
Owens, Scott and Slind, Konrad (2003) Proving as Programming with DrHOL:
A Preliminary Design. In: Technical report 189. . pp. 123-132. Institut für
Informatik, Albert-Ludwigs-Universität Freiburg

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/31921/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical report 189

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/31921/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Proving as Programming with DrHOL:
A Preliminary Design

Scott Owens and Konrad Slind

School of Computing, University of Utah

Abstract. We discuss the design of a new implementation of the HOL
system aimed at improved graphical user interface support for formal
proof. We call our approach Proving as Programming, since we believe
that metalanguage programming is a central aspect of proof construc-
tion. Thus we look to contemporary programming environments for in-
spiration on how to provide graphical support for proof. In particular,
our implementation builds upon DrScheme, a popular programming en-
vironment for Scheme.

1 Proving as Programming

We have begun work on DrHOL, a new implementation of the HOL logic. DrHOL
is systematically derived from HOL-4 [8] and aims at improving user interfaces in
many aspects of work in HOL: development of proof procedures, construction of
terms and definitions, interactive proof, and embedding of object languages are
seen as candidates for better interface support. We believe that programmability
is an essential part of all these activities. To support our view, we will discuss the
ways in which we will adapt an advanced programming environment, DrScheme
[3], into a proof environment for HOL-4. The main question being investigated—
and it will take a while to obtain comprehensive answers—is : How can support
for programming also support proof ?

The issue of programmability in proof is interesting. One one hand, there
is a long history of tactic proofs, stemming from the invention of tactics and
tacticals in the original LCF system. Since tactics and tacticals are metalan-
guage programs, the construction of compound tactics to prove a goal can be
considered programming. Thus we have a large body of historical evidence that
programmability is A Good Thing. On the other hand, the declarative approach
to proof has recently garnered much attention1 [10, 6, 13, 9, 11], and is often pre-
sented as a way of abolishing programming from the activity of constructing
proofs. A declarative proof is written in a fixed proof language, which may be
processed in a variety of ways. Importantly, the specification of a proof in the
proof language is independent of the means of achieving the proof. This allows
declarative proofs to be processed in more ways than tactics, which can only
be executed. As a result, declarative proofs are more readable and maintain-
able than tactic proofs. However, declarative proofs can be more verbose than
1 Although its roots in the Mizar system are quite old by the standards of the field.

procedural proofs, and may contain more explicitly given terms. That the two
approaches are not completely distinct is illustrated in [12], which demonstrates
that declarative proof may be quite concisely implemented via tactics.

One of the early reasons for having programmability was extensibility. Since
most of the basic tactics for LCF embodied quite small reasoning steps, compos-
ing them into larger steps was accomplished by tacticals and, often, by extended
ML programming. Later work, especially in Isabelle, showed that long and intri-
cate tactics could often be replaced by parameterized proof tools, such as first
order provers and simplifiers. The amazing increases in computational power
available to researchers have validated the move to more powerful proof tools.
Interactive theorem proving has thus become much more efficient in terms of
user time and effort, with the obvious caveat that when one gets well and truly
stuck on a proof, no amount of automation will help.

However, in extended proof developments, we still find that highly automated
tools are not completely adequate: the ability to write ad hoc proof procedures
and custom term construction functions on the fly is a key facility. Similarly,
when a sequence of steps re-occurs in proof, then programming is needed to
avoid unnecessary repetition: this is just code reuse by procedural abstraction.
To us, this implies that there is no real gap between online and offline construc-
tion of proof procedures. Thus a proof environment should support interactive
construction of programs.

Proving as programming should not be confused with Proofs as Programs,
a slogan associated with constructive logic. That slogan has specific and deep
technical content behind it, while our slogan is more a methodological attitude.

