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Abstract

This thesis is concerned with support at all levels for building highly concurrent and dynamic
parallel processing systems. The CSP model of concurrency, as (largely) embodied in the occam

programming language is used due to its simplicity, expressiveness, architecture-independent nature,
and potential for high performance. Additionally, occam provides guarantees regarding freedom from
aliasing and race-hazard error.

This thesis addresses one of the grand challenges of present day computer science: providing a
software technology that offers the dynamic flexibility and performance of mainstream object ori-
ented environments with the level of safety, formal analysis, modularity and lightweight concurrency
offered by CSP/occam. Two approaches to this challenge are possible: do something to make the
mainstream languages (e.g. Java, C++) safe, or make occam dynamic — without compromising its
existing good properties. This thesis follows the latter route.

The first part of this thesis concentrates on enhancing the occam language and run-time system,
on a commodity platform (IBM PC) running the freely available Linux operating system. After a
brief introduction to the various components of the KRoC occam system, additions and extensions
to the occam programming language and supporting run-time system are examined. These provide
a greater degree of programming flexibility in occam (for example, by adding support for dynamic
allocation, mobile semantics and dynamic network construction), without compromising the safety
of programs which use them. Benchmarks are reported that demonstrate significant improvements
in performance (for example, channel communication in tens of nano-seconds).

The second part concentrates on improving the level of interaction between occam programs and
the OS environment. Providing easy access to sockets and networking, for example.

This thesis concludes with a discussion of the work presented herein, with consideration given to
parallels with object-oriented languages. Also described are details of ongoing and potential future
research. The modified language grammar, details of new compiler generated code, and miscellany
are provided in the appendices.
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Chapter 1

Introduction

This thesis, “Dynamics and Pragmatics for High Performance Concurrency” is concerned with the
motivation, design and implementation of methods and mechanisms that provide support, at all lev-
els, for highly concurrent dynamic parallel processing within occam/CSP. From a different viewpoint,
the promotion of the occam multiprocessing language from rigorously static to highly dynamic, with
a minimal impact on performance and preservation of occam’s existing good properties (particularly
freedom from race-hazard and aliasing errors).

The work within this thesis is undertaken at three levels: firstly, the occam language itself, to
enhance the language in general and provide support for dynamic parallelism; secondly, the run-
time kernel — the environment in which occam programs are executed — to provide the necessary
run-time support for a dynamic occam language; and finally, the underlying operating-system, that
can be extended to significantly improve run-time support for concurrent software systems.

1.1 History

The occam [Inm84a, Inm84b, Inm95, Bar92] programming language is a concurrent programming
language based on the CSP [Hoa78, Hoa85, Ros97] process algebra. CSP provides a rigorous parallel
model, whereby parallel processes engage in synchronous events. A process may also select between
several events on offer (external choice). In occam, CSP events appear mostly as channels (where
two processes synchronise and data is copied) and at the ends of PARallel blocks — to ensure that
all nested parallel processes have terminated.

occam was developed between Oxford University and Inmos, with the Transputer [Inm93] in
mind. The Transputer combined an on-chip micro-coded scheduler with on-chip external communi-
cations (on DS links), resulting in highly scalable multi-processor platforms for parallel processing.
The T9000 Transputer additionally provided a virtual channel capability, allowing several virtual
links to be multiplexed into one physical link [MTW93]. Coupled with crossbar routing, namely the
C104, this provided a solid platform for the distribution and execution of occam programs. Sadly,
the Transputer was shelved not long after the T9000 came into production.

The ideas and technologies underlying the Transputer still persevered in the research community
however. The occam For All (oFA) EPSRC-funded project, that ran from February 1995 to May
1997, bought the benefits of the occam language (in the form of KRoC) to a range of architectures
and platforms; Sparc, DEC Alpha, Motorola Power PC, Motorola 68HC11, Motorola 68000, Intel
80x86, Analog Devices 21060 SHARC, and MIPS. Like many high-level languages, occam itself is
architecture independent. Its simplicity and freedom from side-effects (introduced through aliasing)

1



2 CHAPTER 1. INTRODUCTION

make it a suitable language for many purposes, including hardware compilation [CP99], where the
occam program becomes the architecture. With the reduction in cost and ever increasing size and
density of Field Programmable Gate Arrays (FPGAs), building processors like the Transputer is
a distinct possibility. Handel-C [APR+96] is one occam-based hardware language, incorporating
a C-like syntax, arbitrarily sized integer types and various hardware-related facilities. Hardware
compilation is now an active area of research, a good quantity of which is based on the CSP/occam

model.
The Kent Retargetable occam Compiler (KRoC) [WW96] started life as a student project [RSS95]

and after development in the oFA program of research, was developed into an occam system sup-
porting the range of targets already mentioned. KRoC is comprised of an occam compiler, that
generates an intermediate code, a translator to generate native code and a run-time kernel to pro-
vide Transputer functionality (at that time written in the target assembly language). KRoC/Linux
originated here and was developed extensively at UKC [Poo96, WP97], incorporating a C-based
run-time system (CCSP [Moo99]) and various extensions to the occam compiler itself [WM99].

The work presented in this thesis builds on KRoC/Linux as it was in September 1999. The native
code-generator in this version of KRoC was ‘tranpc’ — written in occam and translating from ETC
binary [Poo98] to Intel i386 object-code [Int99] directly. Despite its originality, it turned out that
this translator was too rigid to allow easy extensions and modifications, so during the course of this
work a new translator was written — ‘tranx86’, with ease of experimentation in mind.

1.2 Aims of This Work

The primary objective of this work is to provide support, at the language, kernel and operating-
system level, for highly concurrent dynamic parallel systems based on occam/CSP.

This objective is sought in a number of ways. Firstly, by the extension and general enhancement
of the occam programming language, largely by adding dynamic capabilities, plus a number of other
(often trivial) extensions that bring it closer to languages such as C and Java (which rely heavily
on dynamic memory allocation), whilst remaining secure against aliasing and parallel usage errors.
Second, to provide support for data, channel and process mobility, using a movement semantics. And
finally, by improving the interface between occam programs and the operating-system environment,
allowing programmers to make full use of the UNIX/POSIX [Int96] environment.

As a further objective, this work aims to improve the maintainability and safety of occam code,
particularly in light of the new facilities added.

1.3 Other Approaches to Compiling occam

This thesis is concentrated on the KRoC occam system. However, other ways of compiling occam

programs exist. The most common of these is SPoC [DHWN94] — the Southampton Portable occam

Compiler 1.
SPoC takes a different approach to compiling occam programs from KRoC. Instead of using

the Inmos occam compiler, SPoC uses a compiler written (from scratch) using the GMD compiler-
compiler toolkit [GE90], to produce a compiler that generates portable ANSI C code from the occam

1In a Google search for “occam compiler”, circa October 2002, SPoC appeared at the top of the list, followed by
KRoC in 2nd place. Currently, KRoC appears in first place, followed by SPoC in second. This change of ordering is
most likely due to the addition of KRoC to the popular ‘FreshMeat’ website (http://freshmeat.net/), that acts as
a public project-management and bulletin-board system, mostly for free software.
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sources. The generated code can then be compiled on any suitable system, i.e. one with an ANSI C
compiler.

High-Level Compilation

The advantage of using the GMD toolkit to build an occam compiler, besides its own portability,
was for its algebraic-based semantic analyser. Given the occam language, this toolkit cannot analyse
anything more than the Inmos occam compiler can — everything is pretty much static. However,
for large replicated PARs, the job of parallel-usage checking is greatly speeded up when using the
algebraic checker (inductive) rather than using static checking (exhaustive).

The version of the GMD toolkit used with SPoC suffered from a rather serious deficiency however
— it was unable to correctly analyse the modulo (remainder after division) operator, with particular
failings in the parallel usage checker. Mathematically, modulo is quite complicated, being relatively
hard to reason about in algebra, but has a common use in occam for setting up fair-ALTs. Static
analysis on modulo operators is trivial if the values involved are known. For the place where it
matters — usage checking replicated PARs that setup a cycle of processes — broken analysis causes
a problem. It should, in theory, be possible to fix this since the mechanics of SPoC’s dependency
checker (specifically the Omega-Test [Pug92]) can handle modulo to a certain extent; certainly
enough to enable the correct checking of replicated PARs that setup a cycle of processes.

Various other failings have also limited SPoC’s usefulness2, many of which are covered by Single-
ton and Cook in [SC96]. Potentially, SPoC could be hugely successful as a general occam compiler,
and it is somewhat unfortunate that this has not been the case.

Low-Level Compilation

Another approach to compiling occam, investigated by Poole in [Poo96] and by Welch and Poole
in [WP97], is the direct targeting of the Inmos occam compiler to native code — the DEC Alpha
architecture in this case. This proved to be a highly successful approach, and found good industrial
use. Unfortunately, the Alpha line of processors has ceased production, with most people’s choice
of computer these days being either a PC (almost ubiquitous), or a large server solution (e.g. a
Sun E450 / V880, SGI Octane-II, IBM RS6000) 3. The technique of generating target architecture
code directly from the occam compiler is still a good one, and removes the need for a native code
translator. However, there is an obvious issue of portability, and from the point of software engi-
neering, retargeting the (native-code) translator is likely to be significantly easier than retargeting
the compiler.

One alternative technique for occam compilation would be the addition of an occam front-end for
the ‘gcc’ compiler [Sta98]. The generation of an occam front-end for gcc would require a significant
investment of time — centrally in order to learn the internals of gcc. Such porting is made easier,
however, by the provision of good documentation and many existing front-ends for various languages:
‘g++’ for C++, ‘g77’ for Fortran-77, and more recently, ‘gcj’ for Java. It is envisaged that much of
a (C-based) run-time system would still be required, to perform the scheduling of occam processes.

2Attempts to build SPoC cleanly (from the various versions on their website), largely failed when tried on a
modern Linux system — often realised as an internal (SPoC occam) compiler error when compiling certain library
files. Tracking these bugs down and fixing them is certainly possible, but as yet has not been attempted.

3There is an almost eerie parallel with the early days of computing — X-terminals and TTYs are now PCs, servers
just got bigger and more powerful. The industrial philosophy is once again back in favour with the idea of having
centrally managed servers, with clients as largely slave devices (database systems in particular). It made sense in the
first place, and it still does now: many real-world interactions are client/server based.
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New Approaches

One frequently discussed topic has been the possibility of developing a completely new occam com-
piler, using modern compiler tools and techniques. However, the existing Inmos occam compiler
clearly demonstrates that compiling occam is a non-trivial task. This arises largely from the exten-
sive checking required to ensure the correctness of parallel code, and the desire to limit the number
of run-time checks to a minimum.

It is clear that a large amount of time and effort has been spent in developing the Inmos occam

compiler, particularly with respect to the correct compilation of occam. For occam, there exists
the “CG-tests”, consisting of some 46 extensive test programs, that exercise various features of
the occam language and compiler. Many of these tests contain occam code that is unlikely to be
generated naturally by humans, but which is still legal occam.

For any new occam compiler, that would ideally pass all the CG-tests, the extensive parallel-
usage and alias checks must be re-implemented. This is no small task, and one that is hard to get
right. Although the Inmos occam compiler is certainly not simple, using it as a core to build upon
makes good sense, given the alternatives.

1.4 Motivation

Parallel programming is too often seen as a “hard” discipline, and one area which the majority
of programmers try to avoid. This has not come about through the non-availability of parallel
hardware, such as the Transputer — current hardware is more than adequate — but through
the lack of appropriate software tools and infrastructures to build concurrent systems. Traditional
languages like C, and more recently Java, suffer when parallelism is “bolted on”, frequently resulting
in more harm than good. This arises because there is little or no control over how that parallelism is
used — the programmer can write all sorts of race-hazardous code, often without realizing it. The
problem of managing parallelism in these languages increases with the size of the system, leading
to catastrophic failures in large systems that are almost impossible to pin down. Large non-parallel
systems also suffer from such problems, that can easily be caused by variable/pointer aliasing errors.

The occam language, with CSP semantics for parallelism, solves the majority of these problems:
occam does not permit uncontrolled aliasing and CSP provides composable semantics for building
parallel systems. Despite this clear advantage, occam suffers from an inability to interact fully with
the surrounding operating-system and hardware environments. The principal reason for this, in the
KRoC occam system, is twofold. Firstly, adding significant amounts of code to hand-coded assembly
language, of which the majority of KRoC run-time kernels are implemented in, is a difficult and
daunting task. Secondly, the surrounding operating-system environment is often poorly adapted
for fine-grain parallelism — for instance, executing a blocking system-call from within a (KRoC)
occam process will cause all parallel occam processes to be suspended, while the program is blocked
in the OS kernel. This makes writing programs that utilise inter-process communication (IPC) and
networking difficult. Difficult to the point where it may be preferable to use C, or another language,
and risk race-hazard and aliasing errors.

Another of occam’s limiting factors is its lack of dynamic behaviour. Traditional occam programs
can be viewed as static process graphs, nodes representing processes and arcs representing channels.
Even though parts of a program may come into existence then disappear, all the graphs can be
defined statically. One of the reasons for this static model stems from the Transputer, that had real
finite memory (as opposed to virtual memory), and by today’s standards, a much lower processing
capacity — Transputers were designed to be assembled in networks to increase processing yield. Thus
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the use of dynamic behaviour in these systems would have been limited — a case of cost outweighing
gain. Today’s commodity computing hardware is massively more high-power by comparison, with
processor speeds currently heading upwards of 3 giga-hertz and hundreds of mega-bytes of real
memory commonplace. On this scale of hardware, the possibilities for dynamic behaviour in occam

programs are enormous, providing of course that such dynamic behaviour is securely managed —
in order to be free from race-hazards, uncontrolled-aliasing and memory-leak errors.

1.5 Structure of This Thesis

This thesis is divided into three main parts. The first part concentrates on the various additions
and modifications made to the occam language and KRoC system to provide for dynamic parallel
computing, presented across three chapters. Chapter 2 examines the the KRoC/Linux system, with
a discussion of the major components and overall structure. General enhancements and additions
to the occam language, that provide some basic dynamic capability, are presented in Chapter 3.
Chapter 4 presents ‘mobiles’, an addition that provides mobility (a movement semantics) for data,
channels and processes, and is in many cases dynamic. Chapter 5 examines various mechanisms
that provide dynamic parallel process creation, a feature previously lacking in occam, and one that
has always been highly desirable.

The second part of this thesis describes various other extensions that increase the level of (system)
interaction available to occam program, and add support for facilities such as process priority and
debugging, covered in Chapters 6 and 7.

The second part concludes in Chapter 8 with a discussion of the work presented in Chapters 3
through to 7, along with details of ongoing and possible future research.

The third part of this thesis consists of the appendices, which primarily serve as an imple-
mentation guide for future work. Appendix A provides an ordered syntax definition for occam,
incorporating the various new language features, with cross-references to their descriptions in the
thesis. Appendix B covers the various new instructions and translator-directives (ETC specials)
which are needed, in part, to support the work presented in the first two parts of this thesis.
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Part I

Dynamic Parallel Computing

This part of the thesis is concerned with the enhancement of the occam language, primarily to
provide a dynamic capability for both data and processes. Additions to the language and run-time
implementation of KRoC/Linux are examined, for Intel i386 based architectures.

Chapter 2 gives an introduction to the KRoC/Linux occam system, on which the majority of
this work is based. The enhancements are split into a number of categories, each presented in a
separate chapter.

A number of general extensions to the occam language, that are not specifically KRoC/Linux
centric, are presented in Chapter 3. Chapter 4 presents mobiles, that provide a very general dynamic
capability for occam, in particular a unit-time movement capability for data, channels and processes.

The first part of this thesis finishes with Chapter 5, that presents various enhancements specif-
ically for dynamic process creation, greatly enhancing the expressiveness of occam for creating
(dynamic) process networks.
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Chapter 2

Introduction to KRoC/Linux

This chapter provides an introduction to the KRoC/Linux system, on which the work in this thesis
has been realized. The major components of the system are described here, along with a brief
history of its development.

2.1 Origins of KRoC/Linux

The current version of KRoC/Linux started life as a deliverable of the EPSRC funded oFA project
[Pro95]. Michael Poole developed the native-code translator for the Intel 80x86 architecture (written
in occam), as well as making several modifications and improvements to the Inmos occam compiler
(which KRoC in general uses) [Poo96]. James Moores subsequently developed CCSP [Moo99],
a run-time kernel supporting both C and occam, with was combined with the 80x86 translator,
the occam compiler, various libraries, and a wrapper script, producing the KRoC/Linux system
(largely work done by Dave Beckett and Jim Moores). The occam compiler work done by Wood
and Moores [WM99] is also used in the Sparc version of KRoC (which also happens to be the first
KRoC target).

The work presented in this thesis starts from the KRoC/Linux system as described above, and
affects all components of the system — from the occam compiler and translator, to the run-time
kernel. Further to this, consideration is also given to modifying the Linux operating-system to better
support the occam run-time environment.

2.2 Packaging

The KRoC/Linux system is comprised of a number of separate programs, bound together by the
‘kroc’ script, that performs the necessary steps to turn an occam source file into a target executable
(linking in libraries and the run-time kernel along the way).

Figure 2.1 shows the pipeline of programs involved from turning an occam source file into a
target executable. Source files are first compiled by ‘occ21’, the Inmos occam 2.1 [Inm95] compiler.
This has been modified by Poole to generate a binary intermediate language, ETC code [Poo98],
which is code for the ‘virtual transputer ’ provided by KRoC. The compiler is described more fully
in section 2.3.

The compiler-generated ETC is then translated into native object-code by the translator. In
the original KRoC/Linux system, this was done using ‘tranpc’, a translator written in occam that

9



10 CHAPTER 2. INTRODUCTION TO KROC/LINUX

source file

occam

occ21

ETC

tranpc

tranx86

code
object

kernel
run−time

linker

executable

libraries

Figure 2.1: The KRoC/Linux compilation sequence

generated i386 object-code directly. This has some portability and maintainability problems, one of
which is the inability to provide ‘tranpc’ in a source-only distribution — due to need for a working
occam system in order to build it. As such, a new translator, ‘tranx86’ was written during the
course of this work, providing many new features in the process. The new translator is described
more fully in section 2.4.

Once compiled and translated, the object code is linked with various libraries and the run-
time kernel to produce the target (native) executable. The run-time kernel used is a modified
CCSP [Moo99], written mostly in C with some in-line native assembler for interfacing with occam.
This run-time system is introduced more fully in section 2.5. Rather than calling the linker directly
to create executables, KRoC uses ‘gcc’ [Sta98] to invoke the linker, since the run-time kernel has
a C ‘main()’ (compiled with gcc). Additionally, gcc will adjust linker parameters where necessary
for compatibility between Linux systems.

2.3 The occam Compiler — occ21

The occam compiler used in KRoC is adapted from the Inmos ToolSet compiler, “occ21”. It is
comprised of some 100,000 lines of C code, organised into the main compiler ‘components’ – front-
end, tree-transformations, back-end and the compiler harness. Rather than using lexer and parser
tools such as ‘flex’ and ‘bison’, the compiler is completely hand-written. Once parsed, the code
inside the compiler operates on an abstract tree representing the code being compiled, which is
modified as the various stages of compilation happen. The large amount of C switch statements,
mostly on parse-tree node types, make the compiler rather tricky to maintain — a small change in
the tree-structure requires many small changes throughout the compiler.

The non-use of tools such as bison is due in part to the difficulty in parsing occam in an LA-
LR1 fashion. Additionally, a rather clever lexer is required in order to extract indent and outdent
information from the occam code. As it turns out, incorporating the lexer and parser directly in C
produce some nice performance advantages, especially when handling strings (the compiler maintains
a global pool of unique words, making byte-by-byte string comparisons largely unnecessary).
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The occam compiler targets a ‘virtual-transputer ’, based on the T800 Transputer [HMSS87,
Inm88]. The output from the compiler is the previously mentioned ETC [Poo98]: binary code
based on the T800 and T9000 Transputer instruction encodings, with various ETC ‘specials’ that
provide non-code information (such as entry-points, call-stubs, PROC memory usage information and
constant data).

This output code has been extended to handle the new features in KRoC, particularly those
associated with dynamic allocation. A description of the ETC additions can be found in Appendix B.

2.4 The Translator — tranx86

The tranx86 translator was developed during the course of this work [Bar01], replacing the original
tranpc translator written by Poole. The function of the translator in KRoC is to turn the inter-
mediate compiler output (ETC) into native code that interfaces with the run-time kernel (CCSP,
discussed in section 2.5).

The new translator was designed with the Intel x86 family of processors in mind, hence the
name. During the course of development, however, this target dependency has been localised with
the intention of allowing easy modification to support alternative target architectures. An alternative
code target for the MIPS architecture [ea82, Swe99] is currently underway — primarily supporting
32-bit MIPS targets, which Linux supports reasonably well [Bc01]1.

tranx86 maintains its own intermediate representation of code, with instructions based on the
Intel Pentium-II (i686). These instructions carry significantly more information than can be ex-
pressed in assembly language, taking into account instructions that affect registers not specified in
the instruction encoding. The internal code is build from lists of these instructions, using virtual
registers — excessively — that are later allocated into real target registers, satisfying any constraints
imposed by a particular target. In this back-end stage of the translator, CISC code generation (the
originally intended target being the Intel i386 family) involves a reduction in the number of real
registers used, and constraints for many instructions. RISC code generation, on the other hand,
is more a reduction of the instruction set into simpler sequences, with fewer constraints on target
register allocation.

Optimisation in tranx86 is performed largely in a peephole style, a common optimisation, and
one used in a port of KRoC to the Power-PC [SARW98]. Such optimisations are somewhat target
dependant, and may be affected by variations in processor revision. As such, they form part of the
target-dependant part of tranx86, increasing the work required in porting. However, for experimental
ports, optimisations can be skipped — in the interest of producing a functional KRoC system quickly.

As well as offering some architecture independence, tranx86 is geared to supporting different run-
time kernels. Currently, support only exists for the original run-time kernel (CCSP), its modified
successor (covered in the following section), and an experimental interface for RMoX [BJV03].
However, adding support for other run-time kernels is designed to be as simple as possible.

1Linux support for the MIPS architecture is in on-going development, but is both functional and usable. To date,
the 32-bit support is largely complete, with 64-bit on the way. It turns out that a lot of the development time spent
on Linux/MIPS is in handling uncommon processor variants — many such variants have been created over the years,
often specific to their destined (typically embedded-systems) use.
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2.5 The Run-Time Kernel — CCSP

The run-time kernel used by KRoC/Linux is a modified version of Jim Moores’ CCSP run-time
kernel [Moo99, Moo00b], that originally supported both C and occam (mutually exclusive). The C
support has been largely removed from the version of CCSP in KRoC/Linux, with interfaces to C
provided through different mechanisms (including one that allows the concurrent execution of both
C and occam processes).

The primary function of the run-time kernel is to provide an implementation of the Transputer
scheduling and communication mechanisms. Run-time kernels for other KRoC ports have tradition-
ally been written in native assembly. This hinders maintenance somewhat, but in some — nowadays
rare — cases, this may be unavoidable. The original CCSP contained a large amount of architecture-
dependant in-line assembler code. This is still present in the current version, but has been separated
out of the main kernel itself into architecture-specific header files (as pre-processor macros). In the-
ory, porting CCSP to a different architecture requires only the writing of new architecture-dependant
assembly macros, and that a ‘gcc’ compiler suite (targeting the desired architecture) is available.
Fortunately, architectures for which ‘gcc’ does not exist are few and far between.

There are some advantages to writing run-time kernels in assembler, rather than writing them
in C. For example, they are not at the mercy of C compiler bugs. During the development of
KRoC/Linux, to its current state, multiple versions of gcc have been and gone. Along the way,
versions have been encountered (particularly on old systems), that fail to compile the run-time
kernel correctly. These bugs have typically appeared around the various in-line assembler macros,
that break the logic of the C code quite substantially in places. Some (old) versions of the assembler
encountered also caused problems, mainly in the non-support for certain instructions (typically those
added to the architecture after the assembler was written). The current solution is to have the
various configuration scripts in the KRoC source distribution attempt to identify and work-around
any such deficiencies (before building the KRoC system components). Thus far, this approach
has worked, resulting in a system that builds correctly on the majority of Linux configurations.
OpenBSD [Reg02] is also supported by KRoC/Linux, with some of the particularly Linux-specific
extensions missing.



Chapter 3

Extending occam

This chapter describes the various additions and extensions to the occam language and compiler,
which in part facilitate the aims of making KRoC/Linux a more suitable language platform for
deploying parallel systems.

The extensions are divided into three main groups. Sections 3.1 through 3.5 present extensions
which are limited to changes in the occam compiler only — i.e. they do not generate new instructions.
As such, many of these extensions are instantly portable to other KRoC targets — providing the
necessary ETC-reading code is installed in the target code-generator.

The second group, sections 3.6 through 3.8, present the replicator STEP, the extended-rendezvous,
and dynamic memory allocation extensions. The STEP and the extended rendezvous alter the occam

language, and require support in the translator and run-time kernel for new instructions generated.
The dynamic allocation extension (section 3.8) does not affect the occam language directly, requiring
most changes in the translator and run-time kernel — largely for new instruction support.

The remaining extensions are described in sections 3.9 and 3.10. These cover a variety of minor
compiler extensions and enhancements, plus a discussion of a C-style syntax for occam.

3.1 Channel Direction Specifiers

occam programs have traditionally been designed as process-networks, which provide a good (simple
and intuitive) abstraction for reasoning about concurrent systems. Figure 3.1 shows an example
‘integrate’ process network — for a running-sum integrator.

integrate

in
out

plus delta

prefix
(0)

Figure 3.1: Process network for a running-sum integrator
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From the diagram, the implementation is clear — create three internal channels and run the
three sub-processes in parallel. In standard occam, this would be written:

PROC integrate (CHAN OF INT in, out)

CHAN INT a, b, c:

PAR

plus (in, c, a)

delta (a, b, out)

prefix (0, b, c)

:

However, some information has been lost in the translation from design to implementation — the
directions associated with the channels (shown using the arrow-heads in figure 3.1). The primary
implication of this is that it prevents the easy translation from implementation back to design — in
order to draw a diagram from the above code, one needs look at the implementation of the ‘plus’,
‘delta’ and ‘prefix’ processes in order to determine the directions in which channels are used. This
problem scales with the system too, given a simple diagram of ‘integrate’ (not showing the internal
construction), the code for both ‘integrate’ and its sub-processes would need to be examined in
order to deduce (fully correctly) the channel-direction usage.

Channel-direction specifiers present a simple solution to this, by including the “arrow-head”
information in the code. This is certainly not a new idea however. Syntactically, the idea evolved
from discussions in [Wel85]. In actuality, the channel-direction usage information is always known
— but only internally to the compiler1.

This extension exists in two main parts. Firstly, the addition of the necessary syntax within the
language and secondly, the implementation of compile-time checks. The change in syntax is trivial
— channel names are given an input (‘?’) or output (‘!’) postfix. The earlier ‘integrate’ code, for
example, now becomes:

PROC integrate (CHAN OF INT in?, out!)

CHAN INT a, b, c:

PAR

plus (in?, c?, a!)

delta (a?, b!, out!)

prefix (0, b?, c!)

:

Whilst implementing this, a fairly minor change was made to channel declaration parsing: the ‘OF’
keyword is now optional — as it serves no useful purpose in the language. Similarly, the ‘AT’ and
‘IN’ keywords are also now optional. Section 3.5.1 covers this slightly more formally.

3.1.1 Syntax Changes

The above example provides a good demonstration of the channel-direction specifier syntax. Within
the (standard) language, there are three places where channel-direction specifiers may be used:

• on formal parameters in PROC headers:

PROC n.merge ([]CHAN INT in?, CHAN INT out!)

1Disassembling the compiler output will also provide this information — used by the compiler for handling separate
compilation.
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• on the left-hand-side of channel abbreviations:

CHAN INT c? IS ...:

• and in channel expressions:

CHAN INT local.out! IS out[0]!:

n.merge (chans?, local.out!)

The specifier can be used on both individual channels and on arrays/slices of channels. Where
the whole channel name or a subscript of a channel array is used, the specifier is simply appended.
For example:

[n]CHAN INT chans:

CHAN INT c:

PAR

n.merge (chans?, c!)

generate (chans[0]!)

generate (chans[1]!)

...

Slices have a slightly different syntax. The most obvious syntax for these, following on from the
above, would be:

PAR

...

n.generate ([chans FROM 2]!)

However, this syntax is not supported by the compiler. Instead, this syntax is used:

PAR

...

n.generate ([chans! FROM 2])

The reasoning behind this is that our syntax for array-subscriptions is actually wrong — it really
ought to be:

PAR

...

n.generate (chans![0])

...

When an array of channels is declared, such as with the ‘[n]CHAN INT chans:’ declaration above,
two arrays of channel-ends are conceptually declared — one of input ends and one of output ends.
Thus the entire array of output-ends would be referred to as ‘chans!’, and to select a single channel
(‘i’) from within that, we should write ‘chans![i]’. Slices are technically correct: a range of ends
from the appropriate array ‘[chans! FROM s FOR l]’.

The array-subscription form is different since parsing ‘out![0]’ as a channel expression is hard
— not least because it complicates outputs/inputs. By placing the direction specifier at the end of
the channel expression, it can be ‘merged’ into the action where input/output is performed directly
— effectively omitting the specifier. For example, we can write:

SEQ

chans[0] ! 42

generate.int (chans[0]!)
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Compare this with the technically more correct, but less natural, alternative:

SEQ

chans![0] ! 42

generate.int (chans![0])

Array-slices do not need to be considered for direct input/output, since an input or output process
may only operate on a single channel, and slices always generate arrays (even if they contain a
single element). However, array-slice expressions can be immediately followed by a subscription, for
example:

[chans! FROM 3 FOR 2][1] ! 42

3.1.2 Compiler Checks

The processing of channel-direction specifiers in the compiler happens in two places. Early on in
the compiler front-end (lexer and parser), channel-direction specifiers are extracted and turned into
‘mopnode’s (monadic operator nodes), using the tags ‘ASINPUT’ and ‘ASOUTPUT’ as appropriate.

Assuming the input parsed correctly, the compiler moves into the middle section of the front-end
(scope and check). Here any ‘ASINPUT’ and ‘ASOUTPUT’ nodes in channel expressions are removed,
checking direction compatibility in the process. As noted previously, there are only three places
where direction specifiers may be placed: on formal channel parameters to a PROC, on the left-
hand-side of a channel abbreviation, and in channel expressions (‘channel’ here includes channel
arrays).

Direction specifiers in PROC formal parameters are simply ignored at this stage, since they are
only meaningful when actual parameters are supplied.

For channel and channel-array abbreviations, the compiler checks that the direction specifier on
the LHS matches any direction specifier on the RHS, either explicit or implicit. Implicit channel
direction specifiers are found on the declarations of channels in the RHS. For example:

PROC foo ([]CHAN INT chans?)

CHAN INT out! IS chans[0]!:

... body of "foo"

:

This code is clearly wrong, but just by examining the LHS and RHS of the abbreviation it is not
obvious that there is an incompatibility.

The checking of channel expressions occurs in two places. Firstly, when a channel is used
(directly) for input or output, and secondly when a channel (or channel array/slice) is used as
an actual parameter to a PROC. Checking in the first case is trivial — if a channel is used for output,
it must be marked with ASOUTPUT and similarly, if a channel is used for input, it must be marked
with ASINPUT.

Checking in PROC actual parameters is similar to checking in channel abbreviations — semanti-
cally they are the same thing (a renaming). Involved in the check is the direction-specifier in the
PROCs corresponding formal parameter, any explicit direction specifier on the actual parameter and
any implicit direction specifier on that actual parameter.

The compiler checks these three variables, each of which may have three states (‘ASINPUT’,
‘ASOUTPUT’ or unspecified), then either allows the check to succeed (possibly generating a warning)
or stops with an error. Table 3.1 shows the various combinations and their outcomes.
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Formal input output unspecified
Explicit
input (✔, ✘, ✔) (✘, ✘, ✘) (✔, ✘, ✔)
output (✘, ✘, ✘) (✘, ✔, ✔) (✘, ✔, ✔)
unspecified (✔, ✘, ✔) (✘, ✔, ✔) (✔, ✔, ✔)

Implicit (input,output,unspecified)

Table 3.1: Outcomes for channel-direction specifier compatibility checks

Some of the tests marked as successful (✔) may actually fail later on in the compiler, mainly
when direction specifiers are missing (unspecified) and the actual usage of channels is incorrect —
just as they would have failed previously.

Additionally, in strict-mode (section 3.9) any missing ‘formal ’ or ‘explicit ’ specifiers result in
compiler errors — forcing channel-direction specifiers to be used wherever possible. It should be
noted that separately compiled PROCs are not subject to the missing formal direction-specifiers check
— since the programmer may not be in a position to alter them.

3.2 Extending PROTOCOLs

PROTOCOLs form the type-system for communication in occam. At the simplest level they may be
simple data-types (such as INT or BYTE), user-defined types, or counted-arrays. Counted array pro-
tocols are used for communicating arrays, specified as ‘DType::[]AType’, where ‘DType’ represents
the type associated with the size of the array (commonly INT) and ‘AType’ represents the array
element-type. At this level, encapsulating the protocol information in a PROTOCOL declaration is
un-necessary, since channels can be declared to carry one of these basic protocols. For example:

PROC checksum (CHAN INT::[]BYTE in?, CHAN INT out!)

...

:

At the next level are sequential protocols, which are comprised of a series of simple protocols. These
need to be placed in PROTOCOL definitions, if the sequence contains more than one simple protocol.
For example:

PROTOCOL MESSAGE IS INT::[]BYTE:

PROTOCOL PACKET IS INT; INT; INT::[]BYTE:

At the most complex level are variant protocols. These allow a channel to carry an arbitrary number
of sequential protocols, each one prefixed with a tag in order that the inputting process can select
between the various sequential protocols on offer — or STOP if a particular case is not handled.
Syntactically, these are defined with the PROTOCOL and CASE keywords (and as such are also known
as “case protocols”), for example:

PROTOCOL LINK

CASE

message; INT::[]BYTE

packet; INT; INT; INT::[]BYTE

quit

:
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The one feature this lacks is the ability to re-use an existing PROTOCOL definition in a later PROTOCOL
definition — a feature which has been desirable for some time. There are three main parts to
supporting this: sequential-in-sequential protocol inclusion, sequential-in-variant protocol inclusion,
and variant-in-variant protocol inclusion. These are described in section 3.2.1.

As well as this, a new protocol extension (inheritance) mechanism has been implemented —
which provides a rigid sub-typing mechanism for variant protocols. This feature is described in
section 3.2.2.

3.2.1 Protocol Inclusion

Protocol inclusion is a relatively trivial extension which allows the re-use of user-defined PROTOCOLs
within other PROTOCOL definitions. For sequential-in-sequential and sequential-in-variant inclusion,
the name of previously defined protocol is used to represent its contents. For example:

PROTOCOL STRING IS INT::[]BYTE:

PROTOCOL PACKET IS INT; INT; STRING:

PROTOCOL LINK

CASE

packet; PACKET

quit

:

This defines the protocol ‘PACKET’ to be a sequence of two integers and a counted-array of bytes (the
‘STRING’ protocol), and the ‘LINK’ protocol to be a choice between the expanded ‘PACKET’ (with the
‘packet’ tag) and nothing (with the ‘quit’ tag). The implementation of this inside the compiler is
trivial — simply replace the name with the contents of the sequential protocol it represents. After
processing, the compiler representation of the above is:

PROTOCOL STRING IS INT::[]BYTE:

PROTOCOL PACKET IS INT; INT; INT::[]BYTE:

PROTOCOL LINK

CASE

packet; INT; INT; INT::[]BYTE

quit

:

Variant-in-variant protocol inclusion involves deeper analysis, in order to check that any tag name
does not appear more than once after expanding inclusions. The syntax for this type of inclusion
is slightly different, and uses the ‘FROM’ keyword — in order to distinguish between an included
protocol and an empty tag. For example:

PROTOCOL FOO

CASE

tag0; INT; INT

tag1

:
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PROTOCOL BAR

CASE

tag2; BYTE

FROM FOO

:

Protocol inclusion, in all its forms, does not introduce any type-compatibility between the PROTOCOLs
involved — they remain distinct. Protocol inheritance, described in the following section, provides
a mechanism for sub-typing variant PROTOCOLs only.

3.2.2 Protocol Inheritance

Consider the following occam variant protocol declaration, for a generic GUI event handler:

PROTOCOL EVENT

CASE

expose; GADGET -- redraw request

resize; GADGET; INT; INT -- resize notification

mouse.click; GADGET; INT -- mouse click

mouse.enter; GADGET -- mouse enter

mouse.leave; GADGET -- mouse leave

key.press; GADGET; INT -- key-press

scroll; GADGET; INT -- scroll event for scroll-bars

:

A protocol such as this can be used to describe the events sent between a GUI component and an
event handler (either user-written or supplied in a library). Individual GUI components, however,
might only be able to generate a small subset of these events. For example, a button component,
rather than using the ‘EVENT’ protocol in its entirety, might just use a particular subset in a new
protocol definition:

PROTOCOL BUTTON.EVENT

CASE

expose; GADGET -- redraw request

mouse.click; GADGET; INT -- mouse click

:

As it stands, the ‘EVENT’ and ‘BUTTON.EVENT’ protocols have no type compatibility — i.e. we cannot
connect a button component generating ‘BUTTON.EVENT’s to a generic event handler which takes
‘EVENTS’. In single component, single event-handler systems, this will not normally be a limitation
(the event handler can be restricted to a ‘BUTTON.EVENT’ interface), but when components share a
common connection to a generic GUI event handler, it becomes an issue. Currently, there are two
solutions to this problem. Firstly, drop component specific event protocols (such as ‘BUTTON.EVENT’)
and modify component interfaces to output ‘EVENT’s. Or second, introduce a protocol-conversion
component which transforms ‘BUTTON.EVENT’s into ‘EVENT’s — simply by copying input to output,
as shown in Figure 3.2 2.

2The aspect of channel sharing shown in figure 3.2 is not of primary interest here — a fair multiplexor process
could be used instead. Channel sharing, and mechanisms for the automatic management of such are described in
section 4.3.
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gui.button

gui.label

gui.window

button.event

label.event

window.event

button.to.event

label.to.event

window.to.event

event.handler

event

Figure 3.2: Using protocol conversion components to wire up a GUI

Neither solution is particularly attractive however. The former makes it possible for components
to generate meaningless events (for example a label generating a ‘scroll’ EVENT). The second
requires the engineering (and connection) of specific protocol conversion components. Additionally,
these converters must be modified whenever the component-specific protocol is altered.

A mechanism for protocol inheritance has therefore been introduced, that provides a limited
type-compatibility between explicitly related variant protocols. The ‘EVENT’ protocol declaration,
above, can be modified such that it EXTENDS the ‘BUTTON.EVENT’ protocol:

PROTOCOL EVENT EXTENDS BUTTON.EVENT

CASE

expose; GADGET -- redraw request

resize; GADGET; INT; INT -- resize notification

mouse.click; GADGET; INT -- mouse click

mouse.enter; GADGET -- mouse enter

mouse.leave; GADGET -- mouse leave

key.press; GADGET; INT -- key-press

scroll; GADGET; INT -- scroll event for scroll-bars

:

This creates two distinct relationships in the protocol type-system. Firstly allowing a ‘CHAN EVENT

!’ actual parameter to be used where a ‘CHAN BUTTON.EVENT !’ formal parameter is expected, and
secondly, allowing a ‘CHAN BUTTON.EVENT ?’ actual parameter to be used where a ‘CHAN EVENT ?’
formal parameter is expected. The channel-direction restriction in these relationships prevents the
potential non-handling of variant tags (which result in a run-time error). For example, the following
is allowed:

PROC gui.button (CHAN BUTTON.EVENT out!)

... body of gui.button

:

PROC event.handler (CHAN EVENT in?)

... body of event.handler

:
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CHAN EVENT events:

CHAN BUTTON.EVENT btn.events:

PAR

gui.button (events!) -- outputs BUTTON.EVENTs

event.handler (events?)

gui.button (btn.events!)

event.handler (btn.events?) -- inputs EVENTs

but this is not:

PROC gui.button (CHAN BUTTON.EVENT out!)

... body of gui.button

:

PROC event.handler (CHAN EVENT in?)

... body of event.handler

:

PROC gui.mystery (CHAN EVENT out!)

... body of gui.mystery

:

PROC btn.event.handler (CHAN BUTTON.EVENT in?)

... body of btn.event.handler

:

CHAN EVENT events:

CHAN BUTTON.EVENT btn.events:

PAR

gui.button (events!) -- outputs BUTTON.EVENTs

btn.event.handler (events?) -- INVALID: inputs BUTTON.EVENTs

gui.mystery (btn.events!) -- INVALID: outputs EVENTs

event.handler (btn.events?) -- inputs EVENTs

Protocol inheritance, when used in this way, appears to be a natural and intuitive technique in
occam. This is reinforced both by the simplicity of the implementation (described in the following
section) and a soundness in CSP.

3.2.3 Implementation Aspects of Protocol Inheritance

The for most part, the implementation of protocol inheritance is trivial. The internal representation
of variant protocols inside the compiler needs to be modified slightly, in order to indicate those
protocols which it extends. The nature of scoping in occam prevents cyclic inheritance, in the same
way it prohibits mutual recursion3.

In the most trivial cases, when one protocol extends another (singular), the compiler only needs
to modify the tag values of the ‘extended’ protocol (the one which EXTENDS another). The compiler
ensures that the sequential protocols attached to each tag are consistent, in cases where a tag is

3Self-recursion, on the other hand, is now supported by the compiler (described in section 5.1)
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explicitly mentioned in the extended protocol. Any tags not explicitly mentioned in the extended
protocol are automatically inserted by the compiler, keeping the tag values consistent.

Multiple protocol inheritance is also permitted, requiring only slightly more work in the compiler.
In single inheritance, there is the guarantee that we can label the new protocol (with tag values)
without affecting the inherited protocol. With multiple inheritance, this will generally not be the
case (tag labelling in variant protocols starts at 0 and increases as tags are processed). To handle
this, the compiler may need to re-assign tag values in one of the original protocols.

To avoid potentially serious problems, any variant protocol declaration requiring changes in
another must reside in that same file. The re-assigning of tag values in one protocol may also
require the re-assigning of tag values in any inherited protocols. In an attempt to minimise potential
problems, the compiler, when presented with a choice of protocols to re-assign tag values in, will
choose the least deep (in inheritance) and most local (in scope and defined in the same input file).
Once a (locally declared) protocol has been extended (and possibly re-assigned), it is flagged such
that it can never be re-assigned again. This prevents the ‘hidden’ changing of the tag values in
an inherited protocol. If the compiler gets into a situation where it cannot satisfy the inheritance
relations, it simply reports an error and stops.

Here is a short example showing multiple protocol inheritance (and the tag values assigned, then
re-assigned where necessary):

PROTOCOL GRAPHIC.EVENT

CASE

expose; GADGET -- tag = 0

resize; GADGET; INT; INT -- tag = 1

:

PROTOCOL MOUSE.EVENT

CASE

mouse.click; GADGET; INT -- tag = 0 -> 3

mouse.enter; GADGET -- tag = 1 -> 4

mouse.leave; GADGET -- tag = 2 -> 5

:

PROTOCOL SCROLL.EVENT EXTENDS GRAPHIC.EVENT

CASE

scroll; GADGET; INT -- tag = 2

:

PROTOCOL EVENT EXTENDS GRAPHIC.EVENT, MOUSE.EVENT, SCROLL.EVENT

CASE

key.press; GADGET; INT -- tag = 5, MOUSE.EVENT re-assigned

:

3.3 RESULT Parameters and Abbreviations

Result parameters and abbreviations were first suggested by Barrett for occam3 [Bar92]. They are
used to specify that a parameter or abbreviation is intended as a result, and as such need not
be initially ‘defined’ — similar to the ‘out’ parameter specifier in Ada [US 83]. The checks for
‘definedness’ states of RESULT parameters and abbreviations are implemented in the ‘undefinedness-
checker’ (described in section 4.6).
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Two implementations of RESULT abbreviations are supported by the compiler — one uses a
reference to the original, the other a temporary and a copy. For example, the abbreviation:

RESULT INT r IS x:

P (r)

is turned in to an abbreviation by the first implementation:

INT r IS x:

P (r)

and into a temporary and a copy by the second implementation:

INT r:

SEQ

P (r)

x := r

The first implementation (a plain abbreviation) is used by default in the compiler, unless a special
compiler flag ‘-zrv’ is given. The second implementation has a potential advantage in cases where
‘x’ is a reference and the type is small — ‘x’ requires two instructions to load or store, ‘r’ requires
only 1. Additionally, and perhaps more importantly, the second implementation causes ‘r’ to be
really undefined initially — reading from it will not produce the value of ‘x’. The checks are the
same whichever implementation is used — the undefinedness checker will always consider ‘r’ to be
initially undefined, regardless of whether it is an abbreviation or a fresh variable.

Result parameters are somewhat more natural than result abbreviations, as we often want to
write PROCs which use some parameters specifically for output. Traditionally, this was not an issue,
since the compiler did not perform undefinedness checks on the code — if you used an undefined
variable, you got undefined results. Result parameters allow the compiler to check this behaviour
safely, for example:

PROC populate (VAL INT n, RESULT []BYTE r)

... populate r[0] through r[(SIZE r) - 1]

:

This indicates that the procedure ‘populate’ should expect its ‘r’ parameter to be undefined on
entry and defined on exit. The compiler checks this and generates warnings as appropriate. For
example, if the body of ‘populate’ does not actually populate ‘r’.

3.4 Array-Constructors

Array-constructors are a feature commonly found in functional languages, such as Haskell [HPJW92,
Tho99] and Miranda [Tur85, Tho95], the exception being that in these languages the constructors
produce lists rather than arrays.

Concisely, array-constructors provide a method for building an array, based on start, length and
step values, plus an expression which is computed for each element of the array. For example:

[10]INT vals:

SEQ

vals := [i = 5 FOR SIZE vals | i + some.func(i)]

... process using "vals"
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This populates the whole ‘vals’ array, starting with the value ‘5 + some.func(5)’ and finishing
with ‘14 + some.func(14)’. In this example, the created array is simply assigned to the target
variable (‘vals’), and as such could be re-written (without the array-constructor) as:

[10]INT vals:

SEQ

SEQ i = 5 FOR SIZE vals

vals[i-5] := i + some.func(i)

... process using "vals"

The underlying implementation of the array-constructor uses an occam value-process (VALOF,
RESULT) — i.e. it generates an expression. This allows array-constructors to be used wherever
an array (or slice) may be used. Newly added parts of the compiler test-suite exercise this to a
pathologically complex level, for example:

[8]REAL64 vals:

SEQ

vals := [[i = 15 FOR 16 STEP -1 | (REAL64 TRUNC i)]

FROM [j = 0 FOR 8 | j][4] FOR 8]

... process using "vals"

It should be noted that the ‘STEP’ is not specific to the array-constructor — it is a general enhance-
ment to replicators and described in section 3.6.

The array constructor finds a natural use with the ‘INTIIAL’ specifier — that combines declara-
tion and initialisation. For example, in:

INITIAL [16]REAL64 data IS [i = 0 FOR 16 | 0.0]:

... process using "data"

Note that the size must be specified explicitly in the array-constructor. “SIZE data” would be
invalid, since ‘data’ does not come into scope until the colon at the end of the INITIAL declaration.

3.4.1 Syntax and Transformation

The formal syntax definition for the array-constructor is as follows:

array .constructor = [ replicator | expression ]

With the two available forms of replicator , the RHS expands to:

= [ name = base FOR count | expression ]

| [ name = base FOR count STEP stride | expression ]

Semantically, this builds an array of constant length ‘count’, whose elements are built from
‘expression’ (which may involve ‘name’). The values of ‘base’ and ‘stride’ only affect ‘name’, and
have no effect on the size or order of construction. If ‘stride’ is not given, its value is assumed to be
1.

Internally, the compiler transforms array-constructors into value-process (VALOF) expressions.
These types of expressions are rarely used directly in occam programs, as they have a very peculiar
syntax. Their most common occurrence is internally in the occam compiler from the inlining of
FUNCTIONs (which are effectively named value processes). For example, the following declaration
and array constructor assignment:



3.4. ARRAY-CONSTRUCTORS 25

[20]INT vals:

SEQ

vals := [i = start FOR (SIZE vals) STEP stride | func(i)]

... process using "vals"

is transformed internally into:

[20]INT vals:

SEQ

vals := ([SIZE vals]INT tmp:

VALOF

SEQ i = 0 FOR SIZE vals

VAL INT tmp2 IS start + (i * stride):

tmp[i] := func (tmp2)

RESULT tmp

)

... process using "vals"

The first point to note is that ‘start’ and ‘stride’ have been moved out of the replicator and into
the replicated expression. In this example a temporary is created to hold what would have been the
value of ‘i’ in the original expression. To handle this, occurrences of the replicator name (‘i’) in
the original expression are substituted for either the temporary (‘tmp2’ as in this example), or the
expression ‘start + (i * stride)’ (where ‘start’ and ‘stride’ are simple4).

Array-constructors may also be used to create multi-dimensional arrays, formed in the expected
manner, for example:

[32][32]INT64 matrix:

SEQ

matrix := [i = 0 FOR SIZE matrix | [j = 0 FOR SIZE matrix[i] | gen.2d (i, j)]]

... process using "matrix"

The resulting transformation for this code is remarkably unpleasant however — a nested VALOF

process, but still legal occam:

[32][32]INT64 matrix:

SEQ

matrix := ([SIZE matrix][SIZE matrix[0]]INT64 tmp:

VALOF

SEQ i = 0 FOR SIZE matrix

tmp[i] := ([SIZE matrix[i]]INT64 tmp:

VALOF

SEQ j = 0 FOR SIZE matrix[i]

tmp[j] := gen.2d (i, j)

RESULT tmp

)

RESULT tmp

)

... process using "matrix"

4Simple expressions are those which can be evaluated using at most 1, 2 or sometimes 3 levels of the Transputer
stack — the exact limit depends on the context, i.e. how deep the current evaluation stack already is.
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The restriction that the replicator lengths must be constant simplifies code-generation somewhat,
since all the generated ‘SIZE’ expressions will reduce to constants.

Where array-constructors are involved in subscriptions or slices, the compiler will simplify to
produce new array-constructors or simple expressions. For example, the array slice:

[[i = 1 FOR 16 | 1.0 / (REAL64 i)] FROM 4 FOR 8]

is simplified to:

[i = (1 + 4) FOR 8 | 1.0 / (REAL64 i)]

with a run-time check to ensure that an array created in the original would have been large enough
(since the original array-constructor length is removed from the expression).

The transformation for array-constructor subscriptions is somewhat simpler, removing the array-
constructor entirely. For example:

[i = 1 FOR 16 | 1.0 / (REAL64 i)][x]

is simplified to:

1.0 / (REAL64 (x + 1))

with a similar run-time check to ensure that ‘x’ would have been within the bounds of the original
array.

After such modifications, the affected part of the parse tree is processed again, to further reduce
slices and subscriptions, eventually creating the resulting VALOF process.

3.5 Other Language Extensions

This section describes other, relatively small, extensions to the occam language. Section 3.5.1
describes, briefly, the optional ‘OF’ (and other similar keywords). Finally, section 3.5.2 describes the
addition of zero-sized array support — something that occam traditionally bans.

None of the extensions presented in this section require work anywhere other than in the compiler.
Extensions which are more widely-affecting (i.e. those requiring translator or run-time support) are
presented in subsequent sections.

3.5.1 Optional OF

One of the endearing qualities of occam is its simplicity, both in syntax and semantics. On inspection
of the occam grammar, most keywords serve a useful purpose. Some do not, however — most notably
‘OF’, ‘AT’ and ‘IN’. As such, these have now been made optional, allowing a more succinct declaration
of channels, for example ‘CHAN INT c:’ instead of ‘CHAN OF INT c:’. The ‘AT’ and ‘IN’ keywords
are used much less frequently — typically for allocating a variable ‘AT’ a particular address, or for
forcing variable allocation ‘IN’ either workspace or vectorspace.

The compiler changes required to support this are minor. The ‘OF’, ‘IN’ and ‘AT’ keywords are
always expected — and not used to determine choices in parsing. For example:

CHAN REAL64 c: -- omitted OF

PLACE c VECTORSPACE: -- omitted IN

CHAN REAL32 d:

PLACE d addr: -- omitted AT
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3.5.2 Empty Array Support

One slightly odd feature of occam is that it does not permit zero-sized arrays to be specified directly.
Empty array literals ‘[]’ and zero-sized array declarations ‘[0]TYPE var:’ are rejected by the
compiler. Whilst it is unclear why support for the latter would be useful, support for empty arrays
as actual parameters would be useful. For example, a recently added PROC in the occam file-library
(part of the blocking system-calls support — section 6.3), has the (partial) signature:

PROC file.select ([]INT read.set, write.set, except.set, ...)

This PROC provides access to the UNIX/POSIX ‘select()’ system-call, used for IO multiplexing.
Often, the application may only be interested in multiplexing reads, but the other arrays must still
be specified. For this PROC in particular, which takes the arrays as reference (non-VAL) parameters,
the programmer cannot simply write:

INITIAL [3]INT read.set IS [accept.fd, client[0], client[1]]:

SEQ

file.select (read.set, [-1], [-1], ...)

Since the parameters must be variables, the constant array constructors are rejected by the compiler.
Instead, and as well for cases where the array must actually be zero-sized (not consisting of a single
ignored value, as in the above), the programmer must resort to something of the form:

INITIAL [3]INT read.set IS [accept.fd, client[0], client[1]]:

[1]INT write.set, except.set:

SEQ

file.select (read.set, [write.set FOR 0], [except.set FOR 0], ...)

Having to resort to such things does not, in general, inspire confidence in programmers.
The compiler has now been modified to permit the use of ‘[]’, for explicitly specifying empty

array actual parameters — both VAL and non-VAL (reference). For example:

INITIAL [3]INT read.set IS [accept.fd, client[0], client[1]]:

SEQ

file.select (read.set, [], [], ...)

As well as supporting this, the compiler needs also to allow the use of ‘[]’ on the right-hand side of
abbreviations (that may happen through PROC inlining). For example:

[]INT dummy IS []:

VAL []BYTE dummy2 IS []:

SEQ

... inlined PROC body

Allowing ‘[]’ for reference parameters may seem a little inconsistent — it is technically a constant,
not a variable. However, ‘[]’ is literally nothing, and any attempt to access its (non-existent)
elements would result in a run-time error. This is divergence in CSP — and a divergent process
can behave as anything. In effect, the elements of ‘[]’ are ⊥, therefore the type of ‘[]’ is somewhat
undefined — it can be every array type, including VAL and non-VAL.

This type compatibility extends to multiple dimensions, but specifying a constant array of one
(empty) element is also valid. For example:
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REAL64 FUNCTION weight (VAL [][]REAL64 m)

...

:

INITIAL REAL64 v IS 0:

SEQ

v := weight ([])

v := v + weight ([[]])

However, the use of ‘[[]]’ would not be valid for a non-VAL parameter, since the outermost array
contains one element.

3.6 STEP in Replicators

The ability to have a stride (step) in replicators has been a feature long missing from occam. In
many cases, the same effect can be achieved using a VAL abbreviation, but providing it allows for a
more natural specification of replicator strides.

The syntax used is simply the addition of the ‘STEP’ keyword and a ‘stride’ expression to the
replicator. For example:

SEQ i = 0 FOR n STEP s

Q (i)

will replicate the instance ‘Q(i)’ ‘n’ times, starting with ‘i’ as 0 and incrementing by ‘s’ each time.
STEP expressions are valid in any of the four standard replicators (SEQ, PAR, ALT and IF) and in
array-constructors (section 3.4). Formally, the syntax for a replicator is now:

replicator = name = base FOR count

| name = base FOR count STEP stride

A common place where having STEP is useful is when processing arrays, for example:

[N]REAL64 data:

SEQ

... populate data

PAR i = 0 FOR 4

SEQ j = i FOR (N / 4) STEP 4

... process element data[j]

which uses 4 parallel processes to work on the array ‘data’. The first process works (sequentially)
on elements 0, 4, 8, ..., the second on 1, 5, 9, ... and so on5. If N is not exactly divisible by 4, the last
‘N \ 4’ elements will be ignored.

3.6.1 Supporting STEP at Run-Time

The compiler handles replicators by generating a ‘LOOPEND’ instruction. Inside the workspace of
the process executing the replicator, two consecutive words are allocated, one for the replicator
‘count’ and one for the value of the replicator ‘name’. The count-field is initialised to the number of

5Such code however, if run on multiprocessor hardware, would not be very efficient — due to the false sharing of
cache lines (if the cache-line size is larger than occam’s REAL64, which is certainly the case on Intel processors).
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replications. The value-field is initialised to the replicator base. Each time the LOOPEND instruction
is called, it subtracts 1 from the count field and adds 1 to the value field. If the count field has
not reached zero, LOOPEND jumps to the start of the loop, otherwise it continues execution after the
replicator.

To support a STEP at this level, the only change required is the ability to add or subtract an
arbitrary value from the value-field — the count field is unaffected. To provide support for this, two
new LOOPEND instructions have been added. The first of these, ‘LOOPENDR’, is used to implement
STEPs of −1. This somewhat special case is often generated by the compiler when it reverses the
processing order of a replicator (specifically for the modified ALT disabling — section 3.9.2).

The second new instruction, ‘LOOPEND3’, is for arbitrary STEP values. This is handled by placing
the evaluated STEP expression alongside the count and name-value fields in the process’ workspace.
All the loop-end instructions take the workspace offset of this structure as an argument (along with
the start-of-loop label and end-of-loop label). Figure 3.3 shows this workspace layout, and the code
generated for a typical ‘LOOPEND3’ instruction.

STEP constant

count field

replicator name

Workspace

Wptr

nworkspace for
replicated
process

  decl Wptr[n+1]

  je Lb

  movl Wptr[n+2], %tmp

  addl %tmp, Wptr[n+0]

  jmp La

Lb:

La:

  ...  loop body

Increasing
addresses

...  loop body

.SETLAB La

.LOOPEND3 n La Lb

Figure 3.3: Workspace layout and code-generation for supporting arbitrary replicator STEP values

3.6.2 Loop-End Optimisation

One slightly frustrating feature of the loopend instructions is that they always generate code that
modifies the replicator name6, even if the name is never used in the replicated process. For example:

SEQ i = 0 FOR 10000

INT x:

c ? x

This generates code that uses the standard loop-end ETC special (‘LOOPEND’). For the above, this
(annotated) code is:

LDC 10000 -- load replicator count

STL 2 -- store in count slot

LDC 0 -- load start value

STL 1 -- store in ‘i’

L1:

... code for declaration of "x" and input

.LOOPEND 1 L1 L2 -- implicitly defines "L2"

6The replicator name is strictly not a variable — it cannot be assigned to
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The translator generates a simple sequence of instructions for this form of ‘LOOPEND’, that takes
as arguments: the workspace offset for the replicator specials (name slot and count slot); the label
where the loop begins; and the label to define at the end of the loop. The (annotated) i386 code for
this would typically be:

movl $10000, 8(%ebp) ; LDC 10000, STL 2

movl $0, 4(%ebp) ; LDC 0, STL 1

L1:

... translated for for declaration of "x" and input

decl 8(%ebp) ; decrement count

je L2 ; jump if finished

incl 4(%ebp) ; increment name "i"

jmp L1 ; jump to the loop start

L2: ; end-of-loop label

Such generated code unnecessarily increments the name-value field (at an offset of 4 bytes for
the above code). For very tight loops, being able to suppress this behaviour is highly desirable.
Additionally, avoiding the name-value initialisation before the loop would represent a small saving.

Changes in the compiler and translator implement these optimisations. For cases where the
replicated name is not used, initialisation code for it (evaluating and storing the start expression) is
skipped. Preventing the update of the name-value is somewhat trickier — the loop-end instruction
is not engineered for handling this, and adding more would be excessive. Instead, the compiler
inserts a special comment before the loop-end instruction. The translator recognises this and avoids
generating the increment. Furthermore, the conditional jump is inverted, reducing the loop-end
code from 4 instructions to 2. The end-of-loop label (‘L2’ in the above example) might also be
optimised away (if no other references to it remain).

Only the original ‘LOOPEND’ instruction is affected by this optimisation — in cases where the
replicator name is not used, the compiler will always generate ‘LOOPEND’, regardless of any ‘STEP’.
The compiler-generated and translated code for the above, with the loop-end optimisation, is:

LDC 10000

STL 2

L1:

... loop body

.COMMENT .MAGIC UNUSED LOOPVAR

.LOOPEND 1 L1 L2

movl $10000, 8(%ebp)

L1:

... translated loop body

decl 8(%ebp)

jne L1

L2:

Although the workspace slot for the name-value is completely un-referenced, it cannot be removed
— other translators are free to ignore this magic comment (as described in section B.2.3). The
‘commstime’ benchmark is particularly affected by this optimisation, resulting in a reduction of up
to 15% in the measured communication/context-switch time.

3.7 The Extended Rendezvous

The extended rendezvous is a powerful mechanism for extending channel synchronisation. Without
requiring any changes in an outputting process, it allows an inputting process to execute code (the
extended process), with the communicated data, whilst the outputting process remains blocked.
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The extended rendezvous was an idea from Peter Welch originally [WB01], subsequently refined
and investigated.

In order to accommodate the extended process, a new (extended) input operator is provided,
‘??’. In a similar way to ALT constructs, the input (guard) is followed by an indented process. There
are two indented processes following the extended input operator: an extended process run whilst
the outputting process is blocked, then a process run after the outputting process has resumed.
This second indented process is optional, and assumed to be ‘SKIP’ if not present. It is, however,
required when the extended input operator is used in ALT guards or for CASE inputs — where an
indented process is used normally. The various forms of extended-input syntax are covered in detail
in section 3.7.1.

The key feature of the extended rendevous, and its implementation for occam, is that no modi-
fication of the outputting process is required. An inputting process may substitute a normal input
for an extended input (and an extended process), without the outputting process’s knowledge —
i.e. an outputting process is unable to distinguish between either normal inputs or extended in-
puts (and the execution of the extended input process) on the other side. Semantically however,
the outputting process has changed, as discussed in section 3.7.4. The modified semantics for the
outputting process are handled transparently in the implementation, discussed in section 3.7.2.

3.7.1 Syntax

The extended rendezvous uses a new operator for extended input, ‘??’. This is followed by two
indented processes — the first executed whilst the outputting process is blocked, and the second
after the outputting process has resumed (and in parallel with it). Formally:

extended .input = channel ?? {1; input.item}
process

process

| channel ?? CASE tagged .list

process

process

| channel ?? CASE

{extended .variant}

Where the ‘extended .variant’ is defined as:

extended .variant = tagged .list

process

process

| specification

extended .variant

An obvious example for the extended rendezvous is a tap process. Like ‘delta’, it can be wired
into an existing process network, but without affecting the synchronisation of that network —
synchronisation is extended through the tap.
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numbers integrate pairs
out

tapped data

tapped.squares

Figure 3.4: A tapped ‘squares’ process pipeline

Figure 3.4 shows the ‘tap’ process used to inspect the data flowing through the classic ‘squares’
process pipeline. Two equivalent implementations for this integer ‘tap’ are:

PROC tap (CHAN INT in?, out!, tapped!)

WHILE TRUE

INT v:

in ?? v

out ! v

tapped ! v

:

PROC tap (CHAN INT in?, out!, tapped!)

WHILE TRUE

INT v:

SEQ

in ?? v

out ! v

tapped ! v

:

The syntax for extended CASE inputs follows suit — two indented processes following the extended
input operator. For example, a tagged protocol type and ‘proto.tap’ process to handle it could be:

VAL INT max.message.size IS 256:

PROTOCOL MESSAGE

CASE

data; INT; INT; INT::[]BYTE

error; INT

:

PROC proto.tap (CHAN MESSAGE in?, out!, tapped!)

WHILE TRUE

in ?? CASE

[max.message.size]BYTE data:

INT src, dst, d.len:

data; src; dst; d.len::data

out ! data; src; dst; d.len::data

tapped ! data; src; dst; d.len::data

INT e.code:

error; e.code

out ! error; e.code

tapped ! error; e.code

:

Extending synchronisation for the purpose of tapping data in a process network is only one example
of the extended rendezvous. Another potential use is in the creation of extended ‘delta’ and
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‘multiplex’ processes. To demonstrate the use of the extended rendezvous in ALTs, a simple INT

fair extended multiplex process could be:

PROC ext.plex ([]CHAN INT in?, CHAN INT out!)

INITIAL INT fav IS 0: -- current favourite

WHILE TRUE

PRI ALT i = fav FOR SIZE in

VAL INT i IS i \ (SIZE in): -- wrap around array

INT v:

in[i] ?? v

out ! v

fav := i + 1

:

3.7.2 Implementing the Extended Rendezvous

The primary reason for being able to add an extended input to occam is that the implementa-
tion requires no change in an outputting process. This is acheived by having an extended input
masquerade as an ALTing process. When a channel output occurs, the run-time implementation
checks the channel word for activity. If there is no inputting process waiting — the channel word
is ‘NotProcess.p’ (defined as ‘NULL’ in KRoC/Linux) — then the outputting process places itself in
the channel and reschedules. If the channel word is not ‘NotProcess.p’, then either an inputting or
ALTing process is waiting. If an ALTing process is found in the channel word, it is placed on the
run-queue, and the outputting process blocks in the channel and reschedules. This means that when
a purely channel-based ALTing process wakes up, there will be an outputting process blocked in one
of the channels. The standard channel output algorithm is shown in algorithm 3.1.

The algorithm used to implement the extended input consists of three main parts: an extended
enable (which waits for the outputting process), the extended input (which copies the data without
rescheduling the outputting process), and finally the extended end (which reschedules the outputting
process and clears the channel word). A number of new virtual-Transputer instructions are required
to support the extended rendezvous, listed in table B.3 and Appendix B.1.3.

The algorithm for the extended enable is shown in algorithm 3.2, implemented in the new ‘XABLE’
instruction. This is essentially a reduced form of a single-guarded ALT. If the outputting process is
already blocked in the channel word, this simply does nothing. Otherwise, the process is disguised
as a waiting ALTer and placed in the channel. When the outputting process arrives at the channel,
it will find what it believes to be a waiting ALTer and reschedule it (at line 13 in algorithm 3.1)

After the ‘XABLE’ instruction has returned, the data is copied from the outputting process to the
inputting process. This is trivial and is implemented by the ‘XIN’ instruction which, like the ‘IN’
instruction, takes the channel-address, destination-address and count as arguments. Once the data
has been copied, the extended process is executed — whilst the outputting process remains blocked
in the channel.

Once the extended process has finished, the outputting process is resumed. This is implemented
by the ‘XEND’ instruction, whose operation is shown in algorithm 3.3.

The following (un-numbered) sections describe the different implementations for the extended
input. Four seperate implementations are described: simple input, sequential protocol input, tagged
protocol input, and the implementation for ALTs.
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Algorithm 3.1: Standard channel output algorithm

1: // Wptr : invoking workspace pointer
2: // Iptr : return address in occam process

channel.output (chan.addr, src.addr, count):
3: Tc ⇐ *chan.addr
4: if Tc = NotProcess.p then
5: // channel empty
6: Wptr[Ptr]⇐ src.addr
7: Wptr[Iptr]⇐ Iptr
8: *chan.addr ⇐ Wptr
9: reschedule

10: else if Tc [Ptr] 6 Ready.p then
11: // alting input process
12: if Tc [Ptr] = Waiting.p then
13: queue Tc

14: end if
15: Tc [Ptr]⇐ Ready.p
16: Wptr[Ptr]⇐ src.addr
17: Wptr[Iptr]⇐ Iptr
18: *chan.addr ⇐ Wptr
19: reschedule
20: else
21: // committed input process
22: copy count bytes from src.addr to Tc [Ptr]
23: queue Tc

24: *chan.addr ⇐ NotProcess.p
25: end if

Generating code for simple input

Generating code for handling extended simple inputs is relatively trivial, by contrast with its pow-
erful operation. The following code fragments show example occam code and the compiler output
generated, for ordinary input (left) and extended input (right):

INT x:

SEQ

in ? x

P (x)

LD ADDRESSOF x

LD ADDRESSOF in

LDC 4

IN

LD x

CALL P

INT x:

SEQ

in ?? x

P (x)

LD ADDRESSOF in

XABLE

LD ADDRESSOF x

LD ADDRESSOF in

LDC 4

XIN

LD x

CALL P

LD ADDRESSOF in

XEND

As can be seen, the code generated for an extended input is not much beyond that generated for an
ordinary input — certainly less than would be generated for an ALT with one guard. Any following
indented process (after the call to ‘P’) is generated beyond the ‘XEND’ instruction that resumes the
outputting process.

Counted array input is not, strictly speaking, simple — it consists of two inputs, the count first
then the actual array data. This is covered in the following section.
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Algorithm 3.2: Extended rendevzous enabling algorithm

1: // Wptr : invoking workspace pointer
2: // Iptr : return address in occam process

extended.enable (chan.addr):
3: if *chan.addr = NotProcess.p then
4: Wptr[Ptr]⇐ Waiting.p
5: Wptr[Iptr]⇐ Iptr
6: *chan.addr ⇐ Wptr
7: reschedule
8: end if

Algorithm 3.3: Extended rendezvous end algorithm

extended.end (chan.addr):
1: queue *chan.addr
2: *chan.addr ⇐ NotProcess.p

Generating code for sequential protocol input

During the ‘trans’ phase in the compiler, sequential protocol communication is split into a sequence
of individual communications. This is done to simplify code generation in the back-end of the
compiler, and also to insert temporaries and run-time checks where needed. For example:

PROTOCOL S.PROTO IS INT; [2]REAL64:

PROC read (CHAN S.PROTO in?)

[10]REAL64 data:

INT v:

SEQ

c ? v; [data FROM v FOR 2]

... compute with ‘data’

:

It transformed, internally, into the (illegal) occam:

[10]REAL64 data:

INT v:

SEQ

SEQ -- compiler inserted SEQ

c ? v

ASSERT ((v >= 0) AND (v < 9) -- run-time check for valid ‘v’

c ? [data FROM v FOR 2]

... compute with ‘data’

When faced with an extended input on a sequential protocol channel, the compiler must generate
code that perserves the semantics. Clearly, the only way is to have the last part of the communication
extended, leaving the others as ordinary simple inputs. For example, the extended input:

c ?? v; [data FROM v FOR 2]

... extended process
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Is transformed into (the illegal):

SEQ

c ? v

ASSERT ((v >= 0) AND (v < 9) -- run-time check for valid ‘v’

c ?? [data FROM v FOR 2]

... extended process

A corresponding sequential-protocol output process will be transformed in a similar way, into a
sequence of simple outputs. At run-time, all but the last item in the protocol will be communicated
in the standard way (i.e. non-extended), with the last protocol item performed using the extended
input — thus an outputting process will be blocked whilst the extended process runs.

Slight errors in this transformation can result in undesired deadlocks, or improperly extended
communications. New programs added to the compiler test suite (CG tests) extensively test the
extended rendezvous. In particular, tests exist that ensure that the outputting process remains
blocked where it ought to be. Failure of such tests is indicated by deadlock, rather than explicit
failure.

Generating code for tagged protocol input

Tagged protocol input is handled by first inputting the tag (as a BYTE7), then by using CASE selection
on the tag-value, with the variant sequential protocols and corresponding process as processes in
the ‘CASE’ body. For example:

PROTOCOL TAGGED

CASE

empty

some.int; INT

more.ints; INT; INT

:

PROC read (CHAN TAGGED in?)

in ? CASE

empty

... handle "empty"

INT x:

some.int; x

... handle "some.int" using "x"

INT x, y:

more.ints; x; y

... handle "more.ints" using "x" and "y"

:

The CASE input in the above is transformed into the following (illegal) occam:

7If the tagged protocol contains more than ‘MOSTPOS BYTE’ tags, an INT will be used to handle the tag value instead.
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BYTE $tag:

SEQ

in ? $tag

CASE $tag

empty

... handle "empty"

some.int

INT x:

SEQ

in ? x

... handle "some.int" using "x"

more.ints

INT x, y:

SEQ

in ? x

in ? y

... handle "more.ints" using "x" and "y"

This transformation is substantially more complicated when the extended input is used, especially
when handling tags without trailing sequential protocols (such as ‘empty’ in the above example). The
code generated for an extended-input version of the above (whose handling processes are extended)
must perform the tagged input using an extended input, running the “... handle "empty"”
process if the tag was ‘empty’. However, for tags that have sequential-protocols, the outputting
process must be released early and the extended-input performed on the last sequential protocol
item (as described previously).

