
Rodgers, Peter, Mutton, Paul and Flower, Jean (2004) Dynamic Euler Diagram
Drawing. In: Proceedings IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC'04). . pp. 147-156. IEEE ISBN 0-7803-8696-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14089/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/VLHCC.2004.21

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14089/
https://doi.org/10.1109/VLHCC.2004.21
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Dynamic Euler Diagram Drawing

Peter Rodgers
Computing Laboratory
University of Kent, UK

P.J.Rodgers@kent.ac.uk

Paul Mutton
Computing Laboratory
University of Kent, UK

pjm2@kent.ac.uk

Jean Flower
Visual Modelling Group

University of Brighton, UK
J.A.Flower@brighton.ac.uk

Abstract

In this paper we describe a method to lay out a
graph enhanced Euler diagram so that it looks similar
to a previously drawn graph enhanced Euler diagram.
This task is non-trivial when the underlying structures
of the diagrams differ. In particular, if a structural
change is made to an existing drawn diagram, our
work enables the presentation of the new diagram with
minor disruption to the user's mental map. As the new
diagram can be generated from an abstract
representation, its initial embedding may be very
different from that of the original. We have developed
comparison measures for Euler diagrams, integrated
into a multicriteria optimizer, and applied a force
model for associated graphs that attempts to move
nodes towards their positions in the original layout. To
further enhance the usability of the system, the
transition between diagrams can be animated.

1. Introduction

Euler diagrams generalise Venn diagrams, having

contours drawn as simple closed curves which can
intersect, contain or exclude other contours. The parts
of the plane distinguished by being contained in some
contours and excluded from all other contours in the
diagram are called zones. In Figure 1 there are two
Venn diagrams shown and in Figure 2 we have a Venn
diagram and an Euler diagram. Venn diagrams contain
all possible zones for the contours, whereas Euler
diagrams may have missing zones. Euler diagrams are
frequently mistakenly called Venn diagrams.

A graph enhanced Euler diagram is an underlying
Euler diagram with a superimposed graph. The nodes
of the graph are associated with Euler diagram zones.
Two different drawings of the same graph enhanced
Euler diagram are shown in Figure 3.

F

V

F

im
gr
di
ex
hy
re
en
ap
ch
st

igure 1. Diagrams with different contour sets

enn & Euler diagram Euler diagram

Figure 2

igure 3. Two drawings of a graph enhanced

Euler diagram

Graph enhanced Euler diagrams combine the
mediate readability of graphs with the powerful
ouping and set intersection features of Euler
agrams. Many diagrammatic applications have
tended graph syntax such as higraphs or
pergraphs, where nodes are grouped in intersecting
gions. These structures can be represented as
hanced Euler diagrams and in most of the
plications the graph and node grouping is liable to
ange, because of changes to the underlying data

ructure, or because a user has edited the diagram.

The dynamic diagram application presented in this
paper is that of laying out a sequence of diagrams that
comprises a diagrammatic proof. When writing proofs
with diagrams, reasoning steps transform one diagram
into the next and these reasoning steps can make
structural changes in the diagram. To improve the
readability of the proof, consecutive diagrams should
appear similar apart from changes made by the
reasoning steps.

Dynamic diagram drawing deals with the automatic
layout of diagrams when the underlying structure of an
original diagram has changed to give a new diagram.
Possible changes to an Euler diagram include the
addition or removal of contours (see Figure 1), or
changes to the zone set (see Figure 2). In addition to
changes to the underlying Euler diagram, the graph
associated with the diagram may change with nodes or
edges being deleted or added.

Techniques for dynamic graph drawing have been
explored (see Section 2 for a summary), however no
previous work has been performed in dynamic Euler
diagram drawing, or dynamic drawing of Euler
diagrams enhanced with graphs.

The original diagram

The new diagram before

layout

The new diagram after

stage 1: placing the
contours

The new diagram after
stage 2: embedding the

graph
Figure 4. Illustrating the two stage dynamic

drawing process

The method described in this paper draws a new

diagram (whose layout will change during an iterative
process) in the context of the layout of an original
diagram. This original diagram is a diagram used for
reference and influences the layout of the new

diagram. The layout of the original diagram remains
unchanged.

This work extends a static (non-dynamic) graph
enhanced Euler diagram drawing method previously
developed by the investigators [8], [14]. First we lay
out the underlying Euler structure of the new diagram
using information about the layout in the original
diagram. Next we draw the graph in the new diagram,
again using information about the layout in the original
diagram. See Figure 4 for an example.