2 DrScheme

DrScheme is a graphical program development environment for the Scheme pro-
gramming language. DrScheme presents a single window with two nested win-
dows, called the definitions window and the interactions window. The definitions
window (the upper one) contains a program that users can execute, save to disk,
and access in the interactions window. The interactions window (the lower one)
provides a “read-eval-print loop” (REPL), in which users can experiment with
their programs. Both windows implement the same programming language, use
the same error messages, and report result values using the same syntax. When
a user presses the “execute” button the interactions window is cleared, the pro-
gram in the definitions window is executed and the resulting definitions are
placed in the interactions window for the programmer to inspect and manipu-
late. The programmer can handle infinite loops with the “break” button. When
pressed, the break button stops the currently executing program within either
window. DrScheme provides the usual emacs-like program editing features in
both the definitions and interactions window, such as auto-indenting and paren-
thesis matching. The definitions window has a Check Syntax feature that draws
graphical arrows from a variable use to its binding when the user moves the
mouse over the variable. Check Syntax also implements α-consistent variable

Fig. 1. DrScheme

renaming. While most program editors can graphically highlight the locations
of compilation errors in the program’s source text, DrScheme can also highlight
the locations of runtime errors and uncaught exceptions when they occur.

To support both student and professional programmers, DrScheme provides
several different language levels. A Language Level is a particular dialect of
Scheme tailored to the needs of a certain class of students or professionals. Stu-
dents usually work with a subset of Scheme that they can completely understand.
This enables DrScheme to provide error messages that mention only concepts
the students already understand. For example, the “Beginning Student” lan-
guage level does not have anonymous functions and syntactically restricts the
function position of an application expression to be a variable. Students often
have difficulty at first in placing parentheses correctly and might write ((+ 1
2)). A Scheme system would report a runtime error indicating 3 is not a func-
tion. However, Beginner Scheme reports a compile-time error indicating that the
expression (+ 1 2) appears in the function position of ((+ 1 2)) where only a
variable is allowed.

DrScheme is widely used to teach beginning programmers; the language levels
are used to structure the course and have been proven and classroom tested over
the past 8 years. The text [2] serves as the foundation of the course.

Each language level is implemented by a compiler that translates programs
from the language level’s dialect into DrScheme’s primitively supported Scheme
dialect. For student language levels, these compilers primarily detect static errors
and introduce code for better explanation of run-time errors.

Besides levels of a particular language, DrScheme can also support differ-
ent languages: a proof-of-concept ALGOL60 language level exists, and work is
underway to support several Java and OCaml language levels for pedagogic pur-
poses [5]. Although these language implementations are technically similar to
levels within a language (each being basically a compiler from the particular
language to Scheme), they operate on a much grander scale. In particular, care
must be taken to ensure that these languages interoperate nicely with Scheme
programs.

The core of the DrScheme system is an interpreter called mred (pronounced
‘Mister Ed’). mred interprets a dialect of Scheme that includes integrated graph-
ical interface widgets. DrScheme itself is just a program written in this dialect
that executes on the mred interpreter. DrScheme executes the user’s programs
directly in the mred interpreter, which supports sophisticated primitives that
allow DrScheme to work robustly in the presence of misbehaving user programs
[4]. Higher language levels can use the same facilities. DrScheme can run on
the platforms that mred supports: Apple, Microsoft Windows and Unix with
X-windows.

3 DrHOL

The HOL theorem prover is implemented in the SML programming language
as a library of SML functions. The two main activities in HOL are constructing
new logical terms and performing inference steps. Both of these activities require
programming in SML. In the case of terms, the proper SML data constructors
must be invoked to generate the term2 and in the case of inference steps, the SML
function that performs the inference step must be invoked. Occasionally a new
inference rule or tactic needs to be written in terms of other existing inference
functions. These facts lead us to the central conclusion that theorem proving
in HOL is an inseparable activity from programming in SML. Hence our thesis
that theorem proving in HOL should occur in a programming environment.

DrHOL is being implemented as a language level in DrScheme with a two-
step approach.

1. An SML language level will be implemented via an SML to Scheme compiler.
This will allow the existing body of HOL source code to be run inside the
DrScheme environment and to interoperate with Scheme programs. Thus a
HOL user will be able to use HOL in the DrScheme environment as he does
currently. However, he will have access to the helpful programming features
of DrScheme.

