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RESEARCH ARTICLE
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with path relinking
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Abstract

Graph drawing, or the automatic layout of graphs, is a challenging problem. There are sev-

eral search based methods for graph drawing which are based on optimizing an objective

function which is formed from a weighted sum of multiple criteria. In this paper, we propose

a new neighbourhood search method which uses a tabu search coupled with path relinking

to optimize such objective functions for general graph layouts with undirected straight lines.

To our knowledge, before our work, neither of these methods have been previously used in

general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching

by avoiding previously tested solutions, while the path relinking method generates new solu-

tions by exploring paths that connect high quality solutions. We use path relinking periodi-

cally within the tabu search procedure to speed up the identification of good solutions. We

have evaluated our new method against the commonly used neighbourhood search optimi-

zation techniques: hill climbing and simulated annealing. Our evaluation examines the qual-

ity of the graph layout (objective function’s value) and the speed of layout in terms of the

number of evaluated solutions required to draw a graph. We also examine the relative scal-

ability of each method. Our experimental results were applied to both random graphs and a

real-world dataset. We show that our method outperforms both hill climbing and simulated

annealing by producing a better layout in a lower number of evaluated solutions. In addition,

we demonstrate that our method has greater scalability as it can layout larger graphs than

the state-of-the-art neighbourhood search methods. Finally, we show that similar results

can be produced in a real world setting by testing our method against a standard public

graph dataset.

1. Introduction

Graph drawing is the process of transforming a graph into a visual representation that is called

a graph layout [1]. The graph layout depends on different aesthetic measures that could give a

better understanding of graphs. Such measures include minimizing edges crossings, uniform

edge length, maximizing node-to-node and node-to-edge occlusions, maximizing graph sym-

metry, maximizing angular resolution, and others [1, 2, 3, 4]. These measures can be combined

to form a multi-criteria weighted sum objective function that measures the quality of a graph

and then optimized by search based methods (optimization methods).
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Search based methods can be placed into two categories according to the number of solu-

tions examined at the same time: neighbourhood search methods and population based meth-

ods. While neighbourhood search methods work on a single solution at a time, population

based methods evolve a set of points in the search space [5]. These methods can produce good

solutions, but they have great potential for improvement. For example, in neighbourhood

search methods, simulated annealing adds an element of non-determinism in order to escape

from local optima in the search space. This slows down the performance of the algorithm since

this stochastic behaviour means that a large number of iterations can be required to reach a

good solution [2]. Hill climbing is generally faster in reaching a final layout, but the final result

is not always the best as it is more likely to get trapped in a local optima [6]. Population based

methods such as genetic algorithms typically have an even slower rate of convergence com-

pared to simulated annealing and hill climbing as they make a wider search of the problem

space. In addition they often require large memory to maintain the population and can require

additional algorithms to spread the solutions [7].

Many graph layout algorithms in the literature use neighbourhood search based methods

for drawing multi-criteria graph layouts with Simulated Annealing (SA) [2, 8, 9, 10] and Hill

Climbing (HC) [3, 6, 11], and single-criterion graph layouts with Tabu search (TS) [12] and

Path Relinking (PR) [13]. On the other hand, population based methods have also been used

in drawing multi-criteria graph layouts with genetic algorithms [14, 15, 16, 17].

Neighbourhood search based layout is frequently used in graph drawing. It is used to opti-

mize different quality measures that are combined as a single weighted sum objective function.

However, such methods work slowly as the process of recalculating the metrics is repeated a

large number of times during the search process. Here we propose a novel neighbourhood

search based graph drawing algorithm and compare it with other such approaches. We show

that our approach improves on the current state-of-the-art in neighbourhood search for graph

drawing.

Another popular type of layout is the class of Force-directed approaches. These differ con-

siderably from search based methods. Here, interactions between nodes are applied such as

the attraction of connected nodes and repulsion of disconnected nodes, where the method

attempts to find an equilibrium layout [18, 19, 20, 21]. In addition, systems such as Pajek draw

large networks using spring embedders and eigenvectors [22]. However aesthetics can only be

indirectly coded in force directed approaches, whereas search based methods have the advan-

tage of allowing tuneable combinations of metrics to meet user preferences.

The scope of the research described in this paper is to improve the efficiency and effective-

ness of drawing general graph layouts with undirected straight lines based on a weighted sum

multi-criteria optimization. The main goal of our work is concerned with developing a new

graph drawing search method based on tabu search and path relinking. To our knowledge,

these methods have not been used before to lay out general graphs with multi-criteria

optimization.

Since our method belongs to the category of neighbourhood search methods, we compare

it against hill climbing and simulated annealing as these are well-known neighbourhood

search methods that have been frequently applied to graph drawing.

In this paper we show that tabu search alone outperforms hill climbing, but not simulated

annealing, we then show that when tabu is combined with path relinking it outperforms simu-

lated annealing. The tabu search algorithm outperforms hill climbing in minimizing the value

of the objective function and the number of evaluated solutions used to draw a graph layout.

The addition of applying path relinking within the tabu search procedure speeds up the identi-

fication of good solutions and outperforms simulated annealing by producing graph layouts

with better values of objective function. We also demonstrate that when targeting a particular

Graph drawing using tabu search coupled with path relinking
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value of an objective function, the combination of tabu search and path relinking achieves the

goal in a smaller number of evaluated solutions.

Path relinking integrates intensification and diversification strategies [23]. This approach

generates new solutions by exploring paths that connect high quality solutions (elite solutions

from the reference set) by starting from one of these solutions, called the initiating solution,

and generating a path in the neighbourhood space that leads toward another solution, called

the guiding solution. Note that the initiating and the guiding solutions represent the starting

and the ending points of the path. This is accomplished by selecting moves that introduce attri-

butes contained in the guiding solutions [13]. A crucial difference between evolutionary algo-

rithms, such as genetic algorithms, and path relinking is that the former uses a factor of

randomness to create offspring from parent solutions, whereas the latter uses systematic and

deterministic rules to combine elite solutions. The main principle of its deterministic behav-

iour is the gradual introduction of attributes from the guiding solution to intermediate solu-

tions. These attributes should have fewer characteristics from the initial solution and more

characteristics from the guiding solution as the search moves along the path [24]. Path relink-

ing has been considered to be particularly appropriate to tabu search as it allows for “tunnel-

ling” through infeasible regions formed from the tabu list [25].

In a previous paper [26], we described an initial attempt to use a tabu search based

approach for graph drawing and we compared it with hill climbing only. The method searches

for the best positions for the nodes that minimize the value of the objective function, and

draws a nice graph layout accordingly. Tabu search forbids moves that have been previously

examined which may be considered poor potential solutions, making it a more effective layout

method than hill climbing. In this paper, we widen the comparison to include simulated

annealing. We also extend and improve our preliminary work [26] by coupling tabu with path

relinking. This combined approach considerably improves the effectiveness of the search. We

also conduct a more thorough comparison. Here we use four different neighbourhood search

based methods: hill climbing, simulated annealing, tabu search and tabu search with path

relinking. In addition, we change the criterion of comparison between the methods to the

number of evaluated solutions calculated by the drawing algorithm (as this is a machine inde-

pendent criterion) instead of using the algorithm’s execution time which was used in the pre-

liminary work. We only present an execution time comparison when we test the scalability of

the methods which was not tested in our previous work. In this case, we use execution time to

give a realistic idea of run time for applying the methods. Statistical significance tests that con-

firm the results of our experiments are also included in this paper unlike our work in [26]. The

code and data related to this research can be accessed at Dryad digital repository: doi:10.5061/

dryad.k082rv8.

The rest of this paper is organized as follows: Section 2 describes some background in

search based techniques; Section 3 describes our method that couples tabu search with path

relinking; Section 4 describes parameters tuning process along with experimental results for

applying hill climbing, simulated annealing, tabu search, and tabu search with path relinking

on random graphs, and for testing the scalability of our method; Section 5 describes experi-

mental results of applying the same approaches on real world public graph datasets; Section 6

discusses and analyses the results; finally, in Section 7 we give our conclusions in addition to

directions for future work.

2. Background

Graph drawing is the process of placing nodes and edges in order to form clear and under-

standable layouts. However, this process is a challenge as it depends on what we consider as a

Graph drawing using tabu search coupled with path relinking

PLOSONE | https://doi.org/10.1371/journal.pone.0197103 May 10, 2018 3 / 36

https://doi.org/10.5061/dryad.k082rv8
https://doi.org/10.5061/dryad.k082rv8
https://doi.org/10.1371/journal.pone.0197103


nice graph (graph aesthetics) and the efficiency of its automated implementation. Graph draw-

ing aesthetics are quality measures which determine the readability and usability of graphs. A

good layout can deliver information clearly whereas a poor layout can mislead [27]. An objec-

tive function comprising metrics in a weighted sum can be used to quantify the quality of the

graph layout and so be used within search based layout mechanisms. Typical criteria includes:

minimizing edge crossings, minimizing edge bends, uniform edge length, maximizing graphs

symmetry, maximizing node-to-node and node-to-edge occlusions and maximizing angular

resolution of incident edges [2, 3, 4]. However, it is computationally expensive to find a mini-

mum objective function’s value as the measurements can be time consuming to calculate, and

the objective function is required to be determined for every layout examined. Since the overall

objective function might include both continuous and discrete functions, some general search

based approaches, such as neighbourhood search methods like simulated annealing and hill

climbing, and population based methods such as genetic algorithms, have been used in order

to find a good value of the objective function.

