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Understanding 
omplex systems through examples:A framework for qualitative example �nding.
Abstra
t

Many 
omplex information systems in s
ien
e, business and designhave the 
hara
teristi
 that we 
an 
lassify obje
ts in the system insome way, but that these 
lassi�
ations are distributed through a pa-rameter spa
e in some 
omplex fashion. In order for a human to get anunderstanding of the system, we would like to present this user withone example of an obje
t for ea
h 
lass. Examples of su
h problems
an be found in information retrieval, bioinformati
s, 
omputationalgeometry, 
omputer-aided design, software testing and 
ellular au-tomata. In this paper we will show how problems in all these areas
an be put into a general framework of �nding qualitative examples,and argue that general heuristi
 approa
hes to this type of problemare an important and negle
ted area of ma
hine learning. We 
on-trast this with some other well-studied problems, showing how thisproblem is distin
t and investigating what we 
an learn from theseproblems. We then dis
uss some of the requirements for a heuristi
to solve these problems, and mention some re
ent work on this usinggeneti
 algorithms.
Keywords: Heuristi
s, 
lassi�
ation, novelty, diversity, information sys-tems, ma
hine learning.
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INTRODUCTION.
The 
on
ept of meta-heuristi
s (Osman, 1996; Reeves, 1993; Corne et al.,1999) is a powerful idea in solving problems involving 
omplex informationsystems. A meta-heuristi
 is a te
hnique for �nding approximate solutionsto a problem, whi
h 
an be applied to a large number of di�erent domainsof appli
ation.The two 
anoni
al examples of the sort of problem a meta-heuristi
 
anta
kle are optimization and sear
h. Examples of meta-heuristi
 methods forthese types of problem are geneti
 algorithms, hill-
limbing and simulatedannealing. To solve a parti
ular problem using su
h a te
hnique we need todo two things. Firstly we need to show how the parti
ular problem we havein hand 
an be phrased in terms of the method. So in geneti
 algorithmswe need to provide a measure of solution quality (\�tness") and operatorsfor 
rossover and mutation of solutions. In a hill-
limbing method we alsoneed to provide a quality measure, but we need a \move" operator whi
hsays how we 
hoose the next solution in ea
h round of the iteration. We
an then apply the method, typi
ally by running it on the 
omputer. It isthe �rst stage whi
h distinguishes meta-heuristi
s from heuristi
 methodswhi
h have been 
reated with a spe
i�
 problem in mind. A meta-heuristi

an be applied to many di�erent spe
i�
 problems, and it has the advantage(modulo the arguments in (Wolpert and Ma
ready, 1995; Culberson, 1998;Tuson, 1999)) that an improvement to the meta-heuristi
 will redound to
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improvements a
ross a range of problems.This is a powerful methodology; nonetheless we appear to be stu
k ina rut in whi
h sear
h and optimization are the only two areas for whi
hmeta-heuristi
s have been developed. In this paper I would like to outline anew area|qualitative example-�nding|whi
h appears ripe for the 
reationof meta-heuristi
 methods. In order to do this I explain what a qualitativeexample-�nding problem is, show how a large number of real-world problems�t naturally into this framework, and then dis
uss strategies for 
reatingmeta-heuristi
s for this problem area.Qualitative example-�nding is an interesting ma
hine learning problemwhi
h has not been investigated as a general problem. Traditional ma
hinelearning is the problem of abstra
ting a set of 
lassi�
ation rules from a setof examples pla
ed into 
lasses. The qualitative example �nding problemis, in some sense, the \opposite" problem. Given a pro
edure for 
lassifyingobje
ts, 
an we �nd an example of an obje
t for ea
h 
lass? This is an inter-esting problem with wide potential appli
ation, yet no general heuristi
s forthis problem have been investigated. Perhaps this is be
ause ma
hine learn-ing �ts into a 
lear arti�
ial intelligen
e tradition of attempting to reprodu
ehuman abilities, whereas qualitative example �nding is a problem involvingthe use of 
omputers to help human understanding, whi
h is a 
ompletelydi�erent area of study.More formally the qualitative example-�nding problem is this. We aregiven a large set of obje
ts, O, and another (smaller) set C, together with
4



a 
lassifying fun
tion f : O ! C. We assume that there is some underly-ing stru
ture to the way in whi
h these obje
ts are 
lassi�ed, but that thisstru
ture is non-trivial and that we don't have any meta-knowledge su
h asthe kinds of rules used to assign the 
lassi�
ations to the obje
ts. Let us alsosay that 
al
ulating the 
lassi�
ation assigned to a parti
ular obje
t is not
omputationally trivial, and that there is no way of doing a dire
t reverse
al
ulation of a sample obje
t given a parti
ular 
lass. This, 
ombined withthe large size of the set of obje
ts, renders an enumerative sear
h of the spa
eO 
omputationally out of the question. The problem we want to solve is to�nd an example of an obje
t whi
h �ts into ea
h 
lassi�
ation, i.e. a setfo1; o2; : : : ; ong � O su
h that ff(o1); f(o2); : : : ; f(on)g = C. On
e we havefound one example in a 
lass we are no longer interested in �nding otherexamples in that 
lass, and there is no 
on
ept of one obje
t being \better"or \�tter" than another in an absolute sense. Clearly the sort of situationwe are 
onsidering is where the 
lassi�
ation needs to be 
al
ulated, not justwhere all of the data is stored in a database.Related problems require us to 
reate the 
lassi�
ation as we go along,based on some kind of metri
 that we impose on O. Another variant is wherewe are able to 
lassify things exa
tly, but we don't know how many membersare in the 
lassi�
ation set before we start.
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QUALITATIVE EXAMPLE FINDING PROB-
LEMS.
In the previous se
tion we have outlined an abstra
t problem area. In thisse
tion we will show how problems from a number of di�erent areas 
an bepla
ed into this framework. This demonstrates that e�ort spent on develop-ing a general heuristi
 for problems of this type would be a valuable a
tivity.
Creating test suites for agents and other software.
An autonomous agent (Huhns and Singh, 1998; Maes, 1994) is a pie
e ofsoftware whi
h is supplied with various goals and a wide variety of possiblesimple behavioural patterns. The software is programmed at a high level tolearn ways to 
ombine those behaviours is su
h a way as to a
hieve the goals.Typi
ally su
h an agent would work in a dynami
 environment. Howeverin advan
e of releasing it into that environment we would like to test it bypresenting it with a range of qualitatively di�erent s
enarios, and 
he
kingthat it 
an 
ope with ea
h of those test s
enarios. Simply 
reating these tests
enarios by 
hoosing environments at random is not guaranteed to produ
ea range of qualitatively di�erent behaviours, and generating them by hand islikely to be time-
onsuming. If we 
an generate a set of qualitatively di�erenttest environments in an automati
 way then we have a good basis for testingthe agent.A problem within a similar domain is explored in (Men
zer et al., 1999).
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This is one of very few papers to ta
kle a qualitative example �nding problem.This paper is 
on
erned with evolving a variety of distin
t ar
hite
tures foragents based around neural networks.This system is based on the idea of lo
al sele
tion (Men
zer and Belew,1998). In this s
heme ea
h solution maintains an \energy" value as one ofits attributes. This energy value begins at a 
ertain value, and energy isgained by being in a good area of the sear
h spa
e, and energy is redu
ed ifthere are multiple agents attempting to explore the same region of the sear
hspa
e. Sele
tion is lo
al in the sense that there is a �xed energy thresholdbelow whi
h individuals are removed from the population, rather than so-lutions being globally 
ompared to other solutions. Variations in sele
tionpressure are maintained by a rule enfor
ing total energy 
onservation and apopulation size whi
h is variable, where in
rease in population size o

