
G. Nicosia et al. (Eds.): ICARIS 2004, LNCS 3239, pp. 133–145, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Fractal Immune Network

Peter J. Bentley1 and Jon Timmis2

1 Department of Computer Science, University College London. UK
p.bentley@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/p.bentley/
2 Computing Laboratory, University of Kent, Canterbury. UK.

j.timmis@kent.ac.uk

Abstract. Proteins are the driving force in development (embryogenesis) and
the immune system. Here we describe how a model of proteins designed for
evolutionary development in computers can be combined with a model of im-
mune systems. Full details of a prototype system are provided, and preliminary
experiments presented. Results show that evolution is able to adjust the map-
ping between input data and antigens and cause useful changes to the subnet-
works formed by the immune algorithm.

1 Introduction

Human development (embryogenesis) is a highly evolved network of cellular and
chemical interactions, which somehow manages to build and maintain our bodies
throughout our lives (Wolpert et al, 2001). One of the processes built and maintained
by development is our immune system. The human immune system is also a highly
evolved network of cellular and chemical interactions, which somehow learns, pre-
dicts and correctly protects our bodies from invading pathogens and internal malfunc-
tions.

Clearly, the features of immune systems are highly related to development. Indeed,
immune systems can be considered to be a specialized form of development, which
focuses on the removal of unwanted elements from us. Both work in much the same
ways: genes produce proteins which control other genes, and determine the function
of cells. In development, our genetic program causes cells to divide, move, differenti-
ate, extrude substances, and signal other cells using special proteins. In immune sys-
tems, our genetic program causes immune cells to be created, to respond to signals
from other damaged or infected cells, and to send and receive signals from each other.

Throughout, proteins are the driving force. Produced by genes, they activate or
suppress other genes, they determine the fate of cells, and they act as signals, enabling
cells to communicate with each other. It is the shape of these proteins that determines
their function. Through a complex bio-chemical process of protein folding, every
protein has a unique morphology which enables it to diffuse between cells, interact
with other proteins, attach to receptors on cell walls, interact with genes, and perform
thousands of other actions.

In an attempt to harness more of the capabilities of proteins, in this work we de-
scribe how a model of proteins based on fractals, designed for evolutionary develop-

134 P.J. Bentley and J. Timmis

ment in computers, can be combined with a model of immune systems. The fractal
immune network maps data items to fractal antigens, creates fractal recognition
spaces (similar to Artificial Recognition Balls) in dynamic networks, and forms all
network links by emission and reception of fractal cytokines. The system is essen-
tially a reconfigurable clusterer – the networks of fractal recognition spaces can be
radically changed by changing the mapping from data to fractal antigens. The system
evolves this mapping according to a fitness function, thus automatically providing
desirable clusters and data classification, regardless of the data.

2 Fractal Proteins

Other work by the first author (Bentley, 2004; Kumar and Bentley, 2003) has focused
on biologically plausible models of gene regulatory networks (GRNs) in the context
of development (embryogenesis). In such models, genes define proteins, which trigger
or suppress (i.e., regulate) the activation of the genes, causing dynamic, non-linear
regulatory networks to form. By evolving the genes using a genetic algorithm, the
resulting networks can be linked to sensors and functions and can be used for tasks
such as function regression (Bentley 2004) or robot control (Bentley 2003a). In the
context of a full developmental model, GRNs specify how cells divide, grow, differ-
entiate and die, in order to produce a larger, more complex multicellular solution
(Kumar and Bentley, 2003).

The recent work of (Bentley, 2004, 2003a,b) developed a new model of proteins to
overcome various difficulties with previous models. Here, genes are expressed into
fractal proteins – subsets of the Mandelbrot set that can interact and react according
to their own fractal chemistry. The motivations behind this work are extensive and
can briefly be listed as follows: (Further motivations and discussions on fractal pro-
teins are provided in (Bentley, 2004, 2003b).)
1. Natural evolution extensively exploits the complexity, redundancy and richness

of chemical systems in the design of DNA and the resulting developmental sys-
tems in organisms. Providing a computer system with genes that define fractal
proteins gives the system complexity, redundancy and richness to exploit.

