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Abstract The paper presents a general Bayesian nonparametric approach
for estimating a high dimensional copula. We first introduce the skew-normal
copula, which we then extend to an infinite mixture model. The skew-normal
copula fixes some limitations in the Gaussian copula. An MCMC algorithm
is developed to draw samples from the correct posterior distribution and the
model is investigated using both simulated and real applications. Consistency
of the Bayesian nonparametric model is established.
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1 Introduction

Copula models have been investigated quite extensively in recent years. Appli-
cations are across the board; from financial risk and the insurance industry to
hydrologic engineering and medical applications, where a wide variety of com-
plex dependent structures of random variables are typically high dimensional.
A copula offers a flexible tool that demonstratively allows an experimenter to
divide the cumulative distribution function into two parts; the marginal dis-
tributions and a copula function. The copula can completely characterize the
statistical dependence of multiple variables. Although bivariate copula have
been widely discussed and applied, see for example Genest et al. (2009) and
Nelsen (2006), the application of copula for higher dimensional data remains rel-
atively few. The reason is that it is not straightforward to find flexible families
of distributions on [0, 1]d for d > 2.

Our approach is to concentrate on the modeling of the copula function alone.
In one respect it can be seen as a Bayesian nonparametric approach to the ideas
set out in Genest et al. (1995). In this paper the data are transformed to the
unit interval via the empirical distribution function. That is, if (x1, . . . , xn) are a
continuous sample, xi 6= xj for i 6= j, then first define the empirical distribution
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function

Fn(x) = n−1
n∑
i=1

1(xi ≤ x),

and then set the appropriate transformed data as uni = Fn(xi). Hence, uni
will be in the unit interval and the set (un1, . . . , unn) coincides with the set
(1/n, 2/n, . . . , 1). The 1 at the end may cause concern for modeling and hence
Genest et al. (1995) propose the use of (1/(n + 1), 2/(n + 1), . . . , n/(n + 1))
instead. In the case of bivariate data (and while we are discussing multi-
variate data sets, for the purpose of this introduction we will demonstrate
things in the bivariate case) then, the likelihood function is given, for a sample
((x1, y1), . . . , (xn, yn)), by

n∏
i=1

cθ(uni, vni)

where
uni =

n

n+ 1
FnX(xi) and vni =

n

n+ 1
FnY (yi)

and cθ is a parametric copula density function.
While we use the same transformed data as Genest et al. (1995), we instead

develop a Bayesian nonparametric approach to the modeling and estimation of
the copula density function. The idea is to use infinite mixture models, based
on the Gaussian copula, to construct such a flexible family of copula densities.
Hence, our approach follows the well known infinite mixture model whereby
weights are assigned to components. The choice of the Gaussian copula to model
each component is highly appropriate since it can assign arbitrary dependence,
pairwise, to each of the variables. The Gaussian copula is fully characterized by
a correlation matrix.

There are alternatives to the data transform idea; indeed perhaps the most
popular is to model the marginal densities using kernel methods; so that if
f̂nX(x) is an estimate for the marginal density of the X sample, then, in the
bivariate case, the model for estimation would be

n∏
i=1

cθ

(
F̂nX(xi), F̂nY (yi)

)
.

See, for example, Joe (2005). We prefer the data transform plan to this kernel
based idea due to the apparent issue about setting an appropriate bandwidth for
the kernel density estimate. Moreover, the data transform idea can genuinely
be regarded as providing real data since it is automatically generated once the
real data have been observed.

On the other hand, a full Bayesian analysis using the Gaussian copula has
been reported in Pitt et al. (2006). Here the authors use the full likelihood,
including both marginal and copula model;

n∏
i=1

fX(xi|ψ) fY (yi|ψ) cθ

(
FX(xi|ψ), FY (yi|ψ)

)
.
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In particular, these authors use a Gaussian copula and assign a prior to the
correlation matrix. This is based on the Wishart distribution; and for a sampling
definition of the prior we would sample a covariance matrix Σ from a Wishart
distribution and then obtain the correlation matrix R through R = DΣD, where
D is a diagonal matrix, to be defined later, and is fully determined by Σ. We
will also be adopting this prior.

