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Abstract

Motivated by Weyl algebra analogues of the Jacobian conjecture and the tame gener-
ators problem, we prove quantum versions of these problems for a family of analogues to
the Weyl algebras. In particular, our results cover the Weyl-Hayashi algebras and tensor
powers of a quantization of the first Weyl algebra which arises as a primitive factor algebra
of U (s0s).
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1 Introduction

For a field k, let A :=k(z1,...,x,) be the free associative algebra in n variables and denote
by AutA the automorphism group of A. An automorphism ¥ of A is called elementary if it
is of the form

V(X1 .y xn) = (21, w1, ax + Foxieq, .., oy),

where a € k* := k \ {0} and F € k{(x1,...,2i—1,%i41,...,2Zpn). The subgroup of AutA
generated by the elementary automorphisms is called the tame subgroup, and an element of
this subgroup is called tame. An automorphism of A not belonging to the tame subgroup is
called wild. Study of the automorphisms of A, and of factor algebras of A, has been ubiquitous
over the last hundred years (for a comprehensive overview see [14]). It was shown in [21] and
[23] that the automorphisms groups of the polynomial ring and the free associative algebra
in two variables are tame. Along with these results came the following natural problems:

P1: Is every automorphism of the free associative algebra in n variables tame?
P2: Is every automorphism of the commutative polynomial ring in n variables tame?

Notably in [27], Nagata’s automorphism, proposed in [24], was shown to be wild yielding
a negative answer to P2 in three variables. In [32] the Anick automorphism of the free
associative algebra in three variable was show to be wild also giving a negative answer to P1.
Both Nagata’s automorphism and the Anick automorphism are stably tame (see [28]), thus,
lifting either automorphism to higher order spaces unfortunately does not produce further
wild automorphisms. To the best of the authors’ knowledge the tame generators problems
P1 and P2 remain unsolved for n greater than 3 generators.

*Andrew P. Kitchin thanks EPSRC for its support.



In his foundational paper on the Weyl algebra [13], Dixmier showed that every automor-
phism of the first Weyl algebra is tame. Given that the n'® Weyl algebra can be realised
as a factor algebra of the free associative algebra in 2n variables, the natural Weyl algebra
analogue of the tame generators problem follows:

P3: Is every automorphism of the n'® Weyl algebra tame?

Again, to the best of the authors’ knowledge P3 remains unsolved for n greater than one.
Given the existence of wild automorphism in the polynomial ring and free algebra cases, one
might suspect that a similar result will follow for higher order Weyl algebras.

In [22], primitive factor algebras of Gelfand-Kirillov dimension 2 of the positive part
of the quantized enveloping algebra Ug,(sos) were classified. These can be thought of as
quantum analogues of the first Weyl algebra. Among those are the algebras .7, , with o € k*,
where 7, 4 is the associative algebra in three variables eq, e2, and e3, subject to the following
commutation relations:

ere3 = q 'eser,

ege3 = geseg + Q,

ezer = q eres — g les,

€3+ (¢* — Degeres + ag(qg + 1)er = 0.

Setting ¢ = 1 and o = 1 we indeed get an algebra isomorphic to the first Weyl algebra. In
[22] these algebras are denoted A, and for simplicity, we replace ¢* with q.

Let %’j}t denote the associative algebra with generators , Q' ¥ and ¥' subject to the
relations

QO =0"1t0=1,
U0 = ¢QU, Ui =¢100f,

tht _ q—tQ—t Qt _ Q—t
qt _ q—t qt _ q—t ' (1)

By setting t = 1 we retrieve the Weyl Hayashi algebra %Zl studied in [1] and [18]. When ¢ = 2
we get the original algebras introduced by Hayashi in [16]. In this article we will consider
the generalization L%’f]t which covers both conventions. In [16] Hayashi introduced %ZQ as
g-analogue of the Weyl algebra to construct oscillator representations of quantum enveloping
algebras. In [18] it was shown that the algebras %11 arise as factor algebras of a g-analogue
of the universal enveloping algebra of the Heisenberg Lie algebra. It was also shown in ([22],
Section 3) that %’j} appears as factor algebras of the positive part of the quantized enveloping
algebra Uy (so05).

The tame generators problems, and in particular P3, makes it natural to consider if
the complexity of the automorphism group of quantum analogues of the n'" Weyl algebra
fundamentally changes as n increases. In this article we arrive at analogues to the n'® Weyl
algebra by taking the tensor product (over the ground field) of n copies of our first Weyl
algebra analogues <7, , and %’j]t. By showing that these algebras are part of a family of
generalized Weyl algebras that we call quantum Weyl analogue (quwa) algebras, we are able
to define the notion of qwa-tame (see Section 5 and specifically Definition 5.1). Using our
definition we show that the automorphism groups of our analogues are well behaved as we
increase the number of tensor copies. Precisely we prove the following quantum analogues to
the tame generator problem:

ot = , and UIw =



Theorem 1.1. Every automorphism of @pq @ -+ @ @y q is qua-tame for o € k* and q €
k*\ {z]22 = 1}.

Theorem 1.2. Every automorphism of %’jf Q- %‘ff is qwa-tame for o € k* and q €
k* \ {z|2% = 1}.

In general computing the automorphism group of an algebra can be very difficult. Recently
some progress has been made to produce a uniform approach to this problem for a large
class of algebras (see [11]). In [12] the same authors use their approach to show that the
automorphism group of tensor products of the so-called g-quantum Weyl algebra is tame.
Theorem 1.1 and Theorem 1.2 can be seen as a direct analogue to [12, Theorem 2].

