
Mohr, Philipp H., Ryan, Nick S. and Timmis, Jon (2004) Exploiting Immunological
Properties for Ubiqitous Computing Systems. In: Nicosia, Giuseppe, ed.
Artificial Immune Systems Third International Conference. Lecture Notes
in Computer Science . Springer, Berlin, Germany, pp. 277-289. ISBN 978-3-540-23097-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14102/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-540-30220-9_23

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14102/
https://doi.org/10.1007/978-3-540-30220-9_23
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Exploiting Immunological Properties for
Ubiquitous Computing Systems

Philipp H. Mohr, Nick Ryan, and Jon Timmis

Computing Laboratory, University of Kent, UK
{phm4,nsr,jt6}@kent.ac.uk

Abstract. The immune system exhibits properties such as learning,
distributivity continual adaptation, context dependent response and
memory during the lifetime of a host. This paper argues that such
properties are essential for the creation of future context-aware and
ubiquitous systems where the need for such properties is becoming
increasingly clear. To that end, we present an immune inspired system,
which draws heavily on the immune network metaphor to create a meta-
stable context-aware memory system that could be delivered in small
hand-held devices.

1 Introduction

Locating the information, tools, and other resources that we require, when we
require them, is a potentially time-consuming and frustrating task. Systems that
automatically make such resources available when needed are highly desirable,
but to produce them presents a significant challenge. Such ideas are not new,
there are various recommender systems [1,2], but these are still a long way
from being portable, producing meaningful results in real time, and adapting
to gradual changes in the user’s behaviour.

Context-aware or, perhaps more correctly, context-sensitive systems are an
important aspect of Ubiquitous computing. For a review of earlier work see
Dey and Abowd [3]. Context-awareness describes the capability of a system
to recognise changes in its environment and adapt its behaviour accordingly.
However, there is a very large step between collecting values that describe easily
measured aspects of the environment, such as location or ambient temperature,
and determining a user’s current activity and resource needs.

To create such an “activity-sensitive” system, the problem arises of how
to capture information about the environment and interpret it in terms
that accurately reflect human perception of tasks and needs. Additionally,
environmental data is potentially of very high dimensionality, raising another
challenge in terms of complexity and data storage, especially as such systems
need to be made available on small, portable, resource-constrained devices.

We believe that a system which is capable of fulfilling the above task should
be unsupervised, work in real-time, use online learning, and be continuous,
noise tolerant, and resource friendly. Having examined the ubiquitous computing

G. Nicosia et al. (Eds.): ICARIS 2004, LNCS 3239, pp. 277–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

278 P.H. Mohr, N. Ryan, and J. Timmis

literature, there seems little evidence to suggest that traditional approaches
to such a problem will deliver; see for example [3]. Having investigated the
area of Artificial Immune Systems (AIS), we believe that certain immune
algorithms may be a good choice to help address some of these challenges facing
Ubiquitous computing. AIS have been used for data classification, clustering,
and compression, in continuous and online learning systems where adaptability
is paramount. They have been applied in areas such as computer security [4] and
email classification [5], but not yet to the area of context-aware systems.

It is our goal to develop a system which can support context-aware
applications to deliver appropriate resources to users derived from an assessment
of their current activity and needs based on the context in which they find
themselves.

In Section 2 the paper introduces Ubiquitous systems and relevant work in the
field. In Section 3 we present work in the area of Artificial Immune Systems which
is relevant to the work proposed in this paper. Section 4 outlines our proposed
system, as well as reporting initial experimental work. Section 5 presents our
conclusions and future aims.

2 Ubiquitous Computing

Ubiquitous computing, Pervasive computing, and Ambient Intelligence all refer
in some way to addressing similar goals based on Mark Weiser’s vision that
computers should be perfectly integrated in all parts of our lives. Weiser believed
that devices should remain largely invisible and the user would interact with
them often without realising [6]; if there are differences of emphasis within this
community, they lie in details such as the extent of invisibility. In this paper we
use the term “ubiquitous computing” to include all these nuances.

An important aspect of ubiquitous computing is context-awareness; Dey et
al. provide definitions for context and context-aware systems, which are widely
accepted in the field:

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application,
including the user and applications themselves.”