2. It is extremely difficult and computationally intensive to model natural chemical
systems accurately in an artificial chemistry. Fractal proteins have many of the
same properties as natural proteins, without any modelling overheads.

3. A fractal protein (with the infinite complexity of the Mandelbrot set) can be de-
fined by just three genes.

4. The “fractal genetic space” is highly evolvable – a small change to a gene pro-
duces a small change to the fractal protein, while the self-similarity of fractals en-
sures that any specific shape can be found in an infinite number of places.

5. When fractal proteins are permitted to interact according to their morphologies, a
hugely complex (and eminently exploitable) fractal chemistry emerges naturally.

6. Calculating subsets of Mandelbrot sets is fast so there is little overhead.

A Fractal Immune Network 135

2.1 Mandelbrot Set

Given the equation xt+1 = xt

2 + c where xt and c are imaginary numbers, Benoit Man-
delbrot wanted to know which values of c would make the length of the imaginary
number stored in xt stop growing when the equation was applied for an infinite num-
ber of times. He discovered that if the length ever went above 2, then it was un-
bounded – it would grow forever. But for the right imaginary values of c, sometimes
the result would simply oscillate between different lengths less than 2.

Mandelbrot used his computer to apply the equation many times for different val-
ues of c. For each value of c, the computer would stop early if the length of the
imaginary number in xt was 2 or more. If the computer hadn’t stopped early for that
value of c, a black dot was drawn. The dot was placed at coordinate (m, n) using the
numbers from the value of c: (m + ni) where m was varied from –2.4 to 1.34 and n
was varied from 1.4 to -1.4, to fill the computer screen. The result was the infinite
complexity of the “squashed bug” shape we know so well today. (Mandelbrot, 1982)

2.2 Defining a Fractal Protein

A fractal protein is a finite square subset of the Mandelbrot set, defined by three
codons (x,y,z) that form the coding region of a gene in the genome of a cell. Each (x,
y, z) triplet is expressed as a protein by calculating the square fractal subset with cen-
tre coordinates (x,y) and sides of length z, see fig. 1 for an example. In this way, it is
possible to achieve as much complexity (or more) compared to natural protein folding
in nature.

In addition to shape, each fractal protein represents a certain concentration of pro-
tein (from 0 meaning “does not exist” to 200 meaning “saturated”), determined by
protein production and diffusion rates.

Fig. 1. Example of a fractal protein defined by (x = 0.132541887, y = 0.698126164, z =
0.468306528)

2.3 Fractal Chemistry

Cell cytoplasms and cell environments usually contain more than one fractal protein.
In an attempt to harness the complexity available from these fractals, multiple pro-
teins are merged. The result is a product of their own “fractal chemistry” which natu-
rally emerges through the fractal interactions.

136 P.J. Bentley and J. Timmis

Fig. 2. Two fractal proteins (left and middle) and the resulting merged fractal protein combina-
tion (right).

Fractal proteins are merged (for each point sampled) by iterating through the frac-
tal equation of all proteins in “parallel”, and stopping as soon as the length of any is
unbounded (i.e. greater than 2). Intuitively, this results in black regions being treated
as though they are transparent, and paler regions “winning” over darker regions. See
fig 2 for an example.

2.4 Fractal Development

Figure 3 illustrates the representation. Although not used here, fig. 4 provides an
overview of the algorithm used in (Bentley, 2004, 2003a,b) to develop a phenotype
from a genotype. Note how most of the dynamics rely on the interaction of fractal
proteins. Evolution is used to design genes that are expressed into fractal proteins
with specific shapes, which result in developmental processes with specific dynamics.

Environment

Cell
Cytoplasm

Genome Fractal
proteins

Fractal
proteins

Environment gene
Cell recepter gene
Regulatory gene
Behavioural gene

F R A C T A L D E V E L O P M E N T

For every cell in the embryo:

For every developmental time step:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm.
If the concentration level of a protein falls to zero, that protein
does not exist.

Fig. 3. Representation using fractal
proteins.