Dixmier also made the now famous conjecture: Every endomorphism of the n'" Weyl
algebra is an automorphism. Tsuchimoto, [31], and Belov-Kanel and Kontsevich, [8], proved
independently that the Dixmier Conjecture is stably equivalent to the Jacobian Conjecture
of Keller [17]. It is natural to ask Dixmier’s question for related algebras (see [5, 25]), and
especially generalizations and quantizations of the Weyl algebras (see [2, 10]). In [19], every
endomorphism of 47, , (and more generally simple quantum generalized Weyl algebras), when
q is not a root of unity, was shown to be an automorphism. In this article we show that every
homomorphism between two of our analogues of n'" Weyl algebra is invertible. Precisely, we
prove the following theorems:

Theorem 1.3. If q is a not a root of unity and o;,a; € k* fori € {1,...,n}, then every
homomorphism between Hp, q @ -+ ® o, 4 and g, Q- Dy, 4 is invertible.

Theorem 1.4. If q is a non root of unity, then every endomorphism of %’f]t X ® jﬁ]t s an
automorphism.

In parallel to the pathology often encountered when considering algebras over nonzero
characteristic fields, in quantum algebra, considering quantizations at roots of unity can be
equally problematic. Given the current interest in reduction modulo p techniques and results
in the context of differential operators (see for instance [7, 20]), it is natural to extend the
work in [19] to study the endomorphisms of quantum generalized Weyl algebras when ¢ is a
root of unity. This case can be thought of as the quantum analogue of reduction modulo p
(see for instance [2]). Thus, we extend the classification of endomorphisms used in the proof
of Theorem 1.1 of [19], to include the case where ¢ is a root of unity other than £1. We show
that there exist non-invertible endomorphisms in this case (see Corollary 4.2).

2 Preliminaries

To prove our quantum analogues of the tame generators problem and the Dixmier conjecture,
we will exploit that the algebras 7, , and %’j]t are isomorphic to generalized Weyl algebras of
degree 1. Our strategy will then be to classify the homomorphisms between tensor products
of these algebras.

Recall that for a k-algebra R, a (k-algebra) automorphism o of R, and a central element
of R, say a, the generalized Weyl algebra R(o,a) of degree 1 is the algebra extension of R by
the two indeterminates x and y subject to the relations

zy =o0(a), yr=a, zr=o(r)z, and yr =0 (r)y forallrc R.



The isomorphisms and automorphisms of generalized Weyl algebras of degree 1 have been
widely examined (see [6, 26, 29]). For d € N*, g € k* \ {z]z? = 1} and o € Aut(k[h*!]) such
that o(h) = qh, we denote by A(d,q) the generalized Weyl algebra k[h*!](c, h? — 1). Using
Proposition 3.10 of [22] and Theorem A of [29] we have that <7, ; ~ A(1, q).

Remark 2.1. Given that @/, 4 ~ A(1,q) for all a € k*, Theorem 1.3 reduces to proving that
every endomorphism of A(1,q) ® --- ® A(1,q) is an automorphism when q is not a root of
unity.

By the isomorphism which sends

qft —1
Q—=h, ¥ ———

—, and VAN Y,

q —q
we have that j?j]t ~ A(2t,q). Since the algebras 27, , and sz]t are analogues of the first Weyl
algebra, we can produce analogues, and in the case of <, , a quantization, of the n™ Weyl
algebra by taking a tensor product, over k, of n copies of the original algebra. Thus, for
n,d € N*, q:= (q1,...,qn) € "\ {z]2! = 1})" and 0; € Aut(k[h!]) such that o;(h;) = g;hi,
we define the quantum Weyl analogue (qwa) algebras

A(n,d, q) := Q) k[h; (05, b — 1),
=1

By extending the above isomorphisms we can realize the algebras
%C%fh ® T ® ‘Q{OMZn and %17t ® e ® %n)t

as members of the family of algebras A(n,d, q).

Since the category of generalized Weyl algebras is closed under tensor product, A(n,d, q)
is a degree n generalized Weyl algebra in the sense of [3]. For simplicity we fix the notation
N :={1,...n} and a4(h;) = h¢—1. Precisely, A(n, d, q) is the k-algebra generated by z;, y;, h;
and h;l subject to the relations

zihi = qhizi, yihi = q; "hivi, iy = aa(gihi), vivi = aqg(h;), h'RFt =1
and the commutation relations

hihj = hjhi, hizj = zjhi, hiy; = y;hi,
wiwy = xixi, Ty = Yz, and Yy = gy (2)

for i,7 € N and 7 # j.

The property that any degree n generalized Weyl algebra is Z"-graded is integral to the
proof of Theorems 1.1 and 1.3. Thus, we recall this grading from [4] applying it to A(n,d, q).
For a vector k := (k1,...,kn) € Z" we set wx := wg, (1) - wy, (n), where for i € N and
m > 0 we have

W (1) = 2", w_p(i) =y, and wo(i) = 1.

It follows from the relations of A(n,d, q) that

A(n, d, q) = @ A(k) (3)

kezZn



is a Z"-graded algebra, where A = k[hEl, ... b = wik[REY, ... Y.

When classifying automorphisms or isomorphisms, it can often be illuminating to consider
normal elements, since normality is preserved by invertible homomorphisms. Indeed, this
approach was adopted in [26] to classify, up to isomorphism, quantum generalized Weyl
algebras over a polynomial ring. For general homomorphisms, normality is not preserved.
Instead, we exploit that any homomorphism maps invertible elements to invertible elements.
It is clear that the algebras A(n,d, q) have non-trivial units since the component generalized
Weyl algebras are defined over Laurent polynomial rings. We will now state the classification
of units for the algebras A(n,d,q).

