
Exploiting Parallelism Inherent in AIRS,
an Artificial Immune Classifier

Andrew Watkins1,2 and Jon Timmis1

1 Computing Laboratory, University of Kent, UK
{abw5,jt6}@kent.ac.uk

http://www.cs.kent.ac.uk/˜abw5/
2 Department of Computer Science and Engineering, Mississippi State University,

USA

Abstract. The mammalian immune system is a highly complex,
inherently parallel, distributed system. The field of Artificial Immune
Systems (AIS) has developed a wide variety of algorithms inspired by
the immune system, few of which appear to capitalize on the parallel
nature of the system from which inspiration was taken. The work in this
paper presents the first steps at realizing a parallel artificial immune
system for classification. A simple parallel version of the classification
algorithm Artificial Immune Recognition System (AIRS) is presented.
Initial results indicate that a decrease in overall runtime can be achieved
through fairly näıve techniques. The need for more theoretical models of
the behavior of the algorithm is discussed.

1 Introduction

Among the oft-cited reasons for exploring mammalian immune systems as a
source of inspiration for computational problem solving include the observations
that the immune system is inherently parallel and distributed with many diverse
components working simultaneously and in cooperation to provide all of the
services that the immune system provides [1,2]. Within the AIS community,
there has been some exploration of the distributed nature of the immune system
as evidenced in algorithms for network intrusion detection (e.g., [3,4]) as well
as some ideas for distributed robot control (e.g., [5,6]), to name a couple of
examples. However, very little has been done in the realm of parallel AIS–that is,
applying methods to parallelize existing AIS algorithms in the hopes of efficiency
(or other) gains. While just parallelizing AIS algorithms is, admittedly, venturing
fairly far afield from the initial inspiration found in the immune system, the
computational gains through this exercise could well be worth the (possible) side-
track. Additionally, this exploration may provide some insight into other relevant
areas of AIS, such as ways to incorporate diversity or even understanding the
need for such.

The exploitation of parallelism inherent in many algorithms has provided
definite gains in efficiency and lent insight into the limitations of the algorithms
[7,8]. One example of this within the field of AIS was a very basic study of a

G. Nicosia et al. (Eds.): ICARIS 2004, LNCS 3239, pp. 427–438, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

428 A. Watkins and J. Timmis

parallel version of the CLONALG algorithm [9]. That study took advantage of
the embarrassingly parallel nature of this basic AIS algorithm and demonstrated
that parallel techniques can be effectively applied to AIS. This paper builds upon
the lessons learned in the parallelization of CLONALG to parallelize another
immune learning algorithm: AIRS. While some theoretical results are hinted,
the results discussed here are very much of an empirical nature with most of the
required theoretical analysis still needing to be performed.

The remainder of this paper details these initial results in parallelizing AIRS.
Section 2 gives a brief overview of the serial version of the AIRS algorithm.
Section 3 discusses the issues involved with parallelizing this algorithm and
provides results from an initial method for this parallelization. Section 4 discusses
the role of memory cells in AIRS, the impact of the initial parallel technique on
the number of memory cells produced, and a possible way to overcome this
apparent issue. Section 5 presents a third memory cell merging technique and
the results obtained from adopting this method for solving the memory cell
issue. Finally, section 6 offers some concluding remarks about this initial study
of parallel AIRS.

2 Overview of the AIRS Algorithm

Developed in 2001, the Artificial Immune Recognition System (AIRS) algorithm
was introduced as one of the first immune-inspired supervised learning
algorithms and has subsequently gone through a period of study and refinement
[10,11,12,13,14,15,16,17,18,19,20]1. To use classifications from [1], AIRS is a
bone-marrow, clonal selection type of immune-inspired algorithm, and, as with
many AIS algorithms, immune-inspired is the key word. We do not pretend to
imply that AIRS directly models any immunological process, but rather AIRS
employs some components that can metaphorically relate to some immunological
components. In the AIS community, AIRS has two basic precursor algorithms:
CLONALG [21] and AINE [22]. AIRS resembles CLONALG in the sense that
both algorithms are concerned with developing a set of memory cells that
give a representation of the learned environment. AIRS also employs affinity
maturation and somatic hypermutation schemes that are similar to what is found
in CLONALG. From AINE, AIRS has borrowed population control mechanisms
and the concept of an abstract B-cell which represents a concentration of
identical B-cells (referred to as Artificial Recognition Balls in previous papers).
AIRS has also adopted from AINE the use of an affinity threshold for some
learning mechanisms. It should be noted that while AIRS does owe some debt of
1 There is a debate concerning the label of supervised learning for AIRS. The authors