ursby good solutions rea
hing a \reprodu
tion threshold" where they split anddivide their energy between the two 
hildren.Nonetheless there are limitations to the work des
ribed in (Men
zer et al.,1999). Firstly they make no use of re
ombination, and it would be interestingto see if re
ombination 
ould work to bring together stru
tural features whi
hlead to in
reased diversity. Se
ondly they are still largely working within anoptimization framework, there is the 
on
ept of improving a solution that hasbeen found, whereas in a lot of the problems that we are looking at there is nosu
h 
on
ept. Nonetheless it remains the only attempt at expli
itly sear
hingfor diversity using geneti
-like methods rather than doing optimization.
7



Other related problems o

ur in generating a reasonable suite of testexamples for testing a 
omplex program. We 
an imagine two di�erent kindsof pro
esses here. The �rst just looks into the appli
ation domain, and theproblem here is to 
reate a tra
table number of test examples whi
h providea wide range of qualitative behaviours found in the problem domain. These
ond would be to intera
t with a parti
ular program that was to be tested.We generate a range of potential inputs, and monitor whi
h parts of theprogram are being well tested by these inputs, then we use this data to �ndexamples whi
h test other parts of the program.
Software se
urity.
Work by Forrest and others (Forrest et al., 1997; D'haeseleer et al., 1996;Dasgupta and Attoh-Okine, 1997) has made use of diversity for 
omputerse
urity. The 
ore 
on
ept here is that one of the major se
urity holes in
omputer systems is their similarity|the same software is run by many peo-ple, and so if someone 
an exploit a loophole in the way that software iswritten, they 
an brea
h the se
urity of many systems. Also the potential
ra
ker of the se
urity of the system 
an use software identi
al to that of theirintended vi
tim in order to sear
h for su
h loopholes. An example of theirdiversity-based method to defeat this kind of problem is that of randomized
ompilation|this 
reates many di�erent forms of a program by treating thearbitrary de
isions that 
ompilers must make in a spe
ial way. Traditionally
ompilers have responded to the need to make arbitrary de
isions by tak-
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ing a standardised default value. In randomized 
ompilation these arbitraryde
isions are made at random, whi
h means that many di�erent 
ompiledversions of the same fun
tionally-equivalent program 
an be 
reated.
Information retrieval.
Most problems in information retrieval have the 
avour of optimization prob-lems : we have a 
ertain number of requirements and 
onstraints and a largepool of data, and we want to �nd the examples of that data whi
h satisfythese 
onstraints and requirements in the best way. A 
anoni
al example ofthis kind of problem is free-text information retrieval (van Rijsbergen, 1979;Belew, 2000). Here we want to �nd the do
uments that most a

uratelymat
h a number of query words, some of whi
h may be marked as essential,or ranked in some way, or linked by boolean relations, et 
etera.One diÆ
ulty with information retrieval is that one query often mapsonto a number of distin
t qualitative areas of 
on
eptual spa
e, e.g. \java"maps onto a 
ountry, a programming language and a kind of 
o�ee. Solutionsto these diÆ
ulties sometimes require a more sophisti
ated knowledge of thequery language than is possessed by the typi
al individual using the system,and sometimes they fox even the advan
ed user.Thus we have the following problem. Given an information retrieval prob-lem su
h as this, 
an we present the user not with the set of solutions whi
h\best" mat
h the 
riteria, but instead present the user with a set of solutionswhi
h \minimally" mat
h the 
riteria, but whi
h illustrate wildly di�erent
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ontexts for whi
h the 
riteria hold. We 
an then have a se
ond stage atwhi
h the user \
ontextualizes" the sear
h by 
hoosing one of those 
on-texts, and the 
omputer automati
ally 
reates a se
ond sear
h based on thedata 
ontained in do
uments whi
h mat
h well with that 
ontext.Perhaps there are some useful ideas to be drawn from work on the \op-posite" problem, i.e. �nding information that is very similar (Dean andHenzinger, 1999; Broder et al., 1997).There are some related questions 
on
erning data mining (Piatetsky-Shapiro and Frawley, 1991), whi
h is the attempt to dis
over interestingpatterns in large databases. We 
an imagine using a qualitative example-�nding te
hnique to dis
over a range of qualitatively di�erent patterns in aset of data.Another related problem 
onsists of exploring some kind of territory,whether real or virtual, in whi
h a number of items of many di�erent types arefound. The prototypi
al example here is ar
haeologi
al exploration, wherewe would like to explore a large area of ground and dis
over a diversity of ob-je
ts that are used in that area; it is better to �nd one example of ea
h kindof histori
al obje
t than it is to �nd hundreds of examples of the same thing.Again we have a qualitative example �nding problem; given ea
h dis
overywe 
an measure some of its 
hara
teristi
s (ranging from physi
al 
hara
ter-isti
s to spe
ulations about the role in the so
iety that the obje
t will havehad, and we would like our heuristi
 to estimate where in the domain weshould look for other obje
ts whi
h are di�erent from the ones that we have
10



