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Abstract 
 

In this paper we describe a method to lay out a 
graph enhanced Euler diagram so that it looks similar 
to a previously drawn graph enhanced Euler diagram. 
This task is non-trivial when the underlying structures 
of the diagrams differ. In particular, if a structural 
change is made to an existing drawn diagram, our 
work enables the presentation of the new diagram with 
minor disruption to the user's mental map. As the new 
diagram can be generated from an abstract 
representation, its initial embedding may be very 
different from that of the original. We have developed 
comparison measures for Euler diagrams, integrated 
into a multicriteria optimizer, and applied a force 
model for associated graphs that attempts to move 
nodes towards their positions in the original layout. To 
further enhance the usability of the system, the 
transition between diagrams can be animated. 

 
1. Introduction 

 
Euler diagrams generalise Venn diagrams, having 

contours drawn as simple closed curves which can 
intersect, contain or exclude other contours. The parts 
of the plane distinguished by being contained in some 
contours and excluded from all other contours in the 
diagram are called zones. In Figure 1 there are two 
Venn diagrams shown and in Figure 2 we have a Venn 
diagram and an Euler diagram. Venn diagrams contain 
all possible zones for the contours, whereas Euler 
diagrams may have missing zones. Euler diagrams are 
frequently mistakenly called Venn diagrams. 

A graph enhanced Euler diagram is an underlying 
Euler diagram with a superimposed graph. The nodes 
of the graph are associated with Euler diagram zones. 
Two different drawings of the same graph enhanced 
Euler diagram are shown in Figure 3. 
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igure 1. Diagrams with different contour sets 

 
enn & Euler diagram Euler diagram 

Figure 2 
 

 
igure 3. Two drawings of a graph enhanced 

Euler diagram 
 
Graph enhanced Euler diagrams combine the 
mediate readability of graphs with the powerful 
ouping and set intersection features of Euler 
agrams. Many diagrammatic applications have 
tended graph syntax such as higraphs or 
pergraphs, where nodes are grouped in intersecting 
gions. These structures can be represented as 
hanced Euler diagrams and in most of the 
plications the graph and node grouping is liable to 
ange, because of changes to the underlying data 

ructure, or because a user has edited the diagram. 



The dynamic diagram application presented in this 
paper is that of laying out a sequence of diagrams that 
comprises a diagrammatic proof. When writing proofs 
with diagrams, reasoning steps transform one diagram 
into the next and these reasoning steps can make 
structural changes in the diagram. To improve the 
readability of the proof, consecutive diagrams should 
appear similar apart from changes made by the 
reasoning steps. 

Dynamic diagram drawing deals with the automatic 
layout of diagrams when the underlying structure of an 
original diagram has changed to give a new diagram. 
Possible changes to an Euler diagram include the 
addition or removal of contours (see Figure 1), or 
changes to the zone set (see Figure 2). In addition to 
changes to the underlying Euler diagram, the graph 
associated with the diagram may change with nodes or 
edges being deleted or added.  

Techniques for dynamic graph drawing have been 
explored (see Section 2 for a summary), however no 
previous work has been performed in dynamic Euler 
diagram drawing, or dynamic drawing of Euler 
diagrams enhanced with graphs. 

 

 
The original diagram 

 
The new diagram before 

layout 

 
The new diagram after 

stage 1: placing the 
contours 

 
The new diagram after 
stage 2: embedding the 

graph 
Figure 4. Illustrating the two stage dynamic 

drawing process 
 
The method described in this paper draws a new 

diagram (whose layout will change during an iterative 
process) in the context of the layout of an original 
diagram. This original diagram is a diagram used for 
reference and influences the layout of the new 

diagram. The layout of the original diagram remains 
unchanged. 

This work extends a static (non-dynamic) graph 
enhanced Euler diagram drawing method previously 
developed by the investigators  [8], [14]. First we lay 
out the underlying Euler structure of the new diagram 
using information about the layout in the original 
diagram. Next we draw the graph in the new diagram, 
again using information about the layout in the original 
diagram. See Figure 4 for an example.  