are of the view that supervised learning is any learning system which utilizes
knowledge of a training example’s actual class in the building of its representation of
the problem space. While AIRS does not use this information to directly minimize
some error function (as seen with neural networks), it does utilize classification
information about the training instances to create its world-view. Therefore, we feel
that the label of supervised learning is more apt than that of reinforcement learning.

Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier 429

inspiration to AINE, AIRS is a population based algorithm and not a network
algorithm like AINE.

While we will not detail the entire algorithm here, we do want to highlight
the key parts of AIRS that will allow for understanding of the parallelization2.
Like CLONALG, AIRS is concerned with the discovery/development of a set of
memory cells that can encapsulate the training data. Basically, this is done in a
two-stage process of first evolving a candidate memory cell and then determining
if this candidate cell should be added to the overall pool of memory cells. This
process can be outlined as follows:

1. Compare a training instance with all memory cells of the same class and
find the memory cell with the best affinity for the training instance3. We
will refer to this memory cell as mcmatch.

2. Clone and mutate mcmatch in proportion to its affinity to create a pool of
abstract B-Cells.

3. Calculate the affinity of each B-Cell with the training instance.
4. Allocate resources to each B-Cell based on its affinity.
5. Remove the weakest B-Cells until the number of resources returns to a pre-

set limit.
6. If the average affinity of the surviving B-Cells is above a certain level,

continue to step 7. Else, clone and mutate these surviving B-Cells based
on their affinity and return to step 3.

7. Choose the best B-Cell as a candidate memory cell (mccand).
8. If the affinity of mccand for the training instance is better than the affinity

of mcmatch, then add mccand to the memory cell pool. If, in addition to this,
the affinity between mccand and mcmatch is within a certain threshold, then
remove mcmatch from the memory cell pool.

9. Repeat from step 1 until all training instances have been presented.

Once this training routine is complete, AIRS classifies instances using k-nearest
neighbor with the developed set of memory cells.

3 Parallelizing AIRS

Having reviewed the serial version of AIRS, we turn our attention to our initial
strategies for parallelizing this algorithm. Our primary motivation for these
experiments is computational efficiency. We would like to employ mechanisms
of harnessing the power of multiple processors applied to the same learning task
rather than relying solely on a single processor. This ability will, in theory, allow
us to apply AIRS to problem sets of a larger scale without sacrificing some of the
appealing features of the algorithm. Secondary goals of this work include gaining
more insight into the processes necessary to parallelize immune algorithms, in
2 See [14] for the pseudocode of AIRS.
3 Affinity is currently defined as Euclidean distance. We are looking for the closest

memory cell of the same class as the training instance.

430 A. Watkins and J. Timmis

Step 3:
AIRS
Creates
Memory
Cells

Step 1:
Read Data

Step 5:
Cells
Merged

Step 2: Data is
scattered to
different
processors

Step 4:
Memory Cells
are gathered

Step 3:
AIRS
Creates
Memory
Cells

Step 1:
Read Data

Step 5:
Cells
Merged

Step 2: Data is
scattered to
different
processors

Step 2: Data is
scattered to
different
processors

Step 4:
Memory Cells
are gathered

Step 4:
Memory Cells
are gathered

Fig. 1. Overview of Parallel AIRS

general, as well as the implication of such work for the study of the role of
diversity and distributedness in AIS.

Our initial approach to parallelizing this process is the same as the approach
to parallelizing CLONALG presented in [9]: we partition the training data
into np (number of processes) pieces and allow each of the processors to train
on the separate portions of the training data. Figure 1 depicts this process.
Unfortunately, unlike CLONALG which simply evolves one memory cell for each
training data item, AIRS actually employs some degree of interaction between
the candidate cells and the previously established memory cells. Partitioning
the training data and allowing multiple copies of AIRS to run on these fractions
of the data in essence creates np separate memory cell pools. It introduces a
(possibly) significant difference in behavior from the serial version. So, when
studying this parallelism, we must examine not only the computational efficiency
we gain through this use of multiple processors, but we must also learn how
evolving these memory cell pools in isolation of one another effects the overall
performance of the algorithm.

