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Entropy4Cloud:
Using Entropy-Based Complexity To
Optimize Cloud Service Resource Management

Huankai Chen, Student, IEEE, Frank Wang, Senior Member, IEEE, and Na Helian

Abstract—In cloud service resource management system, complexity limits the system’s ability to better satisfy the application’s QoS
requirements, e.g. cost budget, average response time and reliability. Numerousness, diversity, variety, uncertainty, etc. are some of
the complexity factors which lead to the variation between expected plan and actual running performance of cloud applications. In this
paper, after defining the complexity clearly, we identify the origin of complexity in cloud service resource management system through
the study of "Local Activity Principle”. In order to manage complexity, an Entropy-based methodology is presented to use which covers
identifying, measuring, analysing and controlling (avoid and reduce) of complexity. Finally, we implement such idea in a popular cloud
engine, Apache Spark, for running Analysis as a Service (AaaS). Experiments demonstrate that the new, Entropy-based resource
management approach can significantly improve the performance of Spark applications. Compare with the Fair Scheduler in Apache
Spark, our proposed Entropy Scheduler is able to reduce overall cost by 23%, improve the average service response time by 15% -
20% and minimized the standard deviation of service response time by 30% - 45%.

Index Terms—Entropy Theory, Complexity, Cloud Services, Resource Management.

INTRODUCTION

1

ESOURCE Management is an NP-complete problem,
Rthe complexity of which increase substantially when
applications are deployed in the cloud. The complexity of
cloud service resource management may originate from
many factors: the scale of resource size; the heterogeneity
of resource types and their interdependencies; as well as
the variability, dynamicity and unpredictability of resource
run-time performance.

Complexity has many negative effects on satisfying the
Quality of Service (QoS) requirements of Cloud applications
such as cost, performance, availability and reliability. If an
application can not guarantee its QoS, it will be hard to
populate its service. However, the vast majority of research
efforts in Cloud service resource management implicitly
assume the Cloud to be simplify and the Cloud resource’s
performance is determined and predictable. The improper
assumption may significantly affect the QoS of the Cloud
application and cause resource management strategy to be
less robust.

In spite of extensive research of complexity issues in
different fields ranging from computational biology to
decision making in economies, a study of complexity for
Cloud service resource management system is limited. In
this paper, we address these complexity problems in Cloud
Service Resource Management System by introducing
Entropy Theory. The main contributions of this paper are as
follows:
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1) Complexity in the Cloud Service Resource
Management System is clearly defined, which
origin is identified through the study of “Local

Activity Principle”.

Entropy Theory based methodology for resource
management in cloud service is proposed to use
which cover identifying, measuring, analysing and
controlling (reduce and avoid) of complexity.

3) After figure out the root cause of complexity by
using “Local Activity Principle”, Resource Entropy
Based Local Activity Ranking is proposed to solves
the resource management problem by controlling
the Local Resource Complexity. Finally, we implement
such idea named "Entropy Scheduler” in a popular
real-world cloud analysis engine, Apache Spark.
Experiments demonstrate that the new ”“Entropy
Scheduler” outperform the default “Fair Scheduler”
for better quality of service satisfaction.

In this paper, we discuss the complexity measurement
base on Entropy Theory, which can be simply applied in
the cloud service resource management system. Section 2
define the related concept of Complexity in the cloud. Then,
Section 3 introduce the basic Entropy Theory and describes
how Entropy is used to control the complexity in cloud
resource management system. Finally, section 4 evaluates
the real world cloud applications based on the proposed
Entropy based methodology and discuss the experimental
results. Section 5 describes related work, and Section 6
presents our conclusions and future work.



2 COMPLEXITY IN THE CLOUD

For now, the concept of complexity with respect to the
cloud has not been precisely delineated yet. Despite the fact
that the concept of complexity is somewhat ambiguous and
varies from author to author, there are still several typical
properties being shared by numerous complex systems.

o Complex systems are made up of several non-linear com-
ponents
A cloud resource management system’s resources
serve as the cloud’s basic components. These
resources are non-linear. During run-time, the
performance of the resource is highly dynamic and
is influenced by the running jobs. Non-linearity is
a condition that is needed for chaos. Furthermore,
almost every system having a phase space with three
or more dimensions can be considered chaotic in a
certain part of that phase space [1].

o A complex system’s components are interdependent
The cloud’s resources indirectly interact with each
other via the resource management system. The state
of the resources depends on other resources and is
affected by the state of the other resources as well.

o A complex system has a structure that spans several
scales.
For example, let us examine a typical cloud resource
management system:

— Scale 1: resource management; applications;
resources;

— Scale 2: resource allocation, job scheduling;
jobs, sub-tasks; hardware, software ...

— Scale 3: constrains, objects; parameters, func-
tions, variables, requirements; CPU, operating
system, memory, storage...

— More scales : ...

Every scale has a structure. This complex system’s
essential and virtually new aspect allows the system
to be capable of handling emerging behaviour.

o A complex system can handle emerging behaviour
Emergence takes place when the focus of attention is
shifted from one scale to another coarser scale above
it. Observed at a specific scale, a certain behaviour
is considered emergent if one cannot understand it
after studying it separately and one by one. Each
of this scale’s components may also be a complex
system that comprises finer scale. Therefore, the
emerging behaviour is a novel phenomenon that is
special to the scale being studied. Moreover, it is a
result of the global interaction between that scale’s
components [1]. For instance, a computer has the
ability to run a program, which is the highest scale’s
emerging behaviour. If the study is only focused on
lower scale components like the transistor, wire, or
power, one will never get an understanding of how
the computer runs the program.
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o Complexity involves an interaction between chaos and
order
It has been said that many complex systems do
not always display chaos at all times. In other
words, they display chaos for some of the control
parameter’s values, but also display order for others.
Furthermore, there is the edge of chaos, ie. the
control’s precise value when the system’s state
switches between chaos and order.

o Complexity involves an interaction between competition
and cooperation
Within the cloud, resources work together to com-
plete the job. However, they also compete for the
job’s sub-tasks according to their states.

