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Abstract

Computational speech reconstruction algorithms have the ultimate aim of re-

turning natural sounding speech to aphonic and dysphonic patients as well as

those who can only whisper. In particular, individuals who have lost glottis

function due to disease or surgery, retain the power of vocal tract modula-

tion to some degree but they are unable to speak anything more than hoarse

whispers without prosthetic aid. While whispering can be seen as a natural

and secondary aspect of speech communications for most people, it becomes

the primary mechanism of communications for those who have impaired voice

production mechanisms, such as laryngectomees.

In this paper, by considering the current limitations of speech reconstruction

methods, a novel algorithm for converting whispers to normal speech is proposed

and the efficiency of the algorithm is explored. The algorithm relies upon cas-

cading mapping models and makes use of artificially generated whispers (called

whisperised speech) to regenerate natural phonated speech from whispers. Us-

ing a training-based approach, the mapping models exploit whisperised speech

to overcome frame to frame time alignment problems that are inherent in the

speech reconstruction process. This algorithm effectively regenerates missing

information in the conventional frameworks of phonated speech reconstruction,
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and is able to outperform the current state-of-the-art regeneration methods us-

ing both subjective and objective criteria.

Keywords: Speech reconstruction, Whispers, Electrolarynx, Laryngectomy,

Time alignment

1. Introduction

The human voice is the most magnificent instrument for communication, ca-

pable of expressing deep emotions, conveying oral history through generations,

or of starting a war. However, those who suffer from aphonia (no voice) and

dysphonia (voice disorders) are unable to make use of this critical form of com-5

munication. They are typically unable to project anything more than hoarse

whispers [1].

Whispered speech is useful for quiet and private communications in daily life

[2, 3, 4]. Unimpaired speakers occasionally use whispers to communicate in the

public locations such as libraries, cinema theatres, or during lectures and meet-10

ings. But whispered speech becomes the primary communicative mechanism

for many people experiencing voice box difficulties [5, 6]. There is no defini-

tive estimate of the global population suffering some form of voice problem, but

information from a number of studies [7, 8, 9] suggests that one third of the pop-

ulation have impaired voice production at some point in their lives (temporary)15

and further that the number of new patients with significant, long lasting voice

problems (e.g. laryngectomees) are annually around 35, 000 in OECD countries.

Patients reduced to whispering have generally lost their pitch generation

mechanism [1] through physiological blocking of vocal cord vibrations or, in

pathological cases, blocking through disease or exclusion by an operation. Typ-20

ical prostheses for voice impaired patients (esophageal speech [10], transoe-

sophageal puncture (TEP) [11], and electrolarynx devices [12]) allow patients to

regain limited speaking ability but do not generate natural sounding speech; at

best their sound is monotonous or robotised [13, 14, 15, 16]. Additional draw-

backs of traditional prostheses are difficulty of use and risk of infection from25
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surgical insertion [17, 18]. Thus, within a speech processing framework, recent

computational reconstruction methods (and particularly whispers to phonated

speech) are aiming to regenerate natural sounding speech for aphonic and dys-

phonic individuals. Furthermore, comparing with traditional prostheses, these

methods would be non-invasive and non-surgical.30

In recent years, various techniques have been proposed for converting whis-

pers to normal speech [19, 20, 21, 22, 23]. The driving idea of all these methods

is based on the assumption of whispers are missing some acoustic and spectral

features comparing with normal speech; hence, the problem of converting whis-

pers to normal speech is formalised as a reconstruction issue [4, 24]. Through35

this approach, these methods aim to add or enhance missing or modified fea-

tures and increase the signal similarity of whispers to normal speech. In general,

these reconstruction methods can be classified into two major groups of train-

ing and non-training based methods. Utilising machine learning algorithms are

the basis of training-based methods (whispers are mapped to the corresponding40

normal speech), while non-training methods rely upon whisper enhancement

and pitch regeneration.

These reconstruction methods (either training-based or non-training) suffer

from range of disadvantages including problems in converting continuous speech

(due to using phoneme switching) [20], being computationally expensive (due to45

using highly overlapped frames for spectral enhancement, or using jump Markov

linear system for pitch and voicing parameters) [19, 4], and more importantly

lack of naturalness in regenerated output (due to simplified time alignment and

spectral features assumptions) [21, 23]. In this paper, we focus on a training-

based approach, and propose a novel reconstruction algorithm to improve the50

efficiency in phonated speech regeneration. In our algorithm, an intermediary

layer called “artificial whisper” or “whisperised speech” is introduced to lessen

the effect of inconsistent spectral features and time alignment between natural

and whispered speech.

