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ABSTRACT

In many practical applications of nonparametric regression, it is desirable to

allow for the possibility that the noise is correlated. In this paper, we focus

on wavelet-based nonparametric function estimation and propose two distinct

methods for estimating the correlation structure of the noise, one based in the

time domain and the other based in the wavelet domain. Once the correlation

structure has been estimated, there are various methods that may be used for

reconstructing the unknown signal; we focus here on the empirical Bayes block

shrinkage method proposed by Wang and Wood (2006). A simulation study is

described. Our numerical results indicate that the proposed methods do a good

job of reconstructing the signal even when the noise is highly correlated.

Key words: Bayes block shrinkage; Correlation structure; Durbin-Levinson algorithm; inno-

vations algorithm; pseudo likelihood estimation.

1 Introduction

Various approaches for thresholding and non-linear shrinkage of wavelet co-

efficients have been shown to perform well under the IID noise assumption;

see for example Donoho and Johnstone (1994, 1995), Donoho et al. (1995).

Bayesian wavelet shrinkage and thresholding approaches have become increas-

ingly popular and have been shown to perform well in practice: for term-by-term

Bayesian shrinkage approaches, see for example Chipman et al. (1997), Clyde

et al. (1998), and Johnstone and Silverman (2005a, b); and for Bayesian block

shrinkage approaches, see Abramovich et al. (2002), De Canditiis and Vidakovic

(2004), and Wang and Wood (2006).

Some authors have also considered the situation in which the noise is correlated.

Johnstone and Silverman (1997) pointed out that, if the noise in the data is sta-
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tionary and correlated, then the variance of the wavelet coefficients will depend

on the level in the wavelet decomposition but will be constant at each level.

With this in mind, they proposed a level-dependent thresholding approach in

which the noise variance at each level is estimated from the data. This is a

quick and convenient way to cope with the problem of correlated noise which

does not involve full estimation of the correlation structure. However, from the

results in §4 we can see that the level-dependent methods do not always work

so well with rougher signals (e.g. Bumps). We believe that it is of interest to

develop methods for estimating the correlation structure.

From a theoretical perspective, quite a lot is known about how correlated noise

affects theoretical performance in nonparametric regression; see Opsomer et al.

(2001) for a review of how kernel, spline and wavelet approaches to nonparamet-

ric function estimation are affected by correlated noise. However, it is unclear

to what extent the known theoretical results reflect and capture what happens

in practical situations with correlated noise.

The main aim of this paper is to propose two procedures for estimating the

correlation structure of the noise. Once the correlation structure is determined,

any one of several wavelet block shrinkage methods may be used to reconstruct

the unknown function, taking advantage of the information provided by the es-

timated covariance structure. Here we employ the empirical Bayes block (EBB)

shrinkage method proposed by Wang and Wood (2006); other possibilities in-

volving Bayes block shrinkage are to use the approach of either Abramovich et

al. (2002) or De Canditiis and Vidakovic (2004).

Correlation structure of wavelet coefficients has been considered in some pub-

lished papers (e.g. Abramovich et al., 2002, Vannucci and Corradi, 1999), but

with a somewhat different emphasis. To the best of our knowledge, this is the

first paper which considers full estimation of the correlation structure in the
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noise in a wavelet setting.

The outline of this paper is as follows. In §2, the basic model considered in

this paper is specified and a preliminary study of the correlation structure of

the wavelet coefficients demonstrates the potential importance of accounting

for correlation of the noise. In §3 we propose two procedures for estimating

correlation structure in the noise. The results of a simulation study are presented

in §4. Relevant details of EBB method of Wang and Wood (2006) are sketched

in the Appendix.

2 General Model Setup

2.1 A Model with Correlated Noise

The model to be considered in this paper is

yi = f(xi) + εi i = 1, · · · , n (1)

where f is the unknown function to be estimated, {yi} is a set of observations,

xi = i/n, {εi} is a stationary Gaussian sequence with E(εi) = 0 and stationary

covariance function γ(·) given by

γ(i− j) = cov(εi, εj) = E(εiεj). (2)

For simplicity, we assume that n is an integer power of 2. In our simulation

study, described later, we mainly focus on the cases in which {εi} is an autore-

gressive process (AR) of order p or a moving average process (MA) of order q,
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which are given, respectively, by

AR(p) εt = α1εt−1 + · · ·+ αpεt−p + ηt, (3)

and

MA(q) εt = β1ηt−1 + · · ·+ βqηt−q + ηt, (4)

where the ηt are independent N(0, σ2
η).