“A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on
the users task.”

The field of ubiquitous computing began with relatively trivial applications.
Some were simple rule-based systems which had a handful of rules, e.g. that the
light should be switched off when the last person leaves the house. Others dealt
with the automatic presentation of information about places of interest in the
user’s immediate vicinity, typically using a GPS receiver to detect location and
then query a database. However, it was soon realised that these simple systems

Exploiting Immunological Properties for Ubiquitous Computing Systems 279

are not enough to achieve the ambitious goals described above, and that far
more sophisticated systems are required whose creation can only be achieved by
collaborative effort between ubiquitous computing and other fields.

Ubiquitous computing has a wide range of sub-fields, we highlight the major
ones and some existing work which has been carried out. A key area is capturing
data from sensors, both worn on the body and distributed throughout the
environment. Contextual information captured by sensors comprises attributes
which describe relevant details about the environment, e.g. time, location,
weather, mood of the user, activity, nearby people, etc.; intuitively, separate
sensors may be required for each attribute. Bao and Intille [7], for example, try
to detect physical activities by placing five biaxial accelerometers on different
parts of the body. Other projects like “The Smart Floor” [8] have integrated
sensors in the floor which are used to identify the people walking on it
(identification is based on each persons unique walking pattern). Much emphasis
has been placed on sensing location information. Determining outdoor location
is fairly straightforward using GPS receivers, but indoor location is difficult
to determine without significant investment in infrastructure. There are many
different technologies for location detection, for a detailed overview see “Location
Systems for Ubiquitous Computing” [9].

An area of particular concern in ubiquitous systems is privacy and security.
In the early days not much attention was given to security and privacy issues,
mainly because it is a difficult problem to resolve and working prototypes where
needed first to prove the general concept of ubiquitous computing. Currently a
range of privacy enhancing infrastructures are available such as the one developed
by Osbakk and Ryan [10].

The storage of data about users and their environment is another important
area which is split into two sub-areas, one concerned with storing as much data
as possible in order to create a complete memory and develop ways of retrieving
useful information based on that data, the other concerned with storing only
relevant information. For an example of the former see [11], for an example of
the latter see [12]. People in the first field argue that memory is cheap and more
or less unlimited, but this might not be a feasible approach for all applications
as only the information is stored in a sequential way and connections may be
difficult to extract.

Next we focus on projects and frameworks related to classifying and
predicting users’ behaviour. Mozer’s “Neural Network House” tries to learn the
behaviour of the inhabitants of a house to save energy, e.g. the light is only
switched on when the system expects someone to enter a room. The system is
based on a feed-forward neural network and trained with back propagation [13].

Kröner et al. [14] present a mobile personal assistant called SPECTOR. The
aim of the system is to assist the user with tasks or problems which occur in a
daily life situation, e.g. the user should be alerted when the sum of the prices of
the shopping items in his basket is greater than the amount in his bank account
to avoid embarrassment at the checkout. A machine learning technique is used
to create a decision tree which reflects the user’s behaviour (a training set is

280 P.H. Mohr, N. Ryan, and J. Timmis

required to jump-start the system). In order for the system to adapt to changes
in user behaviour, or improve the decision making process, they developed two
versions of a decision tree editor: one abstracts away from the underlying decision
tree and allows the user to tick or untick boxes of attributes related to a certain
task; the other allows direct editing of the decision tree.

Mayrhofer et al. [15] have developed an interesting framework designed to
work on resource limited devices which tries to anticipate the user’s behaviour
and adapt to her needs in advance. Their framework consists of four major steps.
The first is feature extraction which turns raw sensor data into usable context
attributes, the second is classification of the input data, the third is the labelling
of a set of context attributes to give them real world meaning, and the fourth
is the prediction of the user’s future context. They put strong emphasis on the
exchangeability of individual components by providing well defined interfaces.
Currently the classification is done using the Growing Neural Gas algorithm,
which produces reasonable results. No quantitative evaluation has been done
yet for the prediction step.