found so far.
Knot 
lassi�
ation and other mathemati
al problems.
Mathemati
al knot theory (Adams, 1994; Murasugi, 1996) is the study ofthe pla
ement of loops in spa
e. These three dimensional stru
tures are 
om-monly studied by means of diagrams, i.e. 4-valent plane graphs with under-and over- 
rossings marked. One important problem in knot theory is knot
lassi�
ation, i.e. �nding a sample diagram for ea
h distin
t 
lass of spatialstru
tures. For a given number of 
rossings there are many two dimensionalknot diagrams with that number of 
rossings (note that for every n-vertex4-valent planar graph we 
an 
reate 2n knot diagrams by 
hoosing 
rossingsas over- or under- 
rossings). A similar 
al
ulation holds for braids|for a n-
rossing m-string braid there are nm2n di�erent braids. However these knots
an be put into a mu
h smaller number of 
ategories based around the no-tion of two diagrams being \ambient isotopi
", that is representing di�erentviews of a topologi
ally identi
al three dimensional obje
t. For example for16 
rossings there are around 1024 braids of 16 strings (whi
h in
ludes, if weremove trivial loops, all of the braids of fewer strings), but only 10468805topologi
ally distin
t knots (Hoste et al., 1998).This is an interesting pie
e of algebra whi
h has appli
ations in theoret-i
al physi
s, for example the solutions of 
ertain 
al
ulations in topologi
alquantum �eld theories 
orrespond to the di�erent types of knots that 
an befound (Witten, 1989; Aneziris, 1994).
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It is not trivial to 
al
ulate whether two knots belong to the same 
las-si�
ation (Birman and Hirs
h, 1998; Aneziris, 1994; Hoste et al., 1998).Nonetheless we 
an 
al
ulate invariants, whi
h are fun
tions have the prop-erty that if we 
al
ulate the same invariant for obje
ts whi
h belong in twodi�erent 
lasses, then they must belong to two di�erent 
lasses (Jones, 1985;Kau�man, 1987; Kau�man, 1988). We 
an 
al
ulate a reasonable upperbound on the number of 
lasses that there are, but there are no sharp boundsknown for this.There are some other mathemati
al problems with similar 
hara
teristi
s.For example in Gilbert Baumslag's 
omputational group theory programmagnus (Baumslag, 1993) there are routines whi
h generate elements of a(possibly in�nite) group. One danger with this kind of routine is that it
an will \get stu
k into a rut" produ
ing examples whi
h just re
e
t theunderlying stru
ture of the algorithm whi
h is generating them, rather thanpresenting a diverse set of examples whi
h 
ould be studied further. A systemwhi
h generated su
h a diverse set would be valuable, and the meaning of\diverse" 
ould be steered by the user in an intera
tive way. Work on otherparts ofMagnus has shown that geneti
 algorithms 
an be used in this domain(Miasnikov, 1999; Baumslag et al., 1999).
Protein folding and drug dis
overy.
In
reasingly resear
h is �nding out more and more about ways in whi
hthe sequen
e of a DNA mole
ule tells us about the geometri
 and rea
tive
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stru
ture of the resultant protein mole
ule. Similar things exist in manyother areas of 
hemistry. However this kind of problem is a 
omputationallyintensive task.One thing that we would like to do, e.g. in drug dis
overy, is to takea parti
ular kind of 
hemi
al stru
ture, and dis
over the qualitatively dif-ferent physi
al and rea
tive stru
tures that di�erent examples of this kindof 
hemi
al 
an take on. We 
an imagine a situation in whi
h 
arrying outhundreds of experiments with real 
hemi
als is 
ostly and time-
onsuming,and so we would like to narrow down our sear
h to just those experimentswhi
h are likely to produ
e qualitatively di�erent behaviours. Clearly thisis a very hard problem|at present we don't have a lot of detail about howthe proteins fold, even|but it is an interesting potential appli
ation of theseideas.We 
an imagine doing this in one of two ways. One idea would be to usean expli
it folding model to dis
over the tertiary stru
ture of the resultant
hemi
al, and to sear
h for as mu
h diversity in this stru
ture as possible.This would require an understanding of protein folding and related areas farin advan
e of 
urrent knowledge, though this is a rapidly advan
ing area ofs
ien
e. An alternative would be to take data from experiments and use thatdata to suggest whi
h variants are likely to be di�erent from the examplesalready tested. A similar approa
h (using indu
tive logi
 programming ratherthan GAs, and using expli
it optimization 
riteria) as been investigated byKing, Muggleton and 
olleagues (King et al., 1992; King et al., 1995).
13



Cellular automata.
Cellular automata (Wolfram, 1994) produ
e various behaviours dependingon the parameters used to des
ribe the intera
tions between 
ells and, toa lesser extent, the intimal 
on�guration 
hosen. These di�erent qualita-tive behaviours result in a 
omplex way from the intera
tions between the
ells. It would be an interesting problem to attempt to evolve a diversity ofbehaviour. This 
ould be a
hieved by sear
hing the spa
e of di�erent start-ing 
on�gurations for those that demonstrate these di�erent behaviours, orby sear
hing the spa
e of rule sets in an attempt to �nd those rules whi
hprodu
e interestingly diverse qualitative behaviours.
Finding diverse behaviours in a simulated dynami
al
system.
Another area of interest is suggested by the work of Nowak and Sigmundon the iterated prisoner's dilemma (Nowak and Sigmund, 1992). In theirexperiments they �nd that the presen
e in the initial population of just oneor two solutions from a parti
ular part of the sear
h spa
e 
hanges the longterm dynami
s of the game in a substantial way. In this 
ase there are only asmall number of qualitative dynami
s produ
ible within the system. Howeverwe 
an imagine other systems whi
h have a wide variety of dynami
s, e.g.in a simulation of the spread of a disease (Bailey, 1975; Anderson and May,1991; DeAngelis and Gross, 1992) where we want to know what the range of
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results might be from various intervention strategies. These interventions donot ne
essarily produ
e a simple linear range of results|some might 
ausethe disease to be eradi
ated in part of the population, so might 
ause ageneral de
line in the level of the disease in the population, whilst othersmight 
ause an evolutionary 
hange in the disease itself (Nesse and Williams,1995; Ewald, 1994).Similar problems o