The iteration is guided by a multicriteria based hill
climbing process. Such approaches have been widely
used to solve different kinds of problem. In this paper
the iteration is guided by novel metrics, making
original kinds of diagram change in the iteration, and
used for the first time in the application area of
diagrammatic proof presentation.

The rest of the paper is organised as follows:
Section 2 discusses the background work to this paper;
Section 3 details the graph enhanced Euler diagram
dynamic drawing method; Section 4 describes how the
method is applied to the application area of
diagrammatic reasoning with Euler diagrams; Section
5 details cases where drawing produces poor results
and suggests possible remedies; and finally, Section 6
gives our conclusions.

2. Background

There is a well established existing body of work on

drawing Venn diagrams. Venn diagrams have all
possible zones, unlike Euler diagrams which have a
subset of zones. For a comprehensive review of Venn
diagram layout see [15]. We consider Euler diagrams
to be more useful because Venn diagrams with many
contours become difficult to interpret, however he task
of drawing Euler diagrams is more difficult than that
of drawing Venn diagrams because there are many
more possible configurations.

Only recently have we seen the publication of
papers addressing the specific problem of drawing
Euler diagrams (e.g. [3], [6], [7], [8]). The general task of
drawing an Euler diagram can be reduced to the
simpler task of drawing parts of the diagram and
recombining to build a nested diagram [7]. In practical
applications this is a useful step because drawing each
part is a task involving fewer contours than the
resulting diagram.

The embeddings obtainable from algorithms given
in [6], [7] are correct, but are typically not very
comprehensible. In [8] this problem is addressed by
taking an embedded diagram, subject to some aesthetic
criteria, and applying a hill climbing algorithm to lay

out the diagram. The hill climbing process is guided by
the use of various metrics to assess the quality of a
drawing. In our previous work on static layout of
graph enhanced Euler diagrams [14] aesthetic based
hill climbing laid out the Euler diagram and force
based iteration was used to place the nodes of the
graph.

Drawing graph enhanced Euler diagrams widens the
number of potential application areas for the work.
Apart from diagrammatic reasoning systems, graph
enhanced Euler diagrams have been used to visualise
information in file systems [2] and are applicable
where graphs are extended in higraph or hypergraph
systems such as software modelling [17], the
visualization of networks [11], and database
visualization [4].

These recent results in Euler diagram drawing form
the basis of the work presented in this paper, but they
all address the problem of drawing an Euler diagram as
an isolated artefact (static drawing). In contrast, the
work in this paper considers the problem of drawing a
graph enhanced Euler diagram that is changing, and
basing the layout of later versions on the layout of
earlier versions (dynamic drawing).

The field of dynamic graph drawing investigates the
process of changing the drawing of a graph as changes
are made to the underlying structure of the graph, see
 [1], [13] for surveys. This work informs the title for this
paper, where we imagine a drawn graph enhanced
Euler diagram as a context for the task of drawing a
second diagram, related to the first but with different
contours, zones and/or graph.

A major issue in dynamic graph drawing is to avoid
disturbing the user’s mental map of the graph [5], a
concept which relates to minimising the disruption to
the current drawing, because the user has invested time
in understanding the current structure. Similarly, in
dynamic Euler diagram drawing we strive to present
the new drawing so that it looks similar to the original
diagram, to maximise the chances that a user could
transfer their understanding of one diagram in
interpreting the other. Any differences between the
diagrams should become visually obvious and
commonalities should be clearly shown.

3. Dynamic Drawing Method

We have implemented a two stage system for

dynamic drawing of Euler diagrams enhanced with
graphs that builds on the static drawing method
described in [14]. Firstly we lay out the underlying
Euler structure in the new diagram, using information
about the layout in the original diagram. This is

followed by drawing the graph in the new diagram,
again using information about the layout in the original
diagram. These two stages are illustrated in Fig . ure 4

Our strategy for dynamic layout is to draw a new
diagram in a similar manner to an existing diagram,
and to also include some notion of aesthetics into the
new layout. There are three issues we deal with: the
first is to map (some) diagram items in one diagram to
(some) items in the other. This task is relatively easy
for the contours and zones of an Euler diagram, as the
contours in both diagrams must be uniquely labelled,
but is harder for the embedded graph as it may be
unlabelled. The second issue is to lay out the items in
the new diagram in a similar way to mapped items of
the existing diagram. The third issue is to include
aesthetics into the layout of the new diagram, so that
unmapped items are not drawn badly, and so that
mapped items are not forced into bad layouts because
of changes to the diagram structure.