3 Immune Networks

The immune memory mechanism proposed by Jerne [16], commonly known
as the Immune Network Theory, attempts to explain how the immune system
maintains a memory of encounters with antigens (Ag) in the absence of antigenic
stimulus. It is based on the assumption that B-cells can, in addition to being able
to recognise antigens, recognise each other through interactions of idiotopes [17,
18]. This allows for the formation of a network structure of stimulating and
suppressing signals which propagate through the network, boosting or decaying
the concentration of a particular B-cell. The network is self-organising and self-
regulating and, while not widely accepted from an immunological point of view,
has been widely exploited in the area of AIS.

3.1 Artificial Immune Networks

Work by Neal [19] proposed a meta-stable immune network algorithm capable of
dynamically identifying new clusters in a continual stream of data. The algorithm
was based on the immune network theory (outlined above) and is a result of work
in [20] and [21]. The algorithm is divided into two main phases: the first phase
creates the initial network, and the second adapts it to a changing environment.
The algorithm creates a reduced map of the input data space, where each data
item is a vector (in the case of Neal, this was a vector of four real numbers). In the
subsections below we explain how the Meta-stable Memory structure works by
splitting the algorithm into three parts: network initialisation, network growth,
and survival in the network.

Network Initialisation. An initial network is created by randomly selecting
a number of vectors from the data set being analysed. The whole data set is

Exploiting Immunological Properties for Ubiquitous Computing Systems 281

referred to as the antigen pool (Ag). The selected vectors are then used to
create an Artificial Recognition Ball (ARB) and added to the network. An ARB
represents a region of antigen space which is covered by a particular type of
B-cell, excluding the need for repetition of individuals [21]. The Ag data items
are then matched against each ARB in the network. If the Euclidian distance
between two ARBs is less than a pre-defined value, referred to as the Network
Affinity Threshold (NAT), they become neighbours by the creation of a link
between them. Connected ARBs stimulate each other, which allows them to
survive longer. All information regarding connected neighbours and resource
levels of the ARBs are stored locally within each ARB.

Network Growth. The primary response is invoked if the nearest ARB to
the Ag being presented is further away than the NAT value; in this case the
Ag is converted into an ARB and added to the network — this is the growth
mechanism in the network. It should be noted that no cloning or mutation in
the traditional sense of AIS is being performed here. The secondary response is
invoked if the Ag falls beneath the NAT value of any ARB, in this case the Ag will
not be added to the network. This is under the assumption that the existing ARB
which is the closest already represents to a sufficient degree the region of the
input space into which the Ag falls. However, the presence of the Ag will not be
forgotten, as the matching between the ARB and Ag will increase the stimulation
level of the ARBs in the network inversely proportional to the distance.

Survival in the Network. As mentioned previously, each ARB records a
resource level which changes continuously and can increase based on the level of
stimulation. The stimulation level is calculated by summing the affinity (match
value) between all Ags presented during one iteration of the data, and the affinity
between all connected ARBs. The more stimulated an ARB is, the more resources
it can claim. The resource level can only grow to a pre-defined upper limit and
shrink to a pre-defined lower limit. The shrinking is caused by a decay function,
which is applied to all resource levels when a new Ag is presented to the network
(in the case of Neal this was a linear decay). When the resource level of an ARB
falls below this lower limit it is removed from the network.

3.2 Initial Observations

Before attempting to deploy this algorithm in our application, intensive studies
of it where undertaken. We identified a major problem and redundant operations
within the algorithm as published. When a new Ag is presented to the network
and is within the NAT value of any ARB, it will not be converted into an ARB
and therefore not be added to the network. Conversly, when a new Ag is outside
the NAT value of any ARB, it will be converted to an ARB and added to the
network. However, two ARBs will only become neighbours if they lie within each
others NAT value but, as we mentioned above, this cannot be the case, because
one cannot lie within the NAT value of another.