Seen from a global view, a cloud service resource man-
agement system is made up of numerous resources which
collaborate either directly or indirectly in order to meet the
application requirements. These resources and the interrela-
tionships among them are important for the complexity that
takes place in that system. Seen from a local view, the actual
resource itself displays various degrees of complexity as
well. These degrees of complexity come from either internal
sources (memory, disk, CPU, etc.) and/or external sources
(jobs running on it).

2.1 Characteristic Of Complexity

The complexity found in cloud resource management sys-
tems has some key characteristics. It is important to un-
derstand how these characteristics affect the occurrence of
complexity, either from the local resources it manages or the
global system itself. However, these characteristics can act
on one another or on each other. Therefore, explanations of
these characteristics do not only represent the actual charac-
teristic itself. Instead, it also emphasises the interaction and
relationship among themselves.

o Numerousness refers to the number of cloud
resources that have to be managed by the system.
A large number and a high level of the resources
contribute to the system’s increased complexity.
Changes in the number of resources that are
managed by the system under any consideration
directly relate to any changes in the level of
complexity.

o Diversity is related to the cloud’s homogeneity or
heterogeneity. The resource’s high/low diversity
level can lead to heterogeneous/homogeneity and
produces a high/low degree of complexity.

o Interdependency refers to the intended or
unintended relationship among cloud resource.
This may lead to complexity within the management
system. For instance, data required for a specific
job can be partitioned or replicated onto multiple
resources. These interdependent resources will not
be able to perform the job without each other or
without being influenced by each other. The increase
of interdependence directly increases and affects



complexity.

e Variability refers to the changeability state, where
an event leads to possible various outcomes in
the local resource or global system. In terms of
the global system, the resource state changes over
time (e.g. performance, availability) and leads
to a change in the capacity of the system. Seen
from a local resource point of view, the change in
its underlying components’ states (e.g. memory
consumption, CPU utilisation) leads to a change in
its performance. Increasing the variability leads to a
higher complexity level.

e Variety is related to the state of being various.
In making management decisions, the states of
the system (e.g. under-provision/over-provision,
number of resources, order/edge of chaos/chaos,
under-loaded/over-loaded) and the state of resource
(e.g. high/low CPU utilisation, number of free cores,
high/low memory consumption ...) may have to be
considered. This state variety represents the system
or resource’s dynamic behaviour. The more the
states involved during decision making, the more
the complexity that is introduced.

o Uncertainty refers to all the difficulties experienced
during the production of a clear picture of the re-
source or the system. This is caused by the lack
of information. Uncertainty and complexity have a
close relationship with one another. More complexity
occurs when there is more uncertainty within the
cloud resource management system.

The complexity characteristics mentioned above can
have close relationships with each other. In other words, one
can influence the others or one can lead to the occurrence
of the others. For instance, variability in the system may
be created by a high level of variety or uncertainty can be
caused by high density of diversity. However, the character-
istics do not affect (more or less) the system with or without
any interrelationships or interactions between them. Thus,
generally, if these characteristics’ level is reduced, the com-
plexity will be reduced too.

3 ENTROPY-BASED COMPLEXITY FOR CLOUD
SERVICE RESOURCE MANAGEMENT

Being able to manage the increasing complexity within the
cloud service resource management system is needed to
better satisfy the cloud applications” QoS requirements. In
order to efficiently and effectively manage complexity, it is
recommended that one need to identify, measure, analyse
and control complexity first. Every one of the steps men-
tioned above is vital to complexity management. Measuring
is the most important stage since it allows for the other
stages to be performed effectively [2].

3.1 Identification

Identification is the first step in efficiently and effectively
managing the complexity in cloud service resource manage-
ment systems. This step is meant to determine the origin of
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complexity as well as the characteristics that are related to
it.

3.1.1 Local Activity Principle

The local activity principle was originally from electronic
circuits. However, it could be mathematically formulated
in an axiomatic manner without having to mention any
circuit models. For a spatially-extended dynamical system
that is made up of more than one identical cell, changes
in the state of the cell are dictated by a specific reaction-
diffusion equation and the kinetic equations related to them.
In other words, changes in the local cell state are influenced
by some/all of the system’s other cell states and by the cell’s
local diffusion in some cases. Since the role of the diffusion
term in the reaction-diffusion equations is only a dissipative
and stabilising one, the complex phenomenon observed in
the system can only originate from the cell kinetic equations
[3]. It can be proven rigorously that if there are no locally
active cell kinetic equations, complexity cannot be exhibited
by the reaction-diffusion equation. A cell that possesses a
local-active kinetic equation can display complex dynamics
like chaos or limit cycles, even if the cells are not couple to
each other. Therefore, it is no surprise that coupling such
cells could lead to an emerging pattern within the system.
Thus, the cell that has a local-active kinetic equation is
indeed the complexity’s origin [4].

Definition of Local Activity : “A cell is considered
locally active within the cell equilibrium point if, and only
if, a continuous input time function exists in such a way
that at some time point, no net energy is going out of the
cell. The cell’s initial energy is zero”.

Local Passivity Definition : “A cell is considered locally
passive within the cell equilibrium point if, and only if,
the cell stays at the initial state and has zero energy for all
continuous input time functions”.