This is engineered in the compiler by the use of special ‘FIRST.HALF’ and ‘SECOND.HALF’ op-
erators, internal to the compiler, that affect the code generated for a simple extended input. The
‘FIRST.HALF’ operator generates code for the extended enable, data copy and the extended process,
but stops the outputting process being resumed with the extended end — and will also skip any
indented after (following) process. The ‘SECOND.HALF’ operator performs the extended end, to re-
sume the outputting process, but does not generate the code for any ‘following’ process (that must
be done explicitly). For example, the following extended CASE input process:

in ?? CASE

empty

... handle "empty"

INT x:

some.int; x

... handle "some.int" using "x"

INT x, y:

more.ints; x; y

... handle "more.ints" using "x" and "y"

:

Is transformed into the simpler (and illegal):
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BYTE $tag:

FIRST.HALF in ?? $tag

CASE $tag

empty

SEQ

... handle "empty"

SECOND.HALF in ??

some.int

INT x:

SEQ

SECOND.HALF in ??

in ?? x

... handle "some.int" using "x"

more.ints

INT x, y:

SEQ

SECOND.HALF in ??

in ? x

in ?? y

... handle "more.ints" using "x" and "y"

When the input is extended in this way, an un-handled tag communicated by an outputting process
will leave the inputting process STOPed (at the ‘CASE’ selection on the tag value). The outputting
process will remain blocked, since the corresponding ‘SECOND.HALF’ of the tag value input is never
reached. This fixes a long-standing problem with unhandled protocol-less tags, where the outputting
process would previously have been (incorrectly) rescheduled — technically, the inputting process
never participated in the event. A generic implementation for this (i.e. for unhandled empty protocol
tags on non-extended CASE inputs) is introduced in section 3.9.5.

Generating code for ALTing inputs

The handling of extended inputs inside ALTing constructs is only slightly more complicated than
handling simple inputs. The implementation of the ALT is done such that when a blocked ALTing
process reschedules, one of the guards will be ready. For ready channel guards, this means that the
outputting process is blocked in the channel word and waiting.

The code generated for an ALT is distinct from the code generated for any channel input within
the ALT, so the ALT itself is unaffected by extended inputs. When an extended input is used as an
ALT guard, it is known that the channel will be ready when the guard is selected. This allows for a
slight optimisation — the extended enable (‘XABLE’, that waits for the outputting process), can be
omitted, since the outputting process is already blocked in that channel.

3.7.3 Further Uses of the Extended Rendezvous

With the ability to extend synchronisation comes the ability to dramatically alter the way in which
a network of communicating parallel processes behaves. Extended inputs can be chained together to
extend synchronisation through a whole communication pipeline, which may be desirable for some
applications. In some cases, such modifications will result in deadlock — so care must be taken in
application design to avoid such conditions. Such deadlocks, resulting from the use of the extended
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rendezvous, can be analysed using standard tools such as FDR [For00] — given a suitable formal
model of the extended rendezvous (section 3.7.4).

Multi-Way Synchronisation

One long-standing feature missing from occam is the multi-way ALT. Multi-way ALTs enable si-
multaneous synchronisation between multiple parties, as described in [WL98], that provides an
implementation in Transputer assembly language8.

Figure 3.5 shows a network of four processes, where ‘meeting’ performs a multi-way ALT. For
example:

PROC meeting (CHAN INT in.p?, in.q?, in.r?)

WHILE TRUE

INT p, q, r:

PRI ALT

in.p, in.q, in.r ? p, q, r

do.meeting ([in.p?, in.q?, in.r?], [p, q, r])

in.q, in.r ? q, r

do.meeting ([in.q?, in.r?], [q, r])

:

meeting

RQP

Figure 3.5: Multi-way synchronising processes

This ALT either synchronises with all three processes, or with just ‘Q’ and ‘R’, if ‘P’ is not ready.
The semantics are effectively the merging of events involved, resulting in one for each multi-way
synchronisation. Thus, either all four processes synchronise, or all but ‘P’ synchronise, with priority
given to the former.

Without explicit language support for a multi-way ALT — as shown in the (illegal) occam frag-
ment above — such synchronisations are only possible using user-provided code. The most obvious
candidate is the ‘BARRIER’ user-defined type, described in [WW97]. However, there is no support for
ALTing (or communication) using the BARRIER type. The crucially limiting factor is that processes,
once they begin synchronisation on a BARRIER, are committed. More recent are ideas and a draft
implementation for a ‘SYNC’ type [Wel03], that can support ALTs — but that still requires extensive
compiler support for such.

The extended rendevous can also provide a mechanism for supporting multi-process synchroni-
sation. However, support for ALTing is restricted. The proposed ‘SYNC’ type is symmetric — i.e. all

8Such functionality could be engineered in the current compiler, given suitable development time.
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parties can ALT if desired9. The extended rendevous can simulate this multi-process synchronisa-
tion by extending communication between those processes. This can either be done by chaining or
nesting, or a combination, of extended communications.

The earlier ‘manager’ process can be implemented using the extended rendevzous alone, without
changing its operation. The following example uses a combination of both chaining and nesting,
with the former requiring the addition of internal parallelism:

PROC meeting (CHAN INT in.p?, in.q?, in.r?)

PROTOCOL TWO.INT IS INT; INT:

CHAN TWO.INT c:

PAR

WHILE TRUE

INT q, r:

in.q ?? q

in.r ?? r

c ! q; r

WHILE TRUE

INT p, q, r:

PRI ALT

in.p ?? p

c ? q; r

do.meeting ([in.p?, in.q?, in.r?], [p, q, r])

c ? q; r

do.meeting ([in.q?, in.r?], [q, r])

:

A PAR-free implementation is possible too, but requires a moderately extensive ALT construct. The
first parallel process in the above code extends communications from ‘Q’ and ‘R’ into a local channel.
The second parallel process simply ALTs between a communication from ‘P’ and the local channel
‘c’. If data arrives from ‘P’ before data from ‘Q’ and ‘R’, the first guard is selected — that then
performs an extended input to collect the data from ‘Q’ and ‘R’ (via the local process), before
completing the synchronisation. If ‘Q’ and ‘R’ communicate before ‘P’, the second guard will be
selected. This synchronisation only completes when the (non-extended) input completes — since
the corresponding output is within an extended input (in the first parallel process).

3.7.4 Formal Semantics

Two simple processes, P and Q , which synchronise on an event e.i (typically a channel communi-
cation in occam), then perform some other actions (P ′ and Q ′), could be defined with:

P = e!0→ P ′

Q = e?x → Q ′(x )

Let E be the set of events {e.i | i ∈ N}, and D be another set of events on which P ′ and Q ′

synchronise, with D ∪ E = ∅. The parallel composition of P and Q is then:

9The cost of a multi-process ‘SYNC’ is O(n) when no ALTs are involved. The cost for ALTing SYNCs depends on the
number of false synchronisations — where an ALTing process offers to synchronise then subsequently retracts that
offer.
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(
P ‖

E∪D

Q
) \ E

=
(
e!0→ P ′ ‖

E∪D

e?x → Q ′(x )
) \ E

=
(
P ′‖

D

Q ′(0)
) \ E

The use of ‘e?x ’ and ‘e!0’ serves to remind that this event (e.i | i ∈ N) is channel communication from
occam (with e representing the channel-name and i representing the different values communicated),
and only involves two (or fewer) parallel processes. The hiding of ‘e.i ’ around the parallel processes
is most accurately represented by a channel declaration in occam. This could be expressed as:

CHANDECL(e,P) = P \ {e.i | i ∈ N}

=⇒CHANDECL
(
e, (e!0→ P ′ ‖

E∪D

e?x → Q ′(x ))
)

The same process can be expressed directly in occam, assuming P ′ and Q ′ are suitable PROCs,
requiring only the addition of types:

CHAN INT e:

PAR

SEQ

e ! 0

P.prime (D)

SEQ

INT x:

e ? x

Q.prime (D)

When executed, the pair of processes will synchronise on e.0, then continue as: P ′ ‖
D

Q ′(0).

Modelling The Extended Rendezvous

Semantically, the use of an extended input in occam causes two synchronisations with the corre-
sponding outputting process, with the extended process executed by the inputting process between
the two synchronisations. The outputting process just synchronises twice.

Consider the same occam fragment, but where the inputting process performs an extended input,
with the extended process ‘Z (x )’, where x is the value communicated:

CHAN INT e:

PAR

SEQ

e ! 0

P.prime (D)

SEQ

INT x:

e ?? x

Z (x)

Q.prime (D)
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The CSP representation of this code requires changes to both the inputting and outputting processes,
in order to incorporate the extra synchronisation:

(
e!0→ e!0→ P ′ ‖

E∪D

e?x → Z (x ) # e?y → Q ′(x )
) \ E

A way of capturing this is through a variant of the earlier ‘CHANDECL’, using substitution to alter
the processes. To explicitly specify an extended input, a new type of event interaction is added:
“e??Z x”. Meaning: perform an extended input on the event ‘e.x ’ with ‘Z (x )’ as the extended
process. Thus:

XCHANDECL(e,P) = P ′ \ {f .i | i ∈ N}

where P ′ is derived from P by applying all of the following substitutions:

e!i → A =⇒ f !i → f !0→ A

e?x → B(x ) =⇒ f ?x → f ?y → B(x )

e??Z x → B(x ) =⇒ f ?x → Z (x ) # f ?y → B(x )

If P contains no extended inputs on e, then XCHANDECL(e,P) = CHANDECL(e,P).
The original event is renamed in ‘XCHANDECL’, primarily for clarity. The previous occam

example, with an extended input, can be expressed in CSP (using the new extended-input syntax)
as:

XCHANDECL
(
e, (e!0→ P ′ ‖

D∪{e.i|i∈N}
e??Z x → Q ′(x ))

)

Substituting for the declaration gives:

(
f !0→ f !0→ P ′′ ‖

D∪{f .i|i∈N}
f ?x → Z (x ) # f ?y → Q ′′(x )

) \ {f .i | i ∈ N}

that simplifies to:

(
f !0→ P ′′ ‖

D∪{f .i|i∈N}
Z (0) # f ?y → Q ′′(0)

) \ {f .i | i ∈ N}

Where P ′′ and Q ′′ are derived from P ′ and Q ′ respectively, using the given substitutions.
This model, although slightly crude, provides enough to reason about the extended rendezvous

— allowing the construction of proofs that involve the extended rendezvous. The behaviour of
substitution on CSP expressions is as expected, following the semantics of substitution within the
Lambda-Calculus [Bar84]. The obvious care must be taken to avoid capture of names bound through
hiding, specifically that:

P \ {x}[e/x ] −→ P \ {x}
and:

P \ {e}[e/x ] −→ (P [e ′/e])[e/x ] \ {e ′}

Examples

A useful facility is the ability to prove that synchronisation is (conceptually) extended using this
mechanism. Figure 3.6 shows a simple network in which the ‘link’ process is implemented simply
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A Blink

Figure 3.6: Example extended synchronising processes

by:

LINK (in, out) = µL • (
in??(out!x)x → L

)

The processes represented by ‘A’ and ‘B’ are assumed to be trivial here, but could be quite complex:

A(out) = out !0→ A′

B(in) = in?x → B ′(x )

Assuming positive integer communication, the whole network, as a closed system, can be described
as:

XCHANDECL
(
c,XCHANDECL

(
d ,A(c) ‖

{c.i|i∈N}
LINK (c, d) ‖

{d.j |j∈N}
B(d)

))

If the synchronisation is extended correctly, this network should be equivalent to a similar one where
‘A’ and ‘B’ are directly connected:

CHANDECL
(
c,A(c) ‖

{c.k |k∈N}
B(c)

)

Starting from the first and expanding out the internal processes gives:

XCHANDECL
(
c,XCHANDECL

(
d , c!0→ A′ ‖

{c.i|i∈N}
µL • (c??(d!x)x → L) ‖

{d.j |j∈N}
d?y → B ′(y)

))

Taking the innermost ‘XCHANDECL’ and substituting for its definition gives:

(
c!0→ A′ ‖

{c.i|i∈N}
µL • (c??(d′!x→d′!0)x → L) ‖

{d′.j |j∈N}
d ′?y → d ′?z → B ′(y)

)
\ {d ′.j | j ∈ N}

Placing this back into the ‘XCHANDECL’ for ‘c’ and substituting gives:

(
c′!0→ c′!0→ A′ ‖

{c′.i|i∈N}
µL•(c′?x → (d ′!x → d ′!0) #c′?v → L

) ‖
{d′.j |j∈N}

d ′?y → d ′?z → B ′(y)
)

\ {c′.i | i ∈ N} ∪ {d ′.j | j ∈ N}

Removing the sequential composition inside the recursive process gives:

(
c′!0→ c′!0→ A′ ‖

{c′.i|i∈N}
µL•(c′?x → d ′!x → d ′!0→ c′?v → L

) ‖
{d′.j |j∈N}

d ′?y → d ′?z → B ′(y)
)

\ {c′.i | i ∈ N} ∪ {d ′.j | j ∈ N}
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Returning to the simplified network, without the middle ‘link’ process, substituting ‘CHANDECL’,
‘A’ and ‘B’ gives:

CHANDECL
(
c,A(c) ‖

{c.i|i∈N}
B(c)

)

=CHANDECL
(
c, c!0→ A′ ‖

{c.i|i∈N}
c?x → B ′(x )

)

=
(
c!0→ A′ ‖

{c.i|i∈N}
c?x → B ′(x )

) \ {c.i | i ∈ N}

The laws of CSP allow the arbitrary addition of parallel processes. Furthermore, the concept of
subordination allows the addition of a slave process, whose interactions are hidden from the common
environment. Viewed independently, the left and right-hand parallel processes produce the same
initial trace: 〈c′.0〉, before continuing as (A′ ‖ B ′(0)).

From the simple rule that:
R # S =

(
R # e ‖

{e}
e → S

) \ {e}

it can be deduced that the following processes are also equivalent (by letting R and S be (c?x ) and
P(x ) respectively):

c?x → P(x ) =
(
c?x → e!x ‖

{e.i|i∈N}
e?y → P(y)

) \ {e.i | i ∈ N}

and also:

c?x → c?y → P(x ) =
(
c?x → e!x → e!0→ x?v ‖

{e.i|i∈N}
e?y → e?w → P(y)

) \ {e.i | i ∈ N}

Using this, the simpler network can be expanded internally into:

(
c′!0→ c′!0→ A′ ‖

{c′i|i∈N}
(
µL • (c′?x → d ′!x → d ′!0→ c′?v → L) ‖

{d′.j |j∈N}
d ′y?→ d ′?w → B ′(y)

) \ {d ′.j | i ∈ N}
)
\ {c′.i | i ∈ N}

This can be re-arranged (with event renaming) to give an equivalent expression to the one that
included the explicit link process:

(
c′!0→ c′!0→ A′ ‖

{c′.i|i∈N}
µL•(c′?x → d ′!x → d ′!0→ c′?v → L

) ‖
{d′.j |j∈N}

d ′?y → d ′?z → B ′(y)
)

\ {c′.i | i ∈ N} ∪ {d ′.j | j ∈ N}

Thus, the two processes are equivalent — the extended rendezvous really does extend synchronisa-
tion.
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3.8 Dynamic Memory Support for occam

Dynamic parallel computing is one of the primary aims of this work. In all current mainstream
languages, dynamic behaviour is made available through dynamic memory management. For the C
language, dynamic memory is available through the use of ‘malloc()’ and ‘free()’, largely governed
by POSIX [Int96]. C++ [Str97a] provides specific operators for allocating and releasing objects —
the ‘new’ and ‘delete’ operators. Traditional C ‘malloc()’ and ‘free()’ dynamic memory handling
is still available, but the two are not compatible — e.g. ‘delete’ should not be used to free memory
allocated using ‘malloc()’. Such mixing can have disastrous effects.

Java [JGS96] provides dynamic memory management through the ‘new’ operator only (to create
new objects), leaving it up to the garbage collector to recover lost memory (objects). For C and
C++, memory leaks represent a serious threat — especially for programs that remain active for a
long time10.

The dynamic memory provisions for occam strive to overcome some of these problems. Perhaps
the most significant is that the occam programmer is not given direct access to dynamic memory
management. Instead, the occam programmer has available numerous dynamic paradigms, provided
through specialised syntaxes and semantics. The language mechanisms that require the availability
of dynamic memory management are covered in Chapters 4 and 5.

Dynamic memory management in occam is provided by an allocator integrated into the run-time
kernel. This is accessed at run-time using various new Transputer instructions. The allocator is
based on one described by Brinch-Hansen in [Han95] and [Han96], pooled using (approximately)
half-power of two grouping, the smallest being 4 bytes (then, 6, 8, 12, 16, 24, . . . , 2048, 3072, 4096, . . .),
up to a maximum of 1.5 giga-bytes. A similar memory allocator was previously implemented by
Wood (in [Woo00]) to support recursion in the Sparc version of KRoC.

For occam programs, dynamic memory management is either implicit (from the language en-
hancements which require it), or explicit (in the form of in-line Transputer ASM).

The new instructions for allocation are ‘MNEW’ and ‘MALLOC’, and for freeing, ‘MFREE’ and
‘MRELEASE’/‘MRELEASEP’ respectively. Appendix B.1.1 covers these instructions in detail.

These instructions are available to programmers writing inline ASM blocks — for use in highly
specialised code, such as that implementing the semaphore, bucket, barrier and CREW user-defined
types [WW97]. As a general rule, programmers should restrict themselves to the ‘MALLOC’ and
‘MRELEASE’ instructions. The ‘MNEW’ and ‘MFREE’ instructions offer a greater potential for error (if
the slot number is specified incorrectly). The ‘MRELEASEP’ instruction is a combination of ‘MRELEASE’
and ‘STOPP’, used for freeing a dynamic workspace — and this should be left to the compiler.

As a small example, the following shows part of an arbitrary user-defined type that uses dynamic
memory, along with initialisation and release code (that would normally reside in a ‘#INCLUDE’d file):

DATA TYPE MYTYPE

RECORD

INT addr: -- dynamic address

INT size: -- size in bytes

... other fields

:

10It is possible, in UNIX, to engineer applications that can overcome memory leak problems. This is achieved by
having the application periodically spawning a new copy of itself (in a suitably fresh environment), then transferring
the active state of the current process into the new process. A clever trick to achieving this involves using a pipe
to transfer the state between the two processes (file-descriptors can be communicated through a pipe), giving the
file-descriptor of the pipe’s reading-end on the command line to the new process. Such application engineering is
quite rare however — it is very application specific and relatively complex to program.
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INLINE PROC init.mytype (RESULT MYTYPE m, VAL INT size)

IF

size <= 0

m[addr], m[size] := 0, 0

TRUE

SEQ

ASM

LD size

MALLOC -- allocate memory

ST m[addr]

m[size] := size

... initialise other fields

:

INLINE PROC free.mytype (MYTYPE m)

IF

m[size] = 0

SKIP

TRUE

SEQ

... perform any cleanup

ASM

LD m[addr]

MRELEASE -- release memory

:

3.9 Other Extensions

This section describes the remaining extensions to the occam compiler. These extensions do not
make any changes to the occam language syntax directly, but new instruction support is required
in the translator and run-time kernel for some of them.

3.9.1 Modified SKIP in ALT Checking

The use of a SKIP guard within ALT and PRI ALT explicitly requires a pre-condition, in the majority
of cases this is simply ‘TRUE’. The reasoning behind this is stems from the fact that SKIP guards are
usually a bad thing — polling in a PRI ALT, or very explicit non-determinism for a non-prioritised
ALT. For example:

ALT

TRUE & SKIP

P ()

PRI ALT

in ? x

Q ()

TRUE & SKIP

R ()

This is a process whose behaviour can be expressed in CSPP as:

(Skip → P) u ((in?x → Q)
←−
¤ (Skip → R))
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When offered no events, this process may behave like either P or R, a choice that is non-determinable.
However, when offered some event ‘in.x ’, the process may behave as either P or Q , also a non-
deterministic choice. For most practical applications, such behaviour is undesirable.

The processing of such ALTing constructs has been modified slightly in the compiler, such that any
explicit ‘TRUE & SKIP’ guards in an ALT are warned about (or an error in strict mode). Furthermore,
the processing of these in PRI ALT constructs has also been modified, such that a warning is generated
if a ‘TRUE & SKIP’ guard does not occur last in the PRI ALT. Additionally, to capture the polling
idiom more accurately, the explicit ‘TRUE’ pre-condition can be omitted (in this case only). For
example:

PRI ALT

in ? x

Q ()

SKIP

R ()

Generally speaking, SKIP guards are discouraged11 — unless polling is absolutely required (or used
in an acceptable way, for example signalling process termination [Wel89]).

3.9.2 Reversed ALT Disabling

The ALT is implemented by enabling and disabling instructions for each type of guard. When the ALT
is entered, its guards are enabled sequentially, using the ‘ENBC’, ‘ENBT’ and ‘ENBS’ instructions12 —
for channel (input) guards, timeout guards and SKIP guards respectively. After enabling, if none of
the guards are ready, the ALTing process is descheduled — to be rescheduled either by an outputting
process on channel communication, or on a timeout. Once rescheduled, or if any ready guard was
found during the enabling sequence, the disabling sequence takes place. This is done in the same
order as the enabling sequence using similar instructions: ‘DISC’, ‘DIST’ and ‘DISS’.

The inclusion of ALT enabling and disabling instructions for SKIP guards may at first appear a
little excessive — especially for polling, where the guard is always ready (explicit or implicit TRUE

pre-condition). The enabling and disabling instructions are always called for each guard however,
passing the pre-condition as one of the arguments (which inside the compiler, is confusingly referred
to as the ‘guard’ — the actual guard is called the ‘input’). This is required to detect, at run-time,
ALTs without any enabled guards — such a process is STOP13.

The disabling sequence examines each guard in turn, and if fired, places a pointer to the guarded-
process in the ALTing process’ workspace — but only if no guard had previously been selected
(determined by checking the guarded-process pointer in the ALTer’s workspace).

The same ALTing sequences are generated for both the ‘ALT’ and ‘PRI ALT’, with no visible
difference between them — ‘ALT’ is simply implemented as ‘PRI ALT’. A deterministic implementation
is a valid refinement of a non-deterministic specification [Law02].

There is a slight flaw with this approach to disabling, however. It is perfectly legal to have the
same guard appear twice in a PRI ALT construct (possibly as a result of nested ALTing), and if that
guard fires, the first of the guarded processes should be selected. For example:

11Students, in particular, tend to be under the impression that polling is required for many things — possibly from
a previous training in Java, where the native language tools for managing concurrency are woefully inadequate.

12Strictly speaking, this is no longer the case, as an extension to the enabling sequence causes the compiler to
generate alternative instructions, described in section 3.9.3

13In ‘stop’ error mode, where STOP deschedules a process rather than causing a run-time error, the need to check
for enabled guards is not necessary since an empty ALT will deschedule without leaving any references to itself.
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-- environment is: CHAN INT in?, []CHAN INT others?

INITIAL BOOL active IS FALSE:

WHILE TRUE

INT v:

PRI ALT

active & in ? v

SEQ

P (v)

active := FALSE

PRI ALT i = 0 FOR SIZE others

others[i] ? v

O (v)

in ? v

SEQ

active := TRUE

Q (v)

Such a process would be expected to cycle between active and non-active states when given data
on ‘in’. However, if ‘in’ is not ready at the start of the disabling sequence, then ready at its
second occurrence, the second guarded process will be selected. This behaviour breaks the logic
of the above code. Although such cases may be potentially rare, they could still happen. The
above code aggravates this — a reschedule could occur in the replicated PRI ALT loop, causing
the process outputting to ‘in’ to run and block on the communication. To provoke this bug in
a uniprocessor KRoC, the option to reschedule on loop-ends must be enabled. A multiprocessor
KRoC [WP97, SARW98, VW99] could easily suffer, regardless of the multi-processor synchronisation
mechanisms — unless the run-time kernel was locked for the whole duration of the disabling sequence,
but this requires some help from the compiler.

The remedy for this is to run the disabling sequence in reverse, such that if ‘in’ becomes ready
between the first and second disabling calls, the top-most guarded process is selected. Historically,
the Transputer implementations ‘DISC’, ‘DIST’ and ‘DISS’ would have prevented this — since they
only select a guard if one was not previously selected. Additionally, running a loop in reverse for a
replicated PRI ALT is somewhat tricky with a forwards-only loop-end. This particular issue has been
addressed with the addition of ‘STEP’ for replicators (section 3.6), where a new loop-end instruction
is provided.

Three new disabling instructions have been added here, to provide implementations that do not
check for a previously selected guard. For software emulations of the Transputer (such as KRoC),
these new instructions incur less overhead than their checking counterparts.

The new instructions, ‘NDISC’, ‘NDIST’ and ‘NDISS’ are detailed in section B.1.5, implemented as
described. Algorithm 3.4 describes, formally, the implementation of ‘NDISC’. ‘NDIST’ follows along
similar lines, possibly manipulating the timer queue. ‘NDISS’ is trivial — if the pre-condition is true,
the guarded process will always be selected.

To add slight variation, the code generated by the compiler for replicated ALTs and PRI ALTs
now differs. A plain replicated ALT disables the guards in the program-specified order, using the
new instructions, whereas a replicated PRI ALT disables the guards in reverse (also using the new
instructions). This difference in the behaviour of replicated ALTs and PRI ALTs will hopefully help
programmers to locate errors caused by these. In particular, where a fair-ALT is mis-programmed
using a replicated ALT instead of a replicated PRI ALT.
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Algorithm 3.4: New channel ALT disabling algorithm

1: //Wptr: invoking workspace pointer (of ALTer)

2: //chan.addr: channel address
3: //guard: evaluated pre-condition
4: //proc.addr: address of guarded process

ndisc (chan.addr, guard, proc.addr):
5: if guard = false then
6: return false
7: else
8: if chan.addr[+0] = Wptr then
9: // ALTer is still in the channel, clear it

10: chan.addr[+0]⇐ NotProcess.p
11: return false
12: else if chan.addr[+0] = NotProcess.p then
13: return false
14: else
15: Wptr[Temp]⇐ proc.addr
16: return true
17: end if
18: end if

3.9.3 Enhanced ALT Enabling

The ALT construct in occam has always been a fairly expensive operation, incurring an O(n) cost,
where n is the number of guards. In cases where a ready guard is found during the ALT enabling
sequence, this cost is excessive — remaining guards will also be enabled, followed by the whole
disabling sequence. Although the existing enabling instructions, ‘ENBC’, ‘ENBT’ and ‘ENBS’, do not
provide a direct indication of whether the guard is ready, the ALTing process’ State (also pointer)
field is set to ‘Ready.p’ when a guard is found to be ready during the enabling sequence. This could
be checked after enabling with a conditional jump to the disabling sequence. The compiler does not
do this however. When targeting the Transputer for embedded systems, such checking would have
probably been considered excessive, given the hardware implementation of the ALT.

The primary reason why the compiler cannot check, however, is because it does not know the lay-
out of the process’ workspace at run-time — all the ‘magic’ locations (which lie below the workspace
pointer and include the State field) are reserved in fixed amounts. This provides a certain degree
of flexibility (abstraction) between the compiler output and a run-time system that provides real
implementations for workspace-manipulating instructions.

A new set of enabling instructions have been added to the compiler, that take as a parameter
an address to jump to if the guard is ready, named ‘ENBC3’, ‘ENBT3’ and ‘ENBS3’ (they take three
parameters instead of the two used for the original enabling instructions — hence the ‘3’). These
three new instructions are described fully in section B.1.5 in the appendices. The implementation
for the ‘ENBC3’ instruction is shown in algorithm 3.5; the others follow along similar lines.

The basic use for these new instructions in the compiler is to jump to the start of the disabling
sequence — skipping the other enables (if any), and the ‘ALTWT’ or ‘TALTWT’ (‘alternative wait’) call.
Code such as this is generated for a standard ALT. The PRI ALT can potentially be more efficient,
however, given that the disabling sequence is generated in reverse (discussed in the previous sec-
tion 3.9.2). Rather than jumping to the start of the disabling sequence, an enabling instruction can
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Algorithm 3.5: Enhanced channel ALT enabling algorithm

1: //Wptr: invoking workspace pointer (of ALTer)
2: //Iptr: return address in occam process (of ALTer)

3: //chan.addr: channel address
4: //guard: evaluated pre-condition
5: //jump.addr: target address for ready guard

enbc3 (chan.addr, guard, jump.addr):
6: if guard = false then
7: return false
8: else
9: if chan.addr[+0] = NotProcess.p then

10: chan.addr[+0]⇐ Wptr
11: else if chan.addr[+0] 6= Wptr then
12: Wptr[State]⇐ Ready.p
13: Iptr⇐ jump.addr
14: return
15: // nothing is returned when the jump is taken
16: end if
17: return true
18: end if

jump directly14 to its corresponding disabling instruction, thereby only disabling this and previously
enabled guards.

In cases where no guards are ready, the modified enabling sequence does not cause any additional
overhead (for either ALT or PRI ALT) — all of the guards will be enabled before the alternative wait,
followed by a complete disabling sequence afterwards — an O(n) cost, where n is the number of
guards. In cases where a ready guard is found during the enhanced enabling sequence, the cost for
an ALT is reduced to O(n+m

2 ), where m is the index of the first ready guard, and m 6 n. For the
PRI ALT, the overheads are reduced further to O(m).

To maintain a difference in implementation for ALT and PRI ALT, the compiler generates the ALT

enabling sequence backwards and the disabling sequence forwards (program order). This causes a
replicated ALT to behave like ‘ALT PRI’ — priority given to the last guard. The PRI ALT is coded
the other way around — enabling sequences are generated in the forward (program-specified) order,
whilst disabling sequences are generated backwards.

ALT Pre-Enabling

A further enhancement to the ALT enabling, suggested by Welch [WB02] is to have an ultra-fast
pre-enabling sequence, that just tests the guards without actually enabling them. If a ready guard is
found, the corresponding guarded process is jumped to immediately — without the need to disable
any guards. If the pre-enabling sequence completes, then the enabling sequence proper takes place
(no channels were ready during the pre-enabling). Such a modification will add some overhead in
the case where no guards are ready (and if and only the ALT would have blocked — i.e. no available
SKIP guards). For standard polling code, this enhancement represents a significant increase in
performance. For example:

14When a replicated ALT or PRI ALT is involved, the jump out from the enabling sequence goes via some special
code inserted to reverse the replicator values — such that the disabling loop happens the opposite way around.
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PRI ALT

c ? x

... process "x"

SKIP

... no data yet, do something else

If the plain enhanced ALT enabling sequence is generated, this code will always enable then disable
‘c’ — if that channel (‘c’) is not ready. The further enhancement removes this, testing the channel
‘c’ only once — no enabling or disabling code is ever generated15.

To be efficient, the pre-enabling of timer-guards is done by storing the current time in the ‘Time’
workspace slot (typically at offset −5). The pre-enable timeout instruction then just compares this
stored time with the timeout specified in the enabler.

In effect, this pre-enabling sequence behaves much like an IF, with the original ALT or PRI ALT

as the ‘ELSE’ case. The above occam fragment, for example, could be represented as (unoptimised):

IF

CHANNEL.READY (c)

SEQ

c ? x

... process "x"

TRUE

... no data yet, do something else

TRUE

PRI ALT

c ? x

... process "x"

SKIP

... no data yet, do something else

For this code, with a ‘SKIP’ guard, it is easy to see where the optimisation happens — the second
‘TRUE’ guard containing the PRI ALT will never be executed. A more complex occamALT construct,
including timeouts, might be:

ALT

have.0 & in[0] ? x

... process "x"

have.0 & tim ? AFTER timeout[0]

... first timeout process

have.1 & in[1] ? y

... process "y"

have.1 & tim ? AFTER timeout[1]

... second timeout process

To add some more significant variation between the implementations of ‘ALT’ and ‘PRI ALT’, the
pre-enabling sequence processes ‘ALT’ guards in reverse order, for straight ALTs only — replicators
are processed in forward order. This causes plain ALTs (un-replicated) to behave like a reversed PRI

ALT (often referred to as ‘ALT PRI’). The run-time behaviour for this code, with the pre-enabling
sequence, would be:

15This is somewhat of a special case, and only applies to cases where SKIP guards have no, or an explicitly TRUE,
pre-condition.
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INT $now:

SEQ

tim ? $now

IF

have.1 AND ($now AFTER timeout[1])

... second timeout process

have.1 AND CHANNEL.READY (in[1])

SEQ

in[1] ? y

... process "y"

have.0 AND ($now AFTER timeout[0])

... first timeout process

have.0 AND CHANNEL.READY (in[0])

SEQ

in[0] ? x

... process "x"

TRUE

ALT

... original ALT construct

Implementation of Pre-Enabling

The pre-enabling sequence is implemented using the three existing enhanced ALT enabling instruc-
tions, prefixed with a special compiler comment in the output code (“.MAGIC PREENABLE”, covered
in detail in section B.2.3). The translator intercepts these and generates the checking code in-line.
The label given as an operand to the enabling instruction is that of the guarded process, rather
than the corresponding part of the disabling sequence.

As shown above, the code generated for pre-enabling takes place completely outside the ALTing
process. However, this causes some additional headaches of its own, particularly where replicated
ALTs are involved. For replicated ALTs, the replicator name is allocated in the process’ workspace,
kept separate from workspace used to handle the replicator (value, count, and possibly step fields).
Ordinarily, replicator values are copied from the replicator value-fields to the ALTer’s workspace when
a ready guard is found during disabling (the disabling instructions return a result indicating whether
the guard fired). With the enhanced ALT enabling sequence, this is taken care of automatically, since
the enabler jumps directly to its corresponding disabler. For the pre-enabling sequence, special code
is inserted into the program to recover replicator values if needed — i.e. the jump from the pre-enable
to the guarded process goes via code that loads any necessary replicator values.

On the other hand, where replicated ALTs are present, the enhanced ALT enabling sequence will
insert code to reverse the loop mid-cycle. It is not hard to imagine, then, trivial occam programs
that generate a large amount of code, to handle incrementally: pre-enabling, enhanced enabling,
then reversed disabling. For example:

PRI ALT

c ? x

P (x)

ALT i = 0 FOR SIZE in

in[i] ? x

Q (i, x)

generates a sizeable amount of code, most of which is to handle the nested replicated ALT. How-
ever, the potential performance gains, as discussed in the following section, make it a worthwhile
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optimisation. As an example, the (annotated) code generated for the pre-enabling of the above is:

LD ADDRESSOF c

LDC 1 -- pre-condition

LD ADDRESSOF L5 -- address of guarded process

.MAGIC PREENABLE

ENBC3 -- pre-enable channel

.TSDEPTH 0 -- ignore (non-generated) result

... initialise loop out at L7: $Rbase, $Rcount := 0, SIZE in

L6:

LD $Rbase

LD ADDRESSOF in

WSUB -- get address of channel pointer

LDNL 0 -- get channel pointer

LDC 1 -- pre-condition

LD ADDRESSOF L8 -- address of value selector process

.MAGIC PREENABLE

ENBC3 -- pre-enable channel

.LEND $Rbase, L6 -- loop end

L7:

The label ‘L5’ is the start of a slightly modified guarded process — the call to ‘P’:

SEQ

c ? x

RESCHEDULE ()

P (x)

The ‘RESCHEDULE’ is necessary to ensure that the ALTing process reschedules at least once, and is
inserted for the enhanced-enabling sequence, as well as for pre-enabling. This protects against an
unfortunate effect that occurs when an outputting process communicates continuously into an ALTing
input process, that is always ready to accept that communication. In such a case, with pre-enabling
and/or enhanced-enabling, the ALTing and outputting processes could end up rescheduling each
other directly indefinitely16 — partly a consequence of performance enhancements in the run-time
kernel’s implementation of channel input and output.

The other label (‘L8’) referred to in the above compiler output holds the code that selects the
current value of ‘i’ (the replicator name), before jumping to the guarded process proper.

3.9.4 Benchmarking the ALT Enhancements

In order to gauge the performance of the various ALT enhancements (reversed disabling, enhanced
enabling, and pre-enabling), a simple benchmark program is used that measures the overhead for
a replicated ALT or PRI ALT. The benchmark program consists of two processes, connected by an
array of channels. The consumer process ALTs over the channel array, while the producer process
communicates values down those channels.
Three forms of ALT are investigated; a plain replicated ALT:

16Until an event occurs that interrupts the run-time kernel.
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ALT i = 0 FOR SIZE chans

INT any:

chans[i] ? any

SKIP

A prioritised replicated ALT:

PRI ALT i = 0 FOR SIZE chans

INT any:

chans[i] ? any

SKIP

And a fair ALT:

-- before benchmark: INITIAL INT f IS 0:

PRI ALT i = f FOR SIZE chans

VAL INT i IS i \ (SIZE chans):

INT any:

chans[i] ? any

SEQ

SKIP

f := i + 1

For each type of ALT, three tests are run. One where communication occurs on channel 0 (first), one
where communication occurs on channel n − 1 (last), and one where each communication occurs
on a random channel between 0 and n − 1 inclusive (the ‘course.lib’ pseudo-random-number
generator is used, implementing the “minimal standard” described in [PM88], and seeded from the
microsecond clock).

Figures 3.7, 3.8 and 3.9 shows the results for these benchmarks. The number of channels is
shown on the X-axis, and ranges from 1 to 99 for each test, incremented by 2 each time. The Y-axis
shows the time per replicated ALT — for the whole replicated ALT. Each test is run 10 000 times and
the results minimised over 3 complete runs in an attempt to reduce the occurrence of any spurious
results (where other activity occurred on the benchmark machine, for example).

Note that these graphs only show results for replicated ALTs, that incur an additional overhead
when compared with non-replicated ALTs. That extra overhead represents the cost of the replicator
itself, and the code required to reverse the replicator (when transferring from the enhanced enabling
sequence to the reversed disabling sequence). The pre-enabling sequence also incurs a similar over-
head, but typically half, or less — since (in cases where a guard is ready) the disabling sequence is
never required, although code for it may be generated.

Behaviour of ALTs

Figure 3.7 shows the total cost for a whole replicated ALT, as the number of channels is varied. As
the results show, the cost of an ALT, without any enhancements, is O(n), regardless of which channel
within the ALT is ready. The “enhanced” results (reversed disabling, and enhanced enabling), show
that the resulting cost of the ALT depends on where the first ready channel appears within the
ALT — as is to be expected. When the first channel (in the code) is ready, the ALT still examines
the other guards, examining the ready guard last. Correspondingly, when the last channel in a
replicated ALT is ready, it will used immediately, since it is the first channel examined; resulting in
the constant-code for the ALT, regardless of the number of channels.
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Figure 3.7: Benchmark results for a replicated ALT. Results are shown for first-in-alt, last-in-alt and
random-in-alt communication, as well as the best-case reduction in overheads

For ALTs where an arbitrary (random) channel is ready, enhanced enabling represents a reason-
able saving, typically a little over half the cost of a non-enhanced ALT.

The addition of pre-enabling has the most pronounced effect — a significant reduction in the
cost of an ALT. The pre-enabling sequence for replicated ALTs is generated in program-order (i.e.
forwards). The ‘first’ and ‘last’ graphs here represent the best and worst cases for pre-enabling
respectively, with ‘random’ somewhere between.

The “overhead-reduction” graph shows the maximum possible performance increase (overhead
reduction), from the original ALT to optimised code with pre-enabling. For small numbers of chan-
nels, these enhancements represent a 30–60% increase in performance. For 10 or more channels,
these enhancements produce a 65–85% reduction in overheads, a potentially significant saving. At
around 30 channels and above, this saving is always 80% or above.
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Figure 3.8: Benchmark results for a replicated PRI ALT. Results are shown for first-in-alt, last-in-alt
and random-in-alt communication, as well as the best-case reduction in overheads

Behaviour of PRI ALTs

The PRI ALT incurs similar (or exactly) the same overheads as for ALTs, as shown in figure 3.8.
The primary difference is a change in the processing order for guards in the enhanced-enabling and
reversed-disabling sequences.

The run-time behaviour of a PRI ALT for random ready guards is unchanged from the ALT, given
that each channel has the same probability of being ready (and therefore selected). Similar behaviour
would be expected if the benchmark were re-written to include n parallel output processes, that
output a fixed number of times, one for each of the n channels. However, the run-time memory
footprint would change significantly, and cache-effects along with it.

The best-case overhead reduction is slightly different than that of the ALT. Most notably there
is a ‘step’ in both graphs, where performance levels slightly. This is undoubtedly an effect of the
cache behaviour between the ‘original’ and ‘pre-enabling’ (with inlining). However, the size of this
effect is small enough not to be of significant concern.
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Figure 3.9: Benchmark results for a replicated fair ALT. Results are shown for first-in-alt, last-in-alt
and random-in-alt communication, as well as the best-case reduction in overheads

Behaviour of Fair-ALTs

Fair-ALTs are typically used when input channels must be serviced fairly. When a random channel
is ready each time, the optimised ALT sequences have little overall effect, as expected. Where either
the first or last channel is always ready, pre-enabling gives a moderate saving — of about 70%
when more than 30 channels are involved (although this is slightly artificial, as all but one of those
channels are inactive).

3.9.5 Auto-Extended CASE Input

As mentioned previously, in section 3.7.2, an outputting process will be incorrectly rescheduled if
the corresponding inputting process does not handle the tag sent — and where that tag has no
following sequential protocol. Note that this only applies in stop error-mode — where processes are
simply removed from the run-queue when they generate a run-time error. The default error-mode is
halt error-mode, where the scheduling of all processes is stopped when a run-time error is generated.
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‘Stop’ error-mode was initially not fully supported by KRoC/Linux. This has now been remedied,
following from the support for run-time debugging (described in section 7.3).

As an example, consider the following (fairly arbitrary) occam protocol declaration and process
inputting from a channel of that type:

PROTOCOL CONTROL

CASE

reset -- reset device

write.byte; BYTE -- write a byte to the device

:

PROC hw.device (CHAN CONTROL in?, ...)

WHILE TRUE

in ? CASE

BYTE ch:

write.byte; ch

... write ‘ch’ to device

:

Clearly, if this process is sent a ‘reset’ message, it will STOP. In the default halt error-mode, what
happens to the outputting process is largely irrelevant — it will be terminated along with the rest
of the system. However, this only applies in cases where both processes are running within the same
system — which might not be the case in reality17.

For those cases where the inputting process does not handle an empty tag, and the corresponding
outputting process does not terminate as a result, that outputting process must not be allowed
to continue — semantically, the communication never succeeded (the inputting process could not
handle it). The solution, to this particular problem, is to have the inputting process perform an
extended input on the tag. If the tag is not handled, the inputting process STOPs before completing
the extended input, so the outputting process is never resumed.

This functionality is enabled by specifying the ‘-xtag’ option to the compiler, or the ‘-X6’
(experimental) option to the ‘kroc’ wrapper script. If it is not already, the tag input is extended
only when there are unhandled empty tags — e.g. ‘reset’ in the above ‘CONTROL’ protocol. Internally,
the above ‘hw.control’ process is transformed to:

PROC hw.device (CHAN CONTROL in?, ...)

WHILE TRUE

in ?? CASE

BYTE ch:

write.byte; ch

SKIP -- extended process

... write "ch" to device

ELSE

STOP -- without completing extended input

:

Thus, if an outputting process communicates an unhandled tag, such as ‘reset’, it will never
successfully complete that input.

17Various extensions presented within this thesis enable communication between separate occam systems. In par-
ticular, user-defined channels (section 6.4), the CSP-driver (section 6.7), and the higher-level interaction support
(section 7.4).
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3.9.6 Strict Checking

One small addition to the occam compiler is that of ‘strict’ checking. Enabled with the ‘-strict’
compiler flag, this effectively turns a large proportion of compiler warnings into errors. Most of the
warnings affected are those relating to the new extensions, throughout the whole of this thesis. For
example, in strict mode, any undefined or unknown variable use is an error, rather than a warning
(within the undefinedness checker — section 4.6).

Strict mode additionally makes the use of channel direction specifiers compulsory, for parameters
and abbreviations. Given that channel direction specifiers significantly enhance the comprehensibil-
ity of code, forcing their use in strict mode appears to be quite reasonable — largely in the interests
of promoting good programming practices.

3.10 A C-Like Syntax for occam

In a fairly random poll of second-year occam (principally computer-science) students, given a choice
between C, Java and occam for arbitrary (non-IO intensive) program implementation, the majority
of students choose Java. occam is generally rejected solely on the basis of its syntax — primarily the
indentation. This view is not just held by students. Generally, it seems the programming community
prefer languages that have a C-style syntax, possibly because of their obvious familiarity. As an
indirect result of this, many editors lack support for efficient editing of occam programs. Editors
available under UNIX (specifically ‘origami’ and ‘vim’) do significantly better in this department,
currently where most KRoC ports are targeted18.

To remedy this rather unfortunate situation, a C front-end for the occam compiler is currently
under construction. Previous discussions on this topic have often envisaged pre-processors that turn
a C-style syntax into occam. This has its own problems, however, such as reporting errors in the
original sources. As such, this support is being implemented directly within the occam compiler
itself — the semantics of the language being compiled is still that of occam (and CSP), only the
syntax has changed.

Although not directly intentional, the resulting syntax has many similarities with the Handel-C
language [APR+96]. This is to be expected in some ways, since Handel-C was originally derived
from occam, but specifically for hardware compilation. Handel-C supports many hardware-specific
features that this C-style occam syntax does not. The most obvious missing feature is support for
arbitrary-sized integer types19.

The following sections present the various syntactical structures that the C-style syntax uses.
One key point to remember is that the language is still occam— not C. As such, the various rules
that apply to occam expressions (no operator precedence), also apply to the C-style version of the
syntax. The most substantial change is the replacement of indentation with curly braces, ‘{’ and ‘}’.
To avoid any ambiguity, braces are necessary wherever matching indentation occurs in the occam

version. As far as names are concerned, either the traditional occam dot ‘.’ or an underscore ‘ ’
may be used as a separator in names (but not as the first character). Both are equivalent as far as
the compiler is concerned (internally dot, externally underscore). Thus, new C-style code can refer
to either ‘out string’ or ‘out.string’ — the same function (from ‘course.lib’) is used.

18Currently, no KRoC port for Microsoft Windows tm exists, which has a vast user-base. Attempts to create a
Windows port have been partially successful, but several critical issues remain. Usefully, the central components of
KRoC (compiler, translator and run-time system) ported with very little effort; the remaining problems are largely
tool-chain related — including a failure of the linker to produce executables from occam sources.

19Such types could be provided for in software emulations, perhaps (speculatively) with less than one order of
magnitude overhead — some operations however, particularly divide and modulo, will be complicated.
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3.10.1 Definitions and Declarations

The keywords of the C-style syntax are no different from that of the existing occam syntax, except
they are presented in lowercase. Furthermore, the ‘in’, ‘of’ and ‘at’ keywords have been removed
completely. Since keywords cannot be used as names, this would prevent the use of ‘in’ as a
formal-parameter name.

Declarations (of variables and constants) and definitions (of procedures and functions), follow
the existing occam style and use of keywords. There is one slight issue with the placement of these,
however. In languages such as C and Java, declarations are made inside the scope that defines
their lifetime. For occam, variables are always declared before they enter scope, such that they
only exist in the immediately following process (that may be a ‘SEQ’ or other process constructor).
This implementation retains the occam way of handling declarations, and is unlikely to be a burden
for the programmer (any compiler errors as a result of mis-placed declarations would only require
‘hoisting’ of those declarations).

As an initial example, consider the following occam process (technically, procedure) definition
(that lacks any substantial body):

PROC my.nos (CHAN INT out!)

INT x:

... body of "my.nos"

:

The C-style equivalent of this code is simply:

proc my.nos (chan int out!)

{

int x;

... body of "my.nos"

}

Abbreviations, both value and reference (including results), are formed in the occam style, using
the ‘is’ operator. Initial declarations may use either ‘is’ or ‘=’. For example:

int y is x; // abbreviate ‘x’ to ‘y’

val byte ch is str[4]; // value abbreviation

initial int z = (y * 2); // declare and initialise ‘z’

Functions continue to be defined in the occam style, with a slight modification to the layout of
‘value’ processes. Short function definitions may either use ‘is’ or ‘=’ as a separator. For example:

int function f (val int v) = (v + 2);

int, real64 function g (val real32 rv)

{

int res_i;

real64 res_r;

valof {

... body of value process

}

result res_i, res_r;

}
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A feature that is supported, but perhaps whose use is not entirely recommended, is that of replacing
‘proc’ with ‘void’, and removing ‘function’ entirely. This makes definitions syntactically more like
C and Java. For example:

void some_proc (val int i, val byte[] in, byte[] out)

{

... body of "some_proc"

}

int other_func (val int x, val byte[] data)

{

... (valof/result) body of "other_func"

}

Array Specifications

As shown in the last example, array specifications are not necessarily formed in the traditional
occam way. The vast body of Java programmers, to whom this is partially intended to appeal, are
used to the array-style shown. To allow some flexibility, both the occam-style and new-style versions
of array specifications are supported. Mixing them in general programming is not recommended,
but for example:

void array_test (val []int in, []int out)

{

int[5] temporary;

initial mobile byte[] message = "hello world!\n";

... body of process

}

3.10.2 Sequential and Parallel Composition

One feature which is not supported is that of “automatic sequential code” — as is the norm in
languages like C and Java. Code in Handel-C is also automatically sequential, unless ‘par’ is
explicitly specified. Sequential and parallel blocks are formed in the expected way, using semicolons
to separate items. For example:

int x, y;

seq {

par {

x = 42;

y = 99;

}

out.int (x, 0, screen!);

screen ! ’\n’;

out.int (y, 0, screen!);

screen ! ’\n’;

}

INT x, y:

SEQ

PAR

x := 42

y := 99

out.int (x, 0, screen!)

screen ! ’*n’

out.int (y, 0, screen!)

screen ! ’*n’

The C-style version of the code clearly follows the occam, and is exactly equivalent. However, the
sensible use of whitespace in the C-like syntax is programmer-dependent. The above (C-like) code
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could equally be written as:

int x, y; seq { par { x = 42; y = 99; };

out.int (x, 0, screen!); screen ! ’\n’;

out.int (y, 0, screen!); screen ! ’\n’; }

This version is actually very slightly different — it includes a semi-colon after the ‘par’ closing-brace.
In general, semi-colons are optional after any closing brace — as is generally the norm in C, C++
and Java (with the exception of C-style structured definitions).

Replicators, as they exist in occam, are not entirely well represented in C. Rather than attempting
to provide syntax support for C-style “replicators”, the occam style is retained. For example, with
both the C-style and occam syntax:

seq (i = 0 for 10) {

seq {

out.int (i, 0, screen!);

screen ! ’\n’;

}

}

SEQ i = 0 FOR 10

SEQ

out.int (i, 0, screen!)

screen ! ’*n’

‘par’ replicators follow suite: i.e. “par (i = 0 for n) {...}”. Replicator strides are specified in
the same (occam) way, using the ‘step’ keyword.

3.10.3 Conditionals

The occam ‘IF’ behaves in a similar way to C-type ‘if’/‘else if’ constructs. It makes good sense
to keep the C-style equivalent for IF, thus:

if (x == 42) {

v = 2;

} else if (x < 20) {

seq {

v = 19;

out ! x;

}

} else {

par {

in ? v;

out ! x;

}

}

IF

x = 42

v := 2

x < 20

SEQ

v := 19

out ! x

TRUE

PAR

in ? v

out ! x

In an occam IF, the lack of any TRUE guard (after evaluation) results in a STOP. This behaviour is
unchanged for the C-style syntax — any ‘skip’ must still be explicit:

if (x < 0) {

x = 0;

} else {

skip;

}

Omitting the ‘skip’ and attempting to specify a pair of empty braces will result in a parse error.
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Replicated ‘IF’s in occam must either contain a condition (and intended process), or another
‘IF’ structure. Specifying a replicator together with a condition in a C-style syntax is messy, so a
nested ‘if’ must always be used. For example:

if (i = 0 for (size X)) {

if (X[i] == v) {

x = i;

}

} // else stop.

The occam ‘WHILE’ is easily expressed in the C-style syntax, for example:

while (!found) {

... body of loop

}

WHILE NOT found

... body of loop

The only other conditional statement supported in occam is ‘CASE’. This is also easily expressed in
the C-style syntax, but using the ‘switch’ keyword instead. For example:

switch (str[i]) {

case ’A’:

case ’B’:

a, b = i, i;

case ’C’:

seq {

a = 0;

b = i;

}

default:

skip;

}

CASE str[i]

’A’,’B’

a, b := i, i

’C’

SEQ

a := 0

b := i

ELSE

SKIP

Note that the C-style version of the syntax does not use the ‘break’ keyword. Like plain occam, the
default behaviour is to always “break”, and never to “fall through”.

3.10.4 Alternatives

The ‘ALT’ and ‘PRI ALT’ in occam have no real equivalent in C. Although the ALT is similar to IF

in some ways, an IF-style syntax for C-like ALTs does not work particularly well. Handle-C uses a
syntax similar to C’s ‘switch’ construct, but where there is no condition and the ‘case’s are guards
(both input and output are supported in Handel-C).

A syntax similar to that of Handel-C has been implemented for the ‘ALT’ and ‘PRI ALT’ constructs.
For example, showing both the new C-style and original occam syntax:
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alt {

pri alt {

c[0] ? x:

P (x);

tim ? after t:

T (t);

}

alt (i = 1 for ((size c) - 1)) {

c[i] ? x:

Q (i, x);

}

}

ALT

PRI ALT

c[0] ? x

P (x)

tim ? AFTER t

T (t)

ALT i = 1 FOR ((SIZE c) - 1)

c[i] ? x

Q (i, x)

Note, again, the lack of any ‘break’ statements. This behaviour is always implicit, and any attempts
to use ‘break’ will result in an error (it is not a keyword in the C-style syntax).

Pre-conditions may be used, separated from the guard using the ‘&&’ operator. Skip guards are
specified using the ‘skip’ keyword. In occam, specifications (typically declarations) may be placed
immediately before an ALT guard. This is still permitted in the C-style syntax, although it does
look a little strange. For example:

pri alt {

alt (i = 0 for 10) {

int x;

(i < (size c)) && c[i] ? x:

... process data in ‘x’

}

skip:

... no data ready

}

The lack of an explicit “true &&” pre-condition on the above ‘skip’ guard is a result of its optional
use within a ‘pri alt’ — as covered in section 3.9.1.

3.10.5 Communication, Assignment and Expressions

Communication is specified in almost exactly the same way as standard occam, with the slight
exception that ‘;’ cannot be used to separate items in sequential protocols. Instead a comma is
used. Simple protocol definitions have the expected form. The syntax of variant protocol definitions
is slightly peculiar, partly to avoid complication in the parser, and resembles a ‘switch()’ style
syntax more than anything else. For example:

protocol PWindow is int;

protocol PDrawRequest {

case {

show: // empty tags

hide:

draw.line, int, int, int, int: // x1, y1, x2, y2

... other cases

}

}
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Variant input and output follow a similar ‘switch()’ style syntax:

chan PDrawRequest c;

par {

while (true) {

c ? case {

show:

... make widget visible

hide:

... make widget invisible

int x1, y1, x2, y2;

draw.line, x1, y1, x2, y2:

... draw a line between x1,y1 and x2,y2

}

}

seq {

c ! show;

c ! draw.line, 0, 0, 42, 128;

}

}

Extended inputs are done following the occam style — simply one or two processes “indented” under
the communication. Usually, two processes following each other, not bound by a ‘seq’ or ‘par’, is
an error — the all too familiar ‘incorrect indentation’ error in occam. Braces must still be used to
represent the indentation for extended-inputs, for example:

in ?? x {

out ! x; // extended process

x = 42; // following process

}

As shown above, assignment uses the C-style operator, but is occam-like in all other aspects. That
is, the left-hand items must be assignable and the right-hand items must be expressions. The slight
exception being for mobile assignments, where source mobiles are left undefined.

Expressions use C-style operators, but must still be bracketed according to occam rules — i.e.
the expression ‘a + b + c’ must be expressed as either ‘(a + b) + c’ or as ‘a + (b + c)’. Type-casts in
occam are explicit, formed by using the desired type as a monadic operator — with either ‘TRUNC’
or ‘ROUND’ required for some conversions. For the C-style syntax, casts must still be explicit, but
they are formed in the C way, e.g. “(byte)x” or “(real64 trunc)y”, for “BYTE x” and “REAL64
TRUNC y” respectively.

The following shows arbitrary occam fragments that make extensive use of expressions, assign-
ment and communication:

chan int c;

int x;

par {

c ! (int round)(100.0 * SIN ((2.0 * PI) / 8.0))

c ? x

}
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int seed, v;

seq {

timer tim;

tim ? seed;

seed = (seed >> 2) + 1;

v, seed = random (512, seed);

}

mobile byte[] str;

seq {

str = "hello, mobile C-like world!\n";

out.string (str, 0, scr!);

}

3.10.6 Inclusion and Separate Compilation

The implementation of the C-style syntax is restricted to the front-end of the compiler, largely in the
lexer — with some support in the parser. The choice of ‘language’ is based on the source file-name
alone. If a file has the extension ‘.occ’ or ‘.inc’, it is parsed as occam. On the other hand, files
with extensions of either ‘.co’ or ‘.ci’ are treated as C-style input files.

The implication of this is that occam files may include C-style sources and visa-versa. This is
a feature particularly unique to the occam compiler, since the usual route for supporting multiple
language front-ends is usually to provide an entirely new front-end — e.g. the ‘gcc’ (for C) variants
‘g++’ (for C++), ‘gcj’ for Java, and ‘g77’ for Fortran-77, as well as others. For the occam compiler,
both supported syntaxes are essentially occam— the changes are mainly in keyword cases and the
handling of indentation. For example:

#use "course.lib"

#include "semaphore.inc" // occam user-defined semaphore

#include "semtest.occ" // for PROC sem.test (VAL INT i,SEMAPHORE sem,

// CHAN BYTE out!)

proc test (chan byte screen!)

{

#pragma shared screen

SEMAPHORE scr_sem;

#pragma shared scr_sem

seq {

initialise_semaphore (scr_sem, 1);

par (i = 0 for 10) {

sem_test (i, scr_sem, screen!);

}

}

}

As shown in this example, compiler directives are formed in much the same way as occam, but in
lower-case. The placement of some of these is critical — ‘#pragma shared’ must still be placed
immediately after the declaration, for example.



Chapter 4

Mobile Data, Channels and

Processes

This chapter describes mobiles — a new layer added to the occam type-system which provides
data, channel, and process mobility. Communication and assignment of mobiles follow a movement
semantics, i.e. a variable output in communication or on the right-hand side of an assignment
is left undefined — it has moved. The implementation uses this to an advantage: in a shared-
memory UMA (Uniform Memory Access) machine, references may be communicated and assigned,
significantly reducing the (local) run-time cost of these operations.

A fuller introduction to mobiles, including the motivation for adding them to the occam language,
is given in section 4.1. Section 4.2 describes mobile data-types in detail, including a description of
mobilespace — where static mobiles are allocated. Mobile data-types in occam were first presented
in [BW01a] and [BW01b].

Sections 4.3 and 4.4 present mobile channel-types, followed by a description of mobile processes
in section 4.5. Mobile channels in occam were first presented in [BW02a] and [BW02b], and subse-
quently with mobile processes in [BW03].

With a movement semantics, in particular the ability for a variable to become undefined, ad-
ditional usage checks are required to ensure the correctness of code. Such checks are implemented
by the undefinedness checker, described in section 4.6. The undefinedness checker, in addition to
analysing mobile variable usage, implements checks for some of occam extensions from chapter 3.

A further checking mechanism for mobile channel-types is proposed in section 4.7, but has not
yet been implemented.

4.1 Introduction

Communication and assignment in traditional occam systems incur an O(n) run-time cost for data-
copying. In small localised systems (i.e. those which share a common memory), this run-time cost
is often undesirable and often unnecessary.

A common solution to this, in occam, is to implement a memory pool which uses RETYPEs and
various compiler-builtins to generate pointers from variables. These pointers (usually represented
by the INT type) can then be communicated and assigned in O(1) time. The disadvantage of this
method is that the compiler can no longer perform parallel-usage and alias checks on the pointers
— it just treats them as plain INTs. Thus the potential for introducing parallel race-hazards is high.

67
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However, in traditional occam, this is often the only solution.

Mobiles, with their movement semantics, provide a simple and effective solution to this — with
an implementation that uses communication and assignment of references and has aliasing strictly
controlled. These semantics are enforced by the compiler both at compile-time (in the undefinedness
checker, section 4.6), and also at run-time, by invalidating ‘lost’ references.

Mobiles are not a new concept — movement semantics exist in other languages, for example
NIL [SY85], although these tend to be few in number. The programming language Icarus [MM98b,
MM98a, MM01] also supports a movement semantics, for both data and channels. Icarus also
introduces the concept of a borrowing semantics, that provides an explicit mechanism for temporarily
moving data/channels to another process and back at defined points. A similar mechanism also exists
for mobile types in occam, although it is somewhat implicit — in procedure calls and abbreviations.

For channels, communication and assignment using a movement semantics is the only option
— copy semantics have no meaning when applied to channels, and are therefore banned in the
standard occam language. Mobile channel-types provide this functionality, and also extend it — by
allowing explicitly shared channel-types (for the construction of one-to-any, any-to-one and any-to-
any channels). Section 4.3 describes mobile channel-types in detail.
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Figure 4.1: Copying, aliasing and movement semantics for communication

Figure 4.1 shows three semantic models for communication: copying, aliasing and moving. Stan-
dard occam provides copying semantics only. JCSP [WA99, Wel00] exhibits aliasing semantics,
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as do languages such as C and C++ (when concurrency is added). For these languages, enforc-
ing strict aliasing is hard — requiring specialist tools (such as that provided with the commercial
JCSP.net [WAF02]), or modifications to the language in order to provide aliasing control. The
C99 language specification [Ame99] adds a ‘restrict’ type qualifier which specifies single-reference
semantics for pointers. Checking and enforcing such single-reference pointers is hard however, as
noted in [FA01].

4.2 Mobile Data Types

Mobile data-types in occam fall into two categories: static and dynamic. Static mobiles are mobile
data-types whose size is known at compile-time. Dynamic mobiles are mobile data-types whose size
is not known at compile time. In the occam language, the only candidates for dynamic mobiles are
unsized array declarations. Traditional occam rejects unsized array declarations, due to the lack
of a dynamic memory functionality. Dynamic mobile data-types, described in section 4.2.4, are a
somewhat special case since they only apply to array-types.

The default memory allocation strategy in occam is static. After analysing each PROC or
FUNCTION, the compiler knows exactly how much memory is required to support it at run-time.
The occam run-time model splits memory into two parts, workspace and vectorspace. The occam

workspace behaves much like a C stack, containing local variables and growing downwards. Unlike
C, however, the maximum size of this ‘stack’ is known.

In order to keep workspace offsets small at run-time, the occam compiler allocates large data
items in vectorspace — typically fixed-sized arrays and RECORD types. The current ‘cut-off’ point
for workspace allocation is at 8 bytes. Anything larger is allocated in vectorspace.

To fit with this static memory-model, mobile (data) variables of a known size are allocated in
mobilespace. Ordinary workspace or vectorspace allocation for mobiles is not suitable, since a mobile
variable may out-live the scope of its declaration — if it is moved to another variable or process
through assignment or communication. Mobilespace is engineered to handle this safely, without
‘losing’ references and without introducing aliases through assignment and communication. The
layout and management of mobilespace is discussed in section 4.2.2.

4.2.1 Declaring Mobiles

Mobile data types are declared using the ‘MOBILE’ type qualifier. Mobility is added to types in
occam— not variables. This means, for instance, that channels which carry mobiles must have a
MOBILE protocol. Mobile types are sub-types of their non-mobile counterparts, such that a variable
of type ‘MOBILE X’ may be used wherever a variable of type ‘X’ is valid.

The reverse is not so — a channel of ‘MOBILE X’ cannot be used to communicate a variable of
type ‘X’, only ‘MOBILE X’s are valid.

Mobile variables are declared in the standard way, but are declared to be of MOBILE types. For
example:

MOBILE INT i, j:

MOBILE REAL64 x, y:

MOBILE [32]REAL32 results:

MOBILE SOME.USER.TYPE var:

User-defined types, introduced in occam 2.1 [Inm95], may also be declared MOBILE:
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DATA TYPE DATASET IS MOBILE [128]REAL64:

DATA TYPE PACKET

MOBILE RECORD

INT src, dest:

[512]BYTE data:

:

... other declarations

DATASET results:

PACKET p:

... process using ‘results’ and ‘p’

The variables ‘results’ and ‘p’ are automatically MOBILE in this example. However, without re-
defining the types, creating non-mobile DATASET and PACKET variables is not possible. It may
therefore be convenient to declare the types non-mobile and the variables as MOBILE versions of
those types. For example:

DATA TYPE DATASET IS [128]REAL64:

DATA TYPE PACKET

RECORD

.. same fields as PACKET above

:

... other declarations

MOBILE DATASET results:

MOBILE PACKET p:

... process using ‘results’ and ‘p’

Mobile parameters and abbreviations follow along similar lines — i.e. using the MOBILE keyword:

PROC foo (MOBILE [32]REAL32 data, PACKET message)

... body of foo

:

MOBILE INT z IS x:

... process using ‘z’

The semantics of MOBILE parameters and abbreviations is one of borrowing — during the duration
of a PROC instance, or the lifetime (scope) of an abbreviation, a mobile is borrowed. When the
procedure returns or the abbreviation descopes, mobiles are moved back into their original variables
(e.g. ‘x’ in the above abbreviation).

4.2.2 Mobilespace

As noted previously, mobile data objects cannot be allocated in the workspace (or vectorspace) of
a process (approximately equivalent to the C stack and heap in occam). Dynamic allocation is not
required: the type and size of all static mobiles are known (and dynamic allocation is an overhead).
The solution presented here provides allocation for statically sized mobiles within a mobilespace —
a statically sized memory area (much like workspace or vectorspace), allocated when the run-time
system initialises.
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The allocation of mobile variables to mobilespace happens during the mapping phase in the com-
piler — where variables are normally allocated to either workspace or vectorspace. Mobilespace is
simply a third allocation option in this respect. The allocation strategy for mobilespace is, however,
significantly different from the workspace and vectorspace allocation strategies. The lifetime of a
variable allocated in mobilespace is controlled through communication and assignment; not through
variable scoping alone.

Each mobile variable declared (including anonymous mobile variables inserted by the compiler),
is allocated in mobilespace along with room for a pointer — the shadow-variable. Additionally,
space for a local pointer is allocated in the process’s workspace, that is used to hold the address of a
mobile variable (locally) at run-time. Figure 4.2 shows this allocation strategy for an example PROC

with some mobile variables. The use of shadow variables in mobilespace may not seem immediately
obvious, but is required to implement mobile variables correctly (with zero-aliasing), discussed
further in section 4.2.3.

  DATA TYPE FOO

    MOBILE RECORD

      [4]INT dest:

      MOBILE [32]BYTE payload:
  :

  FOO a, b:

  SEQ
    ... process using a and b

PROC P (..., $msp)

:
increasing
addresses

mobilespaceworkspace

$msp

a

b

[32]BYTE

[32]BYTE

shadow (b)

shadow (a)

shadow(payload)

[4]INT

shadow(payload)

[4]INT

Figure 4.2: Allocation of variables in mobilespace

The mobilespace allocated for any instance of ‘P’ is passed as a hidden parameter to the PROC

— in much the same way as the hidden vectorspace parameter (‘$vsp’). The hidden mobilespace
parameter is called ‘$msp’.

In addition to mobile variables, mobilespace can hold nested-mobilespaces (for PROC instances re-
quiring mobilespace), and run-time ‘hooks’ (for storing dynamically allocated mobilespaces required
by dynamic processes — covered in Chapter 5). Allocation of nested mobilespaces is trivial — the
mobilespace required by the called procedure is simply allocated as a single block in the caller’s
mobilespace.

Run-Time Initialisation

The initialisation of mobilespace (to setup the shadow pointers, as shown on the RHS of figure 4.2),
is handled at run-time. When the mobilespace for the top-level PROC (and thus the mobilespace
for all its sub-processes) is allocated, the whole space is set to ‘MOSTNEG INT’ — traditionally the
“invalid pointer” on a Transputer (which had a signed address space). This value is often just
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referred to as ‘MINT’, from the Transputer instruction that generates it. A similar technique is used
for dynamic mobilespaces too, covered in section 4.2.4. The references from the workspace pointers
‘a’ and ‘b’ to their real mobilespace memories is handled when those variables enter and leave scope,
described in section 4.2.3.

When the top-level PROC (or any mobilespace requiring PROC) is entered, the first word of mo-
bilespace (accessed through the hidden ‘$msp’ parameter), is checked. If set to ‘MINT’, then the
mobilespace is initialised. Otherwise, the mobilespace has already been initialised (from a previous
call to the same PROC).

To generate code for mobilespace initialisation, the compiler uses the ‘MOBILEINIT’ ETC directive
(described in appendix B.2.1), generated immediately after the PROC’s entry-point. This directive
provides the translator (tranx86) with the constant workspace offset of the ‘$msp’ parameter, the
number of initialisations to perform, followed by a list of (shadow-offset, data-offset) pairs. For the
process shown in figure 4.2 this mobilespace initialisation sequence will be (in textual ETC):

.COMMENT $msp offset is 3, count is 4

.MOBILEINIT 3 4

.MOBILEINITPAIR 0 2

.MOBILEINITPAIR 1 11

.MOBILEINITPAIR 2 7

.MOBILEINITPAIR 11 16

Only mobile variables (and some dynamic mobilespace constructs) require pointer initialisation in
mobilespace. The mobilespace required by any nested PROC calls is mapped as a single block — the
run-time system guarantees that all global mobilespace is initialised to ‘MINT’, handling marking
of non-intialisation for PROC calls. Instead of using a shadow variable (and local mobile) to hold
the mobilespace address for a PROC instance, the (constant) offset within the current mobilespace is
linked directly to that particular PROC call. Figure 4.3 shows the mobilespace layout for an example
process ‘Q’, that declares and uses its own (mobile) ‘FOO’ variable, then runs two instances of ‘P’ in
parallel. The definitions for ‘FOO’ and ‘P’ are shown in figure 4.2.

increasing
addresses

PROC Q (..., $msp)

  FOO x:

  SEQ

    PAR

      P (...)

      P (...)

