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A Comment on the Presentation and Testing of
CALGO Codes and a Remark on Algorithm 639: To

Integrate Some Infinite Oscillating Tails

Tim Hopkins
University of Kent, UK

We report on a number of coding problems that occur frequently in published CALGO software
and are still appearing in new algorithm submissions. Using Algorithm 639 as an extended ex-
ample, we describe how these types of faults may be almost entirely eliminated using available
commercial compilers and software tools. We consider the levels of testing required to instil confi-
dence that code performs reliably. Finally, we look at how the source code may be re-engineered,
and thus made more maintainable, by taking account of advances in hardware and language
development.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging;
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement; G.4 [Mathe-
matics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: debugging, testing, software tools, Fortran

1. INTRODUCTION

The purpose of this paper is twofold; first, to highlight several very common coding
problems and second, to describe a number of “good practices” that we believe will
largely eliminate such faults from users’ programs. These types of errors have been
found in almost all the original submissions of Fortran software to the CALGO
over the past seven years and the methods proposed for uncovering them have
evolved over the same period. These methods have been successfully applied not
only to newly submitted algorithms but also to those already in the CALGO col-
lection [Hopkins 2002].

To illustrate the discovery and correction of these types of faults we have used
Algorithm 639 [Lyness and Hines 1986] from the CALGO as an extended example.
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This code was chosen because

—it happens to contain several of the problems in relatively few executable lines,

—it was accompanied by an extremely well chosen set of test examples which made
the testing process very straightforward, and

—it provided a good example of why code might be updated due to both advances
in hardware and language development.

It should be noted that this software was produced at a time when memory was
a more valuable resource than at present and when the international standard for
Fortran was ANSI Fortran 77 [ANSI 1979].

For all the algorithm papers published in ACM TOMS the associated software
packages have been made freely available both from the ACM CALGO Web site
and via netlib [Dongarra and Grosse 1987]. For many authors gaining access to
such a wide audience of potential users is one of the main reasons for submitting
their software for publication in the CALGO. Typically each algorithm has been
provided as a single flat file that contains all the material necessary to implement
the software. This will always contain

—the source code to the algorithm, and

—the sources of any associated, freely available library routines used (for example,
BLAS, LAPACK, etc),

and will generally include one or more of the following

—test software,

—data files,
—expected results files,
—makefiles, and

—user documentation.

In the case of Algorithm 639 the publicly available file was split relatively easily
into the source code to the algorithm (502 lines) and the test software (1146 lines).
The algorithm consisted of one user callable routine, 0SCINT, and one subsidiary
routine, QRULE. The provided test driver program did not require any data and,
in this case, there was no sample output file. This was not too great a problem
although it would have been reassuring to be able to check any results obtained
from a new installation with those supplied by the original author.

In the following section we look in detail at the problems we uncovered as we
tested Algorithm 639 and the source changes that were necessary to rectify them.
Section 3 considers the role of testing and discusses a criterion for selecting test
cases. The re-engineering of the algorithm into Fortran 95 is covered in section 4
and the final section generalizes the lessons learned from the specific example.

2. PROCESSING THE SOURCE CODE

2.1 Machine Dependencies

The test software provided with Algorithm 639 uses a routine, RJBESL, to compute
Bessel functions of the form J,,1(z); this requires the setting of a number of ma-
chine dependent constants. The definition of these constants along with a number
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of sample sets of values are included in the comments at the head of RJBESL. This
version of the routine is too old to include the constants associated with IEEE
arithmetic [IEEE 1985].

A more portable solution would have used the Port routines (D1MACH and I1MACH)
that appeared as part of Algorithm 528 [Fox et al. 1978; Gay and Grosse 1999).
While not directly available, the constants required by RJBESL could have been
computed from the values available from these Port functions. The downside of this
approach is that there is a computational overhead each time the function is called
although this may be minimized by the use of SAVE variables and an initialization
flag. There is thus a trade-off between computational efficiency and portability to
consider; from an installer’s point of view, having code that will initially compile
and execute without changes to the source is very useful.