Lemma 2.2. Any unit in A(n,d,q) is of the form yh{"* - - - hj*™, where vy € k* andmy, ..., m, €
7.

The result is well known for the algebra A(1,d,q) (see for example [6, Lemma 5.1 (i)]).
The proof for the general case follows.

Proof. Let u be a unit in A(n, d, q) with inverse u~!. Using that A(n,d, q) is Z"-graded (see

Equation (3)) we write
U= Z Wi and w!' = ZVS,
kezn SEL™

where Wi, Vi € Ay for all k € Z" (all but a finite number of them being equal to zero).

ThuS, we ha;\/()

Noting that Z" is a totally ordered group and 1 € A g), we find that u = Wy and =V
for some k € Z". Since h? — 1 is not invertible, we come to the conclusion k = 0. Therefore
any unit of A(n,d,q) is a unit of k[hT!, ..., hF!]. By the definition of A(n,d,q) we can see
that this condition is sufficient. O

3 Classification of Homomorphisms

Before giving our classification of homomorphisms we introduce for simplicity the following
notation. For 0 < r < mn, let R :={1,...,7}, q := (q1,-..,q) € (k*\ {z[z% = 1})", and
A(r,d,q) := A(r,d,q) distinguishing A(r,d,q) from A(n,d,q) by marking every generator
and indeterminate of A(r,d,q) with a tilde (for example h;). We attach primes (for example
p};) to expand our choice of notation, this is in noway related to the derivative of an element.
Finally, we use the notation Z* := Z \ {0} throughout. _

We will now classify the homomorphisms between A(r,d,q) and A(n,d, q).
Theorem 3.1. 1. Let ¢ be a homomorphism from g(r, d,q) to A(n,d,q).

(i) There exists a partial permutationw : R — N, (11,...,7) € {0,1}" and (m1,...,m,) €
(Z*)" such that

Gy "= ()

fori e R.



(it) There exists a matriz (t; ;) € My n(Z) such that
tl,w(i)(l_TZ) —tw@Ti —tiwo)I-T) tiwmT
Wiy Q@) Gud) Wiy =1 (5)
for alli,l € R.
(iii) Fori € R there exist p;(hy(iy), Pi(hw()) € k[hi(li)], and v; € kK* such that

1-7; ~ i
Pi(hao(a)Ph (P )00y 5y as(iy) = aa (@i ). (6)
(iv) The homomorphism i is defined on the generators of A(n,d,q) as follows:

o ¥(hi) = yihipiy, where yf = g

o (T;) = pi(hy (.))b-ht“1 e h%’"xfj(i)n)y;i(i), where b; € k*

1-7 1.t tin
V) = w( )y’l(u( ) )p;(hw(i))bi Yh"t e hy,

2. Conversely, assume there exist a partial permutation w: R — N, (11,...,7.) € {0,1}",
(mi,...,my) € (Z*),(b1,....b),(71,-.., %) € (k)", a matriz (t;;) € Myn(Z) and
(P15 pr), (DY - ph) € (K[AEY))" such that Equations (4), (5) and (6) hold, and
’yld = (ﬁ_”d fori € R. Then, there exists a unique homomorphism v, (where o encodes

the information in the hypothesis) from g(r, d,q) to A(n,d,q) defined on the generators
of A(r,d,q) as follows:

o Yo(hi) = vihipiy,

o Yo(T;) = pi(hw(i))bihtf’l e h%’nJUS(;)ﬂ)yZ(i)

~ i 1—7; —14 —t, —tin
* Yol(yi) = x;(i)yfu(i)T i (a7 ey
Proof. We dedicate the rest of Section 3 to the proof of Theorem 3.1. For ease of under-
standing we break down our proof into four steps, giving summaries at the beginning and

end of each step. Steps 1-3 combine to prove statement 1 of Theorem 3.1, and Step 4 proves
statement 2. I

3.1 Step1

In Step 1 we will determine, for i € R, the action of a homomorphism i on IZ We will also
show that (7;) € Ay and P(yi) € A_x), where Ay and A_y) are as defined in Equation
(3).

Let 1 be a homomorphism from g(r, d,q) to A(n,d,q). Since units are preserved by
homomorphisms, from Lemma 2.2 we deduce that, for all i € R,

w(g) %hml b Zliyna

where v; € k*, and m; 1,...,m;, € Z.

We first prove that for all i € R there exists | € N such that il # 0. By contradiction
assume m; 1 = = m;, = 0. Applying 9 to the relations xlh = qlh x; and y,h =q; 1hzyZ
we find that Q,Z)(.Tl) =0=1(y;). Applying ¢ to y;z; = ad(h ) and Z;y; = ad(qlhz) gives us that

aq(vi) = 0= aq(qivi) (7)



implying that ¢, = 1 contradicting our assumption. Hence for all i € R there exists [ € N
such that m;; # 0.
Applying 1 to the relation z;y; = aq(g;h;) we get

V(@)Y(yi) = ad(‘]z%hl < hn ). (8)
Using that A(n,d,q) is Z"-graded (see Equation (3)) we write

= > Wi and (@) = > W,

keZn seZ"

where Wi, Wi € Ay for all k € Z" (and all but a finite number of them being equal to zero).
Substituting these expressions into Equation (8) yields