2.2 Variance Analysis

Since the properties of the discrete wavelet transform show that wavelets are “al-

most eigenfunctions” of many operators (see Frazier et al., 1991, Meyer, 1992),

which means that the autocorrelation of the wavelet coefficients of a noisy signal

within each level often dies away rapidly, and little or no correlation between

the wavelet coefficients at different levels exists (see Johnstone and Silverman,

1997), it is of interest to know how well standard methods (i.e. methods designed

for denoising the IID noise) perform in the correlated noise model (1). Here,

as a preliminary, we look at the differences between the covariance structure of

wavelet coefficients in the presence of IID noise and correlated noise.

If ε = (ε1, . . . , εn)T ∼ Nn(0, σ2In), where In is the n × n identity matrix,

then Wε, the discrete wavelet transform (DWT) of ε, is also distributed as

Nn(0, σ2In), because the DWT matrix W is orthogonal. In the case of a general

correlation structure, ε ∼ Nn(0, V ), where V is the covariance matrix of the

noise, in which case Wε ∼ Nn(0,Σ), where Σ = WVWT .

Using the recursive algorithm proposed by Vannucci and Corradi (1999), which

calculates the covariance of wavelet coefficients within and across levels, two

plots are obtained to show the difference in the above situations. Fig. 1(a)
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Figure 1: (a): covariance structure of DWT of AR(1) noise with α = 0.7. The
horizontal line from right to left and vertical line from bottom to top show from
the finest level to the coarsest level. The darker the colour of the squares the
higher the wavelet coefficients. (b): covariance structure of DWT of IID noise.

shows the covariance matrix of Wε for AR(1) noise with α1 = 0.7. The small

squares along the diagonal of the matrix mark the existing correlation within

each level after the DWT has been applied to the (correlated) data. From the

finest level to coarsest level (along horizontal line from right to left), the colour of

the squares are darker when the correlation of the wavelet coefficients is higher.

As a comparison, Fig. 1(b) shows the covariance matrix of IID noise. In this

case the covariance matrix is an identity matrix and therefore the variances at

all levels are the same.

Further results have shown that, if standard methods are used on correlated

data, it may seriously affect the quality of the reconstruction of f , particularly

when the data are highly correlated.
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3 Estimation of covariance structure

3.1 The procedure

We now propose a four-step procedure for estimating an unknown function in

the presence of correlated noise. Each step is discussed in more detail below.

Step 1: identify a parametric model for the correlation structure.

Step 2: estimate the correlation parameters for the model obtained in Step 1.

Step 3: using the model identified in Step 1 with estimated parameters ob-

tained in Step 2, calculate estimates for the variances and covariances of

the wavelet coefficients in each block.

Step 4: estimate the signal f , making use of the estimated variances and co-

variances obtained in Step 3.

If the parametric structure of the covariance matrix V (θ), where θ is the pa-

rameter vector involved in determining the specific noise process, is assumed

known, there is no need for Step 1. However, in many situations, V (θ) will be

unknown, in which case we suggest implementing Step 1 as follows. Starting

with the model y = f + ε, obtain a preliminary estimate f̂ of f using a suitable

estimation procedure, such as the level-dependent universal threshold method

due to Johnstone and Silverman (1997). Then estimate the (unobserved) noise

vector by ε̂ = y− f̂ , and use standard time series model identification techniques

on ε̂ to determine a suitable parametric covariance structure for ε̂. We consider

two illustrative examples below which use the Durbin-Levinson algorithm and

innovations algorithm, respectively; see e.g. Brockwell and Davis (1991) for

details of these algorithms.
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Once a parametric model has been identified, we may estimate the unknown

parameters using a standard procedure such as the Durbin-Levinson algorithm

in the AR case or the innovations algorithm in the MA case. We refer to such

procedures as time domain procedures. A second option for Step 2, referred

to as a wavelet domain procedure, is discussed in subsection 3.2. We mention

two further possibilities which we do not pursue here: (i) the use of the Whittle

likelihood (see e.g. Hannan, 1994); and (ii) nonparametric estimation of the

correlation function γ(·) in (2) (see e.g. Hall et al., 1994), which in effect avoids

the need for Step 1.

For Step 3, we simply pick out the required elements of the estimated covariance

matrix of the wavelet coefficients, WV̂WT , where V̂ = V (θ̂) is the estimated

covariance matrix of ε, θ̂ is the estimate of the unknown covariance parameter

vector obtained in Step 2, and W is the discrete wavelet transform.

For Step 4, we use the approach proposed by Wang and Wood (2006); a brief

outline of this approach is given in the Appendix.

We now present two examples which illustrate Step 1.