To ensure that the user’s mental map of the proof
sequence is as undisturbed as possible, we have a
system of animating the transition between two
diagrams. Firstly we fade out the items appearing in
the original diagram, which are not in the new
diagram, we then animate the movement of the
contours and spiders to their new location, and finally
we fade in the items appearing in the new diagram that
were not in the original.

3.1. Dynamic Euler Diagram Layout

The method uses a multicriteria hill climbing
optimizer which attempts to minimise a weighted sum
of a number of metrics. It integrates two specialist
dynamic metrics with eight existing static metrics that
improve the general appearance of a diagram. The
static metrics are used in addition to the dynamic
metrics because of the incomplete nature of the
mapping between the original and new diagrams.
Where the contour sets of the original and new
diagrams are different, simply following the current
layout is not possible. Where zones have been altered
it may also be that the best possible match for the
current layout results in a very poorly laid out diagram.
The relative weight of the metrics were chosen and
refined by experimentation, see [8] for more details
about combining metrics.

3.1.1. New Dynamic Metrics. Two new dynamic
metrics are used. The motivation for these is to ensure
that the new diagram looks as similar as possible to the
original. Firstly, the position of contours that appear in
both diagrams should be similar. This is implemented
by the ContourPositionComparison metric. Secondly,

the shape of two contours that appear in both diagrams
should be similar. This is implemented by the
ContourPointsDifferenceComparison metric.

ContourPositionComparison sums the square of the
position differences between mapped contours. To
ensure the metric does not change when the diagrams
are scaled, it is divided by S, the sum of the areas of
the contours in the original diagram. More precisely
this metric is:

()

S

CCdist
Ccontour

neworiginal∑ 2),(

where is the distance between
the centres of the bounding box of contour C in the
original and new diagrams.

),(neworiginal CCdist

The ContourPointsDifferenceComparison metric is
designed to make the shape of the contour in the new
diagram similar to the shape of the mapped contour in
the original diagram. It works by initially shifting one
contour to lay on top of another, by equalising the
centres of the bounding boxes. A mapping is found
between points on the 2 contours and the metric
penalises mapped points which are far apart.

To find the mapping between points, we add new
points half way along line segments of the contour
with least points until the corresponding contours have
an equal number of points. A point is found on the new
contour which is closest to a point on the original
contour. We use this pairing to begin indexing the
points around the contours, and make sure we continue
the indexing in a clockwise manner around both
contours. This indexing creates a one-to-one
correspondence; the required mapping between points
on the two contours.

ContourPointsDifferenceComparison is:

()

S

EEdist
Ccontour

CnewinEnew
CoriginalinEoriginal

neworiginal∑ ∑
















,

2),(

where is the distance between
the mapped points in the original and new contours. S
is the same scaling value as used for
ContourPositionComparison.

),(neworiginal EEdist

Initially, an alternative, simpler metric was
implemented to compare contour shapes. The metric
measured the areas of the differences between contours
(the symmetric difference of the interiors of the two
contours). This approach was rejected because it
resulted in a tendency towards contours with long, thin
sections extending outside the reference contour.

These extensions had small area but resulted in poor
layout.

3.1.3 Existing Metrics. We use existing static metrics
taken from the layout method described in [8]. The
metrics ContourRoundnessAngles and
ContourRoundnessEdgeLength have been designed to
improve the roundness of contours. DiagramArea
measures the total area occupied by the diagram, and is
used to prevent disconnected contours from moving far
apart. ContourArea (ZoneArea) balances out the areas
of contours (zones). The metrics ContourClosenessPts
and ContourClosenessEdgePt, prevent contours
moving too close together. All of these metrics except
DiagramArea are invariant under scaling.

3.1.2. Hill Climber. The hill climber was modified
from the static version. In particular it was clear that
the dynamic metrics were each affected by either point
movement or contour movement, but not both. To
improve the time taken to get to a minima, the dynamic
metrics were designed so that they could register for a
particular movement type. This did not have an impact
on the static drawing metrics, as they are all affected
by both types of movement.