282 P.H. Mohr, N. Ryan, and J. Timmis

The neighbouring ARBs Mark Neal presents have two origins, some are
introduced by the random selection of starting ARBs, and the others appear
due to a fault in the code of his prototype implementation; the fault is described
using the code below:

1 result = AIS.present(data[dn]); // Find closest ARB and
record distance

2 dn++;
3 if (result < (AIS.NAT))
4 {
5 //secondary response
6 AIS.allocate();
7 AIS.cull(); // only cull
8 }
9 else
10 {
11 // primary response
12 AIS.allocate(); // allocation of resources during

repertoire expansion
13 AIS.clone(data[dn]); // repertoire expansion itself...
14 AIS.relink(); // change !
15 AIS.cull();
16 }
17 // dn++ should be positioned here

Where data represents the data array and dn the index number an Ag has in
the data array, and result is the distance from data[dn] to the closest ARB.

In line 1 the distance from data[dn] to its closest ARB is stored in result.
We will refer to line 2 as dn+1 (this is where the error lies). Line 3 tests if
result is less than the NAT value; the true branch is fine. The false branch causes
the problem, because when result is larger than NAT, data[dn] is converted
to an ARB and added to the network, but instead of adding the data item
which was used to calculate result, data[dn + 1] is added; this leads to non-
deterministic behaviour. To fix this problem dn++ should be moved to line 17.
However, this change introduces a new problem, as it is not possible for two
ARBs to be positioned within each others NAT value, so no neighbours will be
created. Therefore, a further fix is required: a small change needs to be made
to the ImmuneNetwork::addARB(ARB* clone) method in the published code by
Neal. An additional, slightly larger NAT value needs to be used to allow two ARBs
to fall within a NAT value where they can become neighbours. The modification
is shown below:

// original:
if (distance(clone->pattern, nodes[others]->pattern) < NAT)

// modified:
if (distance(clone->pattern, nodes[others]->pattern) < NAT * 1.3)

Exploiting Immunological Properties for Ubiquitous Computing Systems 283

The NAT value is incremented by 30% in the second line, which produces sensible
results. Furthermore, with these changes there is no need for an initialisation
phase — the algorithm can start with an empty structure and the Meta-Stable
memory structure gradually evolves.

4 A Context-Aware Immune System: CAIS

Now the two background areas have been reviewed, attention can be turned to
our application area. As previously stated, the goal of our system is to assist the
user through the provision of a user friendly context-aware system that provides
an assessment derived from their current context.

Ideally, as mentioned, the system should be implemented on a resource-
constrained device and must be effective even in the absence of connectivity.
In practice, context-aware software running on mobile devices needs to work in
a range of networking environments with the real possibility that it must spend
a proportion of time working with no connectivity. There are some benefits to
autonomy and keeping more information locally on the user’s device, particularly
if privacy of sensitive contextual data is an issue. We have to assume that control
is lost over any information which is disclosed. If there is no need for disclosure,
then privacy can be assured, however this complicated issue of privacy is beyond
the scope of this paper.

We propose to use the feature extractor developed by Mayerhofer, et al.
(see Section 2), because it supplies a feature vector which consists of individual
context attributes. Currently their system only provides support for the user’s
current context, but this is due only to their choice of sensors. We believe
an extension providing a range of possible activities can be implemented with
reasonable effort.

An important property of the algorithm is adaptation to a change in the
user’s behaviour. The adaptation should not happen too fast, but also not too
slowly. Petzold et al. show with the examples of a 1-State and 2-State Context
Predictor that a sudden change from one state to another is not sufficient to
reflect the user’s behaviour [22].

We believe that the immune inspired algorithm outlined above enables the
system to capture the gradual change in humans behaviour. Furthermore, the
algorithm’s memory structure allows for data compression and adaptability, and
online learning enables continuous operation.

4.1 Framework

Work in [18] proposes a framework for Artificial Immune Systems which consists
of three components. The first describes the data structure and representation
used, the second talks about affinity measures, and the third describes the
algorithm. We adopt this framework and explain below our system in terms
of these three components.

284 P.H. Mohr, N. Ryan, and J. Timmis

Representation. The system’s inputs consist of the user’s context and possible
options (e.g. different activities such as “lunch” or “meeting”). The user’s context
is represented by an attribute vector, 〈a1, a2, ..., an〉, which contains attributes
along with their attribute identifier — note that attributes can appear in an
arbitrary order. Possible options are also represented by attribute vectors, one
for each option (options may comprise of an arbitrary number of attributes). An
example attribute vector is given below:

〈 GSM.CellID = 04x6,
Wlan.MacAddress = 0A:40:C3:8D:00:32,
Location.Building = Library,
Time.Hour = 18:30 〉

Where GSM.CellID, Wlan.MacAddress, Location.Building, and Time.Hour
are attribute identifiers, and 04x6, 0A:40:C3:8D:00:32, Library, and 18:30 are
their respective values.