Example 1 : 1024 data from a simulated AR(2) process with coefficients α1 =

0.7 and α2 = −0.2 are added to the HeaviSine signal f (see §4 for further

details of this signal). Using the level-dependent universal threshold method,

we obtain the smoothed signal f̂ . Hence we estimate the noise vector ε using

ε̂ = y− f̂ . By applying the Durbin-Levinson algorithm to fit successively higher

order autoregressive processes to ε̂, we obtain the sample partial autocorrelation

function (the sample pac.f) α̂jj. The first 40 numbers of the sample pac.f with

the bounds ±1.96n−1/2 are shown in Fig. 2. Inspection of the graph supports

the view that the appropriate model for the noise is an AR(2) process because

the sample pac.f is near zero after lag-2.

8



0 5 10 15 20 25 30 35 40
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: The first 40 numbers of the sample pac.f for the estimated data ε̂i

with the bounds ±1.96n−1/2.

Example 2 : 512 data from a simulated MA(1) process with coefficients β =

0.5 are added to the Doppler signal f (see §4 for further details of this signal).

Using the same steps as in Example 1, we obtain ε̂. By applying the innova-

tions algorithm to fit successively higher order moving average processes to ε̂,

we obtain the estimated coefficient values β̂mj and noise variances v̂m. Table 1

shows β̂mj, j = 1, . . . , 8 and v̂m, m = 1, . . . , 10, 50, 100. This table suggests that

MA(1) is the appropriate model for the noise since the estimated coefficients for

the orders higher than 1 are close to zero.

3.2 A wavelet domain procedure for Step 2

We now consider a wavelet domain procedure for Step 2 which uses the finest-

level wavelet coefficients only; the rationale is that the finest-level coefficients

tend to be less affected than coefficients at other levels by the smooth part of

the signal. Thus we only use a part of the wavelet transform, represented by
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β̂mj ŝm

m \ j 1 2 3 4 5 6 7 8
1 0.437 1.021
2 0.513 0.051 0.919
3 0.527 0.059 0.013 0.904
4 0.532 0.053 0.025 -0.017 0.902
5 0.532 0.055 0.021 -0.005 -0.029 0.900
6 0.532 0.054 0.023 -0.009 -0.020 -0.029 0.900
7 0.533 0.054 0.023 -0.008 -0.021 -0.028 -0.015 0.900
8 0.534 0.051 0.023 -0.015 -0.012 -0.048 0.032 -0.095 0.899
9 0.544 0.051 0.024 -0.015 -0.011 -0.050 0.037 -0.101 0.893
10 0.550 0.050 0.024 -0.016 -0.011 -0.051 0.037 -0.102 0.889
50 0.526 -0.002 -0.024 -0.053 -0.039 -0.067 0.008 -0.115 0.842
100 0.534 0.007 -0.034 -0.053 -0.031 -0.067 0.007 -0.129 0.804

Table 1: The estimated coefficients β̂mj , j = 1, · · · , 8 and noise standard devi-
ation ŝm, m = 1, · · · , 10, 50, 100 for the estimated error vector ε̂.

the n/2 × n matrix WJ , a submatrix of the DWT W, i.e. WJ maps y to the

finest-level wavelet coefficients according to d̃J = WJy. Under the model (1),

d̃J has distribution Nn/2(dsignal,ΣJ), where ΣJ = WJVWT
J . Consider the

decomposition d̃J = dsignal + dnoise, where dsignal = WJ f , and dnoise = WJε,

where dnoise ∼ Nn/2(0,ΣJ). The wavelet domain procedure for Step 2, referred

to as Step 2W with sub-steps (a)–(c), estimates θ using an estimate d̂noise of

dnoise obtained as follows.

Step 2W(a) Shrink (or threshold) the finest-level wavelet coefficients, d̃J say,

to obtain d̂signal;

Step 2W(b) Estimate the portion of the finest-level wavelet coefficients at-

tributable to the noise by d̂noise = d̃J − d̂signal;

Step 2W(c) Use maximum likelihood, or if more convenient, a pseudo-likelihood

procedure, with estimated data d̂noise, to estimate the unknown covari-

ance parameters of V (θ).
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The reason for including Step 2W parts (a) and (b) is as follows: if the signal

has a few discontinuities, then the finest-level coefficients may have a few very

large values due to discontinuities in the signal rather than due to the noise.

The purpose of Step 2W(a) and (b) is to remove the large coefficients due to

the signal and identify the wavelet coefficients which come from the noise.