    ... process using x

:

mobilespaceworkspace

$msp

a

shadow (x)

[32]BYTE

mobilespace
for P

mobilespace
for P

shadow(payload)

[4]INT

Figure 4.3: Allocation of process instances in mobilespace

The mobilespace initialisation code for the ‘Q’ process needs only to initialise the ‘x’ variable. The
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initialisation of the two nested ‘P’ calls are handled by ‘P’ itself, as shown before. The (initialisation)
code generated for ‘Q’ is simply:

.COMMENT $msp offset is 3, count is 2

.MOBILEINIT 3 2

.MOBILEINITPAIR 0 1

.MOBILEINITPAIR 1 6

The translator turns such sequences into real code, that performs the check for MINT in the first
word, and if so, initialises mobilespace according to the data (mobilespace-map) given. Although the
occam compiler could generate mobilespace initialisation code itself, such code after translation will
be less optimal — due to the repeated need to load the ‘$msp’ parameter for each initialisation. The
actual (annotated) code generated for the above initialisation sequence, on the Intel i386 platform,
is:

;; $msp offset is 3, count is 2

;; .MOBILEINIT 3 2

movl 12(%ebp), %eax ;; load $msp

cmpl 0(%eax), $0x80000000

jne 0f ;; skip if already initialised

;; .MOBILEINITPAIR 0 1

leal 4(%eax), %ebx

movl %ebx, 0(%eax)

;; .MOBILEINITPAIR 5 6

leal 24(%eax), %ebx

movl %ebx, 20(%eax)

0:

In theory, there are two places where mobilespace initialisation can be performed. Either on PROC

entry — where it currently happens — or on individual mobile variable scope-in and scope-out. The
latter approach is used by the occam compiler for initialising channel words. This is a consequence
of the allocation strategy for workspace and vectorspace — overlapping static activation records
(ultimately stemming from Algol-60 [RR64]). Since the location of channels within workspace and
vectorspace may change (and may be subsequently overlaid with other declarations), initialisation
(of workspace and vectorspace entities) on PROC entry is not an option. For some code however,
separate initialisation (and allocation) of channel words would be beneficial — both in reducing the
number of un-necessary initialisations, and potentially improving performance on multi-processor
machines (particularly in cases of false sharing — where a cache line is un-intentionally ping-pong’d
between processors).

Minimising Mobilespace

By contrast, the allocation strategy for mobilespace is non-overlapping static activation records.
Unlike workspace and vectorspace, simultaneous usage of mobilespace is unpredictable — references
to an initially local mobilespace will move during communication, and in return, references to
remote mobilespaces will be aquired. As such, the free-wheeled recycling of mobilespace would
cause significant memory corruption, and does not fit with the initialisation on PROC entry. Some
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re-use is possible however, by packing sequentially used, same sized, closely typed1 mobile variables.
For example:

PROC thing (...)

SEQ

MOBILE [64]BYTE data:

MOBILE [3]REAL64 p1, p2:

PAR

... process using ‘p1’ and ‘data’

... process using ‘p2’

MOBILE [32]INT16 sdata:

MOBILE [3]REAL64 x:

SEQ

... process using ‘x’ and ‘sdata’

:

In sequential code such as this, the mobilespace allocated for ‘p1’ or ‘p2’ can be reused to allocate
‘x’. Less obviously, the mobilespace allocated for ‘data’ can be reused for ‘sdata’, since the two
variables require exactly the same amount of memory. A similar strategy is also applied to sequential
PROC calls.

Declarations of user-defined (‘RECORD’) mobile variables can also be packed in a similar way,
providing that there are either no nested mobiles, or that any nested mobiles match in a similar
manner. Unless the ‘PACKED’ attribute is specified on MOBILE RECORD types, the compiler will re-
order the fields to put nested mobiles first when allocating mobilespace. This can help considerably
when packing mobilespace. Consider for example:

DATA TYPE S.BLK

MOBILE RECORD

INT64 blockno:

MOBILE [512]BYTE data:

:

DATA TYPE BLK.MAP

MOBILE RECORD

MOBILE [128]INT blocks:

INT n.blks:

INT32 flags:

:

After sorting the fields of these types, sequentially declared variables of either type can be packed
in mobilespace. When a record has multiple MOBILE fields, the fields are sorted in decreasing order
by size. This makes the check for packing compatability largely obvious to the compiler.

There are potentially many cases where two types are not directly compatible for mobilespace
packing, but where a minor alteration to one would make them compatible. Alterations would
principally be the insertion of extra (dummy) fields, either mobile or non-mobile. Promotion of a

1“Closely typed” is somewhat of a vague term — two mobile types are compatible for packing if they have the
same fixed size, and the number/placement of nested-mobiles is the same, and that those pairs of nested mobiles are
also ‘closely typed’.
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non-mobile to a mobile is also a potential option (when looking for compatible types for mobilespace
packing), but requires some careful handling in order to not destroy existing copy semantics. Since
nested mobilespaces are currently only partially supported, the implementation of such packing has
not been investigated in great details. These issues are covered in greater detail in section 8.3.2.

4.2.3 Scoping, Communication and Assignment

When a mobile variable comes into scope, the pointer in the mobilespace shadow variable is copied
into the corresponding pointer in the process’s workspace. Similarly, when a mobile variables leaves
scope, the pointer in workspace is copied back into the mobilespace shadow variable.

The implementation of communication and assignment of mobiles, within a shared-memory
system, is handled using pointer swapping of the two mobile variables involved. In CSP, commu-
nication and assignment have a direct equivalence, enforcing on occam the same semantic effects
for both communication and assignment of mobiles. The use of pointer swapping yields two impor-
tant properties for mobile communication and assignment. Firstly, all mobile communications and
assignments are of O(1) cost, and secondly, whenever a reference (to mobilespace) is lost, another
is gained — the symmetric effect of swapping. Conceptually, communication and assignment are
one-way operations, which the occam compiler enforces by undefining outputted mobile variables (or
mobile variables used on the right-hand-side of assignments). The undefinedness checker, described
in detail in section 4.6, implements these checks.

To demonstrate the effect of this implementation, figure 4.4 shows a network comprised of two
processes along with mobilespace as a whole for that network.

process.A process.B
c

process.C

for process.A

for process B

mobilespace

mobilespace

shadow(e)

INT

shadow(x)

INT

for process.A

for process B

mobilespace

mobilespace

DATA TYPE M.INT IS MOBILE INT:

PROC process.A (CHAN M.INT out!)

  M.INT e:

  SEQ

    ... define ‘e’

    out ! e
:

PROC process.B (CHAN M.INT in?)

  M.INT x:

  SEQ

    in ? x

    ... use ‘x’
:

PROC process.C ()

    process.B (c?)

    process.A (c!)

  CHAN M.INT c:

  PAR

:

initial mobilespace

final mobilespace

shadow(e)

INT

shadow(x)

INT

Figure 4.4: Mobile-communicating process network showing initial and final mobilespace
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When these processes are run, they synchronise and swap their local references to ‘e’ and ‘x’
respectively. Thus, when these variables descope and are copied back into mobilespace shadows,
they remain swapped — as shown by the difference between the initial and final mobilespaces in
figure 4.4. If these two processes were subsequently run again, the swap would return mobilespace
to its original configuration.

During the course of program execution, the pointers within mobilespace can migrate as far
as their bi-directional communication and assignment closures extend. Since no pointers are ever
gained or lost however, mobilespace remains ‘sound’, with every internal shadow pointer being valid.

Due to the loading and storing of mobile shadow variables into local pointers, mobilespace may
occasionally contain temporary aliases. These are temporary until the affected variable descopes
and stores a non-aliased pointer back into mobilespace. To demonstrate this, figure 4.5 shows the
state of the mobilespace from figure 4.4 at the point where ‘process.A’ has terminated, but where
‘process.B’ is still executing inside the ‘... use ‘x’’ block of code.

for process.A

for process B

mobilespace

mobilespace

shadow(e)

INT

shadow(x)

INT

mobilespace

x

out!

B’s workspace

Figure 4.5: Mobilespace with temporary aliasing

Support for mobile communication (using pointer-swapping), is provided through a new set of
communication instructions. A list of these new instructions can be found in table B.2 in the
appendix, with more information on each in appendix B.1.2.

The principal instructions for mobile communication are ‘MIN’ and ‘MOUT’, for mobile input
and output respectively. These new instructions follow the usage pattern of existing communication
instructions ‘IN’ and ‘OUT’, except that the size (of data communicated) need not be given explicitly.

Pointer swapping for mobile assignment is simpler and does not require any new instructions.
For example, the mobile assignment ‘x := e’ is handled at run-time with the following code:

LD x

LD e

ST x

ST e

Copying Mobile Variables

In many cases, it may be desirable (and even necessary) to copy (rather than move) a mobile variable
— such that the mobile variable output, or on the RHS in assignment, remains defined. The ‘CLONE’
operator is provided for this purpose.

‘CLONE’ is a compiler built-in operator (as opposed to a user-defined operator [WM99]) that
operates over all mobile types. There are several restrictions in the use of this operator however —
it is not allowed inside expressions, for example.

The previous moving assignment ‘x := e’ (where ‘x’ and ‘e’ are mobile variables) can be changed
into a copy by inserting CLONE on the RHS:
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x := CLONE e

From CSP, this is equivilant to the following (and illegal) parallel processes:

CHAN c:

PAR

c ? x

c ! CLONE e

The implementation of the CLONE operator in assignment is trivial — the data is simply copied.
Communication is slightly trickier — the inputting process will always input via pointer-swapping,
using the mobile communication instructions. In order to be compatible, the outputting process
must also implement output via pointer-swapping. The above PAR is translated2 inside the occam

compiler into:

CHAN c:

PAR

c ? x

MOBILE ... $anon:

SEQ

$anon := CLONE e

c ! $anon

4.2.4 Dynamic Mobile Arrays

The mobile data-types presented so far have been fixed-size. However, one of the main motivations
for adding mobile support to occam was to provide a mechanism for securely managing dynamically
allocated memory. In standard occam [Inm84b, Inm95], there is only one candidate for dynamic
data allocation — run-time sized arrays. Dynamic mobile arrays provide this functionality and are
simply declared as un-sized MOBILE arrays. For example:

MOBILE []BYTE a:

This declares a run-time sized mobile array of BYTEs called ‘a’. Type-declarations are also permitted,
providing (finally) a reasonable implementation for a ‘STRING’ type in occam:

DATA TYPE STRING IS MOBILE []BYTE:

STRING str:

... process using ‘str’

Unlike many other languages, there is nothing special about this ‘STRING’ type — it is simply a
run-time sized mobile array of bytes.

Dynamic allocation for these run-time sized arrays is handled using the dynamic memory instruc-
tions introduced in section 3.8 (detailed in appendix B.1.1). The static memory requirement for a
dynamic mobile array is a compile-time constant number of workspace slots — one for a pointer and
one for each dimension (to hold the run-time size). Neither mobilespace or vectorspace is required.

The run-time behaviour of dynamic mobile arrays is much different from static mobiles. Since
the allocation is dynamic, the possibility for invalid or aliased pointers exists — but only when

2Translation here is a phase in the compiler, where operations such as sequential and tagged protocol expansion
occur.
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a dynamic mobile is undefined. For static mobiles, the pointer in workspace is always valid, even
though the data it points to may be undefined. To handle run-time undefinedness for dynamic
mobiles, the obvious solution would be to use null-pointers — inserting run-time checks where
necessary. However, this does not fit well with the compiler’s existing run-time handling for arrays
— primarily array-bounds checking where a dimension size is unknown (possible for parameters
and abbreviations). Instead, when a dynamic mobile array enters scope, its first dimension count is
initialised to zero. Any attempt to access the array in its undefined state will result in a run-time
error (specifically an array-bounds violation). When a dynamic mobile array leaves scope, the first
dimension count is checked for non-zero, and if so, the pointer is released.

Run-time allocation for dynamic mobile arrays is either explicit (allocation of a specific size) or
automatic (from a non-mobile compatible assignment). For example:

MOBILE []BYTE s1, s2:

SEQ

s1 := MOBILE [42]BYTE -- explicit allocation

s2 := "Hello, new world!" -- automatic allocation

... process using ‘s1’ and ‘s2’

Such allocation is always performed through assignment. The communicative forms of these alloca-
tions are also permitted, that the compiler re-writes to produce allocation by assignment (using a
temporary). For example:

MOBILE []BYTE s1, s2:

SEQ

CHAN MOBILE []BYTE c:

PAR

c ! MOBILE [42]BYTE

c ? s1

CHAN MOBILE []BYTE c:

PAR

c ! "Hello, new world!"

c ? s2

... process using ‘s1’ and ‘s2’

MOBILE []BYTE s1, s2:

SEQ

CHAN MOBILE []BYTE c:

PAR

MOBILE []BYTE $anon0:

SEQ

$anon0 := MOBILE [42]BYTE

c ! $anon0

c ? s1

CHAN MOBILE []BYTE c:

PAR

MOBILE []BYTE $anon1:

SEQ

$anon1 := "Hello, new world!"

c ! $anon1

c ? s2

... process using ‘s1’ and ‘s2’

The above shows the original (user) code on the left, with the re-written version on the right. When
compiled, the first parallel process in the above will produce an undefined variable warning — at
the point where ‘$anon0’ is output in the re-written version. Although the pointer for ‘$anon0’ may
be valid, the contents of the array are undefined.

Implementation Aspects

The semantics of dynamic mobile array assignment and communication are the same as for static
mobiles. Their implementations differ however. Instead of pointer-swapping to implement assign-
ment and communication, a simple copy of the pointer and dimension sizes is used. Before input, a
dynamic mobile array is checked for definedness and the pointer freed if necessary. Correspondingly,
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after output, the first (local) dimension size of a dynamic mobile is set to zero. To implement
communication, a separate group of instructions are used: ‘MIN64’, ‘MOUT64’, ‘MINN’ and ‘MOUTN’,
described in appendix B.1.2. Assignment follows suite, with the LHS being freed if necessary before
the assignment, and the RHS’s first dimension size being set to zero after the assignment.

The undefinedness checker (section 4.6) additionally inserts special markers to indicate unde-
finedness, potentially avoiding the conditional free before assignment or input.

Figure 4.6 shows the memory allocation for a typical dynamic mobile array, after having been
allocated. This positioning of the dimension sizes follows from a similar mechanism used to pass un-
sized array parameters. The pointer appears first, followed by the unknown dimensions in successive
workspace slots.

increasing
addresses

SEQ

MOBILE [][]REAL64 m:

  m := MOBILE [16][16]REAL64

  ...  process using ‘m’

16x16x8

bytes
ptr(m)

dim0(m)

dim1(m)

workspace dynamic−space

Figure 4.6: Dynamic mobile array memory allocation

Supporting the CLONE operator for dynamic mobile arrays is slightly more complicated than for
static mobiles. In a similar way to static mobiles, CLONE can only be used in a direct assignment —
communication using CLONE is simplified by the compiler into a temporary and an assignment. For
example:

MOBILE []BYTE s1, s2:

SEQ

s1 := "hello, dynamic world"

s2 := CLONE s1

... process using ‘s1’ and ‘s2’ (both defined)

The implementation of the CLONE for dynamic mobile arrays conditionally frees the target variable
(‘s2’ in the above code), calculates the size of the CLONE operand (‘s1’), allocates that much for the
target, then performs a simply copy between the two pointers (using the ‘MOVE’ instruction). The
(annotated) compiler output for the above CLONEd assignment is:

--{{{ conditional free

LD SIZE s2 -- loads the first dimension count

CJ :Ln -- jump if zero, otherwise

LD s2 -- load address

MRELEASE -- release dynamic memory

:Ln

--}}}
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--{{{ calculate size and store in Wptr[Temp] (offset 0)

LD SIZE s1 -- loads the first dimension count

DUP

ST SIZE s2 -- store dimension count in target

LDC BYTESIN (BYTE) -- load size of underlying type (BYTE)

MUL -- multiply to get whole size

STL 0 -- store in Wptr[Temp]

--}}}

--{{{ allocate new block and copy

LDL 0 -- previously stored size

MALLOC -- allocate dynamic memory

DUP

ST s2 -- store pointer

LD s1 -- load source address

REV -- swap order (src in Breg, dest in Areg)

LDL 0 -- load size

MOVE -- copy data

--}}}

This is a relatively optimised form of the CLONE — more expansive implementations are possible.
The code generated by the compiler is actually a little more optimal than this — since the underlying
type is BYTE, the compiler will optimise away the sequence “LDC BYTESIN (BYTE); MUL”. Occasionally
the compiler will generate such code by other means — particularly when the ‘load constant 1’ and
‘multiply’ are separated in the code (as can be generated by an INLINE FUNCTION). To cater for
these, the translator (tranx86) will optimise away such code.

4.3 Mobile Channel Types

Mobile channel types provide mobilisation of occam channels: that is, the ability to communicate
channels over channels, or rather to communicate channel ends over channels. This has long been
a desirable feature in occam, since it enables the controlled reconfiguration of process networks at
run-time. The Icarus language provides similar support [MM98b], where channel ends are termed
ports.

Rather than limiting the end to being a single channel-end, mobile channel types declare a
channel bundle, grouping together a number of related channels. Channels may be used in either
direction, but that direction must be explicitly specified. For example:

CHAN TYPE ENCODE

MOBILE RECORD

CHAN MOBILE []BYTE raw?:

CHAN MOBILE []BYTE cooked!:

:

This defines an ‘ENCODE’ mobile channel type, consisting of two channels, one in either direction.
The variables of this channel type are its ends. Given the mixed direction of channels, it does not
make obvious sense to apply the terms ‘input ’ and ‘output ’ to the ends. Instead, the terms ‘server ’
and ‘client ’ are used. This is indicated when declaring variables and parameters of a particular
channel type, for example:

ENCODE? svr: -- server end

ENCODE! cli: -- client end
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The use of such terms for the ends implies a relationship between the processes using them. This is
largely non-strict, the importance to the compiler being to distinguish between the two ends, rather
than the usage of those ends. The client-server paradigm fits particularly well in the majority
of perceived cases, however. Additionally, if used correctly, it provides a guarantee of deadlock
freedom [WJW93].

Such connectivity, from the clients perspective, is almost that of a mobile server process, but
rather than the server process being communicated between clients, the connection to the server
is communicated. Figure 4.7 shows an example of such connectivity, where the client processes
communicate the channel-bundle end between themselves to control server access.

Encode
Server

Client

Client

Client

mobile
channel
bundle

Figure 4.7: Example ‘encode’ server and clients connected using mobile channel-ends

A more general paradigm often desired is that of a shared server process — which the above
does not provide directly. Traditionally, such connectivity was managed in one of two ways: either
provide explicit connections between the server and all clients, on which the server ALTs; or use a
number of explicitly shared channels (shared with a compiler directive that disable usage checking),
access to which can be controlled through the user-defined ‘SEMAPHORE’ type [WM99].

There are restrictions with both of these approaches, however. A server that ALTs will incur an
O(n) cost for servicing clients (where n is the number of clients). Furthermore, fairness in such
servers must be explicitly programmed (using a fair-ALT for example). Explicitly shared channels,
that have usage-checking disabled, suffer from a lack of compile-time checks. It is then up to
the programmer to use the semaphore, or other access mechanism, correctly — a burden on the
programmer, who would not normally want to be concerned with such things.

To solve these problems, a mechanism for sharing a channel-bundle end is provided. This allows
controlled access to a shared channel-bundle by multiple clients, that queue fairly to gain mutually
exclusive access to the channel-ends within (and hence, access to the ‘server’). A single server process
at the other end simply has an unshared bundle of channel-ends, unaware of the potentially many
competing client processes. More generally, a mechanism for sharing either the client or server end of
a channel-bundle is provided, allowing all permutations of a shared/non-shared clients and servers.
This is similar to the occam3 support for shared channel entities. However, no specific mechanism
to support ALTing on the ‘claim’ is provided in this implementation — any shared channels must
be claimed before use in either input, output or ALTs.

A more detailed examination of the declaration and initialisation of mobile channels is given in
section 4.3.1. Section 4.3.2 discusses the usage of mobile channels, in particular, those whose ends are
shared. The implementation of the semaphore mechanism that handles sharing of channel-bundle
ends is covered in section 4.3.3.
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4.3.1 Declaration and Initialisation of Mobile Channels

As already shown, channel-bundle ends are declared using a combination of the channel-type name
(‘ENCODE’ for example) and an indicator of whether the end is the server-end (‘?’) or the client-end
(‘!’) of the bundle. To declare shared ends, the keyword ‘SHARED’ is placed before the type name.
For example:

SHARED ENCODE? s.svr: -- shared server end

SHARED ENCODE! s.cli: -- shared client end

To use channel-bundle ends, a set of channels must be allocated, initialised and assigned to the
variables representing the ends. This is done by means of a somewhat special MOBILE allocation
construct (similar to that used for dynamic mobile array allocation, section 4.2.4). For example:

ENCODE? encode.svr: -- unshared server end

SHARED ENCODE! encode.cli: -- shared client end

SEQ

encode.svr, encode.cli := MOBILE ENCODE

PAR

... process using ‘encode.svr’

... processes using ‘encode.cli’

This form of dynamic channel allocation is the same, regardless of whether the ends being connected
are shared or unshared. Besides the obvious type compatibility checks, the compiler ensures at there
is one client and one server end on the left-hand side of the assignment. Internally, this assignment
is transformed into a call to a compiler built-in:

ALLOC.CHAN.TYPE (ENCODE, encode.svr, encode.cli)

The programmer can call this built-in directly, if desired. Using the assignment form is preferable
however, since it clearly defines the semantics of the operation — the creation of a mobile channel
bundle whose ends are assigned simultaneously to the two end-variables.

Figure 4.8 shows the structure of the memory allocated for this mobile ‘ENCODE’ channel bundle
— supporting a shared client end and a non-shared server end. The extra memory that would be
required for supporting a shared server end is also shown.
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Figure 4.8: Layout of the ‘encode’ channel type in memory
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The initialisation of this structure is trivial. For all cases, unshared, part-shared or fully-shared,
the channel words are initialised to ‘NotProcess.p’ (zero in this version of the occam compiler), and
the ‘ref-count ’ (reference count) field is initialised to 2 (the two variables in the process workspace).
The remainder of memory allocated consists of semaphores to handle sharing — the client semaphore
then the server semaphore. In cases where only the client end is shared, space for the server
semaphore is not allocated. For the two remaining cases, both ends shared and a non-shared client
end connected to a shared server end, the full space is allocated — a shared server will not know
whether the client end is shared or not, so the space required for a potentially shared client end must
be reserved. Any allocated semaphores have their ‘Bptr ’ field set to ‘NotProcess.p’, and their ‘Fptr ’
field set to 1. This implementation of semaphores uses the ‘Fptr ’ field to double as the semaphore-
count (hence why it is initially 1). This is a perfectly reasonable optimisation, since when ‘Fptr ’
is used to hold a process, the count will be zero. The main benefit of this approach is that the
semaphore only occupies two words of memory, instead of three, that align better with themselves
and other data (if allocation was done with cache-line boundaries in mind). The implementation of
this semaphore mechanism is covered in section 4.3.3.

As for previous dynamic mechanisms, the memory is allocated and freed using the Brinch-
Hansen style block allocator, discussed in section 3.8. The ‘ref-count ’ field is used to keep track
of the number of references, most useful when one or both ends are shared. When a channel-type
end variable descopes, and contains a valid pointer (to such a structure), the ‘ref-count ’ field is
decremented and the memory freed if it reaches zero (a simple reference-counted garbage collection
mechanism [JL97]).

4.3.2 Communicating Mobile Channels

The channels within a mobile channel bundle are accessed in the expected manner, with a record-
style subscription, e.g. ‘encode.svr[raw]’. The directions specified on channels in the type dec-
laration represent the server-end usage for those channels. Client ends are accessed in the reverse
manner. For the original ‘ENCODE’ declaration:

CHAN TYPE ENCODE

MOBILE RECORD

CHAN MOBILE []BYTE raw?:

CHAN MOBILE []BYTE cooked!:

:

This ensures that the server process inputs from ‘raw’ and outputs to ‘cooked’; whereas clients
output to ‘raw’ and input from ‘cooked’. The outline of a server process, that takes an unshared
server-end of an ‘ENCODE’ channel-bundle might be:

PROC encode.server (ENCODE? link)

WHILE TRUE

MOBILE []BYTE s:

SEQ

link[raw] ? s

... do processing on data in ‘s’

link[cooked] ! s

:

For shared channel ends, the bundle as a whole must be claimed before accessing any of the channels
within — i.e. before any subscriptions can take place. The syntax engineered into the compiler for
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this follows a syntax similar to that in the proposed occam3 [Bar92] language3. For example, the
corresponding client process for the above ‘encode.server’ might be:

PROC encode.client (SHARED ENCODE! link)

MOBILE []BYTE v:

SEQ

... allocate and initialise ‘v’

CLAIM link

SEQ

link[raw] ! v

link[cooked] ? v

... use modified ‘v’

:

Even though the programmer is required to CLAIM a shared channel-bundle end before using the
channels within, it is still his/her responsibility to ensure compatibility with the server (by com-
municating on ‘raw’ then ‘cooked’ sequentially), and additionally to ensure that competing clients
do not interleave in destructive ways. The following is a broken example, in which multiple clients
could interleave, resulting in deadlock:

PROC broken.encode.client (SHARED ENCODE! link)

MOBILE []BYTE v:

SEQ

... allocate and initialise ‘v’

CLAIM link

link[raw] ! v

CLAIM link

link[cooked] ? v

... use modified ‘v’

:

A partial solution to this, that enforces certain behaviours on processes using channel-bundle ends,
is examined in section 4.7.

Thus far, the mobile nature of channel bundle ends has not been directly exploited4. Figure 4.7
on page 81 shows a server and clients that use a non-shared ‘ENCODE’ channel-bundle. Access to the
server is managed by the clients themselves, by communication of the channel-bundle end linked to
the server process. Such a client might be implemented with:

PROC uni.encode.client (CHAN ENCODE! in?, out!)

ENCODE! link:

WHILE TRUE

MOBILE []BYTE v:

SEQ

... allocate and initialise ‘v’

in ? link

link[raw] ! v

link[cooked] ? v

out ! link

... use modified ‘v’

:

3The occam3 language used a claim/grant mechanism to handle client/server sharing of call-channels.
4Mobile parameter passing, however, is a semi-mobile operation — their references are copied into the PROC call,

then back again afterwards (for PROC calls that assign or communicate their mobile parameters).
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This example is slightly artificial. The more usual way to achieve this functionality (clients using
the services offered through ‘ENCODE’) would be to use a shared client channel-end, as described
above.

For a more complicated system, it might be the case that a client process requests a client-end
from a central server process, that manages a number of different ‘ENCODE’ servers. An example
network of this type is shown in figure 4.9, where a ‘client’ process might be implemented as:

PROC managed.encode.client (CHAN INT request!, CHAN SHARED ENCODE! in?)

SHARED ENCODE! link:

MOBILE []BYTE v:

SEQ

request ! 0

in ? link

... allocate and initialise ‘v’

CLAIM link

SEQ

link[raw] ! v

link[cooked] ? v

... use modified ‘v’

:

The ‘server manager’ process simply ALTs for requests from the clients, responding with the desired
client channel-end. The main loop of this server-manager might be:

PROC server.manager (SHARED ENCODE! server.0, server.1,

[]CHAN INT request?, []CHAN SHARED ENCODE! response!)

...

WHILE TRUE

ALT i = 0 FOR SIZE request?

INT n:

request[i] ? n

CASE n

0

response[i] ! server.0

1

response[i] ! server.1

:

Cloning Shared Channel-Ends

For SHARED channel-ends, an alias is created through the use of the CLONE operator. Attempts
to CLONE a non-shared channel-end are rejected by the compiler. The use of the ‘CLONE’ keyword
is partly recycling, but fully reasonable. When applied to mobile data items, CLONE causes copy-
semantics, rather than a movement semantics. The meaning of “a copy of a channel-end” might
seem ambiguous, but in some respects it is not, “a copy of a channel-end that is connected to the
same process(es) as the existing channel-end”. The ‘SHARED’ nature of the channel-end allows it to
be duplicated, since access is controlled through ‘CLAIM’ blocks. Attempts to CLONE a non-shared
channel-end would clearly create aliases, to which access cannot be controlled — and is therefore
disallowed by the compiler.
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Figure 4.9: Example ‘encode’ servers, clients and a manager process, using shared channel-ends

In general usage, typically for setting up shared client/server relationships, the high-usage of
the ‘CLONE’ operator can obstruct the simplicity of code. As such, ‘CLONE’ is always inserted by the
compiler when SHARED channel-ends are communicated or assigned — as opposed to losing the local
reference (from the right-hand-side of assignment, or output variable in communication). The above
(‘server.manager’) code demonstrates this by omitting the CLONE when returning a channel-end
to a client. The impact of this is very minor — a slight increase in overhead for cases where ‘CLONE’
would not have been used originally.

The semantic issues of leaving a shared mobile channel-end variable defined after output or
assignment turn out to be largely uninteresting. The only things that can happen (directly) to
a mobile channel-end variable are: it is output; it is assigned from; it is over-written on input;
or it is over-written on assignment (including allocation). For the last two of these, the variable
being inputted or assigned to is conditionally “freed” before the action (input or assignment). That
involves checking for definedness (whether it is NULL or not), and if valid, decrementing the reference-
count, freeing if it reaches zero. This happens in the same way as when a mobile channel-end variable
is descoped (section 4.3.1). Thus, before input or assignment, the definedness state of the variable is
irrelevant. For the other cases of output and assignment from, attempts to use an undefined variable
will result in compiler warnings and (trapped) run-time errors. The automatic CLONE-ing may hide
some of these (program logic) errors as far as compiler and run-time environment are concerned.
However, such errors should be apparent when testing (depending on the extent of the testing and
the particular nature of the error).

One issue that does arise from the automatic CLONE for SHARED mobile channel-ends, on output
and assignment from, is how to forcefully undefine one — i.e. really lose the reference. A somewhat
special mechanism, integrated into the undefinedness checker (section 4.6), is provided for this.
Assuming a mobile channel-end variable ‘link’ (either shared or unshared) is in scope, a program
may make the statement:

#PRAGMA UNDEFINED link

The normal effect of this construct is to inform (force upon) the undefinedness checker, information
about the state of a particular variable. For dynamic MOBILEs (so far, dynamic mobile arrays and
mobile channel-types), this statement causes the compiler to ensure that the mobile is undefined,
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both in its internal representation of the variable’s state, and at run-time by ensuring an invalid
(NULL) pointer is left in the relevant workspace slot (performing a conditional free if necessary).

4.3.3 Semaphore Support for Shared Channels

The semaphore support required to handle the CLAIMing of shared channel-ends consists of three op-
erations: initialise, claim, and release. In the initial implementation, these operations were handled
entirely by the compiler, resulting in relatively large amounts of ETC output. Recent modifications
to the implementation has changed this — semaphore support is now provided through three ETC
specials: ‘SEMINIT’, ‘SEMCLAIM’ and ‘SEMRELEASE’. This is generally a better approach, since it al-
lows these operations to be implemented in an architecture-specific way (that might involve SMP
considerations).

tranx86 handles all of these internally, primarily for efficiency in the resulting code. For other
architectures, support for this might be better placed in the run-time kernel, with the appropriate
calls generated by the translator.

Initialisation, as already mentioned, is trivial. The ‘Fptr ’ and ‘Bptr ’ fields are set to 1 and 0
(NotProcess.p) respectively. Ensuring that ‘Bptr ’ is null when the queue is empty allows for some
extra optimisation. The implementations of ‘SEMCLAIM’ and ‘SEMRELEASE’ are optimised for the
best-cases, which are that the semaphore is free (‘Fptr ’ is 1) for ‘SEMCLAIM’, and that no processes
are waiting (‘Fptr ’ is NotProcess.p) for ‘SEMRELEASE’. A simple benchmark program was constructed
to measure the specific overhead of this, consisting largely of the following loop:

SEQ i = 0 FOR 1000000

CLAIM err!

SKIP

The overhead is calculated by measuring the time required for this loop, and subtracting the time for
a similar, but SKIP-only loop. In the best case, where no run-time check is needed to validate ‘err!’,
the fast-paths for claim and release total around 9 ns. With a run-time check for the validity of
‘err!’, the cost is increased to around 12 ns. In this example, ‘err!’ is a anonymous channel-type,
as covered in the following section. These have the advantage that they are always defined, and as
such need no run-time checks.

A slightly more realistic benchmark is one where multiple processes compete for access to a
semaphore. This (in its worst possible case), is implemented using the following:

PAR

SEQ i = 0 FOR 1000000

SEQ

CLAIM err!

RESCHEDULE ()

RESCHEDULE ()

SEQ i = 0 FOR 1000000

SEQ

CLAIM err!

RESCHEDULE ()

RESCHEDULE ()

When this code starts up, one of the parallel processes will claim the semaphore and reschedule. The
other process then starts up, attempts to claim the semaphore and fails. This process then blocks
on the semaphore and reschedules the first process. The first process the exits its CLAIM block,
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leaving the semaphore claimed and putting the blocked second process on the run-queue. The first
process then enters its second ‘RESCHEDULE’, putting itself on the run queue and scheduling the
second process.

The second process then wakes up, immediately inside the ‘CLAIM’, and reschedules. The sequence
then continues as before, but in reverse, with the first process blocking on the CLAIM and the second
process rescheduling it as it exits its own CLAIM. In total, each interleaved iteration of the two
processes consists of: 2 semaphore claims that block on the semaphore and reschedule; 2 semaphore
releases that move a (single) blocked process from the semaphore queue to the run-queue; and 4
explicit ‘RESCHEDULE’s.

Minus the overhead for the loops, the cost of of these operations is approximately 252 ns. With
(scheduler) inlining enabled, this is reduced to about 174 ns. With the overhead for the four explicit
reschedules removed, the remaining semaphore operations (and associated scheduling) cost 205 ns,
reduced to 136 ns with inlining. These times were measured on an 800 MHz P3.

Rescheduling

Much of the low-overhead here can be attributed to the (new) implementation of ‘RESCHEDULE’.
The code (generated by the translator from the ‘.RESCHEDULE’ ETC special, described in Ap-
pendix B.2.4), only enters the run-time kernel if a synchronisation-flag has been set, or if there
is timer activity and timer inlining is not enabled. Otherwise, if the run-queue is non-empty, the
current processes is added to the back and a new one scheduled.

The best-case overhead (where the current is the only runnable process) is around 5 ns (a few
comparisons and conditional jumps). Two processes that schedule each other each incur an average
overhead of 9 ns each for a reschedule. Where three processes are involved, each incurs an average
overhead of 7 ns.

4.4 Anonymous and Recursive Channel Types

Parts of the network in figure 4.9, particularly the request channels from the ‘client’ processes to
the ‘server-manager’ process, are over-complicated. Ideally, a shared channel should be used — with
the client processes sending their identity as a request, which the manager process uses in order to
respond to the correct client.

An alternative (and perhaps almost obvious) version of the network is one in which the clients
and server are connected by a single (client-shared) channel-bundle, containing the necessary request
and response channels. For example:

CHAN TYPE SVR.MGR.IF

MOBILE RECORD

CHAN INT request?:

CHAN SHARED ENCODE! response!:

:

SVR.MGR.IF? smgr.svr:

SHARED SVR.MGR.IF! smgr.cli:

SEQ

smgr.svr, smgr.cli := MOBILE SVR.MGR.IF

... parallel processes using "smgr.svr" and "smgr.cli"
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However, this approach tends to assume that the ‘server-manager’ process will respond immedi-
ately when a request is accepted. At the very least, programmers may be tempted to write:

PROC managed.encode.client2 (SHARED SVR.MGR.IF! to.manager)

SHARED ENCODE! link:

MOBILE []BYTE v:

SEQ

-- get "link" (to encode server 1)

CLAIM to.manager

SEQ

to.manager[request] ! 1

to.manager[response] ? link

... code using "link" and "v"

:

It may well be the case that the ‘server-manager’ process does not respond immediately — i.e. it may
be implemented to control the number of clients simultaneously accessing a server, and therefore
may need to “hold-up” a client making a request. This is not an unreasonable scenario; a ‘high-
security’ ENCODE server may exist, that demands to be consulted before allowing connections (to
verify a client, for example). It is the responsibility of ‘server-manager’ to ensure this, that can be
explicitly programmed to prevent access by multiple clients.

There are two particular problems that must be solved in order to program this functionality
usefully. The first is allowing clients to be blocked mid-transaction, without affecting the servicing
of other clients. The second is how a client reports, to the manager process, that is has finished
using a particular server — and perhaps to enforce this behaviour.

In order to correctly support separate processing of multiple clients, the network must be wired
with individual channel from the ‘server-manager’ to each ‘client’. It is not sufficient to simply
modify the above PROC body to:

SEQ

-- get "link" (to encode server 1)

CLAIM to.manager

to.manager[request] ! 1

CLAIM to.manager

to.manager[response] ? link

...

This will have highly unpredictable and definitely undesirably results when clients interleave — since
there is no way for ordering of clients on the second ‘CLAIM’ to be controlled5. Specific programming
could be inserted between the two CLAIM blocks (to force deterministic arrival at the second CLAIM),
but this is not generally practical.

The way to construct a correct version of such a network would be as already mentioned — a
shared channel for requests, and individual (per-client) channels for results. Setting up this shared
channel would require constructing a channel-type with just one field, then allocating that channel
before distributing to the processes concerned. This is slightly cumbersome, since all that is desired

5Technically there is a way to almost guarantee ordering on CLAIMs, using process priority. If each client executes
at a separate priority level, the ordering of the arrival at a CLAIM can be determined from its immediately preceding
interaction (with the server process). However, such behaviour is not guaranteed, and therefore should never be used.
The implementation of priority presented in this thesis (section 7.2) will, however, allow this to be programmed and
have the desired result.



90 CHAPTER 4. MOBILE DATA, CHANNELS AND PROCESSES

is a single, simple, shared channel. For this specific purpose, the anonymous channel-type has been
introduced, described in section 4.4.1.

The other problem to be solved is how a client process communicates (to a server) that it has
finished with a channel-end. By default, when a channel-end goes out of scope, or before it is
over-written by assignment or input, the reference count is decremented and the memory freed if it
reaches zero (although this will not happen in the client if the server always retains a reference to the
channel-bundle — its local ‘end’). The server process to which clients are connected has no direct
way of knowing when a client ‘lets go’ a channel-end in this way. The most obvious engineering
would be to provide a separate channel, or element of a channel-type, to transport used client-ends
from the ‘clients’ back to the ‘server-manager’. The use of an anonymous channel-type (shared
channel) might be a good candidate in many cases, but requires explicit wiring into the network.

Rather than adding extra channels to a process network, a specific mechanism has been intro-
duced that allows a channel-type to communicate an end of itself, known as a recursive channel-type.
Section 4.4.3 describes the details of this mechanism. A recursive channel-type is ideal when client
processes wish to inform a server (to which they are connected) that it has finished using that
server resource. For non-shared channel-ends, this will guarantee that the client will not use that
channel-end again — it cannot, simply for the reason that it has communicated its own reference
to a server, back to that server.

4.4.1 Anonymous Channel Types

Figure 4.10 shows the wiring for a more useful ‘encode’ network — one that can support complex
management of its clients, as described above. The channels connecting the server-manager to the
various clients are still required, since the server-manager must be able to communicate with each
client individually. For a static process layout, but where connectivity may be dynamic, such as
shown in figure 4.10, fixed wiring like this is unlikely to cause a problem — an array of (output)
channels can be given as a parameter to the server-manager process, with the opposite (input) ends
distributed to the clients.

Encode
Server

Encode
Server

Client Client Client Client

Server
Manager

bundles
channel
mobile

client−shared

shared channel

Figure 4.10: Modified ‘encode’ network, incorporating a shared channel

The single shared channel between the ‘client’s and ‘server-manager’ is of an anonymous channel-
type. Semantically, these provide a shared channel of any protocol type — simple, sequential, or
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variant (CASE). The implementation for these uses mobile channel-types, but hides that aspect from
the programmer — hence its anonymity.

A shared channel, of INTs for example, can be declared simply with:

SHARED CHAN INT c:

This simple declaration is re-written by the compiler to produce declarations and initialisation code
for the channel-ends that are used to provide this shared channel. The above declaration creates an
any-to-any channel, i.e. both ends are shared. The other two shared combinations, any-to-one and
one-to-any, are declared by adding a direction-specifier to the ‘SHARED’ keyword. For example:

SHARED! CHAN INT::[]BYTE messages: -- any-to-one (multiple outputters)

SHARED? CHAN MOBILE []BYTE to.servers: -- one-to-any (multiple inputters)

In all three examples, one name is used to declare and initialise two channel-ends (of opposing
direction). Consequently, whenever the name of a shared-channel is referred to, the end in question
must be explicitly indicated6(using a direction specifier). The handling of this, and re-writing of
declarations, are covered in section 4.4.2. There is no way to refer to both ends simultaneously —
and no reason to either.

The usage of a shared channel end follows that of its corresponding shared channel-type end —
it must be CLAIMed before use, for either input or output. For example:

SHARED! CHAN INT c:

PAR

PAR i = 0 FOR 10

CLAIM c!

c ! i + 4

SEQ j = 0 FOR 10

INT v:

c ? v

The input (‘?’) end is treated as an ordinary channel — it is not shared, and has a type of ‘CHAN
INT’. The direction-specifier on the declaration (that creates an any-to-one channel here), applies
to declarations only. It does not need to be provided anywhere else, since subsequent usage of the
channel refers to each end individually.

Shared-channel parameters and abbreviations follow in a similar way, but the direction must be
specified on the new name. For example:

PROC s.out.string (VAL []BYTE str, SHARED CHAN BYTE out!)

CLAIM out!

SEQ i = 0 FOR SIZE str

out ! str[i]

:

and:

SHARED CHAN INT in? IS other?:

6The compiler could work the end in question from the usage, but this would complicate the compiler somewhat,
since it performs the scoping and semantic checking before analysing the usage of channels.
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Mobile Shared Channels

Currently, there is no provision for the mobility of shared channels. That is, they may not be
communicated or assigned, and channels of their type may not be declared. For example:

CHAN SHARED! CHAN INT c:

SHARED CHAN INT x, y:

PAR

c ! x!

c ? y!

is currently illegal. However, because of the way in which shared channels are implemented (using
anonymous channel-types, described in the following section), such code could be supported. There
are good reasons for not doing this however. Most importantly because it can destroy the logic of
a shared channel — by leaving ‘y!’ and ‘y?’ unconnected (‘y!’ has been over-written). In addition
to this, once a shared-channel end has been lost, there is no simple way to re-create the channel
(except by reassignment of both ends from a fresh declaration).

The one exception to non-mobility of shared channels is when they are passed as parameters
to FORKed (dynamically created) processes, covered in section 5.3. However, the checks for this
particular usage of shared channels ensure that the channel will remain in scope for the lifetime of
any dynamically spawned processes. This allows a different implementation of shared-channels to
be used at a later point, if desired, without having to impose any further restrictions.

4.4.2 Implementing Anonymous Channel Types

Shared channels are implemented using (dynamic) anonymous channel-types. The tree transforma-
tions, that turns an original declaration or parameter/abbreviation into the corresponding mobile
channel(s), are performed in the type-checking phase of the compiler — in the compiler front-end.
For example, the declaration (and process):

SHARED CHAN INT x:

... process using "x!" and "x?"

is re-written to produce (the illegal):

CHAN TYPE $anon.INT

MOBILE RECORD

CHAN INT c?:

:

SHARED $anon.INT! x$cli:

SHARED $anon.INT? x$svr:

SEQ

x$cli, x$svr := MOBILE $anon.INT

... process using "x!" and "x?"

As the name scoping and type-checking progresses, references to ‘x!’ and ‘x?’ are linked to either
the appropriate mobile channel-end (‘x$cli’ or ‘x$svr’), or the subscripted mobile channel-end —
to access the actual channel (‘x$cli[c]’ or ‘x$svr[c]’).

For anonymous channel-types that are shared at one end only, the channel ‘c’ within the non-
shared end is renamed. For example, to either ‘x$cli’ or ‘x$svr’ for ‘SHARED? CHAN INT x’ and
‘SHARED! CHAN INT x’ declarations respectively. For example:
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SHARED! CHAN BYTE c:

PAR

s.out.string (c!, 0, "hello")

CLAIM c!

out.string (c!, 0, "world")

WHILE TRUE

BYTE b:

SEQ

c ? b

... process "b"

is transformed into (the illegal):

CHAN TYPE $anon.BYTE

MOBILE RECORD

CHAN BYTE c?:

:

SHARED $anon.BYTE! c$cli:

$anon.BYTE? c$svr:

SEQ

c$cli, c$svr := MOBILE $anon.BYTE

CHAN BYTE c$svr IS c$svr[c]: -- rename c$svr

PAR

s.out.string (c$cli, 0, "hello")

CLAIM c$cli

out.string (c$cli[c], 0, "world")

WHILE TRUE

BYTE b:

SEQ

c$svr ? b

... process "b"

Such transformation is non-trivial in the compiler, since the exact transformation depends on what
context the channel is referred to in — i.e. whether it is used as a CHAN parameter, a SHARED CHAN

parameter, or for input or output. This is partly why a direction specifier must always be used, even
when the end required can be deduced (but often not until later on in compilation, by the usage
checker).

Anonymous Type Naming

The anonymous types created by the compiler to support shared channels are managed separately,
such that the channel-type declarations themselves are never placed in the parse tree directly. This
is needed to ensure the global scoping of these types, since two ‘SHARED CHAN P.TYPE’s must always
be compatible, providing that ‘P.TYPE’ is the same.

The names generated are largely uninteresting — being formed from the protocol alone, prefixed
with ‘$anon.’. The range of available protocols is limited to a certain extent, declarations of the
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form ‘CHAN INT; INT x:’ are illegal, although it is obvious what is meant. Where PROTOCOLs or
data-types are used, the corresponding type name is used.

More complex types, such as mobiles and arrays (both fixed-size and counted), have extra parts
inserted into the generated type name. For example, a ‘SHARED CHAN MOBILE INT’ generates a mobile
channel-type named ‘$anon.MOBILE.INT’. For fixed-size and counted-arrays, the string prefixes ‘AA.’
and ‘CC.’ are used instead of ‘MOBILE.’. The mapping of protocols onto strings is only ever one-way.
The compiler will never attempt to re-build a type from an ‘$anon.’ name, and any attempt to
do so would be largely unsuccessful, since some information is lost in the name. More to the point
however, the compiler never needs to do this anyway — the actual protocol used can be found by
simply examining the (single) channel declaration inside the generated type.

4.4.3 Recursive Channel Types

Recursive channel-types provide the ability to define channel-types that contain a channel carrying
ends of that same channel-type. Because of the way in which occam declarations are processed (the
name of a declaration comes into scope at the colon finishing that declaration), special provision
must be made for early scoping of the name, such that it can be used within its own definition. This
is done using the ‘RECURSIVE’ keyword (that may be shortened to ‘REC’).

For example, a version of the earlier ‘ENCODE’ channel-type, modified to allow clients to return
an unshared channel-end, could be:

RECURSIVE CHAN TYPE ENCODE.R

MOBILE RECORD

CHAN MOBILE []BYTE raw?:

CHAN MOBILE []BYTE cooked!:

CHAN ENCODE.R! return?:

:

This adds a ‘return’ channel to the bundle, whose protocol is of ‘ENCODE.R’ client-ends (indicated
by ‘!’), which are input by a server. The intended use for this it to allow a client to ‘return’ a
channel-end to the connected server (on the other side of that channel-end). For example:

ENCODE.R! secure:

SEQ

request ! 3

response ? secure

... use channels within "secure"

secure[return] ! secure

-- "secure" now undefined/invalid

After the corresponding server process performs the input on the ‘return’ channel, it will hold both
ends of the channel-bundle, with at least the guarantee that it holds the only (unshared) client-end.
Figure 4.11 shows this, omitting the ‘server-manager’ process and associated wiring for ‘request’
and ‘response’.

Processes are not restricted to sending their own ends through recursive channel-types (as the
above occam fragment does), although this was the originally intended use. Another application
might be where a ‘client’ process has the ends of two servers, and communicates one of those ends
to the other server, which could then be a client to another server, through the communicated end.
There is the potential for deadlock here, through the creation of cyclic client-server networks (that
may involve just one process). Avoiding deadlock is the responsibility of the programmer, and can
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Figure 4.11: Recursive channel-type communication

be achieved through careful design. Locke, in [Loc01], also notes the dangers that arise from allowing
the arbitrary re-connection of process networks.

4.5 Mobile Process Types

Mobile processes are the next logical step, having already ‘mobilised’ data and synchronisation-
primitives (currently channel-bundle ends only). Mobile processes provide an implementation for
‘agents’ in occam. Broadly speaking, ‘agents’ are independent mobile processes, in the sense that
they can be moved between distinct computing devices. For example, a process that moves between a
user’s hand-held PDA and a desktop PC, that might be used to retrive or store calender information,
or even a process that is itself the calender — and simply moves to whatever device the user is using.

occam, and CSP technologies in general, provide an ideal framework for building such agents.
Critically, occam processes cannot intefere with each other, in any way. If an agent chooses not to
interact with its surrounding environment, it is entirely free to do so. The key support required for
implementing agents, that occam has previously lacked, is that of process mobility.

To be useful, most agents require state. The state of an occam process (or more importantly,
process network) is comprised of two things: any data local to processes; and the run-time state
of those processes (for example, whether a process is on the timer-queue, or blocked in a channel).
Therefore, in order to move a process, this state must be extracted from an existing network,
communicated, then used to construct a new instance of the process or process-network.

Locating and extracting any data used by a process is trivial, as is the saving and restoring of
that data. However, saving and restoring the run-time state of a process, is hard. To avoid the
complication of accessing the active process state, it is easiest to disregard it altogether, and to
impose a restriction on process mobility: a process may only be moved when it is not active.

Traditional occam cannot support this exactly — if a process is utterly inactive, its only state
can be global data, and this is not permitted. Two possibilies for mobile process implementations
exist. Firstly, to handle the complex state save and restore operations, allowing fairly arbitrary
occam processes to be suspended, possibly migrated, and resumed. Or secondly, to provide a syntax
that combines some data (state) with code, but that keeps the two distinct. This work in this
chapter is concerned with the latter approach — the introduction of specific language features to
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provide this support. The first approach is examined in greater detail in section 6.5, but is rather
more complicated in the implementation.

Section 4.5.1 covers the concept of ‘mobile agents’ in greater detail, including other support for
these. The general mechanism added to occam, that supports the implementation of agents, is the
process-type. Section 4.5.2 describes the declaration of process-types and the definition of processes
that implement those process-types. Section 4.5.3 discusses the usage of mobile process-types, in
particular, to construct mobile processes. The implementation of mobile process types is currently
incomplete, but is underway. Section 8.3.3 discusses parts of the implementation that are in place,
and what needs to be done to complete this support.

4.5.1 Mobile Agents

The concept of mobile agents, in particular the more general concept of mobile process, is not a new
idea. The π-calculus [MPW92], for instance, provides a calculus for mobile processes, where process
mobility is a fundamental operation.

The most obvious language for the implementation of mobile agents is Java. Usefully, Java
provides mechanisms for the serialisation of objects — i.e. the transformation of a Java object (or
arbitrary object graph) into some form of byte-stream, suitable for communication between Java
virtual-machines (over a network, for example).

Despite the provision of a good mechanism for transferring objects, Java lacks some key features
that are particularly desirable when constructing mobile agents. The foremost of these is the total
lack of self-control that Java objects exhibit. Unlike an occam process, a Java object is unable to
control what happens to it. Other objects may contain references to the “agent object”, and are
un-restricted in their invocation of public methods. Contrast with an occam process, that must
explicitly engage in communication on order to interact with its environment. Furthermore, the
Java ‘Thread’ object introduces unprecedented possibility for aliasing and race-hazard errors —
multiple threads might interact (call methods) on each other, with failures ranging from subtle to
catastrophic. Some control is possible by enforcing serialised access to methods, but in many cases
this may not be sufficient, or may lead to unexpected deadlocks. These issues have been explored in
detail by Locke in [Loc01], that provides an interesting insight into the problems inherent in some
object-oriented environments.

The ‘agent’ paradigm is successfully captured by other programming environments however.
Icarus [MM98b], for example, provides an ‘on’ statement, that implements process migration.

Instead of having agents as an explicit entities within a system, an alternative approach is to
abstract the agent into a simple global state, where the ‘agent’ becomes the access rights to that
state. This modified idea of an ‘agent’, shown in figure 4.12, is easily implemented, particularly when
given specific support for distributed global data, as provided by Vinter’s PastSet [Vin99, PV02]
for example. Traditional parallel processing infrastructures also provide this type of support, for
example LAM-MPI [SLG+00], PVM [Sun90] and Tuple Spaces (for the ‘Linda’ language) [Gel85],
to name a few.

However, extensive application support is often required to use these, and that may be unsuitable
for smaller computing devices. This is not entirely unexpected, since these technologies are primar-
ily designed to support large-scale collaboration between nodes in distributed computing systems
(typically clusters), rather than for implementing mobile agents.

Given that traditional occam lacks any reasonable support for process mobility, its addition here
has the opportunity to greatly enhance the usefulness of occam, for building mobile agent systems
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node/process node/process

node/process

shared global state

Figure 4.12: Global-state based mobile agent

at least. Additionally, occam exhibits exactly the sort of features that mobile agents require: self-
contained, fault-tolerant processes that communicate with the (local) environment through well-
defined interfaces. Figure 4.13 shows the intended run-time structure for an occam mobile process,
that could be a mobile agent.

mobile
process

occam process

(from network)

(to network)

Figure 4.13: An example mobile process and local connections

However, in adding this support to occam, care must be taken to ensure that no data (or process)
aliasing or race-hazard errors are introduced (largely through missed compiler checks).

4.5.2 Process Types for occam

The declaration of a process type in occam associates a name (the new type) with a particular PROC
interface. This simply declares an abstract interface type, not any implementation. For example:

PROC TYPE CIPHER IS (MOBILE []BYTE key.in?, in?, out!):

This defines a PROC interface called ‘CIPHER’, that might be suitable for an ‘encryption’ agent.
Process types such as this are used in two places. Firstly, in the definition of mobile processes
(below), and secondly in the declaration of process variables — that act as the ‘handle’ for a mobile
process, covered in section 4.5.3.
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Mobile Processes

Mobile processes are active entities that combine some data — their state — and code to initialise
and manipulate that state at run-time. The state of a mobile process is defined using standard
occam (data) declarations.

Initialisation is handled using PROC-style constructors, with arbitrary signatures. The code for
mobile process activation is also implemented in a PROC-style manner, using earlier named process
types to identify interfaces.

The following code shows a partial implementation of a mobile process, that offers an interface
of the above ‘CIPHER’ type. A simple constructor-process is included, although the state here needs
no explicit initialisation:

MOBILE PROC encrypt

MOBILE []BYTE key: -- private data

CONSTRUCT ()

SKIP

:

IMPLEMENTS CIPHER (CHAN MOBILE []BYTE key.in?, in?, out!)

INITIAL BOOL running IS TRUE:

WHILE running

PRI ALT

key.in ? key

... new encryption key

MOBILE []BYTE raw, enc:

DEFINED key & in ? raw

IF

(SIZE raw) = 0

running := FALSE

TRUE

SEQ

... encrypt ‘raw’ using ‘key’ and place in ‘enc’

out ! enc

:

:

This declares a mobile process called ‘encrypt’, whose state consists of the single variable ‘key’ (that
happens to be mobile too). A single state-initialisation process is provided, using the ‘CONSTRUCT’
keyword. For this example, no initialisation is required — the ‘key’ variable, like all dynamic mobile
arrays, is initialised when it comes into scope (or in this case, when the mobile process is created).

There is no limit to the number of ‘CONSTRUCT’ definitions that a mobile process may have —
the above code could reasonably contain no CONSTRUCT processes. However, it might be convenient
to provide a constructor that initialises the ‘encrypt’ process with a key. For example:

CONSTRUCT (MOBILE []BYTE key.in)

SEQ

CONSTRUCT () -- call the first constructor

key := key.in

:
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This also demonstrates that constructor processes may call other, previously defined, constructors.
CONSTRUCT processes are identified by their PROC-style signatures, rather than by name. Multiple
same-signature (or ambiguous) CONSTRUCTs are permitted, subject to occam’s normal scoping rules.
In cases of ambiguity, the compiler generates a warning (or error in strict mode), since this would
normally be undesirable. For example:

CONSTRUCT (VAL INT16 i)

...

:

CONSTRUCT (VAL INT i)

...

:

The warning is only generated when the ambiguity occurs, since it is sometimes avoidable. If, after
these definitions, a constructor is called with an INT expression as the argument, the only possibility
is the second (‘VAL INT’) constructor. However, if a simple literal were used, either constructor could
be used. In these (ambiguous) cases, the most recently defined constructor is used, as would be
expected from occam’s normal scoping rules.

Interface Implementations

The above ‘encrypt’ example contains a single ‘main body’ process that provides an implementation
for the ‘CIPHER’ process-type. The PROC-style signature given with ‘IMPLEMENTS’ must exactly match
that of the ‘PROC TYPE’, with the exception of parameter naming.

Following in a similar manner from constructors, mobile processes may have implementations
for multiple process-types — possibly zero, although the usefulness of such a process would be
severly limited. Implementations may invoke other, previously defined, implementations (within
that mobile process). As before, strict occam scoping rules apply, preventing the creation of recursive
call structures.

Unlike constructors, implementations are identified by the process-type which they implement,
permitting multiple same PROC-style interfaces. As an example, consider the following two process
type declarations:

PROC TYPE MATH.COMPONENT IS (CHAN REAL64 in?, out!):

PROC TYPE AVG.MATH.COMPONENT IS (CHAN REAL64 in?, out!):

These interfaces might be implemented by an ‘integrator’ component, in such a way that the
‘AVG.MATH.COMPONENT’ code uses the ‘MATH.COMPONENT’ implementation, in parallel with a suitable
averaging buffer process. For example:

MOBILE PROC integrator

REAL64 sum:

CONSTRUCT ()

sum := 0.0

:

IMPLEMENTS MATH.COMPONENT (CHAN REAL64 in?, out!)

... integrator process (serial)

:
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IMPLEMENTS AVG.MATH.COMPONENT (CHAN REAL64 in?, out!)

CHAN REAL64 c:

PAR

MATH.COMPONENT (in?, c!)

avg.buffer (c?, out!)

:

:

Although the ‘integrator’ process defines implementations for two process-types, no relationship
between those types is created — this is not object orientation. Figure 4.14 shows an approximate
representation of this ‘integrator’ component, clearing showing the two separate implementations.
The similarities and differences between process-types and object-orientation are examined in sec-
tion 8.1.2.

The two implementations provided by ‘integrator’ are distinct, and can be reasoned about in
the same way as any other occam process. The only difference is that they have additional state
available to them — to which normal aliasing and parallel-usage rules apply.

integrator

integrator

(math.component)

(avg.math.component)

buffer
math.

component

in?

in?

out!

out!

Figure 4.14: Example ‘integrator’ mobile process implementations

State and Parameter Restrictions

To be able to reason about a mobile process as an independent agent (which is desirable), the
mobile process must not contain any ‘hidden’ links to its environment. Currently, the only way
this could be set up is by having a mobile channel-type variable as part of the process’ persistent
state. Therefore these are banned by the compiler. Other mobile types (data and processes) are
permitted within the state of a mobile process, as are ordinary channels and anonymous channel
types (shared or unshared). Channels within a mobile process’ persistent state are only convenient
— to save declaration inside multiple ‘CONSTRUCT’ or ‘IMPLEMENTS’ definitions. When a mobile
process is inactive (the state where it can be communicated and assigned), any internal channels
would be empty, and for anonymous channel-types, unclaimed.

The ‘CONSTRUCT’ definitions within a mobile process are ultimately called from the construction
of that particular mobile process, provided as a special form of assignment. Semantically, the mobile
process constructor is an expression that generates a mobile process. Following the normal rules of
occam, specifically that expressions must not be side-effecting, leads to parameter-type restrictions
for ‘CONSTRUCT’ definitions. Specifically, non-VAL parameters may not be used. MOBILE parameters
are permitted however, with the exception of mobile channel-ends (that are banned).
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Unlike FUNCTIONs (‘VALOF’ processes), CONSTRUCT definitions may use timers and general non-
determinism (ALTs) freely, since these cannot have a direct (side) effect on the process invoking the
constructor. The two mechanisms that could cause side-effects, priority and timeouts, are banned —
and it is unclear why either of these would be required within a mobile process constructor anyway
(given the parameter restrictions).

The formal parameters of an ‘IMPLEMENTS’ block can take any valid type, including its own. This
must be specified in the original process-type declaration however, using the ‘RECURSIVE’ keyword.
For example:

RECURSIVE PROC TYPE FOO IS (MOBILE FOO v, CHAN MOBILE FOO out!):

When any implementation of the above is activated, that activation will be distinct from the mobile
process passed in ‘v’. The compiler will ban any attempt to pass a (mobile process) variable as a
parameter to its own activation. The use of ‘CLONE’ for such parameters is permitted however, since
the clone will be created before the activation takes place. The behaviour of ‘CLONE’ when applied
to mobile processes is discussed in the following section.

4.5.3 Using Mobile Processes

Mobile process variables (of a process type) provide the basic mechanism for handling mobile pro-
cesses. After creation and assignment to a mobile process variable, a mobile process may either
be activated, assigned, communicated or destroyed. The (nearly standard) parallel-usage rules ap-
plied to mobile process variables prevent concurrent operations, such as attempting to communicate
an active process. With the exception of creation, all operations performed on a mobile process
variable relate to its type only — not the particular mobile process (‘MOBILE PROC’) providing the
implementation.

The creation of mobile processes follows a style similar to that of other dynamic mobile con-
structors — as a specialised assignment. For example, a mobile ‘CIPHER’ process can be created
using the ‘encrypt’ implementation, with:

MOBILE CIPHER x: -- mobile process variable

SEQ

x := MOBILE encrypt () -- allocate and initialise mobile process

... process using ‘x’

As for other mobile variables, initially ‘x’ is undefined, and any attempt to activate, assign from,
or communicate it will result in a compiler error (from the undefinedness checker, described in
section 4.6). The creation of a mobile process is performed using a single assignment, as shown
above.

Mobile process creation is the only point at which ‘encrypt’ is referred to explicitly. Once ‘x’
has been defined, it is simply a ‘MOBILE CIPHER’ — and could have any implementation.

Once initialised (defined, possibly using a constructor — as above), a mobile process, through
its single variable reference, may either be communicated, assigned, or activated (using the interface
defined by its type). The syntax for activating a process variable is the same as that used for
instancing standard occam PROCs, except that the name being referred to is a mobile process variable,
not a PROC definition.

For example, the “process using ‘x’” above, could activate the ‘CIPHER’ implementation,
provide an initial key, then shutdown the process for later use:
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SEQ

CHAN MOBILE []BYTE key, e.in, e.out:

PAR

x (key?, e.in?, e.out!) -- mobile process activation

SEQ

key ! "SecretMessage" -- load process with key

e.in ! "" -- terminate mobile process

... process using key-enabled ‘x’

Note that this code makes no reference to ‘encrypt’ (the mobile process that ‘x’ references) — that
information is largely unimportant for this process, whose usage of ‘x’ is based on ‘x’s type alone (a
‘MOBILE CIPHER’ in this example).

For the purposes of (parallel) usage checking, activations of a mobile process are treated as writes
to that mobile process variable. This prevents parallel use of a mobile process by any other process,
regardless of whether such processes attempt to activate, read or assign the mobile process. Parallel
activations are illegal since they can easily lead to race-hazards inside the mobile process.

Communicating Mobile Processes

Mobile processes are communicated in a similar way to other mobile variables — i.e. with a move-
ment semantics. Once a mobile process (variable) has been output, it is lost. Subsequent attempts
to access the mobile process will result in either compile-time or run-time errors. Similarly, when
inputted, any previous reference to a mobile process is lost (replaced with the communicated pro-
cess).

A mobile process may only be communicated when not active. This is largely enforced by the
standard parallel and aliasing checks performed by the compiler, that would reject code such as (the
illegal):

PAR

p.out ! x

x (...)

Subsituting ‘SEQ’ for ‘PAR’ here would also yield an illegal process, since the activation would be
attempted on an undefined mobile process.

Figure 4.15 shows three processes that communicate mobile processes of a ‘T.CIPHER’ type, the
‘T.’ indicating that this interface handles termination somewhat more explicitly.

in? kill?

out!

process.Bprocess.A process.C
p.out! p.out!p.in? p.in?

Figure 4.15: Mobile-process communicating processes
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The process-type declaration for this modified type is simply:

PROC TYPE T.CIPHER IS (CHAN BOOL term?, CHAN MOBILE []BYTE key.in?, in?, out!):

A corresponding implementation within the ‘encrypt’ process (from page 98) might be:

IMPLEMENTS T.CIPHER (CHAN BOOL term?, CHAN MOBILE []BYTE key.in?, in?, out!)

CHAN MOBILE []BYTE c:

PAR

CIPHER (key.in?, c?, out!)

SEQ

INITIAL BOOL running IS TRUE:

WHILE running

PRI ALT

term ? running

running := FALSE

MOBILE []BYTE v:

in ?? v

c ! v

c ! "" -- terminate CIPHER

:

This implementation re-uses the existing ‘CIPHER’ implementation — simply by instantiating it.
Parallel usage checking of such code is not as hard as it might at first appear — any accesses made
on the mobile-process state by an implementation are fully determinable at compile-time. The code
being instantiated is that of the literally preceeding ‘CIPHER’ implementation.

For the three processes shown in figure 4.15, ‘process.A’ creates a new mobile ‘T.CIPHER’ (from
the modified ‘encrypt’), initialises it and then outputs it. Assuming the existance of a suitable
constructor, this might be implemented simply with:

PROC process.A (CHAN MOBILE T.CIPHER p.out!)

MOBILE T.CIPHER x:

SEQ

x := MOBILE encrypt ("SomeSecretKey")

p.out ! x

:

‘process.B’ inputs a previously initialised mobile T.CIPHER, then activates it, connected to its own
local (parameter) channels. When the mobile process activation terminates, that mobile process is
outputted. For example:

PROC process.B (CHAN MOBILE T.CIPHER p.in?, p.out!,

CHAN BOOL kill?,

CHAN MOBILE []BYTE in?, out!)

MOBILE T.CIPHER x:

SEQ

p.in ? x

CHAN MOBILE []BYTE temp:

x (kill?, temp?, in?, out!)

p.out ! x

:



104 CHAPTER 4. MOBILE DATA, CHANNELS AND PROCESSES

The final process ‘process.C’ simply acts as a sink for mobile T.CIPHERs. Since there is no ex-
plicit freeing required for dynamic mobiles, the process can be inputted and discarded (either by a
descoping variable or by being over-written in input or assignment):

PROC process.C (CHAN MOBILE T.CIPHER p.in?)

MOBILE T.CIPHER x:

p.in ? x

:

Figure 4.16 shows the parallel composition of these three processes, forming a simple process network
that communicates mobile ‘T.CIPHER’s. The code for this network is as expected (where ‘kill?’,
‘in?’ and ‘out!’ are free):

CHAN MOBILE T.CIPHER c, d:

PAR

process.A (c!)

process.B (c?, d!, kill?, in?, out!)

process.C (d?)

in? kill?

out!

process.A process.B process.C

Figure 4.16: Mobile-process communicating process network

Although this example is relatively trivial, it demonstrates a powerful mechanism — that of mobile
agents. Unlike some other languages that provide similar capabilities, occam ‘agent’ implementations
are guaranteed to be free from alias and race-hazard errors; a necessary requirement for any software
system.

Assigning Mobile Processes

The rules for assignment of mobile processes follow those for communication, based on the equiv-
alence of communication and assignment. Assignment is somewhat simpler however — the mobile
process moves from the source to the destination. For example:

MOBILE CIPHER x, y:

SEQ

x := MOBILE encrypt ("SomeSecret")

y := x

y (key.in?, in?, out!)

After the assignment ‘y := x’, the variable ‘x’ is undefined. Any attempt to use it (other than as
the target of assignment or input) will result in a compiler error (from the undefinedness checker,
covered in section 4.6).
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In a similar way to mobile data-types, the ‘CLONE’ operator may be used to produce a copy of a
mobile process, replicating the state of that process exactly. This can be used in both assignment
and communication, and leaves its operand defined. For example:

MOBILE CIPHER x, y:

SEQ

x := MOBILE encrypt ("AnotherSecret")

y := CLONE x

CHAN MOBILE []BYTE c:

CHAN MOBILE []BYTE tmp1?, tmp2?:

PAR

x (tmp1?, in?, c!)

y (tmp2?, c?, out!)

This code implements a ‘double encrypt’ functionality. Similar code, using the hypothetical
‘decrypt’, would undo the encryption operation (as would be expected).

The implementation of CLONE for mobile processes is relatively simple, since it only involves
copying of memory referenced through the original variable (‘x’ in the above example). The des-
tination must first be allocated, of course, if not done so already. Since the operation of ‘CLONE’
is specific to the mobile process, and not its process-type reference, the functionality for CLONE is
provided as part of the process itself.

For mobile processes that contain other mobiles as part of their state, the CLONE code must
perform a deep copy, as it would for other nested mobiles.

Type Conversion of Mobile Processes

So far, a mobile process may support multiple implementations (of different ‘PROC TYPE’s), but once
created that interface is fixed — for instance, a ‘T.CIPHER’ cannot be assigned to a ‘CIPHER’ — the
two types are clearly incompatible. However, given a ‘T.CIPHER’ implementation of ‘encrypt’, it
might be desirable to convert (change) this to the ‘CIPHER’ implementation (retaining the internal
state). Logically, there is no reason why this cannot be done — the operation is effectively the
creation of a new mobile process, whose state is initialised from the existing (‘T.CIPHER’) state. Of
course, this requires the explicit usage of ‘encrypt’ in the conversion.

The proposed syntax for conversion of a mobile process is simply the passing of an existing
mobile process into an ‘implicit’ CONSTRUCT — that behaves very much like CLONE:

MOBILE T.CIPHER x:

MOBILE CIPHER y:

SEQ

x := MOBILE encrypt () -- create a T.CIPHER implementation of encrypt

... process using T.CIPHER "x"

y := MOBILE encrypt (x) -- create a CIPHER implementation of encrypt from "x"

... process using CIPHER "y" ("x" now invalid)

The implicit constructor(s) can easily be generated automatically by the compiler, but could also
be programmed explicitly:

CONSTRUCT (MOBILE T.CIPHER other)

... extract from "other" into local state

:
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Supporting the above is certainly possible. MOBILEs are valid parameters to constructors, and those
constructors may move mobiles into the internal state, but may not communicate them externally
— channel parameters are not allowed for CONSTRUCT blocks.

However, the parts of ‘encrypt’ presented so far do not allow the extraction of the internal
“key”. This would need to be added to support the above (explicitly programmed) conversion.
The difference is that the explicitly programmed version above only has a ‘T.CIPHER’ — it cannot
know that it was ‘encrypt’ that generated it. However, the compiler can, ensuring that the same
mobile process (‘encrypt’) is used. Furthermore, the compiler-generated version will undefine the
original process variable — it has moved, having been converted in the process. A user-programmed
conversion would not undefine the original, unless it was moved into the new state. To prevent loss
of the original process in compiler-generated conversion, ‘CLONE’ can be used. For example:

MOBILE T.CIPHER x:

MOBILE CIPHER y:

SEQ

y := MOBILE encrypt () -- create a CIPHER

x := MOBILE encrypt (CLONE y) -- create a T.CIPHER

... process using CIPHER "y" and T.CIPHER "x"

It is somewhat debatable whether providing this support for “automatic” conversion between in-
terfaces is a good idea. Programming it explicitly could prove tricky, however, with a reasonable
potential for programmer error. As such, it is proposed that a compiler flag be explicitly used to
enable this support. There are certainly cases where having this support is useful — so it is better
to provide it than not.

Figure 4.17 shows an example ‘conversion’ component, that simply transforms ‘CIPHER’s on its
input channel into ‘T.CIPHER’s on its output channel (possibly extended). Such components cannot
be ‘generic’ however — any incoming ‘CIPHER’ must be implemented by a process that supports the
‘T.CIPHER’ interface too. The already implemented ‘PROTOCOL.HASH’ compiler built-in can be used
for this, although it is not entirely graceful7. For mobile process variables (including parameters
and abbreviations), ‘PROTOCOL.HASH’ will generate a hash-code that is unique to the underlying
implementation. This can be used to select between known implementations, for example:

PROC CIPHER.TO.T.CIPHER (CHAN MOBILE CIPHER in?, CHAN MOBILE T.CIPHER out!)

WHILE TRUE

MOBILE CIPHER x:

in ?? x

MOBILE T.CIPHER y:

SEQ

CASE PROTOCOL.HASH (x)

PROTOCOL.HASH(encrypt)

y := MOBILE encrypt (x) -- convert to T.CIPHER

out ! y

:

7The ‘PROTOCOL.HASH’ builtin is used mainly for user-defined channels (section 6.4) and the higher-level commu-
nication mechanisms (section 7.4). It produces a hash-code for channel protocols, but can be applied to any variable
or type.
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t.cipher
cipher.to.−in? out!