Simulated annealing was an early search based method to be applied to the graph layout

problem [2]. It was used to draw undirected graphs with straight line edges. The original algo-

rithm produces nice graph layouts for small sized graphs. However, it does not perform well

for larger graphs. This approach models the physical process of heating a material and then

slowly cooling the temperature to decrease defects, so minimizing the system energy. The

method tries to escape from local minimum to global minimum by applying uphill moves

(moves that worsen, rather than improve, the temporary solution) with decreasing probability

as the search progresses. A variation of the approach uses gradient descent [8]. The gradient

vector of the objective function represents the direction in which the node should move to

increase the value of the objective function. However, this method is slow when being applied

on large graphs and it has some challenges. For example, the objective function needs to be

expressed explicitly in terms of coordinates as its derivative must be found. Some important

criteria, such as minimizing edge crossings, are not continuous and so cannot be modelled

with gradient decent.

Hill climbing is another search based approach that has been used in the field of graph

drawing to minimize edge crossings [11]. It is a simpler and a faster search approach than sim-

ulated annealing as no uphill moves are made, but, as a result, tends to get trapped in poor

local optima.

A genetic algorithm approach for drawing graphs under a number of visual constraints was

proposed in [14, 15]. The proposed algorithm produces graph layouts with good quality. It can

be easily adapted to take new layout aesthetics into account. However, the major problem is its

slow rate of convergence.

Tabu search is a neighbourhood search based method proposed by Glover [28] for finding

good solutions to combinatorial optimization problems. It is a neighbourhood search based

procedure that uses a memory structure while it carefully explores the neighbourhood of each

solution as the search progresses to avoid getting trapped in a local optima. It proceeds on the

assumption that there is no value in choosing an inferior solution unless it is necessary, as in

the case of escaping from a local optimum [29]. It improves the efficiency of the searching pro-

cess by storing a tabu list of local solutions. This is used to restrict the search by forbidding

moves to some poor neighbour solutions that have already been visited [30]. An additional fea-

ture of tabu search is applying intensification and diversification. It might be useful to intensify

the exploration in some region because it may contain a high incidence of acceptable solutions.

This can be obtained by introducing a new term in the objective function that assigns a high

priority to solutions in the relevant region. Diversification is responsible for moving the explo-

ration process over different regions of the search space. For example, the objective function

Graph drawing using tabu search coupled with path relinking
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can be adjusted so that it penalizes solutions which are close to the current one. Thus, tabu

search can induce an interplay between intensification and diversification that is intended to

form a dynamic and aggressive search strategy [12].

Tabu search has shown good results for generating approximate solutions to NP-hard prob-

lems in a reasonable amount of time [31, 32]. It has also produced comparably fast solutions in

some graph theory applications such as graph partitioning [29, 33], as well as for special graph

layout problems such as straight line crossing minimization [13, 34], and the bipartite graph

drawing problem [12]. Tabu search has also outperformed many existing heuristics for solving

the vehicle routing problem [35, 36, 37]. Tabu search was introduced for general graph draw-

ing in our previous paper [26]. The experimental results on random graphs showed that our

tabu search based approach was faster than hill climbing with good quality graph layouts.

However, the performance comparison was not conclusive as it was based on the algorithm’s

execution time, rather than the more accurate measure of number of evaluated solutions.

Path relinking is another neighbourhood search based method that was proposed as an

approach to integrate intensification and diversification strategies [23, 38]. It is a relatively

new approach that has been applied on several computational problems with a great success.

The aim of path relinking is to introduce attributes of the guiding solution into solutions

obtained by moving away from the initial solution in a systematic manner where similarities

and differences in the structure of the initial and guiding solutions are properly identified.

Any path relinking implementation must include the following three components [24]:

• Building the reference set,

• Choosing the initial and the guiding solutions,

• Constructing a neighbourhood structure for moving along paths between initial and guiding

solutions.

Using path relinking periodically in a search procedure is intended to speed up the identifi-

cation of good solutions. Combining tabu search with path relinking is motivated by the desire

to tunnel through blocked off areas created by the tabu solutions [25]. Solving a vehicle routing

problem using tabu search with path relinking was able to generate better solutions compared

to the traditional tabu search approach alone [24]. Tabu search and path relinking were also

used to address the job shop scheduling problem and produced competitive results compared

to alternative state of the art algorithms [39].

3. Our method

This section describes our graph drawing method based on tabu search coupled with path

relinking. First we describe the tabu search procedure, then we detail how the path relinking is

integrated into it.

In this work, we use a systematic exploration for local search space. For each node, we search

the points (candidate solutions) around a square centred on the node at a given distance, as shown

in Fig 1. Eight points around the square are checked (up, down, left, right, and the four corners).

We compute the objective function’s value at each candidate solution, and we select the candidate

solution that gives the lowest objective function’s value. In the case that there are multiple candi-

date solutions that share the lowest value, we select the first encountered candidate solution starting

from the right point around the square andmove along the points of the square in a clockwise

direction. This is also how the objective function tie-breaks are resolved in the other methods.

Note that, using a geometric shape for defining a search space in the field of graph drawing

was used earlier in [2, 3] where a circle and a rectangle had been respectively used. However,

Graph drawing using tabu search coupled with path relinking

PLOSONE | https://doi.org/10.1371/journal.pone.0197103 May 10, 2018 5 / 36

https://doi.org/10.1371/journal.pone.0197103


since evaluating the value of a multi-criteria objective function is a lengthy process, we

restricted the movements to eight points only to avoid the long execution time for re-evaluat-

ing the value of the objective function with a large number of evaluated solutions. We used the

same neighbourhood searching strategy with all the methods included in this research in order

to make a fair comparison. This searching strategy can be easily adjusted with our implemen-

tation by increasing the number of repetitions from eight points to any larger number, but the

execution time would be significantly longer.

In the tabu search procedure, we first compute the value of the objective function for the

initial graph layout. Then, the following steps are performed for a set number of iterations

(maxIterations): for each node, we search the points around a square as described above.

The ratio of the objective function values for the candidate solution and the current solution is

computed at each point around the square. Solutions with ratios above or equal to a predefined

threshold value (tabuCutOff) are considered to be tabu moves and are stored in a tabu list.

We then move the node to a neighbouring point which is not in the tabu list and its objective

function value is minimal. Then the current location is added to the tabu list. Note that the

new solution might not be better than the current solution. In case all eight candidate solutions

surrounding the current solution are in tabu list, the intensification and the diversification

processes are used. The search intensification process is as follows: after a chosen number of

iterations (intensifyIterations), the square size centred on the node is reduced and

the tabuCutOff value is decreased by a set value (intensifyCutOff) by calling function
SmallerSquareSize()and function SmallerTabuCutOff()respectively as shown
in Algorithm 1. The diversification process consists of updating the tabu list by removing old

solutions from the list after a number of iterations (tabuDuration).
Our objective function follows a standard approach for search based graph drawing meth-

ods. We implemented four common metrics for measuring the quality of the graph similar to

those used in [2, 3]. These represented the aesthetics of: spreading the nodes out evenly on the

drawing space (node-node occlusion), making uniform edge lengths, minimizing edge cross-

ings, and improving angular resolution (maximizing the distance between incident edges).

Fig 1. Points around the square where our method searches for candidate solutions.

https://doi.org/10.1371/journal.pone.0197103.g001

Graph drawing using tabu search coupled with path relinking

PLOSONE | https://doi.org/10.1371/journal.pone.0197103 May 10, 2018 6 / 36

https://doi.org/10.1371/journal.pone.0197103.g001
https://doi.org/10.1371/journal.pone.0197103


Spreading the nodes out evenly on the drawing space means that the distances between

nodes should be maximized. This criterion was measured using the following formula:

P

i2V

P

j2V

1

dij
2

ð1Þ

where dij represents the Euclidean distance between two nodes i and j, and i 6¼ j.

Unifying the length of the edges was computed by defining a specific length (len), then all

the edges would be adjusted to reach the required length using the following formula:

P

e2Eðe� lenÞ
2

ð2Þ

where E is the set of edges.

In order to minimize the number of crossing edges, we only needed to find the number of

edge intersections and we tried to minimize that number in each iteration of the optimization

process.