Once d̂noise has been obtained, we may implement Step 2W(c) as follows. To

simplify the presentation, we write d rather than d̂noise. The approximate

log-likelihood based on d is given by

l(θ) = log{f(d|θ)} = −n

2
log(2π)− 1

2
log{det(ΣJ)} − 1

2
dT Σ−1

J d, (5)

and approximate maximum likelihood estimation of θ may be carried out by

maximizing (5) over the valid parameter space. For example, in the case of

AR(1) defined in (3), we have σ2 > 0, 0 < α < 1. However, when the dimension

of d increases, it becomes more difficult to calculate the inverse and determinant

of ΣJ . For this reason, we have also investigated various pseudo-likelihood

approaches (Besag, 1975, 1977). To implement this approach we split the data

into a small number of large blocks, i.e. we split the vector d into k subvectors

of equal dimension, where k is relatively small. For simplicity, we assume that

h = n/(2k) is an integer. Then each subvector has h elements, denoted as

di = (di1, di2, ..., dih)T ∼ Nh(0,ΣJi), i = 1, . . . , k. For each block i, we may

write log-likelihood as

li(θ) = log{f(di|θ)} = const− 1
2

log{det(ΣJi)} − 1
2
dT

i Σ−1
Ji di (6)

and the pseudo log-likelihood,
∑k

i=1 li(θ), is the sum of these component log-

likelihoods to be maximised. It is worth noting that this pseudo-likelihood

approach ignores correlations between blocks. However, when the blocks are
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large, inter-block correlations should have a negligible impact on the estimate

of θ provided long-range dependence is not present. In the simulation study

presented in §4, the log-likelihood (6) is used in the corresponding simulations,

where k = 4 was chosen in all cases.

4 Simulation Study

4.1 Specific Covariance Matrices

In this section, we present the results of some simulations to illustrate the pro-

cedures proposed above. Three types of correlated noise considered here are

AR(1), AR(2) and MA(1). If the noise model is known, we can write down

the covariance matrix, see e.g. Cox and Miller (1965). For an AR(1) process,

εt = αεt−1 + ηt, with independent ηt ∼ N(0, σ2
η), t = 1, . . . , n, the n× n covari-

ance matrix of ε, with parameters α and σ2 = σ2
η/(1−α2), is given by σ2V (α),

where V (α) = [Vij(α)]ni,j=1 has entries Vij(α) = α|i−j|.

For an AR(2) process εt = α1εt−1 + α2εt−2 + ηt, where ηt ∼ N(0, σ2
η) inde-

pendently, if the process is stationary (i.e. α1 + α2 < 1, α2 − α1 < 1 and

−1 < α2 < 1 ), the covariance matrix of ε is given by σ2V (α1, α2), where

σ2 =
1− α2

(1 + α2)[(1− α2)2 − α2
1]

σ2
η

and the autocorrelation matrix V (α1, α2) = [Vi,j(α1, α2)]ni,j=1 with entries Vi,j(α1, α2) =

γ|i−j| where γ0 = 1, γ1 = α1(1 − α2)−1, γ2 = α2 + α2
2(1 − α1)−1 and γi =

α1γi−1 + α2γi−2 for i > 2.

For the MA(1) process, the covariance matrix of ε is given by σ2V (β) with

parameters β and σ2 = σ2
η, and V (β) = [Vij(β)]ni,j=1, where Vii(β) = 1 + β2,

Vi−1,i(β) = Vi,i+1(β) = β, and Vij(β) = 0 whenever |i− j| > 1.
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For higher-order AR(p) processes (p > 2), it becomes more difficult to write

down the explicit form of the covariance matrix V (θ) . However, we can obtain

the inverse of the covariance matrix, V −1(θ), in the way proposed by Siddiqui

(1958), and then we can calculate Σ−1 = WV (θ)−1WT .

In order to gain insight into the behavior at low, medium and high signal-to-

noise ratio (SNR), we normalise the noise by using

εnorm =
ε

std(ε)
(7)

and rescale the signal by using

fscaled = f × (
SNR

std(f)
), (8)

where std is the standard deviation of the test function or noise and the value

of SNR indicates signal to noise ratio, which can be controlled in the simulation

study.

4.2 Simulation Results

To compare the performance of existing methods with the proposed meth-

ods in this paper, we use four signals, “HeaviSine”, “Blocks”, “Bumps” and

“Doppler”, first proposed in Donoho and Johnstone (1994, 1995) as test func-

tions for wavelet estimators.

In what follows we used the notation WDmean-m and WDmed-m to denote the

wavelet domain (WD) procedure outlines in §3.2, with Step 4 implemented using

the posterior mean and posterior median version of the EBB procedure of Wang

and Wood (2006), respectively; see the Appendix. The quantity m denotes the

block size used. Similarly, TDmean-m and TDmed-m denote the corresponding
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time domain (TD) procedures, in which the parameter estimates are obtained

as a by-product of Step 1 of the general procedure described in §3.1. Also,

JS denotes the level-dependent universal thresholding method by Johnstone

and Silverman (1997), ETLmean, ETLmed, ETCmean and ETCmed denote,

respectively, the posterior mean and posterior median of the level-dependent

“EbayesThresh”(ET) method with Laplace (L), where better results are ob-

tained by only estimating the scale parameters empirically from the data, and

Cauchy (C) prior proposed by Johnstone and Silverman (2005a, b).

