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Understanding complex systems through examples:

A framework for qualitative example finding.

Abstract

Many complex information systems in science, business and design
have the characteristic that we can classify objects in the system in
some way, but that these classifications are distributed through a pa-
rameter space in some complex fashion. In order for a human to get an
understanding of the system, we would like to present this user with
one example of an object for each class. Examples of such problems
can be found in information retrieval, bioinformatics, computational
geometry, computer-aided design, software testing and cellular au-
tomata. In this paper we will show how problems in all these areas
can be put into a general framework of finding qualitative examples,
and argue that general heuristic approaches to this type of problem
are an important and neglected area of machine learning. We con-
trast this with some other well-studied problems, showing how this
problem is distinct and investigating what we can learn from these
problems. We then discuss some of the requirements for a heuristic
to solve these problems, and mention some recent work on this using

genetic algorithms.
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INTRODUCTION.

The concept of meta-heuristics (Osman, 1996; Reeves, 1993; Corne et al.,
1999) is a powerful idea in solving problems involving complex information
systems. A meta-heuristic is a technique for finding approximate solutions
to a problem, which can be applied to a large number of different domains
of application.

The two canonical examples of the sort of problem a meta-heuristic can
tackle are optimization and search. Examples of meta-heuristic methods for
these types of problem are genetic algorithms, hill-climbing and simulated
annealing. To solve a particular problem using such a technique we need to
do two things. Firstly we need to show how the particular problem we have
in hand can be phrased in terms of the method. So in genetic algorithms
we need to provide a measure of solution quality (“fitness”) and operators
for crossover and mutation of solutions. In a hill-climbing method we also
need to provide a quality measure, but we need a “move” operator which
says how we choose the next solution in each round of the iteration. We
can then apply the method, typically by running it on the computer. It is
the first stage which distinguishes meta-heuristics from heuristic methods
which have been created with a specific problem in mind. A meta-heuristic
can be applied to many different specific problems, and it has the advantage
(modulo the arguments in (Wolpert and Macready, 1995; Culberson, 1998;

Tuson, 1999)) that an improvement to the meta-heuristic will redound to



improvements across a range of problems.

This is a powerful methodology; nonetheless we appear to be stuck in
a rut in which search and optimization are the only two areas for which
meta-heuristics have been developed. In this paper I would like to outline a
new area—aqualitative example-finding—which appears ripe for the creation
of meta-heuristic methods. In order to do this I explain what a qualitative
example-finding problem is, show how a large number of real-world problems
fit naturally into this framework, and then discuss strategies for creating
meta-heuristics for this problem area.

Qualitative example-finding is an interesting machine learning problem
which has not been investigated as a general problem. Traditional machine
learning is the problem of abstracting a set of classification rules from a set
of examples placed into classes. The qualitative example finding problem
is, in some sense, the “opposite” problem. Given a procedure for classifying
objects, can we find an example of an object for each class? This is an inter-
esting problem with wide potential application, yet no general heuristics for
this problem have been investigated. Perhaps this is because machine learn-
ing fits into a clear artificial intelligence tradition of attempting to reproduce
human abilities, whereas qualitative example finding is a problem involving
the use of computers to help human understanding, which is a completely
different area of study.

More formally the qualitative example-finding problem is this. We are

given a large set of objects, O, and another (smaller) set C, together with



a classifying function f : O — C. We assume that there is some underly-
ing structure to the way in which these objects are classified, but that this
structure is non-trivial and that we don’t have any meta-knowledge such as
the kinds of rules used to assign the classifications to the objects. Let us also
say that calculating the classification assigned to a particular object is not
computationally trivial, and that there is no way of doing a direct reverse
calculation of a sample object given a particular class. This, combined with
the large size of the set of objects, renders an enumerative search of the space
O computationally out of the question. The problem we want to solve is to
find an example of an object which fits into each classification, i.e. a set
{01,09,...,0,} C O such that {f(01), f(02),...,f(on)} = C. Once we have
found one example in a class we are no longer interested in finding other
examples in that class, and there is no concept of one object being “better”
or “fitter” than another in an absolute sense. Clearly the sort of situation
we are considering is where the classification needs to be calculated, not just
where all of the data is stored in a database.

Related problems require us to create the classification as we go along,
based on some kind of metric that we impose on . Another variant is where
we are able to classify things exactly, but we don’t know how many members

are in the classification set before we start.



QUALITATIVE EXAMPLE FINDING PROB-

LEMS.

In the previous section we have outlined an abstract problem area. In this
section we will show how problems from a number of different areas can be
placed into this framework. This demonstrates that effort spent on develop-

ing a general heuristic for problems of this type would be a valuable activity.

Creating test suites for agents and other software.

An autonomous agent (Huhns and Singh, 1998; Maes, 1994) is a piece of
software which is supplied with various goals and a wide variety of possible
simple behavioural patterns. The software is programmed at a high level to
learn ways to combine those behaviours is such a way as to achieve the goals.
Typically such an agent would work in a dynamic environment. However
in advance of releasing it into that environment we would like to test it by
presenting it with a range of qualitatively different scenarios, and checking
that it can cope with each of those test scenarios. Simply creating these test
scenarios by choosing environments at random is not guaranteed to produce
a range of qualitatively different behaviours, and generating them by hand is
likely to be time-consuming. If we can generate a set of qualitatively different
test environments in an automatic way then we have a good basis for testing
the agent.

A problem within a similar domain is explored in (Menczer et al., 1999).