ContourPositionComparison is largely concerned
with the position of contours. The movement of points
has only a minimal impact on the value of this metric,
and it is only registered for the contour movement
element of the hill climber.

In contrast, ContourPointsDifferenceComparison is
concerned with the shape of contours, and the
movement of contours does not change its value, hence
it is only registered for the point movement element of
the hill climber.

This change has a significant consequence on
measuring fitness. It means that there cannot be a
global fitness function, only local fitness functions for
point movement and contour movement. It is
conceivable that one movement may reduce one fitness
measure but in doing so increase another, however,
because the functions share many metrics (all the static
diagram metrics), the net overall effect is a downwards
movement of both fitness functions. It is likely that
having competing fitness functions would become
problematic if the sets of metrics used in each have
fewer metrics in common.

3.2. Dynamic Embedded Graph Layout

The work in the previous section on Dynamic Euler
Diagram Layout results in a pair of drawn Euler
diagrams which look similar. Work described in [14]
allow us to place the graph superimposed upon the

Euler diagram so that each graph node belongs to the
correct Euler diagram zone. If we use this algorithm to
draw the graphs, they are nicely drawn, but a graph
that is isomorphic (respecting zones) in the new and
original diagrams can appear very differently in each.
To create a dynamic drawing, we use the placing of the
graph nodes in the original diagram to inform the
placing of the graph nodes in the new diagram.

3.2.1. Mapping. We find a mapping between some
nodes of the original diagram and some nodes in the
new diagram. If the two graphs are isomorphic, the
mapping will be a one-to-one mapping between the
graph nodes. The mapping determines which nodes in
the original graph guide the placing of which nodes in
the new graph.

The mapping considers connected components of
the graphs in the two diagrams. For each component in
the original graph, an isomorphic graph is sought
which shares the same habitat (in practice, the graph
components are simple and the search for isomorphic
components is assisted by node assignment to zones).
If such an isomorphic graph is found, then its nodes
are mapped with the nodes in the new graph. An
example is shown in , where the mapping is
shown using node labels. In this figure the unlabelled
nodes do not participate in the mapping.

Figure 5

Figure 5. Simple mapping between graph
nodes

Nodes which are associated under the mapping are

encouraged to be drawn in similar positions (relative to
the zone they are in) but are also subject to other
forces.

3.2.2. Force Model. Nodes which have a mapped node
in the original diagram are encouraged to move closer
to the corresponding position in the original diagram.
However, changes to the structure of the Euler diagram
may mean that the corresponding position is
undesirable, or worse, it is outside the correct zone.
Hence, the force system uses the forces from the static
method to ensure that the layout does not have very
poor aesthetics and that the diagram retains its

structure. Nodes that do not have a mapped node in the
original diagram are, in effect, placed with the standard
static method.

A node belonging to a particular zone must first be
placed such that it is contained within the region
defined by the zone in the new diagram. We place
nodes randomly by first drawing a horizontal line
through the containing zone that meets the zone at a
random point. The node is then placed on this line. The
application of the force model which then follows will
place nodes in aesthetically pleasing positions, and if a
node has a corresponding mapped node, it should be
placed close to the relevant location found from the
original diagram.

After initial placement, refinement of node
locations is achieved by applying a force model to the
set M of nodes in each zone. The process is iterative,
with each iteration including a calculation of force for
every node followed by the movement of the nodes
according to the force. This movement is capped to
prevent very strong forces moving a node out of its
zone.

As with the static method, we have repulsive forces
acting between each pair of nodes in the zone, and also
between nodes and line segments. These forces are
given in [14]. In addition, we apply an attractive force
to each node that is mapped to a node in the original
diagram. The force acts towards the position of the
mapped node, encouraging the graph in the new
diagram to be laid out similarly to the graph in the
original diagram. The magnitude of the force applied
to the node is directly proportional to the distance to
the mapped node squared. This encourages each node
to become closer to its mapped node, while greatly
reducing the chance of the two nodes ending up too far
apart. k represents a constant that can be used to adjust
this attractive force in relation to the two repulsive
forces. The attractive force towards mapped node

position is given by
c

kd 2
.

D
A

B

C

A B

CDD
A

B

C

A B

CD

With three different types of forces acting
simultaneously, some care must be taken to choose
suitable values for each parameter. The purpose of the
repulsive force exerted on nodes by line segments is to
prevent nodes escaping from their containing zone. If
the attractive force towards a node’s position in the
original diagram is made too strong, the resultant force
acting on the node could cause it to escape from the
zone. For this reason, it is important to choose a
suitable value for k, which typically leads to a
compromise between preserving structural correctness
(which is essential) and preserving the mental map of
the user.