Transistor is an typical example of a locally-active device.
For the transistor, a low-power input signal can be turned
into a high-power output signal. However, it is at the ex-
pense of an energy supply. Televisions, radios, or computers
will not be able to function if they don’t use locally-active
devices like transistors. Moreover, any system that is made
up of locally-active devices is considered locally active too.

Locally-active Resource

| Uncertain output

Job s finished with
various completion time

| Input

| Job with expected

processing time

Locally-passive Resource Determined output

Job is finished as
expected

Energy

Resource Cost

Fig. 1. Resource in the Cloud : Locally-Active Vs. Locally-Passive

The Principle of Local Activity is easily translatable
into other non-electrical heterogeneous/homogeneous me-



dia. For cloud computing, an example of a locally-active
device is the resource. As shown in Figure 1, a small
(estimated task’s running time) input signal can be turned
into a large (actual task’s processing time) output signal.
This conversion is at the expense of energy supply (resource
cost). By definition, a resource that is not locally active
is locally passive, in the sense that a resource having a
fixed cost is guaranteed to offer a consistent performance
during run-time. However, the resources of the cloud in
the real world are rarely in the passive mode. In other
words, they always display various degrees of local activity
[5]. For instance, on average, a virtual resource has more
less activity than a physical resource that has the same
configuration. Moreover, for the same resource, the degree
of activity varies during runtime.

3.1.2 Original Of Complexity : Local Active Resource

Being the complexity’s origin, the local activity resource
directly affects the cloud resource management system’s
complexity level. For electronic circuits having homoge-
neous media, the system may fall in the "Edge of Chaos”
when the locally active cells are within some parameter
regions [6]. Furthermore, this will increase the probability
of turning into completely chaotic. In the cloud environ-
ment, these complexity effects resulting from locally active
resources will tend to take place more frequently. If the
cloud service resource management system is within the
chaotic state, its performance becomes harder to predict and
it becomes degraded. Moreover, it fails to better meet the
application’s quality of service requirements. However, in
most past works, majority of the researchers do not consider
the impacts that the resource’s local activity has on the cloud
resource management system. Instead, when developing a
new management strategy, they assume that the resources
are locally passive. Therefore,

their research solution always fails to offer better QoS
when they are run on real world cloud environments. The
following are some of the complexity characteristics that are
related to locally active resources:

o Heterogeneity Cloud systems can function
like large virtual supercomputer. However, it
could still have very disparate computational
resources, ranging from laptops, clusters, desktops,
supercomputers, and even smart-phones that
have limited computational power [7]. Current
infrastructures for cloud technology are not very
versatile yet. However, for the cloud system,
heterogeneity is one of the most important features
that have to be considered. With the advent and
development of virtualisation technology, multiple
VMs can be hosted on a single physical machine
simultaneously. However, virtualisation can also
lead to new challenges to the cloud’s resource
scheduling because of the fact that multiple VMs
can share the physical machine’s hardware resources
(e.g. memory, hard disk, CPU, network) [8]. In a
situation like this, accurately measuring the actual
performance of the rented VMs can be difficult. For
instance, in Amazon AWS, resource provisioning
to vms has its basis in compute units instead of
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being based on fixed performance measures. Various
host machines offer differing amounts of computing
power per provisioned compute unit, leading to a
heterogeneity in the VM performance [9]. This means
that in the real world, the cloud should always be
heterogeneous and could never be homogeneous.

e Dynamicity : Another vital complexity factor that
is inherent to the cloud environment is the dynamic
changes within the resource performance during
run-time [10]. Within the real world, this resource
performance dynamicity can be a result of resource
over- or under-provisioning, software/hardware
failures, resource CPU overload, or even application
misbehaviours. Furthermore, the cloud resource
is influenced by the number of running jobs that
are assigned to it as well. These jobs exhibit local
activity and are considered the origin of complexity.
Moreover, when it shares a common underlying
hardware infrastructure with other virtual machines,
the resource dynamicity will be brought up to a
higher complex degree.

e Uncertainty : A large majority of the past works
conducted within the field of cloud resource man-
agement works on the assumption that there is com-
plete knowledge about the cloud resource’s run-time
state. However, for cloud computing, the resource’s
computing capacity and ready time undergo con-
siderable uncertainties during provisioning [11]. We
contend that this uncertainty is the main inconve-
nience of the cloud because it brings about additional
challenges that are involved when one has to predict
the completion time of jobs. This is an important
aspect of making scheduling decisions. In a cloud
environment, resource states can change drastically.
It is not possible to obtain an exact knowledge
about the resource most of the time. It is difficult
to accurately estimate the completion time of tasks,
improve prediction using historical data, correct the
prediction, have a prediction fall-back, etc. This inac-
curate prediction execution results into an associated
scheduling performance that is considerably uncer-
tain.

3.2 Measurement

After the origin of complexity is identified, it is recom-
mended that one has to provide a measurement which
can dictate the behaviour of the locally active resource.
Therefore, based on this studys definition of complexity, it
is measured using entropy [12].

