in the slots is important and

must be kept
– a boolean flagbagtelling if the same element can occur several times in a slot
– a boolean flagunserialisabletelling if corresponding slots should not be serialised

when saving a model
– an optionalopposite, giving the opposite property for bidirectional connections
– a link typeenumeration value {association, composition } describing an ordinary

connection or describing ownership, respectively.

The characteristicsunserialisableandanonymousneed more careful explanation.
An unserialisable property means that the contents of the corresponding slots are not
saved to an output stream. This is useful when elements in file A reference elements
in file B, but without the elements in B having to know anything about file A. This
occurs when creating models that resemble “plugins”; we are not sure what plugins are
available and we do not want to change the main file every time something is added or
removed. Instead, the available plugins are loaded at runtime and bidirectional connec-
tions are created, even though they are not serialised at both ends. Arguably the use-
fulness of the characteristic in this case is specific to the way current filesystems work
using files as independent streams of bytes. A filesystem acting more like a database
would not share the benefits from the unserialisable characteristic.

Anonymous properties provide fully bidirectional meta-associations between two
metaelements, even though the meta-association was unidirectional at first. This is
useful in cases where a language was not designed to be used together with another
language. An example is a project management language (PML) keeping track of de-
velopers, bugs, timelines and several UML models. Since UML models do not know
about PML, only unidirectional connections from PML to UML would be feasible, thus
rendering any navigation from UML models to PML models impossible. But Coral au-
tomatically creates an anonymous property (with a private, nonconflicting name) at

167

run-time from UML models to PML models, and thus it is indeed possible to navigate
from any UML model to the corresponding PML model(s). The PML models can be
saved in an XMI file separate from the UML file. Using the support from XMI for inter-
connecting model elements across files, the PML elements can still reference the UML
elements.

Anonymous properties are necessarily also unserialised, since otherwise ordinary
UML tools would not be able to read the model file with nonstandard slots. Anonymous
properties provide an excellent way to combine models without changing the languages.

Most notably, the list is currently missing new characteristics from MOF 2.0, prop-
erty subsettingand derived unions. These are important characteristics but have not
been added to Coral yet. Otherwise, it is worth noting that the characteristics aim to be
as mutually independent as possible. This has the benefit that very complex definitions
can be modelled.

3 Metamodel Kernel API

These features of the Coral kernel can be accessed using a programming interface or
API. The Coral kernel is implemented in C++, but we have created an interface for the
Python programming language. It should not be difficult to support other programming
languages such as Java, since the bindings for the specific programming languages are
created using the SWIG tool.

Python is a highly dynamic expressive language which is easy to learn. Using
Python, the interface to query models is very close to OCL [2], but with several meth-
ods added to also modify the model. Notably, model transformations can be written
as Python programs with separate phases for preconditions, query and modification
and postconditions. Support for transactions as well as checking of well-formed rules
means that an illegal transformation can be rolled back, leaving the user with the origi-
nal model. Examples of a rule-based model transformer can be found in [6].

Arbitrary scripts and well-formedness checks can be used to keep the design and
evolution of a system within a predefined process or methodology. A success story is
Dragos Truscan’s work [7] on relations between data flow diagrams and object dia-
grams. It presents “an approach to combine both data-flow and object-oriented com-
puting paradigms to model embedded systems.” The work is fundamental for design-
ing complex embedded systems since there is often a need to switch between the two
paradigms. The design relies on an SA/RT metamodel for the data flow and the UML 1.4
metamodel for object and class diagrams. Python scripts are heavily used for the trans-
formations between the domains.

In the future, using models also as the primary artefact for transformations using
e.g. the upcoming OMG Query-View-Transform (QVT) [3] standard could be possible.

The scripting interface provides a highly flexible environment for automatic model
generation, querying and transformation. Metamodels support predefined operations on
specific elements, and there is no need to explicitly compile any scripts as they can be
loaded on-the-fly from within Coral.

168

4 Conclusions

We have presented the Coral kernel, a metamodel-independent tool. In Coral, meta-
models are first-class objects that can be created at runtime. This allows us to support
new modelling languages without recompiling or even restarting Coral. Furthermore,
we have made interesting progress in the dynamic combination of metamodels. Effort
has been placed into making a Python-friendly interface to facilitate easy scripting for
model transformation. However, it is possible to support other programming languages.

There are two ways to evaluate the Coral kernel: as a research tool or as a develop-
ment tool. As a research tool, we are interested in a flexible software library that can
be used to quickly create small prototypes to test new ideas in modelling technology. If
we consider Coral a development tool we are interested in a robust and efficient library
based on current standards.

Currently, Coral is definitely geared towards a research tool. The decision of using
its own metamodelling language instead of MOF is an example of this. However, Coral
is able to manage large models created using commercial tools efficiently. It supports
the UML 1.1, UML 1.3, UML 1.4 and UML 1.5 metamodels. Model interchange can
be accomplished using XMI 1.x, XMI 2.0 and XMI-DI [5] for diagram interchange.

Fig. 1. Coral can render diagrams stored in XMI-DI 2.0, for example models created with Gen-
tleware’s Poseidon. This screenshot shows the Softsale example model imported from Poseidon.

169

As an example of the compatibility and scalability of Coral, Figure 1 shows Coral
rendering a UML 1.4 model with more than 20.000 model elements created with a
commercial tool. The figure also reveals one of the interesting discoveries we had while
developing Coral: Although the tool does not follow the OMG standards at the Meta-
modelling level, it is fully compatible at the modelling level. That is, it is possible to
develop a fully UML compliant editor and transformation tool without using MOF or
the UML 2.0 infrastructure as basis for the tool.

Coral source code is available under an open source license at http://mde.abo.fi.

References

1. D. Akehurst, S. Kent, and O. Patrascoiu. A relational approach to defining and implementing
transformations between metamodels.Software and Systems Modeling, 2(4), December 2003.

2. OMG. Object Constraint Language Specification, version 1.1, September 1997. Available at
http://www.omg.org/.

3. OMG. MOF 2.0 Query / Views / Transformations RFP. OMG Document ad/02-04-10. Avail-
able at www.omg.org, 2002.

4. OMG. Meta Object Facility, version 2.0, April 2003. Document ad/03-04-07, available at
http://www.omg.org/.

5. OMG. Unified Modeling Language: Diagram Interchange version 2.0, July 2003. OMG
document ptc/03-07-03. Available athttp://www.omg.org.

6. Ivan Porres. Model Refactorings as Rule-Based Update Transformations. InProceedings of
the UML 2003 Conference. Springer-Verlag, October 2003.

7. Dragos Truscan, João Miguel Fernandes, and Johan Lilius. Tool Support for DFD-UML
Model-based Transformations. InProceedings of the ECBS 2004 Conference, May 2004.

170

ADT: Eclipse development tools for ATL

Freddy Allilaire (freddy.allilaire@laposte.net) Tarik Idrissi (tarik.idrissi@laposte.net)

Université de Nantes
Faculté de Sciences et Techniques

LINA (Laboratoire d'Informatique de NantesAtlantique)
44322 Nantes Cedex 3, France

Abstract

This paper presents our work on the creation of an Integrated Development Environment (IDE) for
ATL under Eclipse. ATL is a language for expressing model transformations. The ATL IDE
proposes tools that may be found in traditionnal programming languages: syntax highlighting, code
completion, wizard for the creation of project or debugger. These developed tools make it possible
to create more easily transformations.

Keywords : MDA, ATL, IDE, Eclipse, Model transformation

1. Introduction

The MDA is an OMG initiative in response to the recent new software crisis. If the platform
changes were rather rare before, they are much more frequent today. The idea of the MDA is that
technologically neutral models could be implemented on a large variety of technologically different
platforms in an automated way [1]. However tools supporting MDA basic operations are still rather
rare. ATL proposes a partial answer to this situation. It is a language, engine and environment for
model transformations developped by the ATLAS team in Nantes [2].

2. Concept

2.1 ATL

What is ATL ?

ATL stands for ATLAS Transformation Language. ATLAS is a recently created INRIA project
located at the University of Nantes (LINA) and focusing on datacentric systems.

The ATL transformation language that is being developed by the ATLAS team is a hybrid
language, i.e. a mix of declarative and imperative constructions designed to express model
transformation as required by any MDA approach. It intends to answer the MOF/QVT RFP issued
by OMG. It is described by an abstract syntax tree (a MOF metamodel) and a textual concrete
syntax. Any transformation such as PIM (Platform Independent Model) to PSM (Platform Specific
Model) can then be written in ATL.

What is an ATL transformation ?

An ATL transformation can be decomposed into three parts : a header, helpers and rules.

171

The header is used to declare general information such as the module name (it is the transformation
name : it must match the file name), the input and output metamodel and potential import of
needed libraries.

Helpers are subroutine that are used to avoid code redundancy. We can imagine a helper for
translating UML visibility kind to MOF visibility kind in a UML to MOF transformation. It is easy
to guess the utility of this helper when we know all UML and MOF elements that define a visibility.

Rules are the heart of ATL transformations because they describe how output elements (based on
the output metamodel) are produced from input elements (based on the input metamodel). They
are made up of bindings, each one expressing a mapping between an input element and an output
element.

The ATL project is part of the GMT Eclipse project. That is why Eclipse has been chosen to be used
as an IDE for ATL. In the next part of the paper we are going to present the Eclipse tools for ATL.

2.2 Eclipse

Eclipse was created by OTI and IBM teams responsible for IDE products. Eclipse [3] is a platform
that has been designed for building integrated web and application development tooling. The value
of the platform is that it encourages rapid development of integrated features based on a plugin
model. Eclipse has a wide community of tool developers.

Eclipse provides a common user interface model for working with tools. It is designed to run on
multiple operating systems while providing robust integration with each underlying OS.

At the core of Eclipse there is an architecture for dynamic discovery, loading, and running of plug
ins. The platform handles the logistics for finding and running the right code. The platform UI
provides a standard user navigation model. Each plugin can then focus on a small number of well
defined tasks.

Open architecture

The Eclipse platform defines an open architecture so that each plugin development team can focus
on their area of expertise. If the platform is correctly designed, new features can be added without
impact to other tools. Newly developed tools can plug into the workbench using well defined hooks
called extension points.

The platform itself is built in layers of plugins, each one defining extensions to the extension points
of lowerlevel plugins, and in turn defining their own extension points for further customization.
This extension model allows plugin developers to add a variety of function to the basic tooling
platform. The platform manages the complexity of different runtime environments. Plugin
developers can focus on their specific task instead of worrying about these integration issues.

2.3 EMF

EMF [4] (Eclipse Modelling Framework) is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. EMF is used to define and

172

implement structured data models. A data model is simply a set of related classes used to handle the
data which you want to deal with in your application. From a model specification described in XMI,
EMF provides tools and runtime support to produce a set of Java classes for the model, a set of
adapter classes that enable viewing and commandbased editing of the model, and a basic editor.
Models can be specified using annotated Java, XML documents, or modeling tools like Rational
Rose, then imported into EMF. Most important of all, EMF provides the foundation for
interoperability with other EMFbased tools and applications.

3. Tools supporting ATL transformation

The ATL project will progressively provide a complete environment based on Eclipse for
developing, testing and using model transformation programs. The environment under Eclipse for
ATL is called ADT (ATL Development Tooling). Currently, the following items have been
developed:

 A project kind and a project creation wizard
 A text editor with syntax highlighting and bracket matching
 A content outline and a property view associated to the editor
 Smart icons for all ATL specific elements
 A builder associated to the project kind
 A perspective
 Compilation error report
 A debugger

The development of the following items has started and will be completed soon :

 Rename refactoring (in near feature)
 Execution error report
 Autocompletion and content assist for the editor

3.1 A project kind, a project creation wizard and a perspective

Let us start by explaining the concepts of project and perspective in Eclipse.

A project enables to group, organize and manage related elements: in a Java project we can find
packages, their respective classes and an associated builder (Java builder) allowing to compile
easily each Java class.

A perspective is a visual container for a set of views and editors : in the Java perspective there is
among others things a package explorer view (to easily navigate through Java classes) and Java
editors (each one editing a Java file with syntax highlighting and other advanced features).

We have defineed our own project kind named “ ATL Project” with its specific icons. It is possible
to create an ATL project by using the ATL project creation wizard.

An ATL project is automatically associated to the ATL builder. This makes building the ATL
transformations contained by an ATL project quite easy: right click on the project and select build.
The build operation can even be performed automatically at resource save time if the user activates

173

the appropriate option in his preferences.

Others facilities are offered for an ATL transformation file: deleting or renaming it causes its
associated compiled file to be deleted or renamed automatically. When moved in any other folder,
its associated compiled file will be moved too to the same folder.