2 Built in custom term parsers simplify this task

2. HOL itself will be extended and modified to support greater integration into
DrScheme. This step will allow more advanced user-interface features to be
added to HOL, while maintaining a tight integration with the development
environment.

3.1 SML to Scheme

We have chosen to provide programming environment support for HOL by cre-
ating a general purpose SML to Scheme compiler, although this is by no means
the only possible approach. Because both HOL and DrScheme will be Scheme
programs running on the mred Scheme interpreter, our approach will support
a tight integration between the theorem prover and programming environment.
Our SML to Scheme translation maps each externally visible SML construct
into an equivalent Scheme construct, so that interoperation between Scheme and
SML programs will not be difficult. For some SML constructs, such as structures,
Scheme has no suitable built in construct. However, using Scheme’s macro sys-
tem, we can create new Scheme constructs without exposing implementation
details to the programmer.

To simplify the task of building an SML compiler, we use the parser, over-
loading resolver and type checker from the Moscow ML compiler, all of which
are written in SML. We currently invoke this front end in a separate process,
but eventually intend to bootstrap the front end by translating these parts of
the Moscow ML compiler into Scheme with our compiler.

We will briefly discuss several approaches that avoid building an SML to
Scheme compiler and explain why we have not chosen them.

– Use an SML interface widget package to build DrHol in SML [7].
Building a new extensible, production quality programming environment is
a much more difficult and time consuming project than building an SML to
Scheme compiler. Moreover, MoscowML, our current ML platform, doesn’t
support threads.

– Translate HOL into a Scheme program manually.
While this might be feasible for some small core of HOL, the entire system is
altogether too large. Furthermore, it’s not future-proof : we want to be able
to use future HOL libraries that will be written in SML.

– Invoke a separate Moscow ML process from DrScheme to evaluate SML pro-
grams.
Two-process systems have been tried and found, in our opinion, to be less
robust than desired. They have problems with dealing with undesired be-
haviour (breaking loops, interpreting error messages) and with interpreting
returned values.

3.2 Safety

Via the SML type system, HOL guarantees that any theorem in the system
has been proven through the application of a series of basic inference steps to

some basic theorems. Knowing that theorems have been built using only a few
simple and well-tested rules provides a HOL user with confidence that theorems
produced in HOL are indeed correct. It is quite important that we provide this
invariant in our Scheme system, not only when dealing with translated SML pro-
grams, but also when dealing with Scheme programs that use parts of the HOL
system. Thus our compiler must preserve the observational equivalence relation
for SML programs when put into Scheme contexts as well as SML contexts.

HOL implements theorems as an SML datatype and relies on the type system
to ensure that no data constructed otherwise can be considered as a theorem.
We ensure this property holds even when Scheme programs handle theorems by
translating SML’s datatype constructors into mred’s define-struct form, which
provides data abstraction facilities. HOL uses SML’s structure system to restrict
access to the theorem constructors, so that only the basic inference steps may
see them. Since we translate SML structures into a Scheme implementation of
structures, the theorem constructors are protected from Scheme programs just
as they are protected from SML programs.

4 Benefits of DrHOL

HOL users will benefit from the integration of HOL into DrScheme almost im-
mediately by taking advantage of the programming features of DrScheme listed
previously. Beyond that, DrHOL will be extended to support more advanced
capabilities ranging from modest extensions to ambitious projects. In the end,
we hope our system will provide a better system for interacting with HOL than
current alternatives.

4.1 Definitions and Interactions

Although [1] shows how HOL may be accessed purely through a language-neutral
API, currently the most common way to interact with HOL is through an SML
REPL. For many tasks, REPL interaction is ideal. Users can quickly try many
different approaches to proving a theorem and get immediate responses from
the system. DrScheme’s interactions window provides a convient-to-use REPL
whose robustness surpasses most existing interactive modes for emacs.

Once exploration is finished the user needs a record of construction of the
expression (be it a type, term, definition, theorem, or more complex entity). The
record needs to be easily executed on demand, because the expression might be
needed in the construction of another expression. Currently users must carefully
look back through their interactions buffer and find the steps that made actually
progress in the construction and manually copy them into a separate file. We
will be able to assist the user in this process by providing automatic support for
moving expressions from the interactions window into the definitions window.