3.2.1 Entropy Theory

“Entropy is a vital statistical quantity that measures the
degree of disorder and the amount of energy that is spend
during the transformation from one state to another within
the same system” [13]. Originally, the entropy concept was
a thermodynamic construct. However, it has been applied
to many other fields of research as well, including pro-
duction planning, information theory, computer modelling
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Fig. 2. Complexity Control: Resource Entropy Based Local Activity Ranking

and simulation, and resource management [14] [15] [16] [17]
[18]. This measure will be used to quantify the reliability
degree that is associated with the resource management
system while using various strategies. We first introduce
this Entropy measure in a general manner. Considering a
dynamic system A in a finite and mutually exclusive state
variable set a = a1, as,as,...,a, and having probabilities
P1,D2, D3, - .-, Pn respectively, entropy H(A) can then be
defined as:

H(A) == p;xlogp; o)
=1

Given two dynamic systems that are mutually indepen-
dent X and Y and that have n and m states, respectively,
the probability ;; of the concurrent occurrence of the states
X; and Y is p;q;. Here, p; represents the probability of state
i that takes place in system X, g; represents the probability
of state j that takes place in system Y, where 1lin and
1jm. Consequently, the sets of states X;Y; are allowed to
represent another finite system that can be designated by
XY. Thus, we can say that:

H(XY)=H(X)+H(®Y) @)

Where the corresponding entropies are H(XY), H(X)
and H(Y') are for systems XY, X and Y. Such an expression
can be extended easily for an arbitrary number of finite
systems that are mutually independent. On the other hand,
given a system S that is made up of s mutually independent
sub-systems s1, 52, 83, . . ., Sk , the entropy can be presented
as:

H(S) = gZH(s) ®)

Obtaining the average system entropy [18] can be done
easily by:
H(S)

== @)

This entropy measure’s other properties, like those for
dependent schemes, can also be found, for instance, in
Khinchins paper [19]. For this study, only mutually inde-
pendent systems will be considered.

3.3 Analysis

After measurements are done, the results obtained from
the complexity measures will then have to be analysed.
Analysing the value’s complexity is related to the mea-
surement goals. Analysing measurements can be done from
many perspectives. For instance, one can implement a com-
plexity measure for:

e Analysing the resource’s local activity level and mak-
ing comparisons, among others.

e Analysing the global system to determine whether it
is in a state of order or chaos.

3.3.1 Degree Of Local Activity

The local activity principle is the reason for breaking sym-
metry in homogeneous media. This serves as a rigorous
but effective tool in identifying the resource’s states. An
increment in the local resource’s activity will result into
an increment of the complexity in the global system. This
means that there is a higher chance for the system to fall
into chaos.

Thus, we are introducing entropy as a quantitative mea-
surement that can be used to make comparisons for the
degree of local activity among the cloud resources. The
goal of measuring local activity is to be able to produce a
numerical scale that can be used to compare the activity
degree on various cloud resources. In a practical sense, it
is difficult to directly obtain the degree of local activity
during run-time. However, one can judge a resource’s level
of activity by studying its performance history with respect
to CPU utilisation. Generally speaking, if one observes
unstable oscillation (disorder) within the CPU utilisation
history, one can say that is under relatively high activity
and vice versa. Therefore, as a measurement of the system’s
degree of disorder, entropy is utilised to provide a quanti-
tative measurement for the degree of local activity that is
associated with the resource’s performance.

3.4 Control

Controlling is an important management step. It is related to
taking control of complexity. Complexity not only has to be
reduced, but it also has to be avoided so that its existence in
the future can be prevented. Therefore, the controlling step
is made up of two parts: reducing and avoiding.



It is not always easy to completely remove complexity
from the system. Thus, it is reduced as much as possible.
Reducing the complexity is a strategy based on cost for
realising cloud service resource management. Improving
the sharing of information between the cloud consumer
and provider can help lessen the high complexity and help
reduce costs. However, an efficient complexity management
system aims not only to reduce the complexity level by
performing corrective actions, but also to avoid complexity
in the future by taking preventive actions. Hence, the effi-
cient and effective utilisation of resource analysis methods
and monitor tools can help control complexity in resource
management.

Increasing the activity on local resources will also
increase the complexity of the global resource management
system. This means that system has greater probability
of falling into chaos. Therefore, we are proposing the
following solution in order to control the complexity, as
seen in Figure 2:

”Allocating tasks to the resources that possess or
exhibit a high degree of local activity should be avoided
or tasks should be allocated to the set of resources having
a similar degree of local activity.”

4 APPLICATIONS AND EVALUATIONS

Based on the proposed entropy measurement, this section
examines various cloud resource management strategies
and provides a detailed explanation of the experiment re-
sults.

4.1 Resource Entropy-based Local Activity Ranking

This paper emphasises on entropy value calculation, which
is based on the resource CPU utilisation history. This gives
an estimate as to how efficiently the CPU is used by the
resource during executions of jobs. Since this can be directly
related with the performance of the resource throughout the
runtime, it becomes highly significant in making scheduling
decision. Algorithm 4.1 is employed to calculate the resource
entropy.

Algorithm 1 Calculate Resource Entropy

1: Require: CUV <« CPU Utilization Vector of resource
2: procedure CACULATEENTROPY(C'UV)
3 Aoy Vo Vector for changes of CPU Utilization
4: Mean(A.,) + Average Changes of CPU Utilization
o
6: if A, > Mean(/A,.,) then
7: State, + Above average state
else State, < Below average state

10: P, < Probability of A, in State,
11: Py, + Probability of /A, in Statey,
12: EnmeY H(Acrr) = _( “a ¥ IOQQRE + pb * "Oqz‘-ob)

The following relationship is signified by the entropy
measurement with the degree of resource local activity:
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e Since 0 < P,, P, < 1., entropy can be considered a
non-negative quantity H(A.,) > 0. The resource en-
tropy value is proportional to the degree of resource
local activity.

o The maximum value of (H(A.,) = log2(2) = 1) is
achieved by entropy on occurrence of both State,
and Statey, having the same probability (P, = P, =
1/2). The performance of resource is determined in
the most unpredictable and uncertain region, which
signifies the maximum degree of activity of local
resource.

e The minimum value H(A.,) = 0 is achieved by
entropy with the occurrence of only one state having
probability 1 (P, = 1 or P, = 1). Thus, the resource
performance can be determined due to complete
certainty, resulting in minimum degree of resource
local activity.