This algorithm effectively regenerates missing information in the conven-55

tional frameworks of phonated speech reconstruction. Results of objective and
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Figure 1: Block diagram of generating whisperised speech from phonated speech.

subjective evaluations demonstrate that the proposed method successfully im-

proves the reconstructed speech quality. As an expanded version of our previous

work [25], this paper presents further discussions on time alignment, provides

the results of detailed subjective and objective evaluations, compares the out-60

come with other computational methods and electrolarynx samples, and yields

further improvement by increasing the size of training datasets.

Section 2 explains whisperised speech while Section 3 addresses time align-

ment problem and describes our reconstruction algorithm using cascading map-

ping models. The algorithm analysis including some examples are demonstrated65

in Section 4. Performance analysis and the scores of subjective and objective

experiments are presented in Section 5 and finally, the paper is concluded in

Section 6.

2. Whisperised Speech

Whispers and natural speech have different acoustic and spectral character-70

istics; the most significant physical characteristic of whispers is the absence of

vocal cord vibration, resulting in missing pitch [26] and harmonics. Using a

source filter model [27], exhalation can be identified as the source of excitation

in whispered speech, with the shape of the pharynx adjusted to prevent vocal

cord vibration in normal speakers [28]. The open glottis in whispers acts like75

a distributed excitation source [29] and the turbulent aperiodic noise can be
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seen as the primary excitation in whispered speech [28]. Whispered vowels and

diphthongs also differ from fully phonated ones. Formant frequencies tend to

be higher than in normal speech [2], particularly the first formant which shows

the greatest difference between two kinds of speech.80

Whisperised speech or artificial whisper is a whisper-like speech which is

derived from normal speech by taking pitch off (i.e. eliminating periodic glottal

excitation or removing long term prediction coefficients in standard source-filter

model). The basic structure of analysis and synthesis parts employed in this

paper for generating whisperised speech (W’) from normal phonated speech (S)85

is presented in Figure 1.

In the analysis part, the phonated speech is first segmented into overlapped

frames (50 % overlap and 15 ms duration for our configuration) and then linear

predictive coding (LPC) analysis is performed on each frame to give a set of

coefficients which are transformed into line spectral pairs (LSP). Finally, long-90

term prediction (LTP) filter provides pitch harmonics of the speech sample. In

the speech synthesis part, LPC synthesis filter is used to reproduce the speech

spectrum (to maintain formants), while making the LTP filter coefficients (pitch

gain and therefore, pitch lags) equal to zero leads to pitch removal. The resultant

pitch-less speech is defined as whisperised speech.95

Being time aligned with natural speech and having similar spectrum (while

sounds like whispers) are the main characteristics of whisperised speech. These

features will be used in our proposed reconstruction algorithm to reduce the

effect of time alignment and to give pitch variation in regenerated speech. The

details of the approach are discussed in Section 3.100

3. Training-based Reconstruction

3.1. Time Alignment

In training-based systems used for voice conversion, Gaussian mixture model

(GMM)-based methods are state-of-the-art at present [21, 23]. Similar to es-

tablished learning-training algorithms, the essential component of the training-105
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Figure 2: Block diagram of our proposed method using two mapping models trained by

whisperised speech.

based speech reconstruction process is also the extraction of particular features

from the training inputs. In GMM-based systems, features are extracted from

both natural speech and whispers, and then the relation (i.e. static and dy-

namic correspondence) between these features are found. Therefore, two paral-

lel datasets of the same sentences are required, one in form of natural speech and110

the other in form of whispered speech; the more different two data sets are the

more difficult is to map features. As discussed in Section 2, natural speech and
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whispers are significantly different in terms of acoustical and spectral features;

such substantial differences mainly affect the performance of the training-based

reconstruction algorithms.115

In current systems, to adjust time durations and frame to frame alignment

in training phase, a technique called dynamic time warping (DTW) is used [24]

for the same utterances in whispered and phonated modes. DTW is originally

employed for voice conversion in phonated speech and tries to match the two

sentences based on their fundamental frequency and spectral similarities.120

Therefore, DTW performance is well justified in voice conversion systems,

where speech samples are normally phonated; i.e. both have components such

as periodic excitation (fundamental frequency), obvious spectral envelope, for-

mants, etc. On the other hand, DTW performance significantly reduces working

on unvoiced speech due to lack of fundamental frequency and noisy excitation,125

which leads to smooth spectrum and unclear formants.