Moreover, ATL defines its own perspective made up of the ATL editor, the ATL outline associated
to this editor, the problem view used to report compilation errors.

3.2 Editor

We know how useful can be an editor to help the developer in his task. That is why the first
component developed for the ATL language was an editor. The features currently provided by the
editor for ATL (that you can see in the middle of figure 1) are:

 Syntax highlighting fully customisable through preference pages; the user may change
the colour of the editor background, ATL keywords , ATL types and so on.

 Bracket matching: when the user types in an opening bracket, the ATL editor
automatically adds its closing and indents the content between those two brackets by
offsetting.

The development of the autocompletion feature, that will allow the user for example to
dynamically get all the available methods for a variable according to its type, has started and will be
available soon. The final purpose is to make that editor support all major features provided by the
Eclipse Java editor.

Editors often have corresponding content outliners that provide a structured view of the editor
contents and assist the user in navigating through the content of the editor. Thus, like the Java
editor, the ATL editor always gets an outline.

For the outline too, the purpose is to make it support all major features supplied by the Java outline.
Presently the functionalities related to the outline are the following:

 Selecting an element in the outline causes the area of this element in the editor to be
highlighted and the editor vertical rule to be updated (for example an item representing a
helper will highlight this one in the editor and will make the editor vertical rule lying
down from the helper starting line to its end line).

 When the editor cursor position changes, by scrolling up or down with the keyboard or
by clicking with the mouse, the element corresponding to the editor current position is
selected in the outline

 Clicking on an object in the outline causes information such as its location, its name and
so on to be displayed in the property view (in Eclipse a view is a frame used to display
information user friendly and from which we can carry out actions).

 It is possible to sort and filter the content of the outline, e.g. hide helpers or rules

174

The specificity of the ATL outline is that while Java outline only contains the class, its attributes,
methods and subclasses, ATL outline contains the whole Abstract Syntax Tree (AST). It is then
possible to navigate through basic elements such as expressions, operators and so on. This is due to
the fact that the ATL outline was not only designed to support traditional outline facilities but also
to play an important role in the debugging task. This needs some explanations. Breakpoints are very
important in the debugging process and in many languages as Java, breakpoints are placed on lines.
In ATL, breakpoints may be placed on almost any element of the AST. And in that respect, the ATL
outline will play an essential role. Indeed, adding a breakpoint can be done by right clicking on an
element and selecting “A dd breakpoint”. This al lows fine grained control of the execution process.

The ATL outline (that you can see on the right of figure 1) is also designed to support rename
refactoring. This feature is not completely available yet but the principle will be the same as for
breakpoints: selecting an element in the AST, right clicking and selecting “ rename” will open a
frame enabling to carry out the refactoring.

The outline is designed according to the MVC (Model View Controller) pattern. As for the Model
part it is not made up of traditional Java classes but is an EMF based Model. The ATL metamodel
is loaded by EMF providing then tools that enable to deal easily with ATL model elements.

Figure 1 – ATL Editor with its content outline

3.3 Execution of transformation

In order to execute ATL transformations, there are two ways like for Java programs : run and debug.

Debug plugins of Eclipse allow to extend the plateform in order to launch correctly your program,
with parameters of the user.

Before launching a transformation, one needs to create a launch configuration. One should specify
parameters required for the execution of the transformation. Then it is possible to run a
transformation using a generic ATL launch configuration that derives most of the launch parameters
from the ATL project and the workbench preferences. It is however possible to override the derived
parameters or specify additional arguments.

175

There is two different ATL launchers: ATL configuration and Remote ATL configuration.

ATL configuration

The ATL Configuration defines the transformation to be executed. This configuration needs the
name of the project where your transformation is located, the name of your transformation and the
model handler (for the moment MDR or EMF). This configuration needs also the name and the path
of the models used in the transformation (INPUT MODEL, OUTPUT MODEL, INPUT
METAMODEL, OUTPUT METAMODEL and LIBS). For the moment, the name of your model
should be the same between configuration and ATL transformation file. But soon, thanks to the
repository, this binding will be automatically achieved.

Example : create OUT : Java from IN : UML; in your transformation implies in this tab: the couple
IN (model) and UML (metamodel) in the IN part and the couple OUT (model) and Java
(metamodel) in the OUT part.

Currently, we are working on the repository where all metamodels will be stored, the metamodels
needed will be found in the repository and link with launch configuration automatically made.

Remote ATL configuration

This launching configuration is useful when you want to launch the debuggee (the debugged
program) out of Eclipse (for example, if your transformation needs injector or extractor, the ATL
configuration cannot be used for the moment but it is possible with Remote ATL configuration).
Otherwise, you can use the ATL configuration when you have a project with input and output
models, input and output metamodels; it is easier to use than remote ATL configuration.

This configuration just needs the name of the project and the name of the ATL transformation and
connection properties : hostname (for example: localhost) and port.

If all the parameters are given (project, transformation, model handler, input and output model), you
can apply the configuration, else a message error at the top of the dialog displays what is wrong in
your configuration (for example, the path of your model is empty).
When the configuration is completed, the launcher is ready to do its work. ATL Transformation can
be runned or debugged.

Running your programs

In run mode, the program executes, but the execution may not be suspended or examined.

When the transformation has finished its work, output model has been created or updated. In the
next version of the ADT, execution errors will be displayed in the Eclipse console.

Debugging your programs

In debug mode, execution may be suspended and resumed, breakpoints added, and you can see the
variables of the stackframes.

There are several important views in the debug perspective.

176

In the Debug view (top left of figure 2), you see the different configurations launched with their
state. For each configuration, there is the debug target, threads and stackframes. At the beginning,
the transformation is suspended. When the breakpoint is hit, execution is suspended. Notice that the
process is still active (not terminated) in the Debug view.
You can step through the code with several action. With the action Step Over, the execution will
continue at the next line in the same rule. You can also use Step Into or Step Return to step
through the code. You can end a debugging with action Terminate, to step over the code until the
transformation completes or Resume to allow the program to run until the next breakpoint is
encountered or until the program is completed. When an exception is raised, you can see it on the
debug view.

In the Editor view (bottom left of figure 2), you can see the code being debugged, the breakpoint.
On each step, you see the highlighted text changed.

The Variable view (top right of figure 2) displays the values of the variables in the selected stack
frame. You can expand the tree in the Variables view. The variables in the Variable view will
change when you step in the Debug view.

The Outline view is useful in debug context to put a breakpoint. In fact, breakpoints are added with
this view, they are added on the element selected.

The Breakpoint view lists all the breakpoints you have set in the workbench projects. Breakpoints
can be enabled, disabled, deleted, added and located.

Figure 2 – ATL Debug perspective with the ATL Editor, Debug, Variable and Outline view

177

4. Conclusion

The goal of the ATL Development Tooling (ADT) is to simplify and assist the creative task of ATL
programming and debugging. ATL is a transformation language and Eclipse allows us to develop an
environment powerful and complete for ATL. But ADT should rapidly grow up because it will be
necessary to meet more and more user requirements. For example, a repository will be created and
accessible under Eclipse. Metamodels or transformations will be found in this MDA component
repository. Issues of naming, remote access, encapsulation and typing will also be handled by this
repository. Programming model transformations is a hard task, but we also have to seriously handle
many other related tasks like reusing, specifiying and checking transformations. This paper has
briefly presented the curent state of tools supporting transformation development and debugging,
which is an important part of the work of the transformation programmer.

5. Acknowledgements

We thank Jean Bézivin, Frédéric Jouault and the members of the ATL Project for multiple advices
and comments on this work.

Reference

[1] J Bézivin : From ObjectComposition to ModelTransformation with the MDA. TOOLSUSA
2001, Santa Barbara, USA2001
http://www.sciences.univnantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf
[2] J Bézivin, G Dupé, F Jouault, G Pitette, and E J Rougui : First experiments with the ATL model
transformation language: Transforming XSLT into XQuery
http://www.softmetaware.com/oopsla2003/bezivin.pdf
[3] Eclipse Platform Technical Overview
http://www.Eclipse.org/whitepapers/Eclipseoverview.pdf
[4] Using EMF http://www.Eclipse.org/articles/ArticleUsing EMF/usingemf.html

178

Model-Driven Testing with UML 2.0

Zhen Ru Dai

Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
dai@fokus.fraunhofer.de

Abstract. The UML 2.0 Testing Profile provides support for UML 2.0
based model-driven testing. This paper introduces a methodology of how
to use the profile in order to transform an existing UML system design
model for tests. For the formalization of the proposed methodology, the
QVT transformation rules defined by CBOP/IBM/DSTC are considered.

1 Introduction

The Model-Driven Architecture (MDA) is not only about system modelling
throughout the abstraction levels in terms of platform independent system mod-
elling, platform specific system modelling and system code generation [1, 2]. The
MDA abstraction levels can also be applied to test modelling [3].

Due to increasing complexity of today’s software systems, the early integra-
tion of testing into the development process becomes more and more important.
By doing so, design mistakes and implementation faults can be detected in an
early stage of the design process. This allows reduction of time and costs. Addi-
tionally, the developed tests can be executed against the developed system after
it has been released to the customer in order to check its correct behavior in the
customer’s target environment.

The Unified Modeling Language (UML) is a visual language to support the
design and development of complex object-oriented systems. With the growing
system complexity the need for solid testing increases. But UML itself, even the
newest version 2.0 [4, 5], provides no means to describe a test model. Thus, a
UML 2.0 profile for the testing, called the UML 2.0 Testing Profile (U2TP) [6],
has been defined which has become an official OMG standard since March 2004.
U2TP bridges the gap between designers and testers by providing a means for
using UML for both system modeling and test specification. This allows a reuse
of UML design documents for testing and enables test development in an early
system development phase.

According to the philosophy of MDA, the same modelling mechanism can be
re-used for multiple targets [7]. Strict distinguishment should be made between
platform independent and platform specific system models before generating
executable system codes. Within these three abstraction levels, transformation
techniques are applied. Similarly, test models can be specified platform indepen-
dently and platform specific before generating executable test codes. Researches
have been made on transformation between the different system or test develop-
ment abstraction levels (vertical arrows in Figure 2) [8–10]. But only few research

179

has been done for the transformation between system models and test models
(horizontal arrows in Figure 2).

In this paper, we introduce a methodology of how to apply U2TP concepts to
an existing UML system design model effectively in order to retrieve a test design
model. The methodology is concretized by transformation rules which are formal-
ized in Query/View/Transformation (QVT) rules defined by CBOP/IBM/DSTC
[11].

The paper is structured as follows: After a short introduction about model-
driven testing and UML 2.0 Testing Profile in Sections 2 and 3, the methodology
is provided in Section 4, where different test aspects of UML 2.0 Testing Profile
are discussed. In Section 5, a transformation example is outlined. Section 6
summarizes and concludes this paper.

2 Approaches to Model-Driven Testing

The philosophy of MDA can be applied both on system modelling and test
modelling. As shown in Figure 1, platform independent system design models
(PIM) can be transformed into platform specific system design models (PSM).
While PIMs focus on describing the pure functioning of a system independently
from potential platforms that may be used to realize and execute the system, the
relating PSMs contain a lot of information on the underlying platform. In another
transformation step, system code may be derived from the PSM. Certainly, the
completeness of the code depends on the completeness of the system design
model.

trans−

formation
trans−

formation
trans−

formation
trans−

System Design Test Design

formation

Models:

transformation refinement

transformation refinement

Models:

(PIM)

(PST)
specific

System
Code Code

Test

PlatformPlatform

Platform Platform
independentindependent

(PSM)
specific

(PIT)

Fig. 1. System Design Models vs. Test Design Models

The same abstraction in terms of platform independent, platform specific
modelling and system code generation can be applied to test design models.

180

Furthermore, test design models might be transformed from system design mod-
els directly. This enables the early integration of test development into the overall
development process. Once the system design model is defined at PIM level, a
platform independent test design model (PIT) can be derived. This model can
be transformed either directly to test code or to a platform specific test design
model (PST) [12]. The same transformation technology can be used for deriving
PSTs from the PSM. After each transformation step, the test design model can
be refined and enriched with test specific properties. Although the transformed
test design model may already contain static and dynamic aspects, the behav-
ior has to be completed in order to cover unexpected system behavior as well.
Also, test issues such as e.g. test control and deployment information has to be
manually added to the test design model. At last, the test design model can be
finally transformed into executable test code from either PST or PIT.

3 The UML 2.0 Testing Profile (U2TP)

The UML 2.0 Testing Profile provides concepts to develop test specifications and
test models for black-box testing [13]. The profile introduces four logical concept
groups covering the aspects [6]: test architecture, test behavior, test data and
time. Together, these concepts define a modeling language for visualizing, spec-
ifying, analyzing, constructing and documenting a test system. In the following,
the U2TP concepts are introduced (Figure 2).