This is one of very few papers to tackle a qualitative example finding problem.
This paper is concerned with evolving a variety of distinct architectures for
agents based around neural networks.

This system is based on the idea of local selection (Menczer and Belew,
1998). In this scheme each solution maintains an “energy” value as one of
its attributes. This energy value begins at a certain value, and energy is
gained by being in a good area of the search space, and energy is reduced if
there are multiple agents attempting to explore the same region of the search
space. Selection is local in the sense that there is a fixed energy threshold
below which individuals are removed from the population, rather than so-
lutions being globally compared to other solutions. Variations in selection
pressure are maintained by a rule enforcing total energy conservation and a
population size which is variable, where increase in population size occurs
by good solutions reaching a “reproduction threshold” where they split and
divide their energy between the two children.

Nonetheless there are limitations to the work described in (Menczer et al.,
1999). Firstly they make no use of recombination, and it would be interesting
to see if recombination could work to bring together structural features which
lead to increased diversity. Secondly they are still largely working within an
optimization framework, there is the concept of improving a solution that has
been found, whereas in a lot of the problems that we are looking at there is no
such concept. Nonetheless it remains the only attempt at explicitly searching

for diversity using genetic-like methods rather than doing optimization.



Other related problems occur in generating a reasonable suite of test
examples for testing a complex program. We can imagine two different kinds
of processes here. The first just looks into the application domain, and the
problem here is to create a tractable number of test examples which provide
a wide range of qualitative behaviours found in the problem domain. The
second would be to interact with a particular program that was to be tested.
We generate a range of potential inputs, and monitor which parts of the
program are being well tested by these inputs, then we use this data to find

examples which test other parts of the program.

Software security.

Work by Forrest and others (Forrest et al., 1997; D’haeseleer et al., 1996;
Dasgupta and Attoh-Okine, 1997) has made use of diversity for computer
security. The core concept here is that one of the major security holes in
computer systems is their similarity—the same software is run by many peo-
ple, and so if someone can exploit a loophole in the way that software is
written, they can breach the security of many systems. Also the potential
cracker of the security of the system can use software identical to that of their
intended victim in order to search for such loopholes. An example of their
diversity-based method to defeat this kind of problem is that of randomized
compilation—this creates many different forms of a program by treating the
arbitrary decisions that compilers must make in a special way. Traditionally

compilers have responded to the need to make arbitrary decisions by tak-



ing a standardised default value. In randomized compilation these arbitrary
decisions are made at random, which means that many different compiled

versions of the same functionally-equivalent program can be created.

Information retrieval.

Most problems in information retrieval have the flavour of optimization prob-
lems : we have a certain number of requirements and constraints and a large
pool of data, and we want to find the examples of that data which satisfy
these constraints and requirements in the best way. A canonical example of
this kind of problem is free-text information retrieval (van Rijsbergen, 1979;
Belew, 2000). Here we want to find the documents that most accurately
match a number of query words, some of which may be marked as essential,
or ranked in some way, or linked by boolean relations, et cetera.

One difficulty with information retrieval is that one query often maps
onto a number of distinct qualitative areas of conceptual space, e.g. “java”
maps onto a country, a programming language and a kind of coffee. Solutions
to these difficulties sometimes require a more sophisticated knowledge of the
query language than is possessed by the typical individual using the system,
and sometimes they fox even the advanced user.

Thus we have the following problem. Given an information retrieval prob-
lem such as this, can we present the user not with the set of solutions which
“best” match the criteria, but instead present the user with a set of solutions

which “minimally” match the criteria, but which illustrate wildly different



contexts for which the criteria hold. We can then have a second stage at
which the user “contextualizes” the search by choosing one of those con-
texts, and the computer automatically creates a second search based on the
data contained in documents which match well with that context.

Perhaps there are some useful ideas to be drawn from work on the “op-
posite” problem, i.e. finding information that is very similar (Dean and
Henzinger, 1999; Broder et al., 1997).

There are some related questions concerning data mining (Piatetsky-
Shapiro and Frawley, 1991), which is the attempt to discover interesting
patterns in large databases. We can imagine using a qualitative example-
finding technique to discover a range of qualitatively different patterns in a
set of data.

Another related problem consists of exploring some kind of territory,
whether real or virtual, in which a number of items of many different types are
found. The prototypical example here is archaeological exploration, where
we would like to explore a large area of ground and discover a diversity of ob-
jects that are used in that area; it is better to find one example of each kind
of historical object than it is to find hundreds of examples of the same thing.
Again we have a qualitative example finding problem; given each discovery
we can measure some of its characteristics (ranging from physical character-
istics to speculations about the role in the society that the object will have
had, and we would like our heuristic to estimate where in the domain we

should look for other objects which are different from the ones that we have
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found so far.

Knot classification and other mathematical problems.

Mathematical knot theory (Adams, 1994; Murasugi, 1996) is the study of
the placement of loops in space. These three dimensional structures are com-
monly studied by means of diagrams, i.e. 4-valent plane graphs with under-
and over- crossings marked. One important problem in knot theory is knot
classification, i.e. finding a sample diagram for each distinct class of spatial
structures. For a given number of crossings there are many two dimensional
knot diagrams with that number of crossings (note that for every n-vertex
4-valent planar graph we can create 2" knot diagrams by choosing crossings
as over- or under- crossings). A similar calculation holds for braids—for a n-
crossing m-string braid there are n™2™ different braids. However these knots
can be put into a much smaller number of categories based around the no-
tion of two diagrams being “ambient isotopic”, that is representing different
views of a topologically identical three dimensional object. For example for
16 crossings there are around 10?* braids of 16 strings (which includes, if we
remove trivial loops, all of the braids of fewer strings), but only 10468805
topologically distinct knots (Hoste et al., 1998).