Fig. 4. The fractal development algorithm

A Fractal Immune Network 137

3 Immune Networks

How the immune system remembers encounters with antigenic material has been a
question immunologists have been asking for many years. A number of theories
abound, from antigenic retention, to immune networks. A theory first proposed by
Jerne (1974) suggested that B-cell memory was maintained via an Idiotypic network.
This theory attempts to explain how B-cells survive even in the absence of antigenic
stimulus. It is proposed that this is achieved by stimulation and suppression between
B-cells via a network communicating via idiotypes on regions called paratopes; these
are located on B-cell receptors. An idiotope is made up of amino acids within the
variable region of an antibody or T-cell. The network acts as a self-organising and
self-regulatory mechanism that captures antigenic information. Notable work in
(Farmer et al. 1986) further explored the immune network theory and created a simple
model of the Idiotypic network. This theory was further extended by (Perelson 1989).
A network of B cells is thus formed and highly stimulated B cells survive and less
stimulated B cells are removed from the system, as result is a meta-stable memory
structure that exhibits interesting dynamics and properties.

Although it is now known that networks in the immune system are rather more
complex than described in the immune network theory as described above, the ideas
have led to a wide variety of immune-inspired algorithms to be created over the past
few years (de Castro and Von Zuben, 2001), (Timmis and Neal, 2001), (de Castro
and Timmis, 2002a) and Neal, 2003, to name a few.

3.1 A Meta-stable Artificial Immune Network

Work in Neal (2003) was based on an early artificial immune network model (AINE)
devised for data clustering (Timmis and Neal 2001). The algorithm proposed in Neal
(2003) allows for the creation of a network structure that captures the patterns (or
clusters) contained within a constant input data stream. This algorithm has a number
of attractive properties such as being able to identify new clusters that appear in the
data stream, allows patterns to be remembered for long period of time without the
need for re-enforcement from the input pattern and operates an adaptive memory
mechanism that allows the network to be dynamic. It is this dynamic property of the
network, that we wish to capture and augment with the use of fractal proteins. For the
purposes of this paper, we will describe the system in terms of the representation or
shape space of the system (coupled with an affinity function) and the algorithm used
to control the population.

Representation and Shape Space
The immune system is made up of large number of B-cells and T-cells. These cells
contain surface receptor molecules whose shapes are complementary to the shapes of
antigens (invading material), allowing the cells to recognise the antigen and then elicit
some form of immune response. Perelson and Oster (1979) first proposed the concept
of shape-space (S). Given that the recognition of antigens is performed by the cell
receptors, shape-spaces therefore allow a quantitative description of the interactions
of receptor molecules and antigens. As in the biological immune system, in a shape-
space S, the degree of binding (degree of match or affinity) between an antigenic

138 P.J. Bentley and J. Timmis

receptor or antibody (Ab) and an antigen (Ag), is measured via regions of comple-
mentarity. Within an AIS the generalised shape of a molecule (m) of either an anti-
body (Ab) or an antigen (Ag), can be represented as an attribute string (set of coordi-
nates) m = <m1, m2, ..., ml> or many other forms of attributes, ranging from integers,
binary values, or other more complex structures. Within the work of Neal (2003), a
simple real valued shape space was employed.

The work of (de Castro and Timmis, 2002b) proposed that this notion of shape
space could be used to model an antibody and an antigen. They also stated that what
ever shape is chosen, will of course affect the way in which interactions are calculated
between them, i.e. how their affinity will be calculated. Given that the Ag-Ab affinity
is related to distance, they stated that this could be estimated via any distance measure
between two strings or vectors. In the case of Neal (2003) the Euclidean distance
measure was employed.

The Algorithm
Input data is presented continuously to the network, with each data item being pre-
sented to each Artificial Recognition Balls (ARB) in the network. Experiments dem-
onstrated that once the network had captured the patterns in the data stream, then the
data stream could be removed and the patterns would remain for a period of time, due
to the network interactions of stimulation and resource allocation employed in the
network (Neal, 2003).

Network Initialisation. The algorithm is initialised as a network of ARB objects. Each
ARB represents a data vector, a stimulation level and a number of resources (used to
control lifespan of the object). Links between ARBs are created if they are below the
Network Affinity Threshold (NAT), which is the average Euclidean distance between
each item in the data set. The initial network is a random selection of the data set to be
learnt (or a set of randomly initialised vectors), the remainder makes up the antigen
training set.