4.2 Graphical Syntax

DrScheme supports the encapsulation of syntax in graphical containers. When a
programmer adds a graphical container to the interactions or definitions window,
the container is treated as a single character by the editor while the cursor is
outside of the container. When the cursor is placed inside the container the pro-
grammer can edit the container’s contents as though it were a separate window.
These containers can be used to implement different syntaxes in much the same
way as Moscow ML’s antiquote or Lisp’s quasiquote and unquote mechanisms.
Compared to these techniques, graphical containers for syntax provide a much
more easily recognized visual cue to the programmer that a different syntax is
in use. Furthermore, none of the container’s contents need to be prefixed with
escape sequences since its extent is delimited graphically instead of textually.

DrScheme currently supports two different kind of containers: comment boxes
and XML 3 boxes. The comment boxes contain comments whose contents are
ignored. XML boxes contain literal XML text typed in directly. The contents of
an XML box are converted to an s-expression when the box is encountered by
the parser. The programmer can also insert a Scheme box into an XML box. The
Scheme box’s contents are evaluated as a Scheme program and the results placed
into the XML box’s resultant s-expression. The presence of the XML box lets
DrScheme know exactly how the contents of the box should be treated. Inside
an XML box, DrScheme automatically inserts the matching closing tag for each
opening markup tag the programmer writes.

DrHol will provide HOL term boxes to allow the programmer to input and
output HOL terms directly and in a natural syntax. For example, the HOL term
box can automatically replace LaTeX like symbol commands (\alpha) with the
actual symbol. It will also be able to color the term syntax to distinguish between
logical constants, free variables and bound variables and, via Check Syntax,
provide graphical arrows linking their definitions and uses. Interoperability with
external tools may be achieved via exporting types, terms, theorems, and theories
in emerging standard XML-based formats such as OpenMath or OMDoc.

4.3 Help System

We will be able to integrate the existing HOL help system with the programming
environment. For example, the user will be able to select a HOL function with
the mouse and open a new window with the documentation for that function.
The user will also be able to select a logical constant from a HOL term and
retrieve its definition. These facilities are more extensive and easier to use than
the current HOL help system which either (a) dumps out a textual message
to the interaction loop, thus obscuring the proof state; or (b) depends on an
external web-browser.

3 XML is the W3C’s eXtensible Markup Language.

4.4 Goal Stack Management

HOL keeps a global state that tracks which obligations remain in proving some
particular theorem. These obligations naturally form a tree, however for histor-
ical reasons HOL uses a goalstack interface that tracks only the leaves of the
tree. Although this is one of the most heavily used tools in HOL, DrHOL will
provide user-interface support for managing proof state directly as a tree. We
expect that these additions will require moving beyond the two-window format
that DrScheme currently supports, with an extra window that directly displays
either the proof tree or goal stack. Then the user can graphically navigate the
remaining proof obligations and DrHOL can automatically generate the final
proof script from a completed proof tree.

4.5 Embedding other logics in HOL

A common activity in HOL is to embed computer languages and logics. This
approach allows the user of the domain-specific logic to use all of HOL’s tools and
power when proving things in the logic as well as when constructing proof tools
for the logic. Sometimes, however, the embedded language doesn’t require such
an extensive and complicated interface. Occasionally, the logic’s only interface
should be graphical. Our system would allow a domain-specific GUI extension
to the DrHOL environment to be constructed alongside the logic’s embedding.
In particular, an embedding may require support for different syntax or even
point-and-click proof tools.

5 Future Work

Although a future work section may seem strange in a design paper, we can see
goals that will be achievable once our basic design has been implemented.