Whisperised speech, as generated by the method proposed in 2, is frame

to frame time aligned with phonated speech; so by utilising this advantage in

training phase and by introducing a cascading GMM reconstruction algorithm,

we can overcome the DTW limitation. In our method, we propose a mapping130

algorithm, which includes an intermediary layer to address the alignment prob-

lem in phonated and whispers pairs. To generate the intermediary layer, natural

speech dataset is converted to whisperised speech dataset with the procedure

described in Section 2. The details of our algorithm using whisperised speech

for training the system is discussed in the following subsection.135

3.2. Cascading Mapping Models

In the conventional voice conversion systems based on GMM, voice fea-

tures including mel-cepstrum coefficients and fundamental frequency (F0) are

extracted using STRAIGHT [30] for each frame of whispered and phonated

samples. Then, in an iterative process, DTW tries to align these two feature140

vectors, based on minimising the Euclidian distance between them.

As previously described, whispered speech not only takes longer duration
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than normal speech for pronouncing the same utterance but also lacks the funda-

mental frequency; therefore DTW cannot efficiently work on whispered samples

due to missing some features in extracted vector by STRAIGHT. To address145

this problem, we insert whisperised speech as an intermediary layer between

whispers and normal speech and train two mapping models: one for mapping

from whispered to whisperised and one for mapping from whisperised to normal

speech.

As previously discussed, whisperised speech have similar spectral features150

(except harmonics) and acoustic duration to normal speech, so time alignment

(hence, DTW) is not required for such mapping model. This can partially

address the time alignment issue between whispers and normal speech.

Figure 2 demonstrates the block diagram of our proposed method using whis-

perised speech (W’) which is added as an intermediate state. In this method,155

first the whispered speech is converted to whisperised speech (through trained

model II) and then the generated whisperised speech is converted to natural

speech (through trained model I) with a regular GMM-based training system.

The mapping model I is trained based on whisperised speech and phonated

speech; and the other mapping model (model II) is trained using pair of whis-160

perised speech and whispered samples. After training, these models work in a

cascading form to regenerate phonated speech.

As described in Section 2, whisperised speech is generated from the natu-

ral speech of the same utterance; hence samples are completely time aligned.

The high level of similarity between two feature vectors in model I improves165

feature matching. Furthermore, using whisperised speech and phonated speech

for training the mapping model I does not involve any time alignment process

(i.e. DTW). With this training approach, the extracted features of whisperised

speech and whispers are more similar to each other in comparison to whispered

and phonated speech feature which is used in the current voice conversion sys-170

tems. Therefore, our proposed cascading GMMs algorithm using whisperised

speech can lead to a higher quality regenerated speech due to taking advan-

tage of an efficient time alignment procedure. The analysis of this method and

8
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Figure 3: Waveform and spectrogram plots of the sentence “This was easy for us.” show-

ing (top) whispered, (middle) spoken and (bottom) whisperised speech. All are amplitude

normalised prior to plotting.

detailed evaluation results and comparisons are discussed in Sections 4 and 5.

4. Algorithm Analysis175

In this section, the outcomes of two major modules of the proposed algorithm

(i.e. whisperised speech and reconstructed speech) are demonstrated and the

corresponding spectrograms are compared with each other. Furthermore, the

training process is also discussed.

9



4.1. Whisperised Speech180

Figure 3 shows time domain and spectrogram plots of a standard sentence

from TIMIT corpus (“This was easy for us.”). The sentence has been articu-

lated in whispers (top) and spoken (middle) by the same speaker; then it has

been whisperised (bottom) through the method described in Section 2. As il-

lustrated in the figure, whispered (top) and spoken (middle) of a sentence are185

not time aligned and have different frame to frame durations. Hence, using

these recordings as parallel utterance data for training GMM systems lead to

poor performance of DTW (and therefore degraded regenerated speech). On

the other hand, as it can be seen in Figure 3, whisperised speech (bottom) is

completely time aligned with spoken speech (middle). Furthermore, spectro-190

gram of whisperised speech (bottom) resembles acoustic features of whispered

speech (top) and this can make whisperised speech a reasonable choice to be

used as parallel utterance data for training purposes.

