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Abstract

This paper considers two (seemingly) rad-
ically different perspectives on the con-
struction of software. ~On one hand,
search-based heuristics such as genetic
programming. On the other hand, the
theories of programming which underpin
mathematical program analysis and for-
mal methods. The main part of the paper
surveys possible links between these per-
spectives. In particular the contrast be-
tween inductive and deductive approaches
to software construction are studied, and
various suggestions are made as to how
randomized search heuristics can be com-
bined with formal approaches to software
construction without compromising the
rigorous provability of the results. The
aim of the ideas proposed is to improve
the efficiency, effectiveness and safety of
search-based automatic programming.

1 Introduction

In recent years a number of systems have been
developed which apply computational intelli-
gence techniques to the automated creation of
computer programs. Many of these have been
based on biologically-inspired methods such as
genetic algorithms: genetic programming [3, 11,
21] (and the many variants thereon)is the most
widely used of these. By looking at further de-
tails of evolutionary biology various extensions
of these ideas have been created, such as gram-
matical evolution [30], which exploits the idea of
gene expression. Other system have used tabu
search as a way of exploring program-space [6],
or have developed search techniques which are
most closely tied into program structure [29].
These techniques have been shown to be suc-
cessful on a wide variety of problems, though
the success of the various techniques on different
kinds of problems is variable. For the purposes

of this paper we shall refer to such search-based,
heuristic methods of creating programs as auto-
mated programming systems.

Alongside this development there continues
to be a substantial development in many areas
of theoretical computer science concerned with
understanding programs, the way in which pro-
grams can be constructed and how properties of
programs can be verified.

At first these two areas of study appear to
be completely at odds with each other. On
one hand is the sloppy, heuristic world of GP
and its fellows, seen typically as unrigorous but
potentially effective at solving the sort of ill-
defined, fuzzy problems which are found in “the
real world”. On the other hand the theoretically
rigorous work is seen as very precise and exact;
however this work is often seen as not being flex-
ible enough to be applied to realistic problems.

However seen from another perspective the
two approaches seem to have much in common.
Human programmers often have a view of code
as a brittle object where the slightest erroneous
change can lead to catastrophic error. By con-
trast to this both heuristic-driven automated
programming and many of the theoretical ap-
proaches to programming view code-stuff as a
malleable material, able to be transformed and
restructured by a wide variety of transforma-
tions without breaking it.

This paper surveys some of the potential for
cross-fertilization between these areas. The aim
is to spark interest in this area through a broad
survey of ideas and suggest topics which might
provide a bridge between the theory of program-
ming and comptuational intelligence techniques.
The basic question addressed is this: how can
an understanding of the theoretical perspectives
on programming make automatic programming
more effective, efficient and safe?
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Figure 1: Contrasting inductive and deduc-
tive approaches to the relationship between pro-
grams and specifications.

2 Program Induction vs.
Program Deduction

One way to create a unified framework in which
to view these diverse approaches is to consider
the relationship between specifications and pro-
grams. One stance towards the creation of code
is that programming is the process of transform-
ing specifications of desired behaviour into pro-
grams which carry out that behaviour. By spec-
ification we mean any means by which we can
express that behaviour. This could be a formal
specification written in a specification language,
but could also be some informal idea of what
the program is intended to achieve (an inter-
esting discussion of what “specification” might
mean is given in [32]). For a program to imple-
ment a particular specification everything asked
for in the specification must be implemented in
the program, and any constraints in the specifi-
cation must be respected by the program.

From a traditional “formal methods” per-
spective this process has been viewed as a de-
ductive problem. A set of operations is defined
which describe how to transform a specification
statement into a concrete statement which real-
izes that specification step. This can be enriched
by the inclusion of operations which use opera-
tions which transform some part of the speci-
fication into some intermediate state, less ab-
stract than the full specification but not fully
executable. An example of such a program de-
duction process is refinement [26].

In contrast to this the automatic program-
ming systems described above take an inductive
stance towards program creation. A program
induction system consists of two components.