The iteration is guided by a multicriteria based hill 
climbing process. Such approaches have been widely 
used to solve different kinds of problem. In this paper 
the iteration is guided by novel metrics, making 
original kinds of diagram change in the iteration, and 
used for the first time in the application area of 
diagrammatic proof presentation. 

The rest of the paper is organised as follows: 
Section 2 discusses the background work to this paper; 
Section 3 details the graph enhanced Euler diagram 
dynamic drawing method; Section 4 describes how the 
method is applied to the application area of 
diagrammatic reasoning with Euler diagrams; Section 
5 details cases where drawing produces poor results 
and suggests possible remedies; and finally, Section 6 
gives our conclusions. 
 
2. Background 

 
There is a well established existing body of work on 

drawing Venn diagrams. Venn diagrams have all 
possible zones, unlike Euler diagrams which have a 
subset of zones. For a comprehensive review of Venn 
diagram layout see  [15]. We consider Euler diagrams 
to be more useful because Venn diagrams with many 
contours become difficult to interpret, however he task 
of drawing Euler diagrams is more difficult than that 
of drawing Venn diagrams because there are many 
more possible configurations. 

Only recently have we seen the publication of 
papers addressing the specific problem of drawing 
Euler diagrams (e.g. [3], [6], [7], [8]). The general task of 
drawing an Euler diagram can be reduced to the 
simpler task of drawing parts of the diagram and 
recombining to build a nested diagram  [7]. In practical 
applications this is a useful step because drawing each 
part is a task involving fewer contours than the 
resulting diagram. 

The embeddings obtainable from algorithms given 
in  [6], [7] are correct, but are typically not very 
comprehensible. In  [8] this problem is addressed by 
taking an embedded diagram, subject to some aesthetic 
criteria, and applying a hill climbing algorithm to lay 



out the diagram. The hill climbing process is guided by 
the use of various metrics to assess the quality of a 
drawing. In our previous work on static layout of 
graph enhanced Euler diagrams  [14] aesthetic based 
hill climbing laid out the Euler diagram and force 
based iteration was used to place the nodes of the 
graph. 

Drawing graph enhanced Euler diagrams widens the 
number of potential application areas for the work. 
Apart from diagrammatic reasoning systems, graph 
enhanced Euler diagrams have been used to visualise 
information in file systems  [2] and are applicable 
where graphs are extended in higraph or hypergraph 
systems such as software modelling  [17], the 
visualization of networks  [11], and database 
visualization  [4]. 

These recent results in Euler diagram drawing form 
the basis of the work presented in this paper, but they 
all address the problem of drawing an Euler diagram as 
an isolated artefact (static drawing). In contrast, the 
work in this paper considers the problem of drawing a 
graph enhanced Euler diagram that is changing, and 
basing the layout of later versions on the layout of 
earlier versions (dynamic drawing). 

The field of dynamic graph drawing investigates the 
process of changing the drawing of a graph as changes 
are made to the underlying structure of the graph, see 
 [1], [13] for surveys. This work informs the title for this 
paper, where we imagine a drawn graph enhanced 
Euler diagram as a context for the task of drawing a 
second diagram, related to the first but with different 
contours, zones and/or graph. 

A major issue in dynamic graph drawing is to avoid 
disturbing the user’s mental map of the graph  [5], a 
concept which relates to minimising the disruption to 
the current drawing, because the user has invested time 
in understanding the current structure. Similarly, in 
dynamic Euler diagram drawing we strive to present 
the new drawing so that it looks similar to the original 
diagram, to maximise the chances that a user could 
transfer their understanding of one diagram in 
interpreting the other. Any differences between the 
diagrams should become visually obvious and 
commonalities should be clearly shown. 

