
Fincher, Sally, Petre, Marian, Tenenberg, Josh, Blaha, Ken, Bouvier, Dennis,
Chen, Tzu-Yi, Chinn, Donald, Cooper, Stephen, Eckerdal, Anna and Johnson,
Hubert (2004) A multi-national, multi-institutional study of student-generated
software. In: Korhonen, Ari and Malmi, Lauri, eds. Proceedings of the Fourth
Finnish/Baltic Sea Conference on Computer Science Education. Helsinki
University of Technology, pp. 20-28. ISBN 951-22-7438-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14083/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14083/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Kolin Kolistelut - Koli Calling 2004 Paper R/03 1

A multi-national, multi-institutional study of

student-generated software designs

Sally Fincher1, Marian Petre2, Josh Tenenberg3, Ken Blaha4, Dennis Bouvier5, Tzu-Yi
Chen6, Donald Chinn7, Stephen Cooper8, Anna Eckerdal9, Hubert Johnson10, Robert
McCartney11, Alvaro Monge12, Jan Erik Moström13, Kris Powers14, Mark Ratcliffe15,

Anthony Robins16, Dean Sanders17, Leslie Schwartzman18, Beth Simon19, Carol
Stoker20, Allison Elliott Tew21, Tammy VanDeGrift22

S.A.Fincher@kent.ac.uk

Abstract

This paper reports a multi-national, multi-institutional study to investigate Computer
Science students’ understanding of software design and software design criteria. Student
participants were recruited from two groups: students early in their degree studies and stu-
dents completing their Bachelor degrees. Computer Science educators were also recruited
as a comparison group. The study, including over 300 participants from 21 institutions in
4 countries, aimed to understand characteristics of student-generated software designs, to
investigate student recognition of requirement ambiguities, and to elicit students’ valua-
tion of key design activities. The results indicate that with experience, students become
more aware of ambiguous problem specifications and are able to address more of the re-
quirements in their software designs, that they use fewer textual design notations and
more graphical and standardized notations, that they systemically ignore groupings and
interactions among the different parts of their designs, and that students change their
valuation of key design activities in response to changes in problem-solving context.

1 Introduction

Software design is difficult: dealing with ill-defined and ill-structured problems; having com-
plex and often conflicting constraints; producing large, complex, dynamic, intangible artefacts;
and being deeply embedded in a domain, such as finance or medicine (cf. characteristics of
the design task described by Goel and Pirolli (1992)). As a result, software design requires a
variety of skills and knowledge: within the domain of application, in programming (Soloway
and Ehrlich, 1984), and in the mapping between the domain-based problem and software
artefacts that carry out the requisite functionality (McCracken, 2004). This paper describes

1Computing Laboratory, University of Kent, UK
2Department of Mathematics and Computing, Open University, UK
3Computing and Software Systems, Institute of Technology, University of Washington, Tacoma, USA
4Department of Computer Science, Pacific Lutheran University, USA
5Department of Computer Science, Saint Louis University, USA
6Department of Mathematics and Computer Science, Pomona College, USA
7Computing and Software Systems, Institute of Technology, University of Washington, Tacoma, USA
8Department of Mathematics and Computer Science, Saint Joseph’s University, USA
9Uppsala University, Sweden

10Computer Science Department, Montclair State University, USA
11Computer Science and Engineering, University of Connecticut, USA
12Computer Engineering and Computer Science, California State University Long Beach, USA
13Department of Computing Science, Ume̊aUniversity, Sweden
14Department of Computer Science, Tufts University, USA
15Department of Computer Science, University of Wales Aberystwyth, UK
16Computer Science Department, University of Otago, New Zealand
17Department of Computer Science/Information Systems, Northwest Missouri State University, USA
18School of Computer Science and Telecommunication, Roosevelt University, USA
19Mathematics and Computer Science Department, University of San Diego, USA
20Department of Computer Science, Azusa Pacific University, USA
21College of Computing, Georgia Institute of Technology, USA
22Computer Science and Engineering Department, University of Washington, Seattle, USA

2 Kolin Kolistelut - Koli Calling 2004

results from a study of the software designs of over 300 Computer Science (CS) students
and educators on a simple design task. (A fuller description of these results can be found in
(Fincher et al., 2004).)