4. Example – Diagram Proof Sequences

In this section we show the application of our
system to diagrammatic reasoning. Spider diagrams are
a subset of constraint diagrams [16], with a restricted
notation and restricted rule system. Unitary spider
diagrams are Euler diagrams with extra notation
comprising shading in zones and a graph superimposed
on the diagram. The components of the superimposed
graph are trees (called spiders). Contours represent sets
and zones represent subsets of those sets, built from
intersection and exclusion. The absence of a zone from
a diagram indicates that the set corresponding to that
zone is empty. Thus the absence of a zone from a
diagram conveys information, and the two spider
diagrams in have different semantics. Figure 6

Each spider in a spider diagram has a habitat: the
collection of zones that contain nodes of the graph.
The spiders assert semantically the existence of

Figure 8. A screen shot of the software

The spider diagram reasoning system provides an

ideal application for the dynamic drawing of diagrams
because we have a software tool which generates
proo tes
the intermediate diagrams as abstract descriptions,
wi

,

Figure 6. Two equiva
different wh

lent hypergraphs that are
en interpreted as spider diagrams

elements in the set corresponding to their habitats.
Sp

Figure 7. Two equiva

,

transformations are called reasoning rules, and a
sequence of transformations is a diagrammatic proof:

the semantics of the final diagram in a diagrammatic
proof are a consequence of the semantics of the initial
diagram. Descriptions of reasoning rules can be found
in [9]. For example, one rule transforms a diagram
with an absent zone into the equivalent diagram which
contains the zone, shaded. This reasoning rule changes
the structure of the underlying Euler diagram and
necessitates reconstruction of a drawn diagram.

iders place lower bounds on the cardinality of sets.
Shading in a zone (or collection of zones) indicates
that the set corresponding to that zone (or zones)
contains only elements for the spiders that are in it, and
no more. Shading places an upper limit on the
cardinality of sets. The process introduced in this paper
for graph drawing can be used for the purposes of
spider drawing, but the problems differ slightly in that
we have to choose which spider feet are connected
with legs. The distinction between drawing graphs and
drawing spiders is illustrated in Figure 7 and revisited
in section 4.1.

lent spider diagrams that
en interpreted as hypergraphs

antics for spider diagram

are different wh

Once we have given sem

fs of spider diagram theorems, but only genera
s

we can identify diagram transformations which
preserve or weaken the semantic interpretations. Such

thout layout information. Each diagram in the proof
needs to be laid out for the user so that the changes that
have been applied by the reasoning rules are visually
clear. The first diagram can be laid out statically and

the remaining diagrams dynamically drawn with the
preceding diagram as context.

4.1. Extra Steps Used for This Application

As discussed in [14], the graphs for spider diagrams
are unusual in that the abstrac

t syntax specifies only
e connected components of the graph (the habitats of

link
her connected components into trees, and any tree

wo

wo spiders in
sim

ferent positions, using metrics to determine
wh

is
sec on are taken from diagrams produced using the

th
the spiders). The graph edges serve only to
toget

uld suffice to convey the same diagram semantics.
When applying the static drawing method, we
collected together relevant graph nodes and drew an
arbitrary spanning tree for that node set.

When drawing spider diagrams dynamically, the
node mapping described in Section 3.2.1 may associate
a spider in the original diagram with one (sharing the
same habitat) in the new diagram. The force model
will strive to present the nodes of these t

ilar positions so that the spiders are recognisably
“the same” spider.

The mapping between nodes of one spider and
nodes of another can be used to choose which edges
should be chosen to build the spanning tree in the new
diagram, and this step is taken before the force model
is applied.

Another change is the position exchanging step that
was used in the static case. To recap, if a diagram had
n nodes in zone z, the static drawing algorithm first
identified n suitable node positions, then allocated
nodes to dif

ether exchanging positions gave an improvement or
not. The metrics penalised diagrams with edge
crossings and diagrams whose total edge length was
large. In the dynamic case, it would be a backwards
step to change the position of a node whose position
had been moved using the force model to match the
position of a partner node in the original diagram. The
position exchanging algorithm now only applies to
nodes that are not in the mapping between diagrams.