Within Bayesian nonparametric methodology, attempts have been made to
construct distributions on [0, 1]d directly without the explicit use of copulas.
This involves the use of tree–structure mixtures, Kirshner (2007), also employed
by Silva and Gramacy (2009), who presented an estimator for the copula density
via a Markov chain Monte Carlo (MCMC) algorithm. We would find it difficult
to develop a full Bayesian nonparametric model based on copula and marginal
densities, since in

fX(x) fY (y) c

(
FX(x), FY (y)

)
we would need to model all of fX , fY and c using infinite mixture models; and
this would stretch any inference plan via MCMC methods to the limit. Hence,
we prefer to use the data transform idea and concentrate solely on the copula
function estimation.

The layout of the article is as follows. Section 2 contains a brief description
of a copula model, and is where we also present the infinite mixture Gaussian
copula model. The Metropolis–Hastings algorithm for sampling the model, in
particular the correlation matrices, is described in Section 3, and the numerical
illustrations involving simulated and real data are provided in Section 4. An
asymptotic study of the model, paying attention to consistency, is provided in
Section 5.

2 The Copula model

A copula is a cumulative distribution function defined on [0, 1]d such that every
marginal is uniform on [0, 1]. The well known Sklar Theorem (Sklar, 1959),
provides the theoretical foundation for a copula which allows the separation of
the marginal distributions of Xm, for m = 1, . . . , d, for any d–vector X, and the
dependence structure between these variables. The basic theory of a copula is
introduced, for example, in Nelsen (2006).

Let (U1, . . . , Ud) be real random variables with uniform marginal distribu-
tions on [0, 1]. A copula C : [0, 1]d → [0, 1] is a joint distribution function

C(u1, . . . , ud) = P

(
U1 ≤ u1, . . . , Ud ≤ ud

)
.

Let d ≥ 2 and H be any d–dimensional cumulative distribution function and Fm
be the marginal distribution function for Xm. Then there exists a d–dimensional
copula, C, such that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), ∀ (x1, . . . , xd) ∈ Rd. (1)
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Furthermore, if each marginal distribution Fm of H is continuous, then C is
unique.

Parametric copula models have been extensively studied. There are numer-
ous classes of parametric copulas, such as the elliptic family, which contains the
Gaussian copula and the Student t copula; and the Clayton copula; the Gum-
bel copula and the Frank copula, which belong to the Archimedean family. For
inference, it is important to select an appropriate parametric copula, which is
far from straightforward. See for example Genest and Favre (2007) and Genest
et al. (2009). Assuming the continuous marginal distributions as F1, . . . , Fd,
the standard form for the copula density is given by

c(u1, . . . , ud) =
∂d

∂u1, · · · , ∂ud
C(u1, · · · , ud) =

h(F−11 (u1), . . . , F−1d (ud))

f1(F−11 (u1)), . . . , fd(F
−1
d (ud))

, (2)

where h is the joint density of (X1, . . . , Xd), F
−1
p (up) = inf{x ∈ R : Fp(x) ≥

up}, 1 ≤ p ≤ d and u = (u1, . . . , ud) ∈ [0, 1]d. This would be a classical copula
density if the margins, and thus the observations, (Ui1 = F1(Xi1), . . . , Uid =
Fd(Xid)) for i = 1, . . . , n, are known.

From the standard normal distribution Nd(0, R), where R is a correlation
matrix, we obtain the d–dimensional Gaussian copula function:

CR(u1, . . . , ud) = ΦdR
(
Φ−1(u1), . . . ,Φ−1(ud)

)
.

where ΦdR is the cumulative distribution function of Nd(0, R), and Φ is the
distribution function of N(0, 1). The density of the Gaussian copula is thus
given by

cR(u1, . . . , ud) = |R|− 1
2 exp

(
−1

2
xT (R−1 − I)x

)
, (3)

where uj = Φ(xj), for j = 1, . . . , d.
However, this copula has a serious drawback we illustrated in the bivariate

case, which is that c(u1, u2) = c(1− u1, 1− u2).

2.1 The skew-normal copula

The normal copula is one of the most widely used copulas because of its attrac-
tive properties and mathematical tractability. However, the symmetric property
of the normal copula makes it difficult to deal with the data set with skewness; a
situation often occurring in practical problems. Figure 1 plots (a) and (b) show
the contour plots of the bivariate normal copula with correlation coefficients
0.5 and -0.5, respectively. As we can see in both situations, the plots are fully
symmetric.