4.2 Spark Entropy Scheduler : Resource Management
By Local Activity Ranking

L
«—— 2004: Mapreduce
10 min. ==

«—— 2009: Hive
10 sec. s=
«—— 2010: Dremel
«—— 2012: Impala

«—— 2010: Spark
100 ms ==

v

Fig. 3. Modern engines can run cloud analysis services with ever lower
latency

As shown in the figure 3, engines such as Map Re-
duce [20], Hive [21], Impala [22], Dremel [23] and Spark
[24] help execute cloud analysis in short time across thou-
sands of resources. This is due to the efforts in research
and industry alike, which is driven by the demand for
lower-latency distributed data analysis. 3. Apache Spark,
within the Apache Software Foundation, boasts of speed-
ups almost 100x faster than that with Hadoop MapReduce
in-memory, or 10x faster on disk. Powerful new appli-
cations such as Cloud Analysis as A Service [25] have
been developed to bring response times into sub-second
range. Apache Spark employs HTTP web service to provide
cloud analysis query response/requests and support multi-
threaded querying as well. A flow chart showing sending
of an HTTP request is presented in Figure 4. A thread is
allocated by Spark Web Server to route the HTTP request for
a specific cloud analysis job. A long run global Spark is em-
ployed for processing context jobs. The Spark Master allows
scheduling to run on the pre-specified amount of Slayer
Workers. In such case, sophisticated parallel computation,
such as highly search personalisations, language translation,
context recommendation and voice reorganisation can be
run by employing user-facing services on a per-query basis.



However, the performance of Spark decreases when faced

with high concurrent of service query. Its performance can

be closely linked with its resource management strategy. In

most cases, increased service query requires deployment of

additional resources, which also increases the underlying
Multi-threaded HTTP Requests

system’s complexity.
Q

[ Web Service API M Spark Analysis Server J

~—=—

Low Latency HTTP Responses

http://server/query ]

Global Spark Context

|5
\;—.Q_./

Fig. 4. Apache Spark : Running Analysis as A Service (AaaS) in the
Cloud

4.2.1 Resource Management Challenge In Apache Spark

Multi-threading is supported by the Spark Context and
FAIR and FIFO scheduling options for concurrent queries
are also provided. Typically, multiple parallel jobs can be
processed by the FAIR scheduler simultaneously for reduc-
ing overall latency. The FAIR scheduler allows assigning
resources to queries so that an equal share of resources can
be allocated to all queries over time on average. Fairness
decisions are made by the scheduler only on the number of
computing cores and memory with default setting. It assigns
tasks to the resource by following random selection. CPU
utilisations of the resource and core speed are not consid-
ered by FAIR scheduler, which cast a significant impact on
the task’s completing time. Thus, guaranteeing QoS for the
on-line query is an uphill task. Popularising the web service
becomes difficult should the resource management strategy
fail to provide an optimal way for guaranteeing the quality
of service.

It is difficult to schedule low-latency cloud analysis jobs
due to multifaceted problems arising on the heterogeneous
cloud. Even though Spark engines are designed for the
Cloud, for high concurrent tasks running on the heteroge-
neous cloud environment, they are unable to address the
problem of resource scheduling. The performance of Spark
can be closely linked with its job scheduler that assumes
cloud resources to be homogeneous. Since the performance
of resource does not change during run-time, these assump-
tions can be employed to make decisions on allocating
jobs to resources. In practice, the resource’s performance
is highly dynamic in nature and assumptions of homo-
geneity do not always apply. Although in a homogeneous
environment, the current scheduler works well, we have
demonstrated that severe performance degradation occurs
on breaking its underlying assumptions. Resource’s perfor-
mance with potentially uncontrollable variance results in
server collapse on dealing with high concurrent requests.
Moreover, as organisations frequently employ multiple gen-
erations of hardware to build their private cloud, we assume
heterogeneous environments to become the common case.
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4.2.2 Entropy Scheduler : A More Reliable and Efficient
Solution

The following optimised resource management should be
kept in mind:

e The individual resource’s characteristics and activi-
ties
o The information reliability of the resource

Awareness about resource characteristics is needed for a
good resource management solution. In the heterogeneous
cloud, the performance of the system becomes more sen-
sitive to resources at hand, and performance degradation
can result from poor management. However, only resource’s
static characteristics, such as number of available cores,
are considered by the native Spark Fair scheduler while
overlooking dynamic characteristics such as CPU core per-
formance. In such cases, unfair scheduling of jobs on the
cores occurs with varied performance. This has a high
impact on the jobs” completion time as well as predictability
of system performance. Resource entropy level (REL) and
resource activity vector (RAV) are introduced to capture the
relevant dynamic performance characteristics of CPU core.
We focus on CPU utilisation, the most important part of
resource information, in the current implementation. This
shows how efficiently the CPU is utilised by the operator
thread during job execution. This is significant in making
scheduling decision since it can be directly linked with
the performance of the core during runtime. A resource
monitor is run on each worker node to get RAV values. The
CPU utilisation by the worker is captured by the resource
monitor, and every second, RAV is updated with the CPU
utilisation difference. The average change of CPU utilisation
(Avg) is then calculated for each time period, followed by
classification of the resource’s history status into two (below
average and above average). Based on algorithm 1, the REL
is updated on every heartbeat interval. Then the heartbeat
from the worker node is transferred to the master node with
the current entropy level and CPU utilisation value to help
in making jobs scheduling decision.