4.2. Examples

In this section we show the method working on two
example proof sequences. All the diagrams in th

Figure 9. A proof sequence

Figure 9

To make the examples consistent, they have been
drawn with the same parameters for Euler diagram
multicriteria optimizer and for the graph force
algorithm. This inevitably produces a compromise, and
better results for individual examples could have been
achieved by tuning the numbers. As with most
multicriteria systems the weights serve two purposes,
to define the importance of the metrics and to
normalize the values of the metrics, which may return
values in very different ranges.

ti
application.

 and show proof sequences in
which the dynamic drawing method has been applied,
drawing each diagram in the context of its predecessor.

Figure 10

Diagram d1

Diagram d2

Diagram d3

 d2(d1) d3(d2)
ContourPositionComparison 822.3 5.4
ContourPointsDifferenceComparison 43007.9 312.5
ContourRoundness 62.1 41.9
ContourEdgeLength 22.8 25.9
ContourArea 8.7 14.6
ZoneArea 4.1 4.8
ContourClosenessPts 3018.2 2330.6
ContourClosenessEdgePt 393.4 96.4
DiagramArea 0.022 0.024
TOTAL SCORE 47339.6 2832.1

In the table, the metric values shown have already

been scaled so that they are simply added to form the
weighted sum. When a metric has a low score (for
example, the values of less than 5 for ZoneArea) we
can deduce that no amount of diagram manipulation
will greatly reduce the metric score further, so we
have, in some sense, satisfied that heuristic. On the
other hand, a large score (like 822.3 for the
ContourPositionComparison) can indicate capacity to
reduce this metric score by diagram manipulation. The
purpose of including this table is to draw contrasts
between the two columns, rather than between the
different metrics.

The values reflect the fact that the contour positions
in d3 relative to d2 are much better than the positions
in d2 relative to d1, as ContourPositionComparison is
5.4 for d3(d2) and 822.3 for d2(d1). We can also see
that drawing d3 in the context of d2 has allowed
contour points to be moved to similar positions, which
were not possible when drawing d2 in the context of
d1. This can be seen in the values as
ContourPointsDifferenceComparison is 312.5 for
d3(d2) and 43007.9 for d2(d1).

Figure 10. A proof sequence

Figure 10

Both the Euler contours and graphs are maintained

in relatively similar positions to the previous diagram,
even after structural changes are made. The diagrams
on the right are those obtained after using Bezier
curves to enhance the smoothness of contours. We
regard the layout of these sequences as successful.

5. Further Work

Whilst our method is usually effective, we have

found some problematic cases. In this section we
comment on some of the situations where the current
drawing system can yield poor layouts and discuss
possible solutions.

Below are the results of applying the metrics to the
diagrams in . The first column of numbers,
d2(d1), shows the results of applying the metrics to d2
in the context of d1. The second column, d3(d2) shows
d3 drawn in the context of d2. Three different forces are applied during the

simulation of the force model. More often than not,
these complement each other to produce desirable
results. However, there are some cases where these
forces can be seen to conflict with each other. For
example, where one node is on the wrong side of a
narrow zone and another node is obstructing its route
to its desired location. This kind of problem can be
solved by reapplying the initial random layout and

These values give the equilibrium position of the
hill climber after the optimizing process has finished.
The top two metrics are dynamic metrics, dependent
on two diagrams, whereas the other metrics are the
static metrics, calculated from the single diagram only.

force model. An alternative solution would be to use
the mapping information about nodes to find a more
suitable initial layout for the parts of the graph which
have this information available.

Original diagram New diagram
Figure 11. In the new diagram, contour a

cannot move to the desired position on the
other side of b and c.

Figure 11

The hill climber used as our optimizer can reach

local minima, particularly when moving contours that
are far away from their desired position, with other
contours in the path between current and desired
position (see). Other more sophisticated
optimizers, such as simulated annealing or genetic
algorithms, could be applied, but would take longer to
run. Another approach to solving problems of this sort
is to modify the movement method. In other
multicriteria systems, occasional random large moves
are sometimes made. However, moving a contour a
large distance would typically break the structure of
the diagram. It would be possible to make larger
movements, directed by some heuristic that kept
contours close to the other contours with which they
intersect. It would still not be possible to guarantee that
the structure was maintained, and so multiple attempts
might be made, each time testing to see if the structure
is correct.