The last metric, the angular resolution, was computed by maximizing the distance between

incident edges using the following formula:

P

v2V

P

fe1 ;e2g2E

2p

degðvÞ
� yðe1; e2Þ

�

�

�

�

�

�

�

�

ð3Þ

where deg(v) denotes the degree of a node v, and θ(e1,e2) is the angle in radians between two

adjacent edges e1 and e2 incident to node v.

All these metrics contribute in the graph quality objective function which is computed as

follows:

objectiveFunction ¼ w1 �m1þ w2 �m2þ w3 �m3þ w4 �m4 ð4Þ

where wi andmi are the weight and the measure for the criterion i respectively.

Similar multi-criteria objective functions have been previously used in [2, 3]. The metrics

used are well-known and have been shown to represent a quality of a graph layout [27]. The

problem in a multiple objective optimization function is that the value of a specific measure

may dominate the others. Therefore, we applied a normalization process to ensure that the

value of each measure is between 0 and 1.

We cannot determine unified weights that work well for all graphs with any size, and indeed

weights can vary according to application area and user preference. The goal of our research is

to develop an improved optimizer for general undirected graphs, rather than concentrate on

generating the best possible layout. Hence, we take the approach of assuming all criteria are

equally important and assign the value 1 to all weights.

Re-computing the objective function for each node move is a time consuming process.

Therefore, we implemented a system that caches the results for each node and edge. When cal-

culating objective function, we only compute the values that might change when a node is

moved.

We couple our tabu search procedure with path relinking to intensify the search within a

specific space of elite solutions as described in Algorithm 1. The path relinking procedure is

called within the tabu search procedure every fixed number of iterations (intensifyI-
terations). Building a reference set of elite solutions is the first step in path relinking. This

has a maximum size (refSize) and contains no redundant solutions and is recommended

to be relatively small [24]. Initially, the solutions which are produced by the tabu search proce-

dure are added to the reference set. A solution is directly added to the reference set as long as

Graph drawing using tabu search coupled with path relinking
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the set is not full. However, once the reference set becomes full, a solution will replace the

worst solution in the set when any of the following criteria is satisfied:

(a) Quality: the objective function’s value of the added solution is better (smaller) than the

objective function’s value of the best solution in the reference set. This is performed by

the Quality() function in Algorithm 1.

(b) Diversity: the objective function’s value of the added solution is better (smaller) than the

objective function’s value of the worst solution in the set, and it is dissimilar to the solu-

tions in the set. The dissimilarity measure is computed as follows: we define Db
s , the level

of dissimilarity between solution s and the best solution b, as the sum of distances

between the corresponding nodes in the two graph layouts. This is performed by the

Diversity() function in Algorithm 1.

We also define the median position of all solutions x 2 refSet relatively to the best solution b

as:

median position ¼

Px 6¼b

x2refSet D
b
x

jrefSetj � 1
ð5Þ

where |refSet| denotes the number of solutions in the reference set. A solution s is included in

refSet if its objective function’s value is better than the objective function’s value of the worst

solution in refSet and its level of dissimilarity exceeds the median.

When the path relinking procedure is called, the following steps are performed for a set

number of iterations (PRmaxIterations) as long as the reference set has more than one

solution (see Algorithm 2): firstly, we select two solutions from the reference set (initial and

guiding solutions). There are different ways for selecting these two solutions [24, 39, 40] as we

show later in this section. In this paper, the guiding solution is always of a better (smaller)

objective function’s value than the objective function’s value of the initial solution. Secondly,

we remove the initial solution from the reference set as its path to the guiding solution will be

explored. Thirdly, we call function MoveAlongPath(), which moves on a path from the

initial solution toward the guiding solution and vice versa to generate intermediate solutions

(as this has produced better results in other applications [24] compared to moving in one

Fig 2. Our path relinking strategy in moving from initial solution to guiding solution.

https://doi.org/10.1371/journal.pone.0197103.g002
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direction only). These intermediate solutions should become closer to the guiding solution

(i.e. contain more attributes from the guiding solution and less attributes from the initial solu-

tion). In our algorithm, for each node in the initial solution, we visit the 8 positions around

a square (same positions described previously) of a predefined size (pathSqrSize) and
compute the Euclidean distance from each position to its corresponding node in the guiding

solution as shown in Fig 2. We select the position with the shortest Euclidean distance. Its

objective function’s value is computed along with its dissimilarity level, and we update the ref-

erence set, by calling function UpdateReferenceSet(), if the new solution satisfies qual-

ity and dissimilarity measures. The movement along the path stops when an intermediate

solution reaches the guiding solution or when the length of the path reaches a predefined value

of a maximum length (pathLength). Note that, as we generate intermediate solutions, we

use the tabu search memory-based list to avoid previously visited solutions.

Algorithm 1. Tabu Search/Path Relinking Algorithm

Given:

Connected Graph G(V,E): V is a set of nodes and E = (VxV) is a set of edges.

initialSquareSize:predefined square size where tabu search candidate solutions

are located on its border.

squareReduction: predefined value which represents the rate of reduction for the

size of the square.

maxIterations:predefined maximum number of iterations of the tabu search

drawing algorithm.

initialCutOff:predefined minimum value that determines whether a move is tabu

or not.

intensifyCutOff: predefined value which represents the rate of reduction for cur-

rent cutOff value.

intensifyIterations:predefined number of iterations in which the tabu search

searching process starts to intensify.

duration: predefined number of iterations in which a move should remain in the

tabu list.

refSize: predefined size for the maximum number of solutions that can be added to

the reference set of path relinking.
1: initialize tabuSet and refSet to {}
2: initialize cutOff to initialCutOff
3: for each i in [1, maxIterations] do:
4: for each node v ෝ V do:
5: initialize candidates to {}
6: compute current objective function at node v

(currentSolution)
7: move v to the 8 positions around the square
8: compute the objective function at each position

(candidateSolution)
9: if candidateSolution =2 tabuSet and ratio of candidate

Solution to currentSolution � cutOff then:
10: add candidateSolution to candidates
11: else
12: add candidateSolution to tabuSet
13: choose a solution from candidates with the minimal objective

function’s value (chosenSolution)
14: if number of solutions in refSet < refSize or Quality (chosen

Solution) or Diversity (chosenSolution) then:
15: add chosenSolution to refSet
16: after each intensifyIterations do:
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17: apply path relinking procedure
18: reduce square size: SmallerSquareSize(squareSize,

squareReduction)
19: reduce cutoff value: SmallerTabuCutOff(intensifyCutOff)
20: remove tabu solutions from tabuSet which spent a period

of time (duration)
Algorithm 2. Path Relinking Procedure

Given:

PRmaxIterations:predefined value of the number of iterations to repeat the path

relinking procedure

pathSqrSize:predefined square size where path relinking candidate solutions are

located on its border.

pathLength: predefined value representing the maximum length of the path.

accelerationPeriod:predefined number of iterations required for updating the

searching step-size.

accelerationRate:predefined value representing the rate of decreasing the search-

ing step-size.
1: i = 0
2: while i < PRmaxIterations and Size(refSet) > 1 do:
3: select source and destination solutions from refSet
4: candidateLayout1 = MoveAlongPath(source, destination, path

Length, pathSqrSize, accelerationRate, accelerationPeriod)
/� forward path �/

5: candidateLayout2 = MoveAlongPath(destination, source, path
Length, pathSqrSize, accelerationRate, accelerationPeriod)
/� backward path �/

6: UpdateReferenceSet(Min(candidateLayout1, candidateLayout2))
7: i = i + 1
Different selections for the initial (source) and guiding (destination) solutions affect the

quality of graph layouts drawn by the path relinking procedure. There are five different varia-

tions for the selection mechanism of the source solution and the destination solution from the

reference set [24]:

(a) The worst and the best elite solutions.

(b) The best and the second best elite solutions.

(c) Random selection of elite solutions.

(d) The best elite solution and the most distant elite solution to the best. In our application,

the distance between two layouts can be computed as the summation of Euclidean dis-

tances between the corresponding nodes in the two layouts as described in Diversity
() function used in Algorithm 1. The most distant solution is the one with the maximum

summation of distances to the best elite solution (i.e. the most distant solution = s such

that s 2 refSet and satisfies the formula:

max
Ps6¼b

s2refSetD
b
s ð6Þ

where b is the best solution in refSet and Db
s is the level of dissimilarity between solutions

s and b).

(e) The two most distant elite solutions.
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We tested these five different variations on random connected graph datasets. The results

showed that, in overall, variation (d) resulted in better final objective function’s value and

lower number of evaluated solutions than the others.

We then examined the way the path is formed from the initial solution to the guiding solution.