A later version of RIJBESL appears as part of the SPECFUN package published as
Algorithm 715 [Cody 1993]. This version does contain values for the IEEE constants
in the comments at the head of the routine but still does not use the PORT routines
to set the machine constants. We used this newer, updated code.

It should be noted that all the values returned by the Port routines DIMACH and
R1MACH are available as standard numeric enquiry functions in Fortran 95 [ISO/IEC
1997].

2.2 Compiler Checks

The software was tested using the following compilers

(1) Sun Workshop 6 95, version 6.1,
(2) NAG {95, release 4.0a (309),

(3) Edinburgh Portable Compilers (EPC) epcf90, version 1.5.2.6. This compiler is,
unfortunately, no longer commercially available.

(4) Lahey-Fujitsu 1f95, Pro v. 6.0.

The first three ran on a four-processor Sun E450 under SunOS 5.8; the Lahey-
Fujitsu compiler was on a Toshiba Portege 7010 running RedHat Linux release
6.2.

Having updated the machine-dependent constants, the source files compiled suc-
cessfully using the default compiler options and linking against existing pre-compiled
versions of the Port library routines. In all cases the resultant executable file gen-
erated an output file. The results were well laid out with each run of the algorithm
well documented. On checking the four results files we identified substantial differ-
ences in the values obtained using the NAG compiler.

To investigate this further, all compile-time and run-time checking was activated
for the EPC {90 compiler; as well as ensuring that all array elements were within
range and that all variables had been assigned values before use, the compiler
issued a variety of warning messages including the flagging of undeclared variables
and unreferenced labels.

Specifically, no integer variables were found to be explicitly declared and the label
40 was unreferenced in the routine 0SCINT. Inspection of the code also revealed
the use of IMPLICIT DOUBLE PRECISION statements. These were removed and all
variables explicitly declared. This could have been done automatically using either
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the NagWare Fortran 90 declaration standardizer [Numerical Algorithms Group
Ltd. 1999] or the spag tool from Polyhedron [Polyhedron Software 1997]. Removal
of the unused label allowed the code to be compiled with no warning messages using
the EPC compiler.

In order to illustrate how run-time diagnostics may be used to correct faults in
code, we describe each error discovered, detail how it affected the computation and
show how it was corrected. The problems are reported in the order that they were
found. Line numbers used in this section refer to the originally published algo-
rithm code (with all comments removed) which is given in the Appendix. Context
references are given for the driver code.

Any line numbers used below refer to the original algorithm code (with all com-
ments removed) that is given in the Appendix. Context references are given for the
driver program.

(1) Use of an undefined variable, NDIM2, detected in the main program at the state-
ment

DO 80 J = 1,NDIM2

Inspection showed that this loop and the following DO 90 loop were used to
initialize three arrays to zero prior to passing them as actual arguments to
OSCINT; a comment prior to the first loop stated: This is unnecessary for
running, but is useful for output. Unfortunately this code preceded the first
assignment to NDIM2 for the particular problem being solved and for the first
test NDIM2 was not assigned a value at all. Most compilers would set NDIM2 to
zero at this point leading to the situation where, for the first test the loops are
ignored and for all following tests NDIM2 had the value set by the previous test.
Such a situation may lead to misleading results being output.
These array arguments are output-only parameters to OSCINT, i.e., the ele-
ments are only ever written to within the routine. It should, therefore, be safe
to remove the loops completely. See (7) below for further details of output
problems.

(2) Array index out of bounds at line 207: index zero.
When untrapped the value accessed for QLIST(0) is compiler dependent and,
therefore, ISTATE(2) may be set incorrectly.
The error was corrected by protecting the statement by an IF block of the form

IF (J.GT.O0) THEN
IF (QRULE*QLIST(J).GT.0) ISTATE(2) = J
ENDIF

Note that the statement
IF (J.GT.O0 .AND. QRULE*QLIST(J).GT.0) ISTATE(2) = J

is not valid since, unlike C, the Fortran standard does not define partial evalu-
ation rules for composite relational expressions.