The output is a list containing a predefined number of options of probable
significance to the user in respect to her current context (in descending order of
relevance). The list could have the following form:

1. Cinema
2. Lunch with Tom
3. Train home in 30 minutes
4. etc.

Figure 1 shows the input of context and possible options, as well as the list of
options as output. Context attributes are stored in the system as ARBs. Every
ARB has its own resource level R and current stimulation level L. The same
attribute can occur multiple times in the same context and/or different contexts.
The notion of ARBs allows us to capture all of the different occurrences of an
attribute by storing it in a single ARB.

The representation we are using is an n-dimensional hierarchical network
structure, where each dimension represents a different attribute, and is itself a
network structure. Figure 2 shows an example of the proposed data structure.
The example consists of three dimensions and nine ARBs. Attributes from
different dimensions which appear in the same context are connected by cross-
dimensional-links, in our example ARB4 and ARB2 link D1 and D2, and ARB1
and ARB6 link D2 and D3. These links have a resource level L associated with
them which reflects the likelihood that these two attributes occur in the same
context. Furthermore, every dimension itself contains a network structure, for
example dimension D1 contains ARB4 and ARB5, which are connected with
each other. The network structure of each dimension is a Meta-stable memory
structure (our improved version) which contains at least one ARB, therefore
ARBs in the same dimension can become neighbours if they are similar, as
explained in Section 3.2.

Exploiting Immunological Properties for Ubiquitous Computing Systems 285

input

input

relevant options

immune inspired

algorithm

possible options

context
(training)

Fig. 1. CAIS

2
3

8 9

4

5 ARB1

cross−dimensional−link

neighbours

7
1

L

R,S

R,S

6
L

R,S

R,S

R,S

R,S

R,S
R,S

R,S

D 1

D 2 D 3

Fig. 2. Three dimensional example

Affinity measures. Affinity is the mechanism by which the distance between
two elements is calculated. We use the affinity measure to determine how
similar two ARBs are, if they are close enough to be neighbours, and how much
one can stimulate the other. Affinity measures have to be chosen carefully in
order for the algorithm to work effectively, for a discussion about misuse of
affinity functions please refer to [23]. Measuring the distance between GPS
co-ordinates is fairly straight-forward as standard Euclidian distance can be
used, but measuring the difference between non-numeric attributes is more
difficult, e.g. the difference between two mobile phone cell IDs. Mayerhofer, et
al. have already derived affinity functions for attributes currently supported by
their framework [15]; we will adapt these functions for use in our system and
develop additional ones as required.

286 P.H. Mohr, N. Ryan, and J. Timmis

Algorithm. The main part of the algorithm is the process of learning the user’s
behaviour. At the beginning of its lifetime CAIS is not able to produce resource
options that may be made available, as it needs to learn the user’s behaviour
first. The learning and adaptation of the classification mechanism is achieved by
continuously feeding the local context into the system.

To help explain the learning process we define three sets: A is the set of
all attributes, e.g. Time, Location, etc.; Di is the set of ARBs in dimension i,
where i ∈ A (i.e. Di represents a particular attribute class); and S is the set of all
dimensions, S =

⋃
i∈A{Di}. In Figure 2, A = {1, 2, 3}, D1 = {ARB1, ARB2},

and S = {D1, D2, D3}. For an attribute i, if Di is already an element of S,
attribute i is stored in Di. If the dimension is not an element of S, a new
dimension, Di, is created and added to S. The following pseudocode explains
the learning process of CAIS:

LOOP
get next input vector
FOR EACH (attribute i in vector)