Instead of the normal copula, we want to generate a class of copulas, which
includes the normal copula, and can deal with the wide range of skewness, but
at the same time keep mathematical tractability. Following Azzalini (1985), a
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random variable Z has a skew-normal distribution with a skewness parameter
λ, written Z ∼ SN (λ), if its density function is given by

sn1(z;λ) = 2φ1(z)Φ(λz) (z ∈ R), (4)

where sn1 denotes the density function of the skew-normal and φ1(x) and Φ(x)
denote the N(0, 1) density and distribution function, respectively. The param-
eter λ which regulates the skewness varies in (−∞,∞) and λ = 0 corresponds
to the N(0, 1) density.

A further representation of Z, included in Azzalini (1986), shows one way
to transform from a normal random variable to a skew-normal random variable.
It states that:

If Y0 and Y1 are independent N(0, 1) variables and δ ∈ (−1, 1), then

Z = δ|Y0|+ (1− δ2)1/2Y1 (5)

follows the skew-normal distribution, denoted as Z ∼ SN (λ(δ)), where λ(δ) =
δ/(1− δ2)1/2.

As mentioned in Azzalini (1985, 1996), the density (4) enjoys a number of
formal properties which resemble those of the normal distribution and are also
suitable for the analysis of data exhibiting a unimodal empirical distribution
but with some skewness present.

Multivariate extensions of (4) were first proposed by Azzalini (1985) and
expanded further by Azzalini and Dalle Valle (1996). For the d−dimensional
extension of (4), we consider here the transformation method mentioned in
Azzalini and Dalle Valle (1996), using the idea of (5). Consider a d−dimensional
normal random variable Y = (Y1, · · · , Yd) with standardised normal marginals,
independent of Y0 ∼ N(0, 1); thus(

Y0
Y

)
∼ Nd+1

{
0,

(
1 0
0 R

)}
, (6)

where R is a d× d correlation matrix. If (δ1, · · · , δd) are in (−1, 1)d, define

Zj = δj |Y0|+ (1− δ2j )1/2Yj (j = 1, · · · , d),

so that Zj ∼ SN (λ(δj)). Then Z = (Z1, · · · , Zd)T follows the multivariate
skew-normal distribution and its density function can be written as

snd(z) = 2φd(z; Ω)Φ(αT z), z ∈ Rd

where φd(z; Ω) denotes the density function of d−dimentional normal distribu-
tion with the covariance matrix Ω and

αT =
λTR−1∆−1

(1 + λTR−1λ)1/2
,

∆ = diag((1− δ21)1/2, · · · , (1− δ2d)1/2),
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λ = (λ(δ1), · · · , λ(δd))
T ,

Ω = ∆(R+ λλT )∆.

Following (1) and (2), we can write the d−dimensional skew-normal copula
C as

C(u1, · · · , ud) = SNd(SN
−1
1 (u1), · · · , SN−11 (ud)),

where SNd and SN−11 are the d−dimentional skew-normal distribution function
and the inverse function univariate skew-normal distribution function. The
corresponding skew-normal copula density is

c(u1, · · · , ud) =
∂d

∂u1 · · · ∂ud
C(u1, · · · , ud) (7)

=
snd(z)

sn1(z1) · · · sn1(zd)
, (8)

where zi = SN−11 (ui), i = 1, · · · , d.
Note that when λ1 = · · · = λd = 0, the skew-normal copula will degenerate

to a normal copula (3).
For an example, let us look in details of the bivariate skew-normal copula.

As mentioned in the paper of Azzalini and Dalla Valle (1996), the bivariate skew
normal density function with parameters (ρ, δ1, δ2) is given by

f(x, y) = 2φ2((x, y), ω) Φ(α1x+ α2y) (9)

where φ2 is the bivariate normal with 0 mean and correlation matrix with off
diagonal element ω, where

ω = ρ
√

1− δ21
√

1− δ22 + δ1δ2

and ρ is the off diagonal element of the correlation matrix R in (6) when d = 2.
Here α1 and α2 are given as

α1 =
δ1 − δ2ω

{(1− ω2)(1− ω2 − δ21 − δ22 + 2δ1δ2ω)}1/2

and

α2 =
δ2 − δ1ω

{(1− ω2)(1− ω2 − δ21 − δ22 + 2δ1δ2ω)}1/2
.