This study is distinctive from other studies of software design along a number of dimen-
sions. First, it is both multi-institutional and multi-national, with participants from 21 insti-
tutions in 4 countries, one of the few software design studies with such a diverse participant
pool. Only a multi-institutional study like this allows the assessment of what factors vary
across educational contexts - and hence are likely to be influenced by educational intervention
- and what are invariant. Second, the data that is examined is particularly rich, with the main
components being the written representations and verbal descriptions of participant-generated
software designs. This allows many diverse research questions to be addressed using multiple
methods of analysis. Third, the study is large-scale, with over 300 participants, which, when
combined with the study’s multi-institutional nature reduces sample bias and increases gener-
alizability. Given the cost and challenges of carrying out empirical research at this scale, there
are few precedents for empirical software studies of this size and scope (but see (McCracken
et al., 2001) and (Petre et al., 2003) for other such examples). And fourth, the study includes
participants at three different levels of educational attainment, thus allowing the examination
of changes in design behaviour with additional formal education.

2 Background

Looking at what Adams et al. (2003) call the design expertise continuum, we can gain insight
into the different developmental stages of software designers which, it is to be hoped, can be
incorporated into more effective design teaching and learning. Jeffries et al. (1981) noted that
novices differ from experts in their ability to decompose a software problem effectively, to
solve sub-problems, and to integrate solutions. Experts organise information differently from
novices, producing different and larger “chunks” (summarised in (Kaplan et al., 1986).) In
a study of industrial design engineers, Christiaans and Dorst (1992) found that novices tend
to scope out a problem less and seek less information than experienced designers. Rowland
(1992) found that novices made few requests for clarifications relative to a design problem.

Expert software practitioners have codified design expertise associated with robust, main-
tainable, testable, and flexible designs, often focusing on the interaction between different
computational modules, as in the design principles of Bruegge and Dutoit (2000): “Ideal sub-
system decomposition should minimize coupling and maximize coherence.” But even when
such principles are taught, it is far from clear that student designers have sufficient skill to
apply these principles in practice.

In addition to studying expert/novice differences, some design researchers examine differ-
ences in student designers at different stages in their education. For example, Atman et al.
(1999) studied differences in the design processes between freshmen and senior engineering
students while developing designs for a playground. Not only were there differences in design
quality between the two sub-populations, there were differences in design behavior as well.
For example, seniors made more requests for information, made more than three times as
many assumptions, and made more transitions between design steps, as compared to fresh-
men. Atman et al. (2003) also examined the design processes of engineering educators so as
to provide insight into both educators’ actual design practices and its implications for student
learning.

In examining student conceptions of design, Newstetter and McCracken surveyed freshmen
engineering students by having them rank the five most important and five least important
from a list of 16 design activities. They found that the freshmen ranked as least important
those activities that are central to general design process descriptions, (e.g. (Goel and Pirolli,
1992)) such as decomposing, generating alternatives, and making trade-offs. Adams et al.
(2003), additionally provide evidence that expertise is characterized by matching the design

Kolin Kolistelut - Koli Calling 2004 Paper R/03 3

process to the design context: “experts do not approach every problem in the same way but
rather adapt to the inherent constraints of the task.”

3 The Study

This study used two tasks to explore students’ understanding of the software design process:
a decomposition task, to examine students’ ability to analyse a problem and then design an
appropriate solution structure, and to elicit students’ understanding-in-action of fundamental
software design concepts; and a design criteria prioritization task, to elicit which criteria
students consider most and least important for different design scenarios.

3.1 Decomposition Task

Participants were given a one-page specification for a “super alarm clock” to help students
manage their sleep patterns, and were directed to produce a design meeting these specifica-
tions. Participants were asked to “(1) produce an initial solution that someone (not necessarily
you) could work from (2) divide your solution into not less than two and not more than ten
parts, giving each a name and adding a short description of what it is and what it does - in
short, why it is a part. If it is important to your design, you may indicate an order to the
parts, or add some additional detail as to how the parts fit together.” Participants performed
this task individually, without communicating with peers or tutors. On completion, partic-
ipants were asked to “talk through” their design, and to name and describe the function of
each part.

3.2 Design Criteria Prioritization Task

After completing the decomposition task, participants were given 16 cards, each describing
a single design criterion. (The phrases represented: Encapsulation, Implementability, High
Cohesion, Loose Coupling, Chunking, Intelligibility, Explainability, Parsimony, Re-usability,
Recognition of structure, Clarity, Design-phase testing, Maintainability, Engineering, Input
re-use, Clear functionality. The phrases as presented can be found in (Fincher et al., 2004)).

Participants were asked to indicate the five most important and the five least important
criteria for each of four scenarios. The first scenario was to with respect to the design they
had just completed. The participants were then asked to rank the criteria (five most/least
important) for each of three hypothetical scenarios:

• for the current task, but in a team (task in team),
• for the current task – on their own – but delivering a fully-functional result at the same

time tomorrow (extreme time pressure), and
• for the current task, but designing the system as the basis of a product line that would

have a 5-year lifespan (longevity).