Test Architecture Concepts One or more objects can be identified as the
System Under Test (SUT). Test components are objects within a test system
which can communicate with the SUT or other components to realize the test
behavior. The test context allows users to group test cases, to describe a cor-
responding test configuration, i.e. the connection between test components and
the SUT, and to define the test control, i.e. the required execution order of the
test cases. Arbitration is a means for evaluating an overall verdict for a test
context. A tester can either use the default arbitration or define their own arbi-
tration scheme using an arbiter. The scheduler controls the test execution and
test components. It is responsible for the creation of test components, a syn-
chronized start of the different test components, and the detection of test case
termination.

Test Behavior Concepts A test objective defines the aim of a test. Herefore,
UML Interaction Diagrams, such as State Machines and Activity Diagrams can
be used to define test stimuli, observations, test control/invocations, coordina-
tion and actions. The normative test behavior is specified in a test case, which is
an operation of the test context specifying how a set of co-operating components
interact with the SUT to realize a test objective. When normative test behav-
ior is defined, focus is given to the definition of unexpected behaviors which is
achieved through specification of defaults. A validation action is performed by
a local test component to inform the arbiter about its local test verdict. A test

181

verdict shows the result of the executed test. Possible test verdicts are pass,
inconclusive, fail, and error.

Test Data Concepts In the UML 2.0 Testing Profile, wildcards are used to
handle unexpected events, or events containing many different values. The profile
introduces wildcards allowing the specification of: (1) Any value and (2) Any or
omitted values. Data pools are associated with test context and include concrete
test data. Data selectors are operations to retrieve test data from the data pool
or data partitions. The notion of coding rules allows the tester to define the
encoding and decoding of test data when communicating with the SUT.

Time Concepts The time concept group defines concepts to constrain and
control test behavior with regard to time. Timers are needed to manipulate and
control test behavior as well as to ensure the termination of test cases. Time
zones are used to group components within a distributed system, allowing the
comparison of time events within the same time zone.

�������������
�������������
�������������

�������������
�������������
��������������������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

Test Behavior

�������������
�������������
�������������

�������������
�������������
�������������

���������
���������
���������
���������

���������
���������
���������
���������

�������������
�������������
�������������

�������������
�������������
�������������

Concepts
Test Data
Concepts

Time
Concepts

Test Architecture
Concepts

�������������
�������������
�������������

�������������
�������������
�������������

Mandatories Optionals Derivable
Optionals

Derivable
Mandatories

Test context

Test control

Arbiter

Scheduler

Test objective

Test component

Test configuration

Defaults

Validation action

Verdicts

Wildcards

Data partition

Data selector

Coding rules

Timer

Time zone

SUT

Test case Data pool

Fig. 2. U2TP Concepts & A Methodology on Test Design Model Development

4 A Methodology on Model-Driven Test Development

In this section, we introduce a methodology for using the UML 2.0 Testing Profile
effectively after having received a detailed system design model which is to be
tested [14]. In the following, we determine system design model to be the UML
2.0 system model in UML and the test design model to be the UML 2.0 model
using U2TP concepts.

Having a system design model, a tester may have to specify tests for the
system. This can be done by extending the system design model with U2TP
concepts. The following aspects must be considered when transforming a system
design model into a test design model:

182

First of all, define a new UML package as the test package of the system.
Import the classes and interfaces from the system design package in order to
get access to messages and data types in the test specification. Next, start with
the specification of the test architecture and continue with test behavior spec-
ifications. Test data and time are mostly already comprised in either the test
architecture (e.g. timezone or data pool) or test behavior (e.g. timer or data
partitioning) specifications.

Below, issues regarding test architecture and test behavior specifications are
listed. They are subdivided into two categories: mandatory issues and optional
issues (Figure 2 on page 4). Mandatories are issues which are essential for a test
design model with U2TP. The most important mandatory issues are e.g. SUT
and test components. Optional issues are specific to test requirements and are
therefore not always needed for the test design model specification. Optional
issues are e.g. test control and timers. Additionally, there are both mandatory
and optional concepts which can be derived directly from existing system design
diagrams1.

In the following, the mandatories and optionals are listed and possible deriva-
tions outlined. A test design model based on U2TP may use all UML diagram
types for test specification. Depending on the given system design diagram types,
different test design diagram types can be transfered. Therefore, in the method-
ology, we also point to the diagram type feasable for the derivations. These
derivations are used for the test design model transformation in Section 5:

1. Test architecture:
i. Mandatory:

– Assign the classes (in a Class Diagram) or objects (in an Object
Diagram) you would like to test to SUT class/object.

– Specify a test context class listing the test attributes and test cases,
also possible test control and test configuration.

ii. Optional:
– Depend on their functionalities, test components have to be de-

fined. Group the classes/objects (except the SUT) to test component
classes/objects. Test components are not needed in unit tests.

– In order to define the ordering of test case execution, specify the test
control. If there are Activity Diagrams given in the system design
model, each activity illustrates one test case and the activity flow
describes the test flow in the test control specification. If there are
Use Case Diagrams provided, each use case depicts one test case
which should be stringed together for the test control specification.
If neither Activity Diagram nor Use Case Diagram exist in the sys-
tem design model, string the test cases together for the test control
specification. In a more complex test control specification, loops and
conditions should also be used.

– Test configuration are easily retrieved by means of existing Interac-
tion Diagrams. Whenever two components exchange messages with

1 A detailed case study on the methodology can be found in [14].

183

each other, assign a communication channel between the compo-
nents. If there is no Interaction Diagram provided, connect the test
components and SUT to an appropriate test configuration so that
the configuration is relevant for all test cases included in the test
suite.

– Assign timezones to the components if the test system is a distributed
system.

– Provide coding rule information.
2. Test behavior:

i. Mandatory:
– For the specification of test cases, take given Interaction Diagrams

from the system design model. Change (i.e. rename or group) the
instances and assign them with stereotypes according to their roles
(i.e. test component or SUT). If there are Use Case Diagrams or Activ-
ity Diagrams provided in the system design model, the use cases and
activities are specified in additional Interaction Diagrams. Thus, for
each use case or activity, a test case should be specified.

– Assign verdicts at the end of each test case specification. Usually, the
verdict in a test case is set to pass.

ii. Optional:
– Define test objectives for each test case that is to be specified.
– System behavior which are not used for the tests should be taken for

default specifications. Herefore, Interaction Diagrams like Sequence
Diagrams, State Machines or Activity Diagrams should be used. Use
wildcards to catch unexpected behavior. Verdict settings in a default
are either fail or inconclusive.

– Timers should be derived from time constraint specifications within
a Sequence Diagram or State Machine.

UML 2.0 Testing Profile provides default arbitration and scheduling mecha-
nisms which by default should be implemented by the tool vendor. Additionally,
the profile also provides the tester the means to specify his own arbiter and
scheduler. To do so, the tester needs additional diagrams in order to describe
the behavior of the arbiter and the scheduler. Furthermore, the tester should
also consider the modification in the whole test architecture.

5 Test Design Model Transformation

Figure 3 shows the meta-model based transformation for the test design model
transformation. Herein, the source meta-model is the UML meta-model and the
target meta-model is the U2TP meta-model. In the methodology (Section 4),
classes and objects are grouped together in order to define test components
or SUT. Such mechanisms cannot be performed by transformations. Thus, for
our transformation approach, we have to define those mechanisms in order to

184

provide the tester a means to group or delete elements2, reference test behavior
fragments etc. These mechanisms are called test directives and its meta-model
is the Test Directive Meta-Model. Transformation rules are applied on both the
UML meta-model and the Test Directive Meta-Model to create an instance of
the U2TP Meta-Model. All three meta-models are based on MOF.

applied toMOF

UML
Meta−Model

Test Directives
Meta−Model

Transformation
rules

U2TP

Model

UML

Model

U2TP
Meta−Model

transformation
instance of

Fig. 3. Meta-Model Based Transformation

The transformation of the UML model to U2TP model is specified by a
set of rules defined in the transformation meta-models [15] according to the
QVC specification from CBOP/IBM/DSTC[11]. The introduced transformation
language is aspect-oriented, declarative and pattern-based. It shows concepts for
specification of rules, patterns and tracking relationships. Transformation rules
are used to describe a correspondence between patterns of elements in the source
model(s) and the elements to be created in a target model. Patterns are reusable
definitions. When used in the source of a rule, a pattern is a query. When it is
used in the target, it acts as a template for model elements. Tracking relationships
associate the source model elements with the target model elements.

In the following, we will show a small example of our test design model
transformation: Let us assume that we have an existing Object Diagram from
the system design model and want to perform system test on this model. For
the transformation for test components, the methodology says (in the test archi-
tecture optionals in Section 4): Depend on their functionalities, test components
have to be defined. Group the objects (except the SUT) to test component objects.
Thus, besides the Object Diagram, we also need a grouping mechanism, which
should be provided by the Test Directives Meta-Model. A grouping mechanism
is applied to at least two objects in the diagram.

Figure 4 shows how the transformation can be performed on instance level.
On the left upper corner, a UML package with three objects is shown. In the
left lower corner, the relationship between the objects which should be grouped

2 Elements are UML elements such as classes, objects, instances etc.

185

T
es

t D
ire

ct
iv

es
:

U
2T

P
 D

iagram
:

<<group>>

Class1
object1: object3:

Class3

DesignPkg

TestPkg

TestDirectivePkg

Class1
object1: object2:

Class2

newObject

<<TestComponent>>object3:
Class3

object2

<<SUT>>

U
M

L
D

ia
gr

am
:

+

Fig. 4. Test Component Transformation

to a test component is specified in a test directives model. The grouping nota-
tion is an association between the objects with the stereotype <<group>>. In
this example, only object1 and object3 should be grouped into one test compo-
nent. Therefore, after the transformation in this example, the output test model
consists of one test component and one SUT instance. Of course, two test com-
ponents could also be specified, depending on the choice of the transformation
rules. The stereotypes <<TestComponent>> and <<SUT>> are U2TP notations.
By performing appropriate transformation rules on the different system design
diagrams, test architecture and behavior can be specified for the test design
model.

6 Summary and Outlook

In this paper, we have presented a methodology of how to derive a U2TP test
design model from an existing UML system design model. Furthermore, the
methodology can be formalized by defining transformation rules from system
design diagrams to test design diagrams. For the transformation, we chose the
QVT specification from CBOP/IBM/DSTC.

The definition of the transformation rules is not fully completed. Thus, we
shall complete this work first. Unfortunately, due to lacking tool support for
UML 2.0 and U2TP at time, we are not able to proof our model transformation
rules. Thus, in our future work, we plan to investigate in tools which support
the U2TP concepts and automated derivation of test design models from system
design models.

Acknowledgement

Many thanks to Mr. Keith Duddy from DSTC for the various intensive discussion
sessions.

186

References

1. OMG: (Model-Driven Architecture (MDA)) http://www.omg.org/mda/.
2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Pub Co (2003)

3. Gross, H.: Testing and the uml – a perfect fit. Technical report, Fraunhofer IESE
Report 110.03E (2003)

4. http://www.omg.org/uml.
5. Born, M., Holz, E., Kath, O.: Softwareentwicklung mit UML 2. Addison-Wesley
(2004)

6. U2TP Consortium: UML 2.0 Testing Profile. (2004) Final Adopted Specification
at OMG (ptc/04-04-02).

7. Siegel, J., the OMG Staff Strategy Group: Developing in omg’s model-driven
architecture. OMG white paper (2001)

8. OMG: MDA Guide Version 1.0. (2003)
9. Bézivin, J.: From object composition to model transformation with the mda. In:
IEEE TOOLS-39, Santa Barbara, USA, TOOLS (2001)

10. Born, M., Schieferdecker, I., Gross, H.G., Santos, P.: Model-driven development
and testing – case study (2003) http://www.fokus.fraunhofer.de/mdts/.