Automatic programming driven by specification

The first is a way of measuring the closeness of
programs to specifications, and the second is a
way of using that information to suggest ways
in which programs might be brought closer to
the specification. Another way to state this is
that the algorithm is searching problem space
for a program which matches the specification
[16, 17, 29].

However program induction has its own prob-
lems. Typically the measure used to decide
whether programs are close to their specification
consists simply of running the programs on test
data and measuring the distance between the so-
lutions produced by the program and the solu-
tions acceptable to the specification using some
metric in solution-space. Whilst this has been
empirically shown to provide a powerful way of
directing program towards appropriate parts of
the program-space, it gives no formal confidence
that the programs induced will apply anywhere
other than on the test data sets used.

This dual perspective allows us to place in-
ductive and deductive techniques side-by-side
and study them for commonalities and ways in
which we might combine the two perspectives.
A summary of the two views is given in figure 1.

3 How Might Programming
Language Theory Inform
Automatic Programming?

This section looks at a number of areas of pro-
gramming language theory and suggests ways in
which these might interact with automatic pro-
gramming.

3.1 Static Analysis and Model Checking

Static analysis [27] is an overarching term for
a range of techniques which extract information
out of programs without explicitly running them
on particular data sets. A typical technique is
that of abstract interpretation [8, 9], in which
the data processed by the program and the vari-
ous operators within the programming language
which change those data are “abstracted” into
sets of properties of interest. The analysis of
the program consists of tracking whether these
properties are guaranteed to hold at any partic-
ular point in the program. That is, the analysis
makes a conservative approximation to whether
a particular property holds or not. A large num-
ber of different kinds of information can be ex-
tracted from programs by this kind of analysis,
for example:



e constraint information about relationships
between variables [10]

e information about the extreme values which
a variable could possibly take at each point
in the execution of a program [8]

e usage information about whether facts vital
to the solution of a problem have been used

e complexity information, e.g. the number of
potential paths through a piece of code [23]

o performance information [28, 35]

Consider for example an integer variable
within a program. In a normal run of a program
a particular initial value is assigned to that vari-
able and various operators act on the variable
to change that value. In a static analysis of a
program a property of the variable is followed
through the program. To illustrate this we shall
consider two examples of the kind of information
which can be tracked through a program using
a static analysis.

For each example we give four pieces of in-
formation: the condition which is being tracked
through the program the values which that con-
dition can take, the initial value which it takes
when a variable is defined without giving it a
value, and some examples of update rules which
show how actions in the program affect the ab-
stract variable.

The first example is whether a given integer
variable is guaranteed to be > 0.

Condition: An integer variable x is positive
or zero.
Values: True (T) or don’t know (D).

Initial value: D.

Update rules: Some examples:

e If a positive constant is assigned to x
then value becomes T.

e If x becomes equal to something which
is known to be positive-or-zero then
value becomes T.

e If an integer is added to x then value
becomes D.

e If value is currently 7" and something
which is known to be positive-or-zero
is added to = then value remains at 7T'.

o If © becomes equal to the absolute
value of any expression then value be-
comes 1’

e If any value is subtracted from z then
value becomes D.

e ...andsoon...

Here is another example; in this example we
track the upper and lower bounds on the integer
value.

Condition: The upper and lower bounds an
integer variable z can take.

Values: A pair of integers Z,,;, and T,
where we can be confident that = €

[mmina mmaz]-

Initial value: [—o0,+00].

Update rules: Some examples:

e If a constant value y is assigned to x,
then x,,in, := y and T,e: = y.

e If a constant y is added to x, then
Tmin = TmintY and Tmaz ‘= TmazTY-

o If the absolute value operator is applied
to x, then if z,,;, < 0 we can make
Tmin = 0.

e If a variable which is known to be
positive-or-zero is added to x then
Tnag = OO.

e ...andsoon...