In the basic algorithm, the step-size we use to move from an initial solution to intermediate solu-

tions is fixed (pathSqrSize).We examined if using a variable step-size would improve perfor-

mance. Moving along the path such that the movement starts faster near the initial solution and it

becomes slower as it gets closer to the guiding solution, which intensifies the search in the area of

the initial solution. This strategy is applied on both directions: from an initial solution to a guiding

solution and vice versa. This variation introduces two new parameters to our path relinking pro-

cedure: number of iterations required to update the step-size (accelerationPeriod),and
the rate of decreasing the step-size (accelerationRate).The net effect is to search more

closely to the two known solutions than in the space between them.

We applied both variations to randomly generated connected graph layouts with different

number of nodes and edges. The two variations used the same values of all path relinking

parameters except for the newly introduced parameters as they are only related to the variable

step-size strategy. We ran both of them until they reach the stopping criteria. The results

showed that using a variable step-size to move along a path can produce graph layouts with

better objective function’s values compared to a fixed step-size strategy. Hence we apply this

variable step-size in our algorithm.

4. Experimental results

Our research questions were: “Does our tabu search drawing method perform better than hill

climbing and simulated annealing approaches?” and “Does coupling the method with path

relinking improve the performance of the tabu search graph drawing method?” To answer

these questions, we implemented and evaluated the methods. We also implemented hill climb-

ing and simulated annealing, the two commonly used alternative neighbourhood search based

approaches for graph drawing.

Three types of evaluations were carried out:

1. finding the best layout that can be achieved (i.e. minimizing the value of the cost function);

2. how long it took to draw a graph to a particular level of quality;

3. how good the quality of the graph was after a fixed optimization time (number of evaluated

solutions).

These allow us to examine different possible use cases for graph layout: firstly, generating

the best possible layout; secondly, speed to draw an acceptable layout; and thirdly, how good

the graph layout can be if there is a fixed time available to produce it.

We first compared the performance of our tabu search method to hill climbing and simu-

lated annealing. As both tabu search and simulated annealing showed a better performance

than hill climbing, we then discarded hill climbing for future tests and moved on to comparing

our improved tabu search method that has the addition of path relinking against just simulated

annealing. Note that, in these experiments, we used the same search space structure, as

described previously in section 3 (Fig 1), for all the graph drawing methods.

4.1. Parameters tuning

Each method has a number of parameters. Changing the values of those parameters can affect

the performance of the method and the quality of the layouts generated by the drawing
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method. Several experiments were conducted to calibrate the parameters of each method. The

experiments show the effect of increasing and decreasing the values of the parameters on the

performance of the method and the quality of the layout.

Parameters tuning is a common practice in search based methods. Typically, one parameter

is tuned at a time, which might cause suboptimal choices, as parameters could interact in a

complex way. However, simultaneous tuning of more parameters leads to a large amount of

experiments. There are drawbacks to parameter tuning based on experimentation which can

be summarized as follows [41]:

• Parameters are not independent, but testing all different combinations systematically is prac-

tically impossible.

• The process of parameter tuning is time consuming, even if parameters are optimized one

by one, regardless of their interactions.

• The selected parameter values are not necessarily optimal, even if the effort made for setting

them was significant.

However, in this research, we applied a tuning process similar to those conducted in [2, 11,

42, 43]. We performed a systematic incremental exploratory test on a wide range of values for

each individual parameter in order to select a robust set of initial values. Then for each single

parameter, we tested values while fixing the rest of the parameters. The value which gave the

minimum objective function’s value was selected for that parameter, and then we moved to

the next parameter to apply the same procedure.

The following are the selected values of the parameters in our tabu search method:

• maxIterations = 40
• tabuCutOff = 4
• intensifyIterations = 5
• intensifyCutOff = 0.005
• tabuDuration = 5

We also performed similar parameter tuning on hill climbing and simulated annealing

approaches. Hill climbing algorithm is affected by two parameters: the initial value of the

square size used to determine the neighbourhood solutions (initialSquareSize)and
the value used to reduce the size of the square (squareReduction).The performance of

simulated annealing drawing algorithm is influenced by four parameters: number of iterations

for running the algorithm (maxIterations), number of iterations at each temperature

(iterPerTemp), the initial temperature used in the annealing process (initialTemp),
and the temperature cooling down factor (coolDown). The following are the selected values
of the parameters for hill climbing and simulated annealing:

ᇏ Hill Climbing Parameters

• initialSquareSize = 512
• squareReduction = 4

ᇏ Simulated Annealing Parameters

• maxIterations = 45
• iterPerTemp = 15
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• initialTemp = 0.75
• coolDown = 0.8
All implementations were in Java (version 1.7.0; Java HotSpot™ 64-Bit Server VM 21.0-b17

onWindows 7). The experiments were performed using Lenovo Thinkpad T430, Intel1

Core™ i7-3520M, 2.90 GHz and 8 GB RAM.

There are six parameters which affect our improved path relinking procedure: number of

iterations to repeat the path relinking procedure (PRmaxIterations), the size for the maximum

number of solutions that can be added to the reference set of path relinking (refSize), the maxi-

mum length of the path (pathLength), the square size where path relinking candidate solutions

are located on its border (pathSqrSize), number of iterations required to update the size of the

square (accelerationPeriod), and the rate of decreasing the searching step-size

(accelerationRate).

For tuning the values of these parameters, we applied our improved graph drawing algo-

rithm on 100 random connected graphs which were divided into five sets such that each set

had a different number of nodes and edges as described in Table 1.

Since the improved procedure is called within our tabu search drawing algorithm, we used

the same values of the parameters of tabu search which we got in an earlier tuning experiment.

On the other hand, in order to calibrate the values of the parameters of the improved path

relinking, we followed the same incremental testing process we performed with all the other

methods. In the first stage of tuning, we selected arbitrary values for the parameters which

were chosen based on an observation of a quick experiment. The initial values of the parame-

ters were: PRmaxIterations = 4, refSize = 20, pathLength = 10, pathSqrSize = 18, accelerationPer-

iod = 9, accelerationRate = 0.01. We started with one parameter, tested it thoroughly with

different values, and selected the value which draws layouts with the minimum objective func-

tion’s value compared to the other values. If the values of the objective function were too close

to each other, we would select the values based on the ones which performed the fewest num-

ber of evaluated solutions. We fixed that value of the first parameter and we moved to testing

another parameter in the same manner, and so forth.

We started the tuning process with PRmaxIterations parameter by testing the values of the

set {1, 4, 7, 10}. Fig 3 shows that increasing the value of this parameter would minimize the

value of the objective function of the generated layout. According to the set of values which we

tested, the best value to choose was 10.

In the next parameter (refSize), we selected the set {10, 20, 30, 40} to be used in calibrating

this parameter. With reference to Fig 4, the best value for refSize that gave the best objective

function’s value was 20. Note that, all the tested values led to producing very close values of

objective function, but as the value of this parameter increases it slightly increases number of

evaluated solutions, as shown in Fig 5. We selected the value 20 as it gave an objective func-

tion’s value (on the graphs with label N250E2490) slightly better than the other values and the

Table 1. Characteristics of graph datasets used in tuning parameters of our improved TS+PR graph drawing algorithm.

Graph Set Nodes Edges Density Label

1 50 147 0.120 N50E147

2 100 519 0.105 N100E519

3 150 1117 0.100 N150E1117

4 200 1791 0.090 N200E1791

5 250 2490 0.080 N250E2490

https://doi.org/10.1371/journal.pone.0197103.t001
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number of evaluated solutions performed by the algorithm when using this value is less than

the evaluated solutions when we test this parameter on the values 30 and 40).

The length of the path from the initial solution to the target solution (pathLength) was

tested with the following set of values: {10, 20, 30, 40}. After testing all these values, we selected

the value 20. We chose this value although it did not give a better value of objective function

compared to the value 10 on small graphs, but it has the same behaviour on larger graphs as

shown in Fig 6. We first need to test the effect of initial square size value on longer paths. If the

effect is not significant, then we could select the value 10 in further parameters testing.

pathSqrSize parameter was tested with the values {5, 10, 15, 20}. According to Fig 7, the best

value that could be picked is 20 since the value of the objective function was slightly smaller as

the graph size became larger. The value 15 also produced good results but when applied on

larger graphs, the value 20 was better.

To test the effect of accelerationPeriod parameter, we tested it with the following values: {1,

5, 9, 13}. Fig 8 shows that changing the value of this parameter did not greatly affect the value

of the objective function. But Fig 9 shows that increasing the value of this parameter would

slightly increase the number of evaluated solutions. That is why we chose the value 5 although

there was no big difference with the objective function’s values produced when acceleration-

Period was set to 9 or 13, but it was better on larger graphs with a fewer number of evaluated

solutions.