11. CBOP/DSTC/IBM: MOF Query/Views/Transformations, 2nd Revised Submis-
sion (ad/04-01-06). OMG. (2004)

12. Schieferdecker, I., Din, G.: A meta-model for ttcn-3. 1st International Workshop
on Integration of Testing Methodologies (ITM 2004) (2004)

13. B.Beizer: Black-Box Testing. John Wiley & Sons, Inc (1995)
14. Dai, Z.R., Grabowski, J., Neukirchen, H., Pals, H.: From Design to Test with

UML. Testing of Communicating Systems (Editors: R. Groz and R. Hierons) –
16th IFIP International Conference, TestCom2004, Oxford, Proceedings. Lecture
Notes in Computer Science (LNCS) 2644, Springer, pp. 33-49 (2004)

15. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model Transformation:
A declarative, reusable patterns approach. (In: 7th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2003)) pp. 174–185

187

Model Abstraction versus Model to Text Transformation

Jon Oldevik, Tor Neple, Jan Øyvind Aagedal

SINTEF Information and Communication Technology, Forskningsvn 1, N-0314 Oslo, Norway
{jon.oldevik|tor.neple|jan.aagedal}@sintef.no

Abstract. In this paper we discuss the principal differences between model to
model transformation and model to text transformations, and sketch how these
are pertinent to different model abstraction levels. We also try to clarify
characteristics of model abstraction levels. Finally, we emphasize the role of
model to text transformations in model-driven development.

1 Introduction

In system development the main goal of the activity is production of a running system.
At this point in time, the most important assets for the running system are the
developed or generated code that is compiled and executed. The importance of this
has been recognized also by OMG, as signalled by the MOF Model to Text
Transformation RFP [1]. This can also be seen in the tools that support model driven
engineering today; transformation between model abstraction levels has not been in
focus so much as support for generating implementation code. Within the current
OMG MDA® regime, this has changed. The main focus has been the QVT
standardisation for supporting transformations between models. We now need to
address how the model to text transformation should integrate with this and provide a
convenient and standard way of generating code from models on different levels.

2 Model Abstraction Levels

When looking at the MDA Guide [2], it is clear that OMG’s current visions of model-
driven architecture are quite open for interpretation. Its specific focus on different
abstraction levels, the Computational Independent Model (CIM), Platform
Independent Model (PIM) and the Platform Specific Model (PSM), does not reflect a
natural distinction of abstraction levels. In principle, these can be models at any
abstraction level, depending on your definition of platform.

A very stringent view of this is to consider platform-independent models to be any
models that still have variability with respect to the target execution platform. A
common interpretation of the platform-specific model is based on a loose definition,
in the area of a model that has implications related to a specific implementation
technology, such as EJB.

188

So, the separation between PIM and PSM points out some open issues. When does
a PIM become a PSM? What is the difference between a PSM and the code
representing the system? As long as there is no real way of executing a UML model,
the most accurate model of the system will be the implementation code.

PIMN

PSMp1 PSMp2 PSMpm

PIM1PIM1

Model 2 model
transformations

Model 2 model
transformations
(“Complex”)

Codep1

Codep2

Codepm
Model 2 text
transformations
(“Simple”)

Model 2 text
transformations
(“Complex”)

Figure 1 Transformations – From Model to Text

As illustrated by Figure 1 the transformation from model to text can be achieved
from different abstraction levels. It is possible to generate code from a quite high-
level architecture model, which can be considered a PIM. The transformation logic
then will be of high complexity to bridge the detail gap from the PIM to the code. On
the other hand, it is possible to create a platform specific model, based on the PIM
and then generate textual code from the PSM. The complexity will then be in the
model transformation between the PIM and the PSM. The mapping from the PSM to
the code should be a simple matter, since the PSM and the code should be closer to
semantic isomorphism.

Textual transformations should be possible from any model abstraction level. For a
transformation architect, the challenge is to find the appropriate level, and to design
the transformations. The complexity of transformations will increase proportionally to
the abstractness of the models.

So, the exact timing, or level of model detail appropriate for transforming from
PIM to a PSM rather than PIM to text is not given. Whatever level chosen, the
transformation to text needs to be done at some point.

189

3 From Model to Text

The process of transforming a model to text can be required from any model
abstraction level in a system development process; from business models, requirement
models, high level architecture models, or detailed design models.

Today, there are numerous approaches for achieving this, implemented in different
case tools, MDA tools, etc. In practice, however, the way of doing this is more or less
the same:

- There is some kind of implicit or explicit representation of a metamodel (such
as the UML metamodel)

- There is some kind of imperative language, such as a scripting or
programming language, to write text generators within.

In case tools, there is typically an internal UML metamodel and a specific scripting
language for writing text generators. For example, in Poseidon, they use the Velocity
Template Language (VTL) to access the internal Java UML API. In IBM Rational
Rose, they use Visual Basic extensions to access the internal Rose UML metamodel.
Other approaches, such as in UML Model Transformation Tool (UMT), use
externalized MOF/UML data on XMI form and some implementation language, such
as XSLT, Java, VTL or other for text generation.

Consequently, we can see that there are many scripting languages used, such as
XSLT, NiceXSL, Java Server Pages, Jython, VTL, JET, etc. They all target more or
less the same problem area, although they have different strengths and weaknesses.
The motivation for the MMTT RFP is to try to reach a more standardised way of
achieving this, and hopefully leverage tool interoperability. We see today that models
are used to generate all kinds of textual output, from different kinds of models. For
example, requirements documentation and test cases from requirements models, API
and system documentation from design models, as well as implementation code. So,
we are looking for a standard that can provide generation of not only source code, but
also text for humans.

4 The MMTT Language

A standardised language for model to text transformation needs to have a certain set
of characteristics. There will be tradeoffs between expressive power and ease of use.
One could argue that writing model to text transformations is not something that will
be done by every developer, in fact probably only one or a few persons in a
development department will have to deal with this task. Some will probably only use
the standard generation scripts for standard platforms that come with the MDA tools.
So, the ease of use issue should probably not be considered a limiting factor, but as
simple as possible is still the preferred path.

The RFP asks for a language for transforming MOF models to text, which reuses
the QVT language specifications. The resulting QVT standard language is therefore
the natural extension point.

190

It is therefore natural to look into what is needed in addition to what is in the QVT
proposal (QVT-Merge proposal [3]). QVT will include OCL expressions and the
ability to create complex queries for model elements. It lacks, however, the ability to
produce text output to files. Creating a specialisation of QVT TransformationRule,
similar to a Mapping, except with the ability to create output, is one possibility.

Creating a "wish-list" for MMTT is only hard in having to try to make some
limitations. For instance, there are many features in programming languages such as
Java or in the surrounding libraries that would be useful, but we cannot standardize all
of these. In the following we have tried to list the features that we mean are needed in
model to text transformations:

− The ability to produce output to files from model elements. The language should

allow for multiple target files from a model element.
− The ability to iterate model element sets. This is already an integral part of QVT.
− The ability to manipulate text, i.e. text functions such as strcmp, toUpper,

toLower, strcat, substring. Some of these are already part of OCL and thus QVT.
− The ability to write and reuse functions. This is directly supported in QVT since

TransformationRule is a subtype of Operation.
− The ability to interact with system services or libraries, for instance getting hold

of the current date and time. This can be supported by extending the standard
library of QVT with some extended necessary functionality.

− Support for parameterized transformations, where parameters will be provided at
transformation time, for instance definition of package names in the Java
language.

− The ability to include boilerplate text (such as copyright statements) into the
resulting text files

Roundtrip engineering and reverse engineering issues are optional requirements in

the MMTT RFP. However, these are indeed essential. These issues are related to
MMTT, but are somewhat a different matter. However, the need for tracing what
model element has generated what text-artefact is clear in a round-trip engineering
context, and is a part that should be handled by the MMTT technology. The QVT
standard library operations markedAs and markValue can be used to support some
aspects of traceability.

The optional requirement of detecting and handling hand made changes in target
files is more closely related to the subject. One may argue that this is outside the
scope of a language for model to text transformation, but it is an essential requirement
to a tool providing transformation capabilities.

Figure 2 shows a possible extension to the QVT-Merge submission. Here, we have
added a TextTransformation, which specializes the Mapping class from the
metamodel. In addition, it overrides the body AssociationEnd, which can be a
CompoundExp. We have also introduced a FileExpression class, which provides a
context for output to a file.

191

Figure 2 QVT-Merge metamodel specialisation

In the example below, a possible concrete syntax for the TextTransformation is shown.
In this example, there are two file contexts within the TextMapping, providing two
Java file outputs for each class in the source model. An important issue is how to
standardise this part of the language. A possible approach is to allow hooks for
embedding different languages within the MMTT. This is similar to how scripting is
supported within HTML. As the simple example below shows, text mappings easily
become complex and hard to read. In order to get the expressiveness needed, a
language based on OCL-like constraints will not be sufficient. Additional imperative
language constructs are needed.
Textmapping Simple_Class_to_Java
{
domain { (SM.Class)[name = n, attributes = A] }
body {
 let package_postfix = “qvt.org”;
 let output_dir = “c:\test”
 file f [dir=output_dir, fname=n, ext=”java”, lang=“MOFScript”] {
 print (“public class” + fname + “{“);
 A->iterate(a | Simple_Attribute_To_Java (a, this));
 print (“}”);
 }

}
TextMapping Simple_Attribute_To_Java
{
 domain {(SM.Attribute)[name = n, type = t]}
 domain {(File f)}

192

 body {
 f.print (“private ” + Simple_Type_to_Java_Type(t.getName()) +
 “ “ + n.toLower() + “;“)
 }
}
String Simple_Type_To_Java_Type (String typename){
 // Need logic to check different values and return different
 // type names based on this.
}

If MMTT standardises one language, lets say MOF Scripting Language (MOFScript),
and provides extension points for other languages, this would lead to a flexible model.

5 Conclusion

Since it is really not defined how platform-specific a PIM needs to be to become a
PSM, MMTT technology needs to have enough power to perform quite complex
transformation tasks.

MMTT and QVT are closely related by topic, and the QVT language will provide
many of the needed MMTT features. It is therefore natural to use the QVT standard as
an extension point for creating MMTT. The additional features needed are already
present in the group of transformation languages used in tools today; the key issue
will be to define the set of wanted features for standardisation.

There will be tradeoffs between language usability and expressiveness. At one
point, model transformation writing is not for everyone to worry about. On the other
hand, if it gets too complex, no one will use it, leaving the whole process of
standardisation pointless.

Acknowledgements. The work reported in this paper is carried out in the context
of MODELWARE, an EU IP-project in FP62003/IST/2.3.2.3.

References

1. MOF Model to Text Transformation Language - Request For Proposal. 2004,
Object Management Group: Needham,http://www.omg.org/cgi-
bin/apps/doc?ad/04-04-07.pdf.

2. Miller, J. and J. Mukerji, eds. MDA Guide Version 1.0.1. 2003, Object
Management Group: Needham.

3. QVT-Merge Group, Revised submission for MOF 2.0
Query/Views/Transformations RFP. 2004, Object Management
Group,http://www.omg.org/cgi-bin/apps/doc?ad/04-04-01.pdf.

193

MOLA Language: Methodology Sketch

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard,
Riga, Latvia

{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. The paper demonstrates the MOLA transformation program building
methodology on an example. The example shows how to obtain self-
documenting model transformation programs in MOLA by means of standard-
ized comments. The proper usage of loops in MOLA is also discussed.

1. Introduction

There is no doubt that model transformation languages and tools are the key technol-
ogy elements for MDA. Due to OMG initiatives, currently there are several proposals
for model transformation languages, both as responses to OMG QVT RFP [1,2] or
“independent” ones [3,4]. Among the independent languages there is also the MOLA
language proposed by the authors of this paper [5,6]. Each of the proposed languages
has its strengths and weaknesses, there is no clear adoption of any of the languages in
the MDA community yet. The main distinguishing feature of MOLA is a natural
combination of traditional structured programming in a graphical form with pattern-
based rules. Especially, the rich loop concepts in MOLA enable the iterative style for
transformation definitions, while most of other languages rely on recursion. A more
detailed comparison of MOLA to other MDA languages is provided in [5,6].

Transformation languages have two essential requirements. On the one hand, trans-
formations should be easy to write – to implement the intended algorithms in an ade-
quate manner. On the other hand, transformations should be easy readable by much
broader user community – those wanting to apply a transformation to their models in
a safe and controllable manner. Transformation readability has been one of the design
goals of MOLA.

The only way to evaluate different languages is to compare them on generally ac-
cepted benchmark examples. Since transformation development actually is a com-
pletely new domain, there are no proven methodologies and design patterns, as there
are in more classical domains.

The goal of this paper is to analyze the MOLA language from the above-mentioned
perspectives. Using one of the standard benchmark examples - Class to Relational
Database transformation, it will be shown how the readability can be achieved in
MOLA, including also standardized comments. Transformation design methodology
will also be sketched, especially the proper use of loops. Certainly, the paper does not
claim to provide a methodology for MOLA-based system design, just some advices
how the model transformations themselves should be programmed in MOLA.

194

2. Brief Overview of MOLA

This section gives a very brief overview of the MOLA language. A more complete
description of MOLA is to be found in [5,6]. Authors also hope that the example in
section 4 will help significantly to understand the language.