Algorithmically, based on what is described in section 2, the parallel version
behaves in the following manner:

1. Read in the training data at the root process.
2. Scatter the training data to the np processes.
3. Execute, on each process, steps 1 through 9 from the serial version of the

algorithm on the portion of the training data obtained.
4. Gather the developed memory cells from each processes back to the root.
5. Merge the gathered memory cells into a single memory cell pool for

classification.

Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier 431

Table 1. Iris Results: Concatenation

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 95.600%(3.591) 64.380(4.295) 0.346(0.010) 1.000
2 95.800%(3.973) 74.920(4.642) 0.393(0.084) 0.441
4 96.133%(2.886) 86.960(4.785) 0.282(0.092) 0.307
8 95.400%(3.222) 97.280(5.474) 0.282(0.057) 0.153
16 95.333%(3.869) 104.920(5.279) 0.372(0.083) 0.058
24 95.533%(3.665) 108.300(4.879) 0.499(0.065) 0.029

Table 2. Pima Diabetes Results: Concatenation

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 73.084%(4.564) 277.050(9.314) 3.540(0.091) 1.000
2 73.347%(5.200) 316.960(13.153) 2.668(0.120) 0.663
4 73.362%(5.186) 359.470(15.344) 1.848(0.104) 0.479
8 74.115%(4.866) 402.270(22.718) 1.557(0.057) 0.284
16 74.494%(4.802) 448.270(26.608) 1.362(0.057) 0.162
24 74.451%(4.605) 475.590(31.687) 1.330(0.082) 0.111

Table 3. Sonar Results: Concatenation

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 85.144%(8.097) 172.885(4.074) 57.141(3.582) 1.000
2 84.615%(8.946) 179.038(3.463) 34.738(3.277) 0.822
4 83.894%(8.341) 183.546(2.883) 20.189(1.539) 0.708
8 85.288%(8.731) 186.677(2.589) 12.141(1.261) 0.588
16 84.904%(9.396) 189.038(1.914) 7.255(0.867) 0.492
24 84.567%(8.602) 189.838(1.656) 5.769(0.873) 0.413

Since this method of parallelism creates np separate memory cell pools and since
our classification is performed using a single memory cell pool, we must devise
a method for merging the separate memory cell pools into one pool.

Initially, we simply gathered each of the np memory cell pools at the root
processor and concatenated these into a single large memory cell pool. While
this is an extremely näıve approach, as tables 1, 2, and 3 demonstrate, we were
still able to achieve overall speedup in the process4. On a technical note, for the
experiments presented in this paper, we used the Iris, Pima Diabetes, and Sonar
data sets that were used in previous studies of AIRS [14]. For all of these we
took an average over 10 cross-validated runs and tested the parallel version on an
increasing number of processors. A cluster of dual-processor 2.4Ghz Xeons were
used. The Message Passing Interface (MPI)[23] was used as the communication
library and communication took place over a Gigabit Ethernet network.

There are a couple of observations to be made from this initial set of
experiments. Foremost, for our current purposes, there is a gain in overall
4 Values in parentheses represent standard deviation.

432 A. Watkins and J. Timmis

runtime of the algorithm by parallelizing it, and this speedup is achieved without
any loss in classification accuracy. The iris data set is somewhat anomalous to
this general observation The results indicate that for this data set some amount
of gain can be had by utilizing more processing power; however, at some point
this gain is no longer achieved. This point is probably where the communication
and setup time involved in this type of parallelization outstrips the usefulness of
having more processors evaluating the training data. Being able to predict what
this point is in general will be the focus of our future theoretical/analytical work
as we explore this parallel version of AIRS more thoroughly. However, looking
at the parallel efficiency, there appears to be something subtler occurring than
just a simple speedup from more processing power.