Figure 4.17: Mobile process interface conversion component

4.5.4 Extending Mobile Processes

One facilitity that might initially appear to be missing is that of code re-use. In object-oriented
languages, such as Java and C++, code re-use is (primarily) handled through mechanisms of in-
heritance. Mobile processes provide no such mechanism for inheritance (and sub-typing of process
types), but the same paradigm (that of extending a generic component) is easily supported.

For example, an application might wish to extend the (limited) ‘encrypt’ mobile process to
produce an enhanced component. For a language like Java, this would be done by extending the
component, creating a relationship between the types in the process. The occam approach, using
mobile processes, would take the form:

#USE "encrypt" -- load names from encrypt.occ

-- encrypt2 pre-processes the data before encrypting

MOBILE PROC encrypt2

MOBILE CIPHER e: -- any implemented interface will do

CONSTRUCT ()

e := MOBILE encrypt ()

:

IMPLEMENTS CIPHER (CHAN MOBILE []BYTE key.in?, in?, out!)

CHAN MOBILE []BYTE c:

PAR

e (key.in?, c?, out!)

... local process, reading from "in?" and writing to "c!"

:

IMPLEMENTS T.CIPHER (CHAN BOOL term?, CHAN MOBILE []BYTE key.in?, in?, out!)

MOBILE T.CIPHER x:

SEQ

x := MOBILE encrypt (e)

CHAN MOBILE []BYTE c:

CHAN BOOL lt:

PAR

f (lt?, key.in?, c?, out!)

... local process, reading from "in?","term?" and writing to "c!","lt!"

e := MOBILE encrypt (x)

:

:

The conversion between the ‘CIPHER’ and ‘T.CIPHER’ interfaces is not entirely pleasant, but it is
possible. For specific cases such as this, where one mobile process completely contains another,
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providing a simpler mechanism might prove favourable. Care would need to be taken to ensure
that the internal process (‘e’ in the above example) was not replaced by another implementation of
‘CIPHER’ — that could happen through standard assignment or communication — although any such
code will be largely explicit and contained within that mobile process implementation (‘encrypt2’).

There is, of course, the option of providing a wholly automatic mechanism for type conversion
— as a type-cast, similar to C++ and Java. For example:

MOBILE CIPHER x:

MOBILE T.CIPHER e:

SEQ

... code to create and initialise "x"

e := MOBILE T.CIPHER x

... code using T.CIPHER "e". "x" now undefined

However, in order to support this, the run-time system must be able to determine what interfaces
are supported by the mobile process in ‘x’. Ultimately, this requires that processes have a table
(or other data structure), that can be searched to provide the information necessary for changing
between types (within a particular mobile process implementation, ‘encrypt2’ for example).

4.6 Undefined Usage Checking

For all dynamic mobile types (dynamic mobile arrays, channel-types and process-types), there exists
the possibility of invalid references. For instance, immediately after declaration, the workspace-slot
for a channel-type ‘end’ will be ‘NotProcess.p’ (zero in KRoC/Linux). Attempts to use any such
undefined variable would result in run-time null dereferences, if it were not for the compile-time and
run-time checks described here.

Undefinedness is something the occam compiler has traditionally taken little interest in. In fact,
it performs absolutely no analysis in this regard — the body of existing checks cover aliasing and
parallel-usage. Undefinedness, in traditional occam, is left up to the programmer — undefined
variables may be read freely, and will produce undefined results. Such results are unlikely to be
desirable (potentially resulting in run-time errors, such as array-bounds violations and arithmetic
overflows).

Undefined usage checking is a necessity for the various mobile types presented in this chapter
— if serious run-time error is to be avoided. In theory, there are three approaches to this: compile-
time undefined usage checking; run-time undefined usage checking; or a combination of the two.
For existing checks (particularly aliasing), the compiler uses the combined approach: analyse as
much as possible (with limits on complexity) at compile-time, and insert run-time checks into the
generated code for cases that could not be checked at compile-time. It seems reasonable to follow this
(combined) approach — compile-time only checks would ultimately restrict programmer freedom
(the compiler would be required to reject “unknown” definedness states); and run-time only checks
would likely result in excessive code generation (a check before each ‘read’ of a mobile).

The undefined usage checker has been added as a new stage in the (orginally Inmos) occam

compiler, performed after the aliasing and parallel-usage checks. In addition to mobile variables,
ordinary occam variables (and in some cases channels) are subject to undefinedness checks, adding a
significantly useful feature to the KRoC occam system. Perhaps the most obvious benefit has been
to students, who are now warned about their (often frequent) use of undefined variables8.

8In this light, the lack of undefined usage checking does not help occam gain favour with students — who are used
to compilers that report these errors (in particular Sun’s Java compiler, ‘javac’).
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The following sections, 4.6.1 and 4.6.2, cover the ideas underlying the implementation, and the
implementation itself. Section 4.6.3 describes specific handling for the nested structures of arrays
and records, that may be partially defined.

4.6.1 Undefinedness

When a (non-mobile) variable is declared in occam, its contents remain undefined until it is used as
a target for either input or assignment. Once defined, a variable stays defined, until its declaration
descopes. This is not the case for mobile variables however — when communicated or assigned,
the previously held data (reference) is lost. This is essentially the difference between copying and
moving semantics for data (as shown in figure 4.1 on page 68).

Mobile variables, that are not CLONEd, are left undefined after mobile output and assignment
from. For example:

INT x, y:

MOBILE INT a, b:

SEQ

a := 42

b := a

x := 99

y := a - x

The last line of this code will result in a undefined value being placed in ‘y’, since the value of ‘a’ is
lost following ‘b := a’ (these are both mobile). A more serious error is where an array is indexed
using an undefined value, for example:

INT i, n:

[4]INT data:

SEQ

... code that initialises ‘data’ (but not ‘i’)

n := data[i]

For both examples, the result ultimately depends on what the ‘undefined’ values of ‘a’ and ‘i’
happen to be. For the current KRoC/Linux implementation, the entire (static) program workspace,
vectorspace and mobilespace are initialised to ‘MOSTNEG INT’, before the program starts proper.
Thus setting the initial value of any (non-dynamic) variable such as ‘i’ above. For both examples
above, this initial value will result in run-time errors — an arithmetic overflow in the first example,
and an array-bounds error in the second. Other processes might not be so lucky however, getting
previously-used memory for an initial workspace.

Undefined Checking Algorithm

The undefined checking algorithm, at its outermost level, operates on individual PROC and FUNCTION

definitions. Each PROC or FUNCTION is processed in depth-first order (following the source code),
maintaining a stack of active variables as it goes. For each variable, an array of states is maintained,
for tracking multiple states of the same variable where necessary. A global index points at the
‘current’ state for each variable, and is zero at the outermost level.

At the simplest level, a variable can be in one of three states: defined, undefined, or unknown.
For less trivial variables, such as arrays and records, the definedness state may be significantly more
complicated.
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As the parse tree is walked, processes are examined and their current states updated if necessary
— for instance, assignment to a variable will cause the current state of that variable to be marked
as defined. When a branch in the code is encountered, such as for loops, IFs, ALTs and PARs, the
state before the branch is copied into a new state, the global state index updated, and the particular
branch of code examined. Once all branches have been processed, and a set of resulting states
collected, a ‘merge’ occurs that combines the new states back into the current state (and restores
the global state index). The processing (and result) of the merge depends on the type of branching
structure being examined.

Whenever a variable is accessed for reading, its definedness state is checked. If undefined or
unknown, an error is generated, although it may not be reported immediately. This helps prevent
multiple undefined warnings (or, in some cases, errors9) regarding the same variable.

The following section describes the current implementation in detail. Particular care is taken
in the processing of arrays and records, in an attempt to analyse their individual element accesses.
For mobile variables, the parse tree is modified slightly to identify cases where a mobile is definitely
undefined. This helps limit the number of check-and-free sequences generated for some dynamic
mobile operations (such as input and assignment).

The undefinedness checker, in addition to checking the defined states of variables, performs checks
necessary for other language constructs. For example, that SHARED channels (both anonymous and
of named channel-types) are CLAIMed before use.

4.6.2 Implementation

The undefinedness checker maintains a stack of in-scope variables, defined by the ‘udv t’ (struc-
tured) type. Checking starts by scanning the parse tree for outer-level PROC definitions. When
found, the formal parameters are added to the variable stack (internally called ‘udv vstack’), be-
fore processing the body of the PROC (or FUNCTION). The processing of PROC and FUNCTION bodies
skips any nested definitions (of PROCs and FUNCTIONs) — these are checked when instanced, since
they only have local scope.

Whenever a new name comes into scope, an entry is added to the variable stack. New names
occur for variable declarations (of any type), channel declarations, abbreviations (all types) and
formal parameters (when processing nested calls). The ‘udv t’ type is defined as:

typedef struct TAG_udv_t {

struct TAG_udv_t *next; // next in in-scope stack

treenode *nameof; // namenode link for variable

char state[MAX_NESTING]; // state array: UDV_.. constants

treenode *depend; // dependency if known (for UDV_UNKNOWN)

struct TAG_udv_t **nested; // nested state (of record fields, arrays, ...)

int did_warn; // non-zero if warnings generated

} udv_t;

To illustrate how the checking algorithm works, consider the following (fairly simple, but slightly
broken) PROC definition:

9Undefined uses of mobile variables are always errors. Additionally, strict mode (section 3.9.6) will cause all
undefined warnings to be errors.
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PROC thing (CHAN INT in?, RESULT INT r)

INT x, y:

SEQ

in ? x

in ? y

IF

x < 0

r := (x + y)

TRUE

y := (x - y)

:

When the checking of this PROC body starts, the undefined stack will contain two variables — the
‘in?’ and ‘r’ parametmers:

States
Names 0 1 2 3 4 5 ...
in? >
r ⊥

The states are shown as ‘>’ for defined, ‘⊥’ for undefined and ‘?’ for unknown. For channels (such
as the ‘in?’ parameter), information about whether the channel has been used for input or output
is recorded, shown as ‘c?’ and ‘c!’ respectively. The current state is indicated in bold — zero in the
above initial state.

All parameter types, with the exception of ‘RESULT’ parameters, are assumed to be defined when
the PROC starts. Result parameters are initially assumed to be undefined.

The first items found in the tree-scan of ‘thing’ are the declarations of ‘x’ and ‘y’. These are
added to the variable stack, marked as undefined.

‘SEQ’ components are simply processed in order, without requiring any changes to the current
state. The next items found are the inputs from ‘in?’, first into ‘x’ then into ‘y’. The processing
of (simple) input is that the channel is marked as ‘inputted ’ (‘c?’) and any variable targets on the
right-hand-side are marked as defined. Prior to processing the ‘IF’ construct, the variable stack will
be:

States
Names 0 1 2 3 4 5 ...
in? c?

r ⊥
x >
y >

The handling of ‘IF’ requires that each branch be examined individually, and resulting states be
merged back together. This is done by first pushing the state stack, copying the current state into
the new state, then processing the guard and body of IF branch individually. Both branches of the
‘IF’ in the ‘thing’ example are simple assignments, both using an expression containing ‘x’ and ‘y’
(both defined). The second branch is in error slighty — assuming the assignment was intended to
be to ‘r’, and not ‘y’.

After processing the first branch of the IF, the variable stack is:
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States
Names 0 1 2 3 4 5 ...
in? c? c?

r ⊥ >
x > >
y > >

Once the first branch has finished, the state stack is pushed again (copying values from the pre-IF
state – 0), and the second branch examined. The resulting states for this are:

States
Names 0 1 2 3 4 5 ...
in? c? c? c?

r ⊥ > ⊥
x > > >
y > > >

Once the various states have been collected, they are merged back into the pre-IF state (0). The
merge, applied to each variable in the stack, can be viewed as a function that takes a set of collected
states and the original state, producing a new state.

The technicalities of the various merges are described in detail in the following sections. For the
example PROC, the state after merging the IF branches is:

States
Names 0 1 2 3 4 5 ...
in? c? c? c?

r ? > ⊥
x > > >
y > > >

When scanning reaches the end of the PROC body, at which point ‘x’ and ‘y’ have descoped, the
formal parameters (left on the variable stack) are checked for any required definedness. The only
types of parameter that require checking at this point are MOBILE and RESULT parameters. If a
result parameter is left in an undefined or unknown state, a warning (or error in strict mode) is
generated.

MOBILE parameters, that are initially assumed to be defined, can be moved by the process,
undefining the parameter. If there is any undefinedness in a mobile parameter when the PROC

finishes, this is recorded in the PROC signature and no warning is generated. RESULT MOBILEs are
permitted and must be defined when the PROC finishes.

Merging IFs and ALTs

Algorithm 4.1 shows the algorithm used to merge undefined states following an IF or an ALT, applied
to each variable in the stack. The logic of this merge is that at least one branch must execute — if
one does not, the process STOPs.

Replicated IFs and ALTs are only scanned once, generating a new state that is simply copied
back into the current state — any nested IFs or ALTs are processed as above.
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Algorithm 4.1: Undefinedness checker IF/ALT merging algorithm

1: // Si : initial var state
2: // B = min(Sn..m) : reduced branch result states
3: // Sf : final state

4: if (? ∈ B) or (B = {>,⊥}) then
5: Sf ⇐ ?
6: else if B = {>} then
7: Sf ⇐ >
8: else
9: Sf ⇐ ⊥

10: end if

Merging WHILE Loops and SEQ Replicators

‘WHILE’ loops are processed for undefinedness twice. When the construct is entered, the variable
stack is pushed and the body of the loop processed. The resulting state is then merged back into
the before-WHILE state, taking into account the fact that the loop may not execute at all. The body
is then processed again, using the previous result state. This represents the resulting definedness
states if the loop ran more than once. This is then merged back into the pre-WHILE state, and the
stack reset.

Both merges are performed using Algorithm 4.2. The second pass is used to capture undefined-
ness that happens as a result of the first time round the loop. For example:

MOBILE []BYTE x:

SEQ

x := "hello, new world!*n"

WHILE TRUE

m.out ! x -- mobile output

This code is clearly in error — ‘x’ will be undefined after the first scan of the loop, overall resulting
in an unknown state.

Algorithm 4.2: Undefinedness checker WHILE/repl.-SEQ merging algorithm

1: // Si : initial var state
2: // Sn : result state
3: // Sf : final state

4: if (Sn = ⊥) or (Sn = >) then
5: if Sn 6= Si then
6: Sf ⇐ ?
7: end if
8: else
9: Sf ⇐ ?

10: end if

Replicated ‘SEQ’s (loops) are processed in a similar way, using the same algorithm. However,
checking for a replicated SEQ is only performed if the count is either unknown, or known and more
than 1. If the count is 1, the undefinedness check is only performed once. In this (rare) case, the
outcome is considered definite — the loop must always execute. For example:
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MOBILE []BYTE x:

SEQ

SEQ i = 0 FOR 1

x := "hello, new world!*n"

m.out ! x -- mobile output

This code is safe, even though it is a slightly odd thing to write. For other constant-count SEQ

replicators, the outcome after the second scan is considered the definite result — and is simply
copied back into the pre-repl-SEQ state.

Merging Parallel Processes

Merging the undefined results of parallel processes is perhaps the simplest merge. This is mainly
due to the parallel usage rules enforced by occam— i.e. CREW (concurrent read, exclusive write)
for data, and one inputter, one outputter for ordinary channels.

For ordinary data and channels, parallel usage checks can be avoided by explicitly marking the
variable (data or channel) as shared (“#PRAGMA SHARED thing”). This is not permitted for mobile
data — the compiler insists on retaining full control over these.

For any PAR construct, only one branch of that PAR may change the state of a single variable
(or a subscript or range – for arrays and record variables). The previous parallel-usage checking
has ensured this much. For non-mobile data, the only possible transitions are: ⊥ → ? , ?→ > and
⊥ → >. Thus in any PAR, the best result from any branch is taken — but for non-mobiles only. The
restrictions imposed on mobiles ensure that only a single branch of a PAR may change any mobile’s
state, that is simply taken as the overall (PAR) outcome for that mobile. For example:

INT x:

#PRAGMA SHARED x

MOBILE []BYTE msg:

PAR

msg := "this is the message!*n"

x := 1

x := 2

After processing the PAR, the states of both ‘msg’ and ‘x’ are defined. Algorithm 4.3 shows the
algorithm used to merge PAR branches, as described above.

The handling of replicated PARs is trivial — the replicated process is scanned and the resulting
states simply copied back.

4.6.3 Handling Arrays and Records

Arrays and records are non-trivial types as far as the undefinedness-checker are concerned. Both
can exhibit partial-definedness, for example:

[2]INT data:

INT x:

SEQ

data[0] := 42

x := data[1]

If arrays (and records) were considered to be ‘whole’, the above code would compile without warning.
There is clearly an error however — ‘x’ and ‘data[1]’ are undefined!
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Algorithm 4.3: Undefinedness checker PAR merging algorithm

1: // Si : initial var state
2: // B = min(Sn..m) : reduced branch result states
3: // Sf : final state

4: if Si = ⊥ then
5: if > ∈ B then
6: Sf ⇐ >
7: else if ? ∈ B then
8: Sf ⇐ ?
9: end if

10: else if Si =? then
11: if > ∈ B then
12: Sf ⇐ >
13: else if ⊥ ∈ B then
14: Sf ⇐ ⊥
15: end if
16: else
17: if ? ∈ B then
18: Sf ⇐ ?
19: else if ⊥ ∈ B then
20: Sf ⇐ ⊥
21: end if
22: end if

Record types (from occam 2.1 [Inm95]) are somewhat simpler than arrays — the number of ele-
ments is always fixed, although those elements may represent further structured types. As a simple
example, consider the type:

DATA TYPE POINT

RECORD

INT x, y:

REAL64 size:

:

And the following (incorrect) code that uses it:

POINT p:

SEQ

p[x], p[y] := 10, 20

out ! p -- output, partially defined

When output, ‘p’ is only partially defined — the ‘size’ field has not been initialised. To handle
these, the ‘nested’ field within the ‘udv t’ type (shown on page 110) is used. This array, of the
same (‘udv t’) structure is used to record the state of each individual field, as shown in figure 4.18.

The analysis of arrays is done using ranges — a method not dissimmilar to parts of the occam

compiler’s existing aliasing checker. For example:

[24]INT data:

SEQ

data[0] := 42

... process using "data"
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POINT P:

**nested

[R64 size]

[INT y]

[INT x]

Figure 4.18: Undefined nesting for records

The size of ‘data’ is well-known here, but this is not necessarily the case (e.g. formal parameters,
abbreviations and dynamic mobile arrays). Figure 4.19 shows a possible layout for ‘data’, having
had its first element defined, but the rest left undefined.

**nested

[N]INT data:

[0..0]

[1..N−1]

Figure 4.19: Undefined nesting for arrays

As the array element states change, the ranges associated with the array change. Whenever a
range is added or modified, the resulting ranges are ‘compacted’ if possible. For example, the code:

SEQ

[data FOR 12] := [i = 0 FOR 12 | i]

[data FROM 12] := [i = 0 FOR SIZE [data FROM 12] | i * 2]

leaves all of ‘data’ defined. Assuming the initial state from figure 4.19, the first assignment will
create a new range from [1..11], and modify the second (undefined) range to start at 12. Compacting
the ranges (that are ordered) merges the first two (defined) ranges — [0..0] and [1..11], into [0..11].
The second assignment marks the second range as defined, which is then merged into the single
range [0..23].

Nested arrays and records are handled by ‘widening’ the undefined structure. The compiler stops
tracking the nested state after 4 levels of nesting. This prevents excessive memory consumption for
pathological code, but should be enough for most programs; for example:
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DATA TYPE COMPLEX.R64

RECORD

REAL64 real, imag:

:

DATA TYPE RC.POINTS

RECORD

INT n.points:

[64]COMPLEX.R64 x, y:

:

[2][3]RC.POINTS objects:

SEQ

objects[0][1][x][5][real] := 24.4 (REAL64)

... code manipulating "objects"

Here, the undefinedness checker will not track the innermost ‘COMPLEX.REAL64’ fields — that record
will left in an ‘unknown’ state.

Keeping track of ranges within an array is relatively simple, given occam’s methods for handling
these. Accesses are either to individual elements, to the entire array, or a specific slice of the
array. When element and slice indices become too complex for static analysis, the compiler resorts
to an ‘unknown’ state for the access. The incorporation of an algabraic usage checker could help
significantly here.

4.7 Usage Checking Channel Types

Currently there is no enforcement of communication order in occam, amongst the channels within
a channel-type, even though processes may require it. Even the most basic occam processes may
have communication ordering requirements, that are not explicit. Fortunately, however, the usage
is often obvious.

This section presents a proposal for a ‘TRACES’ mechanism, that specifies restrictions on com-
munication within channel-types. This allows the compiler to ensure conforment client (and server)
processes, guaranteeing deadlock freedom as regards process interactions using that channel type.
The following example shows the proposed syntax, for a relatively simple channel type:

CHAN TYPE FOO

MOBILE RECORD

CHAN INT req?:

CHAN INT reply!:

TRACES

SEQ

req?

reply!

:

In the same way as the fields of a channel type, traces are specified from the server viewpoint.
Furthermore, processes using the server-end of such a channel-type must implement the given trace
exactly. Processes using the client-end of a channel-type are slightly less resticted — any imple-
mentation that can communicate successfully with a server process performing the specified trace is
permitted. For the above example, a server implementation must communicate sequentially. Client
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processes could communicate in the sequence shown, or in parallel. However, attempts (at the
client-end) to communicate in the reverse sequential order would result in a compiler error.

If the trace in the above channel-type declaration was changed to ‘PAR’ (with the same two
elements), server processes would be restricted to parallel communication, whereas a client could
either communicate in parallel or sequentially (in either order).

For some traces, parallel implementations are not possible — particularly when the same channel
appears more than once in a given trace. For example:

TRACES

SEQ

req ?

reply !

req ?

Multiple traces are supported, but only through the use of explicit selection — either ALT or CASE.
For handling CASEs (of variant protocols), all possible variants would need to be specified, but could
be ‘condendensed’ — to the form of a standard occam CASE process.



Chapter 5

Dynamic Process Creation

This chapter describes three extensions that add a dynamic process capability to occam, in the form
of dynamic process creation. All of these require support at the Transputer instruction level for
dynamic memory allocation, as described in section 3.8. A reference for these instructions is given
in Appendix B.1.1.

The first extension provides support for self-recursion in occam and is described in section 5.1.
Mutual recursion was considered for implementation, but rejected due to its need for forward-
references — section 5.1.4 examines this in more detail.

The second extension, described in section 5.2, provides support for run-time sized PAR replicators
— enabling the creation of an arbitrary number of parallel processes which (barrier) synchronise
before the PAR finishes.

The third extension, described in section 5.3, provides a more general mechanism for dynamic
parallel process creation — the FORK — without explicitly using the PAR process constructor. Barrier
synchronisation for these dynamic processes is optional, and need not be local.

5.1 Recursion in occam

Recursion in occam has traditionally been prevented for two main reasons — one practical and one
engineered. Firstly, the lack of dynamic memory allocation would have imposed a restriction on the
depth of recursion. Secondly, the scoping of names in occam is such that they only become visible
at the end of their declaration (where the ‘:’ appears). For PROCs, this means that any use of its
own name inside the code body is invalid, unless a different PROC of the same name is in scope —
in which case it will be used.

It is possible to fake recursion however, often quite convincingly, by using the scoping of names
to an advantage [Poo92]. In an arbitrary PROC called ‘foo’, any previously defined PROCs also called
‘foo’ are in scope and perfectly valid. This technique will fail on some KRoC implementations
however — when the same name is defined at the outermost level multiple times, the UNIX linker
will mostly likely stop with a “multiply defined symbol” error. The tranx86 translator partially
handles this by only allowing one entry-point for any given name per file processed. However, the
same top-level PROC name in separate source files will also usually result in a similar error on UNIX
platforms — which is a problem generally, not just for recursion.

A version of unbounded recursion using a special locally defined PROC — with a very similar
name — has been implemented in a development version of the KRoC/Sparc by Wood in [Woo00].
The Linux version of KRoC implements recursion using a different mechanism, by adding support

119
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directly to the occam compiler. The support for recursion in KRoC/Sparc also uses a Brinch-Hansen
style memory allocator, but with with all support for such in the translator (octran) and run-time
kernel only.

For this implementation, recursive PROCs are declared using the ‘RECURSIVE’ or ‘REC’ keywords
— the latter being shorthand for the former. For example:

RECURSIVE PROC thing (...)

... body of thing

:

This has the effect of bringing the name ‘thing’ into scope early, thereby permitting its use within
the body of ‘thing’. A classic example for parallel recursion in occam is the parallel recursive
Sieve of Eratosthenes. The original code for this is given in Appendix A of Moores’s CCSP paper,
[Moo99], and requires very little change — just the addition of the ‘RECURSIVE’ keyword. The new
code for the ‘sieve’ process, augmented with channel-direction specifiers, is:

RECURSIVE PROC sieve (VAL INT count, CHAN INT in?, out!)

IF

count = 0

id (in?, out!) -- just copy in to out

TRUE

INT n:

SEQ

in ? n

out ! n

CHAN INT c:

PAR

filter (n, in?, c!)

sieve (count-1, c?, out!)

:

The ‘count’ parameter is used to limit the recursion. An initial value of 169 will allow for all the
primes between 2 and 1000000 to be generated. When the ‘sieve’ process receives its first input
(from ‘in?’), it outputs it down the prime output channel ‘out!’, then starts a network of sub-
processes: a filter to filter out all multiples of ‘n’, in parallel with a recursive call to sieve. When
‘count’ reaches zero, the recursion stops.

Some time after new filter processes stop being created, the pipeline will start to produce invalid
primes. However, this point is detectable: as long as the numbers output remain less than the
square of the last filtered prime, they are guaranteed to be prime. The program can be modified
slightly to check for this, deadlocking before generating false primes:

PROC end.sieve (VAL INT n, CHAN INT in?, out!)

VAL INT max IS n * n:

CHAN INT c:

PAR

filter (n, in?, c!)

INITIAL INT n IS n:

WHILE n < max

SEQ

out ! n

c ? n

:
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RECURSIVE PROC sieve (VAL INT count, CHAN INT in?, out!)

INT n:

SEQ

in ? n

IF

count = 1

end.sieve (n, in?, out!)

TRUE

SEQ

out ! n

CHAN INT c:

PAR

filter (n, in?, c!)

sieve (count - 1, c?, out!)

:

With an initial count of 4, this sieve will generate all the primes between 1 and 121.
To show recursion diagrammatically, a fairly simple approach is taken: show the recursive and

final (if applicable) networks once. Figure 5.1 shows this for the modified prime sieve program.

end.sievefrom (2, 3) filter
out

sieve
sieve...

Figure 5.1: Process network for the parallel recursive Sieve of Eratosthenes

5.1.1 Implementing Recursion

The implementation of recursion within the occam compiler is non-trivial. Making a recursive call
involves three steps: firstly, allocating memory for the process; secondly, making the recursive call
(that involves setting up parameters); and finally, cleaning up when the recursive call returns.

The run-time model for standard occam PROC calls is optimised for efficiency on the Transputer —
that performed many operations in hardware. The Transputer ‘CALL’ instruction, which is used for
standard PROC (and FUNCTION) calls, utilises the Transputer stack for passing arguments. Arguments
that will not fit into the stack (3 words deep) are pre-stored in workspace allocated for the PROC

call. When the ‘CALL’ is made, the contents of the Transputer stack are placed in the workspace —
along with the return address (previous ‘Iptr’) — and the workspace pointer ‘Wptr’ is adjusted.

For PROC calls that have 3 or fewer parameters (including hidden parameters), the code generated
for a call is trivial. For example, the occam fragment:

PROC foo (VAL INT v, INT r)

... code (not requiring anything other than workspace)

:

foo (x, n)
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will generate the following calling code:

LD ADDRESSOF n -- pointer to n

LD x -- value of x

CALL foo

Figure 5.2 shows the workspace allocation for the call to ‘foo’, and also another for a call to ‘foo5’
(a version that takes 5 parameters). In the latter case, the allocation of the two parameters that do
not fit into the transputer stack is performed in the workspace of the calling process. Conversely,
the (theoretical) minimum workspace for a PROC is 4 slots1 (3 for parameters and one for the return
address).

Wptr

before
call

Wptr

after
call

Wptr

before
call

Wptr

after
call

x

Succ. Iptr

additional
workspace for

for PROC call
workspace allocated

foo5(x,42,99,n,m)

ADDRESSOF m

caller workspace

caller workspace
(if required)

ADDRESSOF n

99

42

caller workspace

for PROC call

unallocated

ADDRESSOF n

x

Succ. Iptr

additional
workspace for

foo

workspace allocated

foo(x,n)

caller workspace
(if required)

workspace workspace

foo5

Figure 5.2: Workspace allocation for occam procedure calls

The key feature about the parameter allocation is that the called process (‘foo’ and ‘foo5’ here)
finds all parameters in and above its own workspace. When the compiler maps out workspace, PROC
calls are allocated their given size plus any additional space required for parameter passing. In the
case of ‘foo’, this additional space is zero. For ‘foo5’ it is 2 slots. Because the ‘foo’ call does not use
all stack entries when CALLed, the third parameter slot is left spare. The compiler knows this when
allocating workspace for ‘foo’ itself, and as such will use spare parameter slots for local variable
allocation.

In order to support recursion, that requires the allocation of dynamic workspaces, parameter
allocation must be handled differently — such that parameters that would normally be allocated in
the caller’s workspace are allocated instead in the called process’s workspace. Figure 5.3 shows the
workspaces allocated for recursive versions of ‘foo’ and ‘foo5’.

A new set of routines have been added to the back-end (mapping and code-generation) of the
compiler, that handle the allocation of parameters in a separate workspace. These parameter han-
dling routines are also used for the ‘FORK’ extension, described in section 5.3. From within the
called process, the parameters and “successor Iptr” (return address) appear the same — meaning
that the first (non-recursive) call to a recursive PROC is treated normally, and allocated in the caller’s
workspace.

1The actual minimum workspace requirement for a PROC is more than 4 slots however, since low workspace is
reserved for the run-time state if the PROC deschedules.
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Figure 5.3: Workspace allocation for recursive occam procedure calls

The workspace allocated for a recursive call is constant. At a minimum this is a single slot — for
storing a pointer to the allocated workspace2. Two additional slots may also be allocated, one for
the recursive vectorspace, and one for the recursive mobilespace temporary (covered in section 5.1.2).

To make a recursive call, the compiler first allocates the required dynamic memory, storing
pointers in the current workspace as it goes. The parameters are then evaluated and stored in
the dynamic workspace, along with the current ‘Wptr’ — that is used as a link back when the
recursive call finishes. To call the recursive process, and to recover the previous process afterwards,
the compiler generates the following code:

LDL -1 -- load dynamic workspace pointer

GAJW -- swap Wptr and Areg (general adjust workspace)

POP

AJW xxx -- adjust for GCALL

LD ADDRESSOF foo -- address of procedure to call

GCALL -- swap Iptr and Areg (general call)

LDL yyy -- load saved Wptr

GAJW -- make it current

POP

The constant values ‘xxx’ and ‘yyy’ depend on the recursive process being called, affected by the
number of parameters. After the recursive call has returned, memory dynamically allocated for
workspace and vectorspace is freed.

5.1.2 Mobilespace For Recursive Processes

The mechanisms required to support static mobilespace for this and other dynamic process ex-
tensions (covered in this chapter), are substantially different from the workspace and vectorspace
support for such. The dynamic allocation of mobilespace is largely similar to the dynamic allocation
for workspace and vectorspace — the required amount of mobilespace memory is a known constant

2The workspace pointer stored for a recursive call points into the allocated block, rather than at the base of it.
The compiler generates code to adjust the workspace appropriately where required.
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Figure 5.4: Dynamic mobilespace allocation for recursive processes

and is allocated using either ‘MALLOC’ or ‘MNEW’. However, dynamic mobilespace can never be re-
turned to the memory pool. The reason for this is simple: pointers within a dynamic mobilespace
may have migrated into other mobilespaces, that may in turn have acquired pointers to either
the system-wide static mobilespace or another dynamic process’s mobilespace. Freeing a dynamic
mobilespace to the common memory pool is potentially disastrous — when it is reallocated for a
different purpose, for example.

Instead, after use, dynamically allocated mobilespaces are carefully stored into the enclosing
mobilespace, allowing them to be recycled.

Recursion has the simplest dynamic mobilespace allocation: a single slot in mobilespace, ini-
tialised to null, is used to store a pointer to a dynamically allocated mobilespace. When this is
allocated and initialised at run-time, a new mobilespace ‘hook’ is created, ultimately resulting in a
tree of linked dynamic mobilespaces. The following occam fragment shows an example of a recursive
PROC that uses mobilespace:

RECURSIVE PROC filter (VAL INT n, CHAN MOBILE [4]INT in?, out!)

IF

n = 0

MOBILE [4]INT x:

WHILE TRUE

SEQ

in ? x

... process ‘x’

out ! x

TRUE

CHAN MOBILE [4]INT c:

PAR

filter (n-1, in?, c!)

filter (n-1, c?, out!)

:

This PROC sets up a pipeline of 2n processes, communicating fixed-size mobile arrays. Figure 5.4
shows the resulting mobilespace layout after this PROC is called with ‘n’ as 1 (to create a pipeline of
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2 processes). The amount of dynamic memory ultimately left ‘hanging’ from the main mobilespace
is determined by the maximum depth of recursion at that point.

One slight deficiency of this technique is that there may be many top-level hooks for dynamic
mobilespace — at a minimum, one for every parallel call to a recursive PROC. In practice there may
be many such hooks, since the effectiveness of mobilespace packing (section 4.2.2) is limited.

5.1.3 Tail Call Optimisation

For recursive processes that use sequential tail-call recursion, it is possible to optimise away the
recursion and re-use the memory allocated for the current instance (most likely within the workspace
of another process). There are some restrictions on when this is possible, however, since no pointer
into the current instance’s workspace may be passed to the recursive instance. A traditional example
might be the factorial function, with the recursion ‘wrapped-up’ inside:

PROC factorial (VAL INT n, RESULT INT v)

RECURSIVE PROC sub.fac (VAL INT i, n, RESULT INT v)

IF

i = 1

v := n

TRUE

sub.fac (i-1, i*n, v)

:

sub.fac (n, 1, v)

:

This is an ideal candidate for tail-call optimisation, fulfilling the requirements that the recursive
call is sequentially last, and that the parameters passed to the recursive call are not local pointers.
This remains the case even if the IF is re-arranged:

IF

i > 1

sub.fac (i-1, i*n, v)

TRUE

v := n

The code generated by the compiler for the tail-call optimisation is trivial: the new parameters are
evaluated (using temporaries for the expressions), then stored in the current workspace (over-writing
the existing parameters). To re-enter the PROC, the workspace-pointer is adjusted if necessary and
a jump made to the PROC’s entry-point.

5.1.4 Mutual Recursion

The mechanism for recursion described so far is restricted to self-recursion. Mutual recursion, and
any other cyclic call patterns, are not allowed (rather than explicitly banned). To permit mutual
recursion, a mechanism for forward references would need to be provided — the ‘RECURSIVE’ keyword
applies recursive behaviour to only the PROC which follows it.

Technically, supporting mutual recursion is possible, since it requires no special handling. How-
ever, forward references (even if they are explicitly made for recursive purposes), significantly damage
the scoping rules of occam.
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Assuming the availability of a ‘FORWARD’ declaration mechanism, the following might be at-
tempted for mutual recursion:

FORWARD PROC bar (..):

PROC foo (..)

SEQ

... do something or STOP

bar (..)

:

PROC bar (..)

SEQ

... do something or STOP

foo (..)

:

One thing which is immediately unclear is where the ‘RECURSIVE’ keyword should be placed. In the
above code, this keyword is omitted entirely, leaving the ‘FORWARD’ keyword to indicate recursive
intent — the call of ‘foo’ from ‘bar’ is non-recursive.

There is a slightly more serious problem, however, related to the correct scoping of names.
Adding to the end of the previous (mutually recursive) code:

PROC bar (..)

SEQ

... another implementation

foo (..)

:

With two definitions of ‘bar’, there is ambiguity in which definition ‘FORWARD’ applies to, and hence,
which ‘bar’ should be called from ‘foo’. To avoid these problems, the only form of recursion allowed
is self-recursion.

The effect of mutual recursion is possible, however, using self-recursion and a ‘switch’. For
example, the mutual recursion in the above ‘foo’ and ‘bar’ processes could be implemented using:

RECURSIVE PROC foo.bar (VAL BOOL do.foo, ..)

PROC foo (..)

SEQ

... do something or STOP

foo.bar (FALSE, ..)

:

PROC bar (..)

SEQ

... do something or STOP

foo.bar (TRUE, ..)

:

IF

do.foo

foo (..)

TRUE

bar (..)

:
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Adding a second declaration for ‘bar’ immediately after the first does not introduce any ambiguities
either — since it is only referenced after its declaration.

CSP does not treat mutual (and arbitrary) recursion well either, which is maybe reason alone
for not supporting them, but provides a syntax and semantics for self-recursion. The addition of
support for recursion thus provides a direct translation between recursive CSP and occam processes.
For example, the (rather dangerous) occam code:

RECURSIVE PROC P (CHAN INT in?, out!)

SEQ

INT v:

SEQ

in ? v

out ! v + 1

CHAN INT c:

PAR

P (in?, c!)

P (c?, out!)

:

Can be expressed (in a parameterised form of) CSP, as:

P(in, out) = µQ(in, out) • in?v → out !(v + 1)→ (Q(in, c) ‖
{c.i|i∈N}

Q(c, out)) \ {c.i | i ∈ N}

Technically speaking [Hoa85, Law02] sequential composition involves processes synchronising on the
‘X’ event, used to model CSP’s sequential composition operator ‘#’.

5.2 n-replicated PARs

The lack of variable PAR replication has always been a frustrating feature in occam. A common
reason for wanting it is to allow the construction of n-way parallel ‘delta’ processes:

PROC delta.n (CHAN INT in?, []CHAN INT out!)

WHILE TRUE

INT v:

SEQ

in ? v

PAR i = 0 FOR SIZE out!

out[i] ! v

:

Because the size of ‘out!’ is not known when the PROC is compiled, the compiler rejects the replicated
‘PAR’. However, where this PROC is actually called, the compiler probably will know the number of
channels being passed — and could still allocate a static amount of space for the PROC call. This
functionality is not part of the compiler yet, as it would require significant changes to the way in
which workspace sizes are represented inside the compiler (using expressions instead of constants)3.
Changes would also be required in the parallel usage checker, probably more significant than those
required to support workspace sizes as expressions.

3Such modification is technically possible though, and may be investigated in the future.
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The current solution to writing an n-way delta is to enforce an upper limit on the number of
channels used, for example:

VAL INT MAX.DELTA.SIZE IS 32:

PROC delta.n.max (CHAN INT in?, []CHAN INT out!)

WHILE TRUE

INT v:

SEQ

in ? v

PAR i = 0 FOR MAX.DELTA.SIZE

IF

i < (SIZE out!)

out[i] ! v

TRUE

SKIP

:

Following from this, instead of full n-replicated PAR support, a limited form could be provided that
allows a variable replication with an upper limit. Given some suitable modifications to the compiler,
this might be used to implement the n-way delta as:

VAL INT MAX.DELTA.SIZE IS 32:

PROC delta.n.limit (CHAN INT in?, []CHAN INT out!)

WHILE TRUE

INT v:

SEQ

in ? v

PAR i = 0 FOR (SIZE out!) LIMIT MAX.DELTA.SIZE

out[i] ! v

:

The modifications required to implement this would, in practise, be relatively simple. For the
purposes of usage checking, the compiler could simply assume that ‘SIZE out!’ was its specified
‘LIMIT’. For the mapping and code-generation, enough space for ‘MAX.DELTA.SIZE’ replications
would be reserved, but only ‘SIZE out!’ performed. A run-time check before the ‘PAR’ could check
that ‘SIZE out!’ was in range.

Instead, the chosen route has been to implement full run-time support for n-replicated PARs
(allowing the implementation of the earlier ‘delta.n’ process). The issue of parallel usage-checking
is largely avoided — reduced to a compiler warning — discussed in section 5.2.3. The implementation
of the n-replicated PAR is described in section 5.2.1, first describing the implementation of the existing
(but modified slightly) replicated PAR. Support for n replications relies heavily on dynamic memory
allocation support, covered in section 3.8. Supporting mobilespace for n-replicated PARs is more
complex, and covered separately in section 5.2.2.

5.2.1 Implementing n-replicated PARs

The existing code for supporting fixed-count replicated PARs is somewhat extensive. Rather than
re-implementing ‘REPLPAR’ (the tree-node type that defines a replicated PAR), the existing code has
been extended (substantially in some places).
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Constant Count Replicated PARs

The workspace for a fixed-size replicated PAR is allocated as a single block in the enclosing workspace.
The amount of workspace required is calculated by multiplying the (constant) number of replications
by the total workspace size for the replicated process, plus a fixed overhead. If the replicated process
requires either vectorspace or mobilespace, these are allocated as single blocks in the enclosing
vectorspace and mobilespace respectively.

Figure 5.5 shows the workspace layout while setting up a fixed-count replicated PAR. The creation
of processes is handled by a loop, that sets up each process’s initial workspace before calling ‘STARTP’
for it. The process performing the replicated PAR has a number of special slots reserved within it,
used for both setting up the replicated PAR and for shutting it down. The three slots “JoinLab”,
“ParCount” and “SavedPriority” are used for all PAR constructs, accessed by ‘ENDP’ when a parallel
process terminates. When ‘ENDP’ is called (passing a pointer to ‘JoinLab’), the value in ‘ParCount’
is decremented. If it reaches zero, ‘ENDP’ returns directly to the address stored as ‘JoinLab’, possibly
changing priority to ‘SavedPriority’ on the way (priority is covered fully in section 7.2).
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Figure 5.5: Setting up a fixed-size replicated PAR

The “WSTemp” reserved word is always allocated, and is used during the setting up of each
replicated process. “VSTemp” and “MSTemp” are similar, but are only allocated and used if the
replicated process requires vectorspace and/or mobilespace respectively.

When a replicated PAR begins, the ‘ENDP’ specials and replicated-specials are initialised, along
with the workspace required for the replicator itself (not shown). The replicator count is set to the
number of replications plus one — once all the replicated processes have been started, the process
doing the PAR calls ‘ENDP’ itself.

“VSTemp” and “MSTemp”, where required, are initialised to the starts of the vectorspace and
mobilespace reserved for the replicated processes. “WSTemp” is initialised to point at a fixed offset
within the first replicated process’s workspace (to the “RPRepl” slot).
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Each iteration of the process creation loop (run ‘ParCount’−1 times — the original PAR replicator
count), initialises the workspace of the process held in ‘WSTemp’, copying the replicator value
into ‘RPRepl’, the current workspace-pointer into ‘RPStatic’ (used to access variables outside the
PAR), and ‘VSTemp’/‘MSTemp’ into ‘RPVsp’/‘RPMsp’ if required. ‘STARTP’ is then called, passing
‘WSTemp’ minus a fixed offset for workspace used by the replicated process itself. For trivial
replicated processes (such as the output in a fixed-count INT delta), this offset will be zero. After
calling ‘START’, the values of ‘WSTemp’, ‘VSTemp’ and ‘MSTemp’ (as required) are incremented by
the size of the replicated process’s workspace, vectorspace and mobilespace respectively.

When the loop terminates, it simply calls ‘ENDP’ with its own workspace pointer as the successor.
There is a possibility that by the time the PAR process exits the process creation loop, all the created
processes have already run and terminated. Therefore, not using ‘ENDP’ at this point (and initialising
‘ParCount’ to n rather than n + 1) might introduce a race-hazard, between the last section of loop-
code and the code at ‘JoinLab’ (after the ‘PAR’), reached by the last terminating replicated process.

When a replicated process terminates, it loads the value of ‘RPStatic’ (pointing at the ‘successor’
workspace) and calls ‘ENDP’. If it is the last replication that has terminated, execution continues at
‘JoinLab’ — the code directly after the replicated PAR.

Variable Count Replicated PARs

The implementation of the variable-count replicated PAR is similar to the fixed-size version, both
sharing large amounts of code within the compiler. Instead of reserving memory for replicated
processes inside the enclosing workspace, vectorspace or mobilespace, memory for the replicated
processes must be allocated at run-time — the replication count is unknown.

The handling of workspace and vectorspace is reasonably simple: memory is allocated before the
replicated PAR and freed afterwards. Mobilespace handling for replicated processes is complicated
by the fact that once allocated, mobilespace cannot be freed — and memory leaks are undesirable.
Section 5.2.2 covers the handling for n-replicated mobilespaces.

A scale of allocation strategies for workspace and vectorspace are possible — from allocating
the memory for each replicated process individually, through to allocating a single block of memory
for all replicated processes. The implementation currently uses the fine-grained approach, allo-
cating workspace and vectorspace individually for each replicated process. The ‘granularity’ of
memory allocation here affects two things: reuse on subsequent instances of the replicated PAR, if
the replication-count varies over time; and the space/time efficiency of dynamic memory usage.

More process memories per memory-block causes larger allocations, possibly leading to wastage
(as the memory-pool sizes increase exponentially), but overall there will be less calls to the memory
allocator. Furthermore, more processes-per-allocation will decrease the likelihood of that same
memory being re-used (through the memory allocator) on subsequent calls, with different replicator
counts. Fewer processes per memory allocation make maximum possible re-use of memory4, but
suffer more the overheads of the memory allocator.

To keep track of memory allocated for a variable replicated PAR, an array is used to hold pointers
to dynamically allocated workspaces. This array is created dynamically at run-time, sized according
to the number of replicated processes. A pointer to this array is allocated in the workspace of the
process doing the PAR, called “WSArray”, along with a temporary used to hold its (byte) size,

4Given the quantisation of the memory allocator (into half-powers of 2, covered in section 3.8), it might be the
case that allocating more process memories per memory blocks leads to better space efficiency, through less wastage
in the memory allocator. Mathematically speaking, this is certainly true for certain process memory sizes, but as yet
has not been fully investigated.
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“ACount”. If vectorspace is used by the replicated process, another workspace slot is reserved,
“VSArray”. ‘ACount’ is initialised to zero, incrementing as processes are allocated and decremented
as they are freed.

A simple process that makes good use of a variable replicated PAR is the n-way delta process,
‘delta.n’ (as already mentioned). This has a very small memory requirement — 16 words of
workspace for the static part of ‘delta.n’ (including parameters), and 6 words of workspace for
each replicated process:

PROC delta.n (CHAN INT in?, []CHAN INT out!)

WHILE TRUE

INT v:

SEQ

in ? v

PAR i = 0 FOR SIZE out!

out[i] ! v

:

Figure 5.6 shows the static and dynamic workspaces for ‘delta.n’, after the replicated processes
have been started. Initialisation of processes is performed in much the same way as it is for fixed-size
PAR replicators, except that the workspace is allocated through ‘MALLOC’. Before the loop that creates
processes starts, an initial workspace is allocated and stored in ‘WSTemp’ (with the appropriate
pointer adjustment). The code within the process creation loop initialises the special slots for the
process at ‘WSTemp’ (as before), and stores a re-adjusted pointer to it into ‘WSArray’, indexed by
‘ACount’, before calling ‘STARTP’ to add the new process to the run-queue. Following this, before
the loop-end, a new memory block is allocated and stored, with the appropriate adjustment, in
‘WSTemp’.
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When the process creation loop finishes, the extra workspace is freed, before calling ‘ENDP’ in a
similar manner to before. The implementation is done this way since it fits better with the existing
compiler code for replicated PARs (and replicators in general).

Once all the parallel processes have run to completion, execution resumes at the address in
‘JoinLab’. For fixed-size replicated PARs, this is simply the code following the PAR. For the vari-
able replicated PAR, code is generated at ‘JoinLab’ to iterate over ‘WSArray’, freeing the dynamic
workspaces as it goes, before freeing the dynamic array itself. This is combined with code to free
replicated vectorspaces, if required by the replicated process.

5.2.2 Mobilespace Support for n-replicated PARs

Dynamic mobilespace allocation for the n-replicated PAR follows on from similar support for dynamic
mobilespace allocation in recursive processes (discussed in section 5.1.2). Instead of using a single
slot in mobilespace, two slots are allocated. The first is used to point to an array, that contains
pointers to dynamic mobilespaces or ‘MINT’. The second slot is used to store the number of elements
in the array. When the replicated PAR begins, the number of replications is checked against the
second (count) mobilespace slot. If greater, a new pointer array is allocated, and elements from the
old pointer array are copied over. The old array is then freed and fresh entries in the new array
initialised to ‘MINT’.

As each replicated process starts up, it checks the value in the dynamic array used to hold
mobilespaces. If ‘MINT’, a new block of mobilespace is allocated, initialised5 and stored in the array.

The common way to create a pipeline of processes is to use PAR replication, rather than recursion,
and this can now be done dynamically. For example:

PROC filter2 (VAL INT n, CHAN MOBILE [4]INT in?, out!)

PROC in.filter2 (CHAN MOBILE [4]INT in?, out!)

MOBILE [4]INT x:

SEQ

in ? x

... process ‘x’

out ! x

:

MOBILE []CHAN MOBILE [4]INT chans:

SEQ

ASSERT (n > 1)

chans := MOBILE [n-1]CHAN MOBILE [4]INT

PAR

in.filter2 (in?, chans[0]!)

PAR i = 0 FOR n-2

in.filter2 (chans[i]?, chans[i+1]!)

in.filter2 (chans[n-2]?, out!)

:

Figure 5.7 shows the mobilespace layout for such a process, before any data has been communicated.
Although this code is sound, the compiler is unable to usage-check channel access, and generates an

5The standard method of initialising mobilespace is on PROC entry, which suffices for recursion and FORKed processes.
Code to perform mobilespace initialisation for n-replicated PARs is inserted at the point where the replicated process
(which need not be a simple PROC call) starts.
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appropriate warning message at compile-time. The provision for a dynamic mobile array of channels
is a somewhat odd case — it may only be communicated or assigned when not in use, limiting its
usefulness as a mobile entity. As demonstrated in the above example, support for these is driven by
the desire to dynamically create arrays of channels, not to have mobile channels. To be useful as a
mobile, channels must be described in terms of ends (catered for in section 4.3).
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Figure 5.7: Dynamic mobilespace allocation for n-replicated PARs

5.2.3 Usage Checking n-replicated PARs

The one major, perhaps serious, deficiency of the n-replicated PAR is its lack of rigorous parallel
usage checking. By default, the occam compiler performs static analysis on replicated PARs, iterating
through each replication, checking for parallel usage violations as it goes. Static analysis like this is
unsuitable for the n-replicated PAR, since the number of replications is determined only at run-time.

For n-replicated PARs that have constant start and stride expressions, some use can be made of
the existing usage checking functionality. In such cases, the body of the replicated PAR is checked
twice, with the first two replicator values (which can only be determined if the start and stride
are constant). If this succeeds, the whole PAR is assumed to be mostly safe (a compiler warning
is generated). At run-time, however, this might not be the case — hence the question of safety in
this implementation. Where the start is non-constant and not-known, virtually no parallel usage
checking can be performed — and the compiler generates an error to this effect. However, traditional
division of array elements amongst parallel processes is checkable to some extent (assuming the stride
is constant), since the replicator starts are at least known, even if not constant. For example:

PROC array.sin ([]REAL64 vals)

PAR i = 0 FOR (SIZE vals) / 4 STEP 4

PAR j = i FOR 4

vals[j] := SIN (vals[j])

:

This checking, and its deficiencies, extend only as far as the replicator value — i.e. expressions
that involve the replicator. Parallel usage checking for processes inside an n-replicated PAR is left
unhindered.

The majority of these problems could be solved by the use of an algebraic usage checker, in
a similar way to the one employed in SPOC [NDHW94]. Much of the parallel and alias checking
within SPOC relies on the ‘Omega Test’ [Pug92, PW95], that is used to check for arbitrary solutions
to sets of linear equations — in particular, whether two array indices are the same when accessed
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in parallel, or whether two abbreviations are in fact the same element. For non-determinable cases,
run-time checks are needed — the compiler already generates these types of run-time check for
certain code, for example:

PROC thing ([]INT data, VAL INT i, j)

INT v IS data[i]:

INT w IS data[j]:

SEQ

... code operating on ‘v’ and ‘w’

:

It is hoped to resolve these issues in KRoC at some point, but that will require extensive work
within the somewhat delicate parallel-usage and alias checking portions of the compiler. As such,
the currently preferred mechanism for dynamic process creation is the ‘FORK’, described in the
following section.

5.3 FORKs and FORKING

The FORK is a mechanism for dynamically creating parallel processes at run-time. The processes
that are spawned run in parallel with the process that created them. Synchronisation of FORKed
processes with the environment is controlled through a FORKING block, through which no FORKed
processes may run.

Initial ideas for the FORK were to allow an arbitrary occam process to be spawned. This, however,
introduces a lot of complication into the compiler. For the current implementation, a restricted form
of FORK is available: that of a PROC call. Arbitrary FORKing of any occam process has not been ruled
out completely however, and is discussed in section 8.3.1.

The motivation for providing FORK was largely to allow the construction of scalable server net-
works. The desire for such networks is entirely natural — and almost obvious. A typical example
might be a TCP/IP server, for some protocol (HTTP, FTP, ...), as shown in figure 5.8. Initially
the program would just wait for incoming connections. As each connection is received, the program
could ‘fork’ off a server process to handle that particular client.

server.manager

handler handler

server.network

TCP
accept

Figure 5.8: Forked scalable server network

In order to construct such networks, some use needs to be made of shared channel-types, as
described in section 4.3. When the ‘server.manager’ process FORKs a new ‘handler’, it simply
passes a CLONE of the relevant shared channel-bundle end.

This mechanism is substantially more flexible than either parallel recursion or n-replication,
which can be used to provide comparable functionality. Recursion alone can implement such un-
bounded server networks, but at the cost of a continually increasing memory footprint, as the code
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recurses to handle each new connection. The n-replicated PAR can provide a run-time sized server
network, but that size is still fixed at run-time. At best, a combination of the two can be used.
However, such implementations are often not obvious (to code), and are easily prone to error if
mis-programmed.

The FORK provides a clean solution to these problems, by providing a scalable mechanism for
run-time process creation. The implementation allocates and frees memory as necessary — memory
is allocated when a new process is FORKed, and freed when the FORKed process terminates. The only
constant overhead is that of the process controlling the network, containing the FORKING block in
which new processes are FORKed.

The syntax of the FORK is simple — simply the keyword ‘FORK’ followed by a PROC name and
actual parameters. The handling of parameters is somewhat special, discussed in section 5.3.1. A
simple “hello world” program using FORKs might be:

PROC hello (SHARED CHAN BYTE out!)

VAL []BYTE str IS "Hello, FORKed world!*n":

CLAIM out!

SEQ i = 0 FOR SIZE str

out ! str[i]

:

PROC fork.example (SHARED CHAN BYTE screen!)

FORKING

FORK hello (screen!)

:

This example is particularly uninteresting, since the only process contained within the ‘FORKING’
block is the single ‘FORK’ of ‘hello’. The use of a SHARED channel (end) is required, although no
parallel usage ever occurs in this code.

5.3.1 FORK Parameter Passing

By definition [GRS93, GRS94], PROC parameters in occam follow a renaming semantics — most
obviously when an INLINE PROC has its parameters turned into abbreviations when inlined by the
compiler. For FORKed PROCs, a communication semantics is used to handle parameter passing. In
a normal PROC call, the invoking process transfers control into the called procedure and continues
when that procedure returns. FORKed procedure calls are different however — they appear to return
immediately. Because of this, any parameters passed to the FORKed process could potentially be
interfered with in code following the FORK. Communication semantics for the parameters fit naturally
in the general semantics for the FORK, discussed in section 5.3.2. Equivalently, such parameter passing
could also follow an assignment semantics — with INITIAL declarations [Moo00b] for example. The
main point being that a new set of variables are allocated to be (VAL) parameters to the FORKed
PROC — in ordinary PROC calls, any VAL parameters larger than a single word are passed by reference
(similar to non-VAL parameters).

For parameter types that cannot be assigned or communicated normally in occam, most notably
reference parameters (including some RESULT parameters), special rules apply: the parameter must
be explicitly #PRAMGA SHARED. Although this would appear to restrict the usefulness of a FORK, it
does not: the use of reference parameters for a FORK is considered harmful and discouraged (aliases
are created). The alternative is to use MOBILE types, covered in Chapter 4. These have a movement
semantics in communication and assignment, implemented by moving references, making them ideal
for use with the FORK.
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For mobile channel-types, unshared ends are moved into the FORKed process, whilst shared ends
are auto-CLONEd. Special provision is made to support the passing of a (shared) anonymous channel-
type end, that provides shared channels (section 4.4.1). In this special case (where such ends cannot
be communicated or assigned normally), checks are made to ensure the end passed does not go out
of scope before the FORKed process finishes.

5.3.2 Semantics of FORK

As with all the other mechanisms for dynamic process creation, the FORK can be modelled in
CSP/CSPP, providing for formal reasoning about such code. In particular, several equivalences
between FORKING/FORK processes and ordinary occam processes exist — the ability to prove these
correct inspires greater levels of confidence for the usage of such extensions.

The FORKING block, that provides a barrier for FORKed processes indented under it to synchronise
on, can be modelled as a recursive process. This provides the mechanism for generating and syn-
chronising FORKed processes. The process representing the contents of the FORKING block is run in
parallel with this recursive process. These two processes synchronise on a termination event, t , and
a set of channels, E = {e1, e2, · · · , en}, associated with the FORKed processes Q = {Q1,Q2, · · · ,Qn}.
The FORKING mechanism, rather generalised, can be expressed as:

FORKING(t ,E ,Q) = µF • (
e1?x → (Q1(x ) ‖ F )

)
2 · · · 2 (

en?y → (Qn(y) ‖ F )
)

2 (t?→ Skip)

To FORK a process Qx , the body of the FORKING, P ′, simply synchronises on the event ex . It is
assumed that on such synchronisations, the parameters (if any), present in the occam program, are
communicated6. After the process P ′ has terminated, a synchronisation is made on t to terminate
the FORKING process, simply:

P ′ # t !→ Skip

Composed in parallel, with t and E hidden, this provides a full semantics for the occam FORKING

block. The FORKed processes Q1 · · ·Qn are literally substituted for the processes they represent
(occam PROC instances). The process P ′ is formed from the occam process indented under the
FORKING block (P), by replacing “FORK Qi (x)” with “e[i] ! x”. Thus:

(
FORKING(t ,E ,Q) ‖

{t}∪E

(P ′ # t !→ Skip)
) \ {t} ∪ E

Such a process interacts with its environment through the events of Q1 · · ·Qn and P . These processes
may also synchronise on events shared between themselves — with the necessary care being taken
to avoid internal deadlocks.

Using this definition of the FORKING block, it is easy to verify the correctness of certain code
equivalences. It is known, for example, that the following two occam code fragments are equivalent:

FORKING

SEQ

FORK R (x)

S (x)

PAR

R (x)

S (x)

The body of the FORKING block in this example can be expressed in CSP as: P ′ = e1!x → S(x ),

6Parameters which do not fit the model of parameter passing by communication, remain free — to be captured
by the environment later. Clearly, such ‘parameters’ must also be free in the body of a FORKING — P ′.
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with forked processes Q = {Q1 = R}. The PAR on the right is simply (R(x ) ‖ S(x )). Substituting P ′

and Q into the earlier FORKING definition gives the process:

(
(µF • (e1?y → (R(y) ‖ F )) 2 (t?→ Skip)) ‖

{t}∪E

(e1!x → S(x )) # t !→ Skip
) \ {t} ∪ E

Where E is the set of events {e1.z | z ∈ αp(R)} — i.e. possible parameters for ‘R’.
The initial behaviour of this process is deterministic — the internal parallel processes can only

engage in the communication on e1. Furthermore, the events of this communication are hidden from
the external environment (and assumed not to be free in either ‘R’ or ‘S’). By expanding out the
recursion one step and removing the initial e1 communication, this process becomes:

(
R(x ) ‖ (µF • (e1?y → (Q(y) ‖ F )) 2 (t?→ Skip)) ‖

{t}∪E

S(x ) # t !→ Skip
) \ {t} ∪ E

From this, the communication e1?y is no longer a choice for the recursive process — no other process
engages in the corresponding e1!v , and those events are hidden from the external environment.
Simplifying to:

(
R(x ) ‖ (µF • (t?→ Skip) ‖

{t}∪E

S(x ) # t !→ Skip
) \ {t} ∪ E

The recursion is now unnecessary (F is no longer referenced inside the recursive process). This
simplifies to:

(
R(x )‖(t?→ Skip) ‖

{t}∪E

S(x ) # t !→ Skip
) \ {t} ∪ E

Eliminating t and E entirely gives:

R(x )‖Skip ‖ S(x ) # Skip

This further simplifies to (R(x ) ‖ S(x )), as desired. Proofs of other equivalences follow in similar
ways. For example, between:

FORKING

SEQ

Q (X)

FORK R (X)

S (X)

SEQ

Q (X)

PAR

R (X)

S (X)

Although it is somewhat crude, this model of ‘FORKING’ and ‘FORK’ should suffice for both human
and machine proofs.

5.3.3 Unsynchronised FORKing

As introduced so far, all ‘FORK’s have been within a local ‘FORKING’ block — in the initial imple-
mentation this was its limit.

However, it may be desirable to FORK a process from within a FORKING block at a higher level
— in the calling PROC for instance. A very simple example of this is:
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PROC other (VAL REAL64 v)

FORK long.computation (v)

:

PROC main ()

FORKING

other (99.0)

:

When the ‘other’ PROC is called, from ‘main’, it forks the ‘long.computation’ process. This process
is FORKed within the higher-level FORKING, and therefore must have terminated before that FORKING
block (in ‘main’) can complete.

The handling of this in the implementation is relatively simple — an extra hidden parameter is
passed to PROCs that FORK processes outside of any local FORKING blocks. That hidden parameter
represents the barrier on which finished FORKed processes synchronise (covered in section 5.3.4). The
restriction, of course, is that only communicable parameters can be given to the FORKed process,
since it may be impossible to tell if reference parameters are declared outside of the ultimately
enclosing FORKING.

Global Servers

One feature which has often been desired is that of automatically terminating (typically server)
processes. For example, when an application initialises, it might create a number of server processes
designed to remain active for the duration of the whole program. For the application to terminate
gracefully, such servers must be shut-down before the application can exit (to avoid deadlocking).
However, engineering this into the application can often be hard, leading to its own deadlock if
programmed incorrectly [Wel89].

hostlink

A

B

C

application

(TCP/IP)

Figure 5.9: Example application network using a global ‘long-lived’ server

Figure 5.9 shows an example network using such a server. In this example, where the server
process (‘hostlink’) involves itself in external IO (supported mainly through the blocking system-
calls extension – section 6.3), the application will never terminate naturally through deadlock. As
long as any processes remain on either the run-queue, timer-queue or are blocked on external IO,
the run-time system will not deadlock.

Usually the best an application can do is execute ‘STOP’ at some suitable point, to force ter-
mination. However, this is defeated in ‘stop’ error-mode, where erroring processes are descheduled
without stopping the whole system (described in section 7.3).
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A solution to this is available using unsynchronised FORKs, specifically those that are outside any
FORKING block. By default, and if the top-level process requires it, a system-wide barrier is passed
to the application. Before the application terminates, it synchronises on this barrier. Thus, any
‘global’ servers, such as ‘hostlink’ in figure 5.9, must terminate before the application can exit.

An alternative behaviour can be selected through the use of a compile-time flag (‘--nfw’ to the
translator), that prevents the application synchronising on any global barrier (passed as a hidden
parameter to the top-level process). When the top-level process finishes, assuming no processes are
on the run-queue, timer-queue or waiting for external IO, the system simply exits — any FORKed
processes are simply destroyed. This does not solve the problem entirely for ‘hostlink’, since it may
be blocked waiting for external (socket) IO. Thus, a further compile-time option is available, ‘--new’,
that prevents the run-time system from waiting for pending blocking system-calls (section 6.3). With
both options, when the application in figure 5.9 terminates, the ‘hostlink’ process will be destroyed
and the program exited.

5.3.4 Implementing FORK

The implementation of FORKING and FORK is reasonably simple in practice, sharing some common
code with the implementations of the n-replicated PAR (section 5.2.1) and of recursion (section 5.1.1).

The FORKING construct introduces a new name, ‘$fork.barrier’, of the internal type ‘BARRIER’
— distinct from the user-defined BARRIER type [WW97], but with many similarities (i.e. it is a
barrier). This barrier is somewhat optimised since only one process ever synchronises with it — the
process executing the FORKING. This allows some of the barrier state to be omitted, saving a bit on
memory — only two words are required, as shown in figure 5.10.

Workspace

$fork.barrier count

Fptr

Figure 5.10: Workspace layout for the FORK ‘BARRIER’

When the FORKING block is entered, the barrier comes into scope and has its ‘Fptr ’ and ‘count ’
slots initialised to ‘NotProcess’ and zero respectively. The ‘Fptr ’ slot is only used when the FORKING
block terminates; ‘count ’ records the number of FORKed processes enrolled on the barrier.

The implementation of the FORK itself mostly follows that of a standard PROC call, but with
additional code placed before and after the call, plus special handling for parameters that require
it — described below.

When a FORK starts, memories for the FORKed process are allocated from the free-lists. The
workspace size allocated for the new process is adjusted to provide the FORK with some extra house-
keeping information, kept above the new process’s parameters. If vectorspace is required, it is
allocated and stored in a local temporary. Mobilespace is somewhat more complicated since it
cannot be returned to a global free-list, covered in section 5.3.5. Once allocated, the new process
workspace is initialised, as shown in figure 5.11.

The initialisation of parameters, described in section 5.3.1, is similar to recursion in the im-
plementation — largely because parameters need to be placed in a different workspace. Forked
processes have the additional requirement that VAL parameters larger than 1 word (passed using a
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increasing
addresses

MSTemp

barrier ptr

(extra params)

minimum 3
parameter slots

$fork.barrier

WSTemp

TempVal

VSTemp

forking forked
workspaceworkspace

workspace
process

forked mobilespace
(if needed)

forked vectorspace
(if needed)

Wptr

forked Wptr

Figure 5.11: Setting up a FORKed process

pointer) must be copied into newly allocated blocks before passing — i.e. a communication/copy
semantics. The allocation and copy of these happen as the parameters are initialised. When the
FORKed process returns, these are simply freed (through the process’s parameter slots).

After initialisation, the ‘count ’ field in the FORKING barrier is incremented — to enroll the new
process — before adding that new process to the run-queue. The entry-point for the new process
is set to a small bit of stub-code, placed in-line, that simply calls the correct routine (using the
‘GCALL’ instruction). The workspace is suitably adjusted before calling ‘STARTP’ to enqueue the
process, since GCALL does not adjust the workspace pointer like CALL does.

Placed after the call is code that cleans up the FORKed process. This only involves the de-
allocation of the various memories; workspace, vectorspace, mobilespace and any allocated parame-
ters. Workspace is freed last, using the ‘MRELEASEP’ instruction (described in appendix B.1.1). This
is a combination of both ‘MRELEASE’ and ‘STOPP’, needed to prevent race-hazards when freeing its
own workspace.

Prior to releasing its own workspace, the FORKed process resigns from the barrier — whose
location is stored as a pointer at the top of the forked process’s workspace. To resign, the process
simply decrements the ‘count ’ field within the barrier. If it reaches zero, the ‘Fptr ’ slot is checked,
and if non-null, the process there is added to the run-queue. The ‘Fptr’ slot will only ever contain
one process, the process performing the FORKING, and only if it has finished.

Correspondingly, before the FORKING block exits, the ‘count ’ field is checked. If non-zero, the
forking process suspends itself in the ‘Fptr ’ slot, since FORKed process must still be running.

The code generated by the implementation (the translator in particular) is currently non-SMP
safe. However, an SMP implementation is relatively straightforward, given the simplicity of this
barrier — i.e. only one process ever synchronises, the others simply enroll and resign as necessary.
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Implementing Non-Locally Synchronised Forks

As described in section 5.3.3, FORKs need not be enclosed in a local FORKING block. When a PROC

of this nature is found, the compiler adds ‘$fork.barrier’ as a hidden (pointer) parameter, in
a similar way to the hidden vectorspace and mobilespace pointers. Calls to such PROCs may also
trigger the addition of the hidden parameter, if they are not made from within a local FORKING
block.

5.3.5 Mobilespace for FORKed Processes

Mobilespace presents a slight problem because it cannot be released back to the main free-lists —
for the same reasons as n-replicated PAR mobilespace: pointers may have been exchanged with other
mobilespaces. Instead of holding mobilespaces in an array, they are linked together on a free-list
(initially empty) inside the FORKING process’s mobilespace, shown in figure 5.12.

mslink

mobilespace
for forked
proc call

mslink

mobilespace
for forked
proc call

increasing
addressesmslink

mobilespace
for forked
proc call

mobilespace
forked

FL(proc)

mobilespace

forking

MSTemp

barrier ptr

forking

workspace

forked
workspace

$msp
(mint)

free forked mobilespaces

Figure 5.12: Mobilespace for FORKed processes

When the (mobilespace requiring) FORKed call is setup, the free-list in mobilespace is checked
for any existing blocks. If present, the first one is removed and placed in the local ‘MSTemp’
workspace slot, to be later copied into the mobilespace parameter. The local mobilespace free-list
is then ‘shuffled along’. If the free-list is empty (set to ‘MINT’ – most negative integer), a new
block is allocated from the free-list and has its first word initialised to ‘MINT’. The standard PROC

mobilespace initialisation code uses this ‘MINT’ as a trigger to setup the internal structure of that
mobilespace, as described in section 4.2.2.

The ‘mslink ’ field between mobilespaces is either allocated explicitly (for memory allocation
using ‘MNEW’ and ‘MFREE’), or can re-use the similar ‘link ’ field in all ‘MALLOC’d memory — used to
return a block of memory to the free-lists. The dynamically allocated mobilespaces will never be
returned to the system free-lists, so can be safely re-cycled. During the lifetime of the forked process,
this mobilespace link field points back to the free-list within the FORKING process’s mobilespace.

When the forked process completes, the mobilespace is re-attached to the relevant free-list, to
be re-used by any future FORKs. The value already in the free-list is placed in the current ‘mslink ’,
and will either be ‘MINT’ or other free mobilespaces.
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5.3.6 Forked Recursion

Some time after adding the FORK, a desire for FORKed recursion arose. This happens to be particularly
useful, especially in combination with unsynchronised forking, since it allows a process to freely
replicate itself inside some FORKING environment. One use investigated by Jacobsen et al. [JWB02]
was the creation of graph-like structures using forked processes and mobile channel-types.

The expressive power of such networks is potentially huge, especially if recursive channel-types
are used, allowing the network to be both dynamically re-configurable and dynamically scalable.

Forked recursion directly is in practise just forking another process — if the FORKING is non local,
the PROC making the forked recursive call need not wait for any of its new instances to terminate.
Any recursive forks within a local FORKING will be bound by the FORKING block, since any recursive
call must finish before it can.

The active communicating nature of these networks make them ideal for many purposes. So
far, the main use of these has been to investigate tree-like structures, for storage and manipulation
of data within the active tree. However, they could also be used to implement neural networks,
and in an entirely natural way — multiply connected active communicating processes, with the
ability to grow and re-structure in a controlled manner. Networks in the order of a million processes
could easily be created, assuming sufficient memory (for both the processes and the channels linking
them).



Part II

Wider Interaction and

Accessibility

This part of the thesis is largely concerned with the interaction between occam/CSP programs and
the external run-time environment. Chapter 6 presents various extensions that greatly improve the
run-time facilities available to occam programs. These are largely KRoC/Linux specific, and would
require significant work to port to other platforms.