Fig 3. Objective function’s values of the improved drawing algorithm when tuning PRmaxIterations parameter.

https://doi.org/10.1371/journal.pone.0197103.g003

Fig 4. Objective function’s values of the improved drawing algorithm when tuning refSize parameter.

https://doi.org/10.1371/journal.pone.0197103.g004
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The last parameter, accelerationRate, was tested with the values {0, 0.05, 0.1, 0.15}. Increas-

ing the value of this parameter had increased the value of the objective function as shown in

Fig 10 when the values went beyond the value 0.05. On the other hand, setting the value 0 to

this parameter had produced larger values of objective function compared to those when the

value 0.05 was assigned to this parameter. Therefore, we chose the value 0.05 in this stage, but

in further experiments, we tested the value of this parameter with a set of values in the range

between 0 and 0.05 to examine the behaviour of the objective function in that specific range.

We continued the tuning process by performing another two rounds of tuning similar to

the process we followed in the first stage. The first consecutive round examined the effect of

the values of the parameters on the value of the objective function when the method performs

a fixed number of evaluated solutions, whereas, the second round examined the effect of the

values of the parameters on the number of evaluated solutions when the method executes to

reach a fixed objective function’s value. In each round, all the parameters started with the val-

ues which were chosen in the preceding round. When a parameter is tested, a set of values,

which are close to the value that was chosen in the previous round, is selected. After all, the

chosen values of the parameters in our path relinking procedure are:

• PRmaxIterations = 4
• refSize = 20

Fig 5. Number of evaluated solutions of the improved drawing algorithm when tuning refSize parameter.

https://doi.org/10.1371/journal.pone.0197103.g005

Fig 6. Objective function’s values of the improved drawing algorithm when tuning pathLength parameter.

https://doi.org/10.1371/journal.pone.0197103.g006
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• pathSqrSize = 20
• pathLength = 15
• accelerationPeriod = 7
• accelerationRate = 0.002.

4.2. Tabu search versus hill climbing and simulated annealing

First, in order to compare tabu search with hill climbing and simulated annealing, we gener-

ated random graph datasets in two categories. The graphs of the first category have the same

number of nodes but with different densities (i.e. different number of edges), whereas the

graphs of the second category have different number of nodes and edges. The random graph

generator is based on the Erdős–Rényi model [44]. The parameters to the random graph gen-

erator were the number of nodes and the density of the graph. Random locations for the nodes

were generated based on the size of the window where the graph is displayed. Then, the gener-

ator chose random nodes as end points of edges. A similar process was performed in [26]. Self-

sourcing edges and multiple edges between the same pair of nodes were not allowed. Finally,

the graphs generator tested the connectivity of the generated graphs. Only connected graphs

were accepted.

Fig 7. Objective function’s values of the improved drawing algorithm when tuning pathSqrSize parameter.

https://doi.org/10.1371/journal.pone.0197103.g007

Fig 8. Objective function’s values of the improved drawing algorithm when tuning accelerationPeriod parameter.

https://doi.org/10.1371/journal.pone.0197103.g008
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There were 80 random graphs in the first category split into 4 groups of 20 test cases. All

the graphs in this category had 150 nodes. Each group had a differing number of edges so that

the density varied. The graphs in each group had the same number of nodes and edges. See

Table 2 for characteristics of the graphs in the first category.

The second category also had 80 random graphs, again split into 4 groups. The number of

nodes for a group varied, increasing in steps of 50. The value of the density was chosen for

each group to avoid too dense graphs. A similar random process used to generate graphs in

the first category was applied to this category. See Table 3 for characteristics of the graphs in

the second category.

The initial layout of nodes for each graph was random. We first applied our tabu search

based approach along with hill climbing and simulated annealing approaches to the graphs.

Tabu search, path relinking, and hill climbing approaches are deterministic methods which

are not influenced by chance. On the other hand, simulated annealing is a stochastic method

in which it includes an element of randomness in the neighbourhood searching process.

Therefore, this approach has been tested on each individual graph for 30 different runs. Then

we find the median of the results for the 30 different runs to compare with the results of tabu

search and hill climbing approaches. Note that, we modelled the neighbourhood transition

probability of simulated annealing by that described in [2].

Fig 9. Number of evaluated solutions of the improved drawing algorithm when tuning accelerationPeriod
parameter.

https://doi.org/10.1371/journal.pone.0197103.g009

Fig 10. Objective function’s values of the improved drawing algorithm when tuning accelerationRate parameter.

https://doi.org/10.1371/journal.pone.0197103.g010
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To make a comprehensive comparison between the methods, we divided our experiment

into three phases. In phase I, we applied the methods on the graphs of the two categories. The

methods executed on the 20 test cases in each group of the two categories, and then the average

objective function’s value and the average number of evaluated solutions were computed for

each group in each method. In this phase, the hill climbing approach executed until it found

the best solution that can be reached (i.e. a solution that cannot be further improved).

Whereas, simulated annealing and tabu search are more flexible in how they reach a good solu-

tion, and hence we ran them using the values of the parameters discussed earlier in the previ-

ous subsection.

The following figures show bar charts of the results obtained from phase I. Here we are

looking for graph layouts with the minimum objective function’s values that can be achieved.

Fig 11 clearly shows the difference between the three methods in terms of the lowest objective

function’s value that can be obtained. Fig 12 shows the number of evaluated solutions required

to achieve this objective function’s value.

In phase II, we investigated the performance of the approaches rather than the quality of

the produced layouts. The following process was performed to test which method has the few-

est number of evaluated solutions to reach similar values for the objective function:

a. We ran the hill climbing method on the graphs until no improvements could be made on

the value of the objective function. We started with hill climbing because, in phase I, it

produced graph layouts with the worst quality compared to the other two methods.

Therefore, simulated annealing and tabu search could typically produce graph layouts

with as good quality as the one produced by hill climbing.

b. We ran simulated annealing and tabu search methods until they reached an equal or bet-

ter objective function’s value compared to the one found by the hill climbing drawing

algorithm.

c. We measured the number of evaluated solutions for each method.

Fig 13 and Table 4 give the results obtained from phase II on the two categories of graphs

(refer to the end of subsection 4.3 and section 6 for a complete description and interpretation

of the p-value column).

In phase III, we investigated the quality of the layout produced by the drawing algorithms

in a fixed amount of time. The following process was performed to test which method

Table 2. Characteristics of the graphs in the 1st category used in comparing TS, HC, and SA.

Graph Set Nodes Edges Density

1A 150 558 0.05

2A 150 1117 0.1

3A 150 1676 0.15

4A 150 2235 0.2

https://doi.org/10.1371/journal.pone.0197103.t002

Table 3. Characteristics of the graphs in the 2nd category used in comparing TS, HC, and SA.

Graph Set Nodes Edges Density

1B 50 159 0.13

2B 100 569 0.115

3B 150 1173 0.105

4B 200 1990 0.1

https://doi.org/10.1371/journal.pone.0197103.t003
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produces graph layouts with the lowest values of objective function (best quality) when the

three methods apply the same number of evaluated solutions:

a. We ran the tabu search method on the graphs for a predefined number of iterations

(maxIterations = 40). The number of evaluated solutions is computed and saved.

We started with tabu search because in phase I, it generated the least number of evaluated

solutions.

b. We ran hill climbing and simulated annealing methods until they perform the same

number of evaluated solutions performed by the tabu search method.

c. We measured the value of the objective function produced by the drawing algorithms in

each of the above steps.

Fig 14 and Table 5 give the results obtained from phase III when applied on the two catego-

ries of graphs.

Fig 11. Bar chart of the average overall objective function obtained by TS, HC, and SA when applied on the
graphs of the two categories (phase I).

https://doi.org/10.1371/journal.pone.0197103.g011

Fig 12. Bar chart of the average overall number of evaluated solutions obtained by TS, HC, and SA when applied
on the graphs of the two categories (phase I).

https://doi.org/10.1371/journal.pone.0197103.g012
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4.3. Tabu search with path relinking versus simulated annealing

Here, we want to test the effect of adding path relinking to our tabu search algorithm. In this

experiment, we exclude hill climbing as the results of the previous experiment (subsection 4.2)

showed that hill climbing performed considerably worse than both tabu search and simulated

annealing in all phases. In order to avoid overfitting, where the drawing algorithm could be tai-

lored to the dataset used in the first experiment, we generated new random graph datasets in

this experiment which are also divided into two categories, using the same procedure we fol-

lowed for generating random graphs in our previous comparison.

In the first category, we had 80 random graphs split into 4 groups of 20 test cases. All the

graphs in this category had 160 nodes, randomly positioned. Each group had a different num-

ber of edges so that the density varied. The graphs in each group had same number of nodes

and edges but with different random layouts. See Table 6 for the characteristics of the graphs

in the first category. The graphs of the second category were generated in the same way of

those graphs of category II described in the previous experiment. See Table 7 for the character-

istics of the graphs in the second category.