Stimulation. ARBs maintain a record of stimulation. In effect, this records how well
the ARB matches a certain training data item and how well it matches neighbors
within the network structure. The idea being that similarly occurring patterns will
reinforce each other. It is worthy of note, that no suppression element is used in the
equation, unlike the work of (Timmis and Neal, 2001). This is due to the fact, that
with the resource allocation mechanism employed (see below) by the author, the sup-
pression is no longer required.

Expansion. The system does not perform cloning or mutation in the same sense as
many AIS algorithms (or indeed the natural immune system). In order to allow the
network to grow, the affinity of an ARB to a training data item is required to be over a
certain threshold, the affinity threshold. If this is the case, then a new ARB is created
in the location of the antigen. This is effectively adding the new cell to the network
representation of self.

Resource Allocation. Each ARB is assigned an initial number of resources. The re-
source level is used to indicate when the death of an ARB should occur, as if the re-
source level falls below a certain defined threshold, then the ARB is removed from

A Fractal Immune Network 139

the system: in effect, this is the algorithms population control mechanism. Simply put,
each ARB is assigned a local number of resources, which is proportional to the stimu-
lation of the ARB, minus a certain geometric death rate. This enables well-stimulated
ARBs to survive in the network, and poorly stimulated ARBs to be removed.

4 A Fractal Immune Network

The concept proposed and partially investigated in this paper is to combine the ideas
of fractal proteins with immune networks. Since fractal proteins have been shown to
enable considerable benefits to developmental models, it is suggested here that similar
benefits may be gained from their use in an immune network algorithm.

The combination of these ideas is relatively straightforward. Antigens, antibodies,
and cytokines are all types of protein. The immune network relies on interactions
between proteins. A Fractal Immune Network, therefore uses fractals to represent
these proteins, and thus the network dynamics are created by interactions between
different fractal shapes. (The immune network algorithm is based on (Neal 2003).)

4.1 Data to Fractal Antigen Mapping

To enable all interactions to take place in a fractal shape space, each data item of the
incoming data stream is mapped to a fractal protein, which we term a fractal antigen
Agf. Each data item (comprising 4 values) is mapped to the (x, y, z) triplet (described
in section 2) using equation [1]. Once mapped, the fractal antigen becomes a finite
subset of the Mandelbrot set, and is stored as a bitmap. All operations in the network
then take place using bitmap processing.

Mapping data to fractal protein (x, y, z)
x = A0 * datum0 / scale0 – B0
y = A1 * datum1 / scale1 – B1

z = A2 * datum2 / scale2 – B2 + A3 * datum3 / scale3 – B3 (1)

where:
datumi is the ith value of current data item
Ai, Bi are mapping coefficients, evolved by the system
(initial values for all Ai = 1.0, Bi = 0.5).
scalei is data range of values in ith column of data (assuming only positive values)

Clearly the mapping from data item to Agf is critical, so the algorithm incorporates
a simple (1+1) Evolution Strategy (Bäck, 1996), which mutates the mapping coeffi-
cients every EVOLVEFREQ iterations (where EVOLVEFREQ is set to 1500 in the ex-
periments to enable the entire data set to be presented 10 times). After mutating, the
network is restarted. If the subsequent network scores a lower fitness, the coefficients
are restored to their previous values before mutating again. Fitness of the network is
calculated by presenting the entire dataset to the current network and using the fitness
calculation shown in equation [2].

140 P.J. Bentley and J. Timmis

Fitness calculation for Evolution Strategy when evolving mapping coefficients:
F = | n1 – class1 | + | n2 – class2 | + n3 + n4 + nodes (2)
where:

n1 is the highest number of data items from class 1 in a subnetwork p
n2 is the highest number of data items from class 2 in a subnetwork q
(where p is not the same network as q).
n3 is the number of data items from class 1 misclassified in subnetwork q
n4 is the number of data items from class 2 misclassified in subnetwork p
classi is the ith class of data, see section 5.1 for an example.
nodes is the number of FRSs in the entire network minus five if that number is
above five, zero otherwise.