Chapter 7 presents a number of remaining, somewhat independent, extensions. These include,
for example, support for process priority and a mechanism for concurrently running C and occam

processes.
This thesis concludes in Chapter 8, with a discussion of the current state of this research generally,

and many new future possibilities.
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Chapter 6

CCSP and Linux

This chapter describes the various extensions to the occam run-time kernel, CCSP, that allow occam

programs to take advantage of facilities provided by the underlying OS — Linux in this case. The
reverse, improving Linux’s support for occam programs, is also investigated.

Some of these extensions involve changes to the translator (tranx86), primarily for interfacing
occam with the new features. Section 6.2 gives a general overview of the interface between occam

programs and the run-time kernel, as generated by tranx86. This differs substantially from the
interface used in the original KRoC/Linux (as generated by tranpc).

Sections 6.3 through 6.5 present the various extensions to CCSP (and tranx86), that vastly
improve the run-time facilities available to occam programs: blocking system-calls, user-defined
channels, and dynamically loadable processes. Section 6.6 discusses the addition of CPU-timer
support for KRoC, that improves the resolution and accuracy of the occam TIMER.

Section 6.7 presents an extension to Linux that improves support and performance (in some
cases quite considerably), for other extensions presented in this chapter.

6.1 Introduction

In the days of the Transputer, access to files and other OS functionality was provided over a
Transputer-link connected to the host1 — or with a suitable network interface for some host to
access the Transputer (including booting).

Putting aside the details of the physical interconnect between host and Transputer, communi-
cation between the two uses a pair of channels carrying the ‘SP’ protocol. To access the host (for
example, often including screen output and keyboard input), occam programs used the ‘hostio’ and
‘hostsp’ libraries [SGS94], that provided the two ‘SP’ channels as arguments. The server program
on the host (usually ‘iserver’) interpreted those requests and performed the appropriate action.

With the arrival of KRoC [WW96], a new method of interfacing with the environment was
introduced — whilst still supporting the hostio and hostsp libraries. The KRoC interface to the
environment consists of three BYTE channels, corresponding to the UNIX standard input, output and
error streams. Wood [Woo98] added the ability to call C functions from occam, used to implement
the hostio and hostsp support, as well as greatly enhancing the usefulness of KRoC— since it
allows programmers to interface with arbitrary C code.

1Often, Transputers were to be found living on plug-in cards for existing hardware, with the appropriate interfacing
to allow the host to access a Transputer-link.
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The three BYTE channels (keyboard, screen and error) are largely sufficient for most simple appli-
cations, where the only interaction required is with the user at a terminal. The support for calling C
functions allows a greater degree of interaction, but suffers from some fairly restrictive limitations.
Most importantly, if an external C function blocks in the OS kernel, all occam processes are sus-
pended, since KRoC schedules occam processes within a single OS-level process. This makes writing
occam applications which use general OS services such as networking and IPC almost impossible.

The blocking system-calls extension (section 6.3) removes this restriction by providing a mecha-
nism that allows an occam process to block in the Linux kernel, without suspending the scheduling
of parallel occam processes. The interface to this is presented in a similar manner to external C
calls [Woo98] — i.e. a mechanism for running arbitrary C code (which may block) is provided.

Both external blocking and non-blocking C calls are done through a PROC interface in occam. The
user-defined channels extension (section 6.4) allows arbitrary C code to be placed behind channel
operations (which may additionally be blocking). This allows for a greater level of interaction with
external code — supporting ALTing on external events directly.

In a good number of large applications (and increasingly smaller applications), run-time loadable
modules are used as a way of dynamically extending functionality. Generally, this is achieved either
(i) through the use of the system’s dynamic linker (‘ld’ in Linux), or (ii) in some application-
dependent way. This functionality has been added to KRoC/Linux using the first method, including
support for suspending, migrating, and resuming these dynamically loaded processes. This extension
is described in section 6.5.

This chapter concludes with a discussion of a Linux device-driver designed to enhance support for
occam/CSP programs, within in the KRoC/Linux environment (section 6.7). Particular attention
is given to enhancing the blocking system-call operations, that incur a relatively high overhead.

6.2 Interfacing With occam

The original KRoC/Linux, that used tranpc [Poo96] as the translator from extended virtual-
Transputer byte-code (ETC) [Poo98] to Intel i386 object-code, used the processor ‘call’ and ‘ret’
instructions (using the stack to pass parameters and results to and from the run-time kernel). The
CCSP [Moo99] run-time kernel provided entry-points in C, using an indirect jump-table and blocks
of in-line assembler to handle the occam process-state loading and restoring, as well as parameter
and result passing. This interface is documented extensively in [Moo00b].

The occam program state, as far as the scheduler/run-time kernel is concerned, consists of
those CPU registers which hold meaningful values in the translated occam program. The original
Transputer process state consisted of the (32-bit) words shown in table 6.1. We ignore the ‘Iptr’
register mostly, since it only really makes sense to map that onto the target machine’s corresponding
register (‘EIP’ on the i386).

Name Description
Wptr workspace pointer (process descriptor)
Iptr instruction pointer
Fptr first process in the run-queue
Bptr last process in the run-queue
Tptr timeout queue

Table 6.1: Transputer process state
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On the majority of KRoC targets, which are RISC2 machines, these words can be mapped
directly onto target processor registers. On a CISC3 architecture, such as the i386, the number of
available processor registers is limited — to 8 general-purpose integer registers on the i386, shown in
table 6.2. Given this small number of registers, mapping the whole Transputer state into processor
registers is not really possible4.

Name Description
EAX general purpose (accumulator)
EBX general purpose (base)
ECX general purpose (count)
EDX general purpose (data)
ESP stack-pointer
EBP base-pointer (frame-pointer)
ESI source index (for block copy)
EDI destination index (for block copy)

Table 6.2: Intel i386 general-purpose integer registers

6.2.1 Target Register Mapping

The original KRoC/Linux (using tranpc to generate code) mapped ‘Wptr’ onto the ‘EBP’ register,
with ‘Fptr’, ‘Bptr’ and ‘Tptr’ as variables in CCSP — compiled occam code only ever needs to
manipulate ‘Wptr’ directly. The ‘ESI’ register was used to hold a pointer to the table of run-time
kernel entry-points, leaving ‘EDI’ free and ‘ESP’ for the existing C stack-pointer. The four general-
purpose registers, ‘EAX’, ‘EBX’, ‘ECX’ and ‘EDX’ were used for computation (dynamically mapped
onto the Transputer integer stack).

This register mapping has changed slightly with the introduction of tranx86, due in part to
the removal of the indirect jump-table for entering the run-time kernel. The four general-purpose
registers (‘EAX’, ‘EBX’, ‘ECX’ and ‘EDX’) are still used for computation (mapped onto the Trans-
puter integer stack); ‘EBP’ is still used for ‘Wptr’, and ‘ESP’ remains used for the C stack-pointer.
However, ‘ESI’ and ‘EDI’ are now used to hold the ‘Fptr’ and ‘Bptr’ registers respectively, signifi-
cantly lowering the overheads for some translator-inlined scheduler operations. This is summarised
in table 6.3.

Inmos Intel Description
T800 i386
Iptr EIP Instruction-pointer
Fptr ESI Run-queue front pointer
Bptr EDI Run-queue back pointer
Tptr var Timer queue

Table 6.3: Transputer register mapping on the Intel i386

2Reduced Instruction-Set Computing — typically simple instructions and many registers.
3Complex Instruction-Set Computing — typically complex instructions and few registers.
4Technically speaking, mapping the whole Transputer state into processor registers on the i386 is possible, since

only 4 registers are needed for computation — leaving 4 for the state. However, for efficiency reasons, we choose not
to do this.
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6.2.2 Run-time Kernel Calling

The transfer of control between occam programs and the CCSP run-time kernel, when translated
by tranpc, involved using the C stack (of CCSP) to pass values, before ‘call’ing an address in a
lookup-table. Returned values were also passed on the C stack (although these are less common).

The code generated by tranpc to call the run-time kernel involved pushing the contents of the
Transputer stack onto the C stack, then calling an entry-point. The entry-point address was obtained
from a constant offset in a lookup table, whose address was held in a register. The CCSP side of
this interface was significantly less pleasant however, requiring some relatively non-trivial inline
assembler. This interface was required largely due to the use of tranpc for other targets [Poo96].

The interface assembly code, within CCSP, loaded the workspace-pointer from the ‘EBP’ register,
then popped the arguments off the C stack into general-purpose registers. ‘gcc’ was then given a
(static) mapping between the general-purpose registers used and ordinary C variables — a fairly
gcc specific technique called “register constraints” and described in [Sta98]. Figure 6.1 shows this
calling sequence diagrammatically.

<num−entries>

&kernel_in

&kernel_out

&kernel_startp

&kernel_endp

...

Creg

Breg

return−address

ESP

EBP

ESI

push %breg

push %areg

call %jptr[n]

...

move %ebp,Wptr

pop ReturnAddress

pop arg1

pop arg0

...

translated program CCSP run−time kernelC stack

occam workspace
IA32 registers

jump table

Figure 6.1: Original calling sequence between tranpc and CCSP

With the introduction of tranx86, the opportunity to re-implement the occam/CCSP interface
arose. The main motivation for this was the high overhead of a run-time kernel call — partly
associated with pushing and popping arguments from the C stack. Other motivations were that
a processor register was constantly in use during occam execution (the pointer to the entry-point
lookup table). Additionally, the ‘call’ instruction used needlessly pushed the return address onto
the stack for some instructions (in the case of ‘ENDP’ for example).

An ideal interface would be for tranx86 to arrange for the arguments to be in particular processor
registers at the point of the kernel call, and for the assembler in the run-time kernel to map these
registers directly onto C variables. In many cases, this is possible. In some other cases, however,
gcc rejects the inline assembler register-variable mappings due to incompatibilities with its own
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generated code.
In theory, gcc should completely work-around user-specified assembler constraints, but in reality

the code-generation sometimes gets too complex and the constraints cannot be satisfied easily.
Rather than searching aggressively for solutions, it often just gives up. To make matters even more
complicated, different versions of gcc can behave substantially differently where inline assembler (in
particular register constraints) are concerned.

The current code in CCSP makes attempts to work in all cases, aided by various configure-time
checks in the source distribution, such as to avoid trying to compile code which will result in compiler
errors5.

In order to provide for the differing requirements of different kernel calls, and the need to be
compatible with differing gcc versions, a variety of kernel-call interfaces are supported. All of the
new calling conventions enter the run-time kernel by means of a name which is resolved at link-time.
This has a small penalty in terms of code-size, but frees up the previously used ‘ESI’ register —
that is now used to hold ‘Fptr’.

Whenever values are returned from run-time kernel calls, they are passed using the C stack. This
is because gcc (in most common versions to date) fails to satisfy the constraints used in the inline
assembler required to return values in processor registers. For passing arguments into the run-time
kernel, both methods (passed in registers or passed on the C stack) are supported.

Passing by register is the preferred method, but for some kernel calls gcc fails to satisfy the
assembler constraints. Efforts have been made to optimise the most common run-time kernel calls
(such as communication and process startup/shutdown instructions). The translator will optionally
inline certain instructions, completely avoiding any kernel call in some cases — scheduler-inlining
will inline the ‘RUNP’ (run-process) and ‘STARTP’ (start-process) instructions for example. Details
on (some) of the inlining performed by tranx86 can be found in [Bar01].

Name Method
call regular call (i386 call instruction), return-address is left on the C stack
storeip-jump return-address is placed at ‘Wptr[-1]’ followed by a jump to the entry-point
regip-jump return-address is placed in a register, followed by a jump to the entry-point
jump the entry-point is jumped to directly (return-address discarded)

Table 6.4: Methods used to transfer control from occam to the CCSP run-time kernel

Four calling conventions are provided for transfer of control from occam to CCSP, shown in
table 6.4. The ‘call’ method is used when CCSP needs to have the return-address in a variable, but
cannot constrain it into a register. On the CCSP side, the return-address is popped off the C stack
into a C variable. When the return address can be constrained, the ‘regip-jump’ calling sequence is
used.

The ‘storeip-jump’ and plain ‘jump’ are used when CCSP does not need to know the return
address in occam explicitly, either because it would have only been placed in the ‘Iptr’ workspace
slot (for most descheduling instructions), or because it is not needed at all. Figure 6.2 shows an
example of the ‘storeip-jump’ kernel calling mechanism, for the ‘ Y in32’ entry-point, which takes
two arguments from the virtual-transputer stack.

5The first source-release of KRoC/Linux (containing a binary of tranpc) suffered particularly from these problems.
Additionally, certain Linux vendors shipped distributions with broken gcc compilers, which failed to compile some
inline assembly. Not the fault of the gcc developers in any way however, the broken versions were known to be broken,
but those Linux vendors shipped them anyway, much to the disliking of the Linux and gcc communities.
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occam process

occam process

occam process

EBP

EAX (Areg)

EBX (Breg)

ECX

EDX

ESP

ESI

EDI

move %ebp,Wptr

map <%eax,arg1>

map <%ebx,arg0>

map <%areg,%eax>

map <%breg,%ebx>

movl $0f,−4(%ebp)

jmp _Y_in32

move %esi,Fptr

move %edi,Bptr

_Y_in32:

CCSP run−time kerneltranslated program

...
0:

return−address

occam workspace

...

run−queue

IA32 registers

Figure 6.2: ‘storeip-jump’ calling sequence between tranx86 and CCSP

The CCSP run-time kernel has been subjected to a large number of changes over the past three
years. One significant change was the removal of the jump-table (which was an array in C) and
the breaking up of the previously monolithic ‘kernel()’ function — which contained all the various
entry-points. The modified CCSP has a separate C function for each kernel-call, making the source
significantly more readable and lightening the load on gcc’s optimiser and register/stack allocator.
The ‘ Y in32’ call, for example, has the following structure:

void kernel_Y_in32 (void)

{

K_SETGLABEL_TWO_IN (Y_in32, channel_address,

destination_address);

temp_ptr = *channel_address;

if (temp_ptr == NotProcess_p) {

... channel not ready code

K_JUMP (X_scheduler);

} else {

... channel ready code

RESTOREJRET;

}

barrier ();

}

The macros ‘K SETGLABEL TWO IN’, ‘K JUMP’ and ‘RESTOREJRET’ are inline assembler blocks,
kept slightly separate from the kernel code itself in the interests of portability. The first,
‘K SETGLABEL TWO IN’ defines an entry-point for occam, which will pass two arguments in general-
purpose registers. This macro is implemented (for the i386 architecture) as:
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#define K_SETGLABEL_TWO_IN(X,A,B)

__asm__ __volatile__ (" \n"

".globl _"#X" \n"

" _"#X": \n"

" "#X": \n"

" movl %%ebp, %0 \n"

" movl %%esi, %1 \n"

" movl %%edi, %2 \n"

: "=m" (Wptr), "=m" (Fptr), "=m" (Bptr),

"=b" (B), "=a" (A))

The first three lines of assembler define the entry-points. The externally visible name (when ‘Y in32’
is substituted for the macro variable ‘X’) is ‘ Y in32’. The internal entry-point (which only used in
certain calls) is ‘Y in32’.

The following three lines transfer the contents of the ‘EBP’, ‘ESI’ and ‘EDI’ registers into the C
variables ‘Wptr’, ‘Fptr’ and ‘Bptr’ respectively. Within the assembler, the C variables are referred
to by constraint operands, which are mapped to the actual variables following the assembler code
(for example, ‘"=m" (Wptr)’ maps the output memory-reference of ‘Wptr’ onto ‘%0’). The mapping
of the passed arguments to the ‘A’ and ‘B’ macro parameters is done in the second line of constraints,
and requires no explicit assembler at all.6

The second macro used in the example C code above, ‘K JUMP’, is trivial — it simply performs an
explicit jump to a named internal entry-point. In the majority of cases, the target is ‘X SCHEDULER’,
that schedules an occam process for execution, as well as checking the synchronisation flags for
activity. The final macro in the example, ‘RESTOREJRET’, is used to return to the occam program.
This particular variant restores ‘Wptr’, ‘Fptr’ and ‘Bptr’ to processor registers, then jumps to the
address stored at ‘Wptr[Iptr]’ (which would probably have been placed there by a ‘storeip-jump’
style kernel-entry from occam — table 6.4). This macro is implemented (for the i386 architecture)
as:

#define RESTOREJRET \

__asm__ __volatile__ (

" movl %0, %%ebp \n"

" movl %1, %%esi \n"

" movl %2, %%edi \n"

" jmp *-4(%%ebp) \n"

: /* no outputs */

: "g" (Wptr), "g" (Fptr), "g" (Bptr)

: "memory", "cc")

In a similar manner to before, the C variables are referred to by operand constraints, but mapped as
input operands rather than output operands. The additional third set of constraints specifies what
gets ‘trashed’ by the assembler. In this case it is ‘memory’ (variables may be affected) and ‘cc’ (the
condition-codes) — this may seem obvious, but gcc cannot deduce that this code never returns (it
executes an unconditional jump, ‘jmp’).

The peculiar ‘barrier()’ call at the end of the C function is an assembler macro that does
nothing, but trashes ‘memory’ and ‘cc’. This is required to work around a minor bug in some faulty
gcc versions, that do not wholly respect the ‘-fno-defer-pop’ compiler flag. It may be noted

6If gcc subsequently wishes to use, say EAX, for some other purpose, it will insert an instruction to move the
contents of the EAX register into the variable mapped to it.
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that none of the assembler code involved in getting in and out of the run-time kernel references
the stack-pointer (‘ESP’) — the code involved relies on the fact that the stack-pointer on exit to
occam is the same as it was on entry from occam. A slight bug in some gcc versions causes this
assumption to break, when it incorrectly optimises stack-pointer manipulation (the incorrect part
being that we explicitly tell the compiler not to perform this optimisation on the command-line —
the ‘-fno-defer-pop’ flag). This would normally be a minor issue, since it would not affect C-only
programs. The effect on occam programs was that each affected kernel call would consume a small
bit of C stack when called, leading to large stack growth over time, and eventually a crash.

6.2.3 External Synchronisations

In order to respond to events outside occam, KRoC utilises UNIX (POSIX) signals. There are two
such events in most KRoC implementations: a signal from the keyboard process to indicate a new
key is ready (described in section 6.3.9), and a timeout signal for implementing occam timers. In
both cases, the signal handler sets a (byte) flag in the synchronisation word. Whenever the run-
time kernel reschedules, it checks the synchronisation word and, if any flags are set, handles them
accordingly.

If the run-time kernel was sleeping (in the ‘safe pause()’ function), the act of signalling will
wake it up. Figure 6.3 shows the layout of the synchronisation word, including some new flags.

kbd_sync (keyboard process) block_sync (blocking syscalls)

priority_sync (process priority)dummy0

dummy1 interrupt_sync (for RMoX)

tim_sync (timeout handling)

Figure 6.3: Run-time kernel synchronisation flags

The ‘kbd sync’ flag is set by a signal handler when the keyboard process signals the occam

kernel (section 6.3.9). At the same location is ‘block sync’, which is set when the occam kernel is
signalled by a finishing blocking-call (section 6.3.6).

The ‘priority sync’ flag is used when process priority is enabled (the default now), to indicate that
a higher priority process is runnable. Priority is covered in section 7.2. The timer synchronisation
flag, ‘tim sync’, is generally set by the signal handler for ‘SIGALRM’ — KRoC timeouts (on UNIX
systems) are generally implemented using the ‘alarm()’ or ‘setitimer()’ system calls — POSIX
defines the former, BSD the latter.

On the Intel Pentium and above processors, timers are implemented using the CPU cycle-counter
(accessed through the ‘rdtsc’ instruction [Int99]) instead of using the underlying OS’s ‘alarm()’
mechanism. The main motivation for this was to reduce the high cost and low-granularity of the
timeout mechanism — the standard Linux i386 kernel timeout resolution is 10ms.

On the DEC Alpha architecture (for which a KRoC/Linux does not exist), the Linux kernel has a
significantly finer timing resolution of 1ms7. When CPU timers are enabled (determined by the pro-
cessor type at compile-time), the ‘alarm’ mechanism is only used when sleeping in ‘safe pause()’.

7The discussion about changing the magic ‘HZ’ Linux kernel constant for the i386 architecture occasionally appears
on the mailing list. The general view, however, is that changing it will break too many applications (those which
make assumptions about its value). Patches do exist however, and appear to work, so may well find their way into a
future Linux version.
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When scheduling occam processes normally, the run-time kernel uses the CPU cycle-counter to check
for timeouts (an operation which can be performed sufficiently quickly so as not to add significantly
to the scheduling overhead — both when process(es) are waiting on timeouts or when there are no
waiting processes).

Additionally, as long as the run-time kernel is busy (there are runnable occam processes),
‘alarm()’ signals are avoided, giving a much finer resolution — controlled by the parallel gran-
ularity of the occam program — more process scheduling leads to finer timeouts.

However, the timeout resolution reverts to 10ms whenever the kernel runs out of runnable pro-
cesses and sleeps in ‘safe pause()’. Achieving a finer timeout resolution is possible, but requires
either user-space busy loops (a technique which MESH [BDv99a, BDv99b] uses), or substantial
changes in the way sleeping is implemented — investigated in section 6.7.2.

The last synchronisation flag in figure 6.3, ‘interrupt sync’ is currently used by the (experi-
mental) RMoX system [BJV03] only. There, this flag is used to indicate that a hardware-interrupt
occurred, needed to support low-level interrupt handling from occam.

6.3 Blocking System Calls

The blocking system-calls extension, first presented in [Bar00b], provides a mechanism for allowing
the execution of a blocking system call (reading from a network socket for example), without blocking
the run-time kernel (CCSP).

One of the immediate advantages of this is the ability to write network aware occam applications
(typically internet servers — web servers, mail servers, etc.). These types of application often require
the ability to handle multiple (remote) clients simultaneously, without effects such as the latency and
bandwidth of one client affecting the processing of other connected clients. Section 6.3.1 describes
one of the primary motivations for blocking system-calls — building internet server applications.

The use of blocking system-calls is not the only solution to this more general problem — there
are other ways in which occam programs can interact with networked applications. This is clearly
demonstrated by Vella in [Vel98], who used specific engineering in the run-time kernel to support
networking. Blocking system-calls provide additional benefits however — they are not limited to
the provision of networking, although this is a primary motivation for them.

The implementation of blocking system-calls occurs largely within CCSP, utilising Linux “clone”
processes (primitive threads). Some support is also required in the translator (tranx86), to support
a new run-time kernel entry-point for dispatching a blocking call. The occam interface for blocking
system-calls follows that of external C calls [Woo98], with a simple name change to indicate that
the called C code should execute alongside the occam system, not within it (as standard external C
calls do). The occam interface for blocking system calls is described in section 6.3.2.

When a blocking system-call is made from an occam program, the run-time kernel arranges for
it to be executed in one of the ‘clone’ (OS) processes, while the run-time kernel continues scheduling
occam processes. When the blocking call finishes, the clone notifies the run-time kernel and the
occam process which called it is rescheduled. As an additional feature, a form of blocking system
call which may be terminated before it finishes is provided. The correct implementation of blocking
system-calls is non-trivial, requiring care to avoid potential race-conditions between the clones and
the run-time kernel.

Sections 6.3.4 to 6.3.7 describe the implementation of blocking system calls within the translator
and run-time kernel. As well as directly supporting occam programs through the use of explicitly
defined blocking calls, the generic blocking system-calls mechanism has applications for the user-
defined channels extension (section 6.4).
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The performance of blocking system-calls is examined briefly in section 6.3.8, but even a modest
run-time cost is a small price to pay for such functionality — especially when it can be programmed
easily in a naturally parallel manner.

On multi-processor machines, without a multiprocessor KRoC, blocking system-calls can be used
to take advantage of extra processors, since the clone processes are free to be scheduled by Linux
on any available processor — possibly concurrently with other blocking calls or with the run-time
kernel.

6.3.1 Building Internet Applications

When internet server applications are written in traditional languages such as C, the handling of
multiple clients is mostly done using a suitable IO multiplexing function — the ‘select()’ and
‘poll()’ functions in UNIX/POSIX. Such applications often end up as a two-stage operation which
loops continuously: wait for all possible events then process those which happened — comparable to
a fair-ALT in occam. However, programming in this manner correctly is often hard — most obviously
because the parallel multi-client design of the system does not map cleanly onto a single-thread IO-
multiplexed implementation8.

The use of threads can be of help here, but for languages such as C, threads introduce a whole
new set of potential problems — thread synchronisation, aliasing and parallel race-hazards. Whilst
the tools for correct thread control exist (‘pthreads’ — POSIX threads [But97], a common thread
API), no correct usage enforced.

Another way of tackling the multi-client problem is to avoid it in the first place, by having a
program which handles one client only and a mechanism for starting a new client-handling program
each time a new client connects. This is the approach taken by many types of server on UNIX,
often started from a daemon such as ‘inetd’ (the “internet super-server”). Unfortunately any server
application that requires or facilitates interaction between simultaneously connected clients (a chat
server for example) is reduced to interprocess communication (IPC) mechanisms to transfer data
between clients, which leads to even more problems. Furthermore, the cost of starting a new process
each time a new client connects may become prohibitive as the frequency of client connections
increases.

The desire to be able to program multi-client server applications easily is overwhelming. Parallel
languages such as occam provide the ideal abstraction (of processes and communication), which
unfortunately is often limited by the implementation. Putting aside implementation issues, those
familiar with the IRC (Internet Relay Chat) network might visualise the design of a server similar
to that shown in figure 6.4.

Such a network design would require mechanisms for creating and destroying processes and
connections, as clients and servers join and leave, and as clients (users) join and leave channels (that
controls the creation and removal of channel processes).

Blocking system-calls provide part of the implementation required for building multi-client server
applications, but do not provide mechanisms for dynamic network reconfiguration as needed to
implement figure 6.4. Such an implementation is made possible, however, by incorporating the use
of dynamic process creation (chapter 5) and mobile channel types (section 4.3). Without facilities for
dynamic network creation and reconfiguration, servers such as these require a modest, but sometimes
non-intuitive, change in design.

8The difficulty of programming single-thread server applications is demonstrated by the large number of USENET
messages which often result in a standard reply of “select() is not broken.”, followed by an explanation describing
how to use select() correctly.
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Figure 6.4: Conceptual process network for an IRC server

6.3.2 The occam Interface

The occam interface for programmer written blocking system-calls closely follows the convention
used by Wood [Woo98] to implement external C calls. Technicalities associated with parameter
passing between occam and C result in slightly hard-to-read C code. These difficulties are relatively
minor however. For the purposes of example, an external call which reads a number of bytes from
a file-descriptor (which could be a socket) can be implemented with:

static __inline__ void real_fd_read (int fd, char *buffer,

int bufsize, int *result)

{

*result = read (fd, buffer, bufsize);

}

/* PROC ?.fd.read (VAL INT fd, []BYTE buffer, INT result) */

void _fd_read (int *ws)

{

real_fd_read ((int)(ws[0]), (char *)(ws[1]), (int)(ws[2]), (int *)(ws[3]));

}

occam code which wishes to call this as an external C call declares it with an external PROC definition:

#PRAGMA EXTERNAL "PROC C.fd.read (VAL INT fd, []BYTE buffer, INT result) = 0"

which can then be called in the same way as any other occam PROC.
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From the programmer’s point-of-view, modifying the code to perform the read as a blocking
system-call is trivial, requiring only small changes in the declaration:

#PRAGMA EXTERNAL "PROC B.fd.read (VAL INT fd, []BYTE buffer, INT result) = 4"

The name change from ‘C.fd.read’ to ‘B.fd.read’ will require similar changes in any PROC that
calls it. The change in the ‘magic’ number at the end of the declaration from 0 to 4 is a necessity.
This number is the workspace requirement, in words, of the external PROC.

An external C call clearly needs no occam workspace, hence the zero. A blocking system-call
requires a small amount to save the occam process state however — since the run-time kernel will
continue scheduling occam threads whilst the process making the blocking call is blocked. The
particular value 4 is influenced by the presence of process priority (described in section 7.2). If
process priority is disabled, only 3 words of workspace are required (one less for the absent process-
priority slot).

Since the correctness of this is somewhat critical, the compiler will check for the correct value,
emitting a warning if not enough workspace is reserved — code is still generated and the correct
amount of workspace is reserved however.

The occam interface for ‘killable’ blocking system-calls is a modification on this, requiring an
extra parameter as well as a name change:

#PRAGMA EXTERNAL "PROC BX.fd.read (CHAN INT kill?, VAL INT fd,

[]BYTE buffer, INT result) = 4"

The additional parameter ‘CHAN INT kill?’ is an abstraction only, it should not be used for direct
communication. This should not cause a problem, since the scope of this channel ought be very
local (given correct design).

A specific C function implemented in the run-time kernel is available to occam programs in order
to terminate a blocking system-call. This is accessed using the declaration:

#PRAGMA EXTERNAL "PROC C.killcall (CHAN INT kill!, INT result) = 0"

Conceptually, this signals the termination of a blocking system-call on the special ‘kill’ channel.
After calling this PROC, the ‘result’ parameter contains the termination status, shown in Table 6.5.

Result Description
−1 the blocking call had already finished
0 the blocking call was successfully terminated
1 the blocking call had only just finished
2 the blocking call is currently finishing

Table 6.5: Blocking system-call ‘killcall()’ results

The most common result for termination will be 0 — successful termination. Any other result
indicates that the call had already finished — with the parameters (‘buffer’ and ‘result’) to
‘BX.fd.read’ being appropriately defined. The particular result values 1, 2 and −1 relate to the
termination algorithm (algorithm 6.5), used to trigger early termination of the blocking call.
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6.3.3 Safe Termination

It is worth giving consideration to application design when terminating blocking system-calls. With-
out careful programming, a system may easily deadlock as events associated with successful termi-
nation of the blocking call, and signalling the termination of the blocking system call interleave. For
a typical server application, the event which triggers early termination of a blocking call might be
a read timeout, or an explicit kill signal if a client is to be disconnected.

The occam fragment below shows a method for terminating the example ‘BX.fd.read’ blocking
call, triggered by an arbitrary ‘termination event’:

-- assume ‘VAL INT fd’ and ‘[]BYTE buffer’ are available

INT result:

BOOL did.kill:

SEQ

CHAN INT c, signal:

PAR

--{{{ blocking call

INT res:

SEQ

BX.fd.read (c, fd, buffer, res)

signal ! res

--}}}

--{{{ collection/termination

PRI ALT

signal ? result

did.kill := FALSE -- normal finish

... termination event

SEQ

C.killcall (c, result)

IF

result <> 0

SEQ

signal ? result

did.kill := FALSE -- normal finish

TRUE

SEQ

INT any:

signal ? any

did.kill := TRUE -- terminated

--}}}

After this code fragment has executed, ‘did.kill’ indicates whether the call finished successfully or if
it was terminated. In the FALSE (call finished) case, ‘result’ will hold the result from ‘BX.fd.read’.
In the TRUE case (call terminated), ‘result’ will be zero (indicating that the call was terminated
successfully — in the other cases, where termination races with completion of the blocking call, the
call is considered to have completed successfully — which it did).

One of the main design motivations for killable blocking calls is for use in ALTs — as in
the above example. To cater specifically for this, the blocking system-call library shipped with
KRoC [Bar00a] provides specific ALT-able variants of the common blocking socket operations ‘read’,
‘write’, ‘accept’ and ‘recvfrom’. The last of these is for UDP and TCP; the others are for TCP
only.
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These ALT-able variants provide a simpler interface for the occam programmer, hiding the details
of direct termination using ‘C.killcall’. This reduces the application’s involvement to, for example:

CHAN BOOL kill:

CHAN INT response:

PAR

--{{{ blocking call

socket.altable.X (kill?, response!, ...)

--}}}

--{{{ wait for response or timeout

PRI ALT

--{{{ incoming response for normal termination

INT any:

response ? any

kill ! TRUE

--}}}

--{{{ timeout (after 1 second)

tim ? AFTER (t PLUS 1000000)

INT k.result:

SEQ

kill ! TRUE

response ? k.result

... take action on ‘k.result’ if necessary

--}}}

--}}}

This fragment demonstrates a killable blocking socket operation (‘socket.altable.X’) using the two
channels ‘kill’ and ‘response’. The design rule is that whatever happens, a single communication
must occur on each channel. This ensures that ‘socket.altable.X’ will not deadlock, as it must
too communicate once on each of the two channels. In the case where the blocking call terminates
naturally, ‘socket.altable.X’ performs a parallel input/output, allowing the user to order the
communications in whatever way is appropriate for the application.

This design is effectively a localised IO-PAR [WJW93] network, guaranteeing deadlock freedom.
The particular application here solves a typical occam programming problem: two processes that
must communicate either one way or the other. This would normally require the use of output
guards in ALTs — that are not supported.

Cleaning Up After Termination

In some situations, the external C code being executed as the blocking call may need to perform
some cleaning-up, after early termination from the occam world. Although this is an operation
performed entirely in C, it is relevant to the occam programmer, and thus described here. Within
the CCSP system, a function is provided that arranges for a function to be called upon (forced)
termination of the blocking call:

void *bsyscalls_set_cleanup (void (*)(void *));

This function takes, as a parameter, the address (name) of a function that will be called when
the blocking call is killed (with ‘C.killcall’). The return value from this function is a pointer to
memory which can be used to save information required for cleanup. The same pointer is passed to
the function called when forced termination occurs, that can then use the previously stored data to
perform the cleanup operation.
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The pointer returned by ‘bsyscalls set cleanup()’ points at the bottom of the stack used by
the active clone process (section 6.3.4). As such, it is the programmer’s responsibility to ensure that
data placed here will not be overwritten by the blocking call through stack usage — a maximum
limit of 4 kilo-bytes is recommended.

One perceived, and investigated, use of this is when a blocking call starts another OS process
(through ‘fork()’ or similar), and waits for it to finish. If this functionality were not used, the OS
process started would not be killed when the blocking call is terminated. With this functionality, the
blocking call can arrange for an OS process started to be killed on its own termination. The occam

OS process library (part of the blocking syscalls library [Bar00a]) takes advantage of this, with a
demonstration program which runs the program “ping 127.0.0.1” for 5 seconds before terminating
it. This example program can be found in the KRoC/Linux source distribution [WMBW00].

6.3.4 Implementing Blocking System Calls

The implementation of blocking system-calls uses Linux ‘clone()’ processes. These are effectively
‘threads’ — sharing memory, file-descriptors and other file-system information (current working
directory and ‘umask’ for example). When the occam program dispatches a blocking system-call,
the external C function referenced is run inside one of these clone processes, allowing the occam

run-time kernel process to continue scheduling occam processes. For obvious reasons, each clone
process has its own stack, whose size is currently fixed9.

Clones are created through the use of the Linux ‘clone()’ system-call, which takes arguments
for the start-address of the new process, a pointer to its stack and various flags to control sharing.
Once a clone has been started, communication with it is handled through shared variables, a (Linux
kernel) semaphore, POSIX signals, and two spin-locks.

Placed at the bottom of each clone’s stack is a structure holding the state of that particular
clone:

struct _bsc_thread {

int pid; // clone’s process ID

int thr_num; // thread number [0..]

int *ws_ptr; // occam workspace pointer

char *raddr; // occam return address

int *ws_arg; // argument to func

int arg3; // 3-argument flag

int *ws_arg2, *ws_arg3; // additional arguments (not used by occam)

int pri; // priority of occam process

void (*func)(int *); // function to execute

int adjustment; // parameter offset

sigjmp_buf *jbuf; // jump buffer (allocated above this)

int terminated; // terminated ?

int cancelled; // cancelled ?

void *user_ptr; // pointer to ‘spare’ space

void (*cleanup)(void *); // cleanup function

};

9The stack for processes started by the kernel (using ‘fork()’) is allocated automatically, initially a fairly minimal
size, but with grow-down behaviour (specially flagged inside the Linux kernel’s VMA (virtual memory area) structure).
When the stack grows below its allocated space, more is allocated automatically. This flag cannot be relied upon
when allocating from user-space however, so a reasonably large fixed-size block is allocated (currently 128 kilo-bytes).
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Figure 6.5: Blocking system-call clone startup

The run-time kernel maintains an array of pointers to these structures, used to help a clone locate
itself during forced termination.

On startup, the run-time kernel initialises the variables associated with clone management as a
whole, then creates a small pool of initial clones — currently three. When a clone starts up, it simply
initialises itself then waits on ‘dsem’ — the dispatching semaphore (described in section 6.3.5). This
startup sequence (for two clone processes) is shown in figure 6.5.

6.3.5 Dispatching Blocking Calls

The occam interface to blocking system-calls is done through the use of external ‘B.xxx’ and ‘BX.xxx’
declarations, which invoke the corresponding C function ‘ xxx’. The standard interface to external
C functions (via ‘C.xxx’ external declarations) is handled in the translator (tranx86), that transforms
the occam calling sequence into a C calling sequence, additionally saving and restoring the active
state of the occam process.

In a similar manner, calls to ‘B.xxx’ and ‘BX.xxx’ functions are intercepted by the trans-
lator, that instead generates a run-time kernel entry into the entry-points ‘X b dispatch’ and
‘X bx dispatch’ respectively. The two arguments passed to the run-time kernel call are the ad-
dress of the C function (‘ xxx’), and the address of the occam arguments. As described in [Woo98],
this occam argument-address is used by the called C function to get at the occam PROC arguments.
This differs slightly from the interface mechanism first used, and presented in [Bar00b], where the
translator used was tranpc.

Both blocking system-call entry-points in the run-time kernel call the generic clone dispatching
function ‘bsyscalls dispatch’, that performs the actual dispatching. The implementation of this
is shown in algorithm 6.1.

In addition to dispatching the requested call (specified by ‘this-one’), the algorithm also ensures
that at least one clone will be available next time. The case where ‘num-free’ is zero will not happen
in a uni-processor KRoC, but would theoretically be possible in an SMP implementation.
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Algorithm 6.1: Blocking system-call dispatching algorithm (kernel-side)

1: //num-free : number of available clone processes
2: //dlock : dispatching spin-lock
3: //dsem : dispatching semaphore
4: //dinf : dispatching information

5: Tf ⇐ false
6: if num-free = 0 then
7: create clone()
8: Tf ⇐ true
9: else if num-free = 1 then

10: Tf ⇐ true
11: end if
12: while lock-or-fail (dlock) = false do
13: sched yield()
14: end while
15: dinf ⇐ this-one
16: num-free ⇐ num-free −1
17: sem signal( dsem )
18: if Tf = true then
19: create clone()
20: end if

The spin-lock ‘dlock’ is used to protect the shared data structure ‘dinf’. The dispatching algo-
rithm only ever claims this spin-lock, calling the OS system-call ‘sched yield()’ (line 13) while the
claim fails — in an attempt to schedule in the process holding the lock. When the ‘dsem’ semaphore
is signalled (at line 17), a clone process will wake up, inheriting the access rights to the lock (‘dlock’)
and the data (‘dinf’).

If another blocking call is immediately dispatched, before a clone has picked up the most recently
dispatched call, claiming the lock fails, preventing the dispatching algorithm from racing with itself
— in such (somewhat rare) cases, the occam kernel will spin (at lines 12-14) until a clone process
wakes up and releases the lock.

The corresponding clone process algorithm is trivial and shown in algorithm 6.2. Clone processes
simply wait on the semaphore ‘dsem’, and when released, copy ‘dinf’ into their local state before
releasing the ‘dlock’ lock (at line 8).

Algorithm 6.2: Blocking system-call dispatching algorithm (clone-side)

1: //dlock : dispatching spin-lock
2: //dsem : dispatching semaphore
3: //dinf : dispatching information

4: ... initialise
5: while forever do
6: sem claim( dsem )
7: local-state ⇐ dinf
8: unlock ( dlock )
9: ... perform blocking call (algorithm 6.6)

10: ... queue suspended occam process (algorithm 6.3)
11: end while
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Figure 6.6 shows the main actions and interactions of the occam kernel and any dispatching clone.
In the data copied through the ‘dinf’ structure are fields containing the invoking occam process’s
workspace pointer and return address. Once dispatched, the occam kernel maintains no reference of
the invoking occam process — if the C code called never terminates, the occam process will never
be rescheduled.

dispatch

get dispatching lock

fill structure

notify on semaphore

schedule next process

occam kernel clone 0

execute function

release dispatching lock

copy structure

(blocked on semaphore claim)

(wakeup)

Figure 6.6: Blocking system-call clone dispatch

Even though such a process may be technically deadlocked, the run-time kernel cannot detect
this, and will therefore not report deadlock and quit while incomplete blocking calls remain. The
one exception to this is the new keyboard handling process (section 6.3.9), which is treated specially
— by inspection of the top-level channel connecting the occam program to the keyboard handling
process.

6.3.6 Collecting Finished Calls

When a clone process finishes executing a blocking system-call, either because it finished naturally or
because it was forcefully terminated, the occam process that dispatched the call must be rescheduled.
This is done by means of a shared process queue (‘qfptr’ and ‘qbptr’), protected by a spin-lock
(‘queuelock’). If needed, a signal is also sent to the occam kernel, which responds immediately
by setting the ‘block sync’ synchronisation flag (section 6.2.3), and at some later time by moving
processes from ‘qfptr’ to the run-queue. A count of the number of queued finished blocking calls
is also maintained, ‘numqueued’. Algorithm 6.3 shows the algorithm used by a clone process to
reschedule an occam process.

Once the run-time kernel notices the ‘block sync’ synchronisation flag, it locks the queue, clears
the sync-flag, moves processes to the main run-queue, sets numqueued to zero, and releases the
lock. For completeness, this is shown in algorithm 6.4. As noted before, if the run-time kernel was
sleeping in ‘safe pause()’, this signal will wake it up.

After performing their side of the collection algorithm, the clone processes simply loop and
block on the ‘dsem’ semaphore waiting for another job. The cost of the operation at line 11 in
algorithm 6.4, where processes are moved from ‘qfptr’, ‘qbptr’ to the run queue, depends on whether
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Algorithm 6.3: Blocking system-call clone re-synchronisation algorithm

1: //qfptr, qbptr : finished blocking calls queue
2: //numqueued : number of queued processes
3: //queuelock : spin-lock to protect the above items

4: lock ( queuelock )
5: // enqueue occam process stored in ‘ws ptr’ (part of the local-state)
6: if numqueued = 0 then
7: qfptr ⇐ ws ptr
8: qbptr ⇐ ws ptr
9: Fs ⇐ true

10: else
11: qbptr[Link]⇐ ws ptr
12: qbptr ⇐ ws ptr
13: Fs ⇐ true
14: end if
15: numqueued ⇐ numqueued +1
16: unlock ( queuelock )
17: if Fs = true then
18: do signal( occam-kernel )
19: end if

process priority is supported (section 7.2). In the absence of priority, this operation is O(1), since
there is only one run-queue to put the finished processes on. With priority (which is the default),
this becomes an O(n) operation. However, n will typically be small — smaller than the cost of
using a separate finished-call queue for each priority level.

6.3.7 Terminating Blocking Calls

It is quite conceivable that a blocking call could block forever in the Linux kernel, or that mis-
programming could result in a non-terminating loop (in the called C function). For these reasons,
a safe mechanism for terminating them is provided.

The implementation of termination, like the other blocking system-call related algorithms, is
split into two halves. The clone process performs one half of the algorithm whilst the occam run-
time kernel performs the other. The ability to terminate a blocking call allows, for example, a socket
write to be included as an ALT guard — although careful application design is required, as described
in section 6.3.3.

From occam, termination of a blocking call is triggered through the use of the externally defined
‘C.killcall()’ procedure, referencing the particular blocking call to be terminated with its magic
channel parameter. That channel parameter, passed to the ‘BX...’ procedure as the first argument is
automatically ‘hidden’ from the underlying C function — that only sees the subsequent parameters.
This allows the same underlying C function to be used for both a plain external ‘C...’ call, a
blocking external ‘B...’ call, or an ALT-able (killable) blocking call ‘BX...’.

Algorithm 6.5 shows the algorithm implemented by ‘C.killcall’. While the clone is running,
the termination channel ‘tchan’ contains a pointer to that clone’s ‘bsc thread’ structure (described
in section 6.3.4). This is used to allow ‘C.killcall’ access to the clone’s state, in particular the
fields used to provide safe termination (‘terminated’ and ‘cancel’) and the process ID (the ‘pid’ field).
The atomic swap at line 18 indicates the point where ‘C.killcall’ either commits to terminating
the clone (via the SIGUSR1 signal), or leaves it alone (because it is already terminating).
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Algorithm 6.4: Blocking system-call finished-call collection algorithm

1: //qfptr, qbptr : finished blocking calls queue
2: //numqueued : number of queued processes
3: //queuelock : spin-lock to protect the above items
4: //num-free : number of available clone processes

entry(signal-handler):
5: block sync ⇐ 1
6: return

entry(reschedule):
7: if combined sync 6= 0 then
8: if block sync = 1 then
9: block sync ⇐ 0

10: lock ( queuelock )
11: // move processes from ‘qfptr’ and ‘qbptr’ to the run-queue (‘Fptr’ and ‘Bptr’)
12: num-free ⇐ num-free − numqueued
13: numqueued ⇐ 0
14: unlock ( queuelock )
15: else
16: // check for other sync flags
17: end if
18: end if
19: // schedule next runnable process or sleep

Algorithm 6.5: Blocking system-call termination algorithm
1: // tchan : termination channel (passed to blocking call and killcall)

2: T ⇐ tchan

3: if T = null then
4: // call has either not started or has already finished
5: sched yield()

6: T ⇐ tchan

7: if T = null then
8: // call has finished
9: return −1

10: end if
11: end if
12: if T [terminated] then
13: // call has finished but has not yet cleared channel word
14: return 1
15: end if
16: F ⇐ 1
17: // atomically swap T[cancel] and F
18: swap T [cancel], F
19: if F = 1 then
20: // call is in the process of terminating return 2
21: end if
22: // interrupt the clone by sending SIGUSR1
23: signal T [pid], SIGUSR1
24: return 0
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On uni-processor machines in particular, termination may be attempted before Linux has had
chance to schedule the clone process. In such cases, ‘sched yield()’ is called (at line 5) in an
attempt to schedule the clone.

In some cases, it might be desirable to prevent the clone from dispatching at all (in cases where
termination is invoked before the clone process has been scheduled). This would require significant
modifications to the algorithms however, and is a hard thing to do given the dispatching method
used (an OS-level semaphore). A relatively easy solution is available however, but only when more
direct control over process scheduling and signalling is available — i.e. in the Linux kernel itself.
This is investigated further in section 6.7.3.

The clone performs the other side of the termination algorithm, as shown in algorithm 6.6.

Algorithm 6.6: Blocking system-call clone termination algorithm

1: // tchan : termination channel (passed to blocking call and killcall)

2: T ⇐ pointer to bsc thread structure
3: T [cancel]⇐ 0
4: T [terminated]⇐ 0
5: tchan ⇐ T
6: if sigsetjmp T [jbuf] = 0 then
7: // returning directly
8: unblock SIGUSR1
9: call T [func] (T [ws arg])

10: T [terminated]⇐ 1
11: block SIGUSR1
12: S ⇐ 0
13: else
14: // returning from the SIGUSR1 handler
15: T [terminated]⇐ 1
16: S ⇐ 1
17: end if
18: F ⇐ 1
19: // atomically swap T[cancel] and F
20: swap T [cancel], F
21: if F = 1 and S = 0 then
22: // other side committed to terminating, but signal is pending
23: wait SIGUSR1
24: end if
25: tchan ⇐ null

6.3.8 Performance

The performance of the blocking system-calls extension can be gauged, in part, by measuring its
overhead. This can easily be done by comparing the overhead of a blocking call with its non-blocking
version — simply a matter of changing the name in occam. However, such a test is unable to measure
any performance gained from the parallel use of blocking system-calls — for example, reading from
multiple sockets. The standard UNIX technique for such code would be a ‘select()’ on all the
sockets for reading, followed by serialised reading on those which were ready. A crucial question
is, when compared with the alternatives, to what extent do the overheads of blocking system-calls
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damage performance — or, to what extent is performance improved10.
The first benchmark used is a simple test that measures the raw overhead of blocking system-

calls. This overhead is measured, at various levels of parallel granularity, by timing N parallel
blocking calls. The underlying C function called is ‘select()’, with a variable (possibly zero)
timeout. Although the ‘select’ call is not likely to be the main purpose for an application’s use of
blocking calls, it is certainly a possibility.
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Figure 6.7: Blocking system-call overheads for select() with various timeouts

Figure 6.7 shows the results of this benchmark, for delays of 0, 10 and 100 micro-seconds. The
time required for x parallel blocking calls is measured, as well as the maximum number of clone
processes that were used. The main body of the benchmark is trivial, simply:

INT t.start, t.stop, ns.per.group:

TIMER tim:

SEQ

tim ? t.start

SEQ i = 0 FOR N.LOOPS

PAR j = 0 FOR PAR.COUNT

B.select (DELAY)

tim ? t.stop

VAL INT64 nstime IS (INT64 (t.stop - t.start)) * (1000 (INT64)):

ns.per.group := INT (nstime / (INT64 N.LOOPS))

As can be clearly seen in the results, a 0 µs timeout behaves substantially differently from select()

called with either 10 µs or 100 µs timeouts. This is primarily an effect of the 10 ms Linux kernel
internal timer. Finer timeouts are potentially possible, using the ‘nanosleep’ system-call. However,
actually getting timeouts finer than 10 ms on Linux (by having the kernel perform busy waits – of
2ms or less) requires superuser privileges to change the default scheduling policy — which would
actually have a negative effect by restricting the number of clone processes that could be scheduled.

The minimum overhead reported is approximately 12 µs, on the 800 MHz Pentium-3 used for
this benchmark, at a parallel granularity of one. The overhead of a single select() call from occam

10Even if performance is damaged in some ways, just having the facility for multiple parallel blocking system-calls
is justification enough.
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in this benchmark is approximately 1 µs, setting the minimum time for the blocking system-call
dispatch-collect cycle at 11 µs. A lot of this overhead can be attributed to the (Linux) kernel
calls involved in dispatching and collecting processes; in particular, the overhead and latency of the
signalling mechanism used to notify the run-time kernel of completed blocking calls.

Network Performance

The previous select()-based benchmark does not really represent a real-life case, but is useful for
measuring the raw overhead of blocking calls. A fairly typical activity of many UNIX processes is
selecting from multiple sockets, followed by sequential processing of data from ready sockets.

Given that select() is easily available to occam, applications have a choice of how to handle
activity from multiple clients. At the finest level of granularity, each client can be handled by its
own occam process. At the other end of the scale, the application could make a single select()

call then process the active sockets either sequentially or in parallel. For socket reads, sequential
processing after a select() will be more efficient, since data is being retrieved from kernel buffers
directly.

n.select.read

n.select.read

n.select.read

report

generator
remote

generator
remote

generator
remote

(screen)

benchmark

switched TCP/IP network

Figure 6.8: Blocking system-call TCP/IP network benchmark layout

Figure 6.8 shows the structure of this benchmark, with one occam process per connection. At
coarser granularities, each occam ‘n.select.read’ handles multiple remote generators (not shown).
The “remote generator” processes are simple C programs that act as rate-controllable traffic gen-
erators. Connections are made outwards from the occam benchmark to these generators, that start
generating traffic as soon as requested. Once all the required generators are active, the occam

benchmark program simply measures the amount of data received within a given period of time
(typically 5 seconds in this benchmark).

The C function called (as the blocking system-call), is implemented using ‘select()’ followed by
a ‘read()’ on all the active sockets, before returning to occam. When calling ‘select’ with multiple
sockets, any number of sockets may be ready on return (between one and the number passed). At
low CPU loadings, each call to ‘select()’ with multiple sockets may result in only one or two being
ready, increasing the number of ‘blocking calls’ required to handle each client. At higher CPU loads,
with multiple sockets per ‘select’, more sockets will be ready for reading per cycle, reducing the
number of blocking calls performed. At some point, a ‘minimal’ overhead will be reached, with each
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call to ‘select’ returning immediately with all sockets ready.
The maximum throughput attainable depends on several factors. The application controllable

aspects are the frequency and size of communication, as well as some (OS) kernel networking param-
eters (such as send and receive buffer sizes). What cannot be controlled, however, is the network.
At the simplest level this means having sufficient bandwidth, tolerable latency and ‘fair’ switching
fabrics.

Figure 6.9 shows the results of this benchmark for two different networks. On the left are results
for a relatively wide network, with eight traffic generators running on eight Sun Sparc workstations,
and the results collected on a 550 MHz P3 four hops away. The results on the right are for a
significantly smaller network, with two traffic generators running on each of two machines and the
results collected on a 400 MHz P2.
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Figure 6.9: Blocking system-call network benchmark results

Unfortunately, these results only show that a either a slower CPU or faster network is required,
as the performance for all cases is roughly similar. At some transfer rate, the CPU will become fully
loaded and the lines will separate.

6.3.9 Interacting with occam Programs

Traditionally, KRoC programs have been connected to their surrounding environment by the use
of three channels: ‘keyboard’, ‘screen’ and ‘error’. These represent the three standard UNIX
I/O streams, ‘stdin’, ‘stdout’ and ‘stderr’ respectively. In the original KRoC/Linux, the other
ends of these channels were connected to pseudo-processes — functions in the run-time kernel that
masqueraded as occam processes (as far as channel communication and scheduling were concerned).

Handling for the screen and error channels is relatively simple, but the keyboard channel is more
problematic. The solution in KRoC [WW96] was to have a separate UNIX process reading from
the keyboard, connected by a pair of pipes to the main run-time kernel process. The keyboard
process reads a character from ‘stdin’, signals the run-time kernel (whose signal-handler simply
sets the ‘keyboard’ synch-flag), writes to the ‘data’ pipe then reads from the ‘acknowledge’ pipe.
This arrangement is shown in figure 6.10.

The acknowledgement pipe is needed to prevent reading from ‘stdin’ before the occam process
has consumed the key-press — in retrospect, a form of the extended rendezvous (section 3.7). This
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Figure 6.10: The original KRoC keyboard process

method was used in the original KRoC/Linux and still exists in current versions, but only when
blocking system calls are unavailable.

The introduction of blocking system calls provided a practical keyboard-handling alternative,
primarily in the interests of removing the pseudo-processes, which were fairly ungraceful bits of
code. Additionally, the cost of two pipe reads and two pipe writes per input character is needlessly
excessive, but was the only practical and portable technique at that time. With the availability of
blocking system-calls, the keyboard pseudo-process can be transformed into a real occam process,
that performs a blocking call to read from the keyboard before communicating it to the occam

program.
This approach has been taken in recent KRoC/Linux versions, along with real occam processes

that replace the screen and error pseudo-processes. The modified handling for the screen and error
channels is used regardless of whether blocking system-calls are available (which largely depends
on whether the running Linux kernel version supports the ‘clone()’ system call11). The new
arrangement of interface processes is shown in figure 6.11.
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(stdout)

clone process
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Figure 6.11: New occam keyboard, screen and error handling process

The advantages of this are twofold. Firstly, the keyboard synchronisation-flag (for cases when
blocking system-calls are not available), and the blocking system-call synchronisation flag, can share

11The number of Linux installations which cannot support blocking system-calls is ever decreasing, but occasionally
one crops up — some (mostly non-technical) people/organisations prefer to use old but working Linux installations,
rather than take the risk of upgrading and ending up with a non-functional system.



170 CHAPTER 6. CCSP AND LINUX

the same space in the synchronisation word (section 6.2.3) — the new implementation of the key-
board process makes them mutually exclusive. Secondly, modification of any of the three occam

processes is trivial — the occam sources are edited, the interface code re-generated12, and finally
the run-time kernel re-compiled.

One reason for modifying the occam interface code would be to allow the screen output to block
in the background — the standard implementation simply writes, if that blocks, the run-time kernel
blocks. As an example, the error-channel handling process is currently implemented as:

#PRAGMA EXTERNAL "PROC C.write.error (VAL BYTE ch) = 0"

PROC kroc.error.process (CHAN BYTE in?)

WHILE TRUE

BYTE ch:

SEQ

in ? ch

C.write.error (ch)

:

Where ‘C.write.error’ is an external C function defined in CCSP that simply writes characters
to ‘stderr’. A blocking version could be created by substituting the name ‘B.write.error’ for
‘C.write.error’. The screen process is less trivial since it line-buffers output by default, flushing
the buffer when it fills up or sees one of the characters: newline (‘*n’), carriage-return (‘*c’), or the
special flush character (‘*#FF’).

When the run-time system starts up, it allocates workspace for these processes, wires in the
top-level KRoC channels and puts them on the run-queue. The top-level PROC is then connected to
these channels and invoked directly through some suitable in-line assembler. When this call returns,
the run-time system exits — regardless of the state of the keyboard, screen and error handling
processes. To ensure that the screen output buffer is flushed before exit, tranx86 inserts code to
send the flush character to the screen channel before the top-level PROC returns. This can be disabled
with a command-line flag if a different screen-handling process is to be used.

To correctly detect a deadlocked program, the run-time kernel needs to inspect the three top-level
channels. If any application-defined occam processes are blocked communicating on these channels,
then the system is not deadlocked. However, if all three channels are either empty or contain
their respective handler occam processes — and there are no pending timeouts or blocking system-
calls (except possibly the keyboard process, which is specially ignored for this) — then deadlock is
reported and the run-time system exits.

6.4 User Defined Channels

User-defined channels allow the placement of arbitrary C code behind occam channel operations,
providing a mechanism for external-channels. This is certainly not a new idea: Vella [Vel98, VW99]
provided external channels over networks in a SPARC version of KRoC, allowing large networks
of occam processes to be distributed over networks of workstations. A similar mechanism also
existed in the original CCSP [Moo99] (in the C interface), designed largely to support the external

12Before distribution, the occam interfaces are reduced to assembler by the translator. Both the occam source and
generated assembler are shipped however. This stops the (stand-alone) CCSP source tree from requiring a functional
KRoC. The source distribution ‘build’ script does include support to generate the assembler at the appropriate point
however, should it ever be required.
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communication layer in MESH [BDv99a, BDv99b]. (CCSP and MESH were initially developed as
a joint-project between CERN and UKC, before diverging).

The support for external channels added here is substantially more flexible than previous versions
— largely as a direct result of the blocking system-calls extension (section 6.3). Currently, supporting
the ALT for external events involves significant application design, as described in section 6.3.3. User-
defined channels provide this support directly — with minimal application involvement.

Previous implementations of user-defined channels have imposed a slight run-time cost for ordi-
nary occam channel communication. This arises from the way they are implemented — by setting
the least-significant bit in the channel address to one. When communicating, the run-time kernel
must mask this bit off, checking for an external channel, before making an appropriate call to ex-
ternal channel functionality. Although this overhead is small (around 4 machine cycles), it is one
which we would wish to avoid if possible — in the interests of low overheads.

In previous versions of KRoC, external channel capability was a build-time option, and in initial
releases of the new KRoC/Linux, this support was removed. The support for user-defined channels
described here makes a compromise for run-time cost. Run-time kernel entry-points are provided
specifically for external channel handling, leaving the ordinary communication instructions alone.
With a compile-time flag, the translator will generate checking code around a communication in-
structions to redirect external channels to the alternative kernel entry-points. This flag only need
be applied when compiling occam sources which use external channels. In some (rare) cases, this
can lead to run-time failure — for example, when an external-channel is passed to an occam PROC

compiled without the support required to handle it. Debugging support is available to help track
these down, however, described in section 7.3.

Unlike previous external channel implementations, which were primarily designed for supporting
synchronised channel communication over TCP/IP networks, user-defined channels provide support
for any arbitrary external communication mechanism, of which networked channel communication
is just one. Such networking of channels is still of primary interest however, but not within the
scope of this thesis. Figure 6.12 shows an example of such connectivity.

node 1

client client

node 2 node 3

server

TCP/IP links

UDC code UDC code UDC code

Figure 6.12: Example distributed occam network using user-defined channels

The code required to use a user-defined channel in occam is relatively trivial, consisting of calls to
create and free external channels, plus a special language mechanism to attach an external channel
to an occam name — described in section 6.4.1. The code needed to implement a user-defined
channel is substantially more complex, but within the grasp of any competent C programmer. The
user documentation for user-defined channels [Bar02] provides in-depth examples for creating user-
defined channels. A brief overview is given here in section 6.4.2.
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The implementation of user-defined channels is non-trivial, comprising of modifications to most
parts of the KRoC/Linux system. For the occam compiler, these are a new set of instructions output
by the compiler to handle user-defined channels (described in section 6.4.3), plus some additional
support for parsing the language syntax described in section 6.4.1. The translator performs much
of the work for handling user-defined channels at run-time, by inserting checks as described in
section 6.4.4. The run-time handling of user-defined channels is described in section 6.4.5.

6.4.1 The occam Interface

In order to access a user-defined channel, an occam program must do two things. Firstly, the external
channel must be allocated and initialised, that is returned as an integer address for occam. Secondly,
the acquired address must be bound to an occam channel. Additionally, after use, the user-defined
channel may be freed. Such proper destruction of resources is indeed encouraged; to promote good
programming practice and prevent memory leaks (within the external C code).

The KRoC/Linux distribution includes an example ‘softchan’ user-defined channel, that imple-
ments a simple channel (examples of buffered and socket channels are also provided). The ‘softchan’
is accessed through the following (library-provided) PROCs:

PROC udc.softchan.alloc (RESULT INT addr)

PROC udc.softchan.free (INT addr)

These simply map onto underlying C functions that perform the required setup and initialisation.
Once an address has been acquired using ‘udc.softchan.alloc’, it is bound to an occam channel
either by a ‘PLACE’ statement or ‘PLACED’ declaration. For example:

INT addr:

SEQ

-- allocate channel

udc.softchan.alloc (addr)

-- use channel

CHAN INT c:

PLACE c AT addr: -- AT is optional

PAR

producer (c!)

consumer (c?)

-- use it again

PLACED CHAN INT c addr:

PAR

producer (c!)

consumer (c?)

-- free channel

udc.softchan.free (addr)

Semantically, the placed ‘c’ channel is no different from an ordinary occam channel. For other user-
defined channels, such as the example buffered channel, the semantics change, and occam programs
may need to be aware of this.
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6.4.2 The C Interface

The C interface to user-defined channels is centred around a C data-structure (‘ext chan t’), that
holds all the information needed to support a user-defined channel. When a user-defined channel is
created (by a C call from occam), parts of this structure must be initialised:

typedef struct {

... private fields for occam/CCSP

unsigned int magic;

int flags;

int (*chan_verify)(ext_chan_t *, unsigned int);

int (*chan_read)(ext_chan_t *, char *, int);

int (*chan_write)(ext_chan_t *, char *, int);

int (*chan_alt_enable)(ext_chan_t *);

int (*chan_alt_disable)(ext_chan_t *);

int (*chan_min)(ext_chan_t *, void **);

int (*chan_mout)(ext_chan_t *, void **);

int (*chan_min64)(ext_chan_t *, unsigned long long *);

int (*chan_mout64)(ext_chan_t *, unsigned long long *);

int (*chan_minn)(ext_chan_t *, unsigned int *, int);

int (*chan_moutn)(ext_chan_t *, unsigned int *, int);

void *userptr;

} ext_chan_t;

The first group of fields (hidden) are private to the run-time implementation (described in sec-
tion 6.4.5). The special ‘magic’ field should be initialised to the constant ‘UDC MAGIC’. This is used
to ensure the integrity of a user-defined channel for some operations at run-time. The ‘flags’ field
is a bitwise-or of flags that control the involvement of blocking system-calls (section 6.3) for channel
operations: ‘UDC NONE’ is the default value, ‘UDC BLOCKING INPUT’ and ‘UDC BLOCKING OUTPUT’
specify that channel input and output should use blocking system-calls. ‘UDC BLOCKING ALT’ spec-
ifies that channel ‘ALT’s should also be handled using blocking system-calls.

The third group of fields are pointers to functions that provide the desired functionality for
communication and channel verification. The verification function ‘chan verify’ must always be
provided, even if it does nothing (ignoring it is not encouraged however). The unsigned integer
argument passed is a hash-code for the underlying occam channel protocol. This can be used
to ensure channel-protocol compatibility at run-time. The remaining fields are set to functions
that provide the actual communication support. The user-documentation [Bar02] describes the
functionality of all these fields in detail.

The final ‘userptr’ field is optional space allocated for a user-defined channel to store
its own (user-defined) state. To simplify the process of initialisation, a run-time function
(“ccsp udc alloc extchan (int eb)”) is provided that allocates and initialises an ‘ext chan t’
structure to a default state, with additional space (of ‘eb’ bytes) pointed to by ‘userptr’. Similarly,
a “ccsp udc free extchan” function is provided to free it.

A few other user-callable functions are provided for use at run-time, mainly to resume suspended
occam processes and handle blocking ALTs. The operation of these are described in sections 6.4.5
and 6.4.6.
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6.4.3 Generating Code for User Defined Channels

Once initialised in the C world, an occam program uses a PLACE statement or PLACED declaration
to attach a user-defined channel to an occam name, as shown in section 6.4.1. For example, using
the traditional ‘PLACE’ form:

CHAN INT c:

PLACE c AT addr

... process using ‘c’

Unlike ordinary occam channels (that get initialised to ‘NULL’ after declaration), user-defined chan-
nels (indicated to the compiler by a run-time computed PLACEment — ‘addr’) cause the name ‘c’
to be a pointer to the channel — rather than the channel itself. The initialisation code for these
stores the computed address in the channel name, before calling the external channel verification
function. The above occam fragment, for example, will generate the following (annotated) code:

LD addr -- load address

LDC prothash -- load protocol hash-code

EXTVRFY -- external channel verify

LD addr -- load address

LDC 1

OR -- set the lsb to indicate an external channel

ST c -- store in channel name

The ‘prothash’ constant is generated internally by the compiler. The programmer interface for
user-defined channels defines various constants which represent the protocol hash-codes for common
protocols (such as INT, BYTE and INT::[]BYTE), described in [Bar02].

After this initialisation, the compiler treats ‘c’ as an ordinary channel pointer. Where input, out-
put and ALTs are performed directly on an external (PLACEd) channel, the compiler generates explicit
external communication instructions: EXTIN, EXTOUT, EXTENBC, EXTDISC and various others (for ex-
ternal MOBILE communication). The full list is given in Table B.4, with details in Appendix B.1.4.

6.4.4 Compile-Time Translation for User Defined Channels

In cases where the external nature of a channel is unknown (typically in PROC formal parameters),
the compiler generates ordinary channel communication instructions, leaving it up to the translator
(tranx86) to check whether a channel is external or not. The interception of such instructions by
the translator is controlled by a run-time flag, so the overhead need not be incurred where external
channels will not be used.

The run-time check inserted by the translator checks the least-significant bit of the channel ad-
dress. If set, the bit is removed and the corresponding external channel entry-point used. Otherwise
the existing channel operation is performed unaltered. For example, the following occam fragment:

INT x:

SEQ

c ? x

... process using x

generates the (annotated) code:
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AJW -1 -- room for x

LD c -- load channel

LD ADDRESSOF x -- load target address

LDC 4 -- load count

IN -- channel input

... code for process using x

AJW 1 -- lose x

The translator turns this into the appropriate code to interface with the run-time kernel, inserting
an external-channel check if desired. The code below shows an approximation of this output:

subl $4, %ebp ; AJW -1

movl 8(%ebp), %eax ; LD c

leal 4(%ebp), %ebx ; LD ADDRESSOF x

movl $0f, -4(%ebp) ; save return address (for IN)

movb %al, %dl ; copy bottom 8 bits of channel address

andb $0xfc, %al ; mask off bottom 2 bits of channel address

andb $0x03, %dl ; mask in bottom 2 bits of channel address

jz _Y_in32 ; conditional jump to ordinary input entry-point

jmp _Y_extin32 ; jump to external input entry-point

0:

addl $4, %ebp ; AJW 1

Similar checks are made for other communication instructions, including ALTs. In places where the
compiler drops explicit external channel instructions (‘EXTIN’ for example), the bottom 2 bits must
still be masked off before entering the run-time kernel.

6.4.5 Run-Time Handling for User Defined Channels

The previously hidden fields of the ‘ext chan t’ structure are:

void *chanword; // channel word

unsigned int chantype; // protocol hashcode

void *chanbxalt; // used for blocking ALTs

void *chansync; // used for blocking ALTs

The ‘chanword’ field behaves like the traditional occam channel-word. If the channel is empty
(inactive), ‘chanword’ is set to null (technically ‘NotProcess.p’). Otherwise this field points at the
workspace of a suspended occam process. The ‘chantype’ field is used for extra internal checks
during channel verification, and holds the channel protocol hash-code generated by the compiler
(supplied to the run-time system through the ‘EXTVRFY’ instruction).

The ‘chanbxalt’ and ‘chansync’ fields are used for the implementation of blocking ALTs, that
requires careful programming in order to avoid race-hazards.

The kernel entry-points for external communication provide the necessary checks and glue-code
to perform the external operation. As a general rule, all the linked C functions which make up
the external channel (function-pointers in the ‘ext chan t’ structure) return an integer which
indicates the action to be performed by the occam kernel — either to suspend the invoking process
or to continue running (on successful communication). If the operation is flagged as ‘blocking’ in
the ‘flags’ field, then a blocking system-call is made to the user code – whose return value is simply
discarded (the operation always runs to completion).

Algorithm 6.7 shows the algorithm used for external channel input. External channel output
and mobile communications follow along similar lines. Mobile communication is slightly different
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Algorithm 6.7: External channel input algorithm

1: // Wptr : invoking workspace pointer

external.channel.input (chan.addr, dest.addr, count):
2: if (chan.addr = NotProcess.p) or (chan.addr[magic] 6= UDC MAGIC) then
3: error (invalid channel)
4: else if chan.addr[chan read] = null then
5: error (channel not for input)
6: end if
7: if chan.addr[flags] and BLOCKING INPUT then
8: dispatch3 (Wptr, Wptr[Iptr], chan.addr, dest.addr, count, chan.addr[chan read])
9: else

10: T ⇐ chan.addr[chan read] (chan.addr, dest.addr, count)
11: if T 6= 0 then
12: // suspend occam process in channel and reschedule
13: chan.addr[chanword]⇐ Wptr
14: reschedule
15: end if
16: end if

in that no size field is given. Since the default implementation for mobile communication works
by pointer-swapping, the size of the data pointed at is not required. For both static and dynamic
mobile communication, user-defined channel code gets passed a pointer to the workspace location
where the scoped-in mobilespace pointer (section 4.2.3) is allocated. For static mobiles, this is a
single word in workspace which points into the statically allocated mobilespace. For dynamic mobile
arrays, there are n + 1 words in the process workspace — the pointer to the dynamically allocated
block first, followed by n dimension counts. For the external versions of ‘MIN64’ and ‘MOUT64’, the
number of dimensions is fixed at 1. For external versions of ‘MINN’ and ‘MOUTN’, the number of
dimensions is passed as a parameter to the user-defined channel code.

To provide access to the sizes of mobile variables (the whole fixed-size for static mobiles, and the
base-type size for dynamic mobile arrays), a compiler option is provided which allocates an extra
word in the occam workspace for mobile variables. When a mobile variable comes into scope, this
extra word is initialised to the correct size. By default, when compiling occam code with user-defined
channel support (the ‘-e’ flag to ‘kroc’), this mobile-size-field is enabled. For user-defined channel
code, static mobile communication functions get passed a pointer to two words in workspace — the
pointer into mobilespace and the size of the underlying type. For dynamic mobile communication,
the base-type size is found in the (n + 1)th workspace offset (0 being the pointer, followed by n
dimension sizes).

To reschedule an occam process that is blocked in a user-defined channel, a call to “ccsp udc -

resume process (ext chan t*)” is made, passing a pointer to the user-defined channel in which
that process is blocked. Algorithm 6.8 describes the operation of this function, that must be called
from within the context of an occam process. Usually, the call will be made during user-defined
input or output code (to reschedule the other side).