4.2. Phonated Speech Reconstruction

Using the algorithm proposed in Section 3.2, two models are trained relying195

upon whisperised speech in between. For the training datasets, 300 parallel

whispered and spoken sentences recorded from North American speakers (20

persons) was obtained from wTIMIT corpus [31] and then whisperised speech

dataset (through the method described in Section 2) was generated accordingly.

Having two models trained, 50 whispered sentences (as the test dataset) were200

given to the cascading models of I and II and the reconstructed sentences were

generated. The details of performance evaluations on 50 regenerated sentences

are discussed in Section 5.

As an example, waveforms and spectrograms are plotted for whispered, whis-

perised and reconstructed speech for the sentence “This was easy for us.” in205

Figure 4: Whispered speech (top) is the input of the system, whisperised speech

(middle) shows the output of whispers to whisperised model (mapping model

II), and finally, reconstructed speech (bottom) displays the output of whis-

perised to phonated speech model (mapping model I) as the ultimate output

10
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Figure 4: Waveform and spectrogram plots of the sentence “This was easy for us.” showing

(top) whispered, (middle) whisperised and (bottom) reconstructed speech. All are amplitude

normalised prior to plotting.

of the system. As it is evident from the figure, the spectrogram of the recon-210

structed speech (bottom) shows phonated speech features: prominent formant

bands, harmonics pertaining to fundamental frequency, and lower frequency en-

ergy distribution. To measure the performance of the proposed algorithm in

speech regeneration, the objective and subjective evaluations are presented in

the following section and the results are compared with other reconstruction215

methods.
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5. Evaluations

In general, a whisper-to-speech reconstruction system aims to convert whis-

per input into something that is either (i) as close to the equivalent speech as

possible, (ii) as normal-sounding or (iii) as intelligible as possible. The former is220

convenient to measure using objective criteria, whereas the latter two naturally

imply the use of subjective criteria.

In objective evaluation, a reference signal with which to compare the regener-

ated speech is normally required. Although single-ended evaluation algorithms

exist which require no reference [32, 33], these methods are designed for assess-225

ing degraded natural speech, and are not mandated for use with reconstructed

speech, abnormal speech or highly degraded speech signals. Thus, we use com-

mon objective measures described in 5.1 for our evaluation experiments.

For this purpose, the proposed cascading algorithm, two other computa-

tional reconstruction methods and electrolarynx (EL) generated samples are230

evaluated using common criteria. For the purpose of objective comparisons be-

tween reconstruction techniques, a test database of 50 full sentences including

phonated sentence and whispered version of the same sentence by same speaker

(in total 100 sentences) were selected from wTIMIT corpus [31]; all 50 whis-

pered sentences were reconstructed using three computational reconstruction235

methods. In addition to computational techniques, electrolarynx was also ex-

amined in these performance tests because it is considered as one of the most

common rehabilitative device currently used by aphonic patients [18]. Thus,

the four reconstruction techniques are the EL, the CELP-based system [20], the

SWS-based system [34] and the cascading algorithm proposed in this paper.240

Clearly, objective evaluation between a reference (i.e. normal phonated sen-

tences here) and a test signal (i.e. reconstructed sentences here) provides an

accurate measurement. If the test signal is reconstructed speech, then the ref-

erence should naturally be normal speech. In practice this arrangement would

require time-aligned data from each test subject: the same material whispered245

and then spoken. However as discussed before, speakers tend to stress words dif-

12



ferently when whispering, and will also extend the duration of many whispered

syllables, leading to a slower syllabic rate for whispers than for speech. One con-

sequence is that time alignment between parallel recordings of whispered and

spoken material is imprecise. To overcome this problem, we adapted the tech-250

nique from [35] that does spectrogram-based dynamic time alignment to stretch

normal speech to get aligned with whispers segmentally. Once they are aligned,

the time-domain and frequency-domain measures are applied accordingly (as in

5.1).

EL speech used in these experiments was generated by an electrolarynx255

device (TrueTone Electronic Speech Aid, Griffin Laboratories, United States)

which was placed at the neck and set to 180 Hz excitation. One volunteer was

trained and familiarised with the use of the electrolarynx prior to the recording

session. Each session was recorded by a Zoom H4n recorder (Zoom Corp.,

Tokyo, Japan), 24-bit 96 kHz using the built-in microphones in an audiology260

room and repeated three times to allow a manual selection of the highest quality

recordings.