3.3 Participants

Participants recruited from 21 institutions of post-secondary education from the USA, UK,
Sweden and New Zealand completed the same tasks. Three types of participant were repre-
sented from each institution:

First competency students. (FC) To ensure comparability across institutions, students
were selected at the point in their education where they could be expected to program
at least one problem from the set proposed by McCracken et al. (2001). These problems
involve the simulation of a simple calculator for arithmetic expressions. The McCracken
problem set was used because it references levels of competence, irrespective of cur-
riculum and was devised for use in one of the first multi-national, multi-institutional

4 Kolin Kolistelut - Koli Calling 2004

CS Education Research studies. Not all of the FC participants were Computer Science
majors, but all had taken, or were taking, a Computer Science course.

Graduating students. (GS) Graduating students were defined to be those within the last
eighth of a Bachelor degree program in Computer Science or a related software intensive
degree.

Educators. (E) Educators were defined to be those holding faculty positions, and teaching
in the undergraduate program.

The total cohort consisted of 314 participants from 21 institutions representing 28 educators,
136 first-competency and 150 graduating students.

For each participant the following material was collected: their representation of the de-
sign, the time they took to make it, and a record of their prioritization of the design criteria.
Full transcriptions of verbalisation during the task were made for a proportion of the students;
researcher notes were made for all.

4 Results and Discussion

Three independent analyses were undertaken to provide different perspectives on the data
that was collected. Each analysis is distinguished by the questions explored and the methods
used. Exploratory, data-driven analysis of the design artefacts was undertaken to answer
questions about the types and characteristics of representations that participants used. A
directed qualitative analysis focussed on participants’ recognition of ambiguity in the problem
specification and in their information-seeking behaviour. And a quantitative analysis was used
to answer questions concerning participants’ prioritization of the design criteria.

4.1 Characterisation of Design Artefacts

4.1.1 Design Representations

This part of the study was a data-driven examination of the “marks on paper” representations.
A sample of designs were first examined in order to develop a set of distinct categories into
which each design representation would be grouped. As software practicioner-researchers, we
developed these categories to represent semantically meaningful differences in design notation.
The categories are:

Standard Graphical: recognised notations of software design, such as Class Diagram, or
Entity-Relationship Diagram.

Ad-hoc Graphical: diagrams of any form that were not recognised as standard notations
of software design.

Code or pseudo-code: code segments such as assignments, iteration and selection.
Textual: free text descriptions with at most an occasional illustrative diagram.

Each design artefact was visually examined, and categorised into exactly one of the previ-
ous disjoint groupings based on its predominating characteristic, or into the category Mixed
if there was no clear dominance among the other categories.

To ensure consistency the designs were all categorised by three of the authors and assign-
ment to a category required consensus. Figure 1 shows the results of this analysis. The data
show a shift from textual to standard graphical representations with increases in education,
with the frequency differences between the different subpopulations statistically significant at
the α = .001 significance level using the χ2 test. While 47% of FC participants used pre-
dominantly textual representations, only 27% of GS participants and 23% of E participants
did so. These numbers are inverted for standard graphical representations, with 46% of E
participants, 27% of GS participants, and 15% of FC participants using these representations.

Kolin Kolistelut - Koli Calling 2004 Paper R/03 5

4.1.2 Design Complexity

Two indicators of design complexity were examined: the use of grouping structures among
parts, and whether the design contained an indication of interaction among the parts. Each
researcher analysed the designs from their own institution in terms of grouping by answering
the question “Did the design include any hierarchical, nested, or grouping structure of any
kind?” For example, a diagram with boxes labelled Pocket PC, Alarm Handler, and User In-
terface, collectively labelled as User/Front End would count as grouping. Similarly indication
of interaction was analysed by each researcher answering the question “Are interactions be-
tween any of the parts indicated?” For example, a diagram with two boxes, an arrow linking
the two boxes, and an explanation that one box is providing information to the other box
would count as interaction.

There was some difference in frequency of use of grouping structures between the par-
ticipant subpopulations; 24% of FC, 27% of GS and 46% of E participants used grouping,
with the difference between the combined student groups and the educators significant at the
α = .025 significance level using the χ2 test.

There was also significant difference in frequency of use of interaction between the partici-
pant subpopulations; 66% of FC, 81% of GS, and 93% of E participants indicated interaction,
with the difference between these significant at the α = .001 level using the χ2 test, and
significant at the α = .05 level when the student groups are combined.

