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Abstract

In this paper we introduce a new Bayesian model for estimating an un-
known function in the presence of Gaussian noise. The proposed Bayesian
model involves a mixture of a point mass and an arbitrary (nonparametric)
symmetric unimodal distribution. Posterior simulation uses slice sampling
ideas and the consistency under the proposed model is discussed. In partic-
ular, the method is shown to be computationally competitive with some of
best Empirical wavelet estimation methods.

Key words:
Stick-breaking priors, Slice sampling, Wavelet shrinkage, Consistency

1. Introduction

Consider the regression model given by:

yi = f(i/n) + σzi, i = 1, . . . , n, (1)

where σ is the noise level and {zi} are independent standard normal random
variables. The problem of interest is to estimate the unknown regression
function f(·), which belongs to a certain class of function F[0, 1].

Wavelet based procedures have been shown to be well suited for such
settings, and non-parametric estimators of f(·) can be readily obtained by
applying various shrinkage rules on the wavelet transformed data.
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A variety of shrinkage methods based on classical and Empirical Bayesian
statistical models in the wavelet domain have been proposed and studied. See
for example Donoho and coauthors (1994, 1995a, 1995b). In this broad con-
text of function estimation, Bayesian wavelet procedures have proved efficient
for their capability to incorporate estimation about the unknown signal (e.g.
Chipman et al. 1997; Abramovich et al.,1998; Vidakovic and Ruggeri, 2001;
Johnstone and Silverman, 2005).

In a Bayesian approach, a prior distribution is constructed on the wavelet
coefficients of the function and the function is estimated by applying a suit-
able Bayesian rule to the resulting posterior distribution of the wavelet coef-
ficients. Different prior distributions are designed to capture the sparseness
of wavelet expansions common to most applications. For example, Chipman
et al. (1997) proposed a mixture of two weighted normal distributions for
the individual wavelet coefficients.

On the other hand, Johnstone and Silverman (2005) proposed a mixture
of a mass point and a heavy tailed distribution for a single wavelet coefficient.
Wang and Wood (2006) used a mixture of a mass point and a non-central
chi-squared distribution for wavelet coefficients in a block. However, all the
work in Bayesian wavelet context to date are empirical based approaches,
where the priors are designed through some strong prior beliefs and the
datasets have been used repeatedly to estimate the hyperparameteres and
the function.

In this paper, we intend to apply a full Bayesian model upon the wavelet
coefficients to estimate the function (1). The important benefit of using a
full Bayesian model compared to say an empirical based approach is that the
posterior has the ability to reflect coherent beliefs of the experimenter. This
acknowledges that there is more to inference than simply obtaining point
estimates. Nevertheless, we do obtain competitive estimates, particularly
for smaller samples where we claim improvements. The understanding here
is that for empirical Bayes, when samples sizes are smaller the procedure
is using “bad” data twice whereas for large samples it is using “good” data
twice. Hence, empirical Bayes point estimates can work well in large samples.

We also derive a consistency result which appears new and uses different
techniques to usual consistency calculations. This result also suggests that
the point mass is essential to consistent posterior inference. Hence, our aim
involving this paper is two fold:

• a full Bayes with competitive estimation properties;
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• a flexible nonparametric prior for the wavelet coefficients which can
cope with all types of underlying functions.

The paper is organized as follows. In Section 2, some background information
of the nonparametric prior is given. A full Bayesian model and its algorithm
are established in Sections 3 and 4. Numerical illustrations are presented in
Section 5 and a discussion appears in Section 6. The appendix contains a
discussion of consistency.

2. Stick-breaking priors

Stick-breaking priors are almost surely discrete random probability mea-
sures (RPMs) of the form

P =
N∑
k=1

qkδθk (2)

where the (qk) are non-negative random weights that sum to unity almost
surely, and the (θk) are independent and identically distributed random vari-
ables from some fixed density function g(θ). The number of terms N can be
either finite or infinite, and for the purposes of this paper we will take it to
be +∞.