Parallel efficiency can be defined as:

E(P) =
T (1)

P ∗ T (P)

where P is the number or processors, T (1) is the time for the serial version of the
algorithms, and T (P) is the time for the parallel version of the algorithm to run
on P processors. Ideally, we would have a parallel efficiency of 1. However, this
can rarely be achieved due to issues such as communication time and setup. For
AIRS, we might initially assume that the more feature vectors in the training
set, the greater the parallel efficiency. However, this is not the case. The pima
diabetes data set has 691 training items in it whereas the sonar data set has only
192 data items in the training set. Yet, examining the parallel efficiency results
for these two data sets reveals that the sonar data set has much more to gain
from parallelization than does the pima diabetes data. The explanation for this
seeming discrepancy is in the number of features in each feature vector. The pima
diabetes data has only eight features per feature vector, whereas the sonar data
has 60 (iris has 4 features, incidentally). That our overall runtime (and its parallel
efficiency) is predicated on the number of features in the data set should not be
surprising. As with parallel GAs [7], the parallel version of AIRS is essentially
dividing up the work of fitness (or affinity) evaluations. For the current version
of AIRS, affinity is determined based on Euclidean distance which is a metric
whose evaluation grows linearly with the number of features. Thus, more gain
will be seen from data sets with both a large number of features and a large
number of training instances when applying the parallel version of AIRS.

4 Memory Cells

The results in the previous section exhibited another side-effect of note: with
parallelization comes an increase in memory cells. One of the hallmarks of AIRS
has been its data reduction capabilities. As presented in [14], AIRS has been
shown to reduce the amount of data needed to classify a given data set up to
75%. This data reduction is measured in the number of memory cells present
in the final classifier. To get an empirical sense of how the size of the memory
cell set effects the classification time, we ran a set of experiments in which we

Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier 433

Table 4. Comparison of Runtimes for KNN and AIRS

Tr Test MC Ttest(KNN) Ttest(AIRS) T(KNN) T(AIRS)

692 77 277.850 0.149 0.072 1.290 3.521
615 153 254.040 0.276 0.115 1.181 3.048
512 256 217.433 0.373 0.154 1.012 2.468

compared AIRS to k-nearest neighbor (k-nn). Recall, that basic k-nn simply
takes all of the training instances as examples and then classifies the test set
through a majority voting scheme. AIRS first grows a set of memory cells which
are then used to classify the test set. The results from these basic experiments
on the pima diabetes data set are given in table 4 and provides a comparison
between the number of training and test cases used, the number of memory cells
developed by AIRS, and the difference in testing and overall runtime for the
k-nn and AIRS. Not surprisingly, when AIRS has greatly reduced the data set,
there is a speed up in time to classify the test set5.

Since the classification speed of AIRS is based on the number of memory cells
in the final pool, it is important to understand what impact parallelizing AIRS
would have on the size of this set. In the serial version of AIRS, the minimum
number of memory cells allowed is the number of classes that exist in the data
set (one memory cell per class), and the maximum number is the number of data
items in the training set, n, (one memory cell per training vector). For the parallel
version, assuming that each process has examples of each class, the minimum
at each process is the number of classes (nc); whereas, the maximum would
be n/np. So, in the concatenation version of merging, the minimum number of
memory cells in the final classifier increases from nc to nc ∗np. While one might
suppose that the number of memory cells obtained through either the serial or
parallel versions should be the same, it should be remembered that step 1 and
(by implication) step 8 of the serial version depend on interaction with the entire
memory cell pool. This interaction is not available in the current parallel version.

Our second approach to the merging stage is an attempt to minimize the
number of memory cells that resulted from the pure concatenation approach.
This method uses an affinity-based technique similar to step 8 in the serial
version to reduce the size of the final memory cell pool. After gathering all the
memory cells to the root process, they were then separated by class. Within each
class grouping, a pairwise calculation of affinity between the memory cells was
performed. If the affinity between two memory cells was less than the affinity
threshold multiplied by the affinity threshold scalar, then only one of the memory
cells was maintained in the final pool. That is, if this relation:

affinity(mci, mcj) < AT ∗ ATS (1)
5 In all fairness, it should be mentioned that the time to train in k-nn is virtually

nothing, whereas the time to train in AIRS can be significant (when compared to
0). However, once the classifier is trained, it is the classification time that becomes
most important as this is the task for which the classifier has been trained.