(20) (£ 0) oo
kezn sezn

Noting that ag(giyh|™" - hn'") € Aoy we find that ¢(z;) = Wy and ¥(y;) = W’ for
some k € Z". Up to reorderlng the tensor product factors in A(n,d,q), it suffices to only
consider the case where k = (ki,..., ke, —keq1,...,—kn) with k; € Z>¢ for j € N. First
consider the case where k = 0. Thus, ¥(z;) = Pi(h1,...,h,) for Pi(hy,...,h,) a Laurent
polynomial in the variables h1, ..., h,. Applying ¢ to the relation z;h; = g;h;z; implies that
P;(h1,...,hn) = 0 since g; # 1. Now, applying 1 to the relation y;z; = a4(h;) gives us the
contradiction ¥ (aq(h;)) = 0. Thus, there must be at least one nonzero entry in k. We now
have

¥(x;) = Pi(h1,...,h )wlfl . m yeiﬁl . .yf‘bn
- ko .
and w(yl) = yl ’ ylg e++11 e xﬁ ]Di/(hlv S hn)
where P;(hi,...,hy) and P/(hi,...,h,) are nonzero Laurent polynomials in the variables
hi,...,hy. Thus, we can rewrite Equation (8) as

k e kn k? € kn
Pi(h1,... hp)aht o zk yeﬁl- Cyfng iy e 6++11---93 Pl(hy,...,hy)

‘ 10
— ad<quyzhmll ...hnm"")' ( )

Standard manipulation (see [6, Equation (5)]) of Equation (10) gives us that

e ks n  ks—1
Uil ) (HHad<qihs>> ( II 11 ad<q;’h5>> = ag(Gyh™ )

s=11=1 s=e+1 [=0

where U;(hi, ..., hy) = Pi(h1,..., hn)P/(h, ..., hy). Using that aq(X) = X% — 1 we get

n  ks—1
oo ([0 (LT )
hmi,n

= ag(@vihy " - b ).

Pick j € N such that k; # 0. Evaluating Equation (11) at h; = qj_1 if j € {1,...,e}, or
hj =1if j € {e+1,...,n}, implies that m; , = 0 for all s € N\ {j}. We cannot repeat this



process by evaluating at an alternate zero, since we have proved that at least one m;; # 0

with [ € N. Hence for each ¢ € R there exists a unique j € N such that m;; # 0. Moreover
z/)(ﬁz) = %h;ni’j . We set w(i) := j, but suppress this notation for simplicity until Step 3,
where we show that the map w : R — N is a partial permutation. Since the double subscript
is now redundant we simplify our notation and set m; := m; ;.

To summarize, in Step 1 we have shown that, for all i € R,

- ‘ N y )

P(hi) = ’Yz‘h;-m, W(x;) = Py(hy,. .. ,hn)a:]fl = -xléeye:ll coegyfn
~ ke .

and () =yl - yleateit o 2k Pl(h, . ho)

where j = w(i) € N, v; € k*, m; € Z and P;(hy,...,hy),P/(h1,...,hy) € k[h?l,...,hfl]
and (](21,... ,kn) S (Zzo)n \ {(0,,0)}

Remark 3.2. One can derive from Equation (11) that all but one of the exponents ki, ... ky,
are equal to zero (consider the form of aq and the units of A(n,d, q)). We leave the statement
and justification for this implication until Step 2, where it follows clearly from a rewriting of
the equation under examination.

3.2 Step 2

In Step 2 we will determine precisely, for i € R, the action of a homomorphism on Z; and y;.
We also show that

d ~—7;d
Yi = 4di .

Using the action of ¥ on h; we found in Step 1 we now rewrite Equation (11) as

Ui(hy,. ., hn) (H]k_[ (qidhgl - 1)) ( ﬁ kﬁl (q;zdhi - 1)) (12)

s=11[=1 s=e+1 [=0
= ag(@ih}") = (@vih}")? - 1.

Since the factors in the product of the left hand side of Equation (12) are not invertible
(discounting U;(hi, ..., hy)), comparing coefficients shows that k; is the only nonzero entry
in k. We can also conclude that Uj(hi,...,hy) is a Laurent polynomial in h; only and write
Ui(hi, ..., hy) = U;(h;) to reflect this.

For simplicity we introduce notation to distinguish between the following two cases: Let
7, =0ifk=(0,...,kj,...,0) and i, = 1 if k = (0,...,—Fkj,...,0), for k; > 0. We can now
write Equation (12) as

Uithy) TT (477" = 1) = Giland — 1. (13)

We will now prove by contradiction that k; = 1. Assuming k; > 1 we find that qj—(—l)m(l—n)

(~1)7i(2-7)

and qj_ are zeros of the left hand side of Equation (13), substituting these yields

(q],—t—lri(l—m)mid Gy = (q]f(—l)ﬁ(z—m)mid’

8



implying, by simple manipulation, that q;'”d = 1. Applying ¥ to the relation :LN‘ZEZ = qih;x;
gives us

ki(1—7;) kyr; e , ki(1—73) kjr;
Pilhyy s ha)a Ty T = G Pk b T

Simple manipulation indicates that

4; = ;- (14)

Equation (14) implies that q](-fl)nmikjd = %, and by substituting q;nid = 1, we find that
(Z'd = 1 which contradicts our assumptions and thus, k; = 1.
Note, since the derivation of Equation (14) did not rely on the assumption that k; > 1,

we have, by substituting k; = 1,
4; =G (15)
Substituting k; = 1 into Equation (13) gives us

Uihy) (™07 - 1) = Glhed 1, (16)

Evaluating h; at qj—(—1)n-(1_7i)

that

in Equation (16) and using Equation (15) we can conclude

v =g (17)
Finally, since U;(h;) is a Laurent polynomial in h; we have
Pi(hi, ... hn) = pi(hj)bhit - by and Pl(ha, ..., hn) = pl(hj)b; Yhy ™ - by
where pi(hj)p;(hj) = Ui(hj), b, € K* and ti,h R 7ti,n € 7Z.