In developing such an analysis program we
begin with simple, clearly true statements, and
gradually “refine” them to produce more accu-
rate statements. E.g. in the first example above
we had the following statement:

If any value is subtracted from z then [the
positive-or-zero] value becomes D.

this is a conservative approximation:
sider the following code.

con-

int z,y

input a value in the range [0, 20] into x

input a value in the range [0, 5] into y
z:=z4+10

Ti=x—y

Applying the rule above makes a true state-
ment, as long as we remember that “don’t know”
doesn’t mean “can’t know”. However this up-
date rule can be refined as follows:

If any value is subtracted from = then value
becomes D, unless Tmin — Ymaz > 0, in which
case value becomes T'.

Now note that by the end of line 4 we know
that « € [10,30] and y € [0, 5], SO Tmin — Ymaz >
0, therefore we can assign 7' as the positive-or-
zero value for x.

By wusing such techniques we can dis-
cover whether particular properties hold, either
throughout a program or at the end of the pro-
gram. This is typically seen as a way of de-
ducing information about a program which is



in the debugging or testing stage. However in
the context of automatic programming we can
see these techniques as ways of measuring the
fitness of programs [18, 19]. If we can specify
certain desired properties of programs in terms
of such properties then a static analysis can po-
tentially give a guarantee that a program must
satisfy that property regardless of input. This
would seem to be particularly important in im-
posing safety constraints. In many situations it
is important that a variable (whether a variable
in a program or a derived quantity) is bounded
within a certain range. For example a robot
may be constrained so that no movement takes
it outside its working area, or the temperature
of some process must not exceed some critical
value. The fitness function in these cases is not
based around testing but based around checks
to confirm whether these constraints are guar-
anteed to hold.

Importantly there is the potential to use
multi-criterion optimization to combine essential
fitness constraints with desirable, data-driven
features. Many problems can be partially spec-
ified by a set of formal statements about the
variables and their relationships, whilst other
aspects of the problem can only be expressed
as data. Combining satisfaction of a number
of statically combined constraints together with
optimization of some data-defined features into
a multicriterion fitness function could be a way
of satisfying both of these simultaneously.

Many of the above ideas could also poten-
tially be implemented using the ideas of model-
based systems and qualitative reasoning [22, 34].
These techniques are also concerned with track-
ing properties of variables through a program.

A related topic is model checking [7]. One
important check which model checking provides
is a check as to whether a temporal logic for-
mula holds over a given system, specified using
e.g. an finite state machine or Petri net. Again
this has the potential to be used as a fitness
driver for the creation of such systems—the idea
of evolving finite state machines has recently un-
dergone a revival [5, 36] after being one of the
earliest applications of evolution-like algorithms
[14]. Interestingly the output of a model check-
ing procedure which fails is a specific counterex-
ample to the statement; some automated anal-
ysis of this could be carried out to determine
which direction in the search space might prove
profitable. Also it may be possible to make a
graded sequence of logical formulas which guide
evolution towards the solution; the final desired
set of constraints could be relaxed into a set

of less-strict constraints, and the strictness an-
nealed with time until the final constraints are
satisfied.

3.2 Specifications and Refinement

A substantial area of theory which lies at the
heart of formal methods is the idea of refining
a specification. A refinement [13, 26] of a spec-
ification is the replacement of various abstract
statements with more concrete statements. The
set of allowable replacements is formalized in a
set of rules called a refinement calculus. As these
rules are applied repeatedly, the abstract parts
of the specification are eventually replaced by
concrete, executable statements which eventu-
ally (provided the refinement is successful) pro-
vide an executable program.

There are several points in this process
where a search-based automatic programming
approach might be used. Firstly it may be pos-
sible to use a search algorithm to decide which
sequence of refinements to apply. Less obviously
this may provide a way of combining data-driven
and specification-driven aspects of a program.
One problem with automated refinement of pro-
grams from a specification is that all of the infor-
mation about the program must be contained in
the specification. In many cases problems have
a dual nature: we are able to provide a specifica-
tion for some parts of the desired functionality,
whereas the remaining functionality is provided
by data. Indeed, as pointed out by Partridge
[31, 33], some problems (or parts of problems)
are defined by sets of data.