Spark assumes all resource to be homogeneous in nature
and assigns cores to tasks randomly under Fair Scheduler.
However, resources that have homogeneous setting will al-
ways function under heterogeneous performance through-
out the runtime, even in the homogeneous cloud. In hetero-
geneous cloud, such assumptions lead to poor job comple-
tion and deliver unreliable cloud performance because of
the following reasons:

o The finish time of its slowest task determines the job
completion time.

e The chance of allocating cores with various perfor-
mance levels for tasks inside a single job increases
with random cores allocation.

e The current running job has to be completed to re-
lease cores for scheduling other jobs. The other cores’
computing power, those that have completed tasks,
is wasted due to waiting by a job for completion of
its slowest task.

e Re-scheduling and monitoring slow tasks (conduct-
ing speculative execution of tasks) is costly.



Algorithm 2 Calculate Resource Local Activity Ranking

Require: I7,, < Current Resource CPU Utilization

Require: I?. < Resource Entropy

Require: N, <+ Number of Available CPU cores

Require: S, + CPU Core Clock Speed

procedure CACULATERANKING (R.y, e, Nepu. Sepu)
RAN K, csource + Resource Local Activity Ranking
R‘fl—:‘\rﬁ—rﬁ.‘iﬂ?ll?'f - —'F\?f'p'f.f # LS‘(.‘I)‘N * (]' = R[."H-) # (1 - Rf')
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In our proposed Entropy Scheduler, the resource local
activity ranking of all available workers (Algorithm 4.2.2) is
calculated first and the workers are sorted by the ranking
thereafter. We assume that the worker is deployed on a
server with same type of CPU processors. Each worker
may contains one or more executors and an executor is
allocated with one CPU core by default. A typical Spark
job may contains more then one tasks and require one
or more executors to run. Unlike the default Spark Fair
Scheduler (Executors are randomly selected and allocated
to a job), Entropy Scheduler pick up executors with similar
Resource Local Activity Ranking to enhanced the reliability
of performance and overall QoS satisfaction. Once a pool of
executors are allocated to a job, the tasks are scheduled to
run on the executors in “Round Robin” fashion, as shown
in Figure 5.

i

SPARK WORKERS SORTED BY
RESOURCE LOCAL ACTIVITY RANKING

Worker 3
Ranking = 1.8

00
ananp qor

‘ Request 3 Executors
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threads until the task is completed. For performance com-
parison, we use the query response time of every request
from all threads.

TABLE 1

Experimental Platform:Resource specification

Node 1 Node 2 Node 3
CPU Xeon 3Ghz x 2 | Xeon 2.8Ghz x2 | Xeon 1.8Ghz
Cores 8 8 4
RAM 16GB 12GB 12GB
Workers 2 2 1
Executors 8 8 4

4.3.1 Experiment 1: Evaluation under Different Concurrent
Level of HTTP Request Workload

In this experiment, we validate the degree of satisfying
of QoS requirement and query response time with Fair
Scheduler and Entropy Scheduler under various concurrent
levels of request workload, where the concurrent level refers
to the number of concurrent clients trying to send the HTTP
requests to the server in a given period of time (second).
Figures 6, 7, 8 show the results.

Response Time Statistics Results: [min,-sd,mean,+sd,max]
Under different concurrent level of HTTP request
4000

Fair Scheduler
M Entropy Scheduler

3000

2000

Response Time (ms)

‘ Executor 4 Executor 5 Executor 6
(idie) (Idle) (Running)
Executors Pool Worker 2
= Ranking =1
(ldie) Executor 3
Executor 5 (idie)

(Idie)
Executor 3
(idie)

Worker 1
Ranking =0.7

Executor 1 Executor 2
(Idie) (Running)

Spark Entropy Scheduler

Schedule tasks to run on a pool of executors
with similar Resource Local Activity Ranking

Fig. 5. Entropy Scheduler : Resources allocation and Tasks scheduling

4.3 Empirical Evaluation Of Entropy Scheduler

Experiments on a private cloud containing 3 physical re-
sources with heterogeneous setting are performed to ex-
amine the proposed Entropy Scheduler. Table 1 presents
Spark configuration and resource specifications. On the
server, a simple Spark application is deployed to allow
accepting user query for 7 calculated with a number of
concurrent CPU cores that are predefined. Apache Bench
is then employed for load testing the Spark application
within different schedulers (Spark Fair Scheduler [26]) and
Entropy Scheduler [27]). The load testing results in produc-
ing a number of threads to simultaneously execute the same
query. Each thread is loaded and queries are processed by all

1000

o

10 15 20 25

HTTP Request concurrent level

Fig. 6. Experiment 1: Statistics result for service response time

As seen in Figure 6, Entropy Scheduler displays a higher
degree of satisfying QoS requirement and better perfor-
mance. This results in enhancement of the overall through-
put of the server as well (Figure 7).

However, the scheduling system faces serious challenges
due to increasing workload concurrency, which also leads to
degradation of cloud experience performance. Such unsta-
ble performance can be explained through two reasons:

o Contention and load interaction amongst concur-
rently executing queries result in loss in stability and
performance of the cloud. These effects deteriorate
with more complex workloads.

o The cloud, due to its heterogeneity and parallelism,
is a difficult target to accomplish low-latency service
response as performance penalties is led by poor
scheduling and/or deployments.

Figure 8 shows same performance bottlenecks inhibiting
sub-second service response time even though a significant
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Fig. 7. Experiment 1: Overall cloud server throughput

amount of failed requests is reduced by Entropy Scheduler
than with Fair Scheduler. This provides motivation for other
optimisation options in future work.