To summarize, in Step 2 we have shown that there exist (11,...,7.) € {0,1}", (m1,...,m,) €
(Z*)r7 (ti,l) S Mr,n(Z); (bl’ ceey b?“)a (717 s ,’77’) S (k*)r and (pla e 7107“), (plla o 7p;) S

(kK[pE))" such that, for all i € R,
~ m; ~\ t;, tin  (1-71) =
P(hi) = vihi", (i) =pi(hy)bihy™" - hy fﬁg )yj

and (i) = A

—7;d

and*yl-d:('ji .

3.3 Step 3

In Step 8 we will show that the map w : R — N from Step 1 is a partial permutation. We
will also derive the necessary condition

tw@) (1-7) —tiwo)Ti —tiwe)(1-71) tiwo™
%u(i) Q) Gwi) Gy —b

Jor i,1 € R, which is required to ensure v is consistent on the commutation relations of
A(r,d, q) (see Equation (2)).



For simplicity we state the action of 1) on h; and hy for i #ec R:
7 m; ~ ti, ti,n —Ti), T;
P(hi) = il (@) =pi(hy)bihy™" -~ hn SCE»I )yj

and (y;) = y](1 Tl)p;(h )bi_lhfti’1 hp

and _ . bon (1—72)
U(he) = vehy', Y(@e) =pe(hr)behy™ - hn "y~ ype

amu@a—wﬁ”%wawl N e

where for simplicity we set j := w(i) and k := w(e).

First we prove, by contradiction, that w is a partial permutation. Assume j = k. Consider
when 7; = 7. (due to the similarity in the calculation we leave the 7; # 7. to the reader (see
Remark 3.3)). Applying ¥ to the relation z;y. = yez; yields

ti tin Ti) TP Te Te —1q —te, —tom
pi(hj)bsht - bl x§1 )y 2 yj(l )p/e(h')b 1h ¢ 1"'hnt

| _ (18)
= 2Ty L (hy )b lhft“ b i (bR Ty
Rearrangement of Equation (18) gives us
1-7; Ti
pi(hy)pl(hj)aa(a;'hy) = P(hy)aa(a] hy). (19)

where P(h;) € k[h;ﬂ]. Evaluating Equation (19) at h; = ¢; ™ yields

—T 1—2Ti

pi(g; " )pe(a; ")aalq; ) =0

which implies, since aq(q; ") # 0, that pi(g; ™) = 0 or p(¢; ™) = 0. Assuming p;(¢; ) =0
and noting that p;(h; )Pz(h ) = Ui(h;) we get that U;(¢; ™) = 0. By evaluating h; = ¢; ™ in

Equation (16) we get
~d_d —T mid
4 (q] ) —1=0

and by substituting for 7¢ using Equation (17) we get

N\ msd
G ()" =1 (20)
By considering the cases where 7, = 0 and 7; = 1 seperately and using Equation (15) we
derive the contradiction ¢;¢ = 1. The case where pe(q-*ﬂ) = 0 follows in exactly the same

way.

Remark 3.3. The case where 7; # 7. differs only insofar as we apply 1 to the relation
TiTe = Ty to derive our desired contradiction and show that w is a partial permutation.

Since j = w(i) # k = w(e) for all i # e € R, the map w: R — N is a partial permutation
and we have for all i € R

h t; tin i) T
P(hi) = yihiyy, V(@) =Pi(hue)hy™ - b x(l(o )yw(o
and dj( ) w(z)y,l(ﬂl(z)ﬂ)P,(h (i ))hl—tz’,l L. h;ti,n‘

10



Finally applying ¢ to the relation ;77 = 7;7; (see the commutation relations (2)) yields the

relation
o) (1=Ti) —tw@yTi —tiwey(1=71) tiwm T 1

D (i) Do i) Qw1 Qw1
as required.

We have completed the proof of part 1 of Theorem 3.1.

3.4 Step 4
In Step 4 we will show that v, defines a homomorphism between g(r, d,q) and A(n,d,q).

It suffices to show that v, is consistent on the defining relations of g(r, d,q). For simplicity
we set 1o := 1. Thus,

O(@)P(hs) =pi(hg)biny" - ‘hz’nxgul(;)m Yooy VP
Moy (i) (L=73)—73) |/ ~ ~
=d, 1" Y(z)Y(hi).

By hypothesis we have ql(u_(il))nmi = ¢; which gives the desired result that

V(@)Y (hi) = qib(zi)p (he).
Next consider
V() = 27y P ) pihu) T V)
= i@y hu)P @ ) aa( @ ) (21)

By hypothesis we have the equality

Pi( (i) (o) )00y oy sty ) = aa (@i ). (22)
Substituting g l( )(1 Tl)hw(i) into Equation (22) gives us

Ti— Ti 1- Ti m;
pi(qw(l)( 'haii) (g ()( )hw(i))ad(qw(i)hw(i)) = ad(Yily;)-

which in combination with Equation (21) yields the desired result that

V(Y)Y (@5) = P(aa(hi)).
Similarly consider
PED(E) = i(haui) 2 U oy Yoty Pi o))
_ LT, T (1—m)
= pi(hw(i))p;(hw(i)) w(i) y (z) w(z)yw(i)
= Pilhuo(o)Ph (o) aa (@™ P

11



which by the hypothesis stated in Equation (22) gives
Y(@)(gi) = ad(%'}’zhw( )) Y(a (qzhl))

Since the images of . h and h; commute (see Equation (2)) it is clear that v is _consistent
on the relation h;h; = hlh For the same reason, 1 is consistent on the relations hi7, ir] = wlh
and ;g = Gihi.