In all cases, the user-defined channel code must handle all the aspects of communication, in-
cluding storing destination and source pointers if necessary. The example programs provided in
the KRoC/Linux distribution define private structures which hold the necessary state. The size of
this state is passed as an argument to “ccsp udc alloc extchan” which stores a pointer to the
required size in the ‘userptr’ field. Subsequently, operations on the channel have easy access to
this state through that ‘userptr’.
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Algorithm 6.8: External channel process resume algorithm

1: // chan.addr : address of ext chan t structure
2: if (chan.addr = NotProcess.p) or (chan.addr[magic] 6= UDC MAGIC) then
3: error (invalid channel)
4: else if chan.addr[flags] bitand BLOCKING then
5: error (attempting to resume blocking thread)
6: else if chan.addr[chanword] = NotProcess.p then
7: error (channel empty)
8: end if
9: P ⇐ chan.addr[chanword]

10: if P and 1 then
11: // something ALTing
12: P ⇐ (P and 1)
13: if P [Ptr] = Waiting.p then
14: queue P
15: end if
16: P [Ptr]⇐ Ready.p
17: else
18: queue P
19: end if
20: chan.addr[chanword]⇐ NotProcess.p

6.4.6 ALTing on User Defined Channels

The mechanisms provided to support ALTs on user-defined channels are significantly more complex
than simple input and output. Providing a mechanism for ALTing against external events is a
powerful feature. For example, reading data from multiple TCP connections or timing-out can
easily be done using the socket channel (‘sockchan’):

[2]INT addr:

SEQ

... setup addr[0] and addr[1] for socket channel

PLACED CHAN INT::[]BYTE c AT addr[0]:

PLACED CHAN INT::[]BYTE d AT addr[1]:

WHILE TRUE

TIMER tim:

INT t:

[DATA.SIZE]BYTE data:

INT len:

SEQ

tim ? t -- read current time

t := t PLUS 1000000 -- timeout in 1 second

PRI ALT

c ? len::data

... process [data FOR len]

d ? len::data

... process [data FOR len]

tim ? AFTER t

... timed out (no data read)
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The ALT construct accesses user-defined channel code through the ‘EXTENBC’ and ‘EXTNDISC’ (sec-
tion 3.9.2) instructions, which in turn invoke the ‘chan alt enable’ and ‘chan alt disable’
functions in the user-defined channel code. Algorithms 6.9 and 6.10 show the algorithms used to
implement ‘EXTENBC’ and ‘EXTNDISC’ respectively.

Algorithm 6.9: External channel ALT enabling algorithm

1: // Wptr : invoking (ALTing) workspace pointer

external.channel.enable (chan.addr, guard):
2: if (chan.addr = NotProcess.p) or (chan.addr[magic] 6= UDC MAGIC) then
3: error (invalid channel)
4: else if chan.addr[chan alt enable] = null then
5: error (channel not for ALTing)
6: end if
7: if guard then
8: if chan.addr[flags] bitand BLOCKING ALT then
9: chan.addr[chanbxalt]⇐ NotProcess.p

10: chan.addr[chansync]⇐ NotProcess.p
11: end if
12: T ⇐ chan.addr[chan alt enable] (chan.addr)
13: if T then
14: // external channel ready
15: Wptr[Ptr]⇐ Ready.p
16: else
17: // store ALTing process in channel
18: chan.addr[chanword]⇐ (Wptr bitor 1)
19: end if
20: end if
21: return guard

The requirements for a user-defined ALT are either blocking or non-blocking. In both cases,
the enabling function returns a flag indicating whether the channel is ready, as does the disabling
function.

To handle a blocking ALT, the user-code inside the enabling function makes a call to “ccsp udc -

start alter”, that dispatches a blocking system-call to handle the ALT. A corresponding function
is used in the disabling function to terminate the blocking ALT — “ccsp udc kill alter”.

The blocking ALT mechanism is engineered in such a way that if the blocking call returns whilst
the ALTing process is blocked (in ‘ALTWT’ or ‘TALTWT’), then that ALT is optionally woken-up, with the
external channel ready. The user code dispatches the blocking ALT process by calling “ccsp udc -

start alter”, providing a pointer and argument to a C function which will perform the blocking
call.

In the socket channel, for example, this is implemented by a simple ‘select()’ call on the socket.
The C function that performs the blocking call takes two parameters: the user-argument supplied
to the ‘start-alter’ function, and a pointer to a wake-flag. This flag, initially set to zero, is examined
when the blocking call finishes. If set to 1, and the ALTing process is blocked (waiting), then that
ALTer is rescheduled. Otherwise the ALTing process is left alone.

In order to use the blocking system-calls extension for ALTing, a small pseudo-process is created.
The purpose of this pseudo-process is to provide an occam process context, that is scheduled when
the blocking call completes. A blocking ALT always finishes in one of two ways. Either the call
finishes naturally, in which case the pseudo-process is scheduled, or it is killed from within the
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Algorithm 6.10: External channel ALT (reversed) disabling algorithm

1: // Wptr : invoking workspace pointer

external.channel.disable (chan.addr, guard, proc.addr):
2: load return.address
3: if (chan.addr = NotProcess.p) or (chan.addr[magic] 6= UDC MAGIC) then
4: error (invalid channel)
5: else if chan.addr[chan alt disable] = null then
6: error (channel not for ALTing)
7: end if
8: if guard then
9: T ⇐ chan.addr[chan alt disable] (chan.addr)

10: if T then
11: // channel ready
12: Wptr[Temp]⇐ proc.addr
13: fired ⇐ 1
14: else
15: if chan.addr[flags] bitand BLOCKING ALT then
16: // channel not ready, blocking call terminated – wait for it
17: if chan.addr[chansync] = NotProcess.p then
18: chan.addr[chanbxalt]⇐ return.address
19: chan.addr[chansync]⇐ Wptr
20: reschedule
21: end if
22: chan.addr[chansync]⇐ NotProcess.p
23: end if
24: chan.addr[chanword]⇐ NotProcess.p
25: fired ⇐ 0
26: end if
27: else
28: fired ⇐ 0
29: end if
30: return fired

channel disabling code by a call to “ccsp udc kill alter” — that simply invokes ‘ killcall()’
to terminate the blocking call.

Figure 6.13 shows the workspace layout and initialised values for the pseudo-process. This
workspace also contains the ‘magic channel’ used to terminate blocking system-calls (section 6.3.7).
A pointer to this is stored at offset 2 in the workspace, with the pointer to the (blocking) user
function at offset 1. The “ccsp udc start alter” function dispatches a blocking system-call
with the context of the pseudo-process. A small stub function is called first, that re-arranges the
parameters slightly, in order to provide the user function with the supplied argument (at workspace
offset 3) and a pointer to the wake-flag (at workspace offset 4). The return address for the pseudo-
process is set to the address of a small section of jump-code, that re-enters the run-time kernel
through the ‘ X udc fallout’ entry-point, making it appear that the pseudo-process invoked it.

The algorithm used to support the completion of a blocking ALT, implemented by ‘ X udc fallout’,
is shown in algorithm 6.11. This code is run always, regardless of whether it was triggered by a
‘ killcall()’ termination on the blocking-call, or whether the blocking call finished naturally. Al-
gorithms 6.10 and 6.11 ensure that the blocking ALT has completed at the point where the channel
is disabled.
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Figure 6.13: Workspace layout for user-defined channel blocking ALT pseudo-process

To illustrate how these algorithms interact, consider the following simple occam fragment:

ALT

c ? x

P (x)

d ? y

Q (y)

where ‘c’ is an external (user-defined) channel, and ‘d’ is an ordinary occam (soft) channel. Although
‘PRI ALT’ may be a better choice for run-time efficiency (it will use the enhanced ALT enabling
sequence — section 3.9.3), the plain ‘ALT’ generates less code. For the above occam fragment, the
enabling and disabling code is:

ALT -- begin ALT

--{{{ ALT enabling

LD c -- load channel pointer

LDC 1 -- load TRUE pre-condition

EXTENBC -- enable external channel

LD d -- load channel pointer

LDC 1 -- load TRUE pre-condition

ENBC -- enable channel

--}}}

ALTWT -- ALT wait

--{{{ ALT disabling

LD c -- load channel pointer

LDC 1 -- load TRUE pre-condition

LD ADDRESSOF :L1 -- load process address

EXTNDISC -- disable external channel

LD d -- load channel pointer

LDC 1 -- load TRUE pre-condition

LD ADDRESSOF :L2 -- load process address

NDISC -- disable channel

--}}}

ALTEND -- finish ALT
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Algorithm 6.11: External channel blocking ALT completion algorithm

1: // Wptr : workspace pointer (of pseudo-process)
2: if Wptr[4] = 1 then
3: // resume any suspended ALT
4: T ⇐ Wptr[5]
5: if T [Ptr] = Waiting.p then
6: T[Ptr]⇐ Ready.p
7: queue T
8: end if
9: end if

10: E ⇐ Wptr[7]
11: Wptr ⇐ Wptr −4
12: ... free pseudo-process workspace
13: Wptr ⇐ NotProcess.p
14: if E [flags] bitand BLOCKING ALT then
15: if E [chansync] 6= NotProcess.p then
16: // NDISC process is blocked here, take over from it
17: return.address ⇐ E [chanbxalt]
18: Wptr ⇐ E [chansync]
19: E [chansync]⇐ NotProcess.p
20: E [chanbxalt]⇐ NotProcess.p
21: E [chanword]⇐ NotProcess.p
22: fired ⇐ 1
23: return fired
24: end if
25: E [chansync]⇐ E
26: end if
27: reschedule

This is followed by the code for the guarded processes themselves, jumped to from within the
‘ALTEND’ instruction:

:L1

... code for "c ? x -> P(x)"

J :L3

:L2

... code for "d ? y -> Q(y)"

J :L3

:L3

Figure 6.14 shows the run-time behaviour for such code, showing both cases for termination — the
‘early synchronisation’ (where the blocking ALT finishes before the disabling sequence gets called),
and the ‘late synchronisation’ (where the disabling sequence kills the blocking ALT).

One feature which becomes possible using blocking ALTs is that of external ALT-able output
events. Because the occam compiler disallows output guards in ALTs, such external outputs must
be masqueraded as inputs for ALTing13.

13A possible route for ALTing external output would be to allow, specifically, user-defined channel outputs in ALTs,
generating almost the same code. This has not been implemented however, as it does not fit naturally with occam
(that has no support whatsoever for output guards in ALTs).
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Figure 6.14: External channel blocking ALT run-time behaviour

To correctly disguise an output as an input, a static mobile user-defined channel must be used.
For example:

DATA TYPE PACKET IS MOBILE [1500]BYTE:

INT addr:

SEQ

... initialise special user-defined channel

PLACED CHAN PACKET c AT addr:

WHILE TRUE

PACKET data:

SEQ

... populate ‘data’

PRI ALT

c ? data

... ‘data’ output and still defined

tim ? AFTER timeout

... timed-out. ‘data’ not output, but still defined

This ensures that the pointer passed to the underlying C function (‘chan min’) is indeed ‘data’.
The pointer actually passed to the user code is one into the occam workspace, that contains a pointer
to ‘data’, and optionally a mobile-size-field.
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Using dynamically sized mobile variables is not an option, since the compiler generates code that
frees the dynamic mobile before performing the input. Ordinary channel input is not recommended
either, since the compiler could, potentially (for pathological cases), allocate a temporary for the
input and assign it to ‘data’ later. For a user-defined channel performing output, this would mean
the pointer passed would point at truely uninitialised data.

6.5 Dynamic Loadable Processes

This section presents a mechanism which enables the dynamic loading and connection (through
a channel interface) of pre-compiled occam processes. Unlike the dynamic process mechanisms
presented in chapter 5, this extension does not require advance knowledge about the process being
loaded. The extension uses a UNIX mechanism for the dynamic loading of program code (the
dynamic linker — ‘ld’), and requires no changes in the occam compiler.

The perceived use of this functionality is for building module-based programs, that consist of
some core components supplimented by run-time loaded modules for specific functionality.

Once loaded and connected, a dynamically loaded process (possibly a network of sub-processes)
becomes part of the overall network itself. This allows it to load and connect other dynamically
loadable processes (including other instances of itself). Although not strictly intentional, this pro-
vides a method for parallel self-recursion, mutual-recursion and any cyclic call structure in general.
Only self-recursion is allowed directly within the occam language (discussed in section 5.1.4).

Dynamically loadable processes are contained within shared object (‘.so’) libraries. A single
library may contain an arbitrary number of dynamic processes. In order to generate a library, a
special flag is passed to the ‘kroc’ wrapper-script which causes the creation of a shared-object,
rather than an executable, from occam sources. Only a few changes are required when translating
the occam compiler output in order to build a dynamic process, described in section 6.5.1.

A set of FUNCTIONs and PROCs are provided for occam programs, that load and unload dynamic
process libraries, load PROCs from libraries (and free them again), and ‘activate’ (execute) loaded
PROCs. These are described in section 6.5.2.

One additional feature engineered into the dynamic processes extension is the ability to suspend
and resume the dynamic process. Once suspended, the dynamic process’s state can be written to
disk, or accessed as an array of bytes, allowing it to be communicated over networks. In a similar
way, a previously suspended process may be loaded from disk and resumed, or a remotely sent
process recieved and resumed. This leads to several useful features, described with the details of
suspending and resuming in section 6.5.3. The implemenation of this mechanism is described in
section 6.5.4.

6.5.1 Generating Dynamic Processes

Dynamic process libraries are created by giving the ‘-l’ flag to the ‘kroc’ command. This flag
also selects the ‘-c’ (compile only) option — dynamic libraries may not contain the outermost top-
level process for an occam program. When generating code for top-level PROCs (those which are
defined at the left-most level of indentation), the compiler outputs special constants which define
the workspace, vectorspace and mobilespace usage for those PROCs.

When translating ordinary occam, tranx86 ignores most of these directives, and only outputs
usage information for the last PROC — where the occam program will start. This information is
encoded in three constants: ‘ wsbytes’, ‘ vsbytes’ and ‘ msbytes’.
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For dynamically loadable processes, the handling of these constants is changed such that the
memory usage for all top-level PROCs is included in the translated code, and placed into the shared-
object (‘.so’) file. The names of the generated memory usage constants follow the PROC name. An
occam process called ‘thing’ will generate the entry-point ‘O thing’ and the constants ‘ thing -

wsbytes’, ‘ thing vsbytes’ and ‘ thing msbytes’. All memory usage information is output, even
if zero.

The PROC interface to loadable dynamic processes is fixed — an array of input channels and an
array of output channels, all carrying the special ‘ANY’ protocol. For the programmer, this means
that the actual channel-only interface must be re-typed and re-arranged, on both sides. For example,
a very simple dynamic process that has a single ‘BYTE’ output-channel could be implemented by:

PROC test.process (VAL DPROCESS me, []CHAN ANY in?, out!)

CHAN BYTE out! RETYPES out[0]!:

VAL []BYTE str IS "Hello, dynamic world!*n":

SEQ i = 0 FOR SIZE str

out ! str[i]

:

The leading ‘VAL DPROCESS me’ is a process handle for the process itself — similar to ‘this’ in Java
and C++ — used for suspending and other operations.

6.5.2 Loading and Running Dynamic Processes

Dynamic process libraries are handled at run-time using the Linux/UNIX dynamic-linker, ‘libdl’.
This allows a program to dynamically load a ‘.so’ file, then extract pointers to symbols within it
(using the ‘dlopen()’ and ‘dlsym()’ functions). For the occam programmer, all this functionality
is managed by the run-time kernel, and accessed through a number of run-time functions — that
are presented as INLINE PROCs to occam:

PROC ccsp.openlib (VAL []BYTE filename, RESULT INT handle)

PROC ccsp.loadproc (VAL INT handle, VAL []BYTE procname, RESULT DPROCESS p)

PROC ccsp.runproc (DPROCESS p, []CHAN OF ANY in, out, RESULT INT result)

PROC ccsp.freeproc (DPROCESS p)

PROC ccsp.closelib (VAL INT handle)

PROC ccsp.run (VAL []BYTE procname, VAL INT libhandle, []CHAN OF ANY in, out,

RESULT INT result)

To open a dynamic library, an occam program simply calls ‘ccsp.openlib’, passing the filename14

as an argument. If the library is opened successfully, an integer handle to it is returned. On failure,
this handle is set to zero. A load failure, other than invalid file, occurs when symbols in the dynamic
library cannot be resolved. For occam, this can happen when a dynamic process has ‘#USE’d an
occam library, but is not linked against it — either in the dynamic process or the main occam

program.
To load a process from a dynamic library, an occam program calls ‘ccsp.loadproc’, passing the

relevant library handle and the textual name of the process. On success, the ‘DPROCESS p’ parameter
is assigned a handle for that loaded process, or ‘NOTPROCESS.D’ (zero) on failure.

14The filename passed to the dynamic linker can optionally be path-free, in which case it must be reachable via the
‘LD LIBRARY PATH’ environment-variable or the system-wide configuration in ‘/etc/ld.so.conf’.



6.5. DYNAMIC LOADABLE PROCESSES 185

Once loaded, a process is attached to the existing occam network and scheduled by calling
‘ccsp.runproc’. The process handle and channel interface are passed as parameters, with the
outcome (after completion) stored in the ‘result’ parameter. On success, this will be either
‘DPROCESS.FINISHED’ or ‘DPROCESS.SUSPENDED’. If the process generates a run-time error, it is
deactivated and ‘DPROCESS.FAULTED’ is returned.

The last of these, ‘ccsp.run’, is simply a wrapper around ‘ccsp.loadproc’, ‘ccsp.runproc’
and ‘ccsp.freeproc’, with some basic error handling. With the exception of ‘ccsp.runproc’, these
occam PROCs call underlying C functions in the run-time kernel that perform the relevant dynamic-
library operations.

For each dynamic process loaded, a structure is allocated in the run-time kernel that maintains
essential house-keeping information — for instance, pointers to the allocated workspace, vectorspace
and mobilespace for the dynamic process. A pointer to this structure is returned to the occam

program when it successfully loads a dynamic process (with ‘ccsp.loadproc’). The run-time kernel
keeps track of all loaded dynamic processes, as both a flat-list and as a tree — where descendants
indicate dynamic processes started from within another dynamic process. The list at the top-level
incurs the obvious O(n) cost when searching for a particular process. A balanced tree (AVL for
example) would provide a more efficient search at around O(log2n). However, a process need only
be searched for when a run-time error occurs, making it a rather low-priority optimisation.

The PROC call to ‘ccsp.runproc’ is intercepted by the translator, that generates code for a special
run-time entry-point, ‘KR.run’. The operation of this call is to enqueue the dynamic process and
suspend the current process, resuming when the dynamic process terminates normally, suspends
itself or causes a run-time error.

Assuming compilation into a dynamic library called ‘test.so’, the earlier ‘test.process’ can
be dynamically loaded and executed with:

#INCLUDE "dynproc.inc"

PROC test (CHAN BYTE screen!)

INT handle:

SEQ

ccsp.openlib ("./test.so", handle)

IF

handle <> 0

[1]CHAN ANY test.out! RETYPES [scr!]

INT res:

SEQ

ccsp.run ("test.process", handle, [], test.out!, res)

... take action based on outcome in "res"

ccsp.closelib (handle)

TRUE

SKIP

:

The usefulness of this dynamic process loading mechanism hinges on the fact that nothing about the
process (or network of processes) being launched need be known in advance — with the exception
of its channel interface, that is abstracted into the two arrays of ANY channels. No input channels
are required by this process, so an empty-array specifier is used (introduced in section 3.5.2).

Once connected into an existing process network, no additional overheads are incurred at run-
time for the dynamic process. Mobile data structures, arrays, channel bundle ends and processes
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(Chapter 4) may be communicated through this channel interface, providing a low-cost method for
transferring data in and out of a dynamically loaded process.

The occam web-server [Bar03] does exactly this when handling dynamically loadable ‘.ogi’
modules. The connection between the web-server and an OGI module is comprised of two tagged-
protocol channels, that carry mobile connection structures and higher-level control information.
Figure 6.15 shows an example of the run-time network that might be created in the web-server.

dynamically loaded process

dynamically loaded process

OGI Manager

OGI Handler

OGI Handler

OGI handling portion of occwserv

OGI Main

OGI Main

Figure 6.15: Example connectivity of dynamically loaded processes

In a similar way to other dynamic process extensions, mobilespace allocated for a dynamically
loaded process must never be returned to the memory pool for re-use. The mobilespace for dy-
namically loaded processes is managed by the run-time kernel, which maintains a list of allocated
mobilespaces. When a dynamic process is loaded, a hash-code for its mobilespace is generated. This
is subsequently used to check for available mobilespaces, and to free the mobilespace to the correct
list after use. The hash-code is formed using the library name, the process name and the memory
requirements of the process. It is envisaged that this will be sufficiently unique to prevent the invalid
recycling of mobilespaces.

6.5.3 Suspending and Resuming Dynamic Processes

One of the more interesting aspects of these dynamic processes is their ability to suspend themselves,
and possibly be resumed later on. Futhermore, once suspended, the state of the process can be saved
to disk, duplicated, or communicated over a network, for example. Correspondingly, a dynamic
process may be initialised from a previously saved, assigned or received state.

To suspend, a dynamic process calls the ‘ccsp.suspendproc’ procedure, that takes the process’s
own identifier (passed as a parameter into the launched PROC), and a integer used to indicate the
result. This result will either be the constant ‘DPROCESS.ACTIVE’, if another part of the dynamic
process is active (on the run-queue, timer-queue, or is waiting for the completion of a blocking
system call); or ‘DPROCESS.RESUMED’ if the process suspends successfully and is later resumed. Of
course, from the process’ point of view, ‘ccsp.suspendproc’ may never return — if the process is
subsequently destroyed (or ‘forgotten’).

Therefore, dynamic loadable processes that intend to be suspended and possibly later resumed,
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potentially after duplication or migration, must be designed with this in mind — whilst the appli-
cation may spin calling ‘ccsp.suspendproc’ (and looping when ‘DPROCESS.ACTIVE’ is returned),
this is not good programming practice. A dynamically loaded network should (ideally) arrange for
itself to be completely blocked internally (that includes the top-level channels), before attempting
to suspend itself.

A simple example of suspending and resuming dynamic processes is provided in the KRoC
distribution — ‘testsuspend.occ’, with the dynamic process in ‘suspendable.occ’. The dynamic
process, ‘test.process’, is essentially a simple clock that generates BOOL ticks at a specified (and
controllable) rate. The protocol providing control over the process is defined as:

PROTOCOL CLOCK.PROTO

CASE

reset; INT

stop

suspend

bounds

overflow

:

The (purely sequential) example process is connected through three-channels, recovered (from the
‘ANY’ interface) with the following:

PROC test.process (VAL DPROCESS me, []CHAN ANY in?, out!)

CHAN CLOCK.PROTO in? RETYPES in[0]?:

CHAN BOOL sync.out! RETYPES out[1]!:

CHAN BYTE out! RETYPES out[0]!:

... process using "in?", "out!" and "sync.out!"

:

The re-typing of these channels replaces the names ‘in’ and ‘out’, that is quite sensible in this
example — since ANY channels cannot be used for communication directly. The ‘sync.out!’ chan-
nel it not the tick — it is used to synchronise with the external network (merely for application
convenience). The ‘BYTE’ channel ‘out!’ is multiplexed to the screen, and is where the clock reports
tick events (as well as other diagnostic information).

The clock process (‘test.process’) initially synchronises on ‘sync.out!’, before printing a
simple ‘hello’ message and entering its (terminating) main-loop. After initialisation, the clock is
silent, waiting for an initial ‘reset’. Once sent, the clock begins ticking at the rate (in microsec-
onds) specified by the ‘INT’. Once it has started ticking, the clock only stops when it is terminated
with ‘stop’ — from the clock’s point of view anyway. When it receives the ‘suspend’ message,
‘test.process’ calls ‘ccsp.suspendproc’, and if resumed continues ticking. For this example pro-
cess, ‘DPROCESS.ACTIVE’ should never be returned — since it consists entirely of ALTing sequential
code. The occam code for this handling of suspend and resume is simple:

INT result:

SEQ

ccsp.suspendproc (me, result)

IF

result = DPROCESS.RESUMED

sync.out ! TRUE

TRUE

-- error, should never happen

STOP
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When suspended, the process that called ‘ccsp.runproc’ resumes, with a result indicating why
the dynamic process finished — either it terminated, faulted, or was suspended. When suspended,
the test-rig allows the state of a dynamic process to be written out to a file, and conversely, have
the suspended state replaced by loading it from a file. This functionality is provided through two
(somewhat specialised) occam PROCs:

PROC ccsp.writeproc (DPROCESS p, VAL []BYTE filename, RESULT INT result)

PROC ccsp.readproc (DPROCESS p, VAL []BYTE filename, RESULT INT result)

The ‘DPROCESS’ passed to ‘ccsp.readproc’ must be an already initialised dynamic process, and
the same process that was used with ‘ccsp.writeproc’ — i.e. ‘ccsp.readproc’ will not load the
dynamic process itself, only the saved state. Thus any application wishing to use this functionality in
depth must arrange for code (the dynamic process’ ‘.so’ file) to be available where necessary. Along
similar lines, but providing a slightly different technique for saving and restore dynamic process
states, are the PROCs:

PROC ccsp.sizeproc (DPROCESS p, RESULT INT bytes)

PROC ccsp.savestate (DPROCESS p, []BYTE data, RESULT INT result)

PROC ccsp.loadstate (DPROCESS p, VAL []BYTE data, RESULT INT result)

These allow the state of a dynamic process to be managed by the application. Once turned into a
BYTE array using ‘ccsp.savestate’, an application could communicate this over a TCP/IP network,
save the state to disk, or duplicate the state.

6.5.4 Implementing Suspend and Resume

In general, the implementation of dynamic processes is non-trivial, and this is definitely true for sus-
pend and resume support. The state of an occam process is contained entirely within its workspace,
vectorspace and mobilespace. For the majority of occam processes, this state is entirely internal —
i.e. processes that do not hold references to memory external to their local state. Whilst this applies
to standard occam, many of the extensions presented so far damage this in some way. In particular
dynamic-mobiles — including dynamic mobile arrays, mobile channel-ends, and slightly specula-
tively, mobile processes. Furthermore, a dynamic process may hold references to other dynamic
processes that it loaded and is responsible for.

In the absence of non-local pointers, the workspace and vectorspace of a dynamic process consist
entirely of data and pointers to other (local) memory regions (channels containing blocked processes,
for example). To correctly save and restore these memories, pointers must first be reduced to relative
offsets and recorded separately when saving, to be restored later (which will most likely be at a
different memory address).

In the first implementation of process suspension, pointers were located by simply scanning the
memory of the dynamic process and reducing/recording those values that appeared to be valid
pointers. However, although this approach works, it has a potentially serious deficiency — if the
process has values in its memories that look like pointers, these will be reduced and recorded too.
Thus when the process is resumed, at different memory locations, these non-pointer values will be
changed (incorrectly). The solution, that also permits the saving and restoring of mobilespace (not
currently supported), is to generate a “workspace map” of the process, indicating where pointers
reside and the type they point to (for example, channel-word, or dynamic-mobile).

The workspace maps generated can be used by the run-time system to appropriately suspend
and restore regions of workspace that contain pointers.
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Generating Workspace Maps

The compiler has been slightly modified to generate workspace layout information, on a PROC-by-
PROC basis, when a particular command-line flag is given. Before the code for a PROC is generated,
its workspace map (of pointer objects, such as channels and dynamic mobiles), is generated as an
ETC special (in a similar form to mobilespace maps). Broadly speaking, this extra information does
not affect, in any way, the occam code being compiled.

When compiling occam in this ‘suspendable’ mode, the allocation of objects in workspace (and
vectorspace) is adjusted so that memory used for pointers is never re-used for non-pointers, or
pointers of a substantially different nature. While this may mean a larger memory footprint for
occam processes, it does guarantee the correct suspending and resuming of pointers in a process’s
workspace. In some cases, the effect of the modified workspace allocation may be dramatic — for
example, when sequential code is unable to re-use workspace because execution may be suspended
whilst in any of those sequential processes.

In practice, the effect of this can be significant enough to discourage suspending this way, and
have the application implement it by other means. This could easily be done by having the dynamic
process network able to save and restore its own state from a file (using the provided occam file
library – ‘filelib’).

Figure 6.16 shows an example PROC and its corresponding workspace map.

PROC foo (CHAN INT out!)

  MOBILE []BYTE data:

  [10]CHAN INT c:

  SEQ

    ...  body of process

:

foo body
workspace map

vsp(20,2)

iptr(0)

dynmob(1,−2)

vschan(−3)

workspace map

[vectorspace]

[dynamic block]

(unallocated)

param($vsp)

param(out)

return−addr

data(size)

data(ptr)

ptr(c)

foo body
workspace

dynamic workspace

Figure 6.16: Dynamic process workspace map example

6.6 CPU Timer Support

This section presents a relatively small but significant extension to the KRoC/Linux system, de-
signed for the Intel Pentium (and above) architectures, that significantly improves the handling and
resolution of occam TIMERs.

Given that the various versions of KRoC are generally targetted for UNIX/POSIX based systems,
the only sensible (and portable) timer and timeout implementations available are those provided
by the POSIX standard. POSIX defines various timer functions, namely ‘alarm’, ‘setitimer’ and
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‘getitimer’, as well as the signalling mechanisms that these use. The mechanism at the UNIX level
is simple — set a timeout (usually in seconds and microseconds), and at least that time later, a
signal is delivered to the process (usually ‘SIGALRM’ — alarm clock).

Although this mechanism is fully functional, it suffers from large overheads (from the system-calls
and signal delivery) and possible inaccuracies (dependent on the underlying UNIX timer resolution
— POSIX specifies that alarm signals should be delivered on or after their timeout [Int96]).

Intel Pentium and later processors contain a cycle-counter, set to zero on CPU reset. This
increments at the CPU core clock frequency — effectively just a trivial 64-bit counter, incremented
by the clock signal and loaded into the ALU when required. The ‘rdtsc’ instruction is used to load
this value into two processor registers, and is typically accurate to within a few cycles (instruction
re-ordering inside the CPU affects the actual time of the load — avoidable if necessary by serialising
execution around that instruction).

The motivation for using CPU timers is discussed in section 6.6.1, along with some background
on previous support for these. The implementation, mostly concerned with occam’s ‘TIMER’ and
‘AFTER’ keywords, is covered in section 6.6.2. By current CPU standards, a micro-second is rather a
long time (possibly representing several thousand instructions15). In light of this, details of a 64-bit
timer interface for occam are covered in section 6.6.3, although this has not been implemented.

6.6.1 Motivation

The motivation for using CPU timers is simple — reading the time via ‘rdtsc’ is significantly
cheaper than making a kernel-call that does the same job16. And if timer checking can be made
extremely low-cost, the use of POSIX signals for timeout handling can be avoided (since these have
a significant run-time cost).

Using the CPU cycle-counter for application timing is not a new idea. MESH [BDv99a] uses the
CPU cycle-counter (and busy-waits) to perform timing, as did the C version of CCSP, before that
support was removed (since they were both formed from a common core). The handling of CPU
timers in these is not particularly suited to occam, where a micro-second, 32-bit time value is more
suitable.

An overhead always traditionally incurred by KRoC is that of ‘SIGALRM’ handling, used to
implement the timer-queue and whose signal-handler sets one of the synchronisation flags (shown in
figure 6.3 on page 152). Setting the synchronisation flag has a neglible cost, in comparison to that of
(Linux) kernel signal delivery mechanisms. Additionally, an existing alarm may have to be cancelled
and a new one set, when processes are either added to or removed from the start of the timer-queue
(that is ordered by time, soonest first). When processes are being frequently rescheduled on the
timer-queue (repeating time-out ALTs, for example), this overhead becomes noticable — due directly
to the increased frequency of (OS) kernel interaction.

15In theory, a 3.06 Giga-Hertz processor (as is currently the fastest available), can process a little over three thousand
instructions per microsecond. However, given the relative speeds of memory and I/O devices, this is typically not
the case. A processor will often spend much of its time idling, for instance while waiting for memory to be loaded
into the cache. As core frequency speeds have increased, much effort has gone into processor design in an attempt to
minimise these delays, including predictive branching, extensive instruction re-ordering (at the micro-code level) and
a relatively deep memory-write pipeline.

16A sizeable amount of effort has gone into Linux, as far as this is concerned. Typically, calls to ‘gettimeofday()’
now perform no kernel call and read values from memory directly — memory that visible to both the kernel
(read/write) and user-land processes (read-only).
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6.6.2 Implementation

In KRoC, the occam TIMER is a signed 32-bit wrapping counter that counts microseconds, giving a
maximum delay period of approximately 35 minutes. The CPU cycle-counter increments at the core
clock frequency, which is generally unsuitable for applications. To calculate the CPU frequency, a
mixture of ‘rdtsc’ and kernel time-reading calls is required. Obtaining an accurate result requires
several seconds of calibration time, so KRoC provides a small utility that does this, placing the
CPU frequency (MHz) in a file which is later read by the run-time system. The code that performs
the calibration is derived from similar code in MESH, authored by Marcel Boosten [BDv99a]. More
recent Linux kernels provide the CPU frequency as part of the information in the ‘proc’ file-system.
If this is available the calibration program simply reads the value, rather than performing the
calibration.

At run-time, the 64-bit value read using ‘rdtsc’ must be convered into a 32-bit occam TIMER

value. A technique suggested by David Wood has been used to do this: (floating-point) divide 232

by the CPU frequency in MHz and store the result as a 32-bit integer. To convert the 64-bit value,
multiply it by the stored 32-bit integer and take the top 32-bits of the result. This calculation,
including the ‘rdtsc’ instruction, can be performed relatively quickly (in tens of clock cycles).

The integer multiply instruction on the i386 multiplies two 32-bit quantites to give a 64-bit one
(in two 32-bit registers), so the conversion is performed using two multiply instructions, an add and
a few moves, before placing the resulting value in memory (typically an occam INT variable).

For complete support of TIMERs in occam, implementations (such as KRoC) need to provide
support for 5 instructions: ‘LDTIMER’ to read the current time; ‘TIN’ to wait until a specified time; and
‘ENBT’, ‘DIST’ and ‘TALTWT’ to support timer ALTs. By default, these instructions simply translate
to run-time kernel calls, passing arguments and results as appropriate. The “inline-timers” flag to
tranx86 causes full inlining of ‘LDTIMER’, and ‘ENBT’ (as well as the associated extended behaviours
for enhanced ALT enabling and ALT pre-enabling, as discussed in section 3.9.3); and partial inlining
of ‘TIN’.

Timer Loads

The implementation of the ‘LDTIMER’ instruction, when inlining is enabled, is as follows (leaving the
result in the ‘EAX’ register):

rdtsc // read time into edx:eax

movl %edx, %ebx // save high 32-bits

mull glob_cpufactor // multiply low 32-bits by "glob_cpufactor",

// high 32-bits left in edx

movl %ebx, %eax // load saved high 32-bits

movl %edx, %ebx // save high 32-bits of last multiply

mull glob_cpufactor // multiply previously saved bits by "glob_cpufactor"

addl %ebx, %eax // add high 32-bits of previous result,

// leaving the whole result in "eax"

movl %eax, 4(%ebp) // save in local variable

A reasonable amount of effort has gone into making this highly efficient, with effectively the same
code inside the run-time kernel when inlining is not enabled. The memory location referenced by
‘glob cpufactor’ contains the earlier computed multiply factor.

When inlined, this sequence of instructions takes approxiately 47ns on an 800 MHz P3 (< 38
cycles). When called inside the run-time kernel, it takes approximately 71ns (< 57 cycles).
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Timer Waits

The ‘TIN’ instruction waits until a specified time, or if that time has already passed, returns imme-
diately. The existing algorithm, based on similar code in the Sparc KRoC [WW96, Woo97], first
checks to see if the time has expired, and if so, does nothing. Otherwise the current process is added,
in time-order, to the timer queue and a reschedule takes place.

Waiting for a time that has already past takes approximately 75ns on an 800 MHz P3 when using
CPU timers, implemented in the “X tin” kernel entry-point. Inlining the whole of this instruction,
to improve efficiency, is not really an option — given the relatively complex operation of timer-queue
manipulation. Instead, the case where the time has already passed is inlined, such that the run-time
kernel is only entered if the process needs to wait. With this inlining enabled, the cost of waiting
for a time already past is reduced to around 50 ns, comparable with the earlier timer-read inlining.

The inlined part of the ‘TIN’ instruction (when enabled with the ‘-iT’ command-line flag), simply
reads the current time and checks to see if the timeout (placed in ‘Areg’) has passed. The code
generated for this is similar to the earlier code for an inlined timer read, for example, with a target
time in ‘Areg’:

rdtsc

movl %edx, %ecx

mull glob_cpufactor

movl %ecx, %eax

movl %edx, %ecx

mull glob_cpufactor

addl %ecx, %eax // leaves "now" in %eax

subl %Areg, %eax // subtract target time

jns 0f // jump if time passed

... add to timer queue and deschedule

0:

When the jump is taken, this code takes approximately 50 ns to execute. Efficiency is paramount here
since similar code will be used to check the timer-queue for ready processes whenever the run-time
kernel reschedules (in order to avoid the overheads incurred by a signalling timer implementation).

6.6.3 64-Bit Timers

The standard occam timer counts in micro-seconds. However, the resolution of the CPU timer is
much higher — approximately the clock speed. Given that most modern PCs now have clock periods
of less than a nano-second, the micro-second timer suddenly seems rather outdated.

The use of 32-bit integers to manpulate time in occam partially restricts the maximum resolution
of the TIMER, if the timer period is not to become too small to implement useful delays. For instance,
with nano-second resolution for TIMERs, the maximum timeout available using a 32-bit integer is a
little over 2.1 seconds, that might be insufficient for many applications.

To overcome these limitations, it is proposed that a ‘TIMER64’ type be added to occam, only to
be used with 64-bit integers (‘INT64’ in occam). The idea was initially suggested by David Wood
and Peter Welch, after discussions about the relative length of a ‘modern’ micro-second. A timer
this wide can support both a high resolution and acceptable timeout periods. If pico-second (10−12)
resolution is used, the maximum timeout period is effectively 106 days — more than sufficient. A
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nano-second TIMER64 would allow a maximum timeout of almost 3 centuries — probably more than
sufficient for most software requirements!

In the interest of efficiency in the implementation, the most appropriate TIMER64 resolution
might be the one where the top 32-bits increment once every second, and the lower 32-bits are
scaled appropriately. The accuracy of such a timer would depend on the underlying CPU speed,
and on any instruction re-ordering around timer reads.

6.6.4 Optimising Process Timeouts

This section proposes a modification to the way in which process timeouts are handled, that could
potentially improve the performance of some applications.

When CPU timers are enabled and there are processes waiting on the timer queue, the timeout is
checked whenever a reschedule takes place. Although the overhead for this is small (around 40 CPU
cycles on a P3), it significantly impacts the context-switch time — around 70 to 110 nano-seconds
ordinarily (depending on optimisations). For much of the time this overhead is too small to be of
any significance, until the parallel granularity of a system causes the scheduling overhead to become
significant (on the 800 MHz P3 on which most times here are measured, scheduling overheads would
account for 50% of the CPU time at approximately 3–4 million process schedules per second).

In cases where an application makes few, distant timeouts, the impact on scheduling due to
the usage of CPU timers is an unwanted burden. Indeed, for these cases, the aggregate overheads
of using a signalling timer implementation would likely be smaller than the frequent, but small,
overhead incurred by active CPU timers.

The solution proposed here is to use two timer queues; one for short-term timeouts that can be
checked on reschedule; and one for long-term timeouts, that can use the kernel timeout signalling
mechanism. This is shown in figure 6.17.

P PFptr

Bptr

P

P P P P

and are placed on the run−queue
when the ‘short−timer’ expires

STptr

LTptr

the ‘long−timer’ expires
process(es) migrate when

Figure 6.17: Using two timer queues to implement timeouts

The queues are maintained such that the last process in ‘STptr’ (if present) links to the first
process in ‘LTptr’ (or null). This allows all waiting processes to be scanned in a single-loop, starting
at STptr. It also optimises the process of migrating a process from LTptr to STptr, which then
simply involves moving LTptr along.
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A constant time value determines the ‘lifetime’ for any process on STptr. The exact value used
depends largely on the speed of the system — and could be calculated at run-time from the CPU
speed. For fast systems, the overhead of polling the first process on STptr is substantially decreased
— it is a short series of highly localised instructions. The overhead of kernel calls (to handle signalled
timeouts) does not decrease at nearly the same rate, with respect to processor speed. Thus, for fast
systems, better overall throughput can be obtained by allowing processes to live on STptr for a long
time (e.g. 200 ms). As CPU speed decreases, the overhead of polling STptr increases. Thus, it is
more favourable to keep processes on LTptr — in an attempt to keep STptr empty.

Currently, this is an entirely theoretical implementation, but one with good prospects. With a
real implementation, the effects of different STptr lifetimes on different types of application could be
examined. Given appropriate care in such an implementation, the difference in overheads between
the existing CPU-timer implementation and this implementation, with a maximum lifetime for
STptr, should be minimal. Manipulation of the (OS) timer underlying LTptr can often be deferred,
to be handled by the scheduler when it sees an appropriate synchronisation flag.

6.7 Direct OS Kernel Support for CSP

One of the useful features about open-source operating-systems, particularly Linux, is the ability to
easily create kernel modifications for performing particular tasks. The philosophy of doing this in
the first place is somewhat debatable — on one hand it allows for significant performance improve-
ments for certain programs (the Linux-kernel web-server and NFS-server for example, the latter also
having user-land help, for authentication and other tasks which are more suited to a user-land im-
plementation). On the other hand however, there are issues about recompiling kernels, and the level
to which someone else’s code may be trusted (if that code is not included in the operating-system
by default — possibly because it was rejected by the community).

This section describes the CSP driver — a Linux kernel device driver that provides support for
named channels (that can be used as a mechanism for inter-process communication (IPC), between
distinct occam programs17), described in section 6.7.1.

The CSP driver provides specific support for KRoC, making easier the task of pausing safely
(traditionally performed by the ‘safe pause()’ function in KRoC [WW96]), and reducing the
complexity and overheads of handling blocking system-calls (section 6.3). These are described in
sections 6.7.2 and 6.7.3 respectively.

The choice of implementing this functionality in a device-driver, as opposed to a more core-kernel
component such as a new system-call, is two-fold. Firstly, the vast collection of available device
drivers18 means, inevitably, that some will contain bugs and may crash at run-time. Linux has
evolved to handle these, by reporting the error and shutting down the driver, leaving the kernel as a
whole un-harmed. The faulty device driver, however, will likely be unusable from then on, cleanable
only with a reboot. Secondly, there is a large body of literature available regarding device-driver
authoring for Linux, mostly in on-line documents and in the driver sources themselves, but also in
several books, [RC01, Kha02] and others.

17The CSP driver can also be used with C programs — threaded or otherwise
18Several hundred device drivers in the standard kernel sources, and numerous others are available elsewhere —

some provided in binary-only format for licensing reasons.
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6.7.1 Named Channels for Inter-Process Communication

One aspect of communication lacking from occam is the ability to easily communicate with other
occam programs on the same system. Existing UNIX mechanisms for IPC [Ste92, Ste98] cover
a whole range of methods: pipes, UNIX sockets, named pipes (FIFOs), terminal master/slave
pairs, signals, semaphores and shared memory. POSIX threads [Int96, But97] add another layer of
IPC mechanisms, but generally specialised (and sometimes restricted) for use within same-memory
processes (the threads). None of these directly support the abstraction of a simple occam channel
— which is a synchronised point-to-point unbuffered communications link. They can, however, be
used to implement the channel semantics19. The original KRoC used a pair of pipes to implement
a channel between the keyboard process and run-time kernel (discussed in section 6.3.9). A POSIX
threads based implementation of CSP support for C, by Beton [Bet00], uses thread synchroniation
mechanisms to provide channel support.

The CSP-driver for Linux simplifies this whole issue, by providing direct support for named
channels. These channels allow distinct OS-level processes to communicate and synchronise with
CSP semantics. In particular, they allow separate occam programs to communicate directly — when
combined with the user-defined channel support20 (section 6.4).

One percieved use for this mechanism is to allow remote control of the occam web-server, through
named channels. Remote monitoring processes (to watch connections real-time, for example) could
also be attached. There is even the possibility of attaching to the web-server for the purpose of
communicating client connections. However, this would involve the communication of file-descriptors
between UNIX processes, a non-trivial (but possible) operation. Implementing support for this
within the Linux CSP-driver is a possibility, but has not been investigated (it is unclear whether
the effort would justify the result).

After a standard ‘open()’ call on the device (currently ‘/dev/cspdrv’), the CSP driver is accessed
using the IOCTL calls shown in Table 6.6. These implement all the support required for channels,
including ALTs.

Constant Value Parameter
IOCTL GET VERSION 0x1000 char *
IOCTL GET CHANNEL 0x1001 ucsp chaninfo *
IOCTL TYPE CHANNEL 0x1002 ucsp chaninfo *
IOCTL RELEASE CHANNEL 0x1003 ucsp chaninfo *
IOCTL READ CHANNEL 0x1010 ucsp datainfo *
IOCTL WRITE CHANNEL 0x1011 ucsp datainfo *
IOCTL ENABLE CHANNEL 0x1012 ucsp altinfo *
IOCTL DISABLE CHANNEL 0x1013 ucsp altinfo *
IOCTL ALTWT 0x1014 ucsp altinfo *

Table 6.6: Channel IOCTL calls for the Linux CSP-driver

The ‘GET VERSION’ ioctl is used to query the version of the device-driver. If parts of the interface
change in the future, this will allow programs to automatically select the correct interface, based
on version. The ‘char*’ parameter passed is a pointer to a string (of at least 32 bytes) where the
version information is stored.

19Conversely, the behaviour of existing IPC mechanisms can easily be modelled in occam/CSP.
20The user-defined channel library required to interface with the CSP driver is now part of the standard KRoC/Linux

distribution, and provided as part of the blocking system-calls library (since it relies significantly on that functionality),
called ‘cspdrvlib’.
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Accessing Channels

The ioctl calls, ‘GET CHANNEL’, ‘TYPE CHANNEL’ and ‘RELEASE CHANNEL’ provide access to a channel,
and use the ‘ucsp chaninfo’ structure, defined as:

typedef struct {

char name[32]; // channel name for GET_CHANNEL

int dir; // direction for GET_CHANNEL, hashcode for TYPE_CHANNEL

int chanid; // returned channel-id for GET_CHANNEL, param for others

} ucsp_chaninfo;

To access a channel, a process puts the desired channel name in ‘name’, direction in ‘dir’ and calls
the ‘GET CHANNEL’ ioctl. If the channel does not exist, it is created. The direction field (‘dir’)
determines how a process will use the channel, and possibly how it interacts with others. Table 6.7
shows the various constants defined for the direction field.

Constant Description
CSP CHANNEL READER Use channel for unshared reading
CSP CHANNEL WRITER Use channel for unshared writing
CSP CHANNEL ANY READER Use channel for shared reading (..-to-any)
CSP CHANNEL ANY WRITER Use channel for shared writing (any-to-..)
CSP CHANNEL MANY READER Use channel for synchronised reading (..-to-many)
CSP CHANNEL MANY WRITER Use channel for synchronised writing (many-to-..)

Table 6.7: Channel direction constants for the CSP-driver

If there is any compatibility error when ‘getting’ the channel, the ioctl call fails. For example, if one
process aquires a channel with the flag ‘CSP CHANNEL READER’, any attempt by another process to
access the same channel in any read mode will result in a error (the first reader is exclusive).

Before a channel can be used for communication, the ‘IOCTL TYPE CHANNEL’ ioctl must be called
passing an appropriately unique value. For occam programs, this will be the ‘PROTOCOL.HASH’ of an
occam channel. When channels are initially created inside the driver their type is unknown. The
first process to call ‘IOCTL TYPE CHANNEL’ sets the type of the channel, for the entire lifetime of that
channel (that may continue to exist after the process which created it terminates). Any subsequent
call to ‘IOCTL TYPE CHANNEL’ is simply checked against the stored value.

To release a channel, a process fills a ‘ucsp chaninfo’ structure (only the ‘chanid’ field) and
calls ioctl on the device with ‘IOCTL RELEASE CHANNEL’. The channel is only destroyed (inside the
driver) if this was the last process using it. Forgetting to call this ioctl before program exit is not
fatal — when the device is ‘close()’d (which happens automatically if the program exited with it
open), any ‘accessed’ channels are released (and destroyed if necessary).

Reading and Writing

The ioctl calls ‘IOCTL READ CHANNEL’ and ‘IOCTL WRITE CHANNEL’ implement basic communica-
tion. Both of these use the ‘ucsp datainfo’ structure, defined as:

typedef struct {

int chanid; // channel identifier

char *data; // pointer to data to read/write

int length; // size of communication (must match)

} ucsp_datainfo;
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The driver enforces CSP semantics on the use of these ioctl calls. When one process calls
‘IOCTL READ CHANNEL’, it will remain blocked until another process calls ‘IOCTL WRITE CHANNEL’
(assuming a non-‘many’ communication).

The application simply sets this structure up with the appropriate ‘chanid’, ‘data’ (to read
or write) and ‘length’ (in bytes), then calls the relevant ioctl. The driver checks for same-sized
communication and gives an error to both if incorrect. The way the driver works means that if one
communicating process aborts (crashes, for instance), the other will be left ‘stuck’. If this happens
during sequential protocol communication (that is implemented as many individual communica-
tions), the next attempt at communication (from a new or restarted occam program) will likely
result in an error.

Alting on Named Channels

Support for ALTing is provided by the ‘IOCTL ENABLE CHANNEL’ and ‘IOCTL DISABLE CHANNEL’
ioctl calls. These use the ‘ucsp altinfo’ structure, defined as:

typedef struct {

int chanid; // channel identifier

int ready; // channel ready (returned)

} ucsp_altinfo;

The underlying implementation of these ‘enable’ and ‘disable’ operations is different to that of the
normal transputer. The ‘enable’ operation only tests a channel for ready-ness, without leaving a
reference to the invoking process in the channel. Instead, the ‘IOCTL ALTWT’ ioctl call is used, which
performs the blocking part of the ALT.

Things are done this way primarily to fit with the user-defined channel mechanism (section 6.4).
When the enabling function returns with a not-ready indication, a blocking system-call is dispatched
to perform the ‘IOCTL ALTWT’ operation for that particular channel. This blocking call either finishes
normally (by a remote party attempting communication), or it is terminated from within the user-
defined channel disabling code (as shown in figure 6.14 on page 182).

For C processes, the ‘select()’ system-call can be used on the CSP-driver file descriptor. This
provides a mechanism for ALTing over all the channels in use by a particular process. Channels
accessed for reading (input) are ALTed on from the ‘select’ read-set. When used in the write-set,
channels accessed for writing (output) are ALTed on. This creates a possibility for false synchro-
nisations — where two (or more) processes ‘select()’, and ‘wake-up’ as a result of each others
offers to communicate, but where one or more of the processes fail to engage in that particular
communication.

Ordinarily, this could result in a process being blocked in communication (from which the remote
party has withdrawn), but where the real intention is to ALT. Unfortunately there is no neat solution
to this, for C processes at least. Either the application must guarantee to only perform ALTing one-
way (which could be on outputs) — and match that behaviour with remote processes — or explicitly
handle failed synchronisations.

To aid the latter, a process may set the non-blocking option on the CSP-driver descriptor. Instead
of blocking, read and write ioctl operations will return the standard ‘EWOULDBLOCK’ error (‘EAGAIN’
on some systems). This should be used cautiously however, since two C processes in non-blocking
mode will never be able to communicate. If an application requires a mixture of blocking/non-
blocking behaviours, it must open the CSP-driver device twice, with the non-blocking option set on
one.
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6.7.2 Support for Sleeping

Currently, periods of idleness in KRoC are handled by the ‘safe pause’ function. This simply
blocks the run-time system in the OS kernel until an interrupt is received — typically for either a
timeout or a completed blocking system-call.

To ensure the safe delivery of signals, the run-time kernel must prevent the delivery of sig-
nals as it goes to sleep, but allow signals to be delivered whilst it is sleeping. This is imple-
mented in KRoC [WW96] through the use of the POSIX ‘sigprocmask()’ and ‘sigsuspend()’
system-calls. After the run-time system has woken up, the signal mask must be restored by calling
‘sigprocmask()’ again.

The end result is a cost of two or three system-calls — incurred even if the kernel does not sleep
(a signal might be delivered just as the run-time system enters ‘safe pause’, for example).

By providing this support within the CSP-driver, the overhead can be reduced to a single system-
call (to the CSP-driver), that automatically takes care of any aynchronous signalling. Two IOCTL
calls are used to perform ‘sleeping’ actions, shown in table 6.8.

Constant Value Parameter
IOCTL SAFE PAUSE 0x1020 ucsp waitinfo *
IOCTL REALTIME PAUSE 0x1021 ucsp waitinfo *

Table 6.8: Timeout IOCTL calls for the Linux CSP-driver

At a basic level, these two IOCTL calls just put the run-time kernel to sleep, until a signal is
delivered. When CPU timers (section 6.6) are in use, the signalling timeout mechanism is only
used during safe-pause — that also incurs a slight additional overhead for setting up and possibly
cancelling the timer. The CSP-driver IOCTLs for sleeping accommodate this, by allowing a timeout
to be specified in the passed ‘ucsp waitinfo’ structure:

typedef struct {

int *sf_addr; // sync-flag address

unsigned long timeout; // timeout in micro-seconds

} ucsp_waitinfo;

The ‘sf addr’ field is set to the address of the KRoC synch-word, allowing the kernel to check for
events before sleeping. The kernel has the advantage that it is non-preemptable, thus no signals will
be delivered whilst executing inside the CSP-driver.

If a timeout is required, this is placed in the ‘timeout’ field (in micro-seconds). Otherwise, the
timeout field is set to zero. The ‘SAFE PAUSE’ IOCTL uses the standard kernel timing mechanism
(that has a resolution of approximately 100 Hz). The ‘REALTIME PAUSE’ IOCTL uses a combination
of this and busy-waiting, in an attempt to produce significantly more accurate timeouts where
required.

Figure 6.18 shows the results from a simple test program that measures the actual time required
for a delay (‘AFTER’) timeout.

6.7.3 Support for Blocking System Calls

One of the major overheads in the current KRoC/Linux is that of blocking system-calls. The
round-trip time for a blocking call, using the standard implementation, is approximately 9 µs on an
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Figure 6.18: KRoC timeouts with and without kernel support

800 MHz P3. Much of this can be attributed to the semaphore and signalling operations that the
blocking ‘clone’ processes use to synchronise with the main kernel thread.

Use of the CSP-driver for handling the synchronisation between the clones and the main KRoC
kernel can significantly reduce this overhead. To handle this, another set of IOCTL calls have been
added to the driver, shown in table 6.9.

Constant Value Parameter
IOCTL BSC SETUP 0x1030 uscp bsciinfo *
IOCTL BSC CALLIN 0x1031 ucsp bscdinfo *
IOCTL BSC DISPATCH 0x1032 ucsp bscdinfo *
IOCTL BSC GET BUFCOUNT 0x1033 int *

Table 6.9: Blocking system-call IOCTL calls for the Linux CSP-driver

The increased level of ‘multi-process’ control (in the CSP driver) enables blocking-call ‘dispatches’
to be queued by the driver. In the user-space implementation of blocking system-calls, a request can
only be dispatched if the previous one had been taken (locked by a form of spin-lock that reschedules
if the previous blocking-call had not been dispatched).

Before the CSP driver can be used to handle blocking system-calls, it must be suitably initialised.
This is done using the ‘BSC SETUP’ and ‘GET BUFCOUNT’ IOCTLs. The ‘BSC SETUP’ call uses the
‘ucsp bsciinfo’ structure, defined as:

typedef struct {

unsigned int *sf_addr; // sync-flag address

unsigned int bsc_bits; // blocking flag bits

unsigned int bsc_mask; // blocking flag mask

} ucsp_bsciinfo;
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This provides the information that the kernel needs to set the KRoC blocking-call synch-flag asyn-
chronously — i.e. without the use of a signal.

The two IOCTL calls that perform the dispatch and collection algorithms are ‘BSC CALLIN’ and
‘BSC DISPATCH’ respectively. Both of these use the ‘ucsp bscdinfo’ structure, defined as:

typedef struct {

void *address; // pointer to bscinfo (input/output)

int length; // size to communicate

int resync; // resync flag for clones

} ucsp_bscdinfo;

The ‘address’ and ‘length’ fields, in the main run-time kernel process, hold the address of
the ‘bsc thread’ structure that holds the information for a particular blocking call (defined on
page 159). Much of the information in the ‘bsc thread’ structure is used by the clone processes lo-
cally (to hold their own state). Therefore the ‘length’ field is adjusted to only cover the information
required for dispatching (the ‘bsc thread’ structure is (re)-organised to allow this).

A clone process collects a call using a similar process, but places the address of its own
‘bsc thread’ structure in the ‘address’ field. If the clone had previously just completed a call,
the ‘resync’ field is set to non-zero. This works in conjunction with the spin-locked queue used to
hold ‘finished’ calls (in terms of the occam processes making them) — the CSP-driver only provides
the synchronisation (and communication) between the main kernel process and the blocking-call
clone processeso

The obvious advantage to this method is that when a clone finishes and calls ‘BSC CALLIN’, if the
run-time kernel is still sleeping (in ‘SAFE PAUSE’) then it can be immediately resumed to reschedule
the previously blocking occam process — without the overhead of any signalling.



Chapter 7

Further Extensions

This chapter covers a number of extensions and enhancements that provide for: easy co-existence of
C and occam (concurrently); process priority in occam; a mechanism for debugging run-time errors;
and support for higher level channel and data interaction.

One feature which has become particularly desirable, partly as a consequence of other extensions,
is the ability to have external (C) processes that can communicate with occam processes directly.
The original CCSP supported both C and occam, but not concurrently. The run-time kernel was
either compiled for occam or for C. By the time of the first KRoC/Linux 1.3.3-pre release, in August
2002, all support for the C version (including support for external channels) had been removed from
CCSP. Section 7.1 describes the C-interface extension (‘CIF’), which provides a limited CCSP-based
C API for writing concurrent code in C, and allows that code to interact concurrently with occam

processes. The run-time cost of interoperability rests solely on the C interface; occam processes
suffer no additional costs as a result.

Section 7.2 describes the addition of process priority to occam. The Transputer provided two
levels of process priority — high and low. The hardware engineering was such that a high-priority
process could preempt a low-priority process, typically used for for handling hardware ‘events’ on
the Transputer (via the event pins). To date, KRoC implementations have ignored this priority
— quietly implementing ‘PRI PAR’ as just ‘PAR’. The implementation of priority in KRoC/Linux
provides 32 levels of process priority, but not through ‘PRI PAR’ (although consideration is given to
this).

Debugging occam programs has traditionally been difficult, although in the large, we can guar-
antee that all run-time errors1 are trapped. However, when such an error occurs, the run-time
kernel just prints a basic informational message and exits. Section 7.3 presents an implementation
of post-mortem debugging (debugging after a run-time error has occurred, not the steps leading
up to it), that takes many ideas, in particular the technique for deadlock debugging, from work by
Wood for debugging in the Sparc version of KRoC [WB00].

Section 7.4 describes the support for a mechanism that allows communication to be ‘extracted’
and ‘inserted’ into occam programs. That is, support for the decoding and encoding of channels,
allowing ordinary occam communication to be transported at a higher-level (over a TCP/IP based
network, for example).

Finally, section 7.5 describes a pre-processor added to the occam compiler, a useful feature long

1This only extends to errors in occam programs. We cannot make guarantees about the safety of linked-in C code,
or even the integrity of the run-time kernel itself. The occam compiler may also be a source of error, though run-time
errors caused by this usually result in trappable conditions or CG-test failure.

201
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missing from occam. Various pre-processors already exist for occam, but are somewhat detached
from the compiler. The pre-processor described here is implemented in the lexical analyser (lexer)
of the occam compiler, allowing finer points such as indentation to be taken into consideration.

7.1 Concurrent C and occam

The previous Chapter has presented extensions that allow occam and C code to interact in various
ways. The one type of interaction not supported by these, however, is that of direct communication
between occam and C processes. The ‘CIF’ (C interface) extension provides a mechanism for this.
The implementation is somewhat obscure however — rather than directly interacting with the CCSP
run-time kernel, the CIF extension disguises C processes as occam processes during scheduling and
communication. This allows the run-time kernel to treat them as ordinary occam processes — it is,
in fact, unable to tell the difference between the two — causing no additional overheads for existing
occam programs.

The API provided to C processes is a subset of that provided with the original CCSP [Moo99,
Moo00a], which is largely based on the traditional Inmos C API for programming the Transputer.
This new iteration of the API does have some minor differences however — largely to provide
support for the various occam extensions presented in Chapter 3. Support for blocking system calls
(section 6.3) is also provided.

There are both good and bad reasons for wanting to write certain code in C, as opposed to occam.
The ability to write C which can interact with occam makes easier the task of interacting with
hardware at a low-level — possibly with architecture specific inline assembler. However, by using C,
the automatic race-hazard and alias free benefits of occam are lost. Additionally, to avoid overheads
for occam processes, C processes incur additional overheads masquerading as occam processes. These
overheads are small however (in tens of nano-seconds/CPU-cycles).

Figure 7.1 shows an example network, in which the ‘hdd.control’ process is probably more
suited to a C implementation, rather than an occam one. The CIF extension is used in this way
for certain hardware interaction in RMoX. Additionally, CIF provides a method for augmenting
existing C code, allowing it to be interfaced with occam.

hdd.if hdd.control

C world

(hardware access)

requestresponse

log.out

hdd.process

Figure 7.1: Process network for an example hard-disk interface

The implementation of this extension is done using a library of C functions, with basic support
for calling this type of C process from occam. Only a minor modification has been made to the
run-time kernel — to support blocking system calls. The creation and execution of C processes is
described in section 7.1.1. The implementation of the C/occam interface is discussed in section 7.1.2.
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7.1.1 Creating and Running C Processes

Concurrent C processes are created wholly in the C world, through the use of either the ‘ProcAlloc’
or ‘ProcInit’ library calls. To create a C process from occam, a small external C stub function
must be used. This is due, in part, to the lack of a function-pointer type and variable-argument
functionality in occam. For example, the code required to create a (serial) C version of the traditional
‘integrate’ process, is:

void integrate (Process *me, Channel *in, Channel *out)

{

int x = 0;

int v;

for (;;) {

ChanInInt (in, &v);

x += v;

ChanOutInt (out, x);

}

}

void real_create_integrate (int *raddr, Channel *in, Channel *out)

{

Process *p = ProcAlloc (integrate, 1024, 2, in, out);

*raddr = (int)p;

return;

}

/* PROC create.integrate (INT raddr, CHAN INT in?, out!) */

void _create_integrate (int *ws)

{

real_create_integrate ((int *)(ws[0]), (Channel *)(ws[1]), (Channel *)(ws[2]));

}

The ‘real create integrate’ function calls ‘ProcAlloc’ to create a new process, that starts at
‘integrate’ with 1024 bytes of C stack space, and passes the two channel parameters given. This
is accessed by an occam program through the external declaration:

#PRAGMA EXTERNAL "PROC C.create.integrate (INT raddr, CHAN INT in?, out!) = 0"

In the transition between occam and C, protocol information for the channel is lost. Because of
this, the programmer must be particularly careful to use channels correctly, otherwise serious run-
time errors may result. Another requirement on programmers is that they use the returned address
carefully in occam— if the external function is called after some of its parameters go out of scope,
undefined behaviour will result.

Inside the occam program, a special PROC (‘cifccsp.startprocess(addr)’) is called to run the
process allocated in the C world. This simply schedules the C process for execution and waits for
it to terminate. If desired, the C process can be run again, with the parameters unchanged, or
optionally altered using the ‘ProcParam()’ C function.

The correct way to interface and run the above ‘integrate’ from an occam program would be:
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#USE "course.lib"

#INCLUDE "cifccsp.inc"

PROC int.writer (CHAN INT in?, CHAN BYTE out!)

WHILE TRUE

INT v:

SEQ

in ? v

out.int (v, 0, out!)

out ! ’*n’

:

PROC test (CHAN BYTE screen!)

CHAN INT c, d:

PAR

numbers (c!)

INT addr:

SEQ

C.create.integrate (addr, c?, d!)

cifccsp.startprocess (addr)

int.writer (d?, screen!)

:

The process network for this program is shown in figure 7.2.

numbers integrate int.writer

test
screen

Figure 7.2: Example C integrate in an occam process network

7.1.2 Masquerading as occam

In order to be scheduled alongside other occam processes, a C process must pretend to be an occam

process when entering the run-time kernel. Inside the ‘ProcAlloc()’ function (part of CIF), a block
of dynamic workspace is allocated for the C process, as well as a C stack. Figure 7.3 shows the
layout of the allocated workspace.

The workspace slots from −6 to 2 inclusive provide the occam process state space required to
perform timeouts, communication, ALTs and PAR constructs. The magic constant placed in slot 3 is
used to check the integrity of the process, to ensure that the workspace has not accidently become
corrupt (by an erroneous C process). Slots 4 to 6 are used for the C stack handling. Whilst the C
process is running (in its own stack), the stack-pointer for the occam kernel is stored in workspace
slot 6 (‘CCSP SP’). When the C process is not running, its stack pointer is stored in slot 4. Slot 5
points at the base for the C process’s stack, used for freeing it in ‘ProcAllocClean()’.

Workspace slots 8 and 9 are used as temporary locations to store the current run-queue front
and back pointers whilst the C process is running. For occam processes, these values are kept in
processor registers. Slot 10 is used to save the workspace-pointer for the occam process that called
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Figure 7.3: Workspace layout for a concurrent C process

‘cifccsp.startprocess’. If the C process was started using ‘ProcPar()’ (or other similar call),
this will be ‘NotProcess.p’, and workspace slot 11 contains a link back to the process performing the
‘ProcPar()’. Finally, workspace slot 12 contains the parameter count for the called C process. This
is used to ensure that ‘ProcParam()’ is called with the correct number of parameters (the same as
that given to ‘ProcAlloc()’).

‘ProcAlloc()’ places parameters directly in the newly allocated C stack, along with the
‘Process’ pointer (given as the first argument). The occam state is then initialised to resume
at a stub function, written in target assembly. This stub function, when scheduled, saves the occam

state, switches stacks, then calls the C process (whose parameters are already in the stack). When
(and if) the C function returns, the occam run-time state is restored and the process shut-down
(which will possibly involve rescheduling a blocked ‘ProcPar()’ or ‘cifccsp.startprocess’).

The ‘cifccsp.startprocess’ PROC is a small piece of inline Transputer assembly, that schedules
a C process for execution before suspending itself. The code for this is:

INLINE PROC cifccsp.startprocess (INT addr)

ASM

LDLP 0 -- load current Wptr

LD addr -- load C process Wptr

STNL 10 -- store current Wptr in C process workspace

LD addr -- load C process Wptr

RUNP -- run process

STOPP -- stop (this) process

:
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To handle the saving and restoring of the occam state, two (i386) assembler macros are used:

#define CIF_SAVE_OCCAM_STATE

movl %esp, 24(%ebp) /* save occam-kernel stack pointer */

movl %esi, 32(%ebp) /* save Fptr */

movl %edi, 36(%ebp) /* save Bptr */

#define CIF_RESTORE_OCCAM_STATE

movl 24(%ebp), %esp /* restore occam-kernel stack pointer */

movl 32(%ebp), %esi /* restore Fptr */

movl 36(%ebp), %edi /* restore Bptr */

Another pair of assembler macros handle the saving and restoring of the C process state:

#define CIF_SAVE_C_STATE

movl cifccsp_wptr, %ebp /* load Wptr */

movl %esp, 16(%ebp) /* save C process stack pointer */

movl $0f, 28(%ebp) /* save return address (forward local label) */

#define CIF_RESTORE_C_STATE

movl 16(%ebp), %esp /* load C process stack pointer */

movl 28(%ebp), %eax /* load return address */

movl %ebp, cifccsp_wptr /* store Wptr */

When a C process first starts up — the first time it is scheduled for execution — the occam run-
time state is stored, the C state loaded and the user-function called. This happens all within the
‘occstub entry point’ assembler routine.

Once running, a C process has complete control until it enters the occam run-time kernel —
where it may be rescheduled. A set of assembler macros provide code which transfers control from
a C process to the run-time kernel. Some of these, such as ‘ChanInInt()’, are used directly by
user C code — principally communication instructions. Other entry-points are called from within
CIF’s own C routines — for example, ‘ProcPar()’ will call the ‘StartProcess()’ macro to place a
C process on the run-queue.

The C macros that provide access to the run-time kernel from a C process follow a standard
form. ‘ChanInChar()’, for example, is:

#define occstub_ChanInChar(C,P)

{ int CIF_dummy1, CIF_dummy2;

__asm__ __volatile__ ("

" pushl %%ebp \n"

CIF_SAVE_C_STATE

CIF_RESTORE_OCCAM_STATE

" pushl %%eax # dest addr \n"

" pushl %%ebx # chan addr \n"

" pushl $1 # count \n"

" pushl $occstub_resume_point \n"

" jmp _X_in \n"

"0: popl %%ebp \n"

: "=a" (CIF_dummy1), "=b" (CIF_dummy2) /* no outputs */

: "a" (P), "b" (C)

: "ecx", "edx", "esi", "edi", "cc", "memory");

}
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When executed from a user C process, this code pushes the ‘EBP’ register onto its own C stack,
calls the ‘CIF SAVE C STATE’ macro, followed by the ‘CIF RESTORE OCCAM STATE’ macro, and
finally the code required to interface with the run-time kernel. For this example, that uses the
‘ X in’ entry-point, arguments are passed on the stack. Other kernel entry conventions (described
in section 6.2.2) may require different argument-passing mechanisms.

Inside the ‘CIF SAVE C STATE’ macro, the (forward) address of label ‘0:’ is saved in the C
process’s workspace. This label is where the invoking process resumes from — which only needs
to restore the earlier saved ‘EBP’ register. The return-address for the C process in the occam

kernel is set to another assembler routine, ‘occstub resume point’. This has a relatively trivial
implementation:

occstub_resume_point:

CIF_SAVE_OCCAM_STATE

CIF_RESTORE_C_STATE

jmp *%eax /* jump directly to resume point */

More complex functions (such as ‘ProcPar()’ and ‘ProcAlt()’) are implemented in C, using the
lower-level assembly macros to interface with the run-time kernel where needed.

7.2 Process Priority

A useful feature for application programs, and a major requirement in some real-time systems, is the
ability to prioritise. Standard CSP [Hoa85] does not include a treatment of any priority, even though
‘PRI ALT’ (and also ‘PRI PAR’) have existed in occam for many years. More recently, the extended
CSP variant CSPP [Law02] does provide semantics for priority, and priority issues in general.

The priority requirement for many applications relies on process priority. That is, if two or
more processes of differing priorities are available for scheduling, higher priority processes will be
scheduled first. Furthermore, a major requirement of many real-time control applications is the
ability to have a set of cyclic control processes, managed so that each process completes its cycle
within a fixed time. Process priority can be used to achieve this.

The original Transputer hardware supported two levels of priority, low and high, with fast pre-
emptive scheduling. The original KRoC did not support priority, quietly implementing ‘PRI PAR’ as
just ‘PAR’. This is not sufficient for real-time applications which require more than one control process
— even at low processor loadings. Efficient classical solutions, such as deadline and rate-monotonic
scheduling [LL73], require multiple time-varying priorities.

Priority can be engineered in the application however, as described in [SWB90] and [Wel90],
where process scheduling is controlled through communication. The granularity of priority-changing
in such systems is dependant on the frequency of interaction with the ‘scheduler’ process. Too fre-
quent and the overhead will be high. Too scarce and the system may not respond in a timely manner
when higher priority processes become runnable. The Transputer implementation (hardware) pro-
vided pre-emptive scheduling of high-priority processes, triggered typically from an event pin on the
chip [Inm93] — that could be connected to hardware devices directly.