A MOLA program, as any other transformation program, transforms an instance of
source metamodel into an instance of target metamodel. These metamodels are
specified by means of UML class diagrams (MOF compliant).

More formally, source and target metamodels are part of a transformation program
in MOLA. But the main part of MOLA program is one or more MOLA diagrams (one
of which is the main). A MOLA diagram is a sequence of graphical statements,
linked by arrows. It starts with a UML start symbol and ends with an end symbol.

The most used statement type is the loop statement – a bold-lined rectangle. Each
loop statement has a loop head – a special statement (grey rounded rectangle) con-
taining the loop variable and the pattern – a graphical condition defining which in-
stances of the loop variable must be used for iterations. The pattern contains elements
– rectangles containing instance_name:class_name – the traditional UML
instance notation, where the class is a metamodel class. The loop variable is also a
special kind of element, it is distinguished by having a bold-lined rectangle. In addi-
tion, a pattern contains metamodel associations – a pattern actually corresponds to a
metamodel fragment (but the same class may be referenced several times). Pattern
elements may have attribute constraints – OCL expressions. Associations can have
cardinality constraints (e.g., NOT). The semantics of this loop statement (called the
FOREACH loop) is natural – the loop is executed once for each instance of the loop
variable, where the condition is true – the pattern elements can be matched to existing
instances and attribute constraints are true on these instances. There is also another
kind of loop – WHILE loop, which is denoted by a 3-d frame and continues execu-
tion while a valid loop variable instance can be found (it may have also several loop
heads). Loops may be nested to any depth. The loop variable (and other element in-
stances) from an upper level loop can be referenced by means of a reference symbol
– the element with @ prefixed to its name.

Another widely used statement in MOLA is rule (also a grey rounded rectangle) –
a statement consisting of pattern and actions. These actions can be building actions –
an element or association to be built (denoted by red dotted lines) and delete actions
(denoted by dashed lines). In addition, an attribute value of an element (new or exist-
ing) can be set by means of attribute assignments. A rule is executed once – typi-
cally in a loop body (then once for each iteration). A rule may be combined with a
loop head, in other words, actions may be added to a loop head, thus frequently the
whole loop consists of one such combined statement.

To call a subprogram, a call statement is used (possibly, with parameters - in-
stances in the same reference notation). A subprogram, in turn, may have one or more
input parameters. The same loop statement notation can be used to denote control
branching – with a guard statement instead of loop head.

In this paper an additional MOLA element – standardized comments are intro-
duced. These comments are text boxes associated to a MOLA diagram (its start sym-
bol) and its statements. Comments can contain any text, but references to loop vari-
ables are shown in bold, and references to other elements – in italic. The comment for

195

the whole diagram is intended to describe its informal pre- and post-conditions. The
comments to separate statements are meant to describe their goal in an informal way.

Our goal is to make a MOLA program self-documenting, i.e., so easy readable that
any one can ascertain that a MOLA program actually performs the intended transfor-
mation. Our experience shows that a well-written MOLA program with such com-
ments is self-documenting really and we hope that the example in section 4 confirms
this.

3. The Benchmark Example

The most popular transformation benchmark example – transformation of UML class
model to relational database is used here. There are several versions of this example
originally proposed by OMG – nearly each paper uses its own version. We use here
the version from the QVT-P proposal [1].

The source metamodel is a significantly simplified fragment of the UML class dia-
gram metamodel, it is visible in the upper part of Fig. 1. The target metamodel is a
simplified relational database metamodel, it is given in the lower part of Fig.1. Next,
the precise informal specification of the transformation task will be given (since there
are some minor deviations from [1] due to some inconsistencies in it).

Any persistent Class (with kind=“persistent”) must be transformed into a database
Table. In addition, a (primary) key is built for this table. Attributes of the class, which
have a primitive data type, must be transformed into columns of the corresponding
table (we assume here that types in UML and SQL coincide). Attributes whose type is
a class, must be “drilled-down”: primitively-typed attributes of this new class are
added as columns to the table for the original class. Class-typed attributes are proc-
essed as before. The process is repeated until no new columns can be added to the
table for the original class. In other words, a transitive closure is performed, which
finds all “indirect” attributes of the class. The added columns have compound names
consisting of all attribute names along the path. One special issue must be reminded
here: several attributes of a class may have the same class as a type, in this case the
added columns are duplicated for each of them (they have unique names!). In other
words, any path leading to a primitively-typed attribute results into a separate column.

For primitive-typed “direct” attributes of a persistent class with kind=”primary”,
the corresponding columns are included in the relevant (primary) key. An association
(with multiplicities ignored, but direction taken into account) is transformed into a
foreign key for the “source end” table. The same table is extended with columns cor-
responding to columns of the (primary) key at the target end. For both “primary” and
“foreign” columns their kind is set accordingly.

4. MOLA Solution

4.1. Building the Workspace Metamodel

The first step in building a MOLA program (transformation) is to define the work-
space metamodel (see Fig.1). This metamodel includes both the source metamodel

196

(light yellow classes – the upper part) and the target metamodel (dark yellow classes
– the lower part). Both metamodels are taken from the problem domain without modi-
fications – they describe the corresponding input data (source model) and the result
(target model) of the transformation.

Target Metamodel
(simplified SQL)

Source Metamodel
(simplified UML)

ClassPrimitiveDataType

Rel_ModelElement
name : String
kind : String

Table

AttrCopy
name : String

Column
type : String

ForeignKey

Key

Classif ier AssociationAttribute

ModelElement
name : String
kind : String

attrCopy

*

ow ner

1

orig

1

copy *

ow ner
1 foreignKey

*

1

#classToTable 0..1

ow ner
1column

*

column

* foreignKey

*
1#fcolForKcol

*

#keyForClass

ow ner1

key
0..1

column*

belongsTo
0..1

referrredBy*

refersTo
1

ow ner1

attribute
*

type
1typed

*
1

#forkeyForAssoc 0..1

forw ard*

source 1

reverse*

destination 1
1

#attributeToColumn *

Fig. 1. The workspace metamodel

However, some elements typically are added to the workspace metamodel. First,
there are mapping associations – associations linking classes in the source and target
metamodels (red lines in Fig.1). They serve two different purposes – on the one hand,
they document relations between the corresponding source and target elements of the
transformation (e.g., Class and Table, Attribute and Column, etc.) and thus enable the
traceability at the instance level (which Table was obtained from which Class). On
the other hand, they have a technical role in MOLA – after being built by one rule,
they frequently are used in patterns of subsequent rules. It is recommended in MOLA
to start the role names of mapping associations with “#”.

Another possible metamodel extensions are temporary classes – AttrCopy in the
example and temporary associations (associations linking AttrCopy to base classes of
the metamodel, all temporary elements are in green color in the example). This tem-
porary class will be used to store copies of an attribute – indirect attributes. Tempo-
rary elements serve as a “workspace” for transformations, they have instances only
during the transformation execution, and they are not supplied at input and are dis-
carded at output. Base metamodel classes may have also temporary attributes added
(attributes which have value only during the transformation execution) – this example
does not use them.

197

4.2. MOLA Program Implementing the Transformation

The transformation is specified in MOLA by means of one main diagram (Fig. 2) and
four subprograms (subdiagrams) – Fig. 3 to 6. The implemented transformation corre-
sponds to its informal specification in a quite straightforward manner. The specifica-
tion requires to perform a transitive closure – to find all indirect attributes of a class,
and with duplicates included (therefore attribute copying is required). We use an idea
that each instance of indirect attribute actually is a path in the “instance graph” from
the “root class” to an attribute. The iterative algorithm (Fig. 3) for finding all indirect
attributes of a class is inspired by the well known algorithm for finding all paths from
a node.

All diagrams (Fig. 2 to 6) are annotated by standardized comments and, we hope,
will require no other explanations.

AssociationsToFore

c: Class
{kind="persisten

CreateAttributeCopie

BuildTablesColumns(

DeleteCopies(

Fig. 2. The main diagram of
This is the main MOLA program for transformation of classes to
relational database tables
ignKeys()

t"}

s(@c:Class)

@c:Class)

)

The main part of the program consists of one
FOREACH loop over Class instances. For
each persistent Class three consecutive ac-
tions specified as MOLA subprograms are
performed in this loop.

This subprogram builds all indirect attributes
of the Class, and stores them as copies -
instances of the temporary class AttrCopy.

This subprogram builds a Table and a Key
for the Class. For each indirect primitive-
typed attribute of the Class a Column is built
in the Table. Direct “primary” columns are
associated to the Key.

This subprogram deletes all instances of
AttrCopy.

This independent subprogram builds For-
eign keys for associations between persis-
tent Classes and Columns for Foreign Keys.

 the transformation

198

@c:Class

@c: Class

a: Attribute ac: AttrCopy
name:=a.name

atc: AttrCopy @c: Class

a1: Attribute

c2: Class

a2: Attribute

@c: Class@atc: AttrCopy

atcn: AttrCopy
name:=@atc.name+"-"+a2.name

attrCopy
orig

copy

attrCopy

attribute

type

orig

attrCopy

attrCopy
orig

copy

attribute

This loop builds the basis for the next
loop. Namely, each direct Attribute of
the Class is “copied” as an AttrCopy.

Fig. 3. Subprogram CreateAttributeCopies

199
This loop builds all indirect attrib-
utes of the Class and stores each as
an instance of AttrCopy (which in a
sense represents the path used to
reach it). Each iteration generates all
direct successors of the current indi-
rect attribute (atc). The list for itera-
tion is expanded continuously by the
nested loop (this is in accordance to
FOREACH loop semantics in
MOLA), until no more attributes can
be reached.
This MOLA subprogram receives the current Class
instance as a parameter and builds all indirect attributes
for this Class. Each indirect attribute is stored as an
instance of AttrCopy, and the name in this instance
contains the required concatenation of Attribute names
along the path, corresponding to this indirect attribute.
The nested loop builds new indirect
attribute atcn for each Attribute,
which is directly reachable from the
current indirect attribute
(@atc:AttrCopy). The new instance
is automatically added to the itera-
tion list for the main loop.

@c:Class

@c: Class

ac: AttrCopy

at: Attribute

tp: PrimitiveDataType

a: Attribute
{kind="primary"}

@c: Class

@t:

@c: Class

#classToT

attrCopy

orig

#attributeToC

type

#keyForClass

#

attribute

#classToTabl

#attribu

#classToTab

o

Fig. 4. Subprogram BuildTable

ac: AttrCopy

Fig. 5. Subprogram DeleteCop
The Class instance is supplied as a parameter also to this sub-
program, which builds a Table and a Key for it, and a Column
for each its primitive-typed indirect attribute. Columns for di-
rect primary Attributes of the Class are associated to the Key.
@t: Table

col: Column
name:=ac.name
type:=tp.name

col: Column
kind :=a.kind

@k: Key

Table

t: Table
name:=@c.name

k: Key
name:=@c.name

able

olumn

ow ner

column

keyForClass

column

belongsTo

e

teToColumn

le

w ner

sColumns

@ac: AttrCopy

This rule builds a Table and a
Key for the Class instance.

This loop for each indirect attrib-
ute (instance of AttrCopy),
which corresponds to an Attribute
with a Primitive DataType, builds
a Column for the relevant Table.
The name and the type of the
Column are set to the correspond-
ing values.

ies

200
For primary Attributes of
the Class (only the direct
ones), the corresponding
Columns are linked as part of
the Key for the Class. Note
that only Columns from the
current Table are relevant.

This subprogram deletes
all instances of AttrCopy.

kcol: Column

fcol:
nam
type
kind

@fk: ForeignKey@dstk: Key

as: Association fk: Fo
name

dst: Clas s

src: Clas s

#forkeyForAssoc

c

destination

#keyForClass

#fcolForKcol

belongsTo

column

foreignKey

refer

source
foreignK

#classToTable

-

Fig. 6. Subprogram AssociationsToForeignKeys

5. Some Remarks on MOLA Metho

Using the previous example as a basis, some
sign methodology in MOLA will be provide

Firstly, in MOLA, like most model transfo
should be used. Namely, the most coarse-gra
case, Classes) must be processed first. Onl
built for transforming them (e.g., #classToT
mations of contained elements (Attributes) o
is no need to repeat higher-level constraints

Since the main “processing element” in M
of prime importance. Typical algorithm step
A do …” and FOREACH loops (the loops
plement these steps. Besides being a natur
loops are easier to use, because their semant
element …” and there is no need for mark
cases, the possible infinite loop problem is
stances of the class (all loops in Fig. 2, 4, 5
can have its instance set replenished dynam

201
This subprogram builds Foreign keys for as
sociations between persistent Classes and
Columns for Foreign Keys.
 Column
e :=kcol.name
 :=kc ol.type
:="foreign"

@srct: Table

reignKey
 :="fk"+as.name

dstk: Key

srct: Table

olumn
ow ner

sTo
referrredBy

ey
ow ner

For each Association
from a persistent class to
a persistent one a For-
eign Key is built. It is
linked to the Table cor-
responding to the source
Class, and to the Key,
corresponding to the
target Class.