This is an interesting piece of algebra which has applications in theoret-
ical physics, for example the solutions of certain calculations in topological
quantum field theories correspond to the different types of knots that can be

found (Witten, 1989; Aneziris, 1994).
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It is not trivial to calculate whether two knots belong to the same clas-
sification (Birman and Hirsch, 1998; Aneziris, 1994; Hoste et al., 1998).
Nonetheless we can calculate invariants, which are functions have the prop-
erty that if we calculate the same invariant for objects which belong in two
different classes, then they must belong to two different classes (Jones, 1985;
Kauffman, 1987; Kauffman, 1988). We can calculate a reasonable upper
bound on the number of classes that there are, but there are no sharp bounds
known for this.

There are some other mathematical problems with similar characteristics.
For example in Gilbert Baumslag’s computational group theory program
magnus (Baumslag, 1993) there are routines which generate elements of a
(possibly infinite) group. One danger with this kind of routine is that it
can will “get stuck into a rut” producing examples which just reflect the
underlying structure of the algorithm which is generating them, rather than
presenting a diverse set of examples which could be studied further. A system
which generated such a diverse set would be valuable, and the meaning of
“diverse” could be steered by the user in an interactive way. Work on other
parts of Magnus has shown that genetic algorithms can be used in this domain

(Miasnikov, 1999; Baumslag et al., 1999).

Protein folding and drug discovery.

Increasingly research is finding out more and more about ways in which

the sequence of a DNA molecule tells us about the geometric and reactive
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structure of the resultant protein molecule. Similar things exist in many
other areas of chemistry. However this kind of problem is a computationally
intensive task.

One thing that we would like to do, e.g. in drug discovery, is to take
a particular kind of chemical structure, and discover the qualitatively dif-
ferent physical and reactive structures that different examples of this kind
of chemical can take on. We can imagine a situation in which carrying out
hundreds of experiments with real chemicals is costly and time-consuming,
and so we would like to narrow down our search to just those experiments
which are likely to produce qualitatively different behaviours. Clearly this
is a very hard problem—at present we don’t have a lot of detail about how
the proteins fold, even—but it is an interesting potential application of these
ideas.

We can imagine doing this in one of two ways. One idea would be to use
an explicit folding model to discover the tertiary structure of the resultant
chemical, and to search for as much diversity in this structure as possible.
This would require an understanding of protein folding and related areas far
in advance of current knowledge, though this is a rapidly advancing area of
science. An alternative would be to take data from experiments and use that
data to suggest which variants are likely to be different from the examples
already tested. A similar approach (using inductive logic programming rather
than GAs, and using explicit optimization criteria) as been investigated by

King, Muggleton and colleagues (King et al., 1992; King et al., 1995).
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Cellular automata.

Cellular automata (Wolfram, 1994) produce various behaviours depending
on the parameters used to describe the interactions between cells and, to
a lesser extent, the intimal configuration chosen. These different qualita-
tive behaviours result in a complex way from the interactions between the
cells. It would be an interesting problem to attempt to evolve a diversity of
behaviour. This could be achieved by searching the space of different start-
ing configurations for those that demonstrate these different behaviours, or
by searching the space of rule sets in an attempt to find those rules which

produce interestingly diverse qualitative behaviours.

Finding diverse behaviours in a simulated dynamical
system.

Another area of interest is suggested by the work of Nowak and Sigmund
on the iterated prisoner’s dilemma (Nowak and Sigmund, 1992). In their
experiments they find that the presence in the initial population of just one
or two solutions from a particular part of the search space changes the long
term dynamics of the game in a substantial way. In this case there are only a
small number of qualitative dynamics producible within the system. However
we can imagine other systems which have a wide variety of dynamics, e.g.
in a simulation of the spread of a disease (Bailey, 1975; Anderson and May,

1991; DeAngelis and Gross, 1992) where we want to know what the range of
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results might be from various intervention strategies. These interventions do
not necessarily produce a simple linear range of results—some might cause
the disease to be eradicated in part of the population, so might cause a
general decline in the level of the disease in the population, whilst others
might cause an evolutionary change in the disease itself (Nesse and Williams,
1995; Ewald, 1994).

Similar problems occur in finding a good range of starting values for
a genetic algorithm. It may be interesting to begin a genetic algorithm
function optimizer with a step in which we calculate an initial population
that samples the search space by finding a qualitatively diverse set of initial
solutions, rather than selecting at random. A similar idea could be used for
finding neighbourhoods to explore in tabu search. In tabu search we need to
look around the neighbourhood for a next best solution, however sometimes
the neighbourhood is too large to search exhaustively (Glover et al., 1993;
Glover, 1990). Rather than selecting at random it might be good to run
some quick procedure for finding a qualitatively diverse set of possible next

steps.

Exploring the range of a sound synthesis algorithm.

In my earlier work on evolutionary interfaces for sound synthesis algorithms
(Johnson, 1999), I developed a system which allowed users to rate sounds
according to their level of interest in that sound or according to how closely

the sound approximated some sound that they were searching for. The pro-
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gram would then present the user with the result of breeding the parameter
strings which were used to generate those sounds, which would typically be
closer to them than the non-chosen ones.

Now when playing with this program I found that there was another way
of working, which was to set the mutation rate fairly high, then narrow in
one one area of the sound-space, then move onto another area, and by doing
so get a feel for the entirety of the sound capability of the synthesis algorithm
being used. This again is an example of qualitative example-finding, though
we don’t know in advance what the categories will be.