ur in �nding a good range of starting values fora geneti
 algorithm. It may be interesting to begin a geneti
 algorithmfun
tion optimizer with a step in whi
h we 
al
ulate an initial populationthat samples the sear
h spa
e by �nding a qualitatively diverse set of initialsolutions, rather than sele
ting at random. A similar idea 
ould be used for�nding neighbourhoods to explore in tabu sear
h. In tabu sear
h we need tolook around the neighbourhood for a next best solution, however sometimesthe neighbourhood is too large to sear
h exhaustively (Glover et al., 1993;Glover, 1990). Rather than sele
ting at random it might be good to runsome qui
k pro
edure for �nding a qualitatively diverse set of possible nextsteps.
Exploring the range of a sound synthesis algorithm.
In my earlier work on evolutionary interfa
es for sound synthesis algorithms(Johnson, 1999), I developed a system whi
h allowed users to rate soundsa

ording to their level of interest in that sound or a

ording to how 
loselythe sound approximated some sound that they were sear
hing for. The pro-
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gram would then present the user with the result of breeding the parameterstrings whi
h were used to generate those sounds, whi
h would typi
ally be
loser to them than the non-
hosen ones.Now when playing with this program I found that there was another wayof working, whi
h was to set the mutation rate fairly high, then narrow inone one area of the sound-spa
e, then move onto another area, and by doingso get a feel for the entirety of the sound 
apability of the synthesis algorithmbeing used. This again is an example of qualitative example-�nding, thoughwe don't know in advan
e what the 
ategories will be.So our problem is to write some kind of algorithm whi
h allows us toinput some kind of synthesis algorithm and whi
h outputs an example ofea
h of the qualitatively di�erent sounds whi
h that algorithm is 
apable ofprodu
ing. There are two possible ways of doing this, the �rst would be todo some a
ousti
al analysis on the phenotypes, and derive some measuresfrom this. The alternative would be to do this through intera
tion with theuser. Both of these are interesting, and it would be worth doing the two andattempting a 
omparison.
Evolutionary design.
Evolutionary methods have been used for a wide variety of design problems,as surveyed in (Bentley, 1999). Domains that have been explored by thesemethods in
lude design of industrial pro
esses (Goldberg, 1989; Parmee,1996; Parmee, 1997; Parmee, 1998), design of me
hani
al linkages (�Ekart,
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2000), design of ele
troni
 
ir
uitry (Miller et al., 1999), and ar
hite
ture(Ja
kson, 1999; Rosenman, 2000).These programs fa
ilitate the exploration of design-spa
e in various ways.Some of them are very traditional geneti
 algorithms, e.g. where there arelarge numbers of me
hani
al or physi
al 
onstraints and the aim is to �nda satisfa
tory design whi
h satis�es all of these 
onstraints within a 
ertaintoleran
e. More interesting in the 
ontext of this proje
t are those programswhi
h fa
ilitate exploration of a wide range of possible designs.This idea is found parti
ularly in the ar
hite
tural work. The work ofJa
kson (1999) and Rosenmann (1999) is designed to allow ar
hite
ts to ex-plore the di�erent possibilities of 
reating some kind of stru
ture by allowingthem to explore the spa
e of possible designs, 
ombining interesting featuresfrom di�erent designs. In their work this is guided by a human user, whorates the designs. It would be interesting to explore an alternative approa
hwhere the system generates a wide diversity of possible designs, rather thantrying to \optimize" designs one at a time. Instead we take 
ertain basi
physi
al, fun
tional and other 
onstraints and 
reate a wide sample of de-signs whi
h satisfy that 
onstraint, thus giving the designer an overview ofthe stru
ture of the design-spa
e.
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RELATED APPROACHES.
A number of other problems have a some 
ommonality with the qualitativeexample �nding problem. In this se
tion we shall outline a number of theseproblems, suggest ways in whi
h they are distin
t from qualitative example�nding, and examine ways in whi
h solutions to these problems might inspireheuristi
s for our problems.
Ma
hine learning of 
lassi�
ations from examples.
A problem whi
h has some of the same 
hara
teristi
s as the above problemsis that of ma
hine learning of 
lassi�
ations from examples. These kind ofproblems are parti
ularly well studied in the neural networks 
ommunity,using te
hniques su
h as 
ompetitive learning (Hertz et al., 1991; Bishop andHinton, 1995). The idea here is to take a set of training examples ea
h ofwhi
h has been 
lassi�ed as belonging to one of a set of 
lasses. The programlearns some of the features of those examples, either by expli
it symboli
learning or more typi
ally by �nding some subsymboli
 \representation",and this learning is then applied to testing new examples whi
h haven't beenpresented during the training stage.A typi
al appli
ation of this is in re
ognizing people from images or bio-metri
 data su
h as gait or �ngerprint (Jia and Nixon, 1995; Jain et al.,1999). In these 
ir
umstan
es there are a large (potentially in�nite) set ofimages of ea
h of a number of people, and we take a set of those to train our
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system. Then, when a new image is presented, e.g. by a 
amera taking aphoto, the 
omputer then tries to re
ognize the person. Similar ideas havebeen used in e.g. handwriting re
ognition.As dis
ussed above, this is distin
t from our problem, in that we alreadyknow the 
lassi�
ation pro
edure and we want to know the examples.An important idea that we 
an take from this kind of work is the ideaof pro
essing information in a subsymboli
 fashion (Brooks, 1991b; Brooks,1991a). In traditional AI a major problem was that of �nding representationsfor knowledge. Neural networks and similar systems have demonstrated thatthere is no need to dire
tly represent ea
h pie
e knowledge in a system is adis
rete way. We 
an use this idea when it 
omes to produ
ing heuristi
s forqualitative example �nding. For example a useful 
on
ept in su
h heuristi
smight be the ability of a parti
ular substru
ture of an obje
t to have lotsof distin
tly 
lassi�ed obje
ts built on it. A symboli
 approa
h would be toidentify these regions expli
itly, but the subsymboli
 paradigm shows thatthis expli
it representation is not ne
essary.
Classi�er systems.
A 
lassi�er is a rule of the form if pattern then repla
ement pattern. We
an use sets of these rules as the beginning of a system that learns to �ndpatterns in data, a so-
alled 
lassi�er system. Su
h a system 
onsists ofpopulations of these rules, together with a system for the apportionment of
redit to the various rules that have found a su