The copula based on this skew normal distribution definition would be

cρ,δ1,δ2(u, v) =
φ2((x, y), ω) Φ(α1x+ α2y)

2φ(x)Φ(λ(δ1)x) φ(y)Φ(λ(δ2)y)

where

λ(δ) =
δ√

1− δ2

and x = SN−11 (u) and y = SN−11 (v).
Figure 1 plots (c)-(h) show the contours of the bivariate skew normal copula

with different combinations of δ1 and δ2. As we can see that the skew normal
copula is able to cope more general situations.

6



Figure 1: Plots of the bike–time data: the real data.

2.2 Mixtures of skew-normal copulas

Our aim here is to construct a nonparametric copula density, c, by a mixture of
multivariate skew normal copulas as follows:

c(u1, . . . , ud) =

∞∑
j=1

wj cRj ,δj (u1, . . . , ud), (10)

where cRj ,δj (u1, . . . , ud), for all j, are skew-normal copula densities, as in equa-
tion (7). Rj is a correlation matrix defined in (6), δj = (δj1, · · · , δjd) is the
skewness parameter vector and the weights, wj , j = 1, · · · ,∞ are described
below.

We use a stick–breaking prior for the weights and this can be based on the
Dirichlet process; see Ferguson (1973). Hence, for (vj)

∞
j=1, which are indepen-

dent and identically distributed from beta(1, ξ), for some ξ > 0, we have w1 = v1
and, for j > 1,

wj = vj
∏
l<j

(1− vl). (11)

It is easy to show that
∑∞
j=1 wj = 1 a.s. A more general idea is to use vj ∼

bata(aj , bj); see Ishwaran and James (2001). On the other hand, the prior
for each Rj is based on the Wishart distribution; see Pitt et al. (2006). If a
covariance matrix, Σ, has prior Wish(k,A), with degrees of freedom k, and the
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scale matrix A, the density is

π(Σ) =
1

2
kd
2 |A|

k
2 Γd(

k
2 )
|Σ|

k−d−1
2 exp

{
−1

2
tr(A−1Σ)

}
, (12)

where Γd is the multivariate gamma function. Then the relative correlation
matrix R is given by R = DΣD, where D = diag(1/e1, . . . , 1/ed) and ej =√

Σjj .

3 The MCMC algorithm

First, we describe how to do inference for the single skew-normal copula so we
only need to demonstrate how to sample a correlation matrix (R) and a skewness
vector (δ) from the posterior. After this we will adapt the algorithm to extend
to the infinite mixture model.

3.1 Single skew-normal copula model

Here we describe the Metropolis–Hastings algorithm to sample the posterior of
the correlation matrix and the skewness vector in turn. The model is a single
skew-normal density and we assume we observe data in 3 dimensions. So, for
illustration, we take k = 3, A = I3, and d = 3. The simulated data u1, . . . ,un we
use in next section is generated from the Gaussian copula density c in equation
(3) with a true R0.

At each iteration of a Metropolis–Hastings algorithm, a proposal density
q(Σ∗|Σ) is required which we take to be Wish(3,Σ). The decision about whether
we accept matrix Σ∗ from this proposal density will be based on the acceptance
ratio:

α =
c(u|R∗(Σ∗)) · π(Σ∗) · q(Σ|Σ∗)
c(u|R(Σ)) · π(Σ) · q(Σ∗|Σ)

,

where c(u|R(Σ) is the skew-normal copula density with the correlation matrix
R(Σ) = DΣD and u = (u1, u2, u3). Then we can construct a Metropolis–
Hastings algorithm as follows:

Step 1: Choose initial covariance matrix Σ(0) ∼ Wish(3, I3), then calculate
the correlation matrix R(0).

Step 2: Sample the covariance matrix Σ∗ from the proposal density q(Σ∗|Σ(t)).

Step 3: Generate ξ ∼ Un(0, 1).

Step 4: Set

R(t+1) =

{
R∗, α > ξ;
R(t), α ≤ ξ.

Step 5: Increment t and repeat steps 2 through to 4.
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To update δ = δ1, δ2, δ3, we use the Metropolis-Hastings algorithm on each
of δj , j = 1, 2, 3 in turn. The prior distribution of δjfollows the Uniform distri-
bution Uni(−1, 1) and the proposal function f(δ?|δ) ∼ Uni(δ − ε, δ + ε), where
ε is a small constant.