So our problem is to write some kind of algorithm which allows us to
input some kind of synthesis algorithm and which outputs an example of
each of the qualitatively different sounds which that algorithm is capable of
producing. There are two possible ways of doing this, the first would be to
do some acoustical analysis on the phenotypes, and derive some measures
from this. The alternative would be to do this through interaction with the
user. Both of these are interesting, and it would be worth doing the two and

attempting a comparison.

Evolutionary design.

Evolutionary methods have been used for a wide variety of design problems,
as surveyed in (Bentley, 1999). Domains that have been explored by these
methods include design of industrial processes (Goldberg, 1989; Parmee,

1996; Parmee, 1997; Parmee, 1998), design of mechanical linkages (Ekart,
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2000), design of electronic circuitry (Miller et al., 1999), and architecture
(Jackson, 1999; Rosenman, 2000).

These programs facilitate the exploration of design-space in various ways.
Some of them are very traditional genetic algorithms, e.g. where there are
large numbers of mechanical or physical constraints and the aim is to find
a satisfactory design which satisfies all of these constraints within a certain
tolerance. More interesting in the context of this project are those programs
which facilitate exploration of a wide range of possible designs.

This idea is found particularly in the architectural work. The work of
Jackson (1999) and Rosenmann (1999) is designed to allow architects to ex-
plore the different possibilities of creating some kind of structure by allowing
them to explore the space of possible designs, combining interesting features
from different designs. In their work this is guided by a human user, who
rates the designs. It would be interesting to explore an alternative approach
where the system generates a wide diversity of possible designs, rather than
trying to “optimize” designs one at a time. Instead we take certain basic
physical, functional and other constraints and create a wide sample of de-
signs which satisfy that constraint, thus giving the designer an overview of

the structure of the design-space.
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RELATED APPROACHES.

A number of other problems have a some commonality with the qualitative
example finding problem. In this section we shall outline a number of these
problems, suggest ways in which they are distinct from qualitative example
finding, and examine ways in which solutions to these problems might inspire

heuristics for our problems.

Machine learning of classifications from examples.

A problem which has some of the same characteristics as the above problems
is that of machine learning of classifications from examples. These kind of
problems are particularly well studied in the neural networks community,
using techniques such as competitive learning (Hertz et al., 1991; Bishop and
Hinton, 1995). The idea here is to take a set of training examples each of
which has been classified as belonging to one of a set of classes. The program
learns some of the features of those examples, either by explicit symbolic
learning or more typically by finding some subsymbolic “representation”,
and this learning is then applied to testing new examples which haven’t been
presented during the training stage.

A typical application of this is in recognizing people from images or bio-
metric data such as gait or fingerprint (Jia and Nixon, 1995; Jain et al.,
1999). In these circumstances there are a large (potentially infinite) set of

images of each of a number of people, and we take a set of those to train our
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system. Then, when a new image is presented, e.g. by a camera taking a
photo, the computer then tries to recognize the person. Similar ideas have
been used in e.g. handwriting recognition.

As discussed above, this is distinct from our problem, in that we already
know the classification procedure and we want to know the examples.

An important idea that we can take from this kind of work is the idea
of processing information in a subsymbolic fashion (Brooks, 1991b; Brooks,
1991a). In traditional AT a major problem was that of finding representations
for knowledge. Neural networks and similar systems have demonstrated that
there is no need to directly represent each piece knowledge in a system is a
discrete way. We can use this idea when it comes to producing heuristics for
qualitative example finding. For example a useful concept in such heuristics
might be the ability of a particular substructure of an object to have lots
of distinctly classified objects built on it. A symbolic approach would be to
identify these regions explicitly, but the subsymbolic paradigm shows that

this explicit representation is not necessary.

Classifier systems.

A classifier is a rule of the form if pattern then replacement pattern. We
can use sets of these rules as the beginning of a system that learns to find
patterns in data, a so-called classifier system. Such a system consists of
populations of these rules, together with a system for the apportionment of

credit to the various rules that have found a successful example and a way
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of manipulating this population based on that apportionment, often by the
use of a genetic algorithm. Details can be found in (Goldberg, 1989).

As with machine learning problems, classifier systems are concerned with
the extraction of rules from examples, whereas we are concerned with the
opposite problem. Again, the main lesson to take away from this problem

area is the importance of subsymbolic approaches.

Computational models of creativity.

One of the perennial minor themes of artificial intelligence research over the
years is how to make computers act in a creative manner. These have been
pursued both with the motivation of understanding the nature of human
creativity and with the motivation of producing creative work in a computer
by means which don’t correlate with ways in which humans are creative.
These ideas are reviewed in (Boden, 1990; Partridge and Rowe, 1994).

Such studies date back to the early years of Al research. They can be split
loosely into two different kinds of models—those which attempt to model the
human aspect of creativity, and those that attempts to find an alternative
computational model for creativity.

Some of these programs are designed to be creative within artistic do-
mains, such as Cohen’s drawing program aaron (Cohen, 1999), and programs
designed to write stories (Meehan, 1977; Racter, 1984).