We divided our experiment into three phases similar to those in the previous experiment.

In the first phase, all the methods ran until they finish execution.

Fig 13. Bar chart of the average overall number of evaluated solutions for TS, HC, and SA when applied on the
graphs of the two categories (phase II).

https://doi.org/10.1371/journal.pone.0197103.g013

Table 4. Statistical analysis of the average overall number of evaluated solutions for TS, HC, and SA when applied on the graphs of the two categories (phase II).

Evaluated Solutions

HC SA TS

Graph Set Mean SD Median Max Min Mean SD Median Max Min Mean SD Median Max Min p-value

1A 49867 4510 50070 56715 40577 49929 6510 50073 70029 37054 21468 3987 23010 28765 12633 2.51E-07

2A 50622 5004 50131 60846 39727 46822 7606 46122 67079 32120 20851 7054 23205 29366 2272 8.76E-08

3A 53516 7000 52570 65036 42458 46478 7178 47600 60463 32053 25007 8132 27351 41053 6086 2.64E-08

4A 51837 7330 51640 68429 39193 45321 7570 45549 61512 32090 21450 9229 25254 29789 2299 8.76E-08

1B 14523 1939 14205 18779 11801 13136 2727 12388 19220 7822 6665 1953 6142 11819 2690 7.16E-07

2B 32643 4625 32661 44387 25746 27602 6689 26903 41822 16976 12009 5305 11855 22726 2677 5.06E-08

3B 54127 7462 51863 71345 42643 48811 6341 49601 58243 31749 23266 8118.8 23461 44243 5984 4.80E-07

4B 76351 9614 76891 93479 58574 63208 10220 63516 87893 41797 28551 10777 30759 39755 1790 2.64E-08

Overall 47936 5935 47504 59877 37589 42663 6855 42719 58282 28957 19908 6819 21379 30939 4553 < 2.2e-16

https://doi.org/10.1371/journal.pone.0197103.t004
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Figs 15 and 16 show bar charts of the results obtained from phase I, examining how good a

layout can the methods achieve. Fig 15 shows the difference between the three methods (the

combination of path relinking and tabu search, pure tabu search, and simulated annealing) in

terms of the lowest objective function’s value that can obtained. Fig 16, shows the number of

evaluated solutions required to reach this objective function’s value.

In phase II, where we investigated the performance of the methods, we tested number of

evaluated solutions performed by each method to reach similar values for the objective func-

tion. We ran tabu search first (as it produced graph layouts with the largest objective function’s

values in phase I compared to the others) so that the other methods could easily produce graph

layouts with better quality against the ones produced by tabu search. Then, we ran the other

methods until they reached an equal or better objective function’s value compared to the one

found by the tabu search. Finally, we measured the number of evaluated solutions of each

method. Fig 17 and Table 8 show the results obtained from phase II when applied on the two

categories of graphs.

In phase III, we investigated the quality of the layouts produced by the drawing algorithms.

We tested which method produced graph layouts with smallest values of objective function

when they perform the same number of evaluated solutions. We ran the tabu search method

Fig 14. Bar chart of the average overall objective function for TS, HC, and SA when applied on the graphs of the
two categories (phase III).

https://doi.org/10.1371/journal.pone.0197103.g014

Table 5. Statistical analysis of the average overall objective function for TS, HC, and SA when applied on the graphs of the two categories (phase III).

Objective Function

HC SA TS

Graph Set Mean SD Median Max Min Mean SD Median Max Min Mean SD Median Max Min p-value

1A 0.617 0.063 0.609 0.828 0.502 0.658 0.006 0.659 0.668 0.646 0.505 0.031 0.504 0.558 0.421 2.64E-08

2A 0.904 0.113 0.877 1.211 0.792 0.897 0.006 0.897 0.907 0.886 0.791 0.032 0.784 0.869 0.728 1.38E-07

3A 1.028 0.112 0.989 1.309 0.925 1.015 0.008 1.015 1.033 1.002 0.928 0.04 0.922 1.061 0.889 9.66E-07

4A 1.132 0.114 1.098 1.39 0.988 1.101 0.007 1.1 1.123 1.09 1.017 0.042 1.013 1.154 0.944 1.30E-06

1B 0.487 0.103 0.465 0.827 0.361 0.419 0.011 0.421 0.438 0.39 0.354 0.078 0.332 0.618 0.28 9.80E-07

2B 0.803 0.171 0.746 1.21 0.616 0.696 0.007 0.696 0.713 0.683 0.625 0.054 0.612 0.794 0.551 9.66E-07

3B 0.895 0.097 0.872 1.249 0.803 0.908 0.008 0.909 0.921 0.895 0.805 0.043 0.801 0.948 0.73 4.80E-07

4B 1.122 0.117 1.082 1.517 0.987 1.121 0.01 1.123 1.138 1.102 1.001 0.028 0.995 1.072 0.942 1.36E-07

Overall 0.873 0.111 0.842 1.193 0.747 0.852 0.008 0.853 0.868 0.837 0.753 0.044 0.745 0.884 0.685 < 2.2e-16

https://doi.org/10.1371/journal.pone.0197103.t005
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on the graphs for a predefined number of iterations (maxIterations = 40) as described
earlier in this subsection. We started with tabu search because in phase I, it generated the least

number of evaluated solutions. We ran the other methods until they perform the same number

of evaluated solutions performed by the tabu search method. Finally, we measured the value of

the objective function produced by each drawing algorithm. Fig 18 and Table 9 show the

results obtained from phase III on the two categories of graphs.

To test the effect of randomness in generating the initial graph layouts used in comparing

the methods, we performed a statistical significance test on the results generated from the

three phases. To demonstrate that there is a statistical significant difference between the meth-

ods, we applied the Friedman test [45] which is a non-parametric test for testing the differ-

ences between several samples. This test requires no prior knowledge of the distribution of the

data.

We ran the methods on 20 randomly generated test cases for each group of graphs in the

first and the second categories. Note that, in simulated annealing, we calculated the median of

30 runs for each test case instead of finding the mean (median is more reliable in avoiding out-

liers) and consequently we got 20 medians (since we find the mean of 30 medians for each test

case). Then we compared them with the results of the means computed by the other search

based methods using Friedman test with a significance level ċ = 0.05. See the p-values in the

last column of Table 4, Table 5, Table 8, and Table 9.

The Friedman test allowed us to conclude that there is a significant difference between the

methods, but it does not show how each method differs from the other. Therefore, a post-hoc

test for multiple comparisons between the methods had to be conducted. The Bonferroni

method [46, 47] is a simple method that allows pairwise comparisons, see Tables 10 and 11 for

the p values. Note that all the statistical tests were conducted using R statistical package i386

(version 3.1.1).

In terms of threats to validity, three deterministic algorithms and one stochastic algorithm

were examined. The deterministic methods were applied once on the same initial graph layout

whereas the stochastic method was applied 30 times on the same graph. The main internal

threat is in the implementation of the algorithms. The methods were implemented by the

same coder, and were run on the same machine. There is the possibility that one of the meth-

ods was implemented in a more efficient way. However, the methods share substantial code

which increases confidence that none was particularly disadvantaged. In addition, a systematic

parameter tuning method was applied. In terms of external threats, a threat to the

Table 6. Characteristics of the graphs in the 1st category used in comparing PR+TS, TS, and SA.

Graph Set Nodes Edges Density

1C 160 572 0.045

2C 160 1208 0.095

3C 160 1844 0.145

4C 160 2480 0.195

https://doi.org/10.1371/journal.pone.0197103.t006

Table 7. Characteristics of the graphs in the 2nd category used in comparing PR+TS, TS, and SA.

Graph Set Nodes Edges Density

1D 60 221 0.125

2D 110 659 0.110

3D 160 1272 0.100

4D 210 2139 0.0975

https://doi.org/10.1371/journal.pone.0197103.t007
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generalizability of the results is possible. Selection bias was avoided by using randomly gener-

ated graphs (except in the parameters of the generation algorithm, such as number of nodes

and edges). However, randomly generated graphs generally do not have the same characteris-

tics as real world graphs. In section 5, we explore the methods applied to real world standard

public datasets sourced from the Internet.

Fig 19 demonstrates a random graph layout with 15 nodes and 24 edges drawn by simulated

annealing, tabu search, and our version of path relinking.