 
3. Dynamic Drawing Method 

 
We have implemented a two stage system for 

dynamic drawing of Euler diagrams enhanced with 
graphs that builds on the static drawing method 
described in  [14]. Firstly we lay out the underlying 
Euler structure in the new diagram, using information 
about the layout in the original diagram. This is 

followed by drawing the graph in the new diagram, 
again using information about the layout in the original 
diagram. These two stages are illustrated in Fig . ure 4

Our strategy for dynamic layout is to draw a new 
diagram in a similar manner to an existing diagram, 
and to also include some notion of aesthetics into the 
new layout. There are three issues we deal with: the 
first is to map (some) diagram items in one diagram to 
(some) items in the other. This task is relatively easy 
for the contours and zones of an Euler diagram, as the 
contours in both diagrams must be uniquely labelled, 
but is harder for the embedded graph as it may be 
unlabelled. The second issue is to lay out the items in 
the new diagram in a similar way to mapped items of 
the existing diagram. The third issue is to include 
aesthetics into the layout of the new diagram, so that 
unmapped items are not drawn badly, and so that 
mapped items are not forced into bad layouts because 
of changes to the diagram structure. 

To ensure that the user’s mental map of the proof 
sequence is as undisturbed as possible, we have a 
system of animating the transition between two 
diagrams. Firstly we fade out the items appearing in 
the original diagram, which are not in the new 
diagram, we then animate the movement of the 
contours and spiders to their new location, and finally 
we fade in the items appearing in the new diagram that 
were not in the original. 

 
3.1. Dynamic Euler Diagram Layout 
 

The method uses a multicriteria hill climbing 
optimizer which attempts to minimise a weighted sum 
of a number of metrics. It integrates two specialist 
dynamic metrics with eight existing static metrics that 
improve the general appearance of a diagram. The 
static metrics are used in addition to the dynamic 
metrics because of the incomplete nature of the 
mapping between the original and new diagrams. 
Where the contour sets of the original and new 
diagrams are different, simply following the current 
layout is not possible. Where zones have been altered 
it may also be that the best possible match for the 
current layout results in a very poorly laid out diagram. 
The relative weight of the metrics were chosen and 
refined by experimentation, see  [8] for more details 
about combining metrics. 

 
3.1.1. New Dynamic Metrics. Two new dynamic 
metrics are used. The motivation for these is to ensure 
that the new diagram looks as similar as possible to the 
original. Firstly, the position of contours that appear in 
both diagrams should be similar. This is implemented 
by the ContourPositionComparison metric. Secondly, 



the shape of two contours that appear in both diagrams 
should be similar. This is implemented by the 
ContourPointsDifferenceComparison metric. 

ContourPositionComparison sums the square of the 
position differences between mapped contours. To 
ensure the metric does not change when the diagrams 
are scaled, it is divided by S, the sum of the areas of 
the contours in the original diagram. More precisely 
this metric is: 

( )

S

CCdist
Ccontour

neworiginal∑ 2),(
 

where  is the distance between 
the centres of the bounding box of contour C in the 
original and new diagrams.  

),( neworiginal CCdist

The ContourPointsDifferenceComparison metric is 
designed to make the shape of the contour in the new 
diagram similar to the shape of the mapped contour in 
the original diagram. It works by initially shifting one 
contour to lay on top of another, by equalising the 
centres of the bounding boxes. A mapping is found 
between points on the 2 contours and the metric 
penalises mapped points which are far apart. 

To find the mapping between points, we add new 
points half way along line segments of the contour 
with least points until the corresponding contours have 
an equal number of points. A point is found on the new 
contour which is closest to a point on the original 
contour. We use this pairing to begin indexing the 
points around the contours, and make sure we continue 
the indexing in a clockwise manner around both 
contours. This indexing creates a one-to-one 
correspondence; the required mapping between points 
on the two contours. 

ContourPointsDifferenceComparison is: 
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where  is the distance between 
the mapped points in the original and new contours. S 
is the same scaling value as used for 
ContourPositionComparison. 

),( neworiginal EEdist

Initially, an alternative, simpler metric was 
implemented to compare contour shapes. The metric 
measured the areas of the differences between contours 
(the symmetric difference of the interiors of the two 
contours). This approach was rejected because it 
resulted in a tendency towards contours with long, thin 
sections extending outside the reference contour. 

These extensions had small area but resulted in poor 
layout. 