Other such programs work in scientific and mathematical domains, such

as Lenat’s controversial AM (Lenat and Brown, 1984; Ritchie and Hanna,
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1984), work on conjecture-making in graph theory (Epstein, 1988), and var-
ious programs which make conjectures about chemical reactions (Langley
et al., 1987). The important feature of these programs is that they are not
focussed on solving specific problems, but they take a large database of in-
formation and attempt to induce conjectures from that information by a
mixture of domain knowledge, ways of acting on this domain knowledge and
“meta-knowledge” about what kinds of patterns are “interesting”. So for
example AM contains basic domain knowledge about set theory, ways of act-
ing on this such as making conjectures, investigating the converse of known
theorems, and so on, and meta-heuristics such as saying that some operator
is interesting if it can be repeated an indefinite amount of times.

A third kind of “creative” system is that of creative analogy finding. This
is typified by the work of Hofstadter, Mitchell and others on analogy making
(Hofstadter and The Fluid Analogies Research Group, 1998; Mitchell, 1996).
A typical experiment of this kind will involve a pattern problem like “if aabc
becomes aabd, then what does abcc become?”. The methodology here is
similar to the more open ended systems such as AM, in that it works from
a certain set of heuristics about how to manipulate these symbols, and a
parallel set of heuristics about which kinds of patterns should be treated as
most interesting.

In a similar vein is the work of Partridge and Rowe (1994) on creating
systems which attempt to inductively learn the rules which are being used to

create a pattern in a sequence of symbols presented to the computer. This
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attempts to go beyond simple unstructured sets of rules by allowing rules
to be associated with subgoal structures known as “k-lines”, which abstract
groups of rules which work together well to achieve subgoals. These are then
reused in solving other problem areas.

Finally a kind of creativity has been suggested for systems which are able
to solve well-specified problems in interesting way, such as genetic program-
ming (Koza, 1992). Thus we find papers which claim to use genetic methods
as a “discovery engine” (Miller et al., 1999). This would seem to be a weaker
form of creativity than the claims made above.

A major division here (see (Boden, 1990; Nelson, 1999) for more dis-
cussion) is between two types of creative behaviour. In the first kind of
behaviour, there is a domain which can be described exactly, however the
complex properties of the domain are not obvious from its description, and so
creativity consists of finding “novel” things within this domain. The second
type of creativity consists of “jumping out” of the present domain entirely,
and creating a new domain in which to think. Whether these two kinds of
creativity are really distinct is part of the ongoing philosophical debate on
the nature of knowledge. It may be that for a sufficiently broad definition
we can say that all “knowledge” exists, and the challenge is in searching in
a sufficiently efficient way through the search space. Nonetheless there is a
practical element to this when constructing artificial intelligence systems, as
representing a limited knowledge domain is an standard task on a computer,

so the distinction here is probably clearer than when we are considering hu-
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man creativity.

There is a lot of common ground between the kind of work that we are
doing and these studies in computational creativity. However the work in
AT on creativity is focussed largely on understanding the creative faculty in
human cognition, whereas we are interested in the discovery of novelty us-
ing any method, regardless of its connection to human creativity. Another
contrast is that we are interested in finding a range of qualitative examples
rather than finding particularly “interesting” ones. In many ways the con-
trast between this work and the problems described here is that in the studies
of creativity we are interested in what makes a particular solution “interest-
ing”, whereas in our problems we are concentrating more on what makes
a solution “different”. For example in a program which creates interesting
music, we are interested not in exploring the entirety of musical space within
a single song, but on narrowing in on a small area of that space.

Furthermore we are exploring a predefined search-space in carrying out
this kind of analysis. Our interest is in how we can explore this search-space
in an efficient way, rather than looking into how we can escape from the
search-space.

Nonetheless these studies of creativity have somewhat of a similar feel to
what we are trying to achieve in the problems described here, and there are
a number of techniques drawn from these studies which could prove useful.

One idea that is particularly interesting is the idea of “search heuristics”.

In programs such as AM, one of the big ideas is that of the program applying
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a range of heuristic techniques to suggest how one established idea can be
turned into another. In such programs the heuristics transform one solu-
tion into another, for example using ideas such as “create the converse of
this statement” and “swapping an and for an or” (Boden, 1990). This has
similarities to a symbolic version of the mutation operator. It would be inter-
esting to explore other kinds of operator designed to work in a similar way to
the recombination operator, i.e. providing standard heuristics for combining
two or more concepts. There may be some ideas for such heuristics in work
such as that of Polya (1945) and De Bono (1990) which attempts to unpack
the heuristics used by humans in creative problem solving. This provides an
interestingly contrasted view on what genetic algorithms are doing.
Another interesting idea which can be drawn from a lot of studies of
creativity (see e.g. (Boden, 1990)) is that it is not just sufficient for a system
to do creative things, but that a system must recognize when it is being
creative. There may be some way of casting this into a genetic algorithms
framework by a dynamically created fitness function which measures the
novelty of a system, remembering that novelty in our problems is a well-
defined property, in contrast to the problems discussed by the computational

creativity researchers.

Cluster analysis and related approaches.

Another idea which has some superficial similarities with what we are trying

to achieve is that of cluster analysis, which is a statistical technique which
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takes multivariate data and groups it into a number of clusters based around
metrics in the space of solutions (Krzanowski, 1990).

There are other problems which are in the domain of “grouping”. A well
known NP-hard problem is the bin packing problem, which consists of filling
a number of containers of a given capacity with a number of objects of given
size. A similar problem is the set partitioning problem where we want to
split down a set into a number of categories, assigning each member of the
set to one of those categories in such a way that some scoring function is
maximized. This is use e.g. in transport scheduling, where a number of
aircraft have to be assigned to a number of limited-capacity routes in a way
that minimizes distance travelled. Both of these problems have been tackled
using genetic algorithms (Falkenauer, 1998; Levine, 1994).