HTTP Request Failure Rate Results

Under different concurrent level of HTTP request
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Fig. 8. Experiment 1: HTTP request failure rate result

TABLE 2
Experiment 2:Load testing with 100,000 service requests at the
concurrent level of 10

Load Testing Result Fair Scheduler | Entropy Scheduler
Completion Time (Sec.) 951.52 732.15 (- 23%)
Throughput (Queries /Sec.) 10.51 13.66 ( + 30%)
Number of failed request 75 0
Mean Response Time (ms) 951 732 (- 23%)
Standard Deviation 2989 1947 ( - 35%)

4.3.2 Experiment 2: Load Testing with 100,000 Service
Requests at the Concurrent Level of 10

Different aspects of load testing result compared by each
scheduler are presented in Table 2. Throughout the Evalu-
ation section, our results show that native Fair Scheduler
is outperformed by Entropy Scheduler in terms of QoS
satisfaction. On an average, Entropy Scheduler was able
to reduce the load testing finish time and average service
response time by almost 23% and standard deviation by
35%, in this heterogeneous cloud experiment. The overall
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server throughput was found to improve by almost 30%
when compared with native Fair Scheduler.

According to Figure 9, within 1 second, 90% of queries
are completed under Entropy Scheduler, while under Fair
Scheduler, it was only 50%. Such result supports that En-
tropy Scheduler is better in running cloud AaaS and pro-
vides web service with quality of service guarantee.

Percentage of Query Requests' Response Time Results

Load testing with 100,000 query requests at the concurrent level of 10

80% 1172 875 80%

75% 1112 75%

65% 1035 65%

50% 930 720 50%
2000 1500 1000 500 0 500 1000 1500 2000

Response time (ms)

Fair Scheduler [l Entropy Scheduler

Fig. 9. Experiment 2: Percentage of the service requests served within
a certain time (Million Seconds)

5 RELATED WORK

Resource Management in the Cloud has been a common
area of research for many communities over the past years.
However, much of the past work in research do not consider
the complexity nature of cloud environment and all the
solution in industry treat the Cloud environment to be
simplify.

5.1 Resource Management In The Cloud

The fundamental kind of resource management found from
existing literature can be mainly categorized into QoS based,
resource based, bargaining based, prediction based, and
nature-inspired / bio-inspired based.

5.1.1 QoS (e.g. Budget, Deadline, Reliability) Based

Isard et al. formulates resource assignment as a graph op-
timization problem, accounting for fairness, and placement
constraints application may have [28]. A formulation that
supports a mix of QoS scenarios with precisely defined ob-
jective function, promotes performance, fairness, and CPU
utilization is proposed for static workloads with multiple
types of resources by Stillwell et al [29]. Byun et al. pro-
pose an architecture to automatically execute large-scale
workflow-based applications on dynamically and elastically
provisioned cloud resources [30]. Sharma et al. present
a cost-aware resource allocation system that optimize the
selection of virtual server configuration to minimizes the
cost [31]. Hwang and Kim propose a cost-effective resource
provisioning methodology for deadline constrained cloud
applications [32]. A approach that operates fine-gained re-
source level scaling as well as VM level scaling (CPUs,
Memory, I/0) is proposed to support cost-effective elasticity
for cloud services by Han et.al [33]. Mao and Humphrey



present an approach to ensure all jobs are finished within
deadlines at lowest financial cost, where takes the virtual
machine of various sizes/costs as the basic computing units
and which (soft) deadlines of jobs can be specified according
to the performance requirements [34]. A deadline-driven re-
source provision mechanism was presented to support QoS-
aware execution of scientific workloads in heterogeneous
cloud environment by Vecchiola et al. [35]. Malawski et al.
address a resource management problem concerning IaaS
project with cost budget and deadline constraints [36]. The
problem of minimizing the cloud operation cost by maxi-
mizing its energy efficiency while ensuring the application’s
QoS requirements is addresses by Gao et al later [37]. Yang
et al. apply a dynamic interference sensitivity detection
methodology to preserve the performance of batch-analysis
applications for collocation scenarios [38]. Han et al. try to
reduces the costs incurred by cloud users that using IaaS
by utilizing adaptive scaling algorithms for cloud resources,
which enable them to scale their applications only meets
bottleneck [39]. Singh and Chana categorize the cloud appli-
cation workload on the basis of common patterns and then
allocating the resource according to the generalized patterns
before actual scheduling [40].

5.1.2 Resource Based

A theoretical problem formulation is developed for allocat-
ing multiple heterogeneous types of resources to compet-
ing cloud services and the proposed algorithms are com-
pared through simulation experiments based on the Google
Cluster Workload [41]. Xiao, Song and Chen introduce a
new concept, “Skewness”, to measure the unevenness in
the multi-dimensional cloud resource utilization [42]. They
proposed a system to combine different types of workloads
and improve the overall cloud resource utilization by min-
imizing the Skewness [43]. Klein et al. introduce Brownout
that using a self-adaptation programming paradigm based
on Control Theory to develop applications that can ro-
bustly withstand unpredictable resource performance with-
out over-provisioning [44].

5.1.3 Bargaining Based

Lai et al. develop a cloud resource allocation system based
on bargaining, which allows applications to differentiate
the values of its jobs [45]. While An et al. propose an
alternative approach where applications are allowed to au-
tomatically negotiate resource leasing contracts with cloud
providers [46]. Similarly, Dastjerdi and Buyya propose a
solution to automate the negotiation process in cloud en-
vironment [47].Zhang, Zhu and Boutaba try to address the
question how to best match applications QoS requirement
in order to maximize cloud provider revenue and cloud
users satisfactions while minimizing energy cost in a single
cloud provider scenario [48]. Zaman and Grosu attempt to
formulate the problem of resource allocation in clouds as a
on-line auction problem [49].