(3) Array index out of bounds at line 166: index zero.
The value of IELM at this point was one so it was the IELM-1 access that was
causing the problem. The obvious solution was to mimic 2 above and protect
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the statement by an outer IF block. However, reviewing the code reveals that
GMAX was only assigned a value following this test; the correct course appeared
to be

IF (IELM.EQ.1) THEN
GMAX = DABS(SAVPER(1))
ELSE
original IF block
ENDIF

(4) Array indez out of bounds at line 64: MJK zero.
This implied that JP and K were equal and that the two assignments to PREV
and CURR should both be moved after the following IF statement. However,
since the two variables were only used once, the best solution was to substitute
the right hand sides in place of the variables giving

IF ((ABS(WORK(MJ1,K)).LT.EPS) .AND.
+ (ABS(WORK (MJK,K)) .LT.EPS)) THEN

The declarations of these variables were also removed.

(5) NROUND is undefined at line 99.
This problem occurred when NDIM1 was not equal to 10 at line 81; the intention
was that NROUND should be zero unless some special circumstances prevailed.
This initialization to zero needed to be explicit after line 80.
It was correcting this problem that cured the differences in the results obtained
using the NAG compiler. This missed initialization had also affected the re-
sults generated using the other compilers. Further study of the original results
files revealed that, for the third run of function 4 (NFUN set 4 and NTEST set
3 in the main program), the other three compilers all report an apparently
successful execution but the difference was reported as O(1073) rather than
the O(10713) accuracy achieved for this problem on previous runs. Initializing
NROUND restored the accuracy.
We note here that, even when full checking has been requested, the EPC com-
piler preserves the values of local variables between calls of subprograms even
if these variables do not appear in a SAVE statement. This has two effects;
first, the system failed to detect a number of instances where the code did not
adhere to the Fortran standard. Second, it allowed values generated by previ-
ous calls to subprograms to affect later invocations. This both masked further
detectable faults completely and widened the cause/effect chasm [Eisenstadt
1997], as we see in fault (6) below. An example of the former problem is when
a variable is initialized by the first test but not by the second. The second test
then uses this left-over value. Both situations provide good reason for executing
test cases individually rather than batching them up.
In this case the value assigned to NROUND in the previous test was being used;
this happened to be 4 causing the actual results to be computed incorrectly.

(6) SAVPER(65) is undefined at line 166.

When executing this statement IELM had the value 66 and the test driver had
reached the second function (NUMFUN was two).
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The SAVPER array was used to store blocks of NQUAD-1 values returned from
GPER in the elements [2,NQUAD] and [NQUAD + 2,2 x NQUAD]. When each value
was stored a test was made between the current array element and the previous
value generated. This test should have failed with an undefined value when I
was two and J was either one or two as no value was explicitly written to either
SAVPER(1) or SAVPER(NQUAD+1). The EPC run-time checking failed to flag
the occurrence when J was one as SAVPER(1) had been assigned to during the
first test case and that value had been preserved — once again widening the
cause/effect chasm.

It was tempting to repeat the argument used in (3) above since, by setting
SAVPER(65) to zero, we would have mimicked what most compilers that do not
check for undefined values would have done. Gaining more understanding of
what was actually being computed led us to a deeper fault. Studying the code
revealed that SAVPER (1) was actually being used to determine whether the user
function, GPER, was generating values that were independent of X. It was not
correct to set this value to zero. Thus, the fix applied in (3) above was itself
incorrect; it made the execution error go away but did not correct the fault in
the software.

GMAX should have been set to the largest absolute value of GPER(Y) computed
over the range [RFIRST, RFIRST+PERIOD]; it was actually being set to the size
of the local maximum/minimum closest to RFIRST+PERIOD.

We replaced the block inserted in (3) above by

GMAX = MAX(GMAX, ABS(SAVPER(IELM)))

and we ensured GMAX was initialized for Gauss rules by setting it to zero when
J was zero following line 143. GMAX, SAVPER (1) and SAVPER (NQUAD+1) were all
initialized correctly for the trapezium rule by changing line 160 to

IF (J.GE.3 .AND. I.EQ.1 .AND. NQUAD.GT.0) GO TO 20
and inserting the block

IF (I.EQ.1 .AND. NQUAD.GT.0) THEN
GMAX = DABS(SAVPER(IELM))
GO TO 20

ENDIF

after statement 164.