In the cluster analysis problems we are working from a large body of data
about the problem at hand. We are interested instead in the kind of problem
which is too large for traditional statistical analysis, and where we instead
need to provide a strategy for deciding which data to compute in the first
place.

The grouping problems are different in a distinct way. These problems
are essentially optimization problems, rather than example-finding problems.
Furthermore the individual solution string in one of these problems repre-
sents a whole solution to the problem (i.e. it is an example of a Pitt approach,
to use a well-known terminology from machine learning/classifier systems),

whereas we are interested in problems requiring a Michigan approach, where
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the individual chromosomes each represent a single component of the solu-
tion.

It is difficult to see how these ideas can be adapted easily for this kind of
research. In these kind of problems we need a comprehensive database view
of the population in order to calculate statistical measures on the population,
and that is exactly what we don’t have in our kind of problem—the phenotype
is calculated in a nontrivial way from its representation, and there is a very
large population. Also we know the categories into which things fall in many
of our problems, whereas in the problems described in this section one of the
main aims of the technique is to discover the natural categories for things

from metrics on pairs of individual elements in the space.

Multimodal optimization.

A class of problems which have much in common with the kinds of problems
that we are discussing above are multimodal optimization problems. A mul-
timodal optimization problem consists of some fitness function which has a
number of local optima, and the aim of the problem is to find all of these
optima, or to find all optima which are above some threshold value, or to
find a certain number of local optima.

Multimodal optimization problems have been successfully tackled using
genetic algorithms. Many of these approaches are based on the idea of nich-
ing (Mafoud, 1997), that is modifying the way fitness is distributed so that

solutions are rewarded both for being fit relative to the problem being solved,
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and also for being distinct from other solutions—occupying a particular niche
in the fitness landscape.

The first approach to this is via fitness sharing (Goldberg and Richardson,
1987). Firstly the fitness of individuals is calculated in a standard way. Then
this fitness of each individual is divided by (some function of) the number
of individuals which are “similar” to that individual. This similarity can be
defined by some metric on the space of genotypes (Mafoud, 1997), such as
hamming distance, or by the use of an application-domain specific metric on
the phenotype. This can be calculated either directly, by comparing each
individual with the others in a structured way (Goldberg and Richardson,
1987; Deb and Goldberg, 1989), or a statistical technique such as cluster
analysis can be applied to break the population down into similar groupings
(Yin and Germay, 1993), or by a prior estimation of the number of niches in
the population (Miller and Shaw, 1995).

Crowding is an alternative approach which is also based on the idea of
niche formation (Griininger and Wallace, 1996; Mafoud, 1992). In a crowding
system an alternative form of selection is used which is in two stages. Firstly a
large number of recombinative pairs are generated at random from the popu-
lation, without regard to fitness, and these pairs are then subjected to a form
of selection where each of the children competes against one of its parents
in order to enter into the new population. Decoupling of recombination and
selection ensures that selection happens locally, whilst recombination allows

global information exchange. An alternative is to choose certain individuals
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as dominant individuals and, each generation, clear out all solutions that
don’t fall within a certain (phenotypic) radius of that individual according
to some domain-specific metric (Pétrowski, 1996).

An alternative approach to these kind of problems is via an explicit spe-
ciation approach which breaks the population down into a number of well-
defined subpopulations (Deb and Spears, 1997). This can be carried out by a
number of methods. The first is to attach “tag bits” to members of the popu-
lation, which say which other individuals they are allowed to breed with. An
alternative is “island models” (Tanese, 1987; Tanese, 1989; Calégari et al.,
1997), where the population is split into a number of subpopulations, and
most breeding goes on within those subpopulations, with only an occasional
good solution able to travel between islands. This simulates the conditions
in which speciation occurs in natural populations.

Despite the superficial commonalities between multimodal optimization
and qualitative example finding, there is actually a wide gulf between the two
problems. In the multimodal function optimization problems the emphasis is
still on optimization, i.e. the search space still has an exogenous fitness func-
tion. This contrasts with our problems where we are working in a landscape
where there are only qualitative categories and not any absolute measure of
fitness. We want to create a system where finding diverse solutions is the
direct goal, not just a byproduct of an exogenous-fitness based optimization
procedure.

Also a lot of the work here goes on within the subpopulations, e.g. breed-
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ing within the population to find a better example of that local peak in the
fitness landscape. In our problems we are concerned only with finding an
example in each class, once we have found one example we want to move
away from any further consideration of items in that class.

Nonetheless it may be possible to use the idea of “niching” in a different
way. A qualitative example finding heuristic could create (temporary) sub-
populations which explore a particular area of the space which is proving to
be a particularly fecund source of examples, that subpopulation dissolving
away as that area of the space becomes “mined out”.

An area often confused with multimodal optimization is multiobjective
optimization. Whereas multimodal optimization is concerned with finding
multiple solutions to a population with a single solution, multiobjective op-
timization is concerned with finding a single good solution to a problem on
a space where there are several fitness functions which need to be combined

in some way.

Simulating biological diversity.

A number of computational studies have investigated the process whereby
diversity evolves in natural populations. This has drawn both on ideas from
theoretical evolutionary biology and ecology, and on the techniques of “artifi-
cial life” which provide ways of creating models of populations based around
simulating the behaviour and evolution of individuals.

A good example of this is the work of Maley (1998,1999). In (Maley, 1999)
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three models are presented which aim to investigate what characteristics a
model must have in order to satisfy a set of conditions for “open ended”

evolution. One of the conditions is that

‘An open-ended evolutionary system must exhibit continuing

(“positive”) new adaptive activity.’