 
3.1.3 Existing Metrics. We use existing static metrics 
taken from the layout method described in  [8]. The 
metrics ContourRoundnessAngles and 
ContourRoundnessEdgeLength have been designed to 
improve the roundness of contours. DiagramArea 
measures the total area occupied by the diagram, and is 
used to prevent disconnected contours from moving far 
apart. ContourArea (ZoneArea) balances out the areas 
of contours (zones). The metrics ContourClosenessPts 
and ContourClosenessEdgePt, prevent contours 
moving too close together. All of these metrics except 
DiagramArea are invariant under scaling. 

 
3.1.2. Hill Climber. The hill climber was modified 
from the static version. In particular it was clear that 
the dynamic metrics were each affected by either point 
movement or contour movement, but not both. To 
improve the time taken to get to a minima, the dynamic 
metrics were designed so that they could register for a 
particular movement type. This did not have an impact 
on the static drawing metrics, as they are all affected 
by both types of movement.  

ContourPositionComparison is largely concerned 
with the position of contours. The movement of points 
has only a minimal impact on the value of this metric, 
and it is only registered for the contour movement 
element of the hill climber.  

In contrast, ContourPointsDifferenceComparison is 
concerned with the shape of contours, and the 
movement of contours does not change its value, hence 
it is only registered for the point movement element of 
the hill climber. 

This change has a significant consequence on 
measuring fitness. It means that there cannot be a 
global fitness function, only local fitness functions for 
point movement and contour movement. It is 
conceivable that one movement may reduce one fitness 
measure but in doing so increase another, however, 
because the functions share many metrics (all the static 
diagram metrics), the net overall effect is a downwards 
movement of both fitness functions. It is likely that 
having competing fitness functions would become 
problematic if the sets of metrics used in each have 
fewer metrics in common. 

 
3.2. Dynamic Embedded Graph Layout 
 

The work in the previous section on Dynamic Euler 
Diagram Layout results in a pair of drawn Euler 
diagrams which look similar. Work described in  [14] 
allow us to place the graph superimposed upon the 



Euler diagram so that each graph node belongs to the 
correct Euler diagram zone. If we use this algorithm to 
draw the graphs, they are nicely drawn, but a graph 
that is isomorphic (respecting zones) in the new and 
original diagrams can appear very differently in each. 
To create a dynamic drawing, we use the placing of the 
graph nodes in the original diagram to inform the 
placing of the graph nodes in the new diagram. 
 
3.2.1. Mapping. We find a mapping between some 
nodes of the original diagram and some nodes in the 
new diagram. If the two graphs are isomorphic, the 
mapping will be a one-to-one mapping between the 
graph nodes. The mapping determines which nodes in 
the original graph guide the placing of which nodes in 
the new graph. 

The mapping considers connected components of 
the graphs in the two diagrams. For each component in 
the original graph, an isomorphic graph is sought 
which shares the same habitat (in practice, the graph 
components are simple and the search for isomorphic 
components is assisted by node assignment to zones). 
If such an isomorphic graph is found, then its nodes 
are mapped with the nodes in the new graph. An 
example is shown in , where the mapping is 
shown using node labels. In this figure the unlabelled 
nodes do not participate in the mapping. 

Figure 5

Figure 5. Simple mapping between graph 
nodes 

 

 

 
Nodes which are associated under the mapping are 

encouraged to be drawn in similar positions (relative to 
the zone they are in) but are also subject to other 
forces. 

 
3.2.2. Force Model. Nodes which have a mapped node 
in the original diagram are encouraged to move closer 
to the corresponding position in the original diagram. 
However, changes to the structure of the Euler diagram 
may mean that the corresponding position is 
undesirable, or worse, it is outside the correct zone. 
Hence, the force system uses the forces from the static 
method to ensure that the layout does not have very 
poor aesthetics and that the diagram retains its 

structure. Nodes that do not have a mapped node in the 
original diagram are, in effect, placed with the standard 
static method. 