In Table 2, the new methods are compared with a number of existing methods

designed for the same situation. The MSE of 9 methods using 100 simula-

tion runs with n=1024, SNR=7, and signals HeaviSine, Block, and Bumps and

Doppler are listed. The figure in brackets indicates the relative MSE. For each

signal, the relative MSE of the j-th estimator is defined as mink(MSEk)/MSEj .

The table shows the new methods 1− 4 are quite competitive with the existing

methods, especially for the rough signals (e.g Bumps). In two of the four cases

with three noise situations (Bumps and Doppler), all the new procedures 1− 4

do better than 5 − 9. For the Bumps signal the MSEs of the TD and WD

methods are less than one tenth of that of the JS method for three signals. For

the remaining signals (HeaviSine and blocks), the results of the new methods

are very close (larger than 0.8 of the relative MSE ) to the results of the best

of the published methods, and WDmean-2 is the best for HeaviSine signal. The

TD and WD methods are quite competitive although the pseudo-likelihood es-

timation based on large blocks of the WD method is computationally intensive,

especially when the order of the noise is high. However, considering the im-

provement of the average MSE and the widespread availability of high-powered

computers, this cost is worthwhile.

Fig. 3 shows the reconstructions of Bumps signal from AR(1) (α = 0.7) noise
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by 9 methods (see details above). Generally speaking, all the methods can give

approximately noise-free reconstructions except for the JS method although it

gives the right direction of denoising. Even though the TD and WD methods

use the JS method as a preliminary, they still can give the excellent denoising

results; this is confirmed by the simulations (see Table 2).

Some further comments now follow.

Remark 1: Boundary correction. One possibility we have not discussed so far

is the use of boundary correction, based on symmetric reflection of the func-

tion f beyond the boundaries of the domain; see for example Abramovich and

Benjamini (1996). A simulation study, not reported here, was undertaken to

compare the performance of the proposed methods with and without boundary

correction when applying the DWT to the signals. The overall performance of

boundary correction did not show clear superiority over implementation without

boundary correction. For this reason, we did not include boundary correction

methods in the results reported here.

Remark 2: Choice of block size. The choice of block size is an important issue

for block thresholding methods, and has been discussed by several authors in

an asymptotic frequentist framework; see, for example, Hall et al. (1998), Cai

(2002), and Cai and Zhou (2008). Numerical simulations for different block

sizes (1,2,4,8,16) with different signal-to-noise ratios, SNR, (3,5,7) have been

undertaken, and results suggest that the block size favored by each signal is

quite stable across the different signal-to-noise ratios. The numerical results for

different block sizes (1,2,4,8,16) with sample size 1024 and SNR 7 are presented

in Table 3. Table 3 suggests that a small block size, (1,2,4), is appropriate for

the given examples. It is interesting to note that the best choice of block size

for each signal contaminated by the three types of noises agreed with the signal

had IID Gaussion noise; see Wang and Wood (2006).
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signal methods AR(1) AR(2) MA(1)
1. WDmean-2 0.2555∗ (1.0) 0.1408∗ (1.0) 0.1158∗ (1.0)
2. TDmean-2 0.2976 (.859) 0.1776 (.793) 0.1286 (.901)
3. WDmed-2 0.2861 (.893) 0.1615 (.872) 0.1263 (.917)
4. TDmed-2 0.2897 (.882) 0.1725 (.816) 0.1239 (.935)

HeaviSine 5. JS 0.3337 (.766) 0.2316 (.608) 0.1848 (.626)
6. ETLmean 0.2636 (.969) 0.1543 (.913) 0.1236 (.937)
7. ETLmed 0.2803 (.912) 0.1607 (.876) 0.1291 (.897)
8. ETCmean 0.2628 (.972) 0.1537 (.916) 0.1229 (.942)
9. ETCmed 0.2803 (.912) 0.1607 (.876) 0.1287 (.900)
1. WDmean-2 0.5444∗ (1.0) 0.4261∗ (1.0) 0.3599 (.994)
2. TDmean-2 0.5493 (.991) 0.4816 (.885) 0.3576∗ (1.0)
3. WDmed-2 0.5703 (.955) 0.4423 (.963) 0.3796 (.942)
4. TDmed-2 0.6055 (.899) 0.4696 (.907) 0.3629 (.985)