434 A. Watkins and J. Timmis

Table 5. Iris Results: Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 95.867%(3.535) 62.520(4.687) 0.379(0.218) 1.000
2 95.200%(3.698) 68.020(3.771) 0.379(0.047) 0.500
4 95.267%(3.815) 72.740(5.620) 0.264(0.067) 0.359
8 95.333%(3.159) 79.600(7.025) 0.279(0.072) 0.170
16 95.267%(4.046) 84.720(9.630) 0.381(0.070) 0.062
24 94.867%(3.822) 88.380(13.351) 0.514(0.090) 0.031

Table 6. Pima Diabetes Results: Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 73.321%(4.908) 276.090(10.363) 3.739(0.086) 1.000
2 73.806%(4.921) 305.350(14.519) 2.944(0.177) 0.635
4 73.504%(4.444) 340.660(13.444) 2.160(0.107) 0.433
8 73.766%(4.731) 373.150(23.934) 1.891(0.100) 0.247
16 74.280%(4.585) 412.600(31.110) 1.776(0.140) 0.132
24 73.961%(4.811) 429.570(41.682) 1.768(0.174) 0.088

Table 7. Sonar Results: Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 84.808%(8.523) 172.585(4.124) 58.320(3.057) 1.000
2 83.846%(8.934) 179.346(3.258) 35.291(4.128) 0.826
4 85.625%(8.895) 184.008(2.610) 20.407(1.863) 0.714
8 84.712%(8.668) 186.754(2.392) 12.419(1.157) 0.587
16 85.000%(8.403) 188.992(1.882) 7.489(0.692) 0.487
24 84.375%(9.282) 189.862(1.529) 5.996(0.837) 0.405

(where mci and mcj are two memory cells of the same class, the affinity threshold
(AT) had been calculated across all of the training antigens as shown in equation
2, and the affinity threshold scalar (ATS) is set by the user) holds true, then
mcj is removed from the memory cell pool.

AT =

∑n
i=1

∑n
j=i+1 affinity(agi, agj)

n(n−1)
2

(2)

This merging technique was an initial attempt to compensate for the lack of
global interaction the parallelizing process introduced. Tables 5, 6, and 7 give
results when using this affinity-based merging.

5 Affinity-Based Merging Revisited

As seen in Section 4, the basic affinity-based merging technique employed did not
significantly reduce the increase in memory cells present in the final classifier.

Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier 435

Clearly, the serial version of AIRS does not need as many memory cells to classify
as accurately, so we would like to find a way to capture this further reduction
in data while still employing our parallel techniques. Examining the increase in
memory cells, there appears to be a roughly logarithmic increase with respect
to an increase in the number of processors used. One method of remedying this
increase in memory cells would be to alter the memory cell replacement criterion
used in the affinity-based merging scheme by a logarithmic factor of the number
of processors. That is, the criterion for removing a given memory cell is no longer
as specified in equation 1, but now the following relation must hold true for the
removal of a memory cell:

affinity(mci, mcj) < AT ∗ ATS + factor (3)

and factor is defined as:

factor = AT ∗ ATS ∗ dampener ∗ log(np) (4)

With the “dampener” referred to in equation 4 being a number between 0
and 1, this change to the merging scheme relaxes the criterion for memory cell
removal in the affinity-based merging scheme by a small fraction in logarithmic
proportion of the number of processors used6. Tables 8, 9, and 10 below present
results when employing this logarithmic factor to the criterion used in the
affinity-based merging scheme7.

Table 8. Iris Results: Processor Dependent, Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 95.533%(3.726) 63.200(4.607) 0.356(0.012) 1.000
2 95.933%(3.943) 63.720(4.953) 0.358(0.069) 0.497
4 95.467%(3.913) 64.220(4.679) 0.229(0.123) 0.388
8 95.467%(3.913) 63.520(6.234) 0.387(0.126) 0.115
16 95.067%(3.450) 64.440(10.643) 0.495(0.098) 0.045
24 95.333%(3.434) 63.160(13.872) 0.502(0.092) 0.030

Table 9. Pima Diabetes Results: Processor Dependent, Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 73.356%(4.827) 274.430(9.580) 3.734(0.172) 1.000
2 73.359%(4.731) 283.170(12.588) 2.888(0.159) 0.647
4 74.113%(4.524) 283.380(17.528) 1.934(0.141) 0.483
8 73.935%(5.162) 274.890(18.706) 1.589(0.081) 0.294
16 74.066%(4.794) 263.640(31.849) 1.297(0.126) 0.180
24 72.984%(5.433) 261.800(43.940) 1.203(0.165) 0.129