For each Column
(kcol) of the target Key,
a new Column of the
same name and type is
built (fcol) and linked to
the source Table.

dology

 elements of transformation program de-
d.
rmation languages, a top-down approach

ined elements of the source model (in our
y in this way, the mapping associations
able) can be used in patterns for transfor-
r related ones (Associations). Thus, there
(e.g., {kind=”persistent”}) at lower level.
OLA is loop, a correct design of loops is
s frequently contain statements “for each
used in section 4) should be used to im-
al formalization of the step, FOREACH
ics already includes “iterate once for each
ing instances already processed. In most
also eliminated due to a finite set of in-
, 6). However, MOLA FOREACH loop
ically (the second loop in Fig.3), in this

case additional considerations should be used (during the building of indirect attrib-
utes we assume that no class is used as the type of its own indirect attribute). On the
contrary, WHILE loops should be used for steps which are a mix of iteration and re-
cursion (such as the moving of transition ends during the flattening of a UML state-
chart in [5]), there the use of several loop heads per loop enables a natural and com-
pact at the same time formalization for this kind of algorithm step.

Yet another important design element in MOLA is the selection of loop variables
so that patterns in loop heads do not become complicated. Especially, for nested loops
the deepest repeating element must be used. Use of referenced elements from upper
level loops helps to simplify patterns in nested loops (see the nested loop in Fig. 6).

Actually, there are more design hints in MOLA and eventually “GOF-style design
patterns” could be defined, but this is a topic of another paper.

And finally, nearly any non-standard transformation element can be described in
MOLA using low-level facilities such as temporary classes and associations.

 6. Conclusions

We have shown that by selecting an appropriate design style, the transformation pro-
gramming in MOLA is relatively simple, as it is demonstrated by the complete exam-
ple in section 4.

By adding standardized comments (even quite short ones, as in section 4), the
readability of MOLA programs really reaches the level of self-documenting – one of
main goals for the design of MOLA.

The implementation of MOLA is expected not to be very complicated due to rela-
tively simple constructs in it. The implementation efficiency is also expected to be
high enough – if the programming guidelines from section 5 and some more natural
assumptions are observed, typical pattern matching problems of graph transforma-
tions are avoidable in MOLA.

References

1. QVT-Merge Group. MOF 2.0 QVT RFP, Revised submission, version 1.0. OMG Document
ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-01

2. Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.
OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

3. Willink E.D. A concrete UML-based graphical transformation syntax - The UML to
RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,
England, 24-25 November 2003

4. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical
report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, 2003

5. Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA. Proceedings of
MDAFA 2004, University of Linkoping, Sweden, 2004, pp.14-28. (see also
http://melnais.mii.lu.lv/audris/MOLA_MDAFA.pdf)

6. Kalnins A., Barzdins J., Celms E. Basics of Model Transformation Language MOLA. Pro-
ceedings of WMDD 2004, Oslo, 2004,
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/kalnis.pdf

202

Automated Generation of Metamodels for Web service Languages

Behzad Bordbar and Athanasios Staikopoulos

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
B.Bordbar@cs.bham.ac.uk, A.Staikopoulos@cs.bham.ac.uk

Abstract: Recently, the application of the MDA to Web services has received
considerable attention. In the MDA, models are instances of the MOF based
metamodels. Model Transformation, which is a key feature of the MDA, can
carried out via defining Transformation Rules between two MOF compliant
metamodels. As a result, finding MOF compliant metamodels for languages is an
essential prerequisite for model transformation.
This paper presents a semi-automated, tool-based method for the generation of
MOF compliant metamodels for languages, which are specified via XML
Schema Descriptions (XSD). We demonstrate that our approach can easily be
implemented using existing XML Schema integration tool and UML CASE tool.
To explain the approach, the paper sketches the stages involved in the generation
of a metamodel for Web Service Description Language (WSDL) and compares
the resulting metamodel with an existing metamodel for WSDL.

1. Introduction

Web services are Web- based enterprise application that use XML [19] based standards and
transport protocols to communicate with each other in a platform and a programming-
language independent manner. Applying Model Driven Architecture (MDA) [6][8][13] to
Web services design has recently received considerable attention [1][8][3][4]. In particular,
[1][8] study the Model Transformation for Web services and present a set of case studies
involving the transformation of Web services models to various implementation platforms
such as Java, Web Services Description Language (WSDL) [18] and EDOC [12].

Currently, there are a number of specifications and vocabularies defined and expressed in

terms of the Extended Markup Language (XML) such as the Web Services Description
Language (WSDL) [18] for Web Services. Such languages are XML extensions and are
defined accordingly to a well-formed structure, the XML Schema. Therefore, an XML
schema defines the language in the same respect where MOF is used to define the UML
language. Considering the similarity it would be very beneficial within the domain of
transformations to represent the XML family of languages such as Web Services in a MOF
compliant metamodel.

In the MDA, each model is based on a specific metamodel, which defines the language that

the model is created in. All metamodels within MDA, are based on a unique metamodel
called Meta Object Facility (MOF)[14]. As a result, Model Transformations can be carried
via defining Transformation Rules between two MOF compliant metamodels [1][3][6].
Consequently, there are two stages involved in any Model Transformation

• introducing MOF compliant metamodels for source and destination languages
• specifying Transformation Rules between metamodels.

This paper, which only deals with the first bullet point, aims to present a semi-automated,
tool-based method for the generation of MOF compliant metamodels for languages, which are
based on XML Schema Descriptions (XSD) [22] specification. In particular, Web Service
languages such as WSDL [18], UDDI [11], SOAP[20], WSCI [21] and BPEL4WS [10] are
examples of such languages. In general introducing a metamodel for each of the above
languages involves identifying the concepts involved in the language and their relationship.
Often, the starting point is reading and understanding the specification of such languages,

203

which are published by organizations such as W3C [17] and OASIS [9]. The next step is to
create a conceptual model involving the model element of the language and their relationship.
However, specification of all above languages includes an XML Schema Description (XSD),
which is a meta-language representing various features for constructing and formalising the
vocabulary and grammar of the XML model of the language. The current paper explores the
idea of using the XSD representation of the language and generating MOF compliant
metamodel for the language. The paper sketches an implementation of our method via
hyperModel [6], an XML schema design tool, and Poseidon for UML [16]. We shall also
apply our method to create a metamodel for WSDL and compare the result with a WSDL
metamodel presented in [1].

The paper is organised as follows. The next section is a brief review of concepts used in the
paper. Section 3 present the core of our approach and sketches the implementation via
hyperModel and Poseidon UML tool. Section 4 is a case study involving the creation of a
metamodel for WSDL. Section 5 sketches the future wrok. Finally, section 6 presents a
conclusion.

2 Preliminaries

Kurtev and van den Berg [7] identify four MDA Model Transformation scenarios. Three
of the scenarios studied in [7] make direct use of the definition of the Transformation Rules
between metamodels. In particular, in the context of Web services, model transformations
can be carried out via defining Transformation Rules between two MOF compliant
metamodels [1][3][6]. Figure 1, depicts an example of the use of Transformation Rules for
model transformation [1].

 MOF

source metamodel destination metamodel

source model destination model
Transformation Engine

Transformation Rules

Figure 1: Using Transformation Rules in the MDA

As a result, defining a metamodel is one of the main steps in the process of the Model
Transformation. In this paper, we are dealing with the creation of metamodel for languages
for which the XML Schema Description (XSD) is available. This section presents a brief
introduction on various concepts involved in the Model Transformation for XML based
languages.

2.1 XML, XMI and XSD

The Extended Markup Language (XML) [19] is a cross-platform, text based W3C [17]
standard for interchanging, structuring and representing data. One of the main characteristics
of the XML is its extensibility mechanism and its flexibility to define complicated tree
hierarchical structured data. In addition, XML can be used as a meta-language, allowing the
generation of a whole family of XML languages. Such languages may be specialised in
specific domains such as Web Services with WSDL [18], UDDI [11], BPEL4WS [10],
Ontology with RDF and model interchange formats with XMI [15].

The XML Schema Definition (XSD) [22], which is also a W3C standard, is an XML

language for describing XML documents. It offers a set of features both for specifying and
formalising the vocabulary and the grammar of XML documents, and to impose various

204

constraints on their content. In this way, XSD provides a validating mechanism, allowing
computer programs to validate and check the XML document for well-formedness.

The XML has also been used to create a common interchange format between UML tools
for interchanging models and metadata. The XML Metadata Interchange (XMI) [15] is a
format introduced by the OMG, combining the rigor of the MOF models with the XML
definition semantics.

2.2 Transformations between XML and UML

The XML Metadata Interchange (XMI) is designed to facilitate the interchange of data and
metadata expressed via the MOF. As a consequence, the XMI specification defines a number
of mapping rules that specify how to generate XML Document Type Definition (DTD) and
XSD schema from class diagrams. The XMI also specifies methods of producing MOF
models from such input formats. The automatically generated DTDs and XML Schemas are
based on the MOF defined rules and allow the MOF-based models to be serialized validated
and interchanged among different tools without controversies. This makes XMI a necessary
intermediate medium standing between MOF models and XML representations. Therefore
any transformations from XML to MOF/UML need to be based or extend XMI. The
transformation from an XML Schema or DTD to an XMI format can be performed using the
Extensible Stylesheet Language (XSLT).

One of the key feature of the XMI is that it provides parameterised mapping, i.e. by
choosing different mapping parameters, it is possible to define different mappings from a
UML model to its schema representation. For example, it is possible to choose between
mapping a class attribute to an XML attribute or a an XML element.

3 A tool-based approach to metamodel generation

A language metamodel defines the model elements of the language, specifies the semantics
of language and relationship between various model elements. As a result, the modeller often
starts by understanding the language description by studying its specification and creating a
conceptual model involving the entities of the language and their relationship. Currently,
there is no systematic way of creating such conceptual models. Figure 2 depicts the outline of
our approach, which aims to address this issue. To create a MOF metamodel, we shall start
from the XSD Schema representing the language. The XSD documents, for most Web
service languages are included and published in their specifications, available from W3C
www.w3.org or OASIS www.oasis-open.org web pages. As depicted in Figure 2, an XML
transformation tool can be used to covert the XSD document into the XMI format, which can
in turn be imported by a UML tool as a class diagram. As a result, the transformation from an
XML Schema to a UML Model is a fully automated process, which is carried out via CASE
tools. The UML model presents a clear, high-level view of the involving concepts and their
relationship. At this point, the Modeller begins refining the UML Model by consulting the
Language Description. However, unlike the ad hoc approach, the created UML Model can
guide the refinement of the model by pointing out the existing model elements that the
modeler needs to inquire about.

3.2 Implementation

hyperModel [6] is an XML schema design and integration tool, offering various UML
modeling capabilities. hyperModel is offered as a free plug-in to Eclipse workbench [2][1]
allowing the transformation of XML vocabularies and schema into XMI 1.0 format. To
implement our method, we start by opening the XSD document of the language in
hyperModel. In hyperModel creating an XMI document from an XSD document is at a click

205

of a mouse. It is possible to view the XMI model as a UML class diagram in
hyperModel/Eclipse. However, in order to have greater flexibility in editing and refining of
the model, we import the XMI document into a separate UML tool, for example Poseidon for
UML [16]. In the next section, we shall apply our method to generate a metamodel for
WSDL. We shall also compare our metamodel with the WSDL metamodel presented in [1]

XSD
(Schema

Representation)

XMI
XML

transformation tool

UML

tool

UML
Model ... MetaModel

Modeller

Language
Description

Model refinement

Figure 2 : Generating metamodels from XSD

 4 Case study: a metamodel for WSDL

The Web Service Description Language (WSDL) [18] describes the syntax and semantics
necessary to call up services. The language specification [18] contains the XSD for the
WSDL. Figure 3 depicts a part of the first version of the WSDL metamodel created by
hyperModel. Figure 4 depicts the refined version of the metamodel on which the following
changes are made.

The XML provides an extensive mechanism for documenting and extensibility features.
Some of the elements in the metamodel of Figure 3 are specific to XML and have no
equivalent in MOF. For example, tExtensibleAttributesDocumented allows future extensions
of the WSDL by adding new attributes from other XML namespaces. To create a MOF
compliant metamodel, in the refined version, all such elements are deleted. Similarly, there
are various stereotypes, for example <<XSDat t r i but e>>, which are created from an XML tag
representing XSD attributes , which are also deleted.