A node belonging to a particular zone must first be 
placed such that it is contained within the region 
defined by the zone in the new diagram. We place 
nodes randomly by first drawing a horizontal line 
through the containing zone that meets the zone at a 
random point. The node is then placed on this line. The 
application of the force model which then follows will 
place nodes in aesthetically pleasing positions, and if a 
node has a corresponding mapped node, it should be 
placed close to the relevant location found from the 
original diagram. 

After initial placement, refinement of node 
locations is achieved by applying a force model to the 
set M of nodes in each zone. The process is iterative, 
with each iteration including a calculation of force for 
every node followed by the movement of the nodes 
according to the force. This movement is capped to 
prevent very strong forces moving a node out of its 
zone. 

As with the static method, we have repulsive forces 
acting between each pair of nodes in the zone, and also 
between nodes and line segments. These forces are 
given in  [14]. In addition, we apply an attractive force 
to each node that is mapped to a node in the original 
diagram. The force acts towards the position of the 
mapped node, encouraging the graph in the new 
diagram to be laid out similarly to the graph in the 
original diagram. The magnitude of the force applied 
to the node is directly proportional to the distance to 
the mapped node squared. This encourages each node 
to become closer to its mapped node, while greatly 
reducing the chance of the two nodes ending up too far 
apart. k represents a constant that can be used to adjust 
this attractive force in relation to the two repulsive 
forces. The attractive force towards mapped node 

position is given by 
c

kd 2
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With three different types of forces acting 
simultaneously, some care must be taken to choose 
suitable values for each parameter. The purpose of the 
repulsive force exerted on nodes by line segments is to 
prevent nodes escaping from their containing zone. If 
the attractive force towards a node’s position in the 
original diagram is made too strong, the resultant force 
acting on the node could cause it to escape from the 
zone. For this reason, it is important to choose a 
suitable value for k, which typically leads to a 
compromise between preserving structural correctness 
(which is essential) and preserving the mental map of 
the user. 



 
4. Example – Diagram Proof Sequences 
 

In this section we show the application of our 
system to diagrammatic reasoning. Spider diagrams are 
a subset of constraint diagrams  [16], with a restricted 
notation and restricted rule system. Unitary spider 
diagrams are Euler diagrams with extra notation 
comprising shading in zones and a graph superimposed 
on the diagram. The components of the superimposed 
graph are trees (called spiders). Contours represent sets 
and zones represent subsets of those sets, built from 
intersection and exclusion. The absence of a zone from 
a diagram indicates that the set corresponding to that 
zone is empty. Thus the absence of a zone from a 
diagram conveys information, and the two spider 
diagrams in  have different semantics. Figure 6

Each spider in a spider diagram has a habitat: the 
collection of zones that contain nodes of the graph. 
The spiders assert semantically the existence of 

 

  

 
 

Figure 8. A screen shot of the software 
 
The spider diagram reasoning system provides an 

ideal application for the dynamic drawing of diagrams
because we have a software tool which generates 
proo tes 
the intermediate diagrams as abstract descriptions, 
wi

, 

Figure 6. Two equiva
different wh

 

lent hypergraphs that are 
en interpreted as spider diagrams 

elements in the set corresponding to their habitats. 
Sp

 
Figure 7. Two equiva

, 

transformations are called reasoning rules, and a 
sequence of transformations is a diagrammatic proof: 

the semantics of the final diagram in a diagrammatic 
proof are a consequence of the semantics of the initial 
diagram. Descriptions of reasoning rules can be found 
in  [9]. For example, one rule transforms a diagram 
with an absent zone into the equivalent diagram which 
contains the zone, shaded. This reasoning rule changes 
the structure of the underlying Euler diagram and 
necessitates reconstruction of a drawn diagram. 