We now develop this basic algorithm to cover the infinite mixture model.

3.2 Mixture of skew-normal copula model

To be able to work on the infinite mixture model (10), we would like to transform
the infinite mixture to be finite. Following Kalli et al. (2011), we introduce
a latent model which facilitates an MCMC algorithm for sampling from the
posterior distribution. Two latent variables θ and κ, where 0 < θ < 1 and κ ∈
{1, 2, . . .}, are introduced so that each observation is allocated to one component
of the mixture model (10). Hence the infinite mixture model is replaced by a
latent model given by

c(u, θ, κ) = 1(θ < e−κ)eκ wκ c(u|Rκ).

Integrating out θ and summing over κ returns the correct mixture model. This
effort of introducing the latent model is to create a likelihood without the infinite
sum and then to ensure that one can sample the latent allocation variable κ,
since it has, with θ, a finite selection.

Consequently, given data (u1, . . . ,un), the full likelihood function becomes

n∏
i=1

1(θi < e−κi) eκiw c(ui|Rκi).

A Gibbs sampler is implemented through sampling the variables as discussed
below.

The sampling of the latent variables (κi, θi)
n
i=1 is straightforward. The θi is

simulated from a uniform distribution between 0 and e−κi and then

Pr(κi = j| · · · ) ∝ 1(j < b− log θic) ej wj c(ui|Rj), (13)

where b− logXc defines the largest interger less than or equal to X.
The weights wj is updated through sampling the vj for any j

[vj | · · · ] = beta(aj + nj , bj +mj),

where nj = #{κi = j} and mj = #{κi > j}.
The conditional for each Σj is also easy to write down, since it is based on

[Σj | · · · ] ∝
∏
κi=j

c(ui|Σj)π(Σj). (14)

The complexity now is that (14) can only really be sampled using a Metropolis–
Hastings algorithm. The basic idea is that we sample all of the Σj at each
iteration of the sampler. Though for all but a finite number of these, the required
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sample Σj at each iteration will simply be a draw from the prior π(Σj) and thus
will not actually be needed to be sampled. Let t denote iteration of the MCMC
and Mt be defined as

Mt = max
i,s≤t
{κ(s)i }.

At iteration t we will have sampled (κ
(t)
i , θ

(t)
i )ni=1 and (wj ,Σj)

Mt
j=1. We then

sample an observation from the predictive density, which involves sampling the
weights (wj). If j is picked and j < Mt then a sample from the predictive is
taken from the Gaussian copula with correlation matrix Rj . If it is designated
that the component should come from a j > Mt then Rj is sampled from the
prior and then a sample from the predictive is taken from the Gaussian copula
with correlation matrix Rj .

We now indicate how the iteration of the MCMC works. The θi and κi are
sampled from a uniform distribution and from (13). We can then define Mt+1.
If this is greater than Mt we need to sample Rj for j = Mt+1, . . . ,Mt+1, which
can be done by first sampling a Rj from the prior and then updating it to the
iteration at t+1 via a Metropolis step of the type outlined in Section 3.1. Then,
for any j for which there is no κi equal to it, the Rj can be sampled from the
prior; whereas any j which has some κi equal to it must be updated using the
Metropolis step.

4 Illustrations

Three examples of the proposed methodology are presented here. We use both
simulated data and real data applications to illustrate the single Gaussian copula
model in Section 4.1, and the mixture model in Section 4.2.

In Section 4.1 and 4.2 the prior for Rj is Wish(k,A) where k = d and A = Id.

4.1 Single Gaussian copula model

As a first example, we generated data from the Gaussian copula with the cor-
relation matrix given by

R =

 1 −0.4 0.8
−0.4 1 −0.5
0.8 −0.5 1

 ,

and with the sample size taken to be n = 150. The correlation matrices are
sampled from the posterior distribution by the Metropolis–Hastings algorithm,
described in Section 3.1. We subsample the chain, taking every 50th sample, to
produce the output and thus 1,000 samples we collected in total based on a run
length of 50,000 iterations. No burn–in was used. The Bayesian estimate of cor-
relation matrix is the mean or sample average of the 1,000 sampled correlation
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matrices, evaluated as

R̂ =

 1 −0.35 0.80
−0.35 1 −0.44
0.80 −0.44 1

 .