6 Obviously, the scheme presented in section 4 is just a variation on this new
formulation with a “dampener” value of 0.

7 An arbitrary value of 0.1 was used for the “dampener” value for these experiments.

436 A. Watkins and J. Timmis

Table 10. Sonar Results: Processor Dependent, Affinity-Based Merging

NP Test Set Accuracy Memory Cells Overall Runtime(s) Parallel Efficiency

1 83.654%(8.954) 172.692(4.112) 58.499(3.138) 1.000
2 84.519%(9.633) 175.877(3.783) 35.231(3.286) 0.830
4 84.135%(9.213) 179.600(2.863) 20.230(1.310) 0.723
8 84.760%(9.208) 182.292(2.868) 12.386(1.421) 0.590
16 84.087%(8.808) 183.523(3.211) 7.413(0.676) 0.493
24 85.529%(9.209) 185.108(3.071) 5.806(0.746) 0.420

The results from this new merging scheme are somewhat inconclusive.
Looking at the iris results (table 8), we appear to have achieved our goal of
maintaining the number of memory cells in the parallel classifier at a similar
level to the serial version. (As a side-note, we again see the same timing behavior
with this data set that we mentioned in section 3.) However, the other two sets of
results are not as obvious. While the experiments on the pima diabetes set (table
9) do exhibit a reduction in the number of memory cells in the final classifier,
it is unclear if this reduction would have continued unbounded if we had tested
on more and more processors. Eventually, with a significant decrease in memory
cells, classification accuracy would decrease as well. And, with the sonar data set
experiments (table 10), our new scheme appears to have had virtually no impact
on the rate of growth of the number of memory cells. What all of this indicates
may be simply that we have introduced another parameter (the “dampener”
in equation 4) and that we need to determine the appropriate setting for this
parameter for each classification task at hand.

6 Conclusion

Our goal with this study was to explore ways of exploiting parallelism inherent
in an artificial immune system for decreased overall runtime. Using a very basic
mechanism for this parallelism, we have shown that there are definite benefits
(computationally, at least) from this exploration. However, more questions were
raised than were answered here. Ideally, we would like a way to predict the
number of processors to employ to provide the most benefit. In other words,
there is the need for a run-time prediction model based on input size as well as
feature size.

One side-effect of our parallelization of AIRS was that its final predictive
model increased in size. We explored mechanisms for reducing this size to
something more comparable with the serial version. While our technique for
tackling this might ultimately be the correct approach, currently its use provides
inconclusive results (at best). One logical place to look for other ways of
solving this problem would be the immune system itself. The immune system is
inherently distributed, yet the number of memory cells in the system remains
fairly constant. Examining the mechanisms used for this in nature might lend
insight into how to address this problem in parallel AIRS.

Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier 437

In addition to some of the algorithmic and theoretical questions that need to
be answered, we would also like to expand the use of AIRS and parallel AIRS
to more application domains. Any good learning technique attempts to exploit
domain knowledge. Given this, we also want to find ways to incorporate domain
knowledge into our current learning model.

References

1. de Castro, L., Timmis, J.: Artificial immune systems: A new computational
approach. Springer-Verlag, London. UK. (2002)

2. Dasgupta, D., ed.: Artificial Immune Systems and Their Applications. Springer,
Berlin (1998)

3. Hofmeyr, S., Forrest, S.: Arichitecture for an aritifcial immune system.
Evolutionary Computation 7(1) (2000) 45–68

4. Kim, J.W.: Integrating Artificial Immune Algorithms for Intrusion Detection. PhD
thesis, Department of Computer Science, University College London (2002)

5. Lee, D.W., Jun, H.B., Sim, K.B.: Artificial immune system for realisation of co-
operative strategies and group behaviour in collective autonomous mobile robots.
In: Proceedings of Fourth International Symposium on Artificial Life and Robotics,
AAAI (1999) 232–235

6. Lau, H.Y., Wong, V.W.: Immunologic control framework for automated material
handling. In Timmis, J., Bentley, P., Hart, E., eds.: Proceedings of the 2nd
International Conference on Artificial Immune Systems. Number 2787 in Lecture
Notes in Computer Science, Springer-Verlag (2003) 57–68

7. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Acadeimic Publishers (2000)

8. Chattratichat, J., Darlington, J., Ghanem, M., Guo, Y., Hunning, H., Kohler, M.,
Sutiwaraphun, J., Wing To, H., Yang, D.: Large scale data mining: Challenges and
responses. In: KDD-97. (1997) 143–146

9. Watkins, A., Bi, X., Phadke, A.: Parallelizing an immune-inspired algorithm for
efficient pattern recognition. In Dagli, C., Buczak, A., Ghosh, J., Embrechts, M.,
Ersoy, O., eds.: Intelligent Engineering Systems through Artificial Neural Networks:
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary
Programming, Complex Systems and Artificial Life. Volume 13. ASME Press,
New York (2003) 225–230

10. Watkins, A.: AIRS: A resource limited artificial immune system. Master’s thesis,
Mississippi State University (2001)

11. Watkins, A., Boggess, L.: A new classifier based on resource limited artificial
immune systems. In: Proceedings of Congress on Evolutionary Computation, Part
of the 2002 IEEE World Congress on Computational Intelligence held in Honolulu,
HI, USA, May 12-17, 2002, IEEE (2002) 1546–1551

12. Watkins, A., Boggess, L.: A resource limited artificial immune classifier. In:
Proceedings of Congress on Evolutionary Computation, Part of the 2002 IEEE
World Congress on Computational Intelligence held in Honolulu, HI, USA, May
12-17, 2002, IEEE (2002) 926–931

13. Watkins, A., Timmis, J.: Artificial immune recognition system (AIRS): Revisions
and refinements. In: Proceedings of the 1st International Conference on Artificial
Immune Systems (ICARIS). (2002)

438 A. Watkins and J. Timmis

14. Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (AIRS):
An immune inspired supervised machine learning algorithm. Genetic Programming
and Evolvable Machines 5 (2004) 291–317

15. Marwah, G., Boggess, L.: Artificial immune systems for classification: Some issues.
In: Proceedings of the 1st International Conference on Artificial Immune Systems
(ICARIS). (2002)

16. Goodman, D., Boggess, L., Watkins, A.: Artificial immune system classification
of multiple-class problems. In Dagli, C.H., Buczak, A.L., Ghosh, J., Embrechts,
M.J., Ersoy, O., Kercel, S.W., eds.: Intelligent Engineering Systems Through
Artificial Nerual Networks: Smart Engineering System Design: Neural Netwokrs,
Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems.
Volume 12. ASME Press, New York (2002) 179–184

17. Goodman, D., Boggess, L., Watkins, A.: An investigation into the source of
power for AIRS, an artificial immune classification system. In: Proceedings of
the International Joint Conference on Neural Networks 2003, Portland, OR, USA,
The International Neural Network Society and the IEEE Neural Networks Society
(2003) 1678–1683

18. Goodman, D., Boggess, L.: The role of hypothesis filter in AIRS, an artificial
immune classifier. In Dagli, C., Buczak, A., Ghosh, J., Embrechts, M., Ersoy,
O., eds.: Intelligent Engineering Systems through Artificial Neural Networks:
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary
Programming, Complex Systems and Artificial Life. Volume 13. ASME Press
(2003) 243–248

19. Greensmith, J., Cayzer, S.: An artificial immune system approach to semantic
document classification. In Timmis, J., Bentley, P., Hart, E., eds.: Proceedings of
the 2nd International Conference on Artificial Immune Systems. Number 2787 in
Lecture Notes in Computer Science, Springer-Verlag (2003) 136–146

20. Hamaker, J., Boggess, L.: Non-euclidean distance measures in AIRS, an
artificial immune classification system. In: Proceedings of the 2004 Congress on
Evolutionary Computing. (2004)

21. de Castro, L.N., von Zuben, F.: Learning and optimization using the clonal selction
principle. IEEE Transactions on Evolutionary Computation 6 (2002) 239–251

22. Timmis, J., Neal, M.: A Resource Limited Artificial Immune System. Knowledge
Based Systems 14 (2001) 121–130

23. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message Passing Interface. 2nd edn. MIT Press (1999)

	Introduction
	Overview of the AIRS Algorithm
	Parallelizing AIRS
	Memory Cells
	Affinity-Based Merging Revisited
	Conclusion