4.2 Initialisation and Expansion

Initially, the network is presented with a small subset of the data (for the IRIS data
used in the experiments, 10 out of 150 items are randomly picked). The data item is
mapped to a fractal antigen as described above. Upon first encountering an Agf, the
fractal immune network algorithm creates its version of an ARB at that point, if one
sufficiently similar does not already exist: this represents the initial population of the
network. For this system we refer to ARBs as "Fractal Recognition Spaces" or FRSs.
Thus, each FRS is defined by a core Agf (which may subsequently match one or more
fractal antigens). All fractal shapes are stored as bitmaps.

After the initialization, the network runs continuously, being presented with ran-
domly chosen data items from the entire data set, and creating more FRSs if needed.

4.3 Stimulation

Should any Agf match an existing FRS closely enough (determined by measuring
whether the difference between the bitmaps is below ANTIGENMATCHINGTHRESH-
OLD), the FRS is stimulated according to equation [3].

Antigen stimulation S1 calculation:
S1 = 10 * (1 – dFRSAg / ANTIGENMATCHINGTHRESHOLD) (3)

where:
S1 is stimulation increase for FRS when Agf matched
dFRSAg is matching distance between FRS and Agf
ANTIGENMATCHINGTHRESHOLD is the FRS matching threshold (set to 500)

If required, an optional feature of this algorithm in this situation creates a new FRS
with a probability of 0.01 in addition to stimulating the existing one. The new FRS is
a mutation (e.g. as caused by hypermutation in immune systems), created by merging
the existing FRS with the current Agf. In this way, the core fractal protein becomes a
"general" fractal antibody that will match more fractal antigens - the space of the FRS
is widened or adjusted.

If the current Agf matches no exising FRSs closely enough, a new FRS is created
as described in section 4.2.

A Fractal Immune Network 141

In addition, FRSs in the network stimulate each other. Instead of explicitly main-
taining a list of links between FRSs, this system makes dynamic network connections
between FRSs, formed by the emission and reception of fractal cytokines Ckfs. To
calculate the network stimulations, each FRS emits a Ckfs (simply a clone of the
transmitting FRS bitmap) to every other FRS. This is bitwise masked by the receptor
Rcf of the receiving FRS (simply a clone of the receiving FRS bitmap) thus ensuring
that two similar FRSs will be able to “communicate” but dissimilar FRSs will never
receive each others’ signals. If the receiving FRS is mature, it compares the masked
Ckf with itself – if the difference between the bitmaps is les than CYTOKINEMATCH-
INGTHRESHOLD, then the stimulation of that FRS is increased, as defined in equation
[4].

Network stimulation S2 calculation:
S2 = dFRSCk / CYTOKINEMATCHINGTHRESHOLD (4)

where:
S2 is stimulation increase for FRS when masked Ckf matched
dFRSCk is matching distance between FRS and masked Ckf
CYTOKINEMATCHINGTHRESHOLD is network matching threshold (set to 550)

An FRS is mature if its age is above MATUREAGE (set to the number of data items in
the dataset) – needed when the “mutate FRS” option is activated to prevent excessive
numbers of FRSs that match few or no Agfs from overrunning the network.

Each iteration, the stimulation for each FRS is calculated, summed, and a decay
factor removed, see equation [5].

Total stimulation calculation:
Stotal = S1 + S2 - CFRS * DECAYRATE (5)
if Stotal >= MAXNEWCONC Stotal = MAXNEWCONC – 1

where:
Stotal is stimulation from all Agfs and masked Ckfs, reduced by decay
CFRS is concentration of current FRS
DECAYRATE is decay rate constant (set to 0.1)
MAXNEWCONC is maximum concentration increase each iteration (set to 100)

This is then scaled to prevent excessive new stimulation each iteration and added to
the current concentration of the FRS, equation [6]. If this concentration drops below
MORTALITY, the FRS is removed from the network. Figure 5 describes the fractal
immune network algorithm.