essful example and a way
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of manipulating this population based on that apportionment, often by theuse of a geneti
 algorithm. Details 
an be found in (Goldberg, 1989).As with ma
hine learning problems, 
lassi�er systems are 
on
erned withthe extra
tion of rules from examples, whereas we are 
on
erned with theopposite problem. Again, the main lesson to take away from this problemarea is the importan
e of subsymboli
 approa
hes.
Computational models of 
reativity.
One of the perennial minor themes of arti�
ial intelligen
e resear
h over theyears is how to make 
omputers a
t in a 
reative manner. These have beenpursued both with the motivation of understanding the nature of human
reativity and with the motivation of produ
ing 
reative work in a 
omputerby means whi
h don't 
orrelate with ways in whi
h humans are 
reative.These ideas are reviewed in (Boden, 1990; Partridge and Rowe, 1994).Su
h studies date ba
k to the early years of AI resear
h. They 
an be splitloosely into two di�erent kinds of models|those whi
h attempt to model thehuman aspe
t of 
reativity, and those that attempts to �nd an alternative
omputational model for 
reativity.Some of these programs are designed to be 
reative within artisti
 do-mains, su
h as Cohen's drawing program aaron (Cohen, 1999), and programsdesigned to write stories (Meehan, 1977; Ra
ter, 1984).Other su
h programs work in s
ienti�
 and mathemati
al domains, su
has Lenat's 
ontroversial AM (Lenat and Brown, 1984; Rit
hie and Hanna,
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1984), work on 
onje
ture-making in graph theory (Epstein, 1988), and var-ious programs whi
h make 
onje
tures about 
hemi
al rea
tions (Langleyet al., 1987). The important feature of these programs is that they are notfo
ussed on solving spe
i�
 problems, but they take a large database of in-formation and attempt to indu
e 
onje
tures from that information by amixture of domain knowledge, ways of a
ting on this domain knowledge and\meta-knowledge" about what kinds of patterns are \interesting". So forexample am 
ontains basi
 domain knowledge about set theory, ways of a
t-ing on this su
h as making 
onje
tures, investigating the 
onverse of knowntheorems, and so on, and meta-heuristi
s su
h as saying that some operatoris interesting if it 
an be repeated an inde�nite amount of times.A third kind of \
reative" system is that of 
reative analogy �nding. Thisis typi�ed by the work of Hofstadter, Mit
hell and others on analogy making(Hofstadter and The Fluid Analogies Resear
h Group, 1998; Mit
hell, 1996).A typi
al experiment of this kind will involve a pattern problem like \if aab
be
omes aabd, then what does ab

 be
ome?". The methodology here issimilar to the more open ended systems su
h as am, in that it works froma 
ertain set of heuristi
s about how to manipulate these symbols, and aparallel set of heuristi
s about whi
h kinds of patterns should be treated asmost interesting.In a similar vein is the work of Partridge and Rowe (1994) on 
reatingsystems whi
h attempt to indu
tively learn the rules whi
h are being used to
reate a pattern in a sequen
e of symbols presented to the 
omputer. This
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attempts to go beyond simple unstru
tured sets of rules by allowing rulesto be asso
iated with subgoal stru
tures known as \k-lines", whi
h abstra
tgroups of rules whi
h work together well to a
hieve subgoals. These are thenreused in solving other problem areas.Finally a kind of 
reativity has been suggested for systems whi
h are ableto solve well-spe
i�ed problems in interesting way, su
h as geneti
 program-ming (Koza, 1992). Thus we �nd papers whi
h 
laim to use geneti
 methodsas a \dis
overy engine" (Miller et al., 1999). This would seem to be a weakerform of 
reativity than the 
laims made above.A major division here (see (Boden, 1990; Nelson, 1999) for more dis-
ussion) is between two types of 
reative behaviour. In the �rst kind ofbehaviour, there is a domain whi
h 
an be des
ribed exa
tly, however the
omplex properties of the domain are not obvious from its des
ription, and so
reativity 
onsists of �nding \novel" things within this domain. The se
ondtype of 
reativity 
onsists of \jumping out" of the present domain entirely,and 
reating a new domain in whi
h to think. Whether these two kinds of
reativity are really distin
t is part of the ongoing philosophi
al debate onthe nature of knowledge. It may be that for a suÆ
iently broad de�nitionwe 
an say that all \knowledge" exists, and the 
hallenge is in sear
hing ina suÆ
iently eÆ
ient way through the sear
h spa
e. Nonetheless there is apra
ti
al element to this when 
onstru
ting arti�
ial intelligen
e systems, asrepresenting a limited knowledge domain is an standard task on a 
omputer,so the distin
tion here is probably 
learer than when we are 
onsidering hu-
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man 
reativity.There is a lot of 
ommon ground between the kind of work that we aredoing and these studies in 
omputational 
reativity. However the work inAI on 
reativity is fo
ussed largely on understanding the 
reative fa
ulty inhuman 
ognition, whereas we are interested in the dis
overy of novelty us-ing any method, regardless of its 
onne
tion to human 
reativity. Another
ontrast is that we are interested in �nding a range of qualitative examplesrather than �nding parti
ularly \interesting" ones. In many ways the 
on-trast between this work and the problems des
ribed here is that in the studiesof 
reativity we are interested in what makes a parti
ular solution \interest-ing", whereas in our problems we are 
on
entrating more on what makesa solution \di�erent". For example in a program whi
h 
reates interestingmusi
, we are interested not in exploring the entirety of musi
al spa
e withina single song, but on narrowing in on a small area of that spa
e.Furthermore we are exploring a prede�ned sear
h-spa
e in 
arrying outthis kind of analysis. Our interest is in how we 
an explore this sear
h-spa
ein an eÆ
ient way, rather than looking into how we 
an es
ape from thesear
h-spa
e.Nonetheless these studies of 
reativity have somewhat of a similar feel towhat we are trying to a
hieve in the problems des
ribed here, and there area number of te
hniques drawn from these studies whi
h 
ould prove useful.One idea that is parti
ularly interesting is the idea of \sear
h heuristi
s".In programs su
h as am, one of the big ideas is that of the program applying
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a range of heuristi
 te
hniques to suggest how one established idea 
an beturned into another. In su
h programs the heuristi
s transform one solu-tion into another, for example using ideas su
h as \
reate the 
onverse ofthis statement" and \swapping an and for an or" (Boden, 1990). This hassimilarities to a symboli
 version of the mutation operator. It would be inter-esting to explore other kinds of operator designed to work in a similar way tothe re
ombination operator, i.e. providing standard heuristi
s for 
ombiningtwo or more 
on
epts. There may be some ideas for su
h heuristi
s in worksu
h as that of Polya (1945) and De Bono (1990) whi
h attempts to unpa
kthe heuristi
s used by humans in 
reative problem solving. This provides aninterestingly 
ontrasted view on what geneti
 algorithms are doing.Another interesting idea whi
h 
an be drawn from a lot of studies of
reativity (see e.g. (Boden, 1990)) is that it is not just suÆ
ient for a systemto do 
reative things, but that a system must re
ognize when it is being
reative. There may be some way of 
asting this into a geneti
 algorithmsframework by a dynami
ally 
reated �tness fun
tion whi
h measures thenovelty of a system, remembering that novelty in our problems is a well-de�ned property, in 
ontrast to the problems dis
ussed by the 
omputational
reativity resear
hers.
Cluster analysis and related approa
hes.
Another idea whi
h has some super�
ial similarities with what we are tryingto a
hieve is that of 
luster analysis, whi
h is a statisti
al te
hnique whi
h