For both complexity measures there are marked institutional differences. For grouping it
ranges from a low of 5% of the participants from one institution who included grouping in
their designs to a high of 86% of the participants of another institution Q who did so. For
those who indicated interaction in their designs, it ranges from a low of 40% of the participants
from one institution to a high of 100% of the participants of three institutions who did so.
This suggests that there is a strong effect on design depending on how this material is taught.

4.2 Recognising Ambiguity in Requirements

An analysis was conducted to investigate participants’ recognition of ambiguous aspects of
the design brief requirements. Recognizing and addressing ambiguity is important because it
is cheaper to recognize and resolve ambiguities early, rather than after the design is completed
(Boehm, 1981).

A participant is called an ambiguity recognizer if they ask a question or make an as-
sumption, either in the written representation or verbally during the decomposition task. A
participant is an information gatherers if they ask questions, whether or not they make ob-
servable assumptions. 216 participants are recognizers and 87 are non-recognizers, with 11

Figure 1: Distribution of Design Representations

6 Kolin Kolistelut - Koli Calling 2004

participants not being reliably classified. The percentage of recognizers increases with educa-
tion, with 63% of first competency students being recognizers, 76% of graduating seniors being
recognizers, and 89% of educators being recognizers. There are 138 information gatherers and
165 non information gatherers, with no data for 11 participants. As with the recognizers
the percentage of information gatherers increases with education; 33% of first competency
students, 50% of graduating seniors, and 81% of educators gathered information during the
decomposition task.

The information gatherers and recognizers were also analyzed with respect to the num-
ber of requirements addressed, with each participant classed into one of four categories: all
requirements, most requirements (>= 50%), some requirements (< 50%) no requirements.
The general trend is that as the number of requirements addressed decreases, the percent-
age of recognizers also decreases. This indicates that those who recognized ambiguity had a
higher success rate in addressing all requirements than those who did not recognize ambigu-
ity. Participants who gathered information also had a higher success rate in addressing all
requirements than those who did not gather information. This trend indicates an association
between recognizing ambiguity and successfully fulfilling requirements. Once again, institu-
tional differences were evident. In five institutions all participants were recognizers, while in
three institutions less than half of the participants were recognizers.

4.3 Design Criteria Prioritization

One of this study’s focal questions is whether students recognize different criteria within
the design process. This was motivated by discussion with educators and papers such as
(CMM Correspondence Group, 1997), as well as textbooks such as (Bruegge and Dutoit,
2000) that suggest that there are particular criteria that should be considered when doing
software design. The particular focus here is on the relative importance of different criteria
and how these rankings vary over different participant groups and contexts. By examining
these prioritizations across participant groups, it could be possible to see how (or whether)
these are learned through the curriculum. These rankings were collected immediately after,
and are set in the context of, the decomposition task. The data for each prioritization were
collected into frequency counts for each participant group and scenario.

Figure 2 shows the number of times each criterion was ranked as one of the five most
important criteria by each participant group for the design task that the participants just
completed. There is a surprising similarity of valuations across participant groups. Similar
such graphs for both “most” and “least” prioritizations in each of the four scenarios can be
found in (Fincher et al., 2004); for reasons of space they are not included here.

Figure 2: Most important, “current task” scenario

A number of χ2 tests were run to determine if any apparent differences in frequencies were

Kolin Kolistelut - Koli Calling 2004 Paper R/03 7

statistically significant, across all scenarios for “most” and “least” priorotizations. In terms
of between-group agreement, Educator criteria frequency counts were significantly different
from those of the students for many of the individual criteria under at least one scenario.
However, the frequencies of first competency and graduating students differed little, regardless
of scenario. One of the surprising results is that the criteria Loose Coupling receives the fewest
or second fewest number of counts for most important design criteria by FC students in every
scenario. Loose Coupling also receives the fewest or second fewest number of counts for most
important design criteria by GS students, except in the longevity scenario, where the difference
in frequency with FC students for this criterion was the only statistically significant difference
between the student groups across all criteria and all scenarios. So although this principle is
sacrosanct for practicioners, it is rarely valued as such among students.

One of the things assessed is the degree to which individuals adjust the rankings of their
design criteria when faced by different situations. Adams et al. (2003) observed that expert
designers adapt the way they approach problems to match task constraints. The results of
the present study indicate that students change their prioritizations when faced with different
scenarios more than do educators, but there is no statistically significant difference in the
amount of this change between the two student groups.

5 Conclusion

Each of the three analyses yielded results, with the main ones summarized here.