The addition of priority presented here, previously described in [BW02a], provides 32 levels of
process priority for KRoC/Linux. Rather than using ‘PRI PAR’ to control priority, a number of com-
piler built-ins are used, leaving ‘PRI PAR’ ineffective. These built-ins are described in section 7.2.1.

The implementation of this priority, described in section 7.2.2, is mainly handled in the run-time
kernel (CCSP), but requires changes to all parts of the KRoC system (due to a slight change in the
layout of a process’ workspace). The implementation, whose basic ideas follow those proposed by
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Ploeg et. al. in [PSBR94], aims for small overheads so that it is practically useful. The performance
of this priority implementation is discussed in section 7.2.3.

7.2.1 The occam Interface

The 32-levels of priority are accessed directly, using various compiler built-ins. The highest priority
is 0 and the lowest 31, limited in order to be efficient in parts of the implementation. A process
may only inspect or manipulate its own priority — changing the priority of other processes is not
supported. The built-ins provided are:

INT FUNCTION GETPRI ()

PROC SETPRI (VAL INT p)

PROC INCPRI ()

PROC DECPRI ()

The three PROCs ‘SETPRI’, ‘INCPRI’ and ‘DECPRI’ are treated as wholly side-effecting, and therefore
cannot be used in FUNCTION bodies. This restriction can only be relaxed if a structured mechanism
that allows a process to temporarily change its priority is provided. ‘GETPRI’ is wholly non-side-
effecting however, and can be safely used in expressions.

The behaviour for out-of-range priorities is deemed to be implementation dependent. In the
implementation presented here (in section 7.2.2), out-of-range values are quitely ignored, mapping
to the highest and lowest priorities as appropriate.

The two PROCs ‘INCPRI’ and ‘DECPRI’ are provided mainly for convenience. The implementations
are simply ‘SETPRI (GETPRI() - 1)’ and ‘SETPRI (GETPRI() + 1)’ respectively.

A process is free to change its own priority arbitrarily — but as mentioned, may not change
the priority of any other process. Changing from a lower to a higher priority will always generally
succeed immediately, however, there is the possibility that another (higher priority) process became
runnable, which would be scheduled first. Changing from a higher to a lower priority will cause a
reschedule (and deactivation of the current process) if any other process is waiting (runnable) at
the target priority level or higher.

7.2.2 Implementing Priority Handling

The implementation of priority is handled largely in the run-time kernel. The occam compiler’s ac-
cess to priority is handled through two new Transputer instructions: ‘GETPRI’ and ‘SETPRI’ (detailed
in section B.1.5). These are called directly from the compiler built-ins ‘GETPRI()’ and ‘SETPRI(p)’.

The most significant change required to support process priority is the addition of a process-
priority slot in the occam workspace. This has been inserted between the existing ‘Link’ and
‘Pointer’ fields, as shown in figure 7.4. The “below workspace” slots are only used when a process
is blocked (either on communication or other synchronsation), or waiting (on the run-queue).

The only changes to the compiler, besides the addition of the priority-related compiler built-ins
and new instruction support, are slight adjustments to process workspace requirements (for the extra
slot), and the addition of a ‘SavedPriority’ slot for PAR. This extra slot in the PAR implementation
ensures that a process’s priority is saved and restored around a PAR block — necessary since the
last process in a PAR runs in the workspace of the process performing the PAR (for efficiency).

The modified CCSP run-time kernel (examined extensively in Chapter 6) maintains 32 separate
run-queues, one for each of the priority levels. Priority is managed through the use of two (global)
kernel variables: ‘PPriority’ and ‘PState’. PPriority holds the priority level for any currently running
process — i.e. it is what is returned when an occam program calls ‘GETPRI()’. PState is a bit-field
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Figure 7.4: occam process workspace layout (with priority field)

(32-bits wide) that indicates at what priorities runnable processes exist. A single-cycle instruction
(on i386 based architectures at least) can be used to find the left-most or right-most set-bit in the
PState word, used when rescheduling to determine the priority of the next “best” process.

The various priority run-queues (organised into two arrays of front-pointers and back-pointers)
are only used to hold the various run-queues. The ‘Fptr’ and ‘Bptr’ variables (held in registers
during the execution of occam code) are still used, holding the appropriate run-queue. These are
loaded and stored in the two arrays when changing priority. Figure 7.5 shows these arrays, along
with the priority-related variables and relevant run-time registers.

In practice, the PState word is only examined when the current priority-level runs out of pro-
cesses, or when the completion of an external event makes a higher-priority process runnable. A
similar approach, for keeping track of the priority-levels at which runnable processes exist, is used
in MESH [BDv99a, BDv99b].

Changing Priority

For the majority of the time, the currently running process has the highest priority (possibly along-
side others, with which it will be scheduled). A process only becomes runnable (hence a potential
priority change point) on certain well-defined conditions: when a new process is created using the
‘STARTP’ instruction; when an existing process is scheduled using ‘RUNP’; when a process becomes
runnable as a result of channel communication; or, when a process becomes runnable as a result of
an external event (for example, a simple timeout or blocking system-call completion). In addition
to these four, the completion of a PAR is also a potential priority-change point.

The case for ‘STARTP’ is largely uninteresting: the new process inherits the priority of the current
process. ‘RUNP’ is used to place an existing process on the run queue. With priority enabled, the
‘Priority ’ field of the process being enqueued is used to select the correct run-queue (if not the
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Figure 7.5: Priority run-queues and priority related kernel variables

current priority — stored in ‘PPriority ’). If the enqueued process is of a higher priority, the current
process is descheduled, priority levels changed and the newly enqueued process scheduled. Channel
communication follows suite, since after communicating the blocked process is rescheduled — it is,
in effect, ‘RUNP’d.

The handling of external events (notified through the synchronisation flags, shown in figure 6.3
on page 152) has been explicitly modified to handle priority. Traditionally, timeouts have been
implemented using the UNIX kernel-timers (accessed through the ‘setitimer()’ system call, or
equivalent). When a timeout expires, a signal is raised and the ‘tim sync’ synchronisation flag
is set. The addition of CPU-timer support (covered in section 6.6) changes this slightly — the
signal is only arranged for when the run-time system sleeps (because it has nothing to run). The
completion of a blocking system call (section 6.3) raises a signal, whose handler sets the ‘block sync’
synchronisation flag.

Whenever the scheduler proper is invoked, it checks the synchronisation flags for activity and
processes them accordingly. Processes made runnable as a result have their ‘Priority ’ field inspected
and are added to the appropriate run-queue. Rather than immediately changing priority level if a
higher-priority process becomes runnable, an extra synchronisation flag, ‘priority sync’, is set.
This is used to indicate that a higher priority process may be available, and is checked after the
other synchronisation flags.

After processing other synchronisations flags, if the ‘priority sync’ flag is set, the ‘PState’
word is scanned to find the highest-priority runnable process. If this is different than the current
‘PPriority ’, the current run-queue is saved and the new one loaded (in addition to modifying ‘PPri-
ority ’). Algorithm 7.1 shows the algorithm used to change priorities, and will typically be used with
“bit.scan.left (PState)” as the new priority.

The ‘priority sync’ flag is also set under some other (less obvious) conditions to indicate that
a scan should be made of ‘PState’ at the next opportunity. This happens, for example, when a
process is queued at a higher priority, but the current priority cannot be changed immediately —
for instructions that manipulate the run-queue but may not be able to deschedule. The priority flag
is also set when a process finishes, and is the last process in the current run-queue, or when ‘ENDP’
(end process) completes a PAR barrier and enqueues the blocked process. The scheduler will see this
flag on the next reschedule and change to a higher priority if needed.
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Algorithm 7.1: Priority change algorithm

1: // PPriority : current priority, −1 if none
2: // PState : priority state field
3: // Fptr.Q, Bptr.Q : priority run-queues
4: // Fptr, Bptr : current run-queue

priority.change (new.pri):
5: if PPriority = −1 then
6: PPriority ⇐ new.pri
7: Fptr ⇐ Fptr.Q[PPriority]
8: Bptr ⇐ Bptr.Q[PPriority]
9: else if PPriority 6= new.pri then

10: Fptr.Q[PPriority]⇐ Fptr
11: Bptr.Q[PPriority]⇐ Bptr
12: PPriority ⇐ new.pri
13: if Fptr = NotProcess.p then
14: PState ⇐ ( PState bit.and ( bit.not (1 << PPriority )))
15: else
16: PState ⇐ ( PState bit.or (1 << PPriority ))
17: end if
18: Fptr ⇐ Fptr.Q[PPriority]
19: Bptr ⇐ Bptr.Q[PPriority]
20: end if

Enqueuing Multiple Processes

The user-defined types that provide higher-levels of process synchronisation [WW97] (in particular
‘BUCKET’ and ‘BARRIER’), use the Transputer instructions ‘SAVEL’ (save current run-queue at supplied
address), and ‘STLF’, ‘STLB’ (store low-priority front and back pointers), to join a queue of blocked
processes to the run-queue at O(1) cost.

This does not mix well with priority support. For a synchronisation type such as the barrier,
processes arrive (synchronise) and are placed on a process queue inside the BARRIER type:

DATA TYPE BARRIER

RECORD

INT Fptr, Bptr:

INT active, count:

:

When the last process synchronises (using ‘synchronise.barrier’), processes blocked on the queue
held by ‘Fptr’ and ‘Bptr’ are enqueued onto the current run-queue en-masse. If all the processes
waiting on this queue are at the same priority as process that completes the barrier, then there is no
problem — the processes will be enqueued onto the correct (current) run-queue. Where processes
of differing priorities synchronise on the barrier, this approach causes them to “inherit” the priority
of the process that completes the barrier synchronisaion.

There are two problems that need to be solved here. Firstly, how to load and store the queue
pointers for priorities other than PPriority. And secondly, how to handle the queueing of processes
within types such as ‘BARRIER’. The Transputer provided six instructions for manipulating the
run-queue: ‘SAVEH’ and ‘SAVEL’ for retrieving the high-priority and low-priority run-queue pointers
respecitively; ‘STHF’ and ‘STHB’ for storing the high-priority run-queue front and back pointers; and
finally, ‘STLF’ and ‘STLB’ for storing the low-priority run-queue pointers. KRoC based applications
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only ever make use of low-priority run-queue instructions — since the original KRoC targets did
not support priority. Attempts to use the high-priority queue instructions with KRoC will result
in run-time traps (the various KRoC translators produce run-time error generation code for these
instructions).

Rather than adding new instructions to support the loading and storing of the various priority
run-queues, the high-priority run-queue instructions (‘SAVEH’, ‘STHF’ and ‘STHB’) have been re-used2.
For the Transputer, these instructions take a single argument in ‘Areg ’ — a pointer to two INTs for
‘SAVEH’, and the INTs themselves for ‘STHF’ and ‘STHB’.

These instructions have been modified to take an additional argument — a priority level, in
‘Areg ’, with the original argument in ‘Breg’. These modified instructions allow the various priority
queues to be manipulated, without affecting the existing (low-priority) instructions, that always
operate on the current run-queue. If the modified high-priority instructions are called with ‘Areg ’
equal to ‘PPriority ’, then the current run-queue is modified.

Within the ‘BARIER’ type and similar user-defined types (that manipulate processes), provision
must be made for handling the potentially varying priority of the synchronising processes. This
can either be handled as processes synchronise, by placing them on different queues (one for each
priority level) within the BARRIER; or by retaining the single queue, and enqueuing the processes
individually (respecting their priority) when the barrier completes.

The choice of which approach is taken depends on the likely number of processes involved. Han-
dling the priority of each process individually when the barrier completes incurs an O(n) cost,
where n is the number of active barrier processes. The other approach, of maintaining 32 separate
run-queues in the barrier (or as many priority levels are supported), incurs a constant cost, approx-
imately 32 times that of a single enqueue (O(32)). Implementations can optimise somewhat, by
keeping track of which priority queues contain processes (a local PState for the BARRIER), reducing
this cost to O(m), where m is the number of priorites in use within the BARRIER.

The blocking system-calls extension (covered in section 6.3) takes the approach of handling each
process individually. This is primarily because the number of completed blocking calls is expected
to be small — perhaps 4 or 5. The overheads of blocking calls themselves impose a limit on the
frequency of dispatching and collecting.

Writing Compatible Code

For distribution-shipped occam sources, such as BUCKET and BARRIER, it is desirable to have code that
will work both with and without priority support. The “normal” way to handle this would be the
creation of multiple sources, one of which is selected (via a symbolic link, or name-prefix/name-suffix
mechanism, for example), depending on whether priority is enabled. This works and is acceptable
— since it is currently the only way. It is, however, not entirely desirable — essentially it means
maintaining multiple source files, or having a pre-processor generate the various files from a single
source.

Section 7.5 presents a compiler-based pre-processor for occam. This can be used to efficiently
manage code that needs to behave differently with and without priority (‘BARRIER’ and ‘BUCKET’
are just two particular examples). As discussed in that section, the pre-processor defines vari-
ous constants depending on the current configuration and compilation options. One of these is
‘PROCESS.PRIORITY’, defined to be the number of priority levels supported, but only if the KRoC

2The compiler never generates these instructions directly, and they are unhandled in most KRoC implementations.
Thus, recycling them is largely safe.
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system was built with priority support enabled. The following occam fragment shows the earlier
‘BARRIER’ data-type declaration, modified to use multiple run-queues if priority is enabled:

DATA TYPE BARRIER

RECORD

#IF DEFINED (PROCESS.PRIORITY)

#RELAX -- adjust indentation

[##PROCESS.PRIORITY]INT Fptr.q, Bptr.q:

INT Q.state:

#ELSE

#RELAX -- adjust indentation

INT Fptr, Bptr:

#ENDIF

INT active, count:

:

The somewhat peculiar “##PROCESS.PRIORITY” is used to retrieve the value of that pre-processor
define, literally replacing it with the value it represents. This is covered in more detail in section 7.5.

Similar use of the pre-processor can be employed in general code, at arbitrary points (similar to
C’s pre-processor), to change program behaviour if priority is enabled.

7.2.3 Performance

Figure 7.6 shows the process network and loop-body code for the priority benchmark. Two processes,
‘A’ and ‘B’, repeatedly communicate with the third process ‘C’ but change priority before/after each
communication. This particular arrangement of priority changing and communication results in
a deterministic scheduling order for the processes involved — giving a known number of priority
change operations per cycle. The ‘C’ process is run at the lowest priority level (31), while the
producers (‘A’ and ‘B’) alternate between 1 and 4. Generally speaking, however, priority cannot be
used to guarantee deterministic scheduling.
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Figure 7.6: Priority benchmark process network

Figure 7.7 shows the execution trace for this benchmark, indicating the timed (and looping)
section. The priority overheads are calculated from the difference beween the code shown and a
priority-free version.
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Figure 7.7: Execution trace for priority benchmark program

The loop involves a total of 8 context switches; 4 for rescheduling when a process blocks in a
channel (the ‘A’ and ‘B’ processes), and 4 for rescheduling a higher-priority process when ‘C’ com-
municates. Every context switch involves changing priority levels, as do the four calls to ‘SETPRI’.
The non-prioritised version also has 8 context-switches per cycle — for any rescheduling policy3.
Calls to ‘SETPRI’ do not result in context switches, only a priority level change.

The loop overhead (difference) for this benchmark is 752 ns, measured on an 800 MHz P3.

3To what extent this is true in general is currently unknown.
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Overall, the run-queue and priority are changed 12 times, giving an average overhead of 63 ns for a
priority-level change (around 50 machine cycles). This is actually over-estimated, since it includes
the overhead of a kernel-call for ‘SETPRI’.

7.3 Post-Mortem Debugging

The addition of support for debugging occam programs greatly enhances the value of KRoC as
a programming environment. Traditionally with KRoC, run-time errors result in a simple error
message before the program exits. This behaviour is known as ‘halt’ error-mode, as opposed to
‘stop’ error-mode, where processes are simply descheduled when they generate run-time errors. In
some ways ‘stop’ error-mode is the more natural of the two — a run-time error within a parallel
system only affects the process that caused it, and it may be desirable to allow the rest of the system
to continue running.

The majority of KRoC systems do not support ‘stop’ error-mode, however, and attempts to
enable it result in internal compiler errors (largely virtual-transputer stack overflows).

Most run-time errors that can befall an occam program are generated explicitly by the compiler,
with the exception of integer-overflow and divide-by-zero errors. The remaining errors are caused by
one of four virtual-transputer instructions: ‘CSUB0’, ‘CCNT1’, ‘SETERR’ or ‘FPCHKERR’. The first two
are range-checking instructions, that are typically used before array subscriptions, to ensure that
accesses fall within the array bounds. The ‘SETERR’ instruction is used to cause an immediate error,
and is generated when ‘STOP’ is compiled in ‘halt’ error-mode. On the Transputer, this instruction
halts the processor, and therefore cannot be used in ‘stop’ error-mode.

In ‘stop’ error-mode, the compiler will generate the less destructive ‘STOPP’ (deschedule current
process) instruction for cases where ‘STOP’ is encountered in occam— that includes the implicit
‘STOP’ inserted for non-default handling ‘IF’ and ‘CASE’ constructs, as well as for wholly disabled
‘ALT’s. The final run-time error cause is from ‘FPCHKERR’, that is used to check for any pending
error from the floating-point unit (and causing a run-time error if appropriate).

Support for post-mortem debugging was added first to the Sparc version of KRoC, and later
the Linux version, as described in [WB00]. This form of debugging, for the two versions of KRoC
that implement it, uses the compiler in ‘halt’ error-mode. Run-time errors are processed largely in
the standard manner — the run-time kernel will be invoked (via an error-generating instruction) to
process the error and exit.

Post-mortem debugging provides detailed information for the user when a run-time error occurs,
implemented with a combination of special code inserted by the translator, and corresponding
handling in the run-time kernel. The precise details of how this is done differ for the Sparc and Linux
versions of KRoC, but provide the same information (crash diagnostics) to the user. Additionally,
when deadlock occurs (no runnable processes), the global workspace is examined to find processes
blocked in channel communication4.

As far as handling ‘stop’ error-mode goes, the compiler’s own implementation (designed with
the Transputer in mind) is not entirely useful. For reporting errors to the user, interaction with the
run-time kernel (indicating an error condition) is perferable to a simple ‘STOPP’ (which the compiler
generates for errors in ‘stop’ error-mode).

The work here adds to that presented in [WB00], by providing an implementation for ‘stop’

4There is currently no support for locating processes blocked on anything other than channel communication, such
as semaphore ‘CLAIM’s. This is missing largely because it does not fit will with the existing implementation (that
utilises the process’s ‘Link’ field).
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error-mode. When a process generates an error, that error is reported (when debugging is enabled),
the process is descheduled and other processes continue running. Generally speaking, this will lead
to deadlock, unless the system is explicitly designed to be aware of potentially stopping processes
(that it cannot easily detect). This leads naturally into another problem — how to detect the failure
of a component, that will no longer respond to channel interaction. Some consideration is given to
this under future work, discussed in section 8.4.1, related to work done by Welch in [Wel89].

7.3.1 Standard Run-Time Errors

As noted, the standard run-time errors fall into four categories: integer overflow and integer divide-
by-zero; range-check errors (typically on array accesses); explicitly generated errors (‘STOP’); and
floating-point errors. The handling of these, for both ‘halt’ and ‘stop’ error mode is examined
in the following sections, although the difference between the two is relatively minor (due to the
implementation of ‘stop’ error-mode outside the compiler5).

For all these errors, the PROC or FUNCTION where the error occurred is reported, along with the
filename and line-number. For example:

KRoC: overflow on operation ADC in PROC "rte1" in file "rte1.occ" near line 8

OCCAM STOPped at 0804ddf4

The first line of output is from the post-mortem debugger, the second is produced in ‘halt’ error-
mode, indicating where execution stopped. In ‘stop’ error-mode, this second line is never produced.
The run-time system continues scheduling processes, or deadlocks if none are runnable.

For some errors, such as the above, information is also provided about the operation that caused
the error — ‘ADC’ in this example.

Debugging Information

For any post-mortem debugging, the textual information regarding PROC/FUNCTION names and file-
names must be available to the run-time system. Both the Sparc and i386 implementations follow
a similar method, originally devised by Wood (for the Sparc implementation): strings are placed
in the generated code, whose addresses are associated with one or more debugging records. A
debugging record contains all the information necessary to report an error — such as the specific
error (operation) and the occam line-number, along with the file-name and procedure-name.

In the Sparc implementation, debugging records are assembled in the data segment, and oc-
cupy approximately 8 words (32 bytes). When error-handling code is generated, the address of
an associated debug record is loaded and the (debugging) error-routine inside the run-time kernel
executed.

Debugging in the Sparc KRoC also reports the line-number and file-names within temporary
files (the compiler output and translator output). This is less relevant for the i386 version of KRoC,
that uses binary intermediate code (ETC), and by default uses a pipe to the assembler, rather
than invoking the assembler on a temporary file. For the Sparc version, the overhead of accessing
this information and entering the run-time kernel (without the conditional branch around it) is 3
instructions (12 bytes of machine code), as shown in [WB00]:

5Fixing the compiler to correctly handle ‘stop’ error-mode (for KRoC targets at least) is in many cases unnecessary
— the run-time kernel currently handles all run-time errors, so can simply schedule another occam process instead of
exiting when an error occurs.
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cmp %l0,%i4 !- error if negative

blu 9f

sethi %hi(0f),%o0 !*

call $$debug

or %o0,%lo(0f),%o0 !*

.data !* debugging record

0: .word 0x12002000,17,31,58,LP0,LF0,LS0,LD0

LP0: .asciz "out_repeat"

LF0: .asciz "small_utils.lib"

LS0: .asciz "nos.kt8"

LD0: .asciz "nos.s"

.text

9: !* continue program

The Linux version is different, building debugging records directly in the code before jumping to
an error handling routine. The Linux debugging record is generally much smaller — only 8 bytes,
compared to the Sparc implementation’s 32. This is mainly because there is less information to
record, no intermediate file locations are recorded, but also due to a different method of handling
procedure and file names. For example:

jno 0f # jump if not overflow

movl $0x8000008, %edx # first word of debug record

movl $0, %ecx # second word

jmp L1

0: # continue program

The code here occupies exactly 12 bytes (not counting the initial conditional jump), 8 of which are
the debug record. The code at label ‘L1’ loads pointers to the procedure and file name tables —
that the debug record indexes — before calling an entry-point in the run-time kernel.

The name tables are organised in a simple way: first the number of entries, followed by that
many offsets (from the table start) to the actual data, followed by the data itself. For the earlier
error reported in “rte1.occ”, this table is:

L4:

.long 0x00000001, 0x00000008

.byte 0x72, 0x74, 0x65, 0x31, 0x00, 0x00, 0x00, 0x00

L3:

.long 0x00000001, 0x00000008

.byte 0x72, 0x74, 0x65, 0x31, 0x2e, 0x6f, 0x63, 0x63

.byte 0x00, 0x00, 0x00, 0x00

The strings in the above (aligned and null-terminated) are “rte1” in the table at ‘L4’, and
“rte1.occ” in the table at ‘L3’.

Range-Check Errors

Range-check errors are generated by the instructions ‘CSUB0’, ‘CCNT1’, ‘CSNGL’ and ‘CWORD’. Other
checking instructions exist, particularly in the T9000 instruction set, but these are never used by
KRoC. The checking instructions generated for KRoC are typically to ensure that array accesses
are within bounds, and to ensure that non-constant replicator counts are not negative, or for some,
zero — a replicated ‘ALT’ of count 0 is equivalent to ‘STOP’, as is the similar ‘IF’.
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Some additional range checks are inserted by the translator for the ETC specials encoding
constant shift operations — i.e. if the shift is negative or greater than the word size (32-bits).

Without debugging, the code generated checks for the appropriate condition (optimising known
values away where possible), leaving a conditional jump either to the translated instruction, or to
a generic error handling routine in the run-time kernel. When debugging is enabled, the error-path
(previously a jump/call to the run-time kernel) loads various constants onto the stack (8 words
representing line number, operation, file and procedure name), and calls the locally generated setup
code. This setup code, as described previously, simply further loads the constant table addresses
(of file and procedure strings) and enters the run-time kernel.

The debugging overhead for range check operations is just 12-bytes (2 instructions)6. The check
itself varies in size, depending on the particular check and any known constant values for the
operands. For many range-checks, 2 instructions are generated, 1 for some and 3 for others, typically
around 6 bytes of machine-code.

Explicit STOPs

‘STOP’ in occam results in the compiler generating the ‘SETERR’ instruction — that set the ‘error-
flag’ on the Transputer, which would then handle the error appropriately in hardware (based on
the error mode). Without debugging, this is translated into a simple run-time kernel call. With
debugging enabled, four words are pushed onto the stack (two words of debugging information, and
two addresses), before calling the run-time kernel. This adds four extra instructions to the generated
code, up to 20 bytes of machine-code.

Since explicitly written STOPs are substantially less common than range-checks or overflow-checks
(for example), there is less of a need to keep the ‘local’ code to a minimum.

Integer Errors

Integer errors, like range-errors, are a result of common programming mistakes. Unlike many lan-
guages, occam considers the wrapping of variable values to be an error, unless explicitly ‘avoided’ (as
must be done when manipulating time values). Many operations in occam are capable of generating
integer-related errors, some less obvious than others.

Table 7.1 lists the various errors that are generated (and reported), named to be consistent with
the instructions that generate them.

Unlike the original Transputer hardware, Intel (i386) processors do not generate a trap (hard-
ware exception) when overflows occur. Instead, the ‘overflow’ flag is set in the condition-codes
register, which can be easily checked after the operation. Without debugging, the handling of
integer overflows is largely a simple conditional-jump into the run-time kernel. Some of the Trans-
puter instructions, such as ‘FMUL’ and the floating-point size checks, do not map cleanly onto i386
instructions. For these, the overflow checks are explicit, but not more than a few instructions.

The checking of floating-point values, for the translation of ‘FPCHKI32’ and ‘FPCHKI64’, are
handled by ‘dropping-in’ floating-point constants for the minimum and maximum integer values.
These are placed alongside the debugging jump-code in the generated output.

6In actual fact, it is often considerably less than 12 bytes when constants are ‘push’d onto the stack, rather than
‘mov’ed into registers. For errors in a main compilation unit, the ‘file-number’ will be zero, leaving one of the debugging
words as just the 16-bits of ‘proc-number’ (often small).
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Code Description
ADD overflow on integer addition
ADC overflow on constant integer addition
SUB overflow on integer subtraction
MUL overflow on integer multiply
LADD overflow on long (64-bit) addition
LSUB overflow on long (64-bit) subtraction
LDIV overflow on long (64-bit) division
FMUL overflow on fractional multiply
FPCHKI32 overflow for real conversion to a 32-bit integer
FPCHKI64 overflow for real conversion to a 64-bit integer

Table 7.1: Run-time integer errors

Floating-Point Errors

In the original KRoC/Linux, much of the support for floating-point handling (both operation and
error) was missing. Certainly, many of the CG-tests (compiler test-suite) failed due to missing
floating-point instruction translations.

Floating-point arithmetic, and its associated error handling, are now fully supported by
KRoC/Linux. The majority of Transputer floating-point instructions translate relatively cleanly
to the Intel FPU (from i387 upwards). The hardware arrangement inside Intel chips places the FPU
as a completely separate execution unit, allowing the FPU to run concurrently alongside integer
code. Any exchange of data between the FPU and integer units requires synchronisation, that is
handled automatically by the processor when required. When operations are entirely FPU and
memory related, the integer unit need not be involved, until it comes to the checking of errors, that
is.

FPU errors are handled in one of two ways — either by the raising of an explicit hardware trap
(delivered to the application as a POSIX signal – ‘SIGFPE’), or by the setting of a flag in the FPU’s
status register. Without debugging, traps are used to handle floating-point errors. This results in
the run-time system printing an appropriate error message and exiting.

With debugging, floating-point errors are handled in software using explicit checks. The Trans-
puter also contained an asynchronous floating-point unit, but handles errors differently. In the
Transputer, errors are allowed to accumulate in the floating-point unit, as they are in the Intel FPU
(provided that the hardware-trap error mechanism is turned off). After a sequence of floating-point
operations, the occam compiler generates the ‘FPCHKERR’ instruction that, on the Transputer, checks
for an FPU error and either halts or stops if an error had occurred.

The similar operation on the Intel involves reading the FPU status register, that indicates what
errors, if any, have occurred. These are cleared by writing to the FPU control register. Table 7.2
shows the various floating-point errors reported by the Intel FPU (and hence those reported by
KRoC/Linux).

Without debugging, the ‘FPCHKERR’ instruction translates to the Intel ‘fwait’ instruction. This
forces synchronisation with the FPU, that will cause a hardware trap if an error occurred. With
debugging, ‘FPCHKERR’ is translated into a series of instructions that read the FPU status, mask
off the unwanted bits, and if the result is non-zero, generates a jump into the floating-point error
jump-code (with two registers filled with the required debugging information, including the error
bits). The floating-point error routine in CCSP simply prints the error (along with the file, PROC
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Error Description
invalid-op an invalid/unsupported FPU op-code was used
denormal a denormalised operand was used (not necessarily an error)
div-by-zero a floating-point divide-by-zero was attempted
overflow overflow occurred
underflow underflow occurred
inexact an inexact result was produced

Table 7.2: Intel floating-point errors reported by KRoC/Linux

and line where the error occurred), then either terminates or continues (depending on the error-
mode). To ensure that the correct location in the file is reported (or as near to as possible), the
translator keeps track of where the last (error-generating) floating-point instruction occurred. This
information is used when constructing the debugging record for ‘FPCHKERR’, rather than the location
of that instruction itself.

7.3.2 Low-Level Debugging

Occasionally, fatal run-time memory errors occur, resulting in the somewhat unfriendly “segmenta-
tion fault” error message. These are either the result of errors (bugs) in the KRoC system itself,
or the result of damaged external interaction from within occam. In either case, the provision for
debugging already described is unable to provide information for these errors7.

To make debugging information available at any point, the translator constantly updates four
global variables with debugging information (whenever the line, PROC or file changes, and immedi-
ately after descheduling instructions). Two of these global variables are used to hold pointers to
the current file-name and PROC-name tables; another holds the indexes and line-number. The last
global debugging variable is currently spare, and set to a magic-constant (until a future use for it is
found).

When the run-time system encounters a fatal error, these debug variables are examined, and
if set, the debugging information contained in them is printed. The majority of the time, this
information represents the exact position of execution within an occam program. When externally
called C code causes a fatal error, the location of the external call is reported.

7.3.3 Deadlock Detection

When concurrent occam/CSP systems do go wrong (typically through programmer error), the result
is usually deadlock. The run-time system reports deadlock when it has no runnable processes,
that includes processes waiting on the timer-queue or waiting for external IO completion (blocking
system-calls).

In many occam applications, parts of a system can deadlock, without deadlocking the rest of the
system — although the overall operation may be adversely affected. Finding the cause of deadlock is
typically not easy. A common approach is the addition of debugging messages to an occam system,
in an attempt to trace the events leading up to deadlock.

7It is conceivable that with sufficiently ‘clever’ analysis, run-time checks on pointer accesses could be made. Such
checks would not be unlike those found in the C dialect “Cyclone” [JMG+02], that provides a ‘safer’ C (with extensive
compile-time and run-time checks).
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Post-mortem debugging for deadlock was first added to KRoC/Sparc by Wood [WB00]. In this
implementation, when the run-time system detects deadlock, it scans the entire occam workspace
looking for ‘blocked’ processes. A simple yet novel approach is used for this: before performing
a blocking communication, the translator inserts code that sets the process’s ‘Link’ field back to
that process’s ‘Wptr’. When deadlock occurs, these ‘markers’ are searched for and ‘stuck’ processes
reported.

The KRoC/Linux implementation uses a very similar approach, but with a slightly different
implementation (to follow the exiting post-mortem implementations here). For example, with de-
bugging enabled, simple ‘INT’ output generates code approximately equivalent to:

; begin OUTWORD translation

movl %Wptr, Link(%Wptr) ; store Wptr in the Link field

movl $0f, Iptr(%Wptr) ; store return address in Iptr field

jmp _Y_in8 ; jump into run-time kernel

0:

jmp L19 ; jump over debugging record

.byte 0x0d, 0x00, 0x03, 0x04

.byte 0x00, 0x00, 0x00, 0x00

.byte 0xde, 0xad, 0xbe, 0xef

jmp L9 ; jump to debugging jump-code

L19:

movl $0, Link(%Wptr) ; clear Link field

... translation continues

The debugging record includes the line number of the communication, and indexes into the local
file and PROC name tables. Also included is a magic constant, that helps identify ‘correct’ cases.

When the run-time system deadlocks, the global workspace is scanned for words that contain
a pointer back two words (the Link from a process to itself). When found, what ought to be the
return address is checked to ensure that it references code, and not other memory. If this is the
case, the code at the return-address is examined, as it should contain a debugging record placed
between two jump instructions — which is checked by looking for the ‘jump’ op-codes and the
magic constant ‘0xdeadbeef’. If all is safe up to this point, the run-time system executes the jump-
instruction following the debug record. This is to some simple local code that places addresses for
the appropriate file/PROC name table in processor registers (picked up by the run-time system when
that setup returns).

If all goes well, the information contained in the debugging record is displayed — as it is a
blocked process. If any checks fail, the potential debug-record is ignored and the search for others
continues.

Unfortunately, this mechanism only works for processes that are blocked on communication
(including ALTs). The same mechanism does not work for processes waiting on SHARED channel-type
CLAIMs however. These use a semaphore-based implementation for queueing processes, that uses the
‘Link’ field internally for maintaining the queue. Being able to detect deadlocked processes blocked
on these CLAIMs is useful however. One possible approach would be the explicit identification of such
queues to the run-time system, either using a similar memory-trick in the semaphore, or by making
explicit ‘new queue’ and ‘free queue’ calls to the run-time portion of the post-mortem debugger.

Something similar to this already happens for dynamically loadable processes (section 6.5), that
have their (dynamic) workspaces explicitly identified to the run-time system. This enables the
post-mortem debugger to search for deadlocked processes within these dynamic processes.

Another incomplete part of post-mortem debugging is the detection of deadlock within FORKed,
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n-replicated, and recursive parallel processes (covered in Chapter 5). Again, this would require
informing the run-time system about such dynamic memories — which it cannot easily detect
without compiler (or translator) support.

7.4 Support for Higher Level Interaction

New facilities have been added to the occam compiler that allow channel communications to be
extracted from, and inserted into, occam processes. This extension was developed to make more
transparent the transport of channel communications over TCP/IP networks, currently being inves-
tigated by Schweigler et al. [SBW03].

The extended rendezvous (section 3.7) provides the necessary mechanisms to handle the se-
mantics of channel communication over TCP/IP networks — any communication can simply be
extended for the duration of the network transaction, controlled by the process(es) providing the
networking support. Figure 7.8 shows an example arrangement of three processes distributed across
three nodes, with a fixed network infrastructure.

P(A) P(B) P(C)

net−if net−if net−if

P(C)

net−if

P(B) P(A)

net−if net−if

TCP/IP streams

Controller Interface Server

node 1 node 2 node 3

Figure 7.8: Example distributed occam process network

This is just one method of providing network connectivity — many others are possible. The
processes shown in figure 7.8 use two common ‘net-if’ (network interface) processes, that handle the
transporting of data over a TCP/IP stream with extended synchronisation. These two processes
might have the PROC signatures:

PROC net.if.recv (VAL []BYTE local.host, VAL INT local.port, CHAN []MOBILE BYTE out!)

PROC net.if.send (VAL []BYTE remote.host, VAL INT remote.port, CHAN []MOBILE BYTE in?)

These PROCs are connected through channels of dynamic mobile arrays (of bytes), used principally to
reduce communication overheads within the local network. Other protocols are certainly possible:
an INT counted array of BYTEs, for example. It is the responsibility of the ‘net-if’ components to
ensure that data written to a ‘net.if.send’ emerges same-sized from ‘net.if.recv’ — TCP/IP is
a stream protocol, not a datagram protocol.
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The protocol-conversion components (‘P(a)’, ‘P(b)’ and ‘P(c)’) are intended to convert to and
from a user protocol type (communicated to/from the application components). Writing these
protocol converters is surprisingly messy however, and will involve the copying of data from the
application into a suitably sized mobile BYTE array. In addition to this, the protocol-converters must
be modified whenever the protocol on which they operate changes (for example, the addition of a
tag in a variant protocol). For example, a simple sequential protocol and its (outgoing) converter-
component might be:

PROTOCOL TIMED.DATA IS INT; REAL64:

PROC pcvt.timed.data (CHAN TIMED.DATA in?, CHAN MOBILE []BYTE out!)

WHILE TRUE

INT d.t:

REAL64 d.v:

in ?? d.t; d.v

MOBILE []BYTE array:

SEQ

array := MOBILE [12]BYTE

VAL [4]BYTE a.t RETYPES d.t:

[array FOR 4] := a.t

VAL [8]BYTE a.v RETYPES d.v:

[array FROM 4] := a.v

out ! array

:

Having to resort to writing code like this is a burden, and becomes a problem if we wish to construct
a generic networking infrastructure, since users of those facilities will need to provide their own
protocol-conversion processes (for any PROTOCOLs or DATA TYPEs that they define). Such code must
be rigorously correct, if not to introduce hard-to-find bugs (for example, the correct placement of
data within the output array). The above example is non-terminating; however, adding support for
this is relatively trivial (the addition of an ALT).

For larger data-types, the overhead of copying (in and out of the externally communicated mo-
bile array) becomes damaging to performance, and in many cases, this overhead is unnecessary. If
the communication is correctly extended, the outputting application process will not complete the
output until the remote (application) process has received the data. This allows a potentially signif-
icant optimisation in the outputting side: using a pointer to the data in the network communication
process, rather than the data itself — thus avoiding any copying between the application and the
low-level call to send data over a network.

Extracting a pointer in occam is non-trivial — and impossible without the use of inline (extended
Transputer) ASM blocks. This leads to horribly complex protocol converters, discouraging the use
of any such distribution mechanism. To access pointers from communication easily requires inter-
action outside of occam. For instance, specific programming in the run-time kernel (to intercept
communication) has already been used by Vella [VW99, Vel98] to provide network communication.
The flexibility of such infrastructures is limited however, since all network handling is performed by
the run-time system. The user-defined channel (section 6.4) and C-interface (section 7.1) extensions
presented in this thesis allow for more generic external interaction, but require a good knowledge of
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C programming.
To address these issues, built-in PROCs have been added to the occam compiler that provide

seamless support for protocol-conversion, providing automatic implementations for the ‘P(a)’, ‘P(b)’
and ‘P(c)’ processes from figure 7.8. Section 7.4.1 describes how these converters are accessed and
used; the implementation is covered in section 7.4.3. Having the compiler generate the code required
is significantly beneficial: it can handle any defined protocol, and will always be correct8.

7.4.1 Accessing and Using Protocol Converters

The compiler-generated protocol converters are accessed through the two special PROCs:

PROC DECODE.CHANNEL (CHAN * in?, CHAN ** term?, CHAN *** decode.out!)

PROC ENCODE.CHANNEL (CHAN *** encode.in?, CHAN ** term?, CHAN * out!)

These have a somewhat generic interface, allowing channels carrying various protocols (represented
by asterisks) to be connected. The single asterisk protocol (‘*’) is the user/application protocol.
This is the most generic, allowing any channel to be connected, with the exception that channels
carrying mobile channel-types (channel-bundle ends) may not be connected. This restriction is
imposed, currently, because there is an issue of how these should be handled, particularly when
SHARED channel-ends are involved. These issues are not directly within the scope of this thesis, but
once addressed, support for them can be added mostly transparently — some thoughts are offered
in section 8.4.2 however.

The two-asterisk channel protocol (‘**’) is for the termination channel. The way in which the
implementation handles this channel (it never actually communicates), permits the use of any non-
mobile, single-item protocol. For most purposes, this will typically be either ‘INT’ or ‘BOOL’.

The three-asterisk protocol (‘***’) represents the higher-level protocol, consisting of two INTs.
The channel used can either be of a user-defined PROTOCOL consisting of the two INTs, or of a
fixed-size array: [2]INT. The two values communicated are a pointer to the originally outputted
data, and the size of that data (in bytes). Communicating a pointer is safe, provided that the
output from ‘DECODE.CHANNEL’ is extended as far as its actual transmission on the network (or,
more likely, until it is transferred to a buffer in the TCP/IP stack). This is the only requirement
of ‘DECODE.CHANNEL’. To retain single-channel synchronisation, the communication must be further
extended to the remote ‘ENCODE.CHANNEL’ process and into the remote application process.

The receiving side, using ‘ENCODE.CHANNEL’, is slightly more complicated, requiring that the
pointer and size communicated to it (on ‘encode.in’) is that of a dynamic mobile array (of BYTEs).
This fits the intended usage quite nicely however, since data received at the network-level will most
likely be placed in a BYTE array.

Producer LinkDECODE.CHANNEL ENCODE.CHANNEL Consumer

(to screen)

Figure 7.9: Example process network using compiler-generated protocol converters

8Assuming the absence of any compiler bugs.
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Figure 7.9 shows a process network that uses ‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’ locally,
with a ‘Link’ process between them that just displays the communicated data (for debugging), before
passing it on. The code for the overall network is simple, particularly the use of ‘DECODE.CHANNEL’
and ‘ENCODE.CHANNEL’ for users of any generic networking infrastructures provided. For example:

PROTOCOL LINK.P IS INT; INT: -- protocol between decode/encode

PROTOCOL APP.PROTO IS

CASE

empty

simple; INT

sequential; REAL64; INT::[]BYTE

complex; MOBILE [][]INT

:

... producer, consumer and link processes

PROC link.example (CHAN BYTE screen!)

CHAN APP.PROTO from.producer, to.consumer:

CHAN LINK.P to.link, from.link:

[2]CHAN BOOL kill:

PAR

producer (from.producer!)

DECODE.CHANNEL (from.producer?, kill[0]?, to.link!)

link (to.link?, screen!, from.link!)

ENCODE.CHANNEL (from.link?, kill[1]?, to.consumer!)

consumer (to.consumer?)

:

In order to program the ‘Link’ process, a further ability to manipulate dynamic mobile arrays
is required. That is, the ability to (temporarily) transform outputs from ‘DECODE.CHANNEL’ into
dynamic mobile arrays, and for the other side, the ability to turn a dynamic mobile array into an
address/size pair for input by ‘ENCODE.CHANNEL’. The following section describes the functionality
provided to do this, followed by the implementation of the example ‘link’ process.

7.4.2 Detaching and Attaching Dynamic Mobile Arrays

In order to meet the requirements of ‘ENCODE.CHANNEL’, the ‘link’ process must generate a dynamic
mobile array containing a copy of the originally communicated data. To make this possible, two
additional built-in PROCs have been created, that provide a mechanism for interchanging between
address/size pairs and dynamic mobile arrays:

PROC DETACH.DYNMOB (MOBILE []BYTE data, RESULT INT addr, size)

PROC ATTACH.DYNMOB (VAL INT addr, size, RESULT MOBILE []BYTE data)

The use of these built-in PROCs is intended for the network-infrastructure provider only. The (trivial)
implementations of these make no attempt to check the validity of the address, leaving the potential
for error quite high. Furthermore, the possibility of alias creation exists, which if uncontrolled could
result in catastrophic run-time errors. In an attempt to limit potential damage, these built-in PROCs
have subtle effects on the undefinedness checker (section 4.6).
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For ‘DETACH.DYNMOB’, the dynamic mobile BYTE array detached is afterwards considered unde-
fined — in addition to actually being made undefined at run-time (by having its size-field set to
zero). In a similar manner, the VAL INT address parameter of ‘ATTACH.DYNMOB’ (or any base variable
in an expression), is afterwards considered undefined. This causes the compiler to generate warnings
if, for example, the same address is attached twice.

Implementing The ‘Link’ Process

The ‘link’ process from figure 7.9, using ‘ATTACH.DYNMOB’ and ‘DETACH.DYNMOB’, can be imple-
mented with:

PROC link (CHAN LINK.P in?, CHAN BYTE screen!, CHAN LINK.P out!)

WHILE TRUE

INT addr, size:

in ?? addr; size

MOBILE []BYTE d.tmp, d.new:

SEQ

-- temporarily attach as dynamic mobile, copy, and detach

ATTACH.DYNMOB (addr, size, d.tmp)

d.new := CLONE d.tmp

DETACH.DYNMOB (d.tmp, addr, size)

-- report

showdata (d.new, screen!)

-- detach and send to encode process

DETACH.DYNMOB (d.new, addr, size)

out ! addr; size

:

The new dynamic mobile created by this process (using CLONE) is possibly freed by the ‘ENCODE.CHANNEL’
process. For the example ‘APP.PROTO’, this will happen for all cases except the ‘MOBILE [][]INT’
communicated by the ‘complex’ tag. In this case, the dynamic mobile is not freed, but instead is
transferred to the application.

In all cases, the programmer should assume as little as possible about the pointer/size pairs
produced by ‘DECODE.CHANNEL’, except that they are valid pointers to their respective data (BYTE)
sizes. The critical requirement is that any use of the pointer and size is extended from the output
by ‘DECODE.CHANNEL’ — i.e. the (outputting) user process must not be allowed to resume until the
decoded pointer and size has been fully used.

7.4.3 Implementation of Protocol Conversion

Protocol conversion is implemented by in-line expanding the ‘DECODE.CHANNEL’ or ‘ENCODE.CHANNEL’
call into a suitable occam process. The generated process is primarily a loop with a PRI ALT over the
‘term’ and ‘in’ channels. A communication on the ‘term’ channel simply arranges for the process
to stop looping. The code generated inside the body of the ALT guard for ‘in’ is substantially more
complex.

The following shows the common code generated for both ‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’.
This includes a number of temporaries, used during the decoding and encoding. More temporaries
may be added to this later, for protocol handling that requires them.
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BOOL $ed.anon:

INT $ed.addr:

INT $ed.count: -- other temporaries below here

SEQ

$ed.anon := TRUE

WHILE $ed.anon

PRI ALT

term ?? -- no input

SEQ

$ed.anon := FALSE

SECOND.HALF term ?? -- release terminating process

in ?? -- no input

SEQ

... protocol specific conversion code

Because of the somewhat specialist nature of decode and encode, a special action-node has been
added to the compiler — ‘X.INPUT.OUTPUT’. This performs parts of both ‘INPUT’ and ‘OUTPUT’
action-nodes, but is different enough to warrant its own “node tag” within the compiler.

Like other action-nodes, ‘X.INPUT.OUTPUT’ has a left-hand-side (set to the input channel ‘in’),
a right-hand-side (set to a list starting with the output channel ‘out’), and an action-type (set to
an expression that represents the size of the communication).

The list on the right-hand-side, starting with the ‘out’ channel, contains the various ‘$ed.’
temporaries, as well as other temporaries required by that particular ‘X.INPUT.OUTPUT’ node. Ad-
ditionally, action-nodes contain a set of flags that control some aspects of code-generation. This
was added primarily to support the extended rendezvous (section 3.7), and the optimisation of skip-
ping XABLE for ALTing (extended) inputs. For ‘X.INPUT.OUTPUT’, these flags indicate whether the
action is for ‘DECODE.CHANNEL’ or ‘ENCODE.CHANNEL’, and whether the operation involves a mobile
or dynamic-mobile protocol.

A sizeable amount of code within the tree transformation part of the occam compiler is re-
sponsible for generating sequences of ‘X.INPUT.OUTPUT’ (and other code) from protocol trees. The
following sections describe the transformation and code-generation for the various protocol types,
starting with the operation of ‘DECODE.CHANNEL’ — that is simpler than ‘ENCODE.CHANNEL’.

The handling of variant (tagged) and mobile protocols are discussed individually, since these
require particular care in the implementation.

Decoding Non-Mobile Simple Protocols

Simple protocols, such as ‘INT’, ‘REAL64’, user-defined types and fixed-size array types are com-
municated using only one communication. For ‘DECODE.CHANNEL’, this is handled by a single
‘X.INPUT.OUTPUT’ node. Figure 7.10 shows the tree structure generated from transforming an
instance of ‘DECODE.CHANNEL’, where the ‘in’ channel is of type ‘CHAN INT’.

New code within the back end of the compiler takes this tree structure (starting at the
‘X.INPUT.OUTPUT’ node), and generates code that performs the actual decode operation. For a
simple ‘CHAN INT’ decode, where the output channel is two sequentially communicated INTs, this is:

--{{{ wait for outputting process

-- LD ADDRESSOF in

-- XABLE -- XABLE skipped

--}}}
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SEQ   (cnode)

X.INPUT.OUTPUT   (actionnode)LIST   (listnode)

NULL   (listnode) NULL   (listnode)

LIST   (listnode)

LIST   (listnode)

LIST   (listnode)‘‘in’’   (namenode) ‘‘out’’   (namenode)

‘‘$ed.addr’’   (namenode)

‘‘$ed.count’’   (namenode)

CONSTEXP [4]

flags

type

[decode]

Figure 7.10: Tree structure generated for decoding a simple INT channel

--{{{ communicate address

LD ADDRESSOF out -- load output channel

LD ADDRESSOF in -- load input channel

LDNL 0 -- load outputting process

LDNL -4 -- load outputting process (data) pointer

OUTWORD -- output data address

--}}}

--{{{ communicate count

LD ADDRESSOF out -- load output channel

LDC 4 -- load BYTESIN (INT)

OUTWORD -- output size

--}}}

--{{{ resume outputting process

LD ADDRESSOF in

XEND

--}}}

The code generated for a simple ‘INT’ channel decode does not use either of the ‘$ed.addr’ or
‘$ed.count’ temporaries. More complex code generation may require these temporaries however.

In this example, the ‘XABLE’ call at the beginning of the decode is skipped — since it is the first
communication after the ALT. The implementation of this is handled in the same way as it is for
extended inputs (section 3.7.2), by setting the ‘skip-xable’ flag in the action-node.

Decoding Sequential and Counted-Array Protocols

The handling of sequential protocol decoding is reasonably trivial — each component of the protocol
is decoded sequentially, added into the list shown of the left-hand side of figure 7.10. Ordinary
(and extended) sequential protocol inputs undergo a similar transformation, but are converted into
sequences of communications, rather than sequences of ‘X INPUT OUTPUT’.
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Counted-array protocols, such as ‘INT::[]REAL64’ are slightly more complex. These are com-
municated as two separate items: the ‘INT’ number of elements, followed by the ‘REAL64’ array.
Figure 7.11 shows the tree structure generated by the compiler for this type of protocol. A fresh
temporary is used to store the count, whose type is the count part of the protocol (‘INT’ in this
example).

DECL (declnode)

SEQ   (cnode)

LIST   (listnode)

‘‘in’’   (namenode)

NULL   (listnode)

‘‘$cval’’ INT

X.INPUT.OUTPUT   (actionnode)

type

flags [decode,count]

CONSTEXP [4]

LIST   (listnode)

LIST   (listnode) ‘‘$cval’’   (namenode)

‘‘out’’   (namenode)

LIST   (listnode) X.INPUT.OUTPUT   (actionnode)

flags

type TIMES
CONSTEXP [8]

‘‘$cval’’   (namenode)

[decode]

LIST   (listnode) ‘‘out’’   (namenode)

LIST   (listnode) ‘‘$ed.addr’’   (namenode)

NULL   (listnode)

LIST   (listnode) ‘‘$ed.count’’   (namenode)

NULL   (listnode)

‘‘in’’   (namenode)

Figure 7.11: Tree structure generated for decoding an INT::[]REAL64 counted-array channel

To distinguish the handling of the count part (that needs to store the value into ‘$cval’), the
‘counted’ flag is set in the action-node. The code-generator, instead of only generating code to
communicate the address and size of the count, performs an extended input (using ‘XIN’) into
‘$cval’. The code generated is similar to that shown above, with the following inserted just below
any extended-enable:

LD ADDRESSOF $cval -- address of temporary

LD ADDRESSOF in -- load input channel

LDC 4 -- load BYTESIN (INT)

XIN -- extended input

The code generation for the data-part of the counted-array protocol follows that of simple protocol
generation, except that the count is an expression involving the temporary ‘cval’. This expression is
typically trivial however, involving at most one ‘TIMES’ (unchecked multiply) operation. Currently,
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there is no support in occam for handling multi-dimensional counted-arrays. Given the layout of
multi-dimensional arrays, only the highest dimension is a candidate for counted-arrays; all other
dimensions must be known constant sizes, for example: ‘INT::[][16]REAL64’. This is no more
complicated than basic counted-array handling — just that the base-type is now ‘[16]REAL64’, but
is still a known constant size.

Encoding Simple, Sequential and Counted-Array Protocols

The encoding of channels is somewhat more complicated than decoding, in terms of code generated.
The tree structures generated by ‘ENCODE.CHANNEL’ for simple protocol encoding are essentially the
same as that shown in figure 7.10, except that they carry the ‘encode’ flag, rather than ‘decode’.

As discussed earlier, ‘ENCODE.CHANNEL’ takes as input pairs of addresses and sizes, and those
pairs must represent a dynamic mobile BYTE array. This fits particularly well for one percieved
use of this mechanism — connecting channels over networks — since incoming data is likely to
be recieved into a dynamic mobile array. For back-to-back connection, this requirement actually
complicates things — as demonstrated by the earlier ‘link’ process (from figure 7.9).

For simple protocols, the two INTs carried on the ‘in’ channel are input into the temporaries
‘$ed.addr’ and ‘$ed.count’. The first input is performed using a standard INT-size input, into
‘$ed.addr’:

LD ADDRESSOF $ed.addr -- destination address

LD ADDRESSOF in -- load input channel

LDC 4 -- INT communication

IN -- channel input

To maintain the extended communication, the second input is done in three steps: extended enable,
extended input and, after the real output, extended end. If the size is a known constant then the
extended-input into ‘$ed.count’ can be skipped entirely, as is the case for all simple protocols. For
example, the code generated for handling the (constant) count input of a simple ‘INT’ protocol is:

LD ADDRESSOF in -- load input channel

XABLE -- wait for outputting process

--{{{ skipped extended input for count

-- LD ADDRESSOF $ed.count -- destination address

-- LD ADDRESSOF in -- load input channel

-- LDC 4 -- BYTESIN (INT)

-- XIN -- extended input

--}}}

The next step is to perform the actual communication back into a user application, whilst the
outputting process (communicating the two ‘INT’s) remains blocked. This is simply an ordinary
output in most cases, with the only exception being mobile types — covered separately in the
following sections. For a simple ‘INT’ channel, where the size is a known constant (4), the following
code is generated:

LD $ed.addr -- load (dynamic mobile) address

LD ADDRESSOF out -- load output channel

LDC 4 -- BYTESIN (INT)

OUT
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If the size of the communication is not a known constant, then the value stored in ‘$ed.count’ is
used. Either this is set by an extended-input, as has been skipped above, or by evaluating the count
expression on the ‘X INPUT OUTPUT’ node, which is available and correct in any case. Although not
done by default this can be used as a run-time check to ensure that the size communicated (of the
dynamic mobile ‘BYTE’ array) is the size expected (for user-output). As it happens, the compiler will
always evaluate the (possibly constant) size expression (the type of the action-node), and simply
does not input the ‘size’ value sent, or inputs and discards it. This makes coding a network receiver
process slightly simpler, since it can communicate the size of a detached dynamic mobile, rather
than the size of the actual communication. However, the application using this infrastructure must
be aware of the sizes involved to a certain extent, to ensure that all data involved has been received
by the encoding side.

Once the data has been output into the user application, the dynamic mobile from which it came
can be freed, and the blocked outputting process resumed. This is done using the following code:

LD $ed.addr -- load (dynamic mobile) address

MRELEASE -- free memory

LD ADDRESSOF in -- load input address

XEND -- resume outputting process

Counted-array protocol encoding is performed in a similar manner to the decode — the two items
are handled separately, and the inputted count data is stored in a temporary, ‘$cval’, as shown in
figure 7.11. For counted-array encoding, a small optimisation is possible for the count part: the size
‘INT’ can be input using a standard ‘IN’ instruction, reading into ‘$ed.count’. This is safe since
it is known that another communication follows immediately, right back to the original outputting
process, connected to an instance of ‘DECODE.CHANNEL’.

Sequential protocols are simply generated as their components in sequence, in much the same
way as for ‘DECODE.CHANNEL’.

Variant Protocol Handling

The handling of variant protocols is substantially less trivial than the previous protocol types de-
scribed, but no more complex than its handling for the extended-input in general (described in
section 3.7.2). For this type of protocol, the outputting process sends the appropriate ‘tag’ followed
by the sequential protocol data (that may be nothing — i.e. empty tags). There are two forms of
input allowed on a variant protocol channel — one that expects a specific tag and one that allows
a selection based on the tag. For example, the variant protocol:

PROTOCOL USER

CASE

empty

some.int; INT

:

can be input by either expecting a specific tag, “in ? CASE empty”, or by selection, allowing
handling of any or all tags:

in ? CASE

empty

... empty handling

INT v:

some.int; v

... int data handling
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The implementations for both forms of variant input are essentially the same — input the tag value,
then perform an action (possibly more input) based on its value. Output is somewhat simpler —
output the tag, followed by items for the sequential protocol (if not empty).

The implementations of DECODE.CHANNEL and ENCODE.CHANNEL for variant protocols are largely
similar in structure. For decode, the tag is inputted (using the extended rendezvous) and its value
outputted (as a pointer/size pair), before performing a ‘CASE’ selection on the tag, to decode any
internal sequential protocol. Encoding follows a similar pattern, first performing an extended input
on the tag, outputting that to the application (in the extended process), and then executing a CASE

selection to encode any following sequential protocol. As discussed with the extended rendezvous
(section 3.7), if the protocol contains no empty tags, the initial tag input need not be extended —
which allows for a slight simplification (and marginal overhead reduction) in the handling of these.

For the above tagged protocol, ‘USER’, the code generated for a call to ‘DECODE.CHANNEL (in?,

term?, out!)’ is implemented by the following (pseudo occam ALT body):

... ALT handling for ‘term’ channel

BYTE $ttmp: -- tag temporary

in ?? $ttmp

out ! ADDRESSOF $ttmp; SIZEOF $ttmp

CASE $ttmp

empty

SKIP -- nothing to do

some.int

in ?? ($ed.addr, $ed.count)

out ! $ed.addr; $ed.count

The parse-tree created by the translation of variable protocols is similar to the above occam fragment,
but uses ‘X INPUT OUTPUT’ nodes where extended-inputs are shown. The handling of any nested
sequential protocols is essentially the same as previously described — simply the sequential decoding
of its components.

Encoding variant protocols is almost exactly the reverse — as would be expected. The first
communication (a dynamic mobile byte array) will be the tag value. In a similar way to the encoding
of the counted-array ‘count’, the tag is input into a local temporary ‘$ttmp’ and communicated to
the user application, whilst in the extended input. A ‘CASE’ selection is then made on the tag value,
and the encoding of nested sequential protocols is handled as before.

Mobile Protocol Handling

The handling of (static) mobile protocols is slightly obscure, due to the way in which mobile com-
munication is performed (using the ‘MIN’, ‘XMIN’ and ‘MOUT’ instructions).

Mobile outputs are performed using the ‘MOUT’ instruction, that takes a pointer to the workspace
slot where the actual data pointer (into mobilespace) is allocated. As with other communication
instructions, it is the second party to the synchronisation that performs the actual communication.
For mobiles, using ‘XIN’ (where the outputting process had previously blocked in the channel), the
operation is a simple exchanging of the data pointers — accessed through the pointers passed in the
communication.

The general implementation of ‘DECODE.CHANNEL’ — using the extended rendezvous — ensures
that the channel is ready when the protocol conversion code runs. Instead of swapping pointers,
‘DECODE.CHANNEL’ simply outputs the pointer (accessed by de-referencing the pointer left in the
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outputting process’s workspace), and the count (that is always a fixed size within mobilespace). For
example, the (core) code generated for decoding a simple “MOBILE [128]BYTE” channel is:

--{{{ wait for outputting process

LD ADDRESSOF in -- load input channel

XABLE -- wait

--}}}

--{{{ communicate address

LD ADDRESSOF out -- load output channel

LD in -- load outputting process (from input channel)

LDNL -4 -- load outputting workspace pointer (MOUT)

LDNL 0 -- load data pointer (in mobilespace)

OUTWORD -- output data address

--}}}

--{{{ communicate count

LD ADDRESSOF out -- load output channel

LDC 128 -- load BYTESIN ([128]BYTE)

OUTWORD -- output size

--}}}

--{{{ resume outputting process

LD ADDRESSOF in

XEND

--}}}

Handling of the corresponding encode is slightly trickier. The encode process will receive a pointer
and address to a dynamic mobile, containing data destined for mobilespace. Currently, there is no
easy way for an outputting process to wait for its inputting counterpart, essentially an outputting
ALT — forbidden in occam due to its high implementation cost.

Instead, a local temporary mobile is allocated for the ‘ENCODE.CHANNEL’ process. Once the
pointer has been inputted by the encode process, it is immediately copied into the local mobile
temporary. The size is then inputted, using the extended input, and its contents verified. The
encode process then simply performs the ‘MOUT’ instruction, passing a pointer to the temporary
mobile, then reschedules the blocked outputting process (that is communicating the size).

The following shows the pseudo-occam that implements the mobile-specific part of ‘ENCODE.CHANNEL’
for the above ‘MOBILE [128]BYTE’ protocol:

MOBILE [128]BYTE $mtmp:

SEQ

in ? $ed.addr -- read address

$mtmp := [$ed.addr FOR 128] -- copy data

in ?? $ed.count

SEQ

ASSERT ($ed.count = 128)

out ! $mtmp -- mobile output

Currently, there is no support for handling nested mobiles, as there is no compiler support for nested
static mobiles at present. However, supporting ‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’ for these
is relatively simple — multiple communications that communicate the various parts of the mobile
structure.
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Dynamic Mobile Protocol Handling

Currently, the only supported dynamic mobiles (for encode and decode) are arrays — of non-mobile
types. Support for communication of (dynamic) mobile channel-types is discussed in section 8.4.2,
and is not currently implemented.

The handling of dynamic mobile array protocols is, more or less, a combination of similar handling
for static mobiles and counted-array protocols, but with some simplifications. When outputting a
dynamic mobile array, that might be input for ‘DECODE.CHANNEL’, a process uses either the ‘MOUT64’
or ‘MOUTN’ instruction. Both of these take a pointer into the process’s workspace, that points at the
slots allocated for a dynamic mobile array — first the pointer, followed by the dimension sizes in
ascending workspace slots (as discussed in section 4.2.4). The ‘MOUT64’ instruction communicates
the pointer and the (single) dimension. ‘MOUTN’ communicates the pointer and an arbitrary number
of dimensions, given as an extra parameter to the instruction.

The decoding of a dynamic mobile array is handled in two parts. First, the dimension counts
are communicated, followed by the actual data of the array (that is always allocated as a single
block, regarless of the number of dimensions). Once outputted, the dynamic mobile array that
was communicated is released. Unlike static mobiles, the outputting process for a dynamic mobile
expects to completely lose the reference. For static mobiles, the current reference is lost, but a new
one gained — when decoding a static mobile, the reference is left unchanged, as described in the
previous section.

The code generated for ‘DECODE.CHANNEL’ is similar to that generated for static mobile decoding
— performing an ‘XABLE’ to wait for the outputting process, followed by various outputs. The
first pair of outputs communicates the dimensions of the dynamic mobile. For decoding a “MOBILE
[][]REAL64” protocol, this first output pair would be:

--{{{ communicate dimension sizes address

LD ADDRESSOF out -- load output channel

LD in -- load outputting process (from input channel)

LDNL -4 -- load outputting workspace pointer (MOUT64/MOUTN)

LDNLP 1 -- load address of dimension starts

OUTWORD -- output data address

--}}}

--{{{ communicate dimension sizes count

LD ADDRESSOF out -- load output channel

LDC 8 -- load count (2 dimensions * 4 bytes)

OUTWORD -- output count

--}}}

Before the data itself can be communicated, its size must be calculated. This is implemented as
a sequential run of loads and multiplies, starting with the base-type size. Although a loop (for
calculating the size) might generate less code, it only becomes more efficient (after native-code
translation) for pathologically large numbers of dimensions. A local temporary is used to store the
base (workspace) address of the dimension sizes.

For the earlier “MOBILE [][]REAL64” protocol, the code to communicate the data itself is:
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--{{{ communicate address

LD ADDRESSOF out

LD in

LDNL -4

LDNL 0

OUTWORD

--}}}

--{{{ communicate size

LDC 8 -- BYTESIN (REAL64)

LD in -- load address of outputting process

LDNL -4 -- outputting process’s pointer field

LDNLP 1 -- address of 1st dim

STL 0 -- store temp

LDL 0 -- load temp

LDNL 0 -- 1st dimension

MUL -- multiply

LDL 0

LDNL 1 -- 2nd dimension

MUL -- multiply

LD ADDRESSOF out

REV

OUTWORD -- output count

--}}}

Following this, the communicated dynamic mobile is released, accessed through the ‘in’ channel.
All that remains then is to resume the blocked outputter, using a call to ‘XEND’.

Encoding is a somewhat simpler process. The process generated by ‘ENCODE.CHANNEL’ for dy-
namic mobile array protocols first receives a dynamic mobile address and size containing the dimen-
sions, followed by a pointer and size of the actual data, as another dynamic mobile. The encoding
requires a dynamic mobile, although this does not consume any more space than its workspace
slots. The dimensions, when inputted, are copied into the corresponding dimensions in the tempo-
rary. When the data address is received, it is simply put into the dynamic mobile temporary — and
explicitly not released locally (unlike other data received by any ‘ENCODE.CHANNEL’ — that is copied).
An ordinary dynamic mobile output (either ‘MOUT64’ or ‘MOUTN’) is then used to communicate the
temporary out of ‘ENCODE.CHANNEL’ into the application.

When the size (of the data) is received, it is optionally checked against the product of the
dimension counts and the base-type size. The blocked outputting process (communicating the size)
is then resumed, using ‘XEND’ as before.

In a perfectly correct infrastructure, ‘DECODE.CHANNEL’s and ‘ENCODE.CHANNEL’s should match
exactly (with logically similar protocols either side). Any errors incurred between these — such as
incorrectly sized communications — will generally lead to catastrophic run-time error. Thus it is the
responsibility of the application, or infrastructure provider, to ensure the integrity of communication
between ‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’.
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7.5 A Pre-Processor for occam

A familiar feature in many programming languages is that of a pre-processor. For C and C++
in particular, extensive use is made of the pre-processor (‘cpp’ within the GNU ‘gcc’ suite), often
without the programmer realising it (since ‘gcc’ invokes ‘cpp’ as part of the compilation sequence).

One of the primary uses of a pre-processor is to support conditional compilation — the inclusion
or removal of code depending on compile-time system or application requirements. The ‘cpp’ pre-
processor goes much further than this, providing complex ‘macro’ support, with often undesirable
effects (you can take the address of a C function, but not that of a pre-processor macro).

Pre-processors are also frequently used to handle system-dependent aspects of compilation. For
KRoC, this might represent the availability of certain language or run-time system features, for ex-
ample, mobiles and blocking system-calls. Although it would be possible for the compiler/application
to provide this information through ‘VAL’ constants, these are sometimes not sufficient — mainly
when code must be completely excluded from compilation, or when constants are generated based
on the value of another constant (occam currently has no support for a conditional operator, ‘?’
and ‘:’ in C/Java).

The pre-processor support added to occam here has been implemented within the compiler
itself, rather than a separate utility. This allows indentation to be considered, and enforced, that
is certainly desirable. The occam compiler, unlike many C compilers, has no mechanism to specify
the filename or line-number undergoing compilation. These types of directive are generated by the
‘cpp’ pre-processor, such that compiler reports errors in the file before it was pre-processed. For
occam, any external pre-processor would have to leave the positioning of lines unchanged — not
technically a problem (as previous occam pre-processors have done this), but such approaches are
not particularly graceful.

The new occam pre-processor supports the definition of named constants, condititional compila-
tion and various other features. Macro support has not been implemented, both because it is largely
unncessary (the ‘INLINE’ keyword on PROC and FUNCTION definitions suffices), and because macros,
when found in other languages (such as C), are frequently abused.

Sections 7.5.1 and 7.5.2 cover the named constant support in the pre-processor, which will
typically be required for conditional compilation, covered in section 7.5.3 along with indentation.
Section 7.5.4 presents the additional facility for user-generated errors (as might be required occa-
sionally).

7.5.1 Named Constants

Constants in the occam pre-processor are defined (and re-defined) using a familiar syntax:

#DEFINE USE.BLOCKING.SYSCALLS

#DEFINE HOSTNAME "pondweed"

#DEFINE PORT 1234

Three value-types for constants are supported: nothing, a string, or an integer. Constants defined
without values are typically only useful for conditional compilation (section 7.5.3). Those defined
with values may be used in ordinary occam too — literally substituted for the value they represent.
To refer to a pre-processor define, the name is prefixed with ‘##’ — making it clear that this is not
an ordinary occam name. For example:

socket.create.connect.tcp (sock, ##HOSTNAME, ##PORT)
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Once defined, constants remain in scope for the rest of the current compilation, even if they are
defined inside a PROC or FUNCTION definition. The removal of a constant is done in a similar manner,
through the use of ‘#UNDEFINE’:

#UNDEFINE USE.BLOCKING.SYSCALLS

#UNDEFINE PORT

7.5.2 Built-In Defines

When the compiler starts up, it defines various constants, supplying information about what features
are supported by the compiler. This allows code to behave differently at compile-time, should it
be required. In some cases it is merely useful — for example, having an application report what
version of the compiler it was built with.

Table 7.3 shows the built-in defines that are added by the compiler. In addition to these are
two special built-in defines: “FILE” and “LINE”. These hold the current file-name (string) and line-
number (integer) respectively, and are automatically updated by the compiler. These typically find
use when reporting (serious) internal error conditions, for example:

IF

gone.bad

SEQ

do.error ("suitable message", ##FILE, ##LINE)

STOP

TRUE

SKIP

where the parameter list for ‘PROC do.error’ is “VAL []BYTE msg, filename, VAL INT linenum”. The
programmer may re-define these arbitrarily, but such practice is not recommended — the file-name
is re-defined by the compiler whenever a new file is opened (for ‘#INCLUDE’ directives), or whenever
a previously opened file is resumed (following ‘#INCLUDE’ and ‘#USE’ directives). The line-number
is re-defined at every line, so re-defining or un-defining it makes little sense — because the compiler
will (re-)define it on next input line.

The special compiler option “-zpp” instructs the compiler to print out a list of defines, after it
has parsed the top-level file. Even if the input fails to parse, this list will still be displayed (left at
whatever state it was in when the parser aborted). The output generated is in ‘#DEFINE’ form, such
that it could be fed back in as input if required. For instance:

#DEFINE FILE "mct50.occ"

#DEFINE LINE 32

#DEFINE TARGET.VENDOR "pc"

#DEFINE TARGET.OS "linux-gnu"

#DEFINE TARGET.CPU "i686"

#DEFINE TARGET.CANONICAL "i686-pc-linux-gnu"

#DEFINE VERSION "OFA 1.3.3K"

#DEFINE INITIAL.DECL

#DEFINE MOBILES

#DEFINE USER.DEFINED.OPERATORS

#DEFINE OCCAM2.5

#DEFINE PROCESS.PRIORITY 32
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Name Type Description
PROCESS.PRIORITY integer If defined, the number of process priority levels

supported (section 7.2).
OCCAM2.5 nothing If defined, indicates that support for user-defined

types and other occam 2.1 features is available.
USER.DEFINED.OPERATORS nothing Defined if user-defined operators are supported.
INITIAL.DECL nothing Defined if INITIAL style declarations are sup-

ported.
MOBILES nothing Defined if (all) mobiles are supported (Chapter 4).
BLOCKING.SYSCALLS nothing Defined if blocking system-calls are supported

(section 6.3).
VERSION string Compiler version string.
NEED.QUAD.ALIGNMENT nothing Defined if the target architecture requires quad-

word (64-bit) alignment of data.
TARGET.CANONICAL string The canonical compiler target name — i.e. the

host type that ‘occ21’ was compiled for.
TARGET.CPU string The target CPU — i.e. the CPU type that the

compiler runs on.
TARGET.OS string The target operating system — i.e. the operating-

system which the compiler was built to run on.
TARGET.VENDOR string The target vendor — i.e. the hardware that the

compiler runs on, typically “pc”.