It is also important to be noted that although all these methods are used

for reconstruction purposes, they implement different mechanisms in terms of

generating the output: EL is a mechanical buzzer, CELP-based and SWS-based265

systems are computational methods which do not rely upon a priori information,

and finally the proposed algorithm is a computational method that needs parallel

data for training.

The details of subjective and objective measurements along with the corre-

sponding scores are presented in the following subsections; first, the measures270

are described and then corresponding evaluation scores are outlined; a brief

discussion on performance results is also presented in subsection 5.3.

5.1. Objective Measures

In total, three common objective tests were used for assessing performance,

namely I-S, LLR, and SSNR [36, 37, 38]. For each performance measure, a275

single score is obtained for each reconstruction method for each full sentence

13
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Figure 5: Normal Speech (S), Reconstructed Speech (S’) and electrolarynx (EL) samples are

used to assess the reconstruction methods with various performance measures.

(totally 50 sentences). Figure 5 demonstrates the process for each sentence.

Given original speech S, reconstructed speech with different methods S′,

and electrolarynx speech EL, we first do time alignment as described in Section

5. Then we use autoregressive modelling to determine corresponding LPCs for280

time-aligned segments of each signal, aS and aS′ for original and reconstructed

speech, respectively, each with order P = 10. Finally, aligned segments are

passed to three objective measures for obtaining distance scores whereas S is

considered as the reference. These measures are briefly described in the following

subsections.285

5.1.1. Log-likelihood ratio

LLR is computed from RS , the speech autocorrelation matrix as follows:

dLLR = log

{
aS′RSa

T
S′

aSRSaTS

}
(1)

14



In this case, there is no hard limit applied to the LLR range, and the final result

is the mean of scores for each analysis window.

5.1.2. Itakura-Saito distance measure

Similarly, the I-S measure is computed from the same raw input data as

follows:

dIS =
σ2
S

σ2
S′

{
aS′RSa

T
S′

aSRSaTS

}
+ log

{
σ2
S

σ2
S′

}
− 1 (2)

where σ2
S and σ2

S′ denote order 10 LPC gains from the original and reconstructed290

speech, respectively, obtained from 1/F (ejωT ) where ωT = 2πk/Nr for k =

0, 1, . . . (Nr − 1), for a frequency resolution of Fs/2Nr Hz at sample frequency

Fs computed over an Nr sample segment. The final result is the mean over all

analysis windows. The I-S measure is not symmetrical, i.e. dIS(a, b) 6= dIS(b, a)

thus it is necessary to determine which signal is the reference and which is the295

degraded signal when obtaining an I-S score. When comparing actual S with S′

and EL, it is clear that the original phonated speech S should be the reference

signal.

5.1.3. SSNR

Segmental signal-to-noise ratio is simply computed from the mean squared

sample-by-sample difference between signals Sx and Sy over an analysis window

of size L:

dSSNR = 10log10

{
L∑
l=1

(Sxl − Syl)2
}

(3)

In practice, this is computed frame-by-frame over the entire length of the sen-300

tences being compared, then averaged to yield the final score.

5.1.4. Performance measure configuration

Each of the above distance measures are applied between original speech S

and each of S′ and EL, as shown in Figure 5. All recordings were re-sampled

to Fs = 8kHz (using MATLAB polyphase resampling filter with default Kaiser305

windowing) prior to evaluation. The LPC order was 10, 24 MFCC coefficients

15



Table 1: Three averaged objective measure scores between original speech and that recon-

structed using various methods. The best score is shown in bold in each case. (σ denotes

standard deviation for the proposed method.)

Measure EL CELP-Baseda SWS-Based Proposed Method

I-S 153.67 93985.88 3031.23 14.27 (σ:10.3)

LLR 0.85 4.16 4.32 1.64 (σ:0.49)

SSNR 42.26 32.58 30.37 28.81 (σ:1.18)

aOnly selected sentences

were computed with frame size Nr = 512 samples. Some outlier results were

removed during the performance analysis.

5.1.5. Scores

New proposed method was evaluated in terms of reconstruction ability from310

real whispers and compared to the EL, SWS-based, and CELP-based method.