4.4. Scalability and performance analysis

In order to test the scalability of our method and its ability to work effectively on large graph

datasets, we ran our method against simulated annealing on randomly generated large graphs

according to phase I as described in subsection 4.2. Note that we excluded hill climbing from

this comparison as the statistical tests in subsection 4.2 showed that hill climbing is consider-

ably worse than the other methods. We ran simulated annealing 30 times on each dataset, and

the median value was recorded for each set. The graphs were generated using the same

Fig 15. Bar chart of the average overall objective function obtained by PR+TS, TS, and SA when applied on the
graphs of the two categories (phase I).

https://doi.org/10.1371/journal.pone.0197103.g015

Fig 16. Bar chart of the average number of evaluated solutions obtained by PR+TS, TS, and SA when applied on
the graphs of the two categories (phase I).

https://doi.org/10.1371/journal.pone.0197103.g016
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generator discussed in subsection 4.2 and in [44]. We started with a graph dataset of 1000

nodes and 3003 edges and we kept increasing the number of nodes and edges as we move

from one dataset to another as shown in Table 12. We stopped increasing the size of the data-

sets when we got a very long execution time for one of the tested methods (almost half a day).

Fig 20 shows that our method effectively minimizes the value of the objective function and

outperforms simulated annealing regardless of how large the size of the graph is. Also, as Figs

21 and 22 show, the speed of this minimization process is efficient in our method compared to

simulated annealing as the graph size increases. The figures show that increasing the number

of nodes and edges (i.e. increasing the size of the graph) would increase the number of evalu-

ated solutions and execution time for simulated annealing and our method as well, but with

different rates of increase. Note that execution time would be shorter if we test the methods for

drawing graph layouts with single criterion. However, since our objective function contains

multiple measures, it took a longer time to execute as some measures a have long computation

time.

Figs 23–25, show the overall performance of our method when being applied on a set of

graphs with increasing number of nodes and edges, as described in Table 11, in terms of

Fig 17. Bar chart of the average overall number of evaluated solutions obtained by PR+TS, TS, and SA when
applied on the graphs of the two categories (phase II).

https://doi.org/10.1371/journal.pone.0197103.g017

Table 8. Statistical analysis of the average overall number of evaluated solutions obtained by PR+TS, TS, and SA when applied on the graphs of the two categories
(phase II).

Evaluated Solutions

PR+TS SA TS

Graph Set Mean SD Median Max Min Mean SD Median Max Min Mean SD Median Max Min p-value

1C 39423 6414 36879 55180 29073 72012 3728 73097 76190 65831 47177 171 47181 47501 46872 7.74e-06

2C 32470 8995 30211 56041 14478 62492 6368 62418 76734 48034 47497 266 47499 47867 46776 7.74e-06

3C 32777 7192 29798 44884 21777 62331 6188 60460 74949 54517 47785 172 47786 48061 47555 7.74e-06

4C 31268 6872 29759 52479 23277 62579 5645 62772 76923 53920 47875 194 47936 48180 47550 7.74e-06

1D 17021 3843 17875 21032 8191 25147 4144 26374 29433 13568 17876 163 17902 18170 17572 5.69e-05

2D 30058 6639 30628 38544 17773 46816 4738 48251 53497 35852 32936 183 32880 33314 32680 7.74e-06

3D 29876 7379 29737 44593 8673 61580 9527 61340 76733 37397 47636 308 47675 48023 46603 3.47e-04

4D 32981 7532 29754 50216 21055 85040 10736 83589 99629 68381 62165 294 62119 62739 61676 7.74e-06

Overall 30734 6858 29330 45371 18037 59750 6384 59787 70511 47187 43868 219 43872 44232 43411 < 2.2e-16

https://doi.org/10.1371/journal.pone.0197103.t008
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objective function’s values, number of evaluated solutions, and execution time in seconds

respectively.

In order to examine the behaviour of our method on the value of the objective function as

the number of evaluated solutions increases, we ran the method on several graphs with the

same size of 105 nodes and 441 edges but with different initial layouts. The average value of

the objective function was recorded at different points during the execution time of the

method. Fig 26 shows the change in the value of the objective function as the number of evalu-

ated solutions increases.

5. Real world graph datasets

After performing several experiments on random graphs, we tested our methods on real world

graph datasets to demonstrate that we can reproduce similar results in a real world setting. We

selected 10 different datasets from different sources as shown in Table 13 that also shows num-

ber of nodes, number of edges, and density in each graph. The graphs have different sizes with

different densities. The initial layout of the nodes in each graph was generated randomly. Hill

climbing, tabu search and path relinking algorithms have run once on the same initial layout

whereas simulated annealing has run 30 times, as we did previously, and we calculated the

Fig 18. Bar chart of the average overall objective function for PR+TS, TS, and SA when applied on the graphs of
the two categories (phase III).

https://doi.org/10.1371/journal.pone.0197103.g018

Table 9. Statistical analysis of the average overall objective function for PR+TS, TS, and SA when applied on the graphs of the two categories (phase III).

Objective Function

PR+TS SA TS

Graph Set Mean SD Median Max Min Mean SD Median Max Min Mean SD Median Max Min p-value

1C 0.343 0.015 0.347 0.384 0.320 0.664 0.007 0.663 0.676 0.646 0.506 0.024 0.505 0.549 0.463 7.74e-06

2C 0.451 0.014 0.451 0.481 0.419 0.930 0.008 0.930 0.945 0.912 0.825 0.035 0.821 0.923 0.741 7.74e-06

3C 0.531 0.031 0.532 0.595 0.474 1.051 0.007 1.052 1.064 1.038 0.951 0.022 0.956 0.988 0.906 7.74e-06

4C 0.650 0.029 0.656 0.692 0.595 1.139 0.008 1.139 1.152 1.117 1.042 0.020 1.038 1.084 0.988 7.74e-06

1D 0.561 0.048 0.564 0.631 0.440 0.485 0.011 0.486 0.507 0.464 0.398 0.058 0.388 0.591 0.328 5.69e-05

2D 0.407 0.023 0.404 0.458 0.377 0.727 0.009 0.729 0.741 0.709 0.634 0.027 0.628 0.700 0.592 7.74e-06

3D 0.466 0.021 0.469 0.510 0.425 0.942 0.009 0.946 0.959 0.920 0.857 0.076 0.846 1.148 0.782 5.69e-05

4D 0.558 0.029 0.557 0.612 0.493 1.162 0.012 1.167 1.176 1.123 1.021 0.037 1.028 1.080 0.946 7.74e-06

Overall 0.496 0.026 0.497 0.545 0.443 0.887 0.009 0.889 0.902 0.866 0.779 0.037 0.776 0.883 0.718 < 2.2e-16

https://doi.org/10.1371/journal.pone.0197103.t009
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median for each 30 runs which was used in comparison with the results of the other methods.

We tested the methods according to phases I, II, and III described in the previous section. The

results of the experiments are shown in the following figures. Figs 27 and 28 show the results

of applying the methods on real data graphs described in Table 13 according to phase I.

Fig 29 represents number of evaluated solutions performed by each method when testing

them on the real world graphs described in Table 13 according to phase II, while Fig 30 dem-

onstrates the values of the objective function produced by each method when they follow the

experiment described in phase III when applied on the same set of data.

Figs 31 and 32 are two examples of the layouts produced by all the methods when applied

to graph 3 and graph 5 respectively in the list of real world datasets described in Table 13. We

also report the normalized values of each aesthetic used in our objective function indepen-

dently when the methods were applied on both graphs as shown in Table 14 and Table 15.

6. Analysis of results

Our graph drawing method of coupling tabu search with path relinking outperforms the other

tested methods in terms of the quality of the produced graph layouts and number of evaluated

solutions needed to reach a particular objective function’s value.

In experiment 1 we tested simulated annealing, hill climbing and tabu search. In experi-

ment 2 we tested simulated annealing, tabu search and tabu search with path relinking. We

covered three comparisons: phase I, diagram layouts with the best objective function’s value

that can be achieved; phase II, number of evaluated solutions performed by each drawing algo-

rithm to reach a particular level of layout quality; and phase III, quality of layout drawn by

drawing algorithms after a fixed number of evaluated solutions.

When we were looking for a layout with the best objective function’s value that can be

achieved, experiment 1 phase I, Fig 11 shows that simulated annealing produces graph layouts

with the best objective function’s value compared to hill climbing and tabu search, with hill

climbing the worst. On the other hand, simulated annealing evaluates a large number of solu-

tions in order to get the layouts compared tabu search and Fig 12 shows that tabu search clearly

outperforms the other two methods in terms of performance efficiency. In experiment 2 phase

I, Fig 15 shows that tabu with path relinking outperforms the other methods in the quality of

the layouts but with the highest number of evaluated solutions as shown in Fig 16.

In experiment 1 phase II, where we tested number of evaluated solutions performed by the

drawing algorithms to reach a particular level of quality, see Fig 13 and Table 4, our tabu search

Table 10. Bonferroni statistical test (p-values) on number of evaluated solutions of the methods when applied on
graph layouts of the two categories (Phase II).

Evaluated Solutions

PR+TS SA

SA < 2e-16 -

TS 2.7e-16 < 2e-16

https://doi.org/10.1371/journal.pone.0197103.t010

Table 11. Bonferroni statistical test (p-values) on the objective function values of the methods when applied on
graph layouts of the two categories (Phase III).