WORK (17, 14) has an undefined value in the DO 140 loop of the main program.
This loop was used for printing a part of the forward average table and the
reported error was a direct result of removing the initialization code in (1)
above. The problem was that not all the elements in the WORK array were
necessarily assigned to; it depended on how many integral calculations were
necessary. The table was built up one diagonal at a time and, for large values
of NDIM1 and NDIM2, it was more than likely that the whole table was not set
before the routine exited. Values assigned to the ISTATE array provided the
necessary data to access the relevant data in the WORK array. A better way of
printing the relevant part of the table was to replace the DO 140 loop of the
main program by



A Comment on the Presentation and Testing of CALGO Codes . 7

JP = ISTATE(3)
JPMK = JP - ISTATE(4)
DO 140 JPR = 1, NPTOP
ENDV=JP-JPR
IF(JPR .GT. JPMK)THEN
ENDV=ENDV+1
ENDIF
ENDV = MIN(ENDV,NDIM2)
WRITE(FORM,’ ("(1X,I3,",I3,"D9.2,/)")?)ENDV
WRITE (*,FORM) JPR, (WORK (JPR,KPR) ,KPR=1,ENDV)
140 CONTINUE

These changes meant that the test on function 3 that set NDIM1 to 5 (NUMFUN
equals 3 and NTIME equals 3) needed to be removed. This was because NDIM1
was no longer the correct value of the leading dimension used to declare the
WORK array in the main program. Use of this value of NDIM1 meant that data
were written into locations from which they were not retrievable using the new
table output code above. Indeed, further study of the original output revealed
that results were being presented in a far from readable form.

To test the portability of the changes, the sources were moved to the Lahey-
Fujitsu compiler; this compiler also traps the use of undefined values with the
added check that local variables become undefined between calls to a subpro-
gram unless they appear in a SAVE statement. Using this compiler uncovered
two additional variables (INDEX and GMAX) that needed to be added to the SAVE
statement in QRULE.

The following set of minor changes were discovered while reading the code

(a) The routine GAUSS was defined as having nine arguments; the first five were
not used by the example routine G5AND9 and appeared to be a leftover
from an original call to the NAG library routine DO1BCF. Since only the
last four arguments were relevant to the routine 0SCINT only these should
be required in the definition of GAUSS. Access to DO1BCF, for example, may
be achieved from within the user defined function.

(b) The comments in Note 3 (in 0SCINT) were incorrect in two places. First the
periodicity of GPER was only checked for in the third and fourth intervals.
Second the values of ISTATE(1) mentioned (—3000 and —5000) needed to
be interchanged.

(c) The test at line 200 was replaced by

IF (INDEX .EQ. 2%NPTS) THEN
since saving the cost of a few multiplies by unity is unlikely to be offset by
the cost of the extra test.

(d) Various magic numbers appeared throughout the code. These should have
been either defined as named constants or, as in the case of the hard limit
of 100 in the number of integral values, removed completely.

(e) All specific names for intrinsic functions were changed to generic names.

(f) The output from the driver program appeared to indicate that the user
defined routine G5AND9 was being used even when the trapezium rule was
used for the calculations.
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(g) In OSCINT the two successive IF statements (lines 83 and 84) may be com-
bined into a single block-IF.

3. TESTING

Dijkstra [Dijkstra 1979] stated that Testing can be used to show the presence of bugs,
but never to show their absence! Hence what we are striving to achieve by testing
is to build up our confidence that the software we produce will perform as designed
and, to try and ensure that we have catered for as many unusual circumstances as
possible. To this end a minimal test suite should aim to execute every statement
at least once; this is termed basic block testing and is a comparatively weak testing
requirement [Zhu et al. 1997]. It is sometimes an open question as to whether or not
certain conditions may occur in the course of numerical computations. Thus, for
the sake of robustness, codes may include statements that no input data have ever
caused to be executed. Developers and users alike need to treat such untested (or,
possibly, untestable) code with caution. A case can certainly be made for treating
all such situations as error conditions; in this way data exercising these untested
statements may be captured and carefully analyzed.