Mean performance results over 50 complete sentences are listed in Table 1. (Due

to use of phoneme classification, the CELP-based system is not able to regen-

erate full sentences in many cases, so only successful regenerated sentences for

this method has been evaluated with phoneme classification module disabled.)315

In general, it can be seen that “proposed method” outperforms the other recon-

struction methods (the only exception is LLR measure in electrolarynx; whereas

cascading method still outperforms other computational techniques). The best

score for each distance measure is shown in bold text.

5.2. Subjective Measures320

Objective scores have already shown that reconstructed speech by the pro-

posed method is more similar to normal speech than regenerated samples by

the other two computational methods. However neither objective distance mea-

sures, nor a visual examination of waveform or spectrogram can compensate for

the discerning ability of the human ear.325

16



Table 2: Overall MOS for each method over 10 individuals. The best score is shown in bold.

(σ denotes standard deviation for the proposed method.)

EL CELP-Based SWS-Based Proposed Method

MOS mean 2.6 1.4 1.6 3.55 (σ:0.72)

The most reliable method for assessing perceptual quality is to employ sub-

jective assessment. For this purpose, a subjective testing was employed based

on the absolute category rating (ACR) method described in the International

Telecommunication Union (ITU-T) Recommendation P.800 [39].

A mean opinion score (MOS) assessment was made by a group of 10 vol-330

unteers, aged between 25 and 42, with no known hearing impairments. Each

volunteer was individually asked to rate two reconstructed sentences that were

each whispered by one female and one male speaker. The evaluation was re-

peated, in a single sitting, for the EL, CELP-based system, SWS-based system,

and the proposed reconstruction method. Each subject scored the correspond-335

ing regenerated and EL speech samples for quality over a five-point scale (5:

excellent, 4: good, 3: fair, 2: poor, and 1: bad). Final mean scores are listed

in Table 2, along with the corresponding standard deviation for the proposed

method.

5.3. Discussion340

The MOS score ranking agrees with the objective test results, confirming

that the proposed cascading method outperforms previous computational meth-

ods and EL speech. It can be seen that with a mean rating somewhere between

“fair” and “good”, the results show that the quality of speech obtained from

the cascading method are significantly better than the EL samples and other345

computational methods (averaging 2.6, 1.4, and 1.6 respectively).

Although this paper aims to investigate the performance of reconstruction

from real whispers, the SWS-based system was evaluated primarily using arti-

ficial whispers [34]. On the other hand, the CELP-based system is originally

efficient in converting vowels and diphthongs but suffers from poor performance350

17



in converting continuous sentences [20] due to phoneme classification of whis-

pers. However, to show the efficiency of the proposed cascading algorithm, it

was therefore important to evaluate these systems with real whispers using the

same criteria.

The mechanism of speech reproduction in computational methods is the355

other important issue which needs to be further discussed. While the CELP-

based and SWS-based systems are trying to regenerate speech through a para-

metric approach with pitch excitation, the cascading algorithm proposed in this

paper relies upon training dataset and priori information. This significantly

improves the quality of speech as it is evident in both subjective and objective360

measures.

Finally, it is important to be noted that the objective experiments and corre-

sponding scores are sensitive to the performance of time domain based alignment

[35] technique as described in 5. The efficiency of this technique which aims to

segmentally align each frame by stretching natural speech, has direct effect on365

distance measures used in 5.1; thus, more precise alignment between recon-

structed and spoken material leads to more reliable scores. On the other hand,

subjective measure described previously not only shows the quality levels of the

reconstructed samples, but also the corresponding scores can be considered as a

reliable indication of the efficiency of reconstruction algorithm proposed in this370

paper.

6. Conclusion

A train-based algorithm for whisper-to-speech reconstruction which relies

upon cascading mapping models was discussed in this paper. Our algorithm

makes use of an intermediary layer of whisperised speech (artificial whisper)375

to address the alignment problem in phonated and whispered utterances; these

are basically used as parallel data for training GMM-based voice conversion

systems.

Furthermore, the process for generating whisperised speech by removing

18



pitch component from normal speech was described. Being time aligned with380

natural speech and having similar spectral features (while sounds like whispers),

are the main characteristics of generated whisperised speech. Taking advantage

of these features, the proposed reconstruction algorithm provides an efficient

reconstruction technique.

The performance of the our cascading method was evaluated against the385

normal speech and other published systems using three objective performance

measures for complete sentences as well as using subjective MOS scores obtained

from human listener volunteers. Both objective and subjective experiments

agree that, for the tested sentences, the new algorithm yields improved quality

over other systems and current EL speech.390
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