Bumps 5. JS 6.8436 (.079) 6.9480 (.061) 6.9175 (.052)
6. ETLmean 0.8402 (.648) 0.6606 (.645) 0.5634 (.635)
7. ETLmed 1.0525 (.517) 0.8144 (.523) 0.6859 (.521)
8. ETCmean 0.8682 (.627) 3.3679 (.127) 0.5727 (.624)
9. ETCmed 1.0973 (.496) 0.8451 (.504) 0.7093 (.504)
1. WDmean-2 0.3612 (.920) 0.2667 (.880) 0.2221 (.839)
2. TDmean-2 0.4102 (.810) 0.2939 (.798) 0.2329 (.800)
3. WDmed-2 0.3569 (.931) 0.2701 (.869) 0.2231 (.836)
4. TDmed-2 0.3679 (.903) 0.2917 (.804) 0.2057 (.906)

Blocks 5. JS 0.4650 (.715) 0.3560 (.659) 0.2827 (.659)
6. ETLmean 0.3482 (.954) 0.2494 (.941) 0.2007 (.929)
7. ETLmed 0.3480 (.955) 0.2505 (.937) 0.1981 (.941)
8. ETCmean 0.3323∗ (1.0) 0.2346∗ (1.0) 0.1864∗ (1.0)
9. ETCmed 0.3381 (.983) 0.2416 (.971) 0.1894 (.984)
1. WDmean-2 0.3038∗ (1.0) 0.2473∗ (1.0) 0.1875∗ (1.0)
2. TDmean-2 0.3732 (.814) 0.2932 (.844) 0.2035 (.844)
3. WDmed-2 0.3211 (.946) 0.2927 (.845) 0.2221 (.845)
4. TDmed-2 0.3542 (.856) 0.2962 (.835) 0.1971 (.835)

Doppler 5. JS 0.5463 (.556) 0.4342 (.569) 0.3747 (.570)
6. ETLmean 0.3825 (.794) 0.2787 (.887) 0.2326 (.887)
7. ETLmed 0.3984 (.763) 0.3009 (.822) 0.2538 (.822)
8. ETCmean 0.3790 (.802) 0.2773 (.892) 0.2312 (.882)
9. ETCmed 0.3985 (.762) 0.3059 (.808) 0.2569 (.808)

Table 2: The comparison of MSE of 9 methods using 100 simulation runs with
n= 1024, SNR= 7, signals HeaviSine, Blocks, Bumps and Doppler contaminated
with noises AR(1) with α = 0.7, AR(2) with α(1) = 0.7 and α(2) = −0.2 and
MA(1) with β = 0.5. The figures in brackets are the relative MSEs, which indi-
cate the ratios of the MSE with the minimum MSE achieved for each example.
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Figure 3: Bumps signal with AR(1), α = 0.7, based on sample size n = 1024
and SNR = 0.7. The reconstructions are obtained using 9 methods (see details
in text).
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HeaviSine methods m=1 m=2 m=4 m=8 m=16
AR(1) WDmean 0.2536∗ 0.2555 0.2988 0.3112 0.3222

WDmed 0.2837∗ 0.2861 0.3078 0.3149 0.323
AR(2) WDmean 0.1414 0.1408∗ 0.1684 0.1850 0.1980

WDmed 0.1678 0.1615∗ 0.1694 0.1879 0.2010
MA(1) WDmean 0.1171 0.1158∗ 0.1351 0.1485 0.1655

WDmed 0.1331 0.1263∗ 0.1424 0.1569 0.1692
Blocks methods m=1 m=2 m=4 m=8 m=16
AR(1) WDmean 0.3152∗ 0.3612 0.4602 0.5700 0.6804

WDmed 0.2967∗ 0.3569 0.4335 0.5604 0.6738
AR(2) WDmean 0.2231∗ 0.2667 0.3469 0.4415 0.5558

WDmed 0.2094∗ 0.2701 0.3384 0.4445 0.5596
MA(1) WDmean 0.1823∗ 0.2221 0.2905 0.3759 0.4851

WDmed 0.1796∗ 0.2231 0.2827 0.3722 0.4869
Bumps methods m=1 m=2 m=4 m=8 m=16
AR(1) WDmean 0.5946 0.5444∗ 0.5879 0.6846 0.7883

WDmed 0.6616 0.5703∗ 0.5566 0.6681 0.7863
AR(2) WDmean 0.4848 0.4261∗ 0.4634 0.5633 0.6852

WDmed 0.5409 0.4423∗ 0.4463 0.5525 0.6874
MA(1) WDmean 0.4126 0.3599∗ 0.3876 0.4779 0.5973