Tools are available to measure the basic block coverage attained during testing;
for example,

(1) the Sun 95 compiler provides a -zprofile=tcov flag, which when used in con-
junction with the tcov utility, generates an annotated listing of an execution
profile,

(2) the Lahey-Fujitsu compiler (under Windows) has a -cover flag which gener-
ates information for a separate Windows-based coverage tool [Lahey Computer
Systems, Inc. 2000],

(3) the NAGWare suite contains a pair of tools, nag_profile and nag_history, that
instrument Fortran 77 code and produce annotated coverage listings.

Using the Sun f95 tool with the test material provided indicated that 99 of the 102
basic blocks (97%) were covered in the routines 0SCINT and QRULE. This decreased
to 116 out of 123 (94%) when logical-IF statements were replaced by one line block-
IFs. This transformation may be performed automatically using spag. The reason
for the difference in coverage was that the Sun profiler counted a single logical-IF
as a basic block and did not differentiate between the associated statement being
executed or not. A block-IF was treated as two basic blocks and we obtained extra
profiling detail.

Of the seven unexecuted blocks two were error exits, two resulted from the same
test failing in successive logical-IF statements, one was used to flag a slight concern
over the returned result, one was a special input case and the last was the result
of the constant function in the tests always being unity. This level of statement
coverage was high and is unusual for general numerical software.

The test driver software as provided could be improved in a number of ways.
First the driver routines appeared to have originally offered a more extensive set of
test functions and to have been partially dismantled to their current state. As we
have already noted, it was sometimes easier to find coding problems if each test was
performed, as far as possible, in isolation. We thus re-engineered the main program
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to use a data file defining a single test of the algorithm. These files contained all
the major input parameters required by 0SCINT. The user-provided functions, GPER,
HFUN and EXACT, were tidied to support the full six ‘original’ test functions.

Using separate tests uncovered a minor error in the driver program where an
attempt was made to output RESULT from OSCINT when the period was negative.
RESULT had not been assigned a value under these circumstances. This was cor-
rected by initializing RESULT to zero as the first executable statement of OSCINT
and the documentation was changed to reflect the fact that a value of zero would
be returned on detecting erroneous input.

Extra tests were added and a number of the original tests, which did not provide
any extra basic block coverage, were removed. The resultant suite of 20 data sets
achieved 100% basic block coverage, took less than a second to execute on the Sun
E450 and provided a good degree of confidence in the performance of the software.
Six of the tests exhibit the successful basic computation of each of the defined test
integrals. The others exercise the error exits along with a number of special cases.

4. FORTRAN 95 IMPLEMENTATION

Using Fortran 95 [ISO/IEC 1997] to re-engineer the software allowed a number
of simplifications to be made both to the original algorithm code and to the user
interface.

By dropping the storage economy facility obtained by setting NDIM1 to 10 in the
original implementation we were able to simplify the code of 0SCINT considerably.
For example, the 27 executable statements (containing 4 loops and 3 GOTO state-
ments) used to compute the final value of RESULT in the original software were
replaced by a single statement.

Defining WORK to be an assumed-shape array allowed the determination of the
problem dependent parameters NDIM1 and NDIM2, which could then be removed
from the argument list of 0SCINT.

The original argument list for OSCINT contained four arrays WEIGHT, ABSCIS,
SAVPER and QLIST. The first two were required to store the weights and abscissa
points computed by the user supplied function GAUSS. It was unnecessary for a
user to have to provide both the arrays and the function used to define them. The
other two arrays held temporary data and were of no particular interest to the user.
All four arrays were made local to the module containing the 0SCINT and QRULE
sub-programs and space allocated at run-time using problem defining parameters.

In addition we used the new relational operators, and INTENT attributes. The
precision of the code was set using a KIND value obtained from a separate module;
this meant that a single line change and a recompilation was all that was required
to change the precision of the software. An alternative solution would have been to
provide a generic interface using single and double precision versions of the routines.