The random weights (qk) can be constructed in the following way:

q1 = v1 and qk = vk
∏
l<k

(1− vl), k ≥ 2, (3)

where the (vk) are independent Beta(ak, bk) random variables for ak, bk > 0.
See, for example, Ishwaran and James (2001), who show that the sum of the
weights is 1 almost surely when

∞∑
k=1

log(1 + ak/bk) = +∞. (4)

The stick-breaking priors are often used as mixing distribution in mixture
models (Lo, 1984) to generate random density functions which can be written
as

fP(y) =

∫
k(y|θ)dP(θ) =

∞∑
k=1

qkk(y|θk) (5)
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where k(y|θ) is a continuous probability density function for each θ. There is
by now a huge amount of literature on these models and we refer the reader
to the recent book on Bayesian nonparametrics (Hjort et al., 2010) for a
comprehensive account.

When considering the derivation of the posterior for these models, Markov
chain Monte Carlo (MCMC) methods for posterior inference are complicated
by the presence of an infinite number of unknown parameters. Recently, there
has been interest in developing MCMC methods that only use a finite num-
ber of elements in (5) at any iteration of a chain but, by making this number
suitably chosen, inference follows the true (infinite-dimensional) model. The
retrospective sampler of Papaspiliopoulos and Roberts (2008) uses a care-
fully constructed Metropolis-Hastings update to ensure this, whereas Walker
(2007) uses a slice sampling idea, further developed in Kalli et al. (2011).

The key of the slice sampling idea is the introduction of latent variables
which make the infinite model finite. A latent variable u is introduced to (5)
such that the joint density of (y, u), given (qk, θk), is given by

fP(y, u) =
∞∑
k=1

1(u < ξk) (qk/ξk) k(y|θk)

for some deterministic decreasing sequence (to 0) (ξk). This sequence is not a
modeling issue since the marginal distribution of interest remains unaltered.

The model in the presence of u becomes finite since the number of k such
that ξk > u is finite and so, conditional on u, the number of parameters
is finite. The parameter u can be easily updated since it is uniformly dis-
tributed. Then set of k which are needed in the conditional model is of the
form {1, . . . , N} where N is the largest k such that ξk > u.

Therefore, the Gibbs sampler only operates on finite dimensional spaces
but the marginal density of y is the infinite mixture model. Hence, the
number of variables required to implement a Gibbs sampler for sampling the
correct posterior distribution becomes finite.

Our model is specific to the problem and our interest is in constructing
a unimodal density with no other constraints. It is well known by now that
this can be achieved by taking k(·|·) to be a uniform kernel. Hence, for us,

fP(y) =

∫
k(y|θ)dP(θ) =

∞∑
k=1

qkg(y|θk),
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where
g(y|θ) = Un(−θ, θ)

and Un denotes the uniform distribution.

3. The Bayesian model

Preforming the wavelet transformation on (1), we have

yjk = wjk + n−1/2σεjk, j ≥ j0, k = 1, . . . ,M = 2j,

where j is the resolution level we are interested in and j0 is some fixed
resolution level. The (εjk) are independent standard normal random variables
and the noise level σ is assumed known.

At the level j, we place the following mixture of a mass point at zero and
symmetric unimodal form on the population discrete wavelet coefficient wk:

π(wk|γ, ql, sl) = γ1(wk = 0) + (1− γ)
∞∑
l=1

qlg(wk|sl). (6)

The prior for γ is beta(1, c∗), for some c∗ > 0, and 1(wk = 0) is the
mass point function at wk = 0. Here, clearly, Pr(wk = 0) = γ, and so
determines the prior probability of whether the relevant wavelet coefficient
is nonzero and comes from a symmetric unimodal, or zero and arises from
a point mass at zero. Hyperparameters (ql) are given as (3) where the (vl)
are assumed independent and follow a Beta(1, c) distribution, and gl(wk) =
(2sl)

−11(−sl < wk < sl), and the prior for the (sl), π(sl), assumes they are
independent and follow a Ga(a, b) distribution for some fixed (a, b).