– We can implement a language level that supports only a subset of the func-
tionality of the HOL system. For example, one could envision a language
level that introduced ‘the essence of HOL’ by restricting inference steps to
only natural deduction style introduction and elimination rules for the logical
connectives (as was done in Tom Melham’s successful HOL course). Another
language level useful for teaching beginners would be tactic-based, along the
line of a Ten Tactic HOL method of teaching beginners (this teaching ap-
proach was used by Graham Birtwistle in the late 1980’s). In such a level, a
goal stack window would have a fixed number of buttons corresponding to
the fixed repertoire of allowed tactics. Such restricted environments would be
able to offer improved support for beginning users, by thoroughly supporting
a comprehensible collection of inference tools.

– With an integrated theorem prover available in the programming environ-
ment, Scheme or SML programmers could have ready access to theorem
proving for developing and analyzing their programs. To take a simple but
challenging example, one could envision a language level which enforced ter-
mination, via HOL proof, of each recursive function introduced by a user.

6 Conclusion

We have presented a preliminary design for an SML language level in DrScheme,
and on top of that, a level for the HOL-4 implementation of the HOL logic. This
system, DrHOL, will provide an extensible basis for integrating and investigating
user-interface support for interactive theorem proving. Underlying our design
is the assumption that ‘if proving is programming, then a good programming
environment can be adapted to be a good theorem proving environment’. To
give some substance to this viewpoint, we have discussed specific areas where
the facilities of DrScheme can be used to improve proof development. We expect
that many other such opportunities will arise as this work matures.

A major source of encouragement for us is the vigorous ongoing development
of DrScheme by its talented group of developers. Just as we plan to adapt their
insights about graphical support for programming, we hope our work on sup-
port for proof in DrHOL will provide useful ideas and challenges in the future
development of DrScheme.

References

1. L. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gordon,
and T. Melham, The PROSPER toolkit, STTT: International Journal on Software
Tools for Technology Transfer 4 (2003), no. 2, 189–210.

2. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi, How to design programs, The MIT Press, Cambridge, Massachusetts, 2001,
http://www.htdp.org/.

3. Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen, DrScheme: A programming
environment for Scheme, Journal of Functional Programming 12 (2002), no. 2,
159–182, A preliminary version of this paper appeared in PLILP 1997, LNCS
volume 1292, pages 369–388.

4. Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen, Programming languages as operating systems (or revenge of the son of the
Lisp machine), Proc. ACM International Conference on Functional Programming,
September 1999, pp. 138–147.

5. Kathryn E. Gray and Matthew Flatt, ProfessorJ: A gradual intro to Java through
language levels, OOPSLA Educators’ Symposium, October 2003.

6. John Harrison, A Mizar mode for HOL, Theorem Proving in Higher Order Log-
ics, 9th International Conference, TPHOLs’96 (Turku, Finland), Lecture Notes in
Computer Science, no. 1125, Springer-Verlag, 1996, pp. 203–220.

7. C. Lüth and B. Wolff, Functional design and implementation of graphical user
interfaces for theorem provers, Journal of Functional Programming 9 (1999), no. 2,
167– 189.

8. M. Norrish and K. Slind, A thread of HOL development, The Computer Journal
45 (2002), no. 1, 37–45.

9. Donald Syme, Three tactic theorem proving, Proceedings of the 12th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’99) (Nice)
(Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, eds.), LNCS,
no. 1690, Springer-Verlag, 1999, pp. 203–220.

10. M. Wenzel and F. Wiedijk, A comparison of the mathematical proof languages
Mizar and Isar, Journal of Automated Reasoning 29 (2002), 389–411.

11. Markus Wenzel, Isar—a generic interpretative approach to readable formal proof
documents, Proceedings of the 12th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs’99) (Nice) (Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, eds.), LNCS, no. 1690, Springer-Verlag, 1999, pp. 167–185.

12. Freek Wiedijk, Mizar Light for HOL Light, Theorem Proving in Higher Order
Logics, 14th International Conference, TPHOLs 2001 (Edinburgh), Lecture Notes
in Computer Science, no. 2152, Springer-Verlag, 2001, pp. 378–393.

13. Vincent Zammit, On the implementation of an extensible declarative proof lan-
guage, Proceedings of the 12th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’99) (Nice) (Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, eds.), LNCS, no. 1690, Springer-Verlag, 1999, pp. 185–202.