Concentration update calculation:
CFRS = CFRS + Stotal * (MAXNEWCONC – Stotal) / MAXNEWCONC (6)

142 P.J. Bentley and J. Timmis

Fig. 5. The Fractal Immune Network algorithm. Algorithm constants are set as follows: ANTI-
GENMATCHINGTHRESHOLD = 500, CYTOKINEMATCHINGTHRESHOLD = 500, MATUREAGE = 150,
MORTALITY = 0.01, EVOLVEFREQ = 1500

5 Experiments

5.1 Experimental Motivation

From the beginning of this research it was clear that the mapping between data items
and fractal antigens would be critical. For example, if all data items were mapped to
almost identical fractal shapes, then the resulting network would be unable to distin-
guish between different classes of data. Contrast this with a good mapping from data
to Agf, which would be able to amplify even minor differences between data and
enable useful clusters to form. Indeed, a good mapping would exploit the self-
similarity of fractals, enabling (when desirable) data items that might look different to
be correctly classified in the same class, and data items that might look similar to be
correctly classified in different classes.

A Fractal Immune Network 143

It was for these potential benefits that an evolutionary stage was incorporated into
the fractal immune algorithm, enabling the data-to-Agf mapping to be subtly modified
over time, guided by a fitness function.

Here we present preliminary experiments to demonstrate the evolution of this
mapping and provide evidence to demonstrate that it improves clustering by the frac-
tal immune algorithm.

This IRIS dataset was employed (a set comprising data items of four values, in
three classes with 50 items in each class). The first 50 items were treated as “class 1”
by the fitness function, with the remaining 100 being treated as “class 2.” The system
was set up as described in previous sections, with all constants set to their default
values. Evolution was permitted to proceed for 2000 iterations, where each iteration
comprised the formation of a new network and the random presentation of the data set
ten times. The option to create new merged “mutant” FRSs was active during evolu-
tion.

5.2 Results

Figure 6 illustrates a good result (judged by the fitness function) obtained by the frac-
tal immune network using the default mapping coefficient values, before evolution. It
should be clear that the network is malformed, with some areas excessively connected
and other areas completely unconnected. Figure 7 shows the networks obtained after
evolution, both with merging inactive, and with merging active. It should be evident
that both show “healthier-looking” networks, with two clear subnetworks for each
class of data, and fewer unconnected FRSs.

Table 1 shows the classification performance as measured by the fitness function
of the fractal immune network. Evolution has clearly found an improved mapping,
which increases the ability of the network to classify the IRIS data, (whether the
merging FRS option is active or not). Although the results are not perfect, at this
stage we are focusing on the ability of evolution to fine-tune the data-to-Agf mapping.
From findings in other work (Neal 2003), the networks are likely to provide better
results when given more iterations to converge. With improved, perhaps non-linear
mapping functions, it seems likely that evolution would be able to exploit the fractal
proteins further and increase accuracy.

04

07

08

11

01

03 00 10

06

05

1213

09

02

Fig. 6. Fractal Immune Network using default mapping coefficient values (merging inactive).
FRSs are shown in arbitrary spatial positions.

144 P.J. Bentley and J. Timmis

04

07

08

11

01 03

00

10

06

05

12

17

13

16
09

15

14

02

18

04

07

08

11

01

03

00

10

06

05

12

17

13

16

09

15

14

02

18

Fig. 7. Fractal Immune Network using evolved mapping coefficient values. Left: network
obtained using no merging. Right: network obtained when new merged FRSs are permitted.

Table 1. Classification by the Fractal Immune Network. Note that FRSs within various sub-
networks typically detect all data items, but only the two subnetworks that classify the largest
amount of data in each class are shown here and used by the fitness function.

 Correct in
class1

Correct in
class 2

Incorrect in
class 1

Incorrect in
class 2

Default values 15 / 50 23 / 100 8 / 50 67 / 100
Evolved values,
no merging

30 / 50 76 / 100 19 / 50 16 / 100

Evolved values,
Merging

42 / 50 70 / 100 4 / 50 22 / 100

6 Conclusions

Proteins are the driving force in both development and immune systems. Here we
have described the combination of fractal proteins (a model which has achieved great
success within evolutionary developmental systems) with a network immune algo-
rithm (which has also been demonstrated to great effect in the field of artificial im-
mune systems). The model maps data items to fractal antigens, creates fractal recogni-
tion spaces in dynamic networks, and forms all network links by emission and recep-
tion of fractal cytokines. Experiments investigated the evolution of the mapping from
data to antigens and demonstrated an improvement in cluster formation as measured
by a fitness function. While not yet showing perfect results, these initial studies pro-
vide much promise. With a more advanced mapping stage and further analysis, the
system provides the potential to enable the dynamics of this clusterer to evolve and
thus automatically provide desirable clusters and data classification, regardless of the
data.