One of the difficulties in this sort of problem
is in assigning fitness values to partially-concrete
programs. We cannot execute these in a conven-
tional fashion as parts of the specification remain
abstract. One promising approach to this is the
ezecutable specifications of Barnett et al. [4].

3.3 Program Transformation and
Mutation Testing

One of the important features of automatic pro-
gramming is the need to make meaningful trans-
formations of programs. For example at the core
of GP are recombination and (typically less im-
portantly) mutation operators. In the theory
of programming there is also much work about
how programs can be transformed [25]. These
two kinds of transformation have somewhat dif-
ferent aims. In the theory of programming the
transformations are typically applied with the
aim of preserving the semantics of the program;



the aim of the transformation is to make the pro-
gram more specialized and therefore faster on a
particular problem, or to overcome some hard-
ware constraints by rearranging the structure of
the program so that it compiles in such a way
that it respects the underlying hardware struc-
ture (an example is given in [12]). In automatic
programming the aim is to transform a program
so that it makes a move through the space of
program semantics; however that move is not
an arbitrary move, we want to ensure that the
move has certain properties.

For example the desired outcome from a mu-
tation operation is a “small move” to a program
which is close in meaning to the original pro-
gram, whilst a recombination operation is de-
signed to produce a child program which in-
cludes some aspects of the semantics of the two
parent programs. Can we make use of the un-
derstanding which the theory of program trans-
formations gives us about how changes to code
affect the meaning of programs to construct ap-
propriate move operators?

A related area of interest is partial evaluation
of programs [20, 24]. The aim of partial evalu-
ation is to transform a more general program
into a more specialized one, typically with the
aim of making a program more efficient. A toy
example would be taking a program which takes
two variables as input, fixing the value of one of
the input variables, substituting an appropriate
value throughout the program, then recompiling
the program with the fixed value. This would
mean that the program would run much more
efficiently on the restricted input space; many of
the calculations and branching decisions which
would have to be taken (relatively slowly) at
runtime will have already been taken at compile-
time and so will execute relatively faster. This
eliminates a traditional tradeoff between writ-
ing generic software which carries a lot of run-
time baggage with it and the human cost of writ-
ing specialized code for each area of application.
This has been applied e.g. to the specialization
of Fast Fourier Transforms for a particular ap-
plication area [15] and to the specialization of a
ray tracing program with respect to various in-
puts, e.g. the scene, the lighting conditions, and
the point of view [2].

Again there are many potential connections
between automatic programming and partial
evaluation. Can we use search algorithms to au-
tomatically specialize a given program so that
it is appropriate for a class of problems implic-
itly defined by a set of training data? Can a
set of suitably generic algorithms be combined

together and specialized appropriately in a GP-
like system?

4 Randomness and Reliability

One criticism of heuristic methods is their de-
pendency on randomized search as part of their
discovery engine. However the use of randomiza-
tion doesn’t necessarily rule out the production
of end-products which rigorously satisfy a set of
requirements.

The above approaches ensure that the end
results are still reliable despite the use of ran-
domness in a number of ways. Some of them
begin from an abstract but correct version of
the problem, and ensure that the search pro-
cess never makes a move outside this correct re-
gion of search space. Others use conservative
approximations to check whether the programs
generated by the system fall inside the require-
ments. An alternative approach would be to
apply search algorithms simultaneously to the
solutions themselves and to proofs of required
properties about those solutions.

5 Conclusions

We have surveyed several different approaches
to the formal analysis of programs from the per-
spective of automatic programming. A num-
ber of ways in which these two seemingly di-
verse subjects can be combined are suggested.
In particular many of these techniques provide
new ways of defining fitness functions, partic-
ularly for safety-critical systems, and they can
offer insights into how moves in a search algo-
rithm change the meaning of programs.
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