A full description of the arguments to 0SCINT was included at the head of the
module.

We also note that 100% block coverage was not achieved with the example data
sets used for the Fortran 77 code. This was because the error exits caused by the
ALLOCATE and DEALLOCATE statements failing can not be triggered in a
platform independent way.
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5. CONCLUSION

We have illustrated how the use of commercial compilers and software tools may
be used to detect a set of commonly occurring coding faults. This approach was
instrumental in finding problems that led to several hundred sets of code changes
to the existing CALGO library codes [Hopkins 2002]. Some examples of the errors
that may be uncovered in this way are

—use of variables before they have been assigned values,

—attempted access to elements outside the declared range of an array,

—assumption that local variables preserve their values between calls to subpro-
grams without using a SAVE statement,

—incorrect type or rank of actual arguments in subprogram calls (a common ex-
ample is the use of a simple variable for an array of length one).

Many of these produce different effects under different compilers. Most are diffi-
cult to uncover without the use of run-time checking and a comprehensive testing
process. All are non-standard conforming. Often such faults mask a much deeper
problem as in points (3) and (6) in section 2.2 above. All of these faults have the
potential to cause the catastrophic failure of the software.

A second class of problem that may be considered less serious but may, nonethe-
less, cause inaccurate results as well as potentially increased maintenance costs
includes

—implicit declarations using Fortran’s default typing rules. This may lead to in-
accurate results when, for example, double precision variables that have escaped
explicit declaration default to real,

—variables declared and/or assigned to but never used,
—Ilabels that are never used as targets.

The IMPLICIT NONE statements in Fortran 95 may be used to avoid the first of these
problems. “Code clutter” may be either removed automatically using available
software tools or detected by setting compiler flags and removed manually.

Most commercial Fortran compilers provide compile-time options that enable
run-time array bound checking and many allow more extensive checking. We would
highly recommend using these facilities throughout the coding and testing phases
of numerical software production. Even though such checks may slow down the
execution speed dramatically, the ability to pinpoint problems easily and quickly
repays this overhead handsomely.

Using CALGO Algorithm 639 as an illustrative example, we have shown the
problems that an implementor may face in trying to ensure that the final code is
standard conforming and reliable.

Re-engineering this software in Fortran 95 showed how we could simplify the user
interface and, with large amounts of memory being standard on current machines,
how the original storage economy facility could be removed to simplify the code.
Unfortunately the transition into Fortran 95 was not an automatic process although
tools are available to assist ([Numerical Algorithms Group Ltd. 1999], [Polyhedron
Software 1997]). From a maintenance point of view the resultant code is far simpler
structurally and thus easier to understand than the original version.
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The use of a testing goal is important. By requiring that full basic block coverage
be achieved we were able to produce a small, but comprehensive, set of test data
sets. Fulfilling the testing goal provided us with a metric that allows us to have
some confidence in the final code. A number of tools are available to assist with
the testing phase of Fortran software development.

Overall we believe that we have improved the quality of the software and that we
have corrected the majority of the errors in the original published version. However,
we would be very foolish to claim that our final version is perfect.
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APPENDIX
Original Source Code

SUBROUTINE OSCINT(AZERO,PERIOD,RFIRST,EPS,NQUAD,NDIM1,NDIM2,GAUSS,
. HFUN, GPER, WORK , SAVPER, WEIGHT, ABSCIS,QLIST,
. RESULT, ISTATE)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION WORK(NDIM1,NDIM2),QLIST(100),ISTATE(6)

DIMENSION SAVPER(*),WEIGHT(*),ABSCIS(*)

EXTERNAL GAUSS,HFUN,GPER

N O WN P
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8 HASPER = .5DO*PERIOD
9 WMIN = 1.0DO