24



takes multivariate data and groups it into a number of 
lusters based aroundmetri
s in the spa
e of solutions (Krzanowski, 1990).There are other problems whi
h are in the domain of \grouping". A wellknown NP-hard problem is the bin pa
king problem, whi
h 
onsists of �llinga number of 
ontainers of a given 
apa
ity with a number of obje
ts of givensize. A similar problem is the set partitioning problem where we want tosplit down a set into a number of 
ategories, assigning ea
h member of theset to one of those 
ategories in su
h a way that some s
oring fun
tion ismaximized. This is use e.g. in transport s
heduling, where a number ofair
raft have to be assigned to a number of limited-
apa
ity routes in a waythat minimizes distan
e travelled. Both of these problems have been ta
kledusing geneti
 algorithms (Falkenauer, 1998; Levine, 1994).In the 
luster analysis problems we are working from a large body of dataabout the problem at hand. We are interested instead in the kind of problemwhi
h is too large for traditional statisti
al analysis, and where we insteadneed to provide a strategy for de
iding whi
h data to 
ompute in the �rstpla
e.The grouping problems are di�erent in a distin
t way. These problemsare essentially optimization problems, rather than example-�nding problems.Furthermore the individual solution string in one of these problems repre-sents a whole solution to the problem (i.e. it is an example of a Pitt approa
h,to use a well-known terminology from ma
hine learning/
lassi�er systems),whereas we are interested in problems requiring a Mi
higan approa
h, where
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the individual 
hromosomes ea
h represent a single 
omponent of the solu-tion.It is diÆ
ult to see how these ideas 
an be adapted easily for this kind ofresear
h. In these kind of problems we need a 
omprehensive database viewof the population in order to 
al
ulate statisti
al measures on the population,and that is exa
tly what we don't have in our kind of problem|the phenotypeis 
al
ulated in a nontrivial way from its representation, and there is a verylarge population. Also we know the 
ategories into whi
h things fall in manyof our problems, whereas in the problems des
ribed in this se
tion one of themain aims of the te
hnique is to dis
over the natural 
ategories for thingsfrom metri
s on pairs of individual elements in the spa
e.
Multimodal optimization.
A 
lass of problems whi
h have mu
h in 
ommon with the kinds of problemsthat we are dis
ussing above are multimodal optimization problems. A mul-timodal optimization problem 
onsists of some �tness fun
tion whi
h has anumber of lo
al optima, and the aim of the problem is to �nd all of theseoptima, or to �nd all optima whi
h are above some threshold value, or to�nd a 
ertain number of lo
al optima.Multimodal optimization problems have been su

essfully ta
kled usinggeneti
 algorithms. Many of these approa
hes are based on the idea of ni
h-ing (Mafoud, 1997), that is modifying the way �tness is distributed so thatsolutions are rewarded both for being �t relative to the problem being solved,
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and also for being distin
t from other solutions|o

upying a parti
ular ni
hein the �tness lands
ape.The �rst approa
h to this is via �tness sharing (Goldberg and Ri
hardson,1987). Firstly the �tness of individuals is 
al
ulated in a standard way. Thenthis �tness of ea
h individual is divided by (some fun
tion of) the numberof individuals whi
h are \similar" to that individual. This similarity 
an bede�ned by some metri
 on the spa
e of genotypes (Mafoud, 1997), su
h ashamming distan
e, or by the use of an appli
ation-domain spe
i�
 metri
 onthe phenotype. This 
an be 
al
ulated either dire
tly, by 
omparing ea
hindividual with the others in a stru
tured way (Goldberg and Ri
hardson,1987; Deb and Goldberg, 1989), or a statisti
al te
hnique su
h as 
lusteranalysis 
an be applied to break the population down into similar groupings(Yin and Germay, 1993), or by a prior estimation of the number of ni
hes inthe population (Miller and Shaw, 1995).Crowding is an alternative approa
h whi
h is also based on the idea ofni
he formation (Gr�uninger and Walla
e, 1996; Mafoud, 1992). In a 
rowdingsystem an alternative form of sele
tion is used whi
h is in two stages. Firstly alarge number of re
ombinative pairs are generated at random from the popu-lation, without regard to �tness, and these pairs are then subje
ted to a formof sele
tion where ea
h of the 
hildren 
ompetes against one of its parentsin order to enter into the new population. De
oupling of re
ombination andsele
tion ensures that sele
tion happens lo
ally, whilst re
ombination allowsglobal information ex
hange. An alternative is to 
hoose 
ertain individuals
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as dominant individuals and, ea
h generation, 
lear out all solutions thatdon't fall within a 
ertain (phenotypi
) radius of that individual a

ordingto some domain-spe
i�
 metri
 (P�etrowski, 1996).An alternative approa
h to these kind of problems is via an expli
it spe-
iation approa
h whi
h breaks the population down into a number of well-de�ned subpopulations (Deb and Spears, 1997). This 
an be 
arried out by anumber of methods. The �rst is to atta
h \tag bits" to members of the popu-lation, whi
h say whi
h other individuals they are allowed to breed with. Analternative is \island models" (Tanese, 1987; Tanese, 1989; Cal�egari et al.,1997), where the population is split into a number of subpopulations, andmost breeding goes on within those subpopulations, with only an o

asionalgood solution able to travel between islands. This simulates the 
onditionsin whi
h spe
iation o