A more sophisticated node mapping than the
method described in Section 3.2.1 would achieve a
better match between the graphs in the two diagrams.
It should be possible to seek components which are
“nearly” isomorphic – perhaps components which
differ by a single node. This sort of partial matching
involves a difficult problem of choosing which
components to map if there are multiple “similar”
graph components.

6. Conclusions

We have developed a dynamic drawing method for

Euler diagrams enhanced with graphs, which builds on
a static drawing method. It firstly draws the Euler

diagram of the new diagram like the Euler diagram of
the original using a multicriteria approach. The
embedded graph of the new diagram is then drawn like
the original with a force based method. The drawing
method also incorporates aesthetic notions so that
where parts of the new diagram are different they can
be drawn nicely. The method has been animated and
has been shown to work effectively when applied to
visualizing diagram proof sequences.

We consider this work to be extendable beyond
dynamic drawing to general example based drawing.
Users could teach a tool how to automatically lay out
diagrams. A library of existing diagrams would be
consulted before a new diagram is drawn. A challenge
for this method includes deciding which diagram
would be chosen to form the pattern, by developing a
difference measurement between diagrams.

7. Acknowledgements

Thanks to Gem Stapleton at the University of
Brighton for helpful comments on drafts of this paper.
This work has been supported by EPSRC grants
GR/R63509/01 and GR/R63516/01.

8. References

[1] Battista G., Eades P., Tamassia R. and Tollis I.. Graph

Drawing: Algorithms for the Visualisation of Graphs.
Prentice Hall. 1999.

[2] De Chiara R., Erra U. and Scarano V. VENNFS: A
Venn-Diagram File Manager. Proc. IEEE Information
Visualization (IV03). pp. 120-126. 2003.

[3] Chow S. and Ruskey F. Drawing Area-Proportional
Venn and Euler Diagrams. Proc. GD2003. LNCS 2912.
Springer Verlag. pp. 466-477. 2004.

[4] Consens M.P. and Mendelzon A.O. Hy+: A Hygraph-
based Query and Visualization System. Proc. ACM
SIGMOD Intl. Conf. on Management of Data, pp. 511-
516, 1993.

[5] Eades P., Wei Lai, Misue K., and Sugiyama K. Layout
Adjustment and the Mental Map, Journal of Visual
Languages and Computing 6, (1995), 183 - 210.

[6] Flower J., and Howse J. Generating Euler Diagrams,
Proc. Diagrams 2002 LNAI 2317, Springer Verlag, pp.
61-75. 2002.

[7] Flower J., Howse J. and Taylor J. Nesting in Euler
Diagrams: syntax, semantics and construction. Journal
of Software and Systems modelling, issue 1, article 7,
Springer Verlag. 2003.

[8] Flower J., Rodgers P. and Mutton P. Layout Metrics for
Euler Diagrams. Proc. 7th IEEE Information
Visualization (IV03). pp. 272-280. 2003.

[9] Flower J., and Stapleton G.. Automated Theorem
Proving with Spider Diagrams. To appear in proc.
Computing Australasian Theory Symposium (CATS04).

[10] Fruchterman T.M.J. and Reingold E.M. Graph Drawing
by Force-directed Placement. Software – Practice and
Experience Vol 21(11). pp. 1129-1164. 1991.

[11] GXL web page: http://www.gupro.de/GXL/examples/
hypergraphNav.html.

[12] Howse J., Molina F., Taylor J., Kent S. and Gil J. Spider
Diagrams: A Diagrammatic Reasoning System, Journal
of Visual Languages and Computing 12, 299-324. 2001

[13] Kaufmann M. and Wagner D.. Drawing Graphs:
Methods and Models, LNCS 2025. 2001.

[14] Mutton, P.J., Rodgers P.J., and Flower, J.A. Drawing
Graphs in Euler Diagrams. To appear in Diagrams 2004.
LNAI, Springer-Verlag.

[15] Ruskey F. A Survey of Venn Diagrams. The Electronic
Journal of Combinatorics. March 2001.

[16] Stapleton G., Howse J. and Taylor J. A constraint
diagram reasoning system. Proc. Distributed
Multimedia Systems, International Conference on
Visual Languages and Computing (VLC '03). pp. 263-
270, Miami, USA, 2003.

[17] Storey M.-A. D. and Mueller H.. Manipulating and
documenting software structures using SHriMP views.
In Int. Conf. in Software Maintenance, pp. 275-285.
IEEE. 1995.