Table 7.3: Compiler generated pre-processor defines

7.5.3 Conditional Compilation and Indentation

Perhaps the most common use of a pre-processor is to support the inclusion and exclusion of code
based on constant conditions. This pre-processor follows the existing ‘cpp’ style, using ‘#IF’, ‘#ELIF’,
‘#ELSE’ and ‘#ENDIF’. The constant expressions used for the ‘#IF’ and ‘#ELIF’ (else-if) directives are
formed in a similar way to occam expressions, but specifically for use with the pre-processor only —
such expressions may not refer to occam variables.

The formal syntax for pre-processor expressions is given in Appendix A.3, with the main reduc-
tion being ‘pp.ifexp’:

pp.ifexp = TRUE

| FALSE

| DEFINED ( pp.name )

| pp.name pp.cmpop pp.name

| pp.name pp.cmpop pp.value

| pp.boolmop pp.ifexp

| pp.ifexp pp.booldop pp.ifexp

| ( pp.ifexp )

Parsing of these expressions is done in the occam style, such that left/right reduction ambiguities
are errors. All cases for ‘pp.ifexp’ reduce to a constant boolean value, that may be the explicit ‘TRUE’
or ‘FALSE’ constants. A special ‘DEFINED’ function is provided that tests whether a particular name
has been defined in the pre-processor.

The expression may also be a comparison between the value of a ‘pp.name’, and either the value
of another ‘pp.name’, or a literal ‘pp.value’. In both cases, type-compabaility is insisted upon, and
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it is an error if any ‘pp.name’ has an empty value.
More complex expressions can be formed using brackets, monadic and dyadic operators. The

single ‘pp.boolmop’ is ‘NOT’. The two available ‘pp.booldop’s are ‘AND’ and ‘OR’. The evaluation of
expressions over ‘AND’ and ‘OR’ is lazy where possible, making possible expressions such as:

#IF (DEFINED (PROCESS.PRIORITY)) AND (PROCESS.PRIORITY < 16)

and:

#ELIF (NOT DEFINED (MAGIC)) OR (MAGIC <> 99)

Indentation becomes an issue when if-like constructs are available in the pre-processor. For example:

#IF DEFINED (PROCESS.PRIORITY)

VAL INT num.levels IS ##PROCESS.PRIORITY:

#ELSE

VAL INT num.levels IS 1:

#ENDIF

... process using "num.levels"

After the pre-processor has done the necessary, the occam parser proper is left with a declaration
that is indented. This will cause an indentation error when parsing the following process. Rather
than having the pre-processor automatically adjust the indentation level within ‘#IF’ constructs,
a special directive is used to instruct the pre-processor to relax the indentation within the block.
This approach is taken since it allows the use of flattened ‘#IF’ constructs, as might be produced
by automated software tools (that have no interest in indentation). The above could be written
correctly as:

#IF DEFINED (PROCESS.PRIORITY)

#RELAX

VAL INT num.levels IS ##PROCESS.PRIORITY:

#ELSE

VAL INT num.levels IS 1:

#ENDIF

... process using "num.levels"

The ‘#RELAX’ directive may only occur once per block, and lasts until the following (non-indented)
‘#ELIF’, ‘#ELSE’ or ‘#ENDIF’ directive. Use of ‘#RELAX’ at the very start of the block is not compul-
sary, but is certainly recommended for clarity.

The above example shows the use of conditional compilation at an outermost level. However,
directives can appear directly inside code, wherever required. For example:

WHILE TRUE

#IF DEFINED (USE.PRIALT)

PRI ALT

#ELSE

ALT

#ENDIF

INT x:

in ? x

... guarded process

... other guards and processes
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The use of indentation and ‘#RELAX’ is unlikely to be beneficial here, given the use of the ‘#IF’
directive (to select between different occam constructs).

7.5.4 User-Generated Errors

In many cases, it may be desirable for warnings or errors to be generated from within user code, if
conditions for compilation are not right. For example:

#IF NOT DEFINED(PROCESS.PRIORITY)

#ERROR This version is for priority-enabled code only

#ELIF PROCESS.PRIORITY < 32

#WARNING Limited priority support

#ENDIF

These follow in a similar manner to ‘cpp’s ‘#warning’ and ‘#error’ directives, taking arbitrary text
as an argument. The occam pre-processor will only perform substitutions within the text for defined
names prefixed with the ‘##’ operator. For example:

#IF DEFINED (PROCESS.PRIORITY) AND (PROCESS.PRIORITY < 32)

#WARNING Limited priority support: ##PROCESS.PRIORITY levels

#ENDIF

The ‘#ERROR’ directive, when actively encountered, aborts compilation with the given message. The
‘#WARNING’ directive simply emits a compiler warning. In both cases, the error comes out alone
(brief), without showing the surrounding program context.



Chapter 8

Conclusions and Further Work

This thesis has successfully demonstrated that high-performance dynamic concurrency is practical,
with good properties concerning safety, flexibility and performance.

Safety is a critical requirement of concurrent programs, that the occam compiler enforces with
strict static aliasing and parallel-usage checks. With the exception of the n-replicated PAR (sec-
tion 5.2), the work presented in this thesis is also safe — i.e. it does not introduce any opportunity
for aliasing or race-hazards errors.

From the viewpoint of standard occam [Inm95], the work within this thesis significantly improves
the flexibility, and hence applicability, of occam. Of particular significance are the mechanisms that
provide support for parallel process recursion, n-replication and ‘forking’ (covered in Chapter 5), and
those that provide mobile data, channels and processes (Chapter 4). Much of this has been made
possible by the addition of dynamic memory allocation to occam, also in this thesis (section 3.8).

In terms of real-world flexibility, the addition of support for blocking system-calls (section 6.3) is
a significant gain. As are the mechanisms that provide priority (section 7.2), debugging (section 7.3)
and support for concurrent interaction with C (using a familiar Inmos/CCSP interface).

The following section 8.1 examines parallels between occam and Object-Orientated (OO) lan-
guages. Following from this, section 8.2 describes some commonly found features in OO languages
that might be desirable in a future occam (if at all).

The implementation of the work presented in this thesis is largely complete. The few incomplete
parts (examined in section 8.3) represent a fairly significant amount of work, mostly within the
occam compiler.

Using this work as a basis, the potential for future development is huge — both at the language
level, and in building new applications that utilise this work. Section 8.4 examines several possible
future (language) additions that are of particular interest, although there are and will be many
more.

8.1 occam and Object Orientation

Although Object-Orientation (OO) provides a natural way of modelling problems, the majority
of its commonly used implementations suffer from serious problems. OO in languages such as
C++ [Str97a, Str97b] and Java [JGS96] work by encapsulating problem-domain objects in classes.
A class is a type, that may be related to other classes through inheritance, forming a rich (and
potentially complex) type system. An in-depth discussion on inheritance and polymorphism, with
particular relation to type-systems, can be found in [CW85].

241
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C++ and Java classes combine state (per-instance variables, known as attributes or fields) and
functions (methods) to operate on that (local) state. The largely sequential flow-of-control in these
languages results in object interactions that are based on method calls. Unless specifically engi-
neered, objects are dead — brought to life by the active flow-of-control for a particular method call.
Locke [Loc01] provides some interesting insights into the variety of problems that object-orientation
(as embodied in languages such as C++ and Java) suffers from.

8.1.1 A Ring of Processes

A classic example is a ring of processes (not necessarily identical), with each component taking a
value, performing some computation, then passing a new value onto the next process in the ring.
The occam/CSP implementation is trivial — a ring of parallel processes connected using channels.
The only real danger is that of deadlock, but this will only occur if the ring ‘fills up’, leaving each
process blocked trying to communicate with the next process, that is blocked, and so on.

An implementation in C is also trivial, and would usually be a ‘for(;;)’ (infinite) loop com-
bined with two variables (value and state), with a ‘switch()’ statement to select between ‘process’
implementations. Each time round the loop the ‘state’ value is simply incremented modulo the num-
ber of states. Other implementations are certainly possible, but this represents one of the simpler
solutions.

For OO languages such as C++ and Java, the normal (object-oriented) approach would be to
define classes for each different ‘process’, each containing a suitable compute method. The average
Java student would almost certainly start by writing something similar to:

// "ComputeProcess" is an abstract type

// that only requires the implementation

// of the compute method.

class Process1 extends ComputeProcess

{

public int compute (int val)

{

... body of compute

return val;

}

}

Given another class that simply contains the starting ‘main()’ method, the way forward is not
always clear. Assuming an array of ‘ComputeProcess’ objects is created and suitably initialised (to
instances of the desired processes), one correct solution is to use a loop within the ‘main()’ method
that simply invokes ‘compute’ on each object in turn. However, the concept of “a ring of processes”
might tempt the student into a more ‘object-based’ approach, such that each process executes the
‘compute’ method of the next one, and so on. Besides the problem of getting references to the ‘next’
process into each object, the resulting cyclic method calling results in significant and unnecessary
memory consumption — each object is forced to remain ‘active’ whilst the next one computes.

Fortunately, the inefficiencies of this second implementation are nearly always obvious, and
alternative implementations are sought. This problem arises simply because of an attempt to treat
life-less objects as active processes. This is not a deficiency of object-orientation itself however, that
principally provides only the type-system (including inheritance and polymorphism).
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Fortunately, help is at hand for Java in the form of ‘CSP for Java’ (JCSP) [WSHB99, Wel99].
This provides a number of classes which provides CSP-style support for concurrency including, but
not limited to, parallel-processes (with a barrier synchronisation), channels and alternation. Recent
additions include a networking infrastructure for building distributed systems (again based on the
CSP model) [WAF02].

JCSP adds the required element of concurrency to Java needed to implement the process-ring
correctly, using active objects — that are JCSP processes. Instead of method-calling, interaction
between objects is done using communication on channels, that accurately captures the desired
functionality (sending a value to the next process in the ring). Although JCSP provides a powerful
tool for building concurrent systems in Java, the programmer is still required to use that functionality
correctly — and the problems associated with aliasing remain.

8.1.2 Process Types

The (mobile) process types introduced in section 4.5 are similar to OO ‘objects’, but lack the
object-oriented type system.

An occam process type describes an interface, that particular mobile processes (equivalent to
classes) implement. Thus, a mobile process has no (direct) type of its own, and does not form any
part of a type hierarchy (which classes do provide, through inheritance). This gives mobile processes
independence (encapsulation) — unless explicitly programmed, mobile processes do not depend on
each other in any way. This is not necessarily the case for objects in C++ or Java — whose correct
operation may depend on sub-types (and their implementations) introduced through inheritance.

8.2 Desirable OO Features for occam

Despite this author’s dislike for common object-orientated languages1, many OO implementations
contain features which might be desirable for implementation in a future occam.

8.2.1 Objects

The concept of objects already exists in occam to a certain degree. An OO object (at the design
stage) can easily be implemented as an occam PROC — with channels providing the interface for
interacting with that object.

The mobile process-types extension (section 4.5) adds to this by allowing processes to be assigned
to variables of the relevant process-type (i.e. the type which describes a public interface which the
occam process implements). Processes can then be communicated around networks, similar to
passing object-references in C++ and Java. Unlike C++ and Java however, communication of
these does not allow aliases to be created — from the mobile semantics. Furthermore, the occam

implementation restricts communication of mobile processes, such that they may not be moved (by
communication or assignment) whilst active.

What is permitted is the active usage of mobile channel-types (section 4.3). These can be used to
form the interface to a mobile process, such that the mobile process takes the server-end, servicing
client requests from the possibly shared client-end. The client-end of the interface is then simply
communicated and assigned as needed. Using a shared client-end permits controlled access to the
shared server resource by many parallel clients.

1Largely brought about by problems encountered whilst developing a sizable C++ application — one memorable
problem was how to allow an object to ‘delete’ itself from one of its own methods.
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8.2.2 Inheritance

Inheritance has been provided for, in part, with variant occam protocols (section 3.2). Inheritance
in this way is not the same as that found in C++ and Java however. The practical purpose
of inheritance in these languages is to allow specialisation — taking an existing object definition
(class) and extending/enhancing it in some way.

occam processes can easily achieve the same functionality — if a PROC desires the underlying
functionality of another PROC, it simply runs that other PROC in parallel with some interface code.
Figure 8.1 shows an example of this, that might be implemented with the following occam code:

PROC my.process (CHAN INT in?, out!)

... body of "my.process"

:

PROC my.process (CHAN INT in?, out!)

CHAN INT i.in, i.out: -- internal channels

PAR

... interface process

my.process (i.in?, i.out!)

:

original
my.process

my.process

interface code

in? out!

Figure 8.1: Implementing inheritance in occam by re-definition

The extended-rendezvous (section 3.7) can also be used to retain the original semantics of com-
munication, making it impossible for the environment or the original ‘my.process’ to detect the
presence of the added interface code. To avoid introducing a possibility for deadlock, care must be
taken in such interface implementations. Use of a separate interface process for each channel would
prevent any additional opportunity for deadlock.

8.2.3 Polymorphism

Polymorphism is a feature found in a number of languages, at a number of different levels. C++ and
Java support type-polymorphism (on object types) through the use of inheritance. They also support
function-polymorphism, realised in function/method overloading. Support for PROC and FUNCTION

overloading in occam is certainly possible — the envisaged technique would be to decorate the
exported names of these with parameter and return-type information, known as name-mangling in
C++’s implementation.
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However, whether or not this is desirable is highly debatable. Particularly because there are
no relationships imposed on the overloaded methods. They are utterly separate functions, but all
with the same name. If used correctly, function/method overloading can be a very useful feature.
However, the possibility for confusion created through misuse is definitely a good reason to not
provide such support.

8.3 Future Work — Tidying Up

This section discusses some of the items presented in this thesis that remain incomplete in the
implementation. These include arbitrary process FORKing, support for fully nested mobilespaces,
and the implementation of mobile processes; discussed in the following sections.

8.3.1 Arbitrary Process FORKing

The initial idea for the FORK was to allow any process to be dynamically spawned, not just a PROC

instance. As it turns out however, allowing only PROCs to be FORKed solves a potential problem —
how to deal with variable accesses within the FORKed process. The semantics of FORK parameter
passing is that of communication, restricting the PROC to VAL or MOBILE parameters only.

If arbitrary process FORKing is to be supported, a mechanism for handling this must be provided.
If an approach similar to that of ‘INLINE PROC’s is tried, the FORKed process will be left with a series
of (VAL) abbreviations before it (from the parameters). However, this does not solve the problem
— VAL abbreviations use references for items larger than one word. ‘INITIAL’ declarations [Moo99]
do provide a nice solution, however, that works for MOBILEs as well as ordinary types. As a simple
example, consider:

PROC send.message (SHARED CHAN BYTE out!)

VAL []BYTE message IS "hello, world!*n":

CLAIM out!

SEQ i = 0 FOR SIZE message

out ! message[i]

:

PROC main (SHARED CHAN BYTE scr!)

FORKING

SEQ

FORK send.message (CLONE scr!)

... continue processing in parallel

:

Ideally, it should be possible to implement this example within a single PROC. Using the method
suggested above, this example could be implemented by:
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PROC main (SHARED CHAN BYTE scr!)

FORKING

SEQ

INITIAL SHARED CHAN BYTE out! IS CLONE scr!:

FORK

VAL []BYTE message IS "hello, world!*n":

CLAIM out!

SEQ i = 0 FOR SIZE

out ! message[i]

... continue processing in parallel

:

Whilst this example is, in theory (pending implementation), perfectly valid, the INITIAL abbrevi-
ation of ‘CLONE scr!’ is unnecessary. Since that channel is explicitly SHARED (and MOBILE — it is
an anonymous channel-type end), normal parallel usage rules do not apply. Instead, the compiler
only checks parallel-usage within CLAIM blocks — where parallel usage is illegal. Furthermore, the
compiler checks to ensure that any accesses to the shared channel are CLAIMed.

8.3.2 Full Nested Mobilespace Support

Currently, support for nested MOBILE types is fairly limited. The two particular cases that are
currently supported are: dynamic mobile arrays of mobile channel-ends; and dynamic mobile arrays
within static mobiles.

Overall, there are four general cases of mobile nesting: static-in-static, dynamic-in-static, static-
in-dynamic and dynamic-in-dynamic. The most trivial of these to implement is dynamic-in-static
nesting. Dynamic mobiles have a fixed-size local memory requirement (typically in a process
workspace), but this can easily be allocated within a static mobile. A common use for this type of
nesting (and hence why it has been implemented already), is for packet handling within protocol
stacks — a dynamic mobile array is used to hold the data, contained within a static mobile record
that holds additional control information.

The most complex of these will likely be static-in-dynamic nesting, since dynamically allocated
mobiles cannot be returned to the free-lists if they have interacted with the global mobilespace.
Static-in-static nesting is related to this, but should be much simpler to implement — references
will always remain within mobilespace. Dynamic-in-dynamic mobile nesting should also be relatively
straightforward to implement. One part of this has already been implemented — dynamic mobile
arrays of mobile channel-ends:

CHAN TYPE FOO

MOBILE RECORD

CHAN INT req?:

CHAN INT repl!:

:

MOBILE []FOO? server.ends:

MOBILE []FOO! client.ends:

SEQ

...
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There is currently no support, however, for nested dynamic mobile arrays, such as:

MOBILE []MOBILE []BYTE strings:

Fortunately, the work required to support all nested mobiles has already been done in part. In
particular, the front-end of the compiler correctly processes most nested mobiles (where tried), and
it is in the back-end (code-generator) where the implementation is needed most.

8.3.3 Implementation of Mobile Processes

As noted in its description in section 4.5, the implementation of mobile processes is incomplete. Some
initial work has begun however — the compiler will correctly interpret ‘PROC TYPE’ declarations and
allow declarations of those types.

The envisaged implementation is one where the memory requirement of a particular mobile
process is that of its persistent state, plus some additional house-keeping information. As they are
described in section 4.5, the additional house-keeping information for mobile processes can be small
— in theory, just the type-hash of the mobile process.

This is possible because the type-conversion (described on page 105) explicitly requires the name
of the mobile process involved. To support conversion between process types without explicit mobile
process naming requires that the state of a mobile process includes information about how to convert
between interface types. This could be provided with a simple array of type-hash values (of PROC
TYPEs) alongside information relating to that particular implementation (most importantly, where
the code is located, and what the memory requirements of that particular implementation are).

For the programmer, this is a much more pleasant way of presenting type-conversion — and can
be supported using a simple type-cast. For example:

PROC TYPE FOREVER IS (CHAN INT in?, out!):

PROC TYPE TERMINATING IS (CHAN INT in?, out!, CHAN BOOL term?):

FOREVER p:

TERMINATING q:

SEQ

p := MOBILE mproc () -- create an instance of "mproc"

q := TERMINATING p -- convert to TERMINATING interface

The only disadvantages of providing support for this are a slightly larger memory requirement and
an O(n) cost for switching between interfaces, where n is the number of interfaces implemented by
a particular ‘MOBILE PROC’.

8.4 Future Work — Moving On

The remainder of this chapter discusses some potential ideas for future language and compiler
additions. Not included are items in currently on-going research, such as RMoX [BJV03] — that
represents a potentially vast amount of future research.

8.4.1 Fault-Tolerance for Concurrent Systems

Fault-tolerance has always been a slightly tricky issue for occam programs. If a process stops
responding to its environment (which will happen if the process terminates or generates a run-time
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error), any attempts at interaction with it will result in deadlock — a property that will generally
spread throughout the process network until no runnable processes remain.

A related problem is that of graceful termination and resetting, described in depth in [Wel89].
A general solution suggested there is one of ‘poison’ signalling, where terminating processes com-
municate ‘poison’ to their neighbours, that send it on to their neighbours, and so on. However,
care must be taken to avoid deadlock within the ‘poison’ signalling, particularly if the network is
not obviously deadlock-free (a ring of processes, for example). One way to do this is by using the
IO-PAR paradigm [WJW93] for ‘poison’ signalling.

Although this mechanism allows a component to detect termination of its neighbours, it does
not provide any mechanism to indicate failure in a neighbour — where that process simply STOPs
(a primitive process that starts, but never terminates).

The failure handling mechanism in C++ and Java uses exceptions. Locally, a process tries
an action and handles failure by catching any exceptions thrown. In C++, all exceptions are
programmer-generated, at some level. Array-bounds checking and other run-time checks simply
do not exist, resulting in undefined behaviour when the program errors. In Java, exceptions are
generally programmed explicitly. However, the run-time system also generates exceptions, common
ones being ‘null’ pointer exceptions and array-bounds exceptions.

Fortunately, CSP already provides the semantic model required, ‘interrupts’. In CSP, the process
(P 4 Q) behaves like P until the first event in Q occurs, then the process continues as Q . If Q
is a process that synchronises on a failure-event (exception), then it becomes a failure-handling
process — and the desired effect is achieved. One possible syntax for exception-handling in occam,
borrowing from the familiar C++/Java syntax, might be:

TRY

... process that may cause a run-time error

CATCH

STOPERROR

... process STOP’ed

ELSE

... process caused another error

Such a mechanism would enable a process to handle run-time failure locally, which it could then
indicate to its environment through normal communication, or internally reset to a known state.

There are, however, many unresolved issues with the implementation of any such mechanism.
In particular remain the problems of detecting the failure of neighbouring components, and the
removal of ‘errored’ processes from the run-time system (that includes processes started in parallel
within the ‘TRY’ block).

8.4.2 Higher-Order Channel-Type Communication

Section 7.4 describes the compiler built-ins ‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’, that allow
communication to be ‘detached’ from occam, primarily to support communication over TCP/IP
networks and other distributed infrastructures (where those infrastructures are programmed in oc-

cam, rather than being provided as part of the run-time system).
The only type of communication not supported by these are that of mobile channel-type ends.

Because channel-ends are not data, they cannot be communicated externally — the correct operation
of channel communication requires a shared memory space (in the KRoC implementation, based on
the Transputer hardware implementation).
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Semantically, the communication of a channel-end, or channel-ends, over a network is the stretch-
ing of those channels. Besides handling the local setup (and linking) with the networking in-
frastructure, steps must be taken to ensure that repeatedly communicated ends do not result in
‘knots’. Fortunately, previous research has already addressed many of these issues, in the Icarus
language [MM98b].

8.4.3 Scalar Types For occam

The addition of scalar types to occam has often been considered, and the implementation should
be non-complex. Sometime similar to scalar types exists in variant communication, whose ‘cases’
could be considered elements of some scalar type.

The main motivation for scalar types is that they provide a mechanism for typing related con-
stants. For example:

SCALAR TYPE COLOUR IS RED, GREEN, BLUE:

PROC print.text (VAL []BYTE str, VAL COLOUR col)

... body of "print.text"

:

The usual way of representing this is to use a BYTE or INT and define a series of constants that
represent the various possibilities. Thus:

VAL BYTE RED IS 0:

VAL BYTE GREEN IS 1:

VAL BYTE BLUE IS 2:

PROC print.text (VAL []BYTE str, VAL BYTE col)

... body of "print.text"

:

However, in this version, there is no guarantee that the value of ‘col’ passed to ‘print.text’ is
valid. In the scalar-typed version, there is this guarantee — nothing other than the constants ‘RED’,
‘GREEN’ or ‘BLUE’ may be used as ‘COLOUR’ values.

8.5 Concluding Remarks

This thesis has presented methods and algorithms that provide support for highly dynamic (and
secure) parallel programming, and enhanced interaction between concurrent software systems and
their external (operating-system) environments. Furthermore, this thesis has demonstrated that
dynamic parallel programming can be both secure and fast — by minimising overheads, better
performance can be obtained — with many operations measured in tens of nano-seconds.

Performance has particular relevance for process scheduling, since the scheduler incurs an over-
head proportional to the parallel granularity of a system (putting aside cache effects). Alternative
support for concurrent programming, as provided by POSIX or Java threads, for example, incurs
massive overheads by comparison, even when efforts are made to optimise. Much of this is due to
the lack of basic, and securely controlled, provision for concurrency in the language itself.

When carefully managed, concurrency can be a powerful ally, resulting in software systems that
are compositional, scalable, and whose designs are easily understood.
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Part III

Appendices

The appendices provide supplemental information that are not part of the main thesis. They
are provided primarily as a reference for future development, but also serve as useful references in
their own right.

Appendix A presents the new ordered grammar for occam, incorporating all the various new
language features. Appendix B provides a reference for the newly added ETC instructions (the
extended Transputer code generated by the compiler).
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Appendix A

Ordered Syntax

This appendix provides the BNF-style syntax for the various additions made to the occam lan-
guage. The style and names used are consistent with the definitions given in earlier language
definitions [Inm84b, Inm95, Bar92]. In the interests of completeness, a whole BNF grammar for
the occam language currently supported is given, with additions and modifications from identified
appropriately.

The following section, A.1, describes the basic constructs used for parsing — names, strings
and numbers. These are used both by the core language grammar, in section A.2, and by the
pre-processor in section A.3. The pre-processor is covered in detail in section 7.5.

Modifications and extensions from the occam 2.1 language are indicated using the key given in
table A.1, below.

† indicates extensions made to the language in [WM99]. A
fuller description of the implementation of these can be
found in [Moo00b].

‡ indicates extensions to the language presented in this thesis,
with a reference to the relevant section.

< indicates constructs no longer fully supported.

Table A.1: Key to ordered syntax additions

A.1 Names, Strings and Numbers

occam source code is essentially comprised of names, string and numbers. This section re-presents
the definitions from §G.4 in the occam 2.1 reference manual [Inm95].

An occam ‘name’ must begin with an alphabetic character and contain only letters, numbers or
dots. A ‘string ’ is text enclosed between double-quotes, that may contain various escape sequences.
Single characters are specified inside single-quotes, and may be an escaped character. Numbers fall
into various categories, but are ultimately composed of either ‘digits’ or ‘hex .digits’. More formally,
with the help of regular expressions:

digits = [0-9]+

hex .digits = [0-9 A-F]+

name = [a-z A-Z][a-z A-Z 0-9 .]∗
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A.2 Core Language Grammar

abbreviation = name IS variable :

| specifier name IS variable :

| VAL name IS expression :

| VAL specifier name IS expression :

| name IS channel :

| specifier name IS channel :

| name IS [ {1, channel} ] :

| specifier name IS [ {1, channel} ] :

| name IS timer :

| specifier name IS timer :

| name IS port :

| specifier name IS port :

| RESULT specifier name IS variable : ‡ (3.3)

actual = variable

| channel

| timer

| port

| expression

allocation = PLACE name AT expression :

| PLACE name expression : ‡ (3.5.1)

alternation = ALT

{alternative}
| ALT replicator

alternative

| PRI ALT

{alternative}
| PRI ALT replicator

alternative

alternative = guarded .alternative

| alternation

| channel ? CASE

{variant}
| boolean & channel ? CASE

{variant}
| extended .input ‡ (3.7)
| boolean & extended .input ‡ (3.7)
| specification

alternative

array .constructor = [ replicator | expression ] ‡ (3.4)

assignment = variable.list := expression.list
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base = expression

boolean = expression

byte = ’character’

case.expression = expression

case.input = channel ? CASE

{variant}

channel = name

| name channel .dir ‡ (3.1)
| channel [ expression ]

| channel [ expression ] channel .dir ‡ (3.1)
| [ channel FROM base FOR count ]

| [ channel FROM base ]

| [ channel FOR count ]

channel .dir = ? ‡ (3.1)
| !

channel .mobendtype = name channel .dir ‡ (4.3)

| SHARED name channel .dir

channel .type = CHAN OF protocol

| CHAN protocol ‡ (3.5.1)
| [ expression ] channel .type

choice = guarded .choice

| conditional

| specification

choice

conditional = IF

{choice}
| IF replicator

choice

conversion = data.type operand

| data.type ROUND operand

| data.type TRUNC operand

count = expression

data.type = BOOL

| BYTE

| INT

| INT16

| INT32

| INT64
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| REAL32

| REAL64

| name

| [ expression ] data.type

declaration = data.type {1, name} :
| channel .type {1, name} :
| timer .type {1, name} :
| port.type {1, name} :
| INITIAL {1, data.type} name IS {1, expression} : †
| MOBILE data.type {1, name} : ‡ (4.2)
| MOBILE [] data.type {1, name} : ‡ (4.2)
| channel .mobendtype {1, name} : ‡ (4.3)
| SHARED channel .type {1, name} : ‡ (4.4)
| PLACED channel .type name AT expression : ‡ (6.4)
| PLACED data.type name AT expression :

definition = DATA TYPE name IS data.type :

| DATA TYPE name

structured .type

:

| CHAN TYPE name ‡ (4.3)
structured .chantype

:

| [REC|RECURSIVE] CHAN TYPE name ‡ (4.4)
structured .chantype

:

| PROTOCOL name IS simple.protocol

| PROTOCOL name IS sequential .protocol

| PROTOCOL name

CASE

{tagged .protocol}
:

| PROTOCOL name EXTENDS {1, name} ‡ (3.2.2)
CASE

{tagged .protocol}
:

| PROC name ( {0, formal} )
process

:

| [REC|RECURSIVE] PROC name ( {0, formal} ) ‡ (5.1)
process

:

| {1, data.type} function.header

value.process

:

| {1, data.type} function.header IS expression.list :

| specifier name RETYPES variable :
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| VAL specifier name RETYPES expression :

| specifier name RETYPES channel :

| specifier name RETYPES port :

| specifier name RESHAPES variable :

| VAL specifier name RESHAPES expression :

| specifier name RESHAPES channel :

| specifier name RESHAPES port :

delayed .input = timer ? AFTER expression

dyadic .operator = + | - | * | / | \ | REM | PLUS | MINUS | TIMES
| /\ | \/ | >< | BITAND | BITOR | AND | OR
| = | <> | < | > | >= | <= | AFTER
| @@ | $$ | % | %% | && | <% | %> | <& | &> †
| <] | [> | <@ | @> | @ | ++ | !! | == |^ †

exponent = +digits

| -digits

expression = operand

| monadic .operator operand

| operand dyadic.operator operand

| MOSTPOS data.type

| MOSTNEG data.type

| SIZE data.type

| conversion

expression.list = {1, expression}
| name ( {0, expression} )
| ( value.process

)

extended .input = channel ?? {1; input.item} ‡ (3.7)
process

process

| channel ?? CASE tagged .list ‡ (3.7)
process

process

| channel ?? CASE ‡ (3.7)
{extended .variant}

extended .variant = tagged .list ‡ (3.7)
process

process

| specification

extended .variant

field .name = name
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forking = FORKING ‡ (5.3)
process

formal = specifier {1, name}
| VAL specifier {1, name}
| RESULT specifier {1, name} ‡ (3.3)

function.header = FUNCTION name ( {0, formal} )
| FUNCTION "monadic.operator" ( formal ) †
| FUNCTION "dyadic .operator" ( formal , formal ) †

guard = input

| SKIP ‡ (3.9.1)
| boolean & input

| boolean & SKIP

guarded .alternative = guard

process

guarded .choice = boolean

process

input = channel ? {1; input.item}
| channel ? CASE tagged .list

| timer .input

| delayed .input

| port ? variable

input.item = variable

| variable :: variable

integer = digits

| #hex .digits

literal = integer

| byte

| real

| integer ( data.type )

| byte ( data.type )

| real ( data.type )

| TRUE

| FALSE

loop = WHILE boolean

process

monadic .operator = - | MINUS |~ | BITNOT | NOT | SIZE
| @@ | $$ | % | %% | && | <% | %> | <& | &> †
| <] | [> | <@ | @> | @ | ++ | !! | == |^ †
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operand = variable

| literal

| table

| array .constructor ‡ (3.4)
| ( expression )

| ( value.process

)

| name ( {0, expression} )
| operand [ expression {], }
| BYTESIN ( operand )

| BYTESIN ( data.type )

| OFFSETOF ( name , field .name )

option = {1, case.expression}
process

| ELSE

process

| specification

option

output = channel ! {1; output.item}
| channel ! tag

| channel ! tag ; {1; output.item}
| port ! expression

output.item = expression

| expression :: expression

parallel = PAR

{process}
| PAR replicator ‡ (5.2)

process

| PRI PAR

{process}
| PRI PAR replicator

process

| placed .par <

placed .par = PLACED PAR <
{placed .par}

| PLACED PAR replicator <
placed .par

| PROCESSOR expression <
process

port = name

| port [ expression ]

| [ port FROM base FOR count ]

| [ port FROM base ]
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| [ port FOR count ]

port.type = PORT OF data.type

| PORT data.type ‡ (3.5.1)
| [ expression ] port.type

proc .instance = name ( {0, actual} )

process = assignment

| input

| output

| SKIP

| STOP

| sequence

| conditional

| selection

| loop

| parallel

| forking ‡ (3.7)
| alternation

| case.input

| extended .input ‡ (3.7)
| proc .instance

| FORK proc .instance ‡ (5.3)
| specification

process

| allocation

process

protocol = name

| simple.protocol

real = digits.digits

| digits.digits E exponent

replicator = name = base FOR count

| name = base FOR count STEP stride ‡ (3.6)

selection = CASE selector

{option}

selector = expression

sequence = SEQ

{process}
| SEQ replicator

process

sequential .protocol = {1; simple.protocol}
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simple.protocol = data.type

| ANY

| data.type ::[] data.type

specification = declaration

| abbreviation

| definition

specifier = data.type

| channel .type

| timer .type

| port.type

| [] specifier

| [ expression ] specifier

stride = expression

string = " characters "

structured .type = RECORD

{data.type{1, field .name}:}
| PACKED RECORD

{data.type{1, field .name}:}
| MOBILE RECORD ‡ (4.2)

{data.type{1, field .name}:}
| PACKED MOBILE RECORD ‡ (4.2)

{data.type{1, field .name}:}

structured .chantype = MOBILE RECORD ‡ (4.3)
{channel .type{1, field .name}channel .dir :}

table = string

| string ( name )

| [ {1, expression} ]
| table [ expression ]

| [ table FROM base FOR count ]

| [ table FROM base ]

| [ table FOR count ]

tag = name

tagged .list = tag

| tag ; {1; input.item}

tagged .protocol = tag

| tag ; sequential .protocol

| FROM name ‡ (3.2.1)

timer .input = timer ? variable
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timer = name

| timer [ expression ]

| [ timer {FROM , }base FOR count ]

| [ timer {FROM , }base ]

| [ timer FOR count ]

timer .type = TIMER

| [ expression ] timer .type

value.process = VALOF

process

RESULT expression.list

| expression

value.process

variable = name

| variable [ expression ]

| [ variable FROM base FOR count ]

| [ variable FROM base ]

| [ variable FOR count ]

variable.list = {1, variable}

variant = tagged .list

process

| specification

variant
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A.3 Pre-Processor Grammar

pp.booldop = AND | OR

pp.boolmop = NOT

pp.cmpop = = | <> | < | <= | > | >=

pp.define = #DEFINE pp.name {pp.value}
| #DEFINE pp.name

pp.directive = pp.define | pp.undefine | pp.user | pp.if

pp.if = #IF pp.ifexp

{#RELAX}
· · ·

pp.iftail

pp.ifexp = TRUE

| FALSE

| DEFINED ( pp.name )

| pp.name pp.cmpop pp.name

| pp.name pp.cmpop pp.value

| pp.boolmop pp.ifexp

| pp.ifexp pp.booldop pp.ifexp

| ( pp.ifexp )

pp.iftail = #ELIF pp.ifexp

{#RELAX}
· · ·

pp.iftail

| #ELSE

{#RELAX}
· · ·

#ENDIF

| #ENDIF

pp.undefine = #UNDEFINE pp.name

pp.user = #WARNING characters

| #ERROR characters

pp.value = digits

| " characters "
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Appendix B

Extended Transputer Code

Additions

This appendix describes the various additions made to Michael Poole’s Extended Transputer Code
(ETC) [Poo98] in order to support the work described in this thesis.

The additions fall into two main categories – new virtual-Transputer instructions and new ETC-
specials. ETC specials are used to describe non-code information (such as entry-points and PROC

descriptor lines) and also code-generating operations which are likely to be target-architecture de-
pendent (such as FUNCTION result passing).

The new virtual-Transputer instructions are listed in section B.1, with more detailed information
on each instruction, grouped by function, in sections B.1.1 through B.1.5. Section B.2 describes the
ETC-special additions, along with details of “magic” comments generated by the compiler to aid
optimisation and cater for special target-dependant operations.

B.1 New Instructions

The first group of newly added instructions are to support dynamic-memory, listed in table B.1.
Section B.1.1 provides more information on each of these instructions. Abstracting dynamic memory
support in this way makes it relatively trivial to implement in other KRoC targets.

Name Description
MALLOC allocate a block of memory
MRELEASE free a block of memory
MNEW allocate memory from free-list
MFREE free memory to free-list
MRELEASEP free current process workspace

Table B.1: Virtual-Transputer instructions to support dynamic memory

The second group of added instructions are those relating to MOBILE communication. Table B.2
shows a list of these instructions, with more detail for each one in section B.1.2. MOBILEs are
described in Chapter 4.

The third group of added instructions are used to implement the extended rendezvous (sec-
tion 3.7). Table B.3 shows a list of these instructions, with more detail for each one in section B.1.3.
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Name Description
MIN mobile input
MOUT mobile output
MIN64 dynamic mobile array input
MOUT64 dynamic mobile array output
MINN multi-dimensional dynamic mobile array input
MOUTN multi-dimensional dynamic mobile array output

Table B.2: Virtual-Transputer instructions to support MOBILE communications

Name Description
XABLE extended input enable
XIN extended input
XMIN extended mobile input
XMIN64 extended dynamic mobile array input
XMINN extended multi-dimensional dynamic mobile array input
XEND extended input end

Table B.3: Virtual-Transputer instructions to support the extended rendezvous

The fourth group of instructions are used to handle external channel communications, for use
with user-defined channels (section 6.4). They exist only for the sake of optimisation, since it is
not always known (at compile time) whether a channel is external or not. Table B.4 lists these
instructions, with more detail for each one given in section B.1.4.

Name Description
EXTVRFY verify external channel
EXTIN external input
EXTOUT external output
EXTENBC enable external channel
EXTDISC disable external channel
EXTMIN external mobile input
EXTMOUT external mobile output
EXTMIN64 external dynamic mobile array input
EXTMOUT64 external dynamic mobile array output
EXTMINN external multi-dimensional dynamic mobile array input
EXTMOUTN external multi-dimensional dynamic mobile array output

Table B.4: Virtual-Transputer instructions to support external communication

The final group instructions covers all the rest. This includes instructions to handle the various
modified ALT enabling and disabling sequences (section 3.9), as well as compiler-generated exter-
nal (user-defined) channel interfacing (section 6.4), priority handling (section 7.2) and debugging
(section 7.3). Table B.5 shows a list of these instructions, with more detail for each one given in
section B.1.5.

Each instruction is presented in a consistent manner, showing the name, op-code and any Trans-
puter registers used. For example, an instruction which takes a single argument from the stack (and
leaves the rest unchanged) would appear as:
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Name Description
NDISS new disable skip-guard
NDISC new disable channel-guard
NDIST new disable timeout-guard
ENBS3 enable skip-guard with jump
ENBC3 enable channel-guard with jump
ENBT3 enable timer-guard with jump
TRAP debug trap
GETPRI retrieve process priority
SETPRI change process priority

Table B.5: Virtual-Transputer instructions to support miscellaneous extensions

Name Opcode (instruction type)

regs in areg single input
regs out areg’ breg

breg’ creg
creg’ undefined

B.1.1 Dynamic Allocation

These instructions are used to access a dynamic memory capability. In KRoC/Linux, dynamic
memory is managed using a Brinch-Hansen style memory allocator [Han95, Han96], with memory
pools of increasing (approximately) half-powers of 2 – i.e. . . . , 32, 48, 64, 96, 128, 192, 256, . . . . The
current implementation supports allocation of sizes in the range of 4 bytes to 1.5 giga-bytes (pools
0 to 57 inclusive). Allocations of non-zero sizes less than 4 are rounded up to 4 bytes.

MALLOC – Dynamic Memory Allocation

MALLOC #E2 (secondary instruction)

regs in areg desired size in bytes
regs out areg’ pointer to allocated block

breg’ breg
creg’ creg

The MALLOC instruction provides a very general method for dynamic memory allocation, comparable
to the standard C malloc() function. The number of bytes desired are placed in Areg, MALLOC is
called and a pointer to the allocated block is left in Areg’. If the number of bytes requested is greater
than the maximum supported size, a run-time error occurs.

The allocated block should be freed using the MRELEASE instruction. Allocations of zero are
supported, but the pointer returned from such should never be dereferenced or passed to MRELEASE.
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MRELEASE – Dynamic Memory Release

MRELEASE #E3 (secondary instruction)

regs in areg pointer to allocated block
regs out areg’ breg

breg’ creg
creg’ undefined

MRELEASE is used to free dynamic memory allocated by ‘MALLOC’. Once released, the memory should
never again be accessed. Explicitly setting pointers to ‘NULL’ after releasing is recommended when
debugging memory allocation errors. The run-time kernel may check the given pointer for validity
and generate a run-time error for attempts to release NULL (or other invalid) pointers.

MNEW – Dynamic Allocation from Pool

MNEW #E0 (secondary instruction)

regs in areg pool number
regs out areg’ pointer to allocated block

breg’ breg
creg’ creg

This instruction is used to allocate a block of memory from a given pool. As described at the start
of this section, the memory pools are arranged in approximately half-powers of two. The following
table shows the pool indexes and corresponding block sizes, for the first 20 pools:

Pool Bytes Pool Bytes Pool Bytes Pool Bytes
0 4 5 24 10 128 15 768
1 6 6 32 11 192 16 1024
2 8 7 48 12 256 17 1536
3 12 8 64 13 384 18 2048
4 16 9 96 14 512 19 3072

MFREE – Dynamic Release to Pool

MFREE #E1 (secondary instruction)

regs in areg pool number
breg pointer to allocated block

regs out areg’ creg
breg’ undefined
creg’ undefined

MFREE is used to free dynamic memory allocated by ‘MNEW’. Memory should be returned to the same
pool from which it was allocated. Memory allocated using ‘MALLOC’ should never be freed using
‘MFREE’ — ‘MRELEASE’ should be used instead.
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MRELEASEP – Dynamic Process Release

MRELEASEP #11 (descheduling secondary instruction)

regs in areg workspace offset
regs out areg’ undefined

breg’ undefined
creg’ undefined

This instruction is a combination of ‘MRELEASE’ and ‘STOPP’, and is used to allow a process whose
workspace has been dynamically allocated to terminate and free its memory. For such processes, free-
ing the memory using ‘MRELEASE’ then calling ‘STOPP’ could potentially result in undefined behaviour
(from race-hazards) — if the memory is re-used by another process between the ‘MRELEASE’ and
‘STOPP’ instructions: ‘STOPP’ stores its return address in the process workspace. The ‘MRELEASEP’
instruction does not store the return address — unnecessary since the process is finishing!

B.1.2 Mobile Communication

The instructions within this section are used to support mobile communication, for all types of
mobile. ‘MIN’ and ‘MOUT’ are typically used for static mobiles (i.e. those allocated in mobilespace).
The other mobile communication instructions, MIN64, MOUT64, MINN and MOUTN are used for dynamic
mobiles.

MIN – Mobile Input

MIN #E4 (descheduling secondary instruction)

regs in areg channel address
breg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction is used to implement the input-half of mobile communication. Communication,
using this instruction, is done by pointer-swapping. Once reference is lost and another gained. The
address placed in ‘Breg ’ is a pointer (to workspace) where the mobile variable (locally) resides. The
value in this (workspace) location is swapped with the corresponding outputting process.

MOUT – Mobile Output

MOUT #E5 (descheduling secondary instruction)

regs in areg channel address
breg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined
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This instruction provides the output-half of mobile communication, using pointer-swapping. The
address placed in ‘Breg ’ is a pointer (to workspace) where the mobile variable (locally) resides. The
value in this (workspace) location is swapped with the corresponding inputting process. In a similar
manner to other output instructions, ALTing inputs cause the outputting process to block and the
ALTer to be rescheduled.

MIN64 – Dynamic Mobile Array Input

MIN64 #E6 (descheduling secondary instruction)

regs in areg channel address
breg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction implements the input-side of dynamic mobile communication, specifically for single-
dimensional dynamic mobile arrays. The address passed points to the two words (64-bits) that will
be over-written by the data sent by ‘MOUT64’.

MOUT64 – Dynamic Mobile Array Output

MOUT64 #E7 (descheduling secondary instruction)

regs in areg channel address
breg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction implements the output-side of dynamic mobile communication, specifically for
single-dimension dynamic mobile arrays. The address passed points to the two words (64-bits) that
hold the actual data address and the first dimension size.

The ‘MIN64’/‘MOUT64’ instructions implement a copy, not a pointer-swap (as ‘MIN’ and ‘MOUT’
do).

MINN – Multi-Dim Dynamic Mobile Array Input

MINN #62 (descheduling secondary instruction)

regs in areg word count
breg channel address
creg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined
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The ‘MINN’ instruction implements the input-side of dynamic mobile communication, for dynamic
mobile arrays with more than one dimension. The value placed in ‘areg ’ is the number of dimensions
plus one (for the pointer). The address given in ‘creg ’ points to the workspace location where the
pointer and dimension counts will be stored.

MOUTN – Multi-Dim Dynamic Mobile Array Output

MOUTN #64 (descheduling secondary instruction)

regs in areg word count
breg channel address
creg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction implements the output-side of dynamic mobile communication, for dynamic mobile
arrays with more than one dimension. The value placed in ‘areg ’ is the number of dimensions plus
one (for the pointer). The address given in ‘creg ’ points to the workspace location where the pointer
and dimension counts (for the dynamic mobile array) reside.

Like ‘MIN64’ and ‘MOUT64’, these instructions use a copy, rather than a swap.

B.1.3 Extended Inputs

The extended rendezvous (section 3.7) uses three new instructions for basic functionality: ‘XABLE’,
‘XIN’ and ‘XEND’; plus another three to support extended-inputs on MOBILE protocols: ‘XMIN’,
‘XMIN64’ and ‘XMINN’.

XABLE – Extended Input Enable

XABLE #E8 (descheduling secondary instruction)

regs in areg channel address
regs out areg’ undefined

breg’ undefined
creg’ undefined

The extended enable instruction is used at the start of an extended input sequence to wait for the
corresponding outputting process. If a process is already blocked in the channel this instruction
returns immediately.
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XIN – Extended Input

XIN #E9 (secondary instruction)

regs in areg count
breg channel address
creg destination address

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs a standard input (copy) from the process waiting in the channel pointed
to by ‘breg ’. The outputting process is assumed to be waiting (from an earlier ‘XABLE’). After the
copy, the outputting process is not rescheduled.

XMIN – Extended Mobile Input

XMIN #EA (secondary instruction)

regs in areg channel address
breg destination address (in mobilespace)

regs out areg’ creg
breg’ undefined
creg’ undefined

This instruction performs a standard mobile input (pointer swap) from the process waiting in the
channel pointed to by ‘areg ’. The outputting process is assumed to be waiting (from an earlier
‘XABLE’). After the pointer-swap, the outputting process is not rescheduled.

XMIN64 – Extended Dynamic Mobile Array Input

XMIN64 #EB (secondary instruction)

regs in areg channel address
breg destination address (in workspace)

regs out areg’ creg
breg’ undefined
creg’ undefined

The ‘XMIN64’ instruction performs a dynamic mobile array input (pointer and dimension copy), for
single-dimensional dynamic arrays, from the process waiting in the channel pointed to by ‘breg’.
The outputting process is assumed to be waiting (from an earlier ‘XABLE’). After the pointer and
dimension copy, the outputting process is not rescheduled.
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XMINN – Extended Multi-Dim Dynamic Mobile Array Input

XMINN #65 (secondary instruction)

regs in areg word count
breg channel address
creg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs a multi-dimensional dynamic mobile array input (pointer and dimensions
copy). The outputting process is assumed to be already blocked in the channel pointed to by ‘breg ’
(from an earlier ‘XABLE’). After the copy, the outputting process is not rescheduled. The value in
‘areg ’ gives the number of words to copy, which should be one more than the number of dimensions.

XEND – Extended Input End

XEND #EC (secondary instruction)

regs in areg channel address
regs out areg’ breg

breg’ creg
creg’ undefined

This instruction is executed at the end of an extended input to reschedule the blocked outputting
process. After the blocked process has been added to the run-queue, the channel pointed to by
‘areg ’ is cleared (to NotProcess.p).

B.1.4 External Communication

The external communication instructions are used for supporting user-defined channels, described
in section 6.4. In total there are 11 instructions — 8 for communication (arranged in pairs), 2 for
ALT enable/disable and one extra for providing ‘verification’ of external channels.

The compiler only generates these instructions when it knows that a channel is PLACED (the
mechanism used for accessing user-defined channels). External channels are flagged by having their
low-address bit set to 1, that the translation of other communication instructions must check for
(when user-defined channels are enabled). Code that does not use user-defined channels need not
generate such checks (the intention is that user-defined channels are kept as local as possible).
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EXTVRFY – External Channel Verify

EXTVRFY #14 (secondary instruction)

regs in areg hashcode
breg channel address

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction is used to verify an external channel at the point of its PLACEment in occam (that
may be a ‘PLACED’ channel declaration). The channel address is passed ‘breg ’ with the protocol-
hash in ‘areg ’. The underlying user-defined channel implementation ensures that both sides of the
channel have the same hash-code. If the hash-codes are different, a run-time error occurs.

EXTIN – External Channel Input

EXTIN #60 (secondary instruction)

regs in areg count
breg channel address
creg destination address

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs input from an external channel, whose address is given in ‘breg ’. The size
of the communication is given in ‘areg ’, with the data placed at the address given in ‘creg ’.

EXTOUT – External Channel Output

EXTOUT #61 (secondary instruction)

regs in areg count
breg channel address
creg source address

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs output to an external channel, whose address is given in ‘breg ’. The data
to be sent is pointed to by ‘creg ’, with the size (in bytes) given in ‘areg’.
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EXTENBC – External Channel Alternative Enable

EXTENBC #66 (secondary instruction)

regs in areg guard (pre-condition)
breg channel address

regs out areg’ guard (pre-condition)
breg’ creg
creg’ undefined

This instruction performs the ALT enabling sequence for an external channel, whose address is given
in ‘breg ’. Like the ‘ENBC’ instruction, if the guard given in ‘areg ’ is zero (false), this instruction does
nothing, leaving zero in ‘areg’. Otherwise the external channel is enabled and the non-zero guard is
returned in ‘areg’.

EXTNDISC – External Channel New Alternative Disable

EXTNDISC #67 (secondary instruction)

regs in areg process address
breg guard (pre-condition)
creg channel address

regs out areg’ external channel ready
breg’ undefined
creg’ undefined

This instruction performs the ALT disabling sequence for an external channel, whose address is given
in ‘creg ’. Like the ‘DISC’ instruction, if the guard given in ‘breg ’ is zero (false), this instruction does
nothing, leaving zero in ‘areg’ (channel not ready). Otherwise the external channel is disabled. The
value returned in ‘areg ’ indicates the ready-ness of the external channel — zero if the channel was
not ready.

Unlike the ‘DISC’ instruction, however, ‘EXTNDISC’ always sets the ALTing process’s ‘Temp’ slot
(to the address given in ‘areg ’), if the channel is ready. The ‘DISC’ instruction only sets the ‘Temp’
slot if the channel was ready and the ‘Temp’ slot was previously NotProcess.p.

EXTMIN – External Channel Mobile Input

EXTMIN #68 (secondary instruction)

regs in areg channel address
breg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs mobile input from an external channel, whose address is given in ‘areg ’.
The address given in ‘breg ’ holds the workspace address of the mobile’s shadow-slot. The shadow-slot
contains the pointer (into mobilespace) of where the data should be stored.
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The size of the communication is not given explicitly in this instruction. If the user-defined code
called requires the size of the underlying MOBILE type, the ‘-msf’ compiler command-line flag should
be used. This causes the compiler to allocate an extra word adjacent (and above) the workspace
shadow-slot that is initialised to the type size when the mobile variable comes into scope (when its
shadow-slot is initialised).

EXTMOUT – External Channel Mobile Output

EXTMOUT #69 (secondary instruction)

regs in areg channel address
breg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs mobile output to an external channel, whose address is given in ‘areg ’.
The address given in ‘breg ’ holds the workspace address of the mobile’s shadow-slot. This contains
the pointer (into mobilespace) of the data to be output.

The size of the communication is not given explicitly in this instruction. If the user-defined code
called requires the size of the underlying MOBILE type, the ‘-msf’ compiler command-line flag should
be used. This causes the compiler to allocate an extra word adjacent (and above) the workspace
shadow-slot that is initialised to the type size when the mobile variable comes into scope (when its
shadow-slot is initialised).

EXTMIN64 – External Channel Dynamic Mobile Input

EXTMIN64 #6A (secondary instruction)

regs in areg channel address
breg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

The ‘EXTMIN64’ instruction performs a single-dimensional dynamic mobile array input from an
external channel. The external channel address is given in ‘areg ’. The address in ‘breg ’ points to the
workspace slots where the dynamic pointer and dimension count are allocated. When this instruction
is called, the dynamic mobile pointer and size are undefined. The user-defined code called must set
these fields appropriately. Dynamic memory blocks can be allocated using the ‘dmem alloc()’
function in the run-time kernel, or through the new ‘MALLOC’ instruction (section B.1.1).

The base-type size is not given explicitly in this instruction. If the user-defined code called
requires the size of the array elements, the ‘-msf’ compiler command-line flag should be used.
This causes the compiler to allocate an extra word beyond the dimension count, initialised to the
base-type size when the mobile variable enters scope.
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EXTMOUT64 – External Channel Dynamic Mobile Output

EXTMOUT64 #6B (secondary instruction)

regs in areg channel address
breg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

The ‘EXTMOUT64’ instruction performs a single-dimensional dynamic mobile array output to an
external channel, whose address is given in ‘areg ’. The address in ‘breg ’ points to the workspace
slots where the dynamic pointer and dimension count are allocated. When this instruction returns,
the pointer and count fields of the mobile array output are assumed to be undefined. Dynamic
memory blocks can be released using the ‘dmem release()’ function in the run-time kernel, or
through the new ‘MRELEASE’ instruction (section B.1.1).

The base-type size is not given explicitly in this instruction. If the user-defined code called
requires the size of the array elements, the ‘-msf’ compiler command-line flag should be used.
This causes the compiler to allocate an extra word beyond the dimension count, initialised to the
base-type size when the mobile variable enters scope.

EXTMINN – External Channel Multi-Dim Dynamic Mobile Input

EXTMINN #6E (secondary instruction)

regs in areg word count
breg channel address
creg destination address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs multi-dimensional dynamic mobile array input, from an external channel
whose address is given in ‘breg ’. The address given in ‘creg ’ points to the workspace location where
the dynamic pointer and dimension sizes will be stored. ‘areg ’ should be set to the number of
dimensions plus one (for the pointer).

When this instruction is called, the dynamic mobile pointer and dimension sizes (in workspace)
are undefined. The user-defined code called must set these fields appropriately. Dynamic memory
blocks can be allocated using the ‘dmem alloc()’ function in the run-time kernel, or through the
new ‘MALLOC’ instruction (section B.1.1).

The base-type size is not given explicitly in this instruction. If the user-defined code called
requires the size of the base-type, the ‘-msf’ compiler command-line flag should be used. This
causes the compiler to allocate an extra word beyond the dimension sizes, initialised to the base-
type size when the mobile variable enters scope.
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EXTMOUTN – External Channel Multi-Dim Dynamic Mobile Output

EXTMOUTN #6F (secondary instruction)

regs in areg word count
breg channel address
creg source address (in workspace)

regs out areg’ undefined
breg’ undefined
creg’ undefined

This instruction performs multi-dimensional dynamic mobile array output, from an external channel
whose address is given in ‘breg ’. The address given in ‘creg ’ points to the workspace location where
the dynamic mobile pointer and dimension sizes are stored. ‘areg ’ should be set to the number of
dimensions plus one (for the pointer).

When this instruction returns, the compiler assumes that the pointer and dimension sizes are
undefined. Dynamic memory blocks can be released using the ‘dmem release()’ function in the
run-time kernel, or through the new ‘MRELEASE’ instruction (section B.1.1).

The base-type size is not given explicitly in this instruction. If the user-defined code called
requires the size of the base-type, the ‘-msf’ compiler command-line flag should be used. This
causes the compiler to allocate an extra word beyond the dimension sizes, initialised to the base-
type size when the mobile variable enters scope.

B.1.5 Miscellany

The remaining instructions provide support for the reversed ALT disabling sequence (section 3.9.2),
the enhanced ALT enabling sequence (section 3.9.3), process priority (section 7.2), and a debugging
‘TRAP’.

NDISC – New Channel Alternative Disable

NDISC #ED (secondary instruction)

regs in areg process address
breg guard (pre-condition)
creg channel address

regs out areg’ channel ready
breg’ undefined
creg’ undefined

This instruction performs an alternative disable on the channel pointed to by ‘creg ’, with the eval-
uated pre-condition in ‘breg ’ and the guarded process address in ‘areg ’. If the pre-condition is zero
(false), this instruction does nothing and returns with zero in ‘areg ’ (channel not ready). Otherwise
the channel is disabled, if it was not already. If the channel is found to be ready, the process-address
is placed in the invoking process’s ‘Temp’ slot and the instruction returns with ‘areg ’ non-zero (true).
Otherwise the ‘Temp’ slot is left unchanged and the instruction returns with zero (false) in ‘areg ’.
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NDIST – New Timeout Alternative Disable

NDIST #EE (secondary instruction)

regs in areg process address
breg guard (pre-condition)
creg timeout

regs out areg’ timed out
breg’ undefined
creg’ undefined

This instruction performs an alternative disable on the timeout in ‘creg ’, with the evaluated pre-
condition in ‘breg ’ and the guarded process address in ‘areg ’. If the pre-condition is zero (false),
this instruction does nothing and returns with zero in ‘areg ’ (not timed out). Otherwise, the ‘TLink’
field of the ALTing (invoking) process is checked. If ‘TimeNotSet.p, no timeout occurred and zero
(false) is returned in ‘areg ’.

If the ‘TLink’ field is ‘TimeSet.p’, then the timeout expired (on the timer-queue). The the timeout
passed in ‘creg ’ is before the time in the ALTing process’s ‘Time’ field, the address given in ‘areg ’
is placed in the ALTing process’s ‘Temp’ field, and the instruction returns with non-zero (true) in
‘areg ’. Otherwise, this timeout is after the one which expired, and zero (false) is returned in ‘areg ’.

If the ‘TLink’ field is anything other than these constants, then the ALTing process is still on the
timer-queue (‘TPtr’). The timer-queue is scanned and the ALTing process removed, before setting
the process’s ‘TLink’ field to ‘TimeNotSet.p’ and returning with zero (false) in ‘areg ’.

NDISS – New Skip Alternative Disable

NDISS #EF (secondary instruction)

regs in areg process address
breg guard (pre-condition)

regs out areg’ guard (pre-condition)
breg’ undefined
creg’ undefined

This instruction performs an alternative disable on a SKIP guard, with the evaluated pre-condition in
‘breg ’ and the guarded process address in ‘areg ’. If the pre-condition is zero (false), this instruction
does nothing and returns with zero left in ‘areg ’. Otherwise the address passed in ‘areg ’ is placed
in the ALTing process’s ‘Temp’ field and the instruction returns with non-zero (true) in ‘areg ’.
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ENBC3 – Enhanced Channel Alternative Enable

ENBC3 #70 (secondary instruction)

regs in areg jump address
breg guard (pre-condition)
creg channel address

regs out areg’ guard (pre-condition)
breg’ undefined
creg’ undefined

The ‘ENBC3’ instruction performs an ‘enhanced’ alternative enable on the channel pointed to by
‘creg ’, with the evaluated pre-condition in ‘breg’ and the ‘jump’ address in ‘areg’. If the pre-condition
is zero (false), this instruction does nothing and returns with zero in ‘areg ’.

If the pre-condition is non-zero (true), and the channel is ready, execution continues at the
address given in ‘areg’. The address given is typically that of a label placed directly before the
corresponding disabling instruction, causing the guarded to be immediately selected. If the channel
is not ready, it is enabled. In both cases, the (non-zero) pre-condition is returned in ‘areg’.

ENBT3 – Enhanced Timeout Alternative Enable

ENBT3 #99 (secondary instruction)

regs in areg jump address
breg guard (pre-condition)
creg timeout

regs out areg’ guard (pre-condition)
breg’ undefined
creg’ undefined

The ‘ENBT3’ instruction performs an ‘enhanced’ alternative enable on the timeout given in ‘creg ’,
with the evaluated pre-condition in ‘breg’ and the ‘jump’ address in ‘areg’. If the pre-condition is
zero (false), this instruction does nothing and returns with zero in ‘areg ’.

If the pre-condition is non-zero (true), then the ALTing process’s ‘TLink’ field is checked. If
‘TimeNotSet.p’ (no timeout set), the ‘TLink’ field is set to ‘TimeSet.p’ and the ‘Time’ field is set
to the timeout given in ‘creg ’. Otherwise, if the ‘TLink’ field was already set to ‘TimeSet.p’, the
timeout in the ‘Time’ field is set to the timeout given in ‘creg ’, but only if the time in ‘creg’ was not
after the time already set.

The time stored in the ALTing process’s ‘Time’ field is then checked to see if the timeout has
expired (by comparing it with the current time). If so, the ALTing process’s ‘State’ field is set to
‘Ready.p’, its ‘Time’ field is set to the current time, and the instruction returns to the given jump-
address (from ‘areg ’), leaving the (non-zero) guard/pre-condition in ‘areg ’. The address given is
typically that of a label placed directly before the corresponding disabling instruction, causing the
guarded process to be immediately selected. If the timeout has not expired, the instruction returns
normally, with the original guard/pre-condition in ‘areg ’.
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ENBS3 – Enhanced Skip Alternative Enable

ENBS3 #AD (secondary instruction)

regs in areg jump address
breg guard (pre-condition)

regs out areg’ guard (pre-condition)
breg’ creg
creg’ undefined

The ‘ENBS3’ instruction performs an ‘enhanced’ alternative enable for a SKIP guard, with the evalu-
ated pre-condition in ‘breg ’ and the ‘jump’ address in ‘areg’. If the pre-condition is zero (false), this
instruction does nothing and returns with zero in ‘areg ’.

If the pre-condition is non-zero (true), then the instruction returns to the given jump-address
(from ‘areg’), leaving the (non-zero) guard/pre-condition in ‘areg ’. The address given is typically
that of a label placed directly before the corresponding disabling instruction, causing the guarded
process to be immediately selected.

TRAP – Debug Trap

TRAP #FC (secondary instruction)

regs in areg trapval-A
breg trapval-B
creg trapval-C

regs out areg’ areg
breg’ breg
creg’ creg

This instruction provides a convenient way of debugging inline Transputer assembly. The contents
of ‘areg ’, ‘breg ’ and ‘creg ’ are left un-changed, and need not all be defined. The current run-time
kernel displays a dump of the Transputer stack and other scheduler variables when this instruction
is encountered.

GETPRI – Get Process Priority

GETPRI # (secondary instruction)

regs in no inputs
regs out areg’ current priority

breg’ areg
creg’ breg

The ‘GETPRI’ instruction retrieves the current process priority and places it in ‘areg ’, pushing the
rest of the stack down. The CCSP run-time kernel keeps this information in a global ‘PPriority’
variable, which this instruction simply reads.
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SETPRI – Set Process Priority

SETPRI # (secondary instruction)

regs in areg new priority
regs out areg’ undefined

breg’ undefined
creg’ undefined

The ‘SETPRI’ instruction changes the current process priority to the priority-level specified in ‘areg ’.
If the priority given is out of range, it is silently adjusted to the minimum or maximum priority-level
appropriately.

The the change in priority results in another process (of higher priority) becoming runnable,
the invoking process is placed on the appropriate priority run-queue and the higher priority process
scheduled.

B.2 New ETC Specials

The additions to the ETC specials are to support mobilespace and the new LOOPEND instructions.
For mobilespace, specials are used to describe the layout of (non-dynamic) MOBILEs in blocks of
mobilespace. The new LOOPEND instructions, for handling STEP in replicators (section 3.6), are
coded as ETC specials since the exiting LOOPEND instruction is an ETC special — in the interests of
sensible label handling1. For optimising replicators that do not use their replicator name (described
in section 3.6.2), and for handling other target-dependant features (such as IO access for PORTs),
special comments are inserted by the compiler. These are described in section B.2.3.

The additions that support (primarily) semaphore operations for shared mobile channel-ends are
covered in section B.2.4, along with any other added ETC specials in this group (including the new
rescheduling instruction).

B.2.1 Mobilespace Initialisation Specials

Two ETC specials are used to encode information about the mobilespace required by a PROC. The
first gives the mobilespace size, in words, and is introduced by “6D F4”, followed by “LDC n”. This
will be zero if a PROC does not require mobilespace.

The other provides the mobilespace map, used to generate code that initialises mobilespace at
run-time. The map is introduced by “6D F5”, followed by “LDC mspoff ”, “LDC count”, and the map
itself, ‘count ’ pairs of “LDC sl-offset, LDC dt-offset”.

‘mspoffs’ gives the workspace offset of the hidden mobilespace parameter (“$MSP”), which points
to the start of a PROCs mobilespace. The initialisation should only be performed if the first word of
mobilespace is ‘MINT’ (0x80000000).

Each ‘sl-offset, dt-offset ’ pair (providing word offsets), is processed according to the following
rules: If (sl-offset< 0), then ‘MINT’ is stored in the mobilespace at ‘dt-offset ’. Else, if (dt-offset> 0)
(and (sl-offset> 0)), then the address of the mobilespace at ‘dt-offset ’ is stored in the mobilespace
at ‘sl-offset’. Else, if (dt − offset < 0), then ‘NotProcess.p’ is stored in the mobilespace at ‘sl-offset ’.

1All instructions involving labels are generated as ETC specials, allowing code-generation optimisations for targets
which can handle addresses directly in jump instructions.
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Otherwise (when (dt-offset= 0) and (sl-offset> 0)), ‘MINT’ is stored in the mobilespace at ‘sl-offset ’
and zero is stored at ‘sl-offset +1’.

B.2.2 New LOOPEND Specials

The existing loop-end special (named ‘LOOPEND’) is introduced by “6D F1”, followed by three “LDLP”
instructions. The first gives the workspace offset (relative to the loop-end) where the loop-count
and replicator value are stored. The other two ‘LDLP’ instructions provide the numeric labels of the
loop-start and loop-end.

The operation of the loop-end instruction is to decrement the loop-count, jumping to the loop-
end label if zero. Otherwise, the replicator value is incremented and a jump is made back to the
loop-start.

Two new loop-end specials provide support for ‘STEP’ in replicators (section 3.6). The first of
these, ‘LOOPEND3’ provides support for arbitrary strides. Instead of incrementing the replicator value
by one, the replicator value is incremented by the word stored above it, which the compiler initialises
(to the ‘STEP’ value) before the loop starts. This is introduced using “6D F2”, followed by the same
three instructions (ws-offset, start-label and end-label).

The second new loop-end special, ‘LOOPENDR’ is similar to the basic ‘LOOPEND’ special, but decre-
ments the replicator value instead of incrementing it. This is used to support the specific case where
the loop stride is −1. The special is introduced using “6D F3”, followed by the ws-offset, start-label
and end-label instructions.

B.2.3 Magic Compiler Comments

In addition to code and data, ETC can include special ‘compiler comments’. Traditionally, these were
used to provide some additional information in the compiler output (Transputer assembler), mostly
for human consumption. The Sparc version of KRoC [WW96] (that generates textual compiler
output), uses compiler comments to introduce various non-code information, file-names and line-
numbers for example. With ETC [Poo98] compiler output, as used by KRoC/Linux, much of the
non-code information is provided through ETC specials, and ‘compiler comment’ is one of these.
Compiler comments can also be explicitly generated by the programmer, using the ‘#COMMENT’
directive.

The current occam compiler in KRoC/Linux generates three ‘special’ compiler comments, that
affect the code-generation of the following instruction.

The first of these, “.MAGIC IOSPACE”, indicates that the following instruction (either a load or
a store) should be turned into an IO-port read or write — for the i386 architecture at least. From
occam, this is accessed in one of two ways: using a ‘PLACED PORT’ type; or through a ‘PLACED’
array/variable declaration immediately followed by the ‘#PRAGMA IOSPACE’ directive.

The second, “.MAGIC PREENABLE”, is used in conjunction with the enhanced ALT enabling in-
structions to provide ALT pre-enabling (described in section 3.9.3). Instead of translating the fol-
lowing instruction directly (that will be one of ‘ENBC3’, ‘ENBT3’ or ‘ENBS3’), the translator generates
a ‘test’ for the ALT condition, and immediately jumps if the guard is ready (to the address given
in ‘areg ’). If the pre-condition is zero (false), or the guard is not ready, nothing is done — i.e. no
enabling takes place.

If timeout guards are present, the compiler places code before the pre-enabling sequence that
loads the current time into the ALTing process’s ‘Time’ field. This is subsequently used when pre-
enabling ‘ENBT3’, that compares the timeout given (in ‘creg ’) with the current time, and jumps if
the timeout has expired.
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The final magic compiler comment is “.MAGIC UNUSED LOOPVAR”. This is inserted by the com-
piler immediately before a loop-end ETC special to indicate that the replicator variable is un-used.
This allows for a slight optimisation in the code generated for loops that do not use their replicator,
that can make a significant difference in very tight loops.

B.2.4 Semaphores, Rescheduling and Others

The remaining ETC specials are introduced using “6F F0”. This is already used to provide support
for a number of special instructions, for example, ‘BOOLINVERT’ and ‘NOTPROCESS’.

Five new special instructions have been added here: ‘SEMINIT’, ‘SEMCLAIM’ and ‘SEMRELEASE’ for
semaphore operations; ‘RESCHEDULE’ for performing a reschedule; and ‘CHECKNOTNULL’ that checks
for a valid (non-null) pointer.

The three semaphore operations are used by ‘SHARED’ mobile channel-ends, covered in section 4.3.
The ‘SEMINIT’ instruction initialises the semaphore structure pointed to by ‘areg ’, currently two
words in length. The ‘SEMCLAIM’ instruction claims the semaphore pointed to by ‘areg ’. If the
semaphore is already held, the current process is placed on the semaphore queue and descheduled.
After a claim, a semaphore is released using ‘SEMRELEASE’, with the pointer to the semaphore in
‘areg ’. If releasing the semaphore causes a higher-priority process (section 7.2) to become runnable,
the current process should be descheduled, and the higher-priority process rescheduled.

The new ‘RESCHEDULE’ instruction is used to perform a simple reschedule — placing the current
process on the back of the run-queue, and running a process taken off the front of the run-queue.
The usual method of generating a reschedule is with the instruction sequence “LDLP 0, RUNP, STOPP”.
This, however, breaks when process priority is enabled — ‘RUNP’ is expecting an already descheduled
process as its argument, but the current process is active. In particular, the current process’s ‘Priority’
field (that RUNP uses to determine which run-queue the process should be placed on), is undefined
— it is only set by ‘STOPP’.

The alternative reschedule code uses ‘STARTP’, and inherits the current process’s priority. This re-
sults in more code being generated, however, and the resulting translation into native code is unlikely
to be efficient (considering the simplicity of the basic reschedule operation). Rather than matching
reschedule instruction sequences explicitly, the compiler now generates the special ‘RESCHEDULE’
instruction. The translator can then produce a highly optimised (inlined) reschedule, particularly
when the current run-queue is held in processor registers.

The final new instruction in this group is ‘CHECKNOTNULL’. This performs a run-time check to
ensure that the value in ‘areg ’ is non-null ( 6= NotProcess.p). The compiler uses this to check the
validity of dynamic mobile channel-end references, before attempting to access any of the components
within, and only when the state of the mobile channel-end being accessed is unknown.