WDmed 0.4737 0.3796∗ 0.3764 0.4706 0.5993
Doppler methods m=1 m=2 m=4 m=8 m=16
AR(1) WDmean 0.3467 0.3038∗ 0.3054 0.3649 0.3570

WDmed 0.3762 0.3211∗ 0.3265 0.3637 0.3482
AR(2) WDmean 0.2893 0.2473 0.2134∗ 0.2411 0.2360

WDmed 0.3302 0.2927 0.2335∗ 0.2334 0.2288
MA(1) WDmean 0.2330 0.1875 0.1706∗ 0.1883 0.1815

WDmed 0.2823 0.2035 0.1891∗ 0.1884 0.1797

Table 3: Simulation results for WDmean and WDmed comparing different block
sizes m based on 100 simulation runs. The number in each cell is MSE and an
asterisk is used to identify the optimum block size within a row.
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methods HeaviSine Blocks Bumps Doppler
AR(2) known WDmean 0.1261 0.2466 0.3837 0.2212

WDmed 0.1289 0.2510 0.4120 0.2628
AR(1) struc WDmean 0.1961 0.2808 0.4468 0.2503
AR(2) noise WDmed 0.2078 0.2644 0.4244 0.2461
MA(1) known WDmean 0.1148 0.2238 0.3598 0.1860

WDmed 0.1217 0.2132 0.3679 0.2037
AR(1) struc WDmean 0.1418 0.2311 0.3682 0.1896
MA(1) noise WDmed 0.1549 0.2283 0.3663 0.2170

Table 4: Simulation study for WDmean and WDmed comparing the noise pro-
cess known and the noise process incorrectly specified. The numbers in the sec-
ond and fourth rows are MSEs when the noise processes were known as AR(2)
with α(1) = 0.7 and α(2) = −0.2 and MA(1) with β = 0.5. The numbers in the
third and fifth rows are MSEs when the noise processes were AR(2) and MA(1)
but incorrectly identified as AR(1) model.

Remark 3: Real noise structures known. It should be noted that, in the sim-

ulation study, the correct ARMA model was assumed when implementing the

TD and WD approaches. Thus, the TD and WD methods had an advantage

that they would not have in a real data example, where a parametric model

for the correlation structure would be unknown. Before showing a real data ex-

ample which suggests that satisfactory results may be expected even when the

covariance structure is unknown, we consider the effect of incorrectly specifying

the noise process. Table 4 shows the simulation results under the following four

situations: the noise processes were known to be AR(2) with α(1) = 0.7 and

α(2) = −0.2 and MA(1) with β = 0.5, the estimations were assuming an AR(1)

model while the noises were AR(2) and MA(1). The first and third rows in the

table showed the best denoising results we can hope to obtain since we know

the correct noise processes. The second and fourth rows gave the results when

we incorrectly specify the noise process. Compare these values with associated

values in Table 2, we can see that it is not a disaster if we incorrectly specify

the noise process although it does influence the denoising results.
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4.3 The Real Data Case

Nason (1996) described a dataset obtained in an anesthesiological study using

inductance plethsmography. The data was collected in an investigation of the

recovery of patients after general anesthesia, which is available as part of the

wavethresh4 package (Nason 2006). The original data ipd are plotted in

Fig. 4(a).

Johnstone and Silverman (2005b) presented two versions of this dataset, smoothed

in two different ways. One way assumed that the original signal was observed

with IID noise, where the ET method with the same noise estimate for all lev-

els was used. The other way assumed stationary correlated noise and used the

level-dependent ET method. Fig. 4(b) shows the smoothed version of the ipd

data with IID noise assumption, and Fig. 4(c) with the stationary correlated

noise assumption. From these two plots we can see that the reconstruction by

assuming the stationary correlated noise, plot (c), removes some moderately

high frequency effects which still exist in the reconstruction (b), for example, in

the interval [1000, 2000].

To find the smoothed version of the data by the new methods proposed in this

paper, we first try to find the noise model, and the Durbin-Levinson algorithm

is used to fit successively higher order autoregressive processes to the estimation

of ε. We then obtain the sample pac.f α̂jj . The first 50 numbers of sample pac.f

with the bounds ±1.96n−1/2 are shown in Fig. 5. The AR(2) model for the

noise here with α1 = 0.38 and α2 = 0.27 will be used to balance the accuracy

and simplicity. The smoothed versions of the ipd data by TDmean and TDmed

are plotted in Fig. 4(d), (e). These plots show that the proposed methods are

able to remove the noise effectively. Especially, in the interval [1000, 2000], the

proposed methods remove the local variability better but still keep the peaks

well.
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Figure 4: (a): the original ipd data; (b): the reconstruction obtained by
ETCmean method with IID noise assumption; (c): the reconstruction obtained
by ETCmean with stationary correlated noise assumption; (d): the reconstruc-
tion by TDmean-2; (e): the reconstruction by TDmed-2.