10 DO 10 I = 1,6

11 ISTATE(I) = 0

12 10 CONTINUE

13 IF (NQUAD.EQ.O .OR. NQUAD.EQ.1 .OR. NDIM1.LT.1 .OR. NDIM2.LT.
14 . 1) ISTATE(1) = -6000

15 IF (PERIOD.LT.10.0D-5) ISTATE(1) = -5000
16 IF (ISTATE(1).LT.0) GO TO 130

17 IF (NDIM1.EQ.10) THEN

18 NMAX = 100

19 ELSE

20 NMAX = MIN(100,NDIM1)

21 END IF

22 JP =0

23 S = 0.0D0

24 20 CONTINUE

25 IF (JP.EQ.NMAX) ISTATE(1) = -100

26 IF (ISTATE(1).NE.O) GO TO 50

27 K=0

28 JP =JP + 1

29 J = MIN(JP,NDIM2)

30 IF (NDIM1.EQ.10) J = MIN(J,20)

31 30 IF (K.LT.J) THEN

32 K=K+ 1

33 IF (NDIM1.EQ.10) THEN

34 MJ = MOD(JP,10)

35 MJM2 = MOD(JP-2,10)

36 MJ1 = MOD(JP-K+1,10)

37 MJ2 = MOD(JP-K+2,10)

38 MJK = MOD(JP-K,10)

39 IF (MJ.EQ.0) MJ = 10

40 IF (MJM2.EQ.0) MJM2 = 10

a1 IF (MJ1.EQ.0) MJ1 = 10

42 IF (MJ2.EQ.0) MJ2 = 10

43 IF (MJK.EQ.0) MJK = 10

a4 ELSE

45 MJ = JP

46 MIM2 = JP - 2

a7 MJ1 =JP -K + 1

48 MJ2 = JP - K + 2

49 MJK = JP - K

50 END IF

51 IF (K.EQ.1) THEN

52 WORK(MJ,K) = QRULE(JP-1,AZERO,HASPER,RFIRST,NQUAD,NDIM1,
53 . NDIM2,GAUSS,HFUN,GPER,SAVPER,WEIGHT,ABSCIS,
54 . QLIST,ISTATE)

55 ELSE

56 WORK(MJ1,K) = (WORK(MJ1,K-1)+WORK(MJ2,K-1))/2.0D0
57 IF (DABS(WORK(MJ1,K)).LT.WMIN) THEN
58 WMIN = DABS(WORK(MJ1,K))

59 NOW = K

60 NROW = MJ1

61 NOWJP = JP

62 END IF

63 CURR = ABS(WORK(MJ1,K))

64 PREV = ABS (WORK(MJK,K))

65 IF (JP.NE.K) THEN

66 IF ((CURR.LT.EPS) .AND. (PREV.LT.EPS)) THEN
67 NOW = K

68 NROW = MJ1

69 NOWJP = JP

70 GO TO 50

71 END IF

72 END IF

73 END IF

74 40 GO TO 30

75 END IF

76 GO TO 20

7 50 CONTINUE
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DO 60 I = 1,NOWJP - NOW
S = S + QLIST(I)
CONTINUE
IF (NDIM1.NE.10) GO TO 110
NROUND = NOW - 10
IF (NROUND.LE.O) NROUND = O
IF (NROUND.LE.O) GO TO 110
DO 70 I = NOWJP - NOW + 1,NOWJP - 10
S = S + QLIST(I)
CONTINUE
ISUB = NOWJP - 9
IF (ISUB.GT.10) ISUB = ISUB - 10
IF (ISUB.GT.10) GO TO 80
DO 90 J = 1,NROUND
S = S + WORK(ISUB,J)/2.0DO

CONTINUE
DO 100 I = NROW,NROW + NROUND - 1
II=1
IF (I.GT.10) II = I - 10
S = S - WORK(II,NROUND+1)
CONTINUE

DO 120 J = NROUND + 1,NOW - 1
S = S + WORK(NROW,J)/2.0DO
CONTINUE
S = S + WORK(NROW,NOW)
RESULT = S
ISTATE(3) = JP
ISTATE(4) NOwW
ISTATE(5) = NROW
NML = ISTATE(3) - ISTATE(2)
IF (NML.LT.4 .AND. ISTATE(1).EQ.0) ISTATE(1) = MAX(0,4-NML)
CONTINUE
RETURN
END
FUNCTION QRULE(J,AZERO,HASPER,RFIRST,NQUAD,NDIM1,NDIM2,GAUSS,HFUN,
GPER, SAVPER,WEIGHT,ABSCIS,QLIST, ISTATE)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