5.1.4 Prediction Based

A resource allocation methodology is presented by Gmach
et al., which relies on the ability to predict the cloud
application’s behaviour a priori [50] while Gong, Gu and
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Wilkes propose an alternative schema based on predic-
tions of dynamic cloud resource run-time performance [51].
Watson et al. study the probabilistic relationships between
resource and application and apply basic laws of probability
to their proposed model to investigate whether and how
CPU utilization affects application performance [52]. Shen
et al. use on-line workload demand prediction without a
priori assumptions on application behaviour to identifies
the application’s resource requirement, which attempt to
avoid over-provisioning or over-loading of cloud resources
[53]. An algorithm is proposed by Li et al. to adjust the
number of resource allocated to applications based on the
updated information of their actual task executions [54].
Islam et al. present a new resource measurement and provi-
sioning solution based on prediction using Neural Network
and Linear Regression to meet future workload demands
[55] while Vasic et al. serves a similar goal by classifying
workload and reuses previous resource allocations decisions
to minimize reallocation overheads [56]. In] iang et al. work,
they attempt to make a trade-off between resource demand
and service latency by automatically predict the number of
application query requests [57] .

5.1.5 Nature-inspired / Bio-inspired Based

Hegazy use the Genetic Algorithms (GAs) technique to
search for near-optimum solution by taking both resource
allocation and leveling heuristics into consideration [58]
[59]. Hua, Zheng and Hu proposed an Ant Colony Opti-
mization(ACO) based resource allocation algorithm to sat-
isfy the property of cloud computing [60]. A novel parallel
Q-learning approach is presented by Barrett, Howley and
Duggan to reduce the overhead introduced by determine
optimal policies while learning on-line [61]. Recently, a self-
tuning fuzzy control (STFC) approach is extended to enable
qualitative specification of elasticity rules for applications
running on the cloud [62].

5.2 Summary

To make optimal resource management, we need to take the
complex cloud resources into account. However, the lack of
information regarding the dynamic cloud resources makes
this problem more challenging. Nowadays, the challenges
of resource management like complexity of resources (e.g.
heterogeneity, dynamicity and uncertainty) are not resolved
with traditional ways in cloud environment. Thus, there is
a need to make cloud applications efficient by taking care of
these properties of the cloud environment.

6 CoNcLUSION AND FUTURE RESEARCH DIREC-
TIONS

The complexity is an important issue that affects QoS sat-
isfaction bringing additional challenges to Cloud Service
Resource Management System problem. In this paper the
negative impact of complexity was used to motivate the
new resource management strategy development based on
Entropy Theory. With the results in this paper, we provide
both a concrete solution for a class of complex systems, as
well as a number of ideas valuable for conventional engines
running on the cloud.



Complexity research is involved in a main part of 21st
century science according to several prominent authors,
including Stephen Hawking. However, research on Com-
plexity has just emerged in the area of cloud resource
management. The understanding of the origin of complexity
(Locally-active cloud resource) and the impact of complexity
(Performance degradation, QoS guarantees violation and
potential Chaotic behaviour) would offer useful informa-
tion to find the limitation of current resource management
solutions and motivate new strategy development under
complex cloud environment.

Since the approach of introducing Degree of Local Activ-
ity measured by resource entropy to control the complexity
in the cloud in this paper is the first attempt in the related
literature. Many problems may arise, and many issues re-
main open. A list of the most important ones is given in the
following.

o New Experimentation: The proposed ideas have to
be more extensively validated in order to determine
the extent to which it can improve the robust of
resource management in the cloud. The validation
of the ideas includes two dimensions of new experi-
mentations:

1) It has to be applied to more complex applica-
tions running on the cloud in order to analysis
its scope and usability.

2) It has to be applied to more complex cloud
environment by involving larger amount of
resources in order to analyse its scalability.

Such experimentation is of worth interest because the
final purpose is to integrate the framework in the
daily practices of the resource management for cloud
applications.

o Further Implementation: Although the new Entropy
Scheduler reduces significant amount of failure jobs
compare to the native Spark Fair Scheduler, its jobs
failure rate is still far from satisfaction. This problem
may cause by its centralize management feature. In
the future, we would like to learn the idea from
other resource management systems, e.g. Apache
Mesos [63], Omega [64], Sparrow [65] ... and then
transform the current solution from centralized to
decentralized to solve the bottleneck problem bring
by high concurrent workloads.

o Potential Improvement: We assume that the resource
management model only takes into account the CPU
factor may usually influence by other factors as well,
e.g. Memory, Disk 1/O, Network ... The model may
be extended to consider these factors for potential
improvement. And the current model focuses on
the complexity raising from resource. In the future,
complexity originated in other media (etc. links be-
tween resources, workload, outer environment) are
also need to be studied.

e Extended Analysis: In the current complexity man-
agement, we focus on reducing/avoiding the com-
plexity to minimize the negative effect in the cloud
resource management system. However, both pos-
itive and negative effects exist along with the in-
creasing of complexity. There exists a completely new
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application of Local Activity Principle so-called Edge
of Chaos where most complex phenomena merge.
The region of Edge of Chaos can mathematically rig-
orously be proven and confirmed with other applica-
tions in reality, which worth of extended analysis to
draw on the advantages and avoid disadvantage of
increasing complexity.

o Cross-disciplinary Research: Since the concept of

Entropy Theory and Local Activity Principle are re-
ally fundamental in science. The concept of “Degree
of Local Activity measured by Entropy” introduced
in this paper may inspire future applications in other
domains of computer science. For example, in intru-
sion detention system, Degree of Local Activity can
be identified as the behaviour pattern of a user and
the emerging complexity pattern generated by those
locally active users may be detected as instruction.
Such idea can be easily extended to other disciplinary
as well, such as Weather Prediction, Road Traffic
Scheduling, Calling Centre Routing. We believed our
work is a step toward many fruitful research topics
in the future.
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