21



0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5: The first 50 numbers of the sample pac.f for the estimated noise ε
with the bounds ±1.96n−1/2.

5 Conclusions

In this paper we have considered two procedures for wavelet estimation of a sig-

nal in the presence of correlated noise, a time domain procedure and a wavelet

domain procedure. Both procedures involve explicit estimation of the correla-

tion structure of the noise. The results in §4 indicate that both of our proposals

do better than the original level-dependent thresholding method of Johnstone

and Silverman (1997), but when the level-dependent thresholding approach is

used in combination with the empirical Bayes procedures of Johnstone and

Silverman (2005a), the resulting performance is rather similar to that of our

proposals. In Table 2, it is only in the case of the Bumps signal that there is a

noticeable difference (with our proposals doing better). However, even though

level-dependent procedures are simpler to implement than those procedures in

22



which the correlation structure is estimated, it is nevertheless worthwhile to de-

velop estimation procedures of the latter type. Our numerical results indicate

that the two procedures of the latter type proposed here may be expected to

perform well in practice.
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Appendix: empirical Bayes block shrinkage approach

In Bayesian wavelet shrinkage methods, a prior distribution is specified on the

wavelet coefficients which is designed to capture the sparseness of the wavelet

expansions that is common to most applications. The function can then be es-

timated by applying a suitable Bayes rule to the resulting posterior distribution

of wavelet coefficients.

A popular prior model for each wavelet coefficient djk, where j is the resolution

level and k is the location, is a mixture of a normal distribution and a point mass

at zero. The normal distribution with positive variance, N(0, λ2
j ), represents the

possibility of a non-zero coefficient while a point mass at zero, δ(0), represents

a negligible coefficient. A hierarchical model can be expressed as

djk|rj ∼ rjN(0, λ2
j ) + (1− rj)δ(0), (9)

with rj ∼ Bernoulli(pj) for different resolution levels j. The binary random

variable rj determines whether the relevant wavelet coefficient is nonzero (rj =

1) and comes from a normal distribution, or zero (rj = 0), and arises from

a point mass at zero. Suitable Bayesian wavelet shrinkage and thresholding

estimators are the posterior mean and the posterior median.

The Bayesian wavelet shrinkage method used in Step 4 of the procedure in §3.1

is the empirical Bayes block (EBB) shrinkage method proposed by Wang and

Wood (2006). The EBB method, which performs the shrinkage based on the

sum of squares of wavelet coefficients in each single block, takes account of the

information in neighbouring coefficients. In a correlated noise situation, the

wavelet coefficients typically are highly correlated with their near neighbours.

Thus a shrinkage procedure based on a quadratic form in the wavelet coefficients

which takes account of these correlations makes good sense.
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After performing the DWT on the noisy observations y in (1), we obtain the

empirical wavelet coefficients d̃jk, which are candidates for shrinkage. Let B

represent a single block where, typically, a block would consist of neighboring

coefficients at the same resolution level j. Define d̃jB = {d̃jk : k ∈ B} and let

n(B) denote the number of elements (i.e. labels) in B. Following the discussion

in §2.2, we have

d̃jB ∼ Nn(B)(djB ,Σn(B)), (10)

where djB is the noiseless version of d̃jB and Σn(B) is the relevant n(B)×n(B)

submatrix of Σ = WV (θ)WT , obtained in Step 3 of the procedure described in

§3.1.

Define

z = d̃T
jBΣ−1

n(B)d̃jB and ρ = dT
jBΣ−1

n(B)djB .

A shrinkage procedure can be derived by imposing a suitable prior on ρ. In this

paper, we follow the EBB shrinkage method with the “power” prior (see section

2.2 in Wang and Wood, 2006).

The prior can be expressed as a mixture of a unit point mass δ(0) on ρ = 0 and

a certain scaled central chi-squared distribution

ρ|r, β ∼ rδ(0) + (1− r)χ2
m(ρ|0, β−1),

where r is the prior probability that ρ = 0, and β is the scale parameter has the

distribution function

F (β|σ2, λ) =
( βσ2

1 + βσ2

)λ+1

.
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The likelihood of z|ρ is given by a noncentral chi-squared distribution, χ2
m(z|ρ, σ2),

and the mean and median of the resulting posterior distribution for ρ may be

calculated numerically. The mean or median of this posterior distribution are

chosen to be the estimators of the “true” wavelet coefficients. For full details of

the EBB shrinkage method, see Wang and Wood (2006).
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