IF (Di ∈ S)
stimulate all existing ARBs with the attribute
IF (distance of attribute to all ARBs > NAT value)

convert attribute to ARB and add to dimension
IF (distance of attribute to any ARB < NAT * p)

make them neighbours
ELSE

create dimension and convert attribute to ARB and
add to dimension

call decay function on all resource levels
create cross-dimensional-links between all attributes

IF (cross-dimensional-link already exists)
stimulate cross-dimensional-link

The user’s behaviour is learned from the continuous input of local context.
Each attribute in the context attribute vector is presented to the system. First
a check is performed to see if the dimension exists to which the attribute
belongs, if it does then the attribute stimulates all existing ARBs within this
dimension — stimulation depends on the distance to all ARBs within this
dimension, which is calculated using the appropriate affinity function. If the
distance to all ARBs is greater than the NAT value, it is converted into an
ARB and added to the dimension, furthermore if the attribute’s distance is
within NAT * p of any ARB, where p is the extension to the NAT value within
which neighbours are created, it becomes their neighbour. If the dimension
does not yet exist, it is created and the attribute is converted into an ARB
and stored in the new dimension. After all the attributes have been considered,
cross-dimensional-links between them are created or, if they already exist, are
stimulated. Both levels decrease due to decay functions, details on the increase

Exploiting Immunological Properties for Ubiquitous Computing Systems 287

and decrease of stimulation levels will be presented in future publications after
extensive experiments have been carried out.

In-order to demonstrate the capabilities of the algorithm, creation of a list
of appropriate resource options is a possible application. The list of options
is generated by taking all possible options as input, CAIS will rate them
individually by comparing them to its memory. After all of them have been
rated a list is constructed in descending order of rating. Tasks with no match
may be included in the list to point out unseen options.

4.2 Prototype

In-order to achieve our goal of a ubiquitous system we have to go through an
incremental process. First we identified the requirements, namely continuous
operation, high data compression, noise tolerance, and forgetting of redundant
patterns. Neal’s Meta-stable Memory structure seemed a suitable candidate,
as it fulfils the requirements listed. We developed an experimental prototype
based on the improved Meta-stable Memory structure described in Section 3
in-order to test the feasibility of using the algorithm in CAIS. The prototype
clusters and compresses GPS co-ordinates and displays the current state of the
internal memory structure on a map. This allows us to understand and follow
the algorithm while running.

Fig. 3. Tracking GPS Data Using a Meta-Stable Immune Memory

288 P.H. Mohr, N. Ryan, and J. Timmis

We ran the algorithm with different data sets and different NAT values.
Figure 3 shows the output after the algorithm iterated through 200000 points.
ARBs are represented by small circles and their resource level is visualised by the
darkness of the circle. These points where collected over a period of four months
for the same journey from someones house (point A) to the university (point B).
The map shows a high activity at point A and point B, and a low to medium
activity in between — a standard averaging technique showed a very similar
result. The algorithm reduced the points to about 150, and due to the use of
ARBs the information about the lost points is retained by the stimulation levels
of the ARB. Furthermore, noisy data which was mostly caused by occasional
inaccuracies in the GPS measurements is eliminated by the decay function. The
time intervals between the capture of individual points ranged from 5 seconds
to 5 minutes. The NAT value for this particular example is 15, which corresponds
to 15 meters, therefore all points within a 15 meter radius were represented by
a single ARB.

The prototype produces promising, and apparently unique results, which we
believe justify the usage of the improved Meta-stable Memory structure in CAIS.

5 Conclusion

In general, context-aware systems suffer from a lack of generality and tend to be
tailored to a specific set of inputs. In addition, they may require large amounts
of data to be of use. In an ideal world we want such systems to be able to
generalise, be adaptable, and be able to compress or reduce the amount of
data required in-order to function. Immune inspired algorithms appear to be a
good candidate for generalisation, adaptability and compression. We believe the
immune inspired algorithm presented in this paper has the potential of realising
a ubiquitous system that can recognise situations which are of interest to the
user, and adapt to a wide variety of user behaviour and environmental inputs.
An immune inspired system has been presented that we feel will form the basis
of such a ubiquitous system. The first step towards achieving this goal was
presented, which was based on tracking GPS data. Clearly more work is needed,
but we feel this is an encouraging first step towards a more ambitious goal.