Employing the slice sampling idea, we introduce a latent variable uk that
operates on ξl = e−βl, so that the joint density of (wk, uk), given (ql, sl), is
given by

π(wk, uk|γ, ql, sl) =
1(uk < ξl)

ξl

[
γδ(wk = 0) + (1− γ)

∞∑
l=1

qlgl(wk)
]
. (7)

Here, if l < 1 then the model becomes the point mass at wk = 0.
There is another latent variable needed to make posterior simulation

tractable, so more latent variables (dk) are introduced, which allocate each
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observation to one component of the mixture model. Therefore the joint
density of (wk, uk, dk) given (ql, sl) is

π(wk, uk, dk|qdk , sdk) =
1(uk < ξdk)

ξdk

[
γδ(wk = 0) + (1− γ)qdkgdk(wk)

]
,

where dk ∈ {0, 1, 2, 3, . . .}. This form omits any sums inside the product and
the choice of dk, needed to be sampled within the Gibbs sampler, is from a
finite set which is easily found.

Observing all wavelet coefficients at the level j, (y1, . . . , yM) yields a full
likelihood

f(y,u,d|w, s, γ,q)

=
∏
k

exp
{−(yk − wk)2

2σ2
n

}1(uk < ξdk)

ξdk
{γδ(wk = 0) + (1− γ)qdkgdk(wk)}.

Hence, the full posterior distribution can be expressed as

π(w|y,u,d, s, γ,q)

∝
∏
k

1(uk < ξdk)

ξdk
exp

{−(yk − wk)2

2σ2
n

}
{γδ(wk = 0) + (1− γ)qdkgdk(wk)}

×
∏
l

π(sl)
∏
l

π(v1).

In the next section we will describe the Gibbs sampler for estimating this
model.

4. The Gibbs sampling algorithm

In this section we implement a Gibbs sampler according the model we
discussed in the previous section. We require the set of full conditional
density functions. The chain can be initialised in the following way. We
initialise {dk = k, k = 1 : n} and then simulate {uk, k = 1 : n} from a uniform
distribution between 0 and ξdk = e−βdk . Then let Nk = x− log(uk)/βy,
where xXy defines the largest integer less than or equal to X. Define, also,
(Nk)max = max1≤i≤n{Ni}.
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Step 1: Updating s. The full conditional distribution of the parameter,
sl when maxdk=l |wdk | 6= 0 , is proportional to

π(sl| · · · ) ∝
( ∏
dk=l

1

sl
1(sl > max

dk=l
|wdk |)

)
× π(sl)

∝ s−nll π(sl)1(sl > max
dk=l
|wdk |),

where nl = #{k|dk = l, 1 ≤ k ≤ n}. When maxdk=l |wdk | = 0, then we
draw sl from the prior.

Step 2: Updating q. The prior for ql is

ql = vl
∏
r<l

(1− vr),

where (vr) are independent and identically distributed as Beta(1, c). Hence,
the full conditional distribution of ql is proportional to

π(ql| · · · ) ∝ Beta(ql|1 + nl, c+ n∗l ),

where n∗j = #{k|dk > l, 1 ≤ k ≤ n}.
Step 3: Updating γ. The prior for γ is beta(1, c∗) and so the condi-

tional distribution for γ is

π(γ| · · · ) ∝ γ#(wk=0)(1− γ)#(wk 6=0)π(γ),

which is beta(1 + #{wk = 0}, c∗ + #{wk 6= 0}).
Step 4: Updating (dk, wk). The values of dk can take values between

0 and Nk, which is derived from the value of uk. We have the joint density
of (dk, wk) as proportional to

exp

{
−(yk − wk)2

2σ2
n

}
1(0 ≤ dk ≤ Nk) (pdk/ξdk)hdk(wk)

where

pdk =


γ dk = 0

(1− γ) qdk dk > 0.

and hl(·) is a point mass at 0 if l = 0 and otherwise is g(·|sl). We can easily
sample here by sampling dk, marginalsing over wk, and then sampling wk|dk.
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5. Numerical Results

In order to examine the numerical performance of the proposed full Bayesian
model, we perform a simulation study to compare the proposed approach
with some of the recently proposed methods in the literature: namely, BlockJS
(Cai, 1999), BAMS (Vidakovic and Ruggeri, 2001), Ebayes (Johnstone and
Silverman, 2005), NCP (Wang and Wood, 2006) and BBN (Wang and Walker,
2010).