Finally for ¢ # [, consider

o o~ t; tin 1—7; Ti t s t n~ 1—7 T
Y(&)P(T1) = pilhe(iy)bihy™ - - hn :Efu(i) )yw(i)pz(hw(m)bzhf RRRRY xfu(l) l)yuf(l)
which after rearrangement and application of the hypothesis

tw)(1-7) —tiw@)Ti —tiwo)(1-71) tiwoT
Qw(s) Qw(s) Qw() Ty =1

gives us ¥(z;)y(z1) = ¢(@)¢(2;). Similarly (y:)v(v) = (W)Y (yi) and P(z)v(y) =
Y(41)9(7;). By universal property the algebra A(r d,q), the map ¢ defines an homomor-

phism from A(r,d,q) to A(n,d,q).
We have completed the proof of part 2 of Theorem 3.1.

To conclude this section, we give the general form of an endomorphism of A(n, d, q) subject
to the technical assumptions in the statements of Theorem 1.3 and Theorem 1.4. Recall that
o; is the automorphism of k[h!, ... h'] defined by o;(h;) = ghs, and o;(h;) = h; for j # i.

Corollary 3.4. Letq = (q,...,q) for ¢ € k* a non root of unity. Then every endomorphism
of A(n,d,q) is of the form:

(hi) = bl @) = el My and D) = e

where w is a permutation of N, (11,...,7) € {0,1}", (71,...,7n) € (kK*)" such that 78 =
7id and e;, €, are units of A(n,d,q), such that e;e} = (—1)Tih_dﬁ and

T w(i)

cioyiy (@) = aoyg) ™ (e), (23)
foralli#1€ N.
Remark 3.5. By a simple calculation, we can see that when e; = pz‘(hw(,-))b,;htf’l . hf{"

and e; = p;(hy(i))b; lh_tl Loyt (as in the statement of Theorem 3.1), Equation (23) is
equivalent to Equation (5)

Proof. Let ¢ be an endomorphism of A(n,d,q). By Theorem 3.1 the endomorphism v acts
on the generators of A(n,d,q) as follows:

m; ts, tin (1-73)
P(hi) = 'Yihw(i)a Y(x;) = pi<hw(i))b‘h Loha xa&;(i) )yw(i)’

Ti Ti _tz _ti,n
and 9 (y;) :xw(‘)y(l() )p;(h ())b lh Yeihy

where the parameters w, i, mi, t; j, Ti, Di(ha(s)), P (hw()), and b; are as in the statement of
Theorem 3.1 and therefore satisfy Equations (4), (5) and (6). By Equation (4), and since ¢ is

12



not a root of unity, we have that m; = (—1)™ for all i € N. By substituting for m; in Equation
(6) and comparing coefficients of Ay, we find that p;(h,@)) and pj(h,)) are monomials
. —d \7 . ts, Lin

i hy ) such that p;(huy))p;(hw@)) = (—hwé)) i Setting e; := p;i(hy())bihy"" -+ - hn" and
el = pg(hw(i))bi_lh;ti’l cohp M it s clear egel = (—h;é))”. For simplicity we state an

updated form of an endomorphism of A(n,d, q):

Wlhi) =)™ ) = ein Pyl and ) = a7l e
Finally, Equation (5) is equivalent to the relation eiai}zsn(el) = elalluzsﬂ (e;),foralli #1 e N.
This is easily seen by applying v to the relation x;z; = x;z;. O

4 A Quantum Dixmier Analogue

Since the algebras @, 4 ® - -+ ® 4, 4 and %’jf Q- ® %’jf are isomorphic to A(n,1,q) and
A(n,2t,q) respectively (see Section 2), Theorems 1.3 and 1.4 are specializations of the fol-
lowing corollary to Theorem 3.1 (see Remark 2.1 as to why this is sufficient).

Proposition 4.1. Let q = (q,...,q) for ¢ € k* a non root of unity. Then, every endomor-
phism of A(n,d,q) is an automorphism.

Proof. Let i be defined as in the statement of Corollary 3.4. We will construct a candidate
inverse of 1, say ¢, and show that ¢ is a endomorphism of A(n,d,q). It is clear that ¢(h,,;)) =
v; (= hgfl) " is a well defined automorphism when restricted to k[hF!, ..., htl]. We propose
the following candidate inverse of 1):

Qb(hw(i)) = ’Yi_(—l)ri hg_l)‘ri’ ¢($w(i)) = ¢(ei)_(1_Ti)U;1(¢(€;)_Ti)xg_TiyZ_—i?
and G(yu) = 27y 07 (e T )p(en) .

We will now show that ¢ is a well defined endomorphism of A(n,d,q) by checking the

conditions of Corollary 3.4. Since v¢ = ¢~ "¢, a brief computation shows that (v Pl)n)d =

¢ "%, Next we show that

(ele)™ "o (6(en ™)) (o7 (6(e) ™)o(en™07) = (=7, (24)
By rearranging the left hand side of Equation (24) we get ¢(e;es) (=7 ($(esel) 7™ ), which
d

by the substitution e;e; = (—h;(i))” gives

St f) e o) ) (25)

It is easy to see that when 7; = 0, Equation (25) is equal to 1 as required. We set 7, = 1 in
Equation (25) and find

— — — — —1 —
o (B(—hyt )™ = =0 L (ih{ V)t = —g7ylhd = —h¢ (26)
as required (note the last step follows by the substitution v¢ = ¢~9).