Figure 3: Initial WSDL Metamodel, version 1

206

The metamodel of Figure 4 contains the model element group_2, see the top-right corner of
the picture, which is the translation of the following piece of XSD code.

- <xsd: gr oup name=" sol i c i t - r esponse- or - not i f i cat i on- oper at i on" >

- <xsd: sequence>

 <xsd: el ement name=" out put " t ype=" wsdl : t Par am" / >

- <xsd: sequence mi nOccur s=" 0" >

 <xsd: el ement name=" i nput " t ype=" wsdl : t Par am" / >

 <xsd: el ement name=" f aul t " t ype=" wsdl : t Faul t " mi nOccur s=" 0" …/ >

 </ xsd: sequence>

Creation of this metamodel element is a direct result of the XSD tag </ xsd: sequence>,
which means the elements within its scope must appear as a sequence, see [19]. This is a
feature exclusive to XML. Eliminating such model element requires refactoring of the
diagram, which can be easily done by redirecting each association of the model element
gr oup_2, to its source, solicit-response-or-notification-operation. This results in the metamodel of
Figure 5. For the rest of the section, we shall compare the metamodel of Figure 5 created via our
method and the WSDL metamodel presented in [1], depicted in Figure 6.

Documentation

ExtensibilityElement

+required::

Definitions

+targetNamespace::

+name::

Import

+namespace::

+location::

Types

Message

+name::

PortType

+name::

Binding

+name::
+type::

Service

+name::

Port

+name::

+binding::

 port+

*

BindingOperation

+name::

 operation+

*

Part

+name::

+element::
+type::

 part+

*

Operation

+name::

+parameterOrder::

 operation+

*

Fault

+name::

+message::

Documented

documentation+ 0..1

<< XSDgroup >>

anyTopLevelOptionalElement

import+

types+

 message+

portType+

binding+

service+

*

arrayType

+arrayType::

<< XSDgroup >>

request-response-or-one-way-operation

required

+required::

<< XSDgroup >>

solicit-response-or-notification-operation

BindingOperationFault

+name::

 fault+

*

BindingOperationMessage

+name::

input+

0..1

output+

0..1

Param

+name::
+message:: output+

input+

<< XSDsequence >>

group_2

0..1

input+

 fault+

*

Figure 4 : Refined WSDL metamodel, version 2

There are clear similarities between the two metamodels. The gray shaded metamodel

elements in Figure 5 are directly appearing in the other model. Figure 5 is more detailed and
contains more elements. However, the authors of [1] clarify that the paper presents only a
simplified version of their metamodel.

There are also a number of elements in Figure 6 which are not in our metamodel. Most
notably, i nput and out put are modeled as separate WSDL types in Figure 6, where in our
case, they are modeled as metamodel attribute ends, which are of type parameters (Par am).
This correspond to the following line in the XSD document for the WSDL

 <xs: el ement name=" i nput " t ype=" wsdl : t Par am" / >

In fact, we noticed that the XSD description of the WSDL does not define the types
i nuput or out put . However, WSDL documentation [18] mentions phrases “output
element” and “ input elements” in numerous occasions. As a result, it is very natural that the
authors [1] included i nput and out put as model elements.

207

Documentation

ExtensibilityElement

+required::

Definitions

+targetNamespace::

+name::

Import

+namespace::
+location::

Types

Message

+name::

PortType

+name::

Binding

+name::

+type::

Service

+name::

Port

+name::

+binding::

 port+

*

BindingOperation

+name::

 operation+

*

Part

+name::
+element::

+type::

 part+

*

Operation

+name::
+parameterOrder::

 operation+

*

Fault

+name::
+message::

Documented

documentation+ 0..1

import+

types+

 message+

portType+

binding+

service+

arrayType

+arrayType::

<< XSDgroup >>

request-response-or-one-way-operation

required

+required::

<< XSDgroup >>

solicit-response-or-notification-operation

BindingOperationFault

+name::

 fault+

*

BindingOperationMessage

+name::

input+

0..1

output+

0..1

Param

+name::
+message::

fault+

*

input+
 output+

input+

Figure 5: WSDL metamodel, final version

From the conceptual point of view, there is hardly any difference between the two

metamodels1. From the model transformation point of view, the advantage of choosing one
metamodel over another is not clear to us and remains a subject for future research.

Figure 6 : WSDL metamodel, copied from[1]

1 This is subject to including parameters (Par am) in the metamodel of Figure 6.

208

5 Future works

hyperModel is a powerful tool for Web service integration and XML Schema design.
However, the transformation from XSD to XMI is carried out in rigid form. It is important to
make use of the parameterized mapping facilities of the XMI and be able to choose
parameters to alter the transformation map. Moreover, the UML model created from the
schema in hyperModel/Eclipse is only partially editable, which forces us to use another UML
tool to edit and refine the model.

We have applied our method to generate metamodels for a number of Web service
languages. Currently, the refactoring part of the process, which is at the heart of our approach,
is performed manually. There is a clear scope for research into the automation of such
refactoring activities. We are currently implementing the above method as an integrated
UML tool, which particularly aims at the following

• providing greater flexibility in the transformation from XSD to XML, by allowing the
modeller to choose the mapping of model elements

• producing better edit and viewing facilities to assist the modeller
• automating the refactoring of the model

6 conclusion

This paper presents a semi-automated method of generating metamodels for
languages, which are specified via XML Schema Description (XSD). The method
presented starts by creating an XMI document from the XSD specification of the
language. The XMI model, which can be imported as class diagram in a UML tool,
provides a high level view of the concepts involved in the language and their
relationship. Such model is subsequently refined to create a metamodel for the
language. The process of refinement may require refactoring of the model to
eliminate some elements, which exclusively correspond to XML model elements and
have no equivalent in MOF. Our method is particularly suitable for Web service
languages and the paper sketches the generation of a metamodel for Web Service
Description Language (WSDL).

References

[1] J. Bezivin, S. Hammoudi, D. Lopes, F. Jouault, An Experiment in Mapping Web
Services to Implementation Platforms, Atlas Group, INRIA and LINA University of
Nantes, Research Report, March 2004

[2] Eclipse project, www.eclipse.org
[3] D. S. Frankel, Model Driven Architecture, Model Driven Architecture: Applying

MDA to Enterprise Computing, OMG Press, ISBN: 0471319201, January 2003
[4] D. S. Frankel, White Paper: Using Model Driven Architecture to Develop Web

Services, IONA Technologies PLC, Second Edition, April 2002
[5] hyperModel, www.xmlmodeling.com/hyperModel/index.html
[6] A. Kleppe, J. Warmer, W. Bast , MDA Explained. The Model Driven Architecture:

Practice and Promise, Addison-Wesley, ISBN: 321-19442-X, April 2003
[7] I Kurtev and K. van den Berg, Unifying Approach for Model Transformations in the

MOF Metamodeling Architecture, Proceedings of the 1st European MDA Workshop,
MDA-IA, University of Twente, the Nederlands, March 2004

[8] D. Lopes, S. Hammoudi, Web Services in the Context of MDA, University of Nantes,
France, 2003

[9] OASIS, available from http://www.oasis-open.org/

209

[10] OASIS, Business Process Execution Language for Web Services (BPEL4WS),
available from OASIS site

[11] OASIS, Universal Description Discovery & Integration (UDDI), Version 3, available
from OASIS site

[12] OMG, Enterprise Collaboration Architecture (ECA) Specification, Object
Management Group, Version 1.0, February 2004

[13] OMG, Object Management Group, Available from http://www.omg.com
[14] OMG, Meta Object Facility (MOF) Specification, Object Management Group,

Version 1.4, April 2002, available from OMG site
[15] OMG, XML Metadata Interchange (XMI), available from OMG site
[16] Poseidon for UML, www.gentleware.com/
[17] W3C, World Wide Web Consortium, www.w3.org
[18] W3C, Web Services Description language (WSDL) Version 2.0, W3C Working Draft,

November 2003
[19] W3C, Extensible Markup Language (XML) 1.0, Third Edition, W3C

Recommendation, Available from http://www.w3.org/TR/2004/REC-xml-20040204,
February 2004

[20] W3C, Simple Object Access Protocol (SOAP), Version 1.2, W3C Recommendation,
Available from http://www.w3.org/TR/soap12-part1, June 2003

[21] W3C, Web Service Choreography Interface (WSCI) 1.0, W3C Note, Available from
http://www.w3.org/TR/wsci, August 2002

[22] W3C, XML Schema Primer

210

Reports from Breakout Sessions

 211

EMWDA Working Group on Lossy Transformations

Discussion Report

Editor: Anneke Kleppe

People Attending
Ed Willink, Jim Steel, Joao Paulo Almeida, Octavian Patrascoiu, Dave Akhurst, Julian Johnson,
Audris Kalnins, Olivier Le Merdy, Kevin Dockerill, and Anneke Kleppe.

Lossy Transformations
We started of with a number of different interpretations of the term ‘Lossy transformation’. ‘Lossy’
could mean either of:

1. Necessary information is not present in input model (such as requirements or design intent
that were never modelled)

2. Potential corruption by a transformation that does not satisfy its specification, or whose
implementation is flawed (invalid transformation).

3. Deliberate discard of information in the input model, for instance because it cannot be rep-
resented in the output language (partial transformation).

4. Lack of traceability, i.e. the elements of the output model cannot be linked to the elements
in the input model they were generated from.

5. Lack of reversibility, i.e. the input model cannot be restored from the output model.
6. Loss of info on how or why the transformation is executed.

To get a better grip we propose the use of the term invalid (versus valid) for the second meaning,
and the term partial (versus complete) for the third meaning. A transformation T may be invalid
because either T does not apply to all possible input models or because there is a gap between the
specification of T and implementation of T.

With regard to option one, incomplete input, we considered this to be the responsibility of the
transformation it self. Either it should issue a warning before executing or it should not execute at
all. On the topic of option four, traceability, we concluded that traceability is not a theoretically dif-
ficult issue. It is feasible, although in practice one may need very large machines to run the trans-
formations on. In the discussion on option five, reversibility, it was amazing to see that none of us
found this to be a very big issue. There were no dissenters from the perception that reversibility is
only relevant for approximately 10% of the transformations. In the discussion on option six, loss of
info on how or why the transformation is executed, there remained on open question: if a compound
transformation fails (is invalid), how can you find the element that causes the failure?

Transformation Use Cases and Semantics Preserving Transformations

Tracy Gardener, in her keynote, presented a list of possible use cases for transformations. We dis-
cussed two of them in more depth in order to see whether they would need different types of trans-
formations. We discussed pattern expansion and PIM to PSM transformations. Our conclusion was
that the differences were not very large. For pattern expansion the transformation can be called ‘in-
place’, which means that the source and target model are the same in some meaning, at least they
are written in the same language. at this point in the discussion it became clear that we need to define
equivalence of systems (and after that also of models) before we are able to define what a semantics
preserving transformation is. Another conclusion was that parameterisation of transformations
should be possible for any type of transformation.

EMWDA Working Group on ‘MDA is the Wrong Answer?

Discussion Report

Editor: Jos Warmer

People Attending

Oliver Sims, Andrew Watson, Jos Warmer,Tracy Gardner, Dave Pilfold, Tony Mallia, Ian de Beer,
Marcus Alanen, Nelly Bencomo, Lea Kutvonen.

Introduction

Starting with “MDA is the wrong answer”, we came up with a list of problems that the participants
want (or expect) to solve using MDA, and why MDa will be able to achieve this. At the same time
a list was made up of perceived shortcomings of MDA. This contains arguments that the partici-
pants often encounter during their discussions on MDA with other people.

What problems do we want to solve

We came up with the following problems that the participants want (or expect) to solve using MDA:
making software development less tedious, get a higher quality, documentation and application
generation, solving the lack of enough skilled programmers, making less IT projects fail, structur-
ally survive technology changes, provide better support for collaboration and integration, building
better product lines, maintaining relationship between different domains, and avoiding to get into
the same problem again and again.
This is quite am impressive list, suggesting that MDA has to be a silver bullet after all, if it can really
solve all of these problems. The group discussed how and why MDA would be helpful in solving
such a wide variation of problems.

Why would MDA solve these problems?
A crucial characteristic of MDA is that transformation specifications explicitly define the relation-
ships between many of the artefacts that are produced during a software development project.
Knowing this relationship and having tools to validate them and/or resolving conflicts between
them allow for better (i.e. better quality, better productivity, better documentation, etc.) product
lines. For the same reason, MDA can be the glue between all of the different issues and views within
a software project.
Working from the modeling level, MDA allows people to work at a higher, technology independent,
abstraction level. This provides good support for dealing with the quick technology changes that are
typical for the IT world.
Current measurements are not too many, but they do indicate that savings of 40% over the complete
software development life cycle can be achieved using MDA. If this is the case for MDA in its cur-
rent, rather immature state, then the saving might eventually be much bigger.