BlockJS is a classical block thresholding procedure with a fixed block size
L = log2(n) and a fixed threshold level. BAMS is an empirical Bayes thresh-
old method which imposes a mixture of a double exponential distributin
and a point mass as the prior for each individual wavelet coefficient. The
posterior mean is used here as the shrinkage rule. Ebayes is an empirical
Bayes threshold of individual wavelet coefficients based on a mixture of a
heavy tailed distribution and a point mass as the prior. The mixture of a
“Cauchy” distribution and a point mass as the prior and the posterior mean
as the threshold rule are considered. NCP is a Bayesian block shrinkage
approach based on the block sum of squares with a fixed block size. It im-
poses a mixture of a non-central chi-squared distribution and a point mass.
The“power” prior as the distribution of the hyperparameter and posterior
mean as the shrinkage rule are used here and the block size is fixed as L = 2.
BBN is an Bayesian block wavelet shrinkage method based on a multinormal
distribution, where the block size and the shrinkage level at each resolution
level are chosen adaptively by the data. All these Bayes rules are empirical,
in the sense that the prior is estimated from the data.

In practice the noise level σn in (1), which we assumed known for simplic-
ity, needs to be estimated from the data and for this we will use the following
robust estimator of σ given in Donoho and Johnstone (1994). This estimator
σ is based on the noisy wavelet coefficients (yj,k) at the highest resolution
level J , so

σ̂ =
1

0.6745
median

(
|yJ,k| : 1 ≤ k ≤ 2J , J = log2(n)− 1

)
.

Four functions, ‘HeaviSine’,‘Blocks’, ‘Bumps’ and ‘Doppler’, representing dif-
ferent level of spatial variability, are used as test functions for the purposes
of simulation studies. Each test function was rescaled to achieve different
signal-to-noise ratios (SNR), and the standard normal noise was added to
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the functions. The average MSE for the estimator f̂ of f defined as

MSEf =
1

n

n−1∑
i=0

[{
f̂(i/n)− f(i/n)

}2
]
. (8)

Before the intensive simulation study, we performed a preliminary simula-
tion study to examine the general performance of the proposed full Bayeisan
method with the range of sample sizes from 64 to 2048. We found that the
proposed method is highly competitive with the best of the existing classic
threshold methods, empirical Bayes block and term-by-term methods, when
the sample size is small, e.g 64, 128 and 256. The proposed method tends
to underperform the best of the empirical Bayes methods when the sample
size becomes large. The reason, we believe, is that the most of the empirical
Bayes methods use the “good” data twice to estimate the unknown function.
Hence, we will concentrate on the small sample sizes (64, 128, 256 and 512)
in the study.

The average MSE (AMSE) results with 100 simulation runs for the four
test functions with SNR=7 at different sample sizes (64, 128, 256 and 512)
are provided in Table 1. The simulation results show that the proposed full
Bayesian method performs constantly well over the whole range of signals and
sample sizes we considered here, while the performance of the other methods
involve fluctuating. The simulation study with difference SNRs shows the
similar patterns as the SNR=7.

6. Discussion

In terms of function estimation using wavelets, we have a competitive
Bayesian model for small to moderate sample sizes (≤ 256).

The merit of our model is that it is full Bayes and hence posterior distri-
butions are meaningful and can be used in the standard way, e.g. decision
making, as they represent posterior beliefs about the function of interest. The
key, in our mind, is the nonparametric component, which can adequately cap-
ture the distribution of the nonzero coefficients, however they may appear
for each of the different type of function we estimate. Hence we have good
“across the board” estimation.