Design characteristics: there is a progression away from the textual and toward standard
graphical notations with increases in education. The data also indicate that though a
large number of students underestimate the importance of representing structural group-
ings and interactions between design parts, differences in institutional characteristics,
including how software design is taught, might account for these differences.

Recognition of ambiguity: the percentage of both information gatherers and recognizers
of ambiguity increases from first competency students to graduating students to edu-
cators. And those who recognize ambiguity or gather information had a higher success
rate in addressing all requirements than those who did not. As with representation
characteristics, there was considerable institutional difference in frequency of ambiguity
recognizers and information gatherers.

Design criteria: there was little indication of changes to valuation of design criteria among
students with differences in education. Each participant group changed its prioritiza-
tions in response to changing design contexts; surprisingly, students were more flexible,
and adapted their criteria rankings to the context of the task to a greater degree than
did educators.

Taken in total, these results suggest the following. First, that some design behaviors ap-
pear to be developmental, such as recognition of ambiguity and use of standardized design
representations, in that there are increases in the occurrence of these behaviors with increases
in educational attainment. Second, some design behaviors appear relatively invariant with
respect to different levels of education within the Bachelor degree, such as design criteria
valuation. It is possible that changes to these behaviors, such as appreciation of certain
design criteria, is obtained primarily as a result of hard-won experience in “real-world” soft-
ware development contexts. And third, some design behaviors are context-dependent, such
as information gathering and representation of part-part interactions, suggesting that these
behaviors are most amenable to changes in instruction.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant
No. DUE-0243242. Any opinions, findings, and conclusions or recommendations expressed in

8 Kolin Kolistelut - Koli Calling 2004

this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation. Thanks to Leigh Waguespack for assistance with statistical analysis and
to Janet Rountree for assistance with data gathering and transcription.

References

Adams, R. S., Turns, J., Atman, C. J., 2003. What could design learning look like? In:
Expertise in Design: Design Thinking Research Symposium 6. Sydney, Australia.

Atman, C. J., Chimka, J. R., Bursic, K. M., Nachtmann, H. L., 1999. A comparison of
freshman and senior engineering design processes. Design Studies 20, 131–152.

Atman, C. J., Turns, J., Cardella, M., Adams, R. S., 2003. The design processes of engineering
educators: Thick descriptions and potential implications. In: Expertise in Design: Design
Thinking Research Symposium 6. Sydney, Australia.

Boehm, B., 1981. Software Engineering Economics. Prentice Hall.

Bruegge, B., Dutoit, A., 2000. Object-Oriented Software Engineering. Prentice Hall.

Christiaans, H. H. C., Dorst, K. H., 1992. Cognitive models in industrial design engineering.
Design Theory and Methodology 42 (131-140).

CMM Correspondence Group, October 1997. Software product engineering (draft). Technical
Report.

Fincher, S., Petre, M., Tenenberg, J., et al, September 2004. Cause for alarm?: A multi-
national, multi-institutional study of student-generated software designs. Tech. Rep. 16-04,
Computing Laboratory, University of Kent, Canterbury.
URL http://www.cs.kent.ac.uk/pubs/2004/1953

Goel, V., Pirolli, P., 1992. The structure of design problem spaces. Cognitive Science 16,
395–492.

Jeffries, R., Turner, A. A., Polson, P. G., Atwood, M. E., 1981. The processes involved in
designing software. In: Anderson, J. (Ed.), Cognitive Skills and their Acquisition. Lawrence
Erlbaum Associates.

Kaplan, S., Gruppen, L., Levanthal, L. M., Board, F., 1986. The components of expertise: a
cross-disciplinary review. Tech. rep., University of Michigan.

McCracken, W. M., 2004. Research on learning to design software. In: Fincher, S., Petre, M.
(Eds.), Computer Science Education Research. Routledge Falmer, Lisse, pp. 155–174.

McCracken, W. M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., Wilusz, T., 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students. SIGCSE Bulletin 33 (4),
125–180.

Petre, M., Fincher, S., Tenenberg, J., et al, June 2003. “My Criterion is: Is it a Boolean?”:
A card-sort elicitation of students’ knowledge of programming constructs. Tech. Rep. 6-03,
Computing Laboratory, University of Kent, Canterbury, Kent, UK.
URL http://www.cs.kent.ac.uk/pubs/2003/1682

Rowland, G., 1992. What do instructional designers actually do? Performance Improvement
Quarterly 5 (2), 65–86.

Soloway, E., Ehrlich, K., 1984. Empirical studies of programming knowledge. IEEE Transac-
tions on Software Engineering 10 (5), 595–609.