Reasons why MDA would not work
Many of the participant have encountered scepticism about MDA. We have made a list of typical
reasons why people don’t want to use MDA. The participants do not agree with these, but it is im-
portant to know the arguments and be able to counter argument them.

No appropriate languages. The group agreed that UML has many shortcoming. It is both too com-
plicated, and too low level.

A solution can be found by using UML profiles to define higher level languages, or by defining
new and higher level modeling languages.

Tools. There is a lack of tools and the big vendors are not offering MDA tools yet. This situation is
remedied by Microsoft, who is actively building support for model driven development in their Vis-
ual Studio 2005 product. Although they do not use the term MDA (copyrighted by the OMG) they
support many of the major ideas behind it.

The MDA community, needs to develop more and better tool support. The group sees both a
place for open source tools, for easy experimentation and having a low threshold, and for vendor
tools, to get a credible and well-supported market place. There was a slight fear in the group that
vendors would try to come up with all types of proprietary model, thus making defeating the goals
of MDA.

No incentive. For various reasons people simply have no incentive to use MDA. This can be a lack
of the will to change and fear of losing your jobs. From a management perspective software devel-
opment often isn’t their major concern, day to day operations is. Therefore MDA does not seem to
be relevant.

The group felt that, given the lack of enough gifted programmers, MDA will not cost jobs. It will
merely change the type of work that people do. Also, when new possibilities arise, business always
has an increasing demand. Therefore lose of jobs seems unlikely.

It didn’t work before. People often see MDA as being CASE in different words. CASE and e.g.
Shlear-Mellor failed to deliver their promises, why would MDA do any better?

An answer to this is that MDA is much more than just code generation that CASE offered. MDA
offers the infrastructure such as a standardized MOF, standardized metamodels, standardized trans-
formation languages (QVT) etc. that were lacking in the CASE era. This allows developers to look
at all pieces and enables them to easily change whatever they want.

MDA is not applicable for my domain. People talk about certain domains, especially GUI, and
decide MDA can never work for these.

There are already MDA tools out that do a good job in the GUI area. This type of argument can
only be countered by giving concrete examples.

MDA is too vague. An often heard complaint is that MDA is too vague. Everyone and every tool
is free to call itself MDA. It become unclear what MDA really is.

This is a very true complaint. However, the OMG has just started an initiative to clarify the mean-
ing of MDA much better, including a list of requirements that a tool need to fulfil to allow it to be
called an MDA tool.

Conclusion

The first and main aspect that needs work for MDA to work as promised are better tools. There was
consensus in the group that MDA without tools will never work. Of course, the tools can only be
made to work effectively is we also have available UML profiles, higher level modeling languages,
meta-models, models of architectures, QVT standards, etc.

The group agreed that MDA is still in its early years and that we need time to make it all work
as promised. Even after hearing all the reasons why it would not work, we are still convinced that
MDA holds much promise and will certainly mean an important advance the IT world.

Types in MDA

Jim Steel

Irisa, Campus de Beaulieu, 35042 Rennes, France

Abstract. The following people participated in the breakout session held on September 8 as part of
the 2nd European Workshop on Model-Driven Architecture, and it is their ideas that are represented
herein, and the author’s hope that their ideas have been adequately expressed: Marcus Alanen, Rasmus
Fogh, Val Jones, Girish Maskeri, Jim Steel, Laurence Tratt, Andrew Watson, Ed Willink.

The MDA paradigm is, at its core, an architecture designed around the definition of languages and
transformations between them. However, while specifications such as the MOF discuss some aspects of
language definition, particularly structural aspects, there is considerably less discussion of the type systems
that may exist in these langauges.

In considering this issue, a number of questions become apparent. Firstly, in this MDA world, what are
the concepts that we wish to characterise by a type, what sort of structures do we want to use to describe
these types, and under what circumstances may something of one type be used in a situation demanding
a different type? The most compelling example for answering these questions is perhaps that of sequencing
model transformations; how do we know if the output of one transformation is acceptable as input to another?

At the most general level, a platform’s type system can be characterised by answering two questions.
What is a type, and what is the substitutability relationship (if any) between two types? Further issues such
as type induction can, in most cases, be considered ancillary. Fortunately, there is a large and thorough body
of ongoing research into type systems, so answers to these questions are many. However, there is a perceived
gap between the more mathematical models of type theory presented in the literature and those witnessed
in the “real-world” programming languages.

There are a number of possible definitions to take for type. Taken broadly, it may be characterised as
“suitability for some purpose”, or more specifically as a “domain of interesting instances”. The latter def-
inition raises the question of whether types are defined extensionally or, as is more common, intensionally.
The former, as a closed-world assumption, can have both simplifying and limiting consequences for im-
plementation. The latter approach includes techniques such as structural-level typing, such as those used
in inheritance-based or structural-conformance typing. Also worth considering are type systems including
awareness of semantic domains. For example, under what circumstances is one process definition substitutable
for another?

At a practical level, there are many possible choices available for typing MDA models. Using constraints
as types is the most general and perhaps the most powerful, but may not be the most usable formalism for
the modeller. Using patterns is also powerful, and has gained popularity in recent times. Using classes is
a very familiar technique, but is limited in its expressive power in some cases. Alternatively, perhaps some
hybrid of these would be useful, such as attaching constraints to classes, or adding limits to the numbers of
class instances allowable.

From a wider viewpoint, having modelled type systems, there may also be a need to reason about them
in comparison to one another. That is, is a given type system appropriate as a target for some mapping? A
concrete example might be seen in numerical analysis, where an implementor might demand some assurance
that the type system of a platform will provide sufficient numerical precision. This sort of comparison might
be thought of as “type systems for type systems”, since it raises similar typing substitutability questions
with respect to the type systems themselves.

In conclusion, the consideration of type systems within MDA is one that has, to date, been given little
treatment, and remains an avenue for research. We have asked many questions here, and provided few
answers. These open questions include consideration of techniques for modelling type systems, including the
notions of type and substitutability, using MDA formalisms, and in what situations these might be used.

Report from the EWMDA-2 Working Group on “MDA and Reuse”

Julian Johnson (BAE Systems, UK), Kevin Dockerill (BAE Systems, UK), Joao
Paulo Almeida (Univ. of Twente, The Netherlands), Peter Linington (Univ. of Kent,
UK), Zhen Ru Dai (Fraunhofer Fokus, Germany), Oliver Sims (Sims Architectures,
UK), Salim Bouzitouna (LIP6, France), Ian de Beer (UCSSM, South Africa), Nelly
Becomo (Lancaster Univ., UK), Antonio Vallecillo (Univ. of Málaga, Spain)

The group met from 13:30 to 14:15 to discuss the topic of MDA and re-use, originally to cover two main
issues: (1) How to reuse in MDA, and (2) Does MDA facilitate reuse? It was agreed to concentrate on the
first one, in order to be more focused and make the best use of the time allocated for discussions.

Before we went into the discussions, we felt it was useful to review the participants’ definition of the
terms “MDA” and “re-use”. Thus, it was agreed that MDA includes (at least) the following concepts:
Models and Transformations; Platform independence / PIM; separation of concerns: Business /
Technology; Moving Intellectual Property (IP) from code to models; Design Explicitness / visibility.
With regard to re-use, it was agreed that it might imply re-exploitation of IP across two or more
applications/programmes, in a maintained way. Furthermore, re-use not only implies reuse of
design/models, but also reuse of knowledge, skills etc. Finally, it was noted that re-use does not mean
using many times in the same context, but using in different contexts (quote due to Clemens Szyperski?).

Once the basic terms were discussed and their scope and meaning was generally agreed, we moved onto
the main points that the Workshop organizers suggested for discussion.

The first approach was to identify re-use contexts. The following list of potential re-use contexts was
produced:

• Product line oriented (families of application types), component-based application development
• Same application PIM used for multiple target platforms (via PSM’s)
• Same platform / architecture model used for different applications
• Reuse of IP in capturing an organisation’s test approach as a transformation (then used to

generate test info / test cases / configurations, etc.)
• Aspects / cross-cutting concerns: security, audit trails, … MDA transformations may support the

development for certain aspects
• Exploitation of legacy code / applications, via modelling of wrapping

It was agreed that the solution might be based on applying all principles and technologies associated with
MDA, with particular emphasis on

• Separation of concerns
• PIM / PSM’s
• Reusable components/transformations
• Model / component repositories

This solution has clear advantages, such as: (a) Most cost effective development and maintenance of
existing and new applications; (b) improved knowledge and IP re-use; and (c) Explicit capture of IP.
However, it also presents some disadvantages, such as potential performance issues; the challenges of
designing for reuse; cost; and it also may have organisational implications.

After that, the group also identify a set of issues related to re-use such as the following:
• In order to re-use an artefact we need to be able to perform a set of tasks, such as: find it; get to it

to use; maintain it; manage its lifecycle; and properly handle the possible organisational changes
it might imply

• Designing for re-use may incur extra costs (development, maintenance, consequential
performance, etc.). Moreover, there are difficulties in predicting use contexts

• It was also agreed that re-use implies using without changes, otherwise it is not re-use. However,
some products and artefacts allow customisation and extensibility in order to facilitate re-use

• There is also the difficulty of integrating legacy systems and applications into the MDA chain

Finally, some further work needs to be done. In particular, the following tasks were identified:
• What are the [abstraction] criteria for development of PIM's and PSM's, an abstract platform,

etc?
• There is a need for MOF repository support that is integrated with other tools
• MDA support for aspect development

EMWDA Working Group at Kent. September 8th 2004

Workshop: How to Sell MDA
David Pilfold, Domain Solutions Ltd, http://www.ooagenerator.com

Abstract

The Object Management Group’s (OMG’s) Model Driven Architecture (MDA)
approach to software project delivery is based on producing analysis models that
separate the problem from the implementation technology. For example separation of
the analysis of Enterprise Resource Planning (ERP), which attempts to integrate all
departmental functions across a company, from the technology e.g. J2EE or .NET
platforms etc.

MDA promises many benefits in terms of raising the abstraction level of system
description and future-proofing systems against changes in technology and also
delivering customisable projects and off-the-shelf architectures. However, MDA
usage is still in its infancy and has a long way to go before it becomes widely
accepted, this is shown by a lack of mainstream MDA projects. As MDA is a huge
paradigm shift in terms of how software projects are realised it is essential to create a
defined transition from the early adopters to mainstream customer use. This workshop
addressed these issues of how to sell MDA.

The workshop firstly discussed the characteristics of markets (early adopters, cost-
cutters etc.) and identified which market types (finance, government etc) would be
potential users of MDA. The consensus on this was that MDA applies to many market
types. Secondly, the workshop discussed what needed to be realised before MDA
could be widely accepted; MDA itself needs a better profile description and
supporting software tools and standards need to be defined. The remainder of the
workshop focussed on identifying the MDA stakeholders and the messages to use
(and not use) in selling to these stakeholders.

The MDA stakeholders were identified as business managers, to developers and
testers and also standards bodies, research and education institutes and tools vendors.
Workshop members believe that the MDA sales approach and message has to be
tailored to sell the benefits at different levels. These benefits range from the return on
investment that can be expected to the removal of tedious coding work.

In summary it will be hard for MDA to cross the chasm from early adoption to
mainstream until it is better defined and supported. A targeted sales message and
mechanism to deliver it should make this leap achievable.

	Proceedings Front Matter.pdf
	Organisation Committee
	Programme Committee
	Contents
	Preface
	Keynote
	Methodologies
	Transformations
	Reports from Breakout Sessions

	Proceedings Preface and Papers with Numbers.pdf
	Preface
	Keynote
	Methodologies
	Transformations
	Reports from Breakout Sessions
	Transformations.pdf
	Introduction
	Two challenges facing MDA
	On models
	On abstraction
	On business rule specification
	Forward and reverse engineering transformations
	PSM-to-PIM reverse engineering
	Aside on true platform-independence
	PIM-to-PSM forward engineering
	PIM-to-CIM reverse engineering
	CIM-to-PIM forward engineering
	Conclusions and remarks
	FOOTNOTES
	On design by contract
	On why use cases are not enough
	Other challenges facing MDA
	On reuse
	On practical experience of using UML as the programming level
	Kalnins.pdf
	University of Latvia, IMCS, 29 Raina boulevard,
	Riga, Latvia
	4. MOLA Solution
	4.1. Building the Workspace Metamodel
	References

	How to Sell MDA.pdf
	Workshop: How to Sell MDA
	Abstract