 

iders place lower bounds on the cardinality of sets. 
Shading in a zone (or collection of zones) indicates 
that the set corresponding to that zone (or zones) 
contains only elements for the spiders that are in it, and 
no more. Shading places an upper limit on the 
cardinality of sets. The process introduced in this paper 
for graph drawing can be used for the purposes of 
spider drawing, but the problems differ slightly in that 
we have to choose which spider feet are connected 
with legs. The distinction between drawing graphs and 
drawing spiders is illustrated in Figure 7 and revisited 
in section 4.1. 

lent spider diagrams that 
en interpreted as hypergraphs 

antics for spider diagram

are different wh
 
Once we have given sem

fs of spider diagram theorems, but only genera
s

we can identify diagram transformations which 
preserve or weaken the semantic interpretations. Such 

thout layout information. Each diagram in the proof 
needs to be laid out for the user so that the changes that 
have been applied by the reasoning rules are visually 
clear. The first diagram can be laid out statically and 



the remaining diagrams dynamically drawn with the 
preceding diagram as context. 
 
4.1. Extra Steps Used for This Application 
 

As discussed in  [14], the graphs for spider diagrams 
are unusual in that the abstrac
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e connected components of the graph (the habitats of 
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her connected components into trees, and any tree 
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wo spiders in 
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ferent positions, using metrics to determine 
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sec on are taken from diagrams produced using the 

 

th
the spiders). The graph edges serve only to 
toget

uld suffice to convey the same diagram semantics. 
When applying the static drawing method, we 
collected together relevant graph nodes and drew an 
arbitrary spanning tree for that node set. 

When drawing spider diagrams dynamically, the 
node mapping described in Section 3.2.1 may associate 
a spider in the original diagram with one (sharing the 
same habitat) in the new diagram. The force model 
will strive to present the nodes of these t

ilar positions so that the spiders are recognisably 
“the same” spider. 

The mapping between nodes of one spider and 
nodes of another can be used to choose which edges 
should be chosen to build the spanning tree in the new 
diagram, and this step is taken before the force model 
is applied. 

Another change is the position exchanging step that 
was used in the static case. To recap, if a diagram had 
n nodes in zone z, the static drawing algorithm first 
identified n suitable node positions, then allocated 
nodes to dif

ether exchanging positions gave an improvement or 
not. The metrics penalised diagrams with edge 
crossings and diagrams whose total edge length was 
large. In the dynamic case, it would be a backwards 
step to change the position of a node whose position 
had been moved using the force model to match the 
position of a partner node in the original diagram. The 
position exchanging algorithm now only applies to 
nodes that are not in the mapping between diagrams. 

 
4.2. Examples 
 

In this section we show the method working on two 
example proof sequences. All the diagrams in th

Figure 9. A proof sequence  

Figure 9

To make the examples consistent, they have been 
drawn with the same parameters for Euler diagram 
multicriteria optimizer and for the graph force 
algorithm. This inevitably produces a compromise, and 
better results for individual examples could have been 
achieved by tuning the numbers. As with most 
multicriteria systems the weights serve two purposes, 
to define the importance of the metrics and to 
normalize the values of the metrics, which may return 
values in very different ranges. 

ti
application. 

 and  show proof sequences in 
which the dynamic drawing method has been applied, 
drawing each diagram in the context of its predecessor.  

Figure 10

 
 



 
Diagram d1 

 
Diagram d2 

  
Diagram d3 

 d2(d1) d3(d2)
ContourPositionComparison 822.3 5.4
ContourPointsDifferenceComparison 43007.9 312.5
ContourRoundness 62.1 41.9
ContourEdgeLength 22.8 25.9
ContourArea 8.7 14.6
ZoneArea 4.1 4.8
ContourClosenessPts 3018.2 2330.6
ContourClosenessEdgePt 393.4 96.4
DiagramArea 0.022 0.024
TOTAL SCORE 47339.6 2832.1

 
In the table, the metric values shown have already 

been scaled so that they are simply added to form the 
weighted sum. When a metric has a low score (for 
example, the values of less than 5 for ZoneArea) we 
can deduce that no amount of diagram manipulation 
will greatly reduce the metric score further, so we 
have, in some sense, satisfied that heuristic. On the 
other hand, a large score (like 822.3 for the 
ContourPositionComparison) can indicate capacity to 
reduce this metric score by diagram manipulation. The 
purpose of including this table is to draw contrasts 
between the two columns, rather than between the 
different metrics. 