urs in natural populations.Despite the super�
ial 
ommonalities between multimodal optimizationand qualitative example �nding, there is a
tually a wide gulf between the twoproblems. In the multimodal fun
tion optimization problems the emphasis isstill on optimization, i.e. the sear
h spa
e still has an exogenous �tness fun
-tion. This 
ontrasts with our problems where we are working in a lands
apewhere there are only qualitative 
ategories and not any absolute measure of�tness. We want to 
reate a system where �nding diverse solutions is thedire
t goal, not just a byprodu
t of an exogenous-�tness based optimizationpro
edure.Also a lot of the work here goes on within the subpopulations, e.g. breed-
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ing within the population to �nd a better example of that lo
al peak in the�tness lands
ape. In our problems we are 
on
erned only with �nding anexample in ea
h 
lass, on
e we have found one example we want to moveaway from any further 
onsideration of items in that 
lass.Nonetheless it may be possible to use the idea of \ni
hing" in a di�erentway. A qualitative example �nding heuristi
 
ould 
reate (temporary) sub-populations whi
h explore a parti
ular area of the spa
e whi
h is proving tobe a parti
ularly fe
und sour
e of examples, that subpopulation dissolvingaway as that area of the spa
e be
omes \mined out".An area often 
onfused with multimodal optimization is multiobje
tiveoptimization. Whereas multimodal optimization is 
on
erned with �ndingmultiple solutions to a population with a single solution, multiobje
tive op-timization is 
on
erned with �nding a single good solution to a problem ona spa
e where there are several �tness fun
tions whi
h need to be 
ombinedin some way.
Simulating biologi
al diversity.
A number of 
omputational studies have investigated the pro
ess wherebydiversity evolves in natural populations. This has drawn both on ideas fromtheoreti
al evolutionary biology and e
ology, and on the te
hniques of \arti�-
ial life" whi
h provide ways of 
reating models of populations based aroundsimulating the behaviour and evolution of individuals.A good example of this is the work of Maley (1998,1999). In (Maley, 1999)
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three models are presented whi
h aim to investigate what 
hara
teristi
s amodel must have in order to satisfy a set of 
onditions for \open ended"evolution. One of the 
onditions is that
`An open-ended evolutionary system must exhibit 
ontinuing(\positive") new adaptive a
tivity.'

The model used to investigate this is based around a grid, ea
h of the squaresof whi
h represents a distin
t ni
he in the environment whi
h 
an be o

upiedby members of the population. It is shown that pure neutral evolution rapidly�lls up a large number of ni
hes. However when sele
tion is in
luded in themodel ni
hes are �lled in a more sele
tive manner. The simpli
ity of theni
he stru
ture in these experiments is in marked 
ontrast to the stru
turefound in the problems that we are interested in.Clearly in these studies are distin
tive from qualitative example �ndingin that the aim is that of simulating what happens in the world of naturalbiology, whereas our work is fo
ussed on applying the ideas to other problemdomains. Nonetheless the ideas des
ribed in (Maley, 1999) begin the investi-gation of whi
h evolutionary properties are required for a
tive exploration ofa ni
hed environment. However the ni
hing stru
ture in these experimentsis trivial, whereas in our problems the ni
hes have a 
omplex geometry inthe sear
h spa
e. Seeing whether the 
onditions outlined by Maley for theexploration of this kind of spa
e extend to these more 
omplex ni
he-spa
es
ould provide an interesting way forward for approa
hing these ideas.
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Another area of biologi
al simulation whi
h might provide useful is thework that has used the immune system as its sour
e of inspiration (Dasguptaand Attoh-Okine, 1997; Dasgupta, 1998). This is dis
ussed further below.
CONSTRUCTING HEURISTICS FOR QUAL-
ITATIVE EXAMPLE FINDING.
In this se
tion of the paper we shall dis
uss how we 
an develop heuristi
sfor �nding qualitative examples. Essentially this is a sear
h problem|wewant to sear
h the spa
e O of obje
ts that fall into 
ategories whi
h havenot been explored previously, making use of ea
h attempt to learn someinformation about the stru
ture of the sear
h spa
e and whi
h areas mightbe more worthy of investigation in the future.
Desirable 
hara
teristi
s of an example �nding heuris-
ti
.
We 
an draw up a number of properties that su
h an algorithm might require.Firstly the algorithm should be 
apable of exploiting any substru
tures thatare dis
overed whi
h are good building blo
ks for a wide variety of examples.These substru
tures 
ould be represented expli
itly, e.g. by doing some kindof 
ommonality analysis on a set of obje
ts whi
h have already been foundand whi
h span a large number of 
lasses. These 
ommon stru
tures 
ould

31



then be built upon in many di�erent ways. Alternatively we 
ould representthe building blo
ks in a subsymboli
 fashion. This is illustrated by geneti
algorithms, where building blo
ks representing substru
tures whi
h make ahigh 
ontribution to �tness are indire
tly represented by being present in alarge proportion of the population. This la
k of dire
t symboli
 representa-tion a
tually adds to the 
omputational power of GAs|be
ause the same\subsymbol" 
an play a role in multiple useful stru
tures, thus leading toimpli
it parallelism (Holland, 1975; Goldberg, 1989).A se
ond desirable 
hara
teristi
 for these heuristi
s is that they shouldre
ognize when they have \mined out" a parti
ular substru
ture, and moveon to looking in other areas of the sear
h spa
e. This suggests that 
urrentexplorations shouldn't base themselves on the entire history of the sear
hpro
edure, but should forget stru
tures after a few rounds of exploration.This is how population-based sear
h te
hniques su
h as GAs get rid of in-formation whi
h is useless to them, and it is expli
itly used in tabu sear
h(Glover, 1989; Glover, 1990; Glover et al., 1993), where items on the tabulist are dropped after a few rounds. Similarly a heuristi
 must re
ognize(impli
itly or expli
itly) when a parti
ular substru
ture is not a fe
und baseon whi
h to build other original stru
tures. For example in a bioinformati
ssetting we might be interested in the shape that is presented by a mole
ule tothe outside world. In this 
ase, any substru
ture that ends up folded insidethe mole
ule and not exposed on the outside at all 
an be 
hanged as mu
has possible and still have no impa
t on the 
lass into whi
h that mole
ule is
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put. An algorithm should re
ognize this (from the la
k of 
hanges of 
lassi�-
ation when this area is modi�ed) and not waste further time exploring thisarea further.Thirdly the algorithm should not return to areas that are mined out orunprodu
tive. This 
ould be a
hieved either dire
tly or indire
tly. An exam-ple of a dire
t method would be to use something akin to tabu sear
h, whi
hmaintains a list of items in sear
h spa
e whi
h have re
ently been visited andprevents the algorithm returning to them. Another strategy whi
h has simi-larities to this, and whi
h has been applied su