We have also included a consistency result which effectively states that
Eγn → 1 as n→ +∞ as a sufficient condition.
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Table 1: Simulation results of six methods (BlockJS, BAMS,
EBCmean, NCP , BBN and FBayes) with 100 simulation runs, where
AMSE was obtained with SNR=7 and sample sizes N=(64, 128, 256

or 512). An asterisk is used to denote the best in a column.

Methods HeaviSine BlockJS
64 128 256 512 64 128 256 512

BlockJS 0.932 0.712 0.592 0.521 1.245 0.873 0.807 0.676
BAMS 0.922 0.775 0.698 0.641 0.873 0.722 0.635 0.568
EBCmean 0.446 0.295 0.211 0.146 0.652 0.406 0.274 0.189
NCP 0.549 0.336 0.269 0.170 0.729 0.467 0.312 0.232
BBN 0.494 0.334 0.269 0.171 0.628 0.492 0.313 0.234
FBayes 0.488 0.349 0.303 0.218 0.664 0.499 0.376 0.326

Mathods Bumps Doppler
64 128 256 512 64 128 256 512

BlockJS 1.876 1.2 0.957 0.794 1.091 0.832 0.682 0.569
BAMS 1.011 0.862 0.744 0.768 1.192 1.042 0.906 0.655
EBCmean 1.077 0.940 0.632 0.469 0.956 0.514 0.385 0.230
NCP 0.804 0.749 0.677 0.426 0.775 0.481 0.351 0.195
BBN 0.831 0.747 0.677 0.504 0.717 0.519 0.351 0.226
FBayes 0.841 0.802 0.631 0.505 0.728 0.509 0.405 0.239
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We can exploit the good small sample properties of our method by intro-
ducing blocking ideas to larger samples. Performing the wavelet transform
on (1), we have

yjk = wjk + n−1/2σzjk, j ≥ j0, k = 0, . . . , 2j − 1. (9)

For each fixed resolution level j ≥ j0, let L ≥ 1 be the possible length of each
block, and M = 2j/L be the number of blocks. Let yb = (y(b−1)L+1, . . . , ybL)
represent observations in the b-th block on level j, and similarly define wb =
(w(b−1)L+1, . . . , wbL) and zb = (z(b−1)L+1, . . . , zbL). Hence, we can write

yb = wb + n−1/2σzb. (10)

We can place a mixture of a mass point at zero and a symmetric unimodal
form on the wavelet coefficients in the same block:

π(wb|γ, ql, sl) = γ1(wb = 0) + (1− γ)
∞∑
l=1

qlg(wb|sbl), (11)

where, we can take,

g(wb|sbl) =
L∏
j=1

gbjl(wbj).

So instead of introducing the latent variables (uk) and (dk) for every coef-
ficient, we introduce them only for each block: so rather than the choices
being over k = 1, . . . , n, it is over k = 1, . . . ,M . Hence,

π(wb, ub, db|qdb , sdb) =
1(ub < ξdb)

ξdb

[
γ1(wb = 0) + (1− γ)qdbgdb(wb)

]
,

and now for a block, either all the coefficients are assigned to be zero, or they
are all assigned to be non–zero.

7. Appendix: Bayesian consistency

Here we establish sufficient conditions on the prior for the consistency of
the model.
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The posterior probability of Acε where Aε = {w : supk∈{1,...,n} |wk−w0k| <
ε}, given y, is given by

Pr(w ∈ Acε|y) = Jn/In

=

∫
Acε
qn(dw1, . . . , dwn) exp

{
−
∑n

k=1
1

2σ2
n
(yk − wk)2

}
/ exp

{
−
∑n

k=1
1

2σ2
n
(yk − w0k)

2
}

∫
Rn
qn(dw1, . . . , dwn) exp

{
−
∑n

k=1
1

2σ2
n
(yk − wk)2

}
/ exp

{
−
∑n

k=1
1

2σ2
n
(yk − w0k)2

} .
For the numerator, let us first consider

Jn1 =

∫
A1

qn(dw1, . . . , dwn) exp

{
− 1

2σ2
n

n∑
k=1

[
(yk − wk)2 − (yk − w0k)

2
]}

,

where A1 = {w : |w1 − w01| > ε} and σn = n−1/2σ. We have that

yk = w0k + σnzk

where the (zk) are independent standard normal, so

n∑
k=1

[
(yk − wk)2 − (yk − w0k)

2
]
≥ (y1 − w1)

2 − (y1 − w01)
2 −

n∑
k=2

σ2
n|zk|2.