The model used to investigate this is based around a grid, each of the squares
of which represents a distinct niche in the environment which can be occupied
by members of the population. It is shown that pure neutral evolution rapidly
fills up a large number of niches. However when selection is included in the
model niches are filled in a more selective manner. The simplicity of the
niche structure in these experiments is in marked contrast to the structure
found in the problems that we are interested in.

Clearly in these studies are distinctive from qualitative example finding
in that the aim is that of simulating what happens in the world of natural
biology, whereas our work is focussed on applying the ideas to other problem
domains. Nonetheless the ideas described in (Maley, 1999) begin the investi-
gation of which evolutionary properties are required for active exploration of
a niched environment. However the niching structure in these experiments
is trivial, whereas in our problems the niches have a complex geometry in
the search space. Seeing whether the conditions outlined by Maley for the
exploration of this kind of space extend to these more complex niche-spaces

could provide an interesting way forward for approaching these ideas.
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Another area of biological simulation which might provide useful is the
work that has used the immune system as its source of inspiration (Dasgupta

and Attoh-Okine, 1997; Dasgupta, 1998). This is discussed further below.

CONSTRUCTING HEURISTICS FOR QUAL-

ITATIVE EXAMPLE FINDING.

In this section of the paper we shall discuss how we can develop heuristics
for finding qualitative examples. Essentially this is a search problem—we
want to search the space O of objects that fall into categories which have
not been explored previously, making use of each attempt to learn some
information about the structure of the search space and which areas might

be more worthy of investigation in the future.

Desirable characteristics of an example finding heuris-
tic.

We can draw up a number of properties that such an algorithm might require.
Firstly the algorithm should be capable of exploiting any substructures that
are discovered which are good building blocks for a wide variety of examples.
These substructures could be represented explicitly, e.g. by doing some kind
of commonality analysis on a set of objects which have already been found

and which span a large number of classes. These common structures could
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then be built upon in many different ways. Alternatively we could represent
the building blocks in a subsymbolic fashion. This is illustrated by genetic
algorithms, where building blocks representing substructures which make a
high contribution to fitness are indirectly represented by being present in a
large proportion of the population. This lack of direct symbolic representa-
tion actually adds to the computational power of GAs—because the same
“subsymbol” can play a role in multiple useful structures, thus leading to
implicit parallelism (Holland, 1975; Goldberg, 1989).

A second desirable characteristic for these heuristics is that they should
recognize when they have “mined out” a particular substructure, and move
on to looking in other areas of the search space. This suggests that current
explorations shouldn’t base themselves on the entire history of the search
procedure, but should forget structures after a few rounds of exploration.
This is how population-based search techniques such as GAs get rid of in-
formation which is useless to them, and it is explicitly used in tabu search
(Glover, 1989; Glover, 1990; Glover et al., 1993), where items on the tabu
list are dropped after a few rounds. Similarly a heuristic must recognize
(implicitly or explicitly) when a particular substructure is not a fecund base
on which to build other original structures. For example in a bioinformatics
setting we might be interested in the shape that is presented by a molecule to
the outside world. In this case, any substructure that ends up folded inside
the molecule and not exposed on the outside at all can be changed as much

as possible and still have no impact on the class into which that molecule is
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put. An algorithm should recognize this (from the lack of changes of classifi-
cation when this area is modified) and not waste further time exploring this
area further.

Thirdly the algorithm should not return to areas that are mined out or
unproductive. This could be achieved either directly or indirectly. An exam-
ple of a direct method would be to use something akin to tabu search, which
maintains a list of items in search space which have recently been visited and
prevents the algorithm returning to them. Another strategy which has simi-
larities to this, and which has been applied successfully to population-based
incremental learning (Baluja, 1994), is the work of Sebag and Schoenhauer
(1997), and Robillard and Fonlupt (1999), which update each round a vector
of probabilities for each element in a bitstring summarizing the worst solu-
tions so far in an optimization problem. The alternative is to represent these
regions indirectly, for example in a genetic algorithm areas of search space
which are not contributing to fitness will converge to values in which these
areas are avoided.

A fourth characteristic that the algorithm will need is the ability to bring
together compatible fruitful substructures, which suggests the use of a process
such as recombination in GAs.

Some more subtle characteristics were discovered during early experi-
ments with the algorithms. Whilst the characteristics above are not dis-
similar to characteristics which have proven useful for optimization, these

other characteristics are more particular to the qualitative example finding

33



problem.

One problem with early implementations of heuristics for these prob-
lems was that solutions which had fruitful structures within them were not
recognized. Consider a GA-like population based algorithm. We generate
a number of solutions, several of which are in classed which haven’t been
found before. However one of these contains a very fruitful substructure, but
because only one example of that structure has been found, it is swamped by
all of the other less fecund solutions and sometimes not chosen for the next
generation at all. We have been experimenting with a couple of remedies for
this problem. The first of these (see below) is to use the data about which
solutions come from which parents, and bias the selection scheme towards
those individuals which come from parents that were more successful at pro-
ducing novel solutions by recombination. A second approach would be to
take individuals, apply a hypermutation to them (i.e. a mutation at many
times the normal mutation rate) several times, and see which produced most
novel solutions, then use those as the parents for the next generation.

Another problem that has occurred with a GA based approach is that
sometimes the population will only find a small number of solutions. This
obviously eliminates the diversity from the population. Experiments with
hypermutation have proven successful at getting out of these problem areas

without losing useful structures within the small number of solutions.
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A GA-based heuristic.