Next we show that

(T w(i)) D(Tw(@)) = P(Tw()) P(Tw(s)- (27)



At this point we return to the notation of Theorem 3.1 and precisely express the units e; and

e;. We set e; := Pi(hw(i))hf;’ﬁ()l) hf;(fl()”) and €/ := pg(hw(i))h;f;‘;”<l) - h;zj;)ﬂ("), where

pl(hw(z))p;(hw(z)) = (_h;é))ﬁ
and p; (A (i), Pi(huw(:)) are monomials in Ay, and
qtl,w(i)(1_Ti)q_tl,w(i)Tiq_ti,w(l)(1_Tl)qti,w(l)7—l =1, (28)

which is an equivalent condition to Equation (23). For simplicity, we make the following
observation regarding the way ¢(x,;)) and ¢(z,,(y) commute. To show that Equation (27)
holds, it is clear that we need only consider the coefficients that appear as the h; component
of ¢(wy(;)) passes the x;,y, terms in ¢(x,()) and as the h; component of ¢(z,,)) passes
T, y; terms in @(x,(;)). We reflect this observation in our notation by representing all of the
unnecessary information by ellipses. We highlight that (—1)™ = (1 — 27;). Thus,

Ti—1)(=1)Tit; Ti(=1)Tit; o o
(T (i) (@) = (hl( )(=D)Tits ) '”hl( )T (1) le 'Lyi7,>

(=) (=1)74 (4 T (= 1) w(s) 1-7 7

- (q@”_1)(2”_1)(_1)%“"“)) (q(l_%‘)(271‘1)(‘1>”tlvw<i>) D@ (1)) P (Tu(i))

_1\Tit. A 1\T X (27—l_1)(27—i_1)
= (q( Dt =(=1) ”W@) A1) P (@w(i))

—or . _ —or ) (27‘1—1)(27‘2'—1)
= (q“ 2t = (1 2”“*”@) A1) (u(i))

which in combination with Equation (28) gives the desired result. Note that it is easier to
apply Equation (28) if we consider the choices of 7; and 7; separately. We leave to the reader
the calculations to show that ¢ is consistent on the remaining relations (see Equation (2)).
These follow in a similar way. We have shown that ¢ conforms to the necessary conditions
from Theorem 3.1 to be an endomorphism of A(n,d,q). By direct computation we can see

Yo = ¢ = id. O
We will now offer a counter example to show that our quantum Dixmier analogue is false
when ¢ is a root of unity.

Corollary 4.2. There exist non-invertible endomorphisms of A(n,d,q) when (at least) one
coordinate q := q; of q is a root of unity.

Proof. Let ¢ be a t*™ root of unity. It is enough to find an example of a non-invertible
t

endomorphism of k[h*!] (o, h% — 1) where o(h) = gh. Define the polynomial U (h) = Z uh?,
1=0

where u; = qid for 0 < i <t so that
U(h)((gh)! = 1) = (gh)*+D — 1.

Then it follows from Theorem 3.1 that we define an endomorphism 1) of k[h*!](c, h? — 1) by
setting

P(h) =T Y(z) = U(h)z, and 9(y) = y.
Since by assumption £ > 1 we can see that v is not invertible by considering the action on h.
By taking a tensor product with n — 1 copies of the identity, we can lift 1) to an non-invertible
endomorphism of A(n,d,q). O
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5 A Quantum Tame Generators Problem

For the entirety of this section let q = (q,...,q) for ¢ € k* \ {z]z¢ = 1}. Also, recall from
Section 2 that A(1,d, q) ~ k[h*'](c, h? —1) where o(h) = gh. Since A(n,d,q) has a nontrivial
group of units (See Lemma 2.2) we can find automorphisms of A(n,d,q) which are not tame.
For example consider the automorphism of A(n,d, q) defined in the following way

hi v hi, ;e hizg, and y; = yihy ' (29)

Since we are interested in determining whether the complexity of the automorphisms of
A(n,d,q) fundamentally changes as n increases, we will take inspiration from the traditional
definition of tame to define an A(n,d,q) specific quantum analogue which we will denote
gwa-tame. Before stating the definition of qwa-tame, we will highlight three natural families
of automorphisms each of which is inspired by a family of tame automorphisms.

The first two families arise from the fact that both the polynomials in n variables and
the algebra A(n,d,q) can be constructed as n tensor copies of k[z] and k[h*!](o, h? — 1)
respectively. By this construction we can pick g € Aut(k[h*!](oy, h? — 1)) and lift to an
automorphism ¢, ;== ¢g®1®---®1 of A(n,d,q). For our second family, we associate to each
permutation w of N a (unique) automorphism x,, of A(n,d, q) defined as follows:

Xw(hi) = hogy, Xw(@i) = Ty, and Xw(Yi) = Yu()-

Finally we introduce a family to include automorphisms arising from the non-trivial group
of units of A(n,d,q) (for instance see Equation (29)). This family generalizes the scalar
automorphisms in the traditional definition. Recall that o; € Aut(]k[hfl, ... h1]) such that
oi(hi) = qh;, and oi(h;) = h; for j # i. For a vector of units in A(n,d,q), say u :=
(u1,...,up), such that u;o;(w;) = woy(u;) for I # i (note this encodes Equation (5)), there
exists a (unique) automorphism &, of A(n,d,q) defined as follows:

fu(hz) = hia gu($2) = UiTq, and gu(yl) = ylu;l

Definition 5.1. Let 1) be an automorphism of A(n,d,q), we say that v is qwa-tame if ¥ is
in the subgroup generated by the families of automorphisms ¢g, Xw and &y.