The values reflect the fact that the contour positions 
in d3 relative to d2 are much better than the positions 
in d2 relative to d1, as ContourPositionComparison is 
5.4 for d3(d2) and 822.3 for d2(d1). We can also see 
that drawing d3 in the context of d2 has allowed 
contour points to be moved to similar positions, which 
were not possible when drawing d2 in the context of 
d1. This can be seen in the values as 
ContourPointsDifferenceComparison is 312.5 for 
d3(d2) and 43007.9 for d2(d1). 

Figure 10. A proof sequence 

Figure 10

 
Both the Euler contours and graphs are maintained 

in relatively similar positions to the previous diagram, 
even after structural changes are made. The diagrams 
on the right are those obtained after using Bezier 
curves to enhance the smoothness of contours. We 
regard the layout of these sequences as successful. 

 
5. Further Work 

 
Whilst our method is usually effective, we have 

found some problematic cases. In this section we 
comment on some of the situations where the current 
drawing system can yield poor layouts and discuss 
possible solutions. 

Below are the results of applying the metrics to the 
diagrams in . The first column of numbers, 
d2(d1), shows the results of applying the metrics to d2 
in the context of d1. The second column, d3(d2) shows 
d3 drawn in the context of d2.  Three different forces are applied during the 

simulation of the force model. More often than not, 
these complement each other to produce desirable 
results. However, there are some cases where these 
forces can be seen to conflict with each other. For 
example, where one node is on the wrong side of a 
narrow zone and another node is obstructing its route 
to its desired location. This kind of problem can be 
solved by reapplying the initial random layout and 

These values give the equilibrium position of the 
hill climber after the optimizing process has finished. 
The top two metrics are dynamic metrics, dependent 
on two diagrams, whereas the other metrics are the 
static metrics, calculated from the single diagram only. 
 
 
 



force model. An alternative solution would be to use 
the mapping information about nodes to find a more 
suitable initial layout for the parts of the graph which 
have this information available. 
 

Original diagram New diagram 
Figure 11. In the new diagram, contour a 

cannot move to the desired position on the 
other side of b and c. 

Figure 11

 
The hill climber used as our optimizer can reach 

local minima, particularly when moving contours that 
are far away from their desired position, with other 
contours in the path between current and desired 
position (see ). Other more sophisticated 
optimizers, such as simulated annealing or genetic 
algorithms, could be applied, but would take longer to 
run. Another approach to solving problems of this sort 
is to modify the movement method. In other 
multicriteria systems, occasional random large moves 
are sometimes made. However, moving a contour a 
large distance would typically break the structure of 
the diagram. It would be possible to make larger 
movements, directed by some heuristic that kept 
contours close to the other contours with which they 
intersect. It would still not be possible to guarantee that 
the structure was maintained, and so multiple attempts 
might be made, each time testing to see if the structure 
is correct. 

A more sophisticated node mapping than the 
method described in Section 3.2.1 would achieve a 
better match between the graphs in the two diagrams. 
It should be possible to seek components which are 
“nearly” isomorphic – perhaps components which 
differ by a single node. This sort of partial matching 
involves a difficult problem of choosing which 
components to map if there are multiple “similar” 
graph components.  

 
6. Conclusions 

 
We have developed a dynamic drawing method for 

Euler diagrams enhanced with graphs, which builds on 
a static drawing method. It firstly draws the Euler 

diagram of the new diagram like the Euler diagram of 
the original using a multicriteria approach. The 
embedded graph of the new diagram is then drawn like 
the original with a force based method. The drawing 
method also incorporates aesthetic notions so that 
where parts of the new diagram are different they can 
be drawn nicely. The method has been animated and 
has been shown to work effectively when applied to 
visualizing diagram proof sequences. 

We consider this work to be extendable beyond 
dynamic drawing to general example based drawing. 
Users could teach a tool how to automatically lay out 
diagrams. A library of existing diagrams would be 
consulted before a new diagram is drawn. A challenge 
for this method includes deciding which diagram 
would be chosen to form the pattern, by developing a 
difference measurement between diagrams. 
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