Acknowledgements. Thanks to BAE Systems and Hector Figueiredo for providing
support for this work. Thanks also to Johnny Kelsey for the idea of cytokines in the
network algorithm.

A Fractal Immune Network 145

References

1. Bäck, T. Evolutionary Algorithms in Theory and Practice. 1996. Oxford University Press,
New York.

2. Bentley, P. J. Fractal Proteins. 2004. In Genetic Programming and Evolvable Machines
Journal.

3. Bentley, P. J. Evolving Fractal Gene Regulatory Networks for Robot Control. 2003a. In
Proceedings of ECAL 2003.

4. Bentley, P. J. Evolving Beyond Perfection: An Investigation of the Effects of Long-Term
Evolution on Fractal Gene Regulatory Networks. 2003b. In Proc of Information Process-
ing in Cells and Tissues (IPCAT 2003).

5. De Castro, L.N and Timmis, J (2002a). “An Artificial Immune Network for multi-modal
optimisation”. In proceedings of IEEE World Congress on Computational Intelligenece.
Pp. 699-704.

6. De Castro, L.N and Timmis, J (2002b). “Artificial Immune Systems: A New Computa-
tional Intelligence Approach”. Springer-Verlag.

7. de Castro, L. N. & Von Zuben, F. J. (2001), “aiNet: An Artificial Immune Network for
Data Analysis”, in Data Mining: A Heuristic Approach, H. A. Abbass, R. A. Sarker, and
C. S. Newton (eds.), Idea Group Publishing, USA, Chapter XII, pp. 231-259.

8. Farmer, J. D., Packard, N. H. & Perelson, A. S. (1986), “The Immune System, Adaptation,
and Machine Learning”, Physica 22D, pp. 187-204.

9. Jerne, N. K. (1974), “Towards a Network Theory of the Immune System”, Ann. Immunol.
(Inst. Pasteur) 125C, pp. 373-389.

10. Kumar, S. and Bentley, P. J.. Computational Embryology: Past, Present and Future. 2003.
Invited chapter in Ghosh and Tsutsui (Eds) Theory and Application of Evolutionary Com-
putation: Recent Trends. Springer Verlag (UK).

11. Mandelbrot, B. The Fractal Geometry of Nature. 1982. W.H. Freeman & Company.
12. Neal, M. (2003), “Meta-stable Memory in an Artificial Immune Network”, LNCS 2787.

pp. 168-180. Timmis, J, Bentley, P and Hart E. (Eds). Springer-Verlag.
13. Perelson, A. S. (1989), “Immune Network Theory”, Imm. Rev., 110, pp. 5-36.
14. Perelson, A. S. & Oster, G. F. (1979), “Theoretical Studies of Clonal Selection: Minimal

Antibody Repertoire Size and Reliability of Self-Nonself Discrimination”, J. theor.Biol.,
81, pp. 645-670.

15. Timmis, J. and Neal, M (2001). “A resource limited artificial immune system for data
analysis” Knowledge Based Systems. 14(3-4).:121-130.

16. Wolpert, L., Rosa Beddington, Thomas Jessell, Peter Lawrence, Elliot Meyerowitz, Jim
Smith. Principles of Development, 2nd Ed. 2001. Oxford University Press.

	1 Introduction
	2 Fractal Proteins
	2.1 Mandelbrot Set
	2.2 Defining a Fractal Protein
	2.3 Fractal Chemistry
	2.4 Fractal Development

	3 Immune Networks
	3.1 A Meta-stable Artificial Immune Network

	4 A Fractal Immune Network
	4.1 Data to Fractal Antigen Mapping
	4.2 Initialisation and Expansion
	4.3 Stimulation

	5 Experiments
	5.1 Experimental Motivation
	5.2 Results

	6 Conclusions