Our initial experiments have concentrated on producing a genetic algorithm
based heuristic for these problems. GAs are capable of exploiting niches
within a population, and are a search method which is based on the exploita-
tion of substructures within a search space. Therefore they would seem to
be a good basis for building a qualitative example finding heuristic.

Clearly the main contrast between traditional GAs and the qualitative
example finding problems is that there is no measure of fitness in the latter
problem. It makes no sense to say that one example is “better” than another,
or to give it any kind of rating. Our approach to managing this is to create a
fitness value on the fly for each individual in each generation. This is entirely
dependent on the context that the individual is in, and the history of which
examples have been found so far in the run.

The simplest way in which to allocate this fitness is to take each item
in the population, and allocate it a fitness of 1 if it is in a class that hasn’t
yet had and example, and 0 if it is in a class which already has an example.
One disadvantage to this is that it scores all items the same, and makes
to attempt to identify those which contain substructures which are likely
to form the basis for other novel solutions. An alternative method which
identifies these substructures consists of calculating which members of the
current population are novel, giving their parents a score of 1 for each novel

child, and then assigning the child the sum of its parents’ scores (figure 1).
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FIGURE 1 ABOUT HERE

This has been shown to produce more novel solutions in a shorter time
on some test problems compared to simply assigning 1 for novel and 0 for
not. Details can be found in the paper (Johnson, 2000).

Another feature that has proven successful in our GA approach to this
problem is to apply a hypermutation when a population contains very few
novel individuals. When a population has very few novel individuals then
the diversity of the population in the next round will be very low, because
none of the non-novel solutions will contribute to that round. In the most
extreme case, if only one novel solution is found then there will be completely
converged population. To avoid these problems we apply a much higher
mutation rate for one generation once the size of the novel population is below
a threshold. This reintroduces enough diversity into the population for it to
be able to begin exploring again, whilst also retaining good substructures
that are in the small population.

We have also carried out experiments on other aspects. Mutation rate
experiments have tended to show that a higher mutation rate than typical is
ideal on our test problems, a rate of 0.1/bit producing good search behaviour.

This contrast with the low level of mutation, typically 0.01-0.001/bit, or

Bitstring-length (Béck, 1996) used in optimization GAs. This gives support
to the idea that mutation is the main way in which these algorithms are

exploiting good substructures. Another experiment which was less successful
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was introducing some random strings into the population each generation to
provide a constant source of diversity—this was too blunt an instrument.

Details of these experiments can be found in (Johnson, 2000).

Other approaches.

The GA approach has had some success, and we are looking at other ap-
proaches which could be used for this problem, either as a complement to or
to work alongside the GA.

One approach which has potential promise is not to populate some arbi-
trary “population space” with the objects in the search space, but instead to
populate the search space O with individuals, and provide ways for them to
move through the space, ways for successful individuals to breed. Thus each
individual agent would represent a good search strategy for the neighbour-
hood in which it is located, and ecological notions such as crowding could
be used to control the exploration of the search space. Similar ideas have
been used in robotics (Watson et al., 1999) and database searching (Degeratu
and Menczer, 2000; Menczer, 1999; Morton-Firth and Bray, 1998). This ap-
proach may be more scalable than the GA approach, as the population can
split into smaller subgroups whereas in the GA approach the population will
often follow a single niche until it is fully exploited, then move onto another
niche, rather than exploiting commonalities between niches to explore each
niche in a faster way.

Another biological system which might be useful here are artificial im-
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mune systems (Dasgupta, 1998). The idea of an immune system is that it
learns to recognize self from non-self objects, so it might be possible to use
an immunity inspired system alongside some search method to learn what
parts of the space have already been mined for examples (self) and which
remains to be explored (non-self).

A final alternative might be to carry out a more symbolic, mathematical
treatment of these problems. This could work by the use of some inductive
process for learning constraints, e.g. the system could learn that certain parts
of the search space are mined out and put a constraint on exploring that part
of the space. Constraint programming (Marriott and Stuckey, 1998) could
then be used to calculate areas of the search space that are most worthy
of future exploration. Other related possibilities would be to analyse sets
of current novel solutions directly for common substructures, and explore

combinations of these substructures.

Conclusions and questions.

We has discussed the requirements for a search-based qualitative example
finding heuristic, explained how we have implemented this heuristic using a
variant on GAs and outlined alternative approaches. Our major effort now
is concerned with scaling these approaches up to more realistic problems. A

number of outstanding questions remain.

e How well do these methods scale to realistic problems?
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e How general can these heuristics be? Will they be capable of being
applied to a wide variety of problems as e.g. GAs, simulated annealing
and neural networks have been, or will they need a lot of individual

tuning for individual problems?

e How can we analyse these methods theoretically? Are there analogies
of Holland’s schema theorem (Holland, 1975) which will allow us to
formalize some of the informal statements about how substructures

come together.

e What kinds of tunable test examples can we create which will allow us

to test conjectures about how these algorithms work?

CONCLUSIONS.

In this paper we have shown how a large number of problems from several
different areas can be shown to be examples of the qualitative example finding
problem. This motivates work on general meta-heuristics for this problem.
We have shown that the problem is distinct from a number of other well
known problems, and discussed how solutions to the well-known problems
can be used as inspiration for our problem area. Finally we have discussed
the design of qualitative example finding algorithms, and explained how we
have modified the traditional genetic algorithm to provide a meta-heuristic

for these problems.
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Figure captions.

Figure 1: A three-part algorithm for on the fly fitness assignment.