Once we have R̂, we generate 150 samples from the Gaussian copula with R̂.
Plots of the simulated true data and the data from R̂ are shown in Figure 1.
Figure 2 gives the trace plots and histograms of each of the components of the
correlation matrix over the length of the Metropolis algorithm.

4.2 Mixture of Gaussian copula model

The simulation and real application examples are now presented to illustrate
the approach for the multivariate mixture Gaussian copula model. The prior
for the (vj) is beta (aj , bj) where we take aj = 0.05 and bj = 0.05 in an attempt
to be noninformative.

4.2.1 The simulated data

Here we consider a mixture Gaussian copula model, with generated data from
a 3 mixture model given by

c(u1, u2, u3) =

3∑
j=1

wj cRj (u1, u2, u3),

where the weights are w1 = 0.25, w2 = 0.55, w3 = 0.2, and the respective
correlation matrices are

R1 =

 1 0.7 0.49
0.7 1 0.7
0.49 0.7 1

 , R2 =

 1 −0.9 0.81
−0.9 1 −0.9
0.81 −0.9 1

 ,

R3 =

 1 0.2 0.04
0.2 1 0.2
0.04 0.2 1

 .

We took a sample of size 150 and ran the chain described in Section 3.2 for
50,000 iterations. We use the last 25,000 samples, thinned to every 50th value,
to provide the output–totally 500 values. Figure 3 illustrates the plots of the
simulated data and the predicted data from this mixture model.

The predictives are a good representation of the sampling density.

4.2.2 Bike time example

This real data set is about the number of bicycles traveling down the Main
Yarra South Bank bike path in Melbourne, analyzed by Smith and Khaled
(2012). There are 565 observations corresponding to the count of bicycles that
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have passed within each hour on the working days between 12 December 2005
and 19th June 2008, excluding weekends and special days. The first column
is for the period 05:01–06:00, then hourly until the period 20:01–21:00. Smith
and Khaled (2012) presented a dependence structure in the bivariate case with
a parametric copula.

Triple peak times, 07:01–08:00, 09:01–10:00 and 16:01–17:00, are used here
to illustrate our mixture model, can be extended to higher dimensional cases
in a straightforward manner. The real data are transformed according to the
strategy outlined in Section 1. We ran the MCMC as in Section 4.2.1.

Figure 4 shows the scatter plots of the real data and the predictions which
are in good agreement. The histogram of the number of the components in the
mixture model is seen in Figure 5. The samples are computed by determining
the number of distinct di at each iteration.

5 Asymptotics

Here we present an asymptotic study of the Bayesian nonparametric model
using the transformed data. We work here in the bivariate case but the results
extend quite straightforwardly to higher dimensions. In this case the model can
be written in the form

cP (u, v) =

∫
cρ(u, v)P (dρ),

where P is a random Dirichlet process and in the bivariate case the correlation
matrix is represented by a ρ ∈ (−1,+1). The prior for P will be chosen so
that every random P will have support on [−1 + δ, 1 − δ] for some fixed and
small δ > 0, and this is done so that cρ(u, v) is bounded away from 0 for all
ρ ∈ [−1 + δ, 1 − δ], and likewise cP (u, v) is also bounded away from 0 for all
P . Assume c0(u, v) is the true copula density function. Then the aim is to
investigate under what conditions, for all ε > 0,

Π (c : dH(c0, c) > ε|(x1, y1), . . . , (xn, yn))→ 0 a.s.,

where dH(c0, c) denotes the Hellinger distance between copula density functions
c0 and c. Also, here (xi, yi), are independent and identically distributed from
the density

f0(x, y) = f01(x) f02(y) c0
(
F01(x), F02(y)

)
and f01, f02 are the marginal density functions of X, Y , respectively. Note that
if (x, y) ∼ f0 and (u, v) = (F01(x), F02(y)) then (u, v) ∼ c0.

To this end, define, for all ε > 0,

Aε = {c : dH(c0, c) > ε}

so that interest focuses on

Πn(Aε) = Π (Aε|(x1, y1), . . . , (xn, yn)) =

∫
Aε
Rn(c) Π(dc)∫
Rn(c) Π(dc)

,
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where

Rn(c) =

n∏
i=1

c(uni, vni)

c0(ui, vi)

and uni = Fn1(xi), vni = Fn2(yi), ui = F01(xi), vi = F02(yi). The Fn1 and Fn2
are n/(n+1) times the empirical distribution functions of X and Y , respectively.