References

1. N. Good, J. Schafer, J Konstan, A Borchers, B Sarwar, J Herlocker, J. Riedl:
Combining collaborative filtering with personal agents for better recommendations,
in proceedings of the sixteenth national conference on artificial intelligence (1999)

2. Xiaobin Fu, J.B., Hammond, K.J.: Mining navigation history for recommendation,
in proc. 2000 conf. on intelligent user interfaces (2000)

3. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-
awareness, http://www.cc.gatech.edu/fce/contexttoolkit/chiws/dey.pdf (2000)

4. Kim, J., Bentley, P.: The human immune system and network intrusion detection
(1999)

Exploiting Immunological Properties for Ubiquitous Computing Systems 289

5. Secker, A., Freitas, A., Timmis, J.: AISEC: An Artificial Immune System for E-
mail Classification. In Sarker, R., Reynolds, R., Abbass, H., Kay-Chen, T., McKay,
R., Essam, D., Gedeon, T., eds.: Proceedings of the Congress on Evolutionary
Computation, Canberra. Australia, IEEE (2003) 131–139

6. Weiser, M.: The computer for the 21st century. Scientific American (1991)
7. Ling Bao, Stephen S. Intille: Activity recognition from user-annotated acceleration

data, in Proceedings of Pervasive Computing 2004,Linz/Vienna,Austria. (2004)
8. Orr, R., Abowd, G.: The smart floor: A mechanism for natural user identification

and tracking (2000)
9. Jeffrey Hightower, G.B.: Location systems for ubiquitous computing. IEEE

Computer 38 (2001) 57–66
10. Patrik Osbakk, Nick Ryan: A privacy enhancing infrastructure for context-

awareness, position paper for the 1st UK-ubinet Workshop, Imperial College,
London, UK (2003)

11. Kiyoharu Aizawa, Tetsuro Hori, Shinya Kawasaki, Takayuki Ishikawa: Capture and
efficient retrieval of life log, in Proceedings of Pervasive Computing 2004 workshop
on memory and sharing of experiences,Linz/Vienna,Austria. (2004)

12. Ashbrook, D., Starner, T.: Learning significant locations and predicting user
movement with gps, proceedings of ieee sixth international symposium on wearable
computing (iswc02) (2002)

13. M. C. Mozer: The neural network house: An environment that adapts to its
inhabitants. in Proceedings of the AAAI 1998 Spring Symposium on Intelligent
Environments (1998)

14. Alexander Kroener, Stephan Baldes, Anthony Jameson and Mathias Bauer: Using
an extended episodic memory within a mobile companion (2004)

15. Rene Mayerhofer, Harald Radi, Alois Ferscha: Recognizing and predicting context
by learning from user behavior, in Proceedings of The International Conference On
Advances in Mobile Multimedia (MoMM2003),Austrian Computer Society (OCG)
(2003)

16. Jerne, N.: Towards a network theory of the immune system. Ann. Immunol (1979)
17. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation and

machine learning. Phsica 22 (1986) 187–204
18. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational

Approach. Springer-Verlag, London. UK. (2002)
19. Neal, M.: Meta-stable Memory in an Artificial Immune Network. In Timmis, J.,

Bentley, P., Hart, E., eds.: Proceedings of the 2nd International Conference on
Artificial Immune Systems. Volume 2787 of Lecture Notes in Computer Science.,
Springer (2003) 229–241

20. Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis.
Knowledge Based Systems 14 (2001) 121–130

21. Neal, M.: An artificial immune system for continuous analysis of time-varying
data. In Timmis, J., Bentley, P.J., eds.: Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS). Volume 1., University of Kent
at Canterbury, University of Kent at Canterbury Printing Unit (2002) 76–85

22. Jan Petzold, Faruk Bagci, W.T., Theo Ungerer, i.A.I.i.M.S..: Global and local
state context prediction (2003)

23. Freitas, A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems:
A Problem Oriented Perspective. In Timmis, J., Bentley, P., Hart, E., eds.:
Proceedings of the 2nd International Conference on Artificial Immune Systems.
Volume 2787 of Lecture Notes in Computer Science., Springer (2003) 229–241