To enable us to practically apply Definition 5.1 we recall from [19] and [29] the classification
of automorphisms of k[A*!](o, h? — 1).

Proposition 5.2. Let ¢ be an automorphism of k|h*)(c, h? — 1). Then 1 is defined on the
generators of k[h*1](a, h? — 1) in the following way:

w(h) =Y, (a) = wa "Dy, and w(y) =y e
where 7 € {0,1}, ¥ = (¢~ and u,u’ € k[h*'] such that uu' = (—h~?)7.

Since the algebras o/, 4 ® -+ ® o, 4 and %’j]t R f%’jlt are isomorphic to A(n,1,q)
and A(n,2t,q) respectively (see Section 2), Theorems 1.1 and 1.2 are specializations of the
following corollary to Theorem 3.1.

Corollary 5.3. Every automorphism of A(n,d,q) is qwa-tame.
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Proof. Let 1 be an automorphism of A(n,d,q). By Corollary 3.4 we have that 1) acts on the
generators of A(n,d, q) as follows:

Wlhi) =)™ ) = eyl and vy = a7 ul0 e

where the parameters w,v;, 7;, €; and € are as in the statement of Corollary 3.4. By applying
qwa-tame automorphisms (see Definition 5.1), we will reduce 1 to an obvious qwa-tame
automorphism. Applying the automorphism x,,-1 gives us

Xo—10(hi) = %h ™ X1 (5) = X1 (e0)a T and xope19(yi) = 2Ty -1 (€).

Next we fix the notation ¢$,j) = X(1,)Pg; X(1,5), Where g; is the automorphism of k[h*™1] (o, h—
1) defined by

gi(h) =~ TV REDYT D gi(a) = pTyTa(o™), and g;(y) = @y (p))

with pj,p; € k[h*!] such that pip; = (—=h~%)7 and ¢y, is defined as in Definition 5.1.
Moreover, we let

G 1= gLV ... glla)

gn

Thus, G is a qwa-tame automorphism of A(n,d,q) and we have:

G(h;) = fy._(_l)nh(._l)n, G(z;) = p?yfx(.l_”), and G(y;) = :z:?yi(l_n)(p;)”

7 (3 K3

for all i € N. We can easily check that the action of Gx,,~1% on the generators of A(n,d,q)
is given by:

Gxw19(hi) = hiy, Gxp-19(2i) = G (X1 (€:))oi(p)) " i,
and G190 (yi) = ¥iG(xw-1(€}))o; ' (pi) ™

Since G'x,,~1% is an automorphism of A(n, d, q), the units G(x,,-1(e;))a;(p})7 and G(x,-1(e}))o; t (pi)™
must decompose in the following way:

Gxw-1(e))oi(p)™ = Ui and G(xy-1(€f))o; H(pi)" = U

where U; is a unit of A(n, d, q) such that U;o;(U;) = Ujoy(U;) for I # i. Applying the qwa-tame

automorphism &, where u := (Ufl, oo UY), yields
EuGXuw1Y(hi) = hiy EaGxw—19 (i) = @i, and Gxu-19(¥i) = yi-
Thus, ¥ = x,G 1€, is qwa-tame. O

6 Future directions

Following the submission to the arXiv of the preprint to this article, a Dixmier type problem
for a quantized Weyl algebra was solved in [30] by Tang. The algebra studied, denoted
(.AZ’A(K))Z, is isomorphic to A(n,1,q), when q = (¢1,-..,¢n). It was shown, under the
condition qilqéz---qf{l = 1 implies 4y = i3 = --- = i, = 0, that every endomorphism of
A(n,1,q) is an automorphism. One can ask if the same result holds for the tensor product of
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quantum generalized Weyl algebras with a general choice of defining polynomial a(h), namely
the algebras
k[hil](alv a(hl)) Q- ® k[hil](gna a(hn))a

where n and o; are defined as they have been throughout. Based on the results of this
article, and those obtained in [19] and [30], we believe it is possible to show that every

endomorphism is an automorphism when qil q? -o-qin =1 implies i1 = ig = -+ =i, = 0, or
when q = (¢, ..., q) for ¢ not a root of unity. It would be especially nice if these results could

be obtained using less computational methods than those seen here.

The techniques used in Section 3 could be applied to produce similar results if the defining
polynomials of the generalized Weyl algebras used for each tensor factor contain multiple
generators from the base ring. Consider the generalized Weyl algebras

Q) ki, hE (03, ai(ha . him,))
=1

where (mi,...,my) € (N*)”. These algebras include the class of simple algebras (called
multiparameter Weyl algebras) which were introduced by Benkart in [9]. This class of algebras
were also studied in [15], where rather than generalizing as we have suggested, the authors
considered Benkart’s algebras as members of a class of twisted generalized Weyl algebras. The
class of algebras considered in [15] should be a fruitful place to apply the ideas and techniques
used in our classification.

For the algebras studied in this article, we believe that the rigidity of the relations means
there are very few if any possibilities for locally nilpotent derivations. We have a number of
results regarding derivations for these algebras and will address the classification of locally
nilpotent derivations in detail in a coming article.
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