Objective Function

PR+TS SA

SA < 2e-16 -

TS < 2e-16 2.6e-06

https://doi.org/10.1371/journal.pone.0197103.t011
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method generates graph layouts of good quality with fewer number of evaluated solutions

compared to hill climbing and simulated annealing. Calling the path relinking procedure

within our tabu search procedure improves the performance of the drawing algorithm and

reduces the number of evaluated solutions in experiment 2 phase II, see Fig 17 and Table 8. In

experiment 2 phase II, see Table 10, it is clear that path relinking outperforms simulated

annealing in drawing graph layouts with similar objective function’s values using a few num-

ber of evaluated solutions. It also outperforms the pure tabu search procedure on large graphs

(as number of nodes increases) unlike smaller graphs where there is no significant difference.

Finally, for phase III, we ran the drawing algorithms so that they evaluate a specific number

of solutions to test the quality of layouts that would be generated in a set time. For experiment

1 phase III we conclude from Fig 14 and Table 5 that our tabu search approach draws graph

layouts with better quality (or similar quality in the worst case) compared to hill climbing and

simulated annealing when they evaluate the same number of solutions. Adding path relinking

to tabu search in experiment 2 phase III has improved the quality of the layouts compared to

those layouts produced by pure tabu search procedure using the same number of evaluated

Fig 19. A random graph layout with 15 nodes and 24 edges drawn by SA, TS, and PR+TS in Phase I.

https://doi.org/10.1371/journal.pone.0197103.g019

Table 12. Characteristics of the graph datasets used in scalability testing.

Graph Set Nodes Edges

1 1000 3003

2 1500 4503

3 2000 6003

4 2500 7503

5 3000 9003

6 3500 10503

7 4000 12003

8 4500 13503

9 5000 15002

10 5500 16503

https://doi.org/10.1371/journal.pone.0197103.t012
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solutions as shown in Fig 18 and Table 9. Table 11 showed that our tabu search/path relinking

method draws graph layouts with better quality compared to simulated annealing. It also out-

performs pure tabu search as the size of the graph increases, but there is no significant differ-

ence on smaller graphs.

The results of our experiments gives us strong evidence that our tabu search with path

relinking outperforms hill climbing, simulated annealing, and pure tabu search procedures,

and has a better scalability.

7. Conclusions

We have described a novel automated neighbourhood search method for drawing general

graph layouts with undirected straight lines based on a weighted summulti-criteria optimiza-

tion. Our new method is based on tabu search with path relinking. The method searches for

the best positions of the nodes, so minimizing the value of the objective function and drawing

a nice graph layout. The integration of features of tabu search and path relinking in one imple-

mentation makes our method a more effective graph layout method than other well-known

Fig 20. Bar chart of the objective function values obtained by TS+PR and SA when applied on graph datasets in
Table 12 (phase I) for scalability testing.

https://doi.org/10.1371/journal.pone.0197103.g020

Fig 21. Bar chart of number of evaluated solutions obtained by TS+PR and SA when applied on graph datasets in
Table 12 (phase I) for scalability testing.

https://doi.org/10.1371/journal.pone.0197103.g021
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Fig 22. Bar chart of execution time in seconds obtained by TS+PR and SA when applied on graph datasets in
Table 12 (phase I) for scalability testing.

https://doi.org/10.1371/journal.pone.0197103.g022

Fig 23. Box plot chart of the overall objective function values obtained by TS+PR and SA when applied on graph
datasets with increasing number of nodes and edges (Table 12).

https://doi.org/10.1371/journal.pone.0197103.g023

Fig 24. Box plot chart of the overall number of evaluated solutions obtained by TS+PR and SA when applied on
graph datasets with increasing number of nodes and edges (Table 12).

https://doi.org/10.1371/journal.pone.0197103.g024
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Fig 25. Box plot chart of the overall time in seconds obtained by TS+PR and SA when applied on graph datasets
with increasing number of nodes and edges (Table 12).

https://doi.org/10.1371/journal.pone.0197103.g025

Fig 26. The change of the value of the objective function as the number of evaluated solutions increases.

https://doi.org/10.1371/journal.pone.0197103.g026

Table 13. Real world graph datasets characteristics and sources.

Graph Nodes Edges Density Source Description

1 34 78 0.139 [48] A social network of friendships between 34 members of a karate club at a US university in the 1970s

2 62 159 0.084 [49] An undirected social network of frequent associations between 62 dolphins in a community living off Doubtful Sound,
New Zealand

3 105 441 0.081 [50] Books about US politics sold by the online bookseller Amazon.com. Edges represent frequent co-purchasing of books by
the same buyers, as indicated by the "customers who bought this book also bought these other books" feature on Amazon

4 112 425 0.068 [51] the network of common adjective and noun adjacencies for the novel "David Copperfield" by Charles Dickens

5 115 613 0.094 [52] the network of American football games between Division IA colleges during regular season Fall 2000

6 128 2075 0.255 [53] A network contains the carbon exchanges in the cypress wetlands of South Florida during the wet season

7 198 2742 0.141 [54] List of edges of the network of Jazz musicians

8 277 1918 0.05 [55] C. elegans global network of 277 neurons, and the spatial positions of the neurons as two-dimensional coordinates

9 297 2148 0.049 [56] Neural network of the nematode C. Elegans

10 332 2126 0.039 [57] Undirected weighted graph for US Air flights

https://doi.org/10.1371/journal.pone.0197103.t013
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Fig 27. Bar chart of the objective function values obtained by the methods when applied on graph datasets in
Table 13 (phase I).

https://doi.org/10.1371/journal.pone.0197103.g027

Fig 28. Bar chart of number of evaluated solutions obtained by the methods when applied on graph datasets in
Table 13 (phase I).

https://doi.org/10.1371/journal.pone.0197103.g028

Fig 29. Bar chart of number of evaluated solutions obtained by the methods when applied on graph datasets in
Table 13 (phase II).

https://doi.org/10.1371/journal.pone.0197103.g029
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neighbourhood search methods such as hill climbing and simulated annealing. The key feature

in tabu search is the combination of forbidding reverse moves using a memory-based tabu list

and allowing escapes from local optima. Whereas building a reference set of elite solutions

Fig 30. Bar chart of the objective function values obtained by the methods when applied on graph datasets in
Table 13 (phase III).

https://doi.org/10.1371/journal.pone.0197103.g030

Fig 31. Layouts of graph dataset 3 (listed in Table 13) produced by all the methods.

https://doi.org/10.1371/journal.pone.0197103.g031
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generated by tabu search and moving efficiently along the path between two solutions are the

main aspects of our path relinking procedure. We also developed a systematic way for choos-

ing the values of the parameters used by the method.

Our experimental results on random graphs and real world graphs show that our tabu

search/path relinking approach draws graph layouts with good quality in a relatively low num-

ber of evaluated solutions. Coupling tabu search with path relinking outperforms simulated

annealing and hill climbing in both terms of quality of layout and speed of layout.

In terms of future work, the performance of our method can be further improved by imple-

menting a hybrid of path relinking and a Greedy Randomized Adaptive Search Procedure

(GRASP). This combination has been previously applied efficiently in many applications with

promising results [13]. In addition, more investigation can be performed on the effectiveness

Fig 32. Layouts of graph dataset 5 (listed in Table 13) produced by all the methods.

https://doi.org/10.1371/journal.pone.0197103.g032

Table 14. Normalized values of each aesthetic when the methods were applied on graph dataset 3 (listed in Table 13).

node-node occlusion edge length edge crossings angular resolution

HC 0.029602 0.119400 0.075273 0.249458

SA 0.021657 0.084227 0.038497 0.230175

TS 0.026453 0.061855 0.038879 0.219136

PR+TS 0.000279 0.024855 0.024902 0.085991

https://doi.org/10.1371/journal.pone.0197103.t014
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of our approach in comparison with force-directed approaches and other population based

approaches that have been previously used in the field of graph drawing such as ant colony

optimization [58]. Also, we can use a double-blind test on real human users to evaluate the lay-

outs generated by different graph drawing algorithms as visualization is also concerned of how

significant the differences are to human eye and the human sense of aesthetics. Finally, experi-

ments can be conducted to study the efficiency of this method when applied to different types

of graphs such as trees, hierarchical, and circular graphs. Our method can be easily adjusted to

work with directed edges, but each type of these graphs has its own aesthetic measures such as:

subtree separation, closest and farthest leaves for tree graphs; uniform edge direction and cycle

removal for hierarchical graphs; partitioning the graph into clusters and placing the nodes of

each cluster onto the perimeter of an embedding circle for circular graphs [59]. These aesthet-

ics, in addition to the ones discussed in this paper which usually exist in any graph, must be

formulated in a weighted summulti-criteria objective function to be optimized by our pro-

posed method.
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