Therefore, with k = 1, and with w ∈ A1, we have

(yk − wk)2 − (yk − w0k)
2 = −2(w0k + σnεk)wk + w2

k + 2(w0k + σnεk)w0k − w2
0k

= (wk − w0k)
2 + 2σnzk(w0k − wk)

≥ |(wk − w0k)
2| − 2σn|zk||(w0k − wk)|

≥ ε2 − 2εσn|zk|,

and hence, with σ2
n = n−1σ2 and the fact that

n∑
k=1

σ2
n|zk|2 → 0 a.s.

It is easy to see that

Jn1 < qn(A1) exp
[
−c(n/2)ε2

]
a.s.
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for all large n and for some c > 0. Hence

Jn ≤
n∑
i=1

Jni < c1n exp(−nc2)

a.s. for all large n and for some constants c1, c2 > 0.
For the denominator, let us assume without loss of generality that for

some fixed but finite M , it is that w0k 6= 0 for k = 1, . . . ,M and w0k = 0 for
k = M + 1, . . . , n. For studying In, let, for any δ > 0,

Bδ =

{
w :

M∑
k=1

|wk − w0k| < δ & wk = 0, ∀ k = M + 1, . . . , n

}
.

So we have

In >

∫
Bδ

qn(dw1, . . . , dwn) exp

{
− 1

2σ2
n

n∑
k=1

[
(yk − wk)2 − (yk − w0k)

2
]}

.

Since we know that yk = w0k+σnzk, where the (zk) are independent standard
normal random variables, it is that

(yk − wk)2 − (yk − w0k)
2 = −2(w0k + σnεk)wk + w2

k + 2(w0k + σnzk)w0k − w2
0k

= (wk − w0k)
2 − 2σnzk(wk − w0k)

= (wk − w0k)(wk − w0k − 2σnzk).

Given that w ∈ Bδ, we therefore have for an arbitrary δ > 0, the denominator
follows

In ≥ c3

∫
Bδ

qn(dw1, . . . , dwn) exp
(
−nc4δ2

)
a.s. for all large n for some constants c3, c4 > 0. Here qn is the probability
model for the (w1, . . . , wn) described in the paper and specifically we note
that γ ∼ beta(1, c∗), where we will need to determine c∗. Recall that

Pr(wk = 0|γ) = γ

independently for all k = 1, . . . , n.
Therefore, we have

In > c3qn(Bδ) exp(−c4nδ2).
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We now need to investigate qn(Bδ) and actually we show that

qn(Bδ) > c5

for all large n for some c5 > 0. Hence, we have In > c6 exp(−nc4δ2) a.s.
for all large n for any δ > 0 and so this combines with the upper bound for
the numerator and yields the desired consistency result, by choosing δ small
enough that δc4 < ε2.

The probability of Bδ is easily seen to be bounded below by

qn(Bδ) ≥ E
(
γn−M(1− γ)M

)
×Pr

(
M∑
k=1

|wk − w0k| < δ, wk 6= 0 ∀ k = 1, . . . ,M

)
.

Now the probability part of this expression is independent of n and so is
bounded away from 0. The expectation part is given by

c∗Γ(n−M + 1)Γ(M + c∗)

Γ(n+ 1 + c∗)
.

This can be shown to converge to 1 when we take c∗ = ξ/(n − ξ) for some
ξ > 0. Therefore, for some constant c5, qn(Bδ) > c5 for all large n.

In conclusion, we have that

Pr(w ∈ Acε|y) ≤ C1n exp(−nC2)

a.s. for all large n, for constants C1, C2 > 0.
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