SAVEB, TENDPT
EXTERNAL GAUSS,HFUN,GPER
DIMENSION QLIST(100),ISTATE(6)
DIMENSION SAVPER(*),WEIGHT (*),ABSCIS(*)
NPTS = ABS(NQUAD)
IF (J.EQ.0) THEN
INDEX = 0
DO 10 I = 1,100
QLIST(I) = 0.0DO
CONTINUE
IF (NQUAD.LT.0) THEN
ITYPE = 0
AA = -1.0D0
BB = 1.0D0
CC = 0.0D0
DD = 0.0D0
IFAIL = 0
CALL GAUSS(ITYPE,AA,BB,CC,DD,NPTS,WEIGHT,ABSCIS,IFAIL)
IF (IFAIL.NE.O) THEN
ISTATE(1) = -4000
GO TO 40
END IF
END IF
END IF
QRULE = 0.0DO
IF (J.NE.O) THEN

A=B
ELSE

A = AZERO
END IF

IF (RFIRST.LE.AZERO .OR. J.NE.O) THEN
B = A + HASPER
ELSE

13



14

148
149
150
151
152
183
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

20

30

40

Tim Hopkins

B = RFIRST
END IF
DO 30 I = 1,NPTS
XI =1

IF (NQUAD.LT.O0) THEN
Y = (B-A)*ABSCIS(I)/2.0D0 + (B+A)/2.0DO
WT = WEIGHT(I)

ELSE
Y = ((XI-1)*B+A* (NPTS-I))/ (NPTS-1)
WT = 1.0DO

END IF

IELM = NPTS*MOD(J-1,2) + I
IF (J.GT.0 .AND. I.EQ.1 .AND. NQUAD.GT.0) GO TO 20
IF (J.EQ.0) THEN
FUN = HFUN(Y)*GPER(Y)
ELSE IF (J.LT.3) THEN
SAVPER(IELM) = GPER(Y)
IF (SAVPER(IELM).EQ.SAVPER(1)) INDEX = INDEX + 1
IF (DABS(SAVPER(IELM)).GT.DABS(SAVPER(IELM-1))) THEN
GMAX = DABS(SAVPER(IELM))
END IF
FUN = HFUN(Y)*SAVPER (IELM)
ELSE IF (J.LT.5) THEN
DIFF = DABS(SAVPER(IELM)-GPER(Y))
IF (DIFF.LT.GMAX*1.0D-5) THEN
FUN = HFUN(Y)*SAVPER (IELM)
ELSE
ISTATE(1) = -3000
END IF
ELSE
IF (INDEX.EQ.2%NPTS) THEN
FUN = HFUN(Y)

ELSE
FUN = HFUN(Y)*SAVPER (IELM)
END IF
END IF
ISTATE(6) = ISTATE(6) + 1
CONTINUE
IF (NQUAD.GT.0) THEN
IF (I.EQ.1) THEN
IF (J.EQ.0) FUN = FUN/2.0DO
IF (J.GT.0) FUN = TENDPT
END IF
IF (I.EQ.NPTS) THEN
FUN = FUN/2.0DO
TENDPT = FUN
END IF
QRULE = QRULE + FUN
ELSE
QRULE = QRULE + WT*FUN
END IF
CONTINUE

IF (INDEX.EQ.2*NPTS .AND. SAVPER(1).NE.1) THEN
QRULE = QRULE*SAVPER(1)

END IF

IF (NQUAD.GT.0) WSUM = NPTS - 1

IF (NQUAD.LT.O0) WSUM = 2.0DO

QRULE = QRULE* (B-A)/WSUM

QLIST(J+1) = QRULE

IF (QRULE*QLIST(J).GT.O0) ISTATE(2) = J

IF (ISTATE(2).GT.9) ISTATE(1) = -200

CONTINUE

RETURN

END