As is standard in Bayesian nonparametric models and the study of consis-
tency (see Schwarz, 1965), we assume that c0 is in the Kullback–Leibler support
of the prior, i.e.

Π (c : dK(c0, c) < η) > 0

for all η > 0, where dK denotes the Kullback–Leibler divergence; that is dk(c0, c) =∫
c0log(c0/c). We will not determine the class of c0 which lies in this support

but nevertheless it is anticipated to be large, full in fact, save for the necessity
to work with correlation terms bounded away from −1 and +1.

The bounding away from −1 and +1 for the correlations are to partly ensure
that, uniformly for all c,

e−nγ1 <

n∏
i=1

c(uni, vni)

c(ui, vi)
< enγ2 a.s.

for all large n and for any γ1, γ2 > 0. Sufficiency for this is that the class of c is
uniformly equicontinuous and uniformly bounded away from 0. The final detail
being the Clivenko–Cantelli theorem which states that

max
i∈{1,...,n}

{|uni − ui|, |vni − vi|} → 0 a.s.

Putting this together, we have that∣∣∣∣1− c(u1, v1)

c(u0, v0)

∣∣∣∣ =
1

c(u0, v0)
|c(u0, v0)− c(u1, v1)| < ε

whenever max{|u1 − u0|, |v1 − v0|} < δ. Hence,

1− ε < c(u1, v1)

c(u0.v0)
< 1 + ε.

Moreover, it is possible to show that

c(u, v) =

∞∑
j=1

wj cρj (u, v)

is uniformly equicontinuous on (0, 1)2 if each ρj ∈ (−1+δ, 1−δ) for some δ > 0.
To see this, recall

cρ(u, v) = (1−ρ2)−1/2 exp
{
−0.5

[
ρ2[Φ−1(u)]2 + ρ2[Φ−1(v)]2 − 2ρΦ−1(u)Φ−1(v)

]
/(1− ρ2)

}
.
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Now let us consider the denominator of Πn(Aε). We can write this as

In =

∫ n∏
i=1

c(ui, vi)

c0(ui, vi)

n∏
i=1

c(uni, vni)

c(ui, vi)
Π(dc).

The second product term is bounded below a.s. by e−nγ1 for all large n and for
any γ1 > 0. And then, having removed this product term,∫ n∏

i=1

c(ui, vi)

c0(ui, vi)
Π(dc)

is now a standard term and since

n−1
n∑
i=1

log
c0(ui, vi)

c(ui, vi)
→ dK(c0, c) a.s.

the denominator, given the assumption of c0 in the Kullback–Leibler support
of Π, is bounded below by e−nη a.s. for all large n, for any η > 0. See, for
example, Barron et al. (1999) for further explanation.

The numerator can be written as

Ln =

∫
Aε

n∏
i=1

c(ui, vi)

c0(ui, vi)

n∏
i=1

c(uni, vni)

c(ui, vi)
Π(dc)

and the second product term can be bounded above a.s. by enγ2 for all large n,
for any γ2 > 0. Removing this term leaves the standard term∫

Aε

n∏
i=1

c(ui, vi)

c0(ui, vi)
Π(dc).

This is bounded above by e−nψ for some ψ > 0, which depends on ε, provided the
prior for P satisfies condition (a) in Theorem 1 of Lijoi et al. (2005). But since
we are working with P on bounded support condition (a) is trivially satisfied.
There is no need for condition (b) of this theorem since the cρ(u, v) is bounded.
Hence, provided we restrict the correlations to lie in an interval bounded away
from −1 and +1, we can put all the results together to establish that

Πn(Aε)→ 0 a.s.

for all ε > 0.
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Figure 2: Plots of data generated from single Gaussian copula model. (a) the
simulated data; (b) the predictive data.
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Figure 3: Top: traces of every component (a)ρ12, (b)ρ13, (c)ρ23 of the correlation
matrices; bottom: histograms of every component.
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Figure 4: Plots of data generated from the three mixture Gaussian copula model.
(a) the simulated data; (b) the predictive data.
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Figure 5: Plots of the bike–time data: the real data.
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Figure 6: Plots of the bike–time data: the predictive data.
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Figure 7: Histogram of the number of the components in the mixture Gaussian
copula model for the bike time data.
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