essfully to population-basedin
remental learning (Baluja, 1994), is the work of Sebag and S
hoenhauer(1997), and Robillard and Fonlupt (1999), whi
h update ea
h round a ve
torof probabilities for ea
h element in a bitstring summarizing the worst solu-tions so far in an optimization problem. The alternative is to represent theseregions indire
tly, for example in a geneti
 algorithm areas of sear
h spa
ewhi
h are not 
ontributing to �tness will 
onverge to values in whi
h theseareas are avoided.A fourth 
hara
teristi
 that the algorithm will need is the ability to bringtogether 
ompatible fruitful substru
tures, whi
h suggests the use of a pro
esssu
h as re
ombination in GAs.Some more subtle 
hara
teristi
s were dis
overed during early experi-ments with the algorithms. Whilst the 
hara
teristi
s above are not dis-similar to 
hara
teristi
s whi
h have proven useful for optimization, theseother 
hara
teristi
s are more parti
ular to the qualitative example �nding
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problem.One problem with early implementations of heuristi
s for these prob-lems was that solutions whi
h had fruitful stru
tures within them were notre
ognized. Consider a GA-like population based algorithm. We generatea number of solutions, several of whi
h are in 
lassed whi
h haven't beenfound before. However one of these 
ontains a very fruitful substru
ture, butbe
ause only one example of that stru
ture has been found, it is swamped byall of the other less fe
und solutions and sometimes not 
hosen for the nextgeneration at all. We have been experimenting with a 
ouple of remedies forthis problem. The �rst of these (see below) is to use the data about whi
hsolutions 
ome from whi
h parents, and bias the sele
tion s
heme towardsthose individuals whi
h 
ome from parents that were more su

essful at pro-du
ing novel solutions by re
ombination. A se
ond approa
h would be totake individuals, apply a hypermutation to them (i.e. a mutation at manytimes the normal mutation rate) several times, and see whi
h produ
ed mostnovel solutions, then use those as the parents for the next generation.Another problem that has o

urred with a GA based approa
h is thatsometimes the population will only �nd a small number of solutions. Thisobviously eliminates the diversity from the population. Experiments withhypermutation have proven su

essful at getting out of these problem areaswithout losing useful stru
tures within the small number of solutions.
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A GA-based heuristi
.
Our initial experiments have 
on
entrated on produ
ing a geneti
 algorithmbased heuristi
 for these problems. GAs are 
apable of exploiting ni
heswithin a population, and are a sear
h method whi
h is based on the exploita-tion of substru
tures within a sear
h spa
e. Therefore they would seem tobe a good basis for building a qualitative example �nding heuristi
.Clearly the main 
ontrast between traditional GAs and the qualitativeexample �nding problems is that there is no measure of �tness in the latterproblem. It makes no sense to say that one example is \better" than another,or to give it any kind of rating. Our approa
h to managing this is to 
reate a�tness value on the 
y for ea
h individual in ea
h generation. This is entirelydependent on the 
ontext that the individual is in, and the history of whi
hexamples have been found so far in the run.The simplest way in whi
h to allo
ate this �tness is to take ea
h itemin the population, and allo
ate it a �tness of 1 if it is in a 
lass that hasn'tyet had and example, and 0 if it is in a 
lass whi
h already has an example.One disadvantage to this is that it s
ores all items the same, and makesto attempt to identify those whi
h 
ontain substru
tures whi
h are likelyto form the basis for other novel solutions. An alternative method whi
hidenti�es these substru
tures 
onsists of 
al
ulating whi
h members of the
urrent population are novel, giving their parents a s
ore of 1 for ea
h novel
hild, and then assigning the 
hild the sum of its parents' s
ores (�gure 1).
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FIGURE 1 ABOUT HERE
This has been shown to produ
e more novel solutions in a shorter timeon some test problems 
ompared to simply assigning 1 for novel and 0 fornot. Details 
an be found in the paper (Johnson, 2000).Another feature that has proven su

essful in our GA approa
h to thisproblem is to apply a hypermutation when a population 
ontains very fewnovel individuals. When a population has very few novel individuals thenthe diversity of the population in the next round will be very low, be
ausenone of the non-novel solutions will 
ontribute to that round. In the mostextreme 
ase, if only one novel solution is found then there will be 
ompletely
onverged population. To avoid these problems we apply a mu
h highermutation rate for one generation on
e the size of the novel population is belowa threshold. This reintrodu
es enough diversity into the population for it tobe able to begin exploring again, whilst also retaining good substru
turesthat are in the small population.We have also 
arried out experiments on other aspe
ts. Mutation rateexperiments have tended to show that a higher mutation rate than typi
al isideal on our test problems, a rate of 0.1/bit produ
ing good sear
h behaviour.This 
ontrast with the low level of mutation, typi
ally 0.01{0.001/bit, or1bitstring-length (B�a
k, 1996) used in optimization GAs. This gives supportto the idea that mutation is the main way in whi
h these algorithms areexploiting good substru
tures. Another experiment whi
h was less su

essful
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was introdu
ing some random strings into the population ea
h generation toprovide a 
onstant sour
e of diversity|this was too blunt an instrument.Details of these experiments 
an be found in (Johnson, 2000).
Other approa
hes.
The GA approa
h has had some su

ess, and we are looking at other ap-proa
hes whi
h 
ould be used for this problem, either as a 
omplement to orto work alongside the GA.One approa
h whi
h has potential promise is not to populate some arbi-trary \population spa
e" with the obje
ts in the sear
h spa
e, but instead topopulate the sear
h spa
e O with individuals, and provide ways for them tomove through the spa
e, ways for su

essful individuals to breed. Thus ea
hindividual agent would represent a good sear
h strategy for the neighbour-hood in whi
h it is lo
ated, and e
ologi
al notions su
h as 
rowding 
ouldbe used to 
ontrol the exploration of the sear
h spa
e. Similar ideas havebeen used in roboti
s (Watson et al., 1999) and database sear
hing (Degeratuand Men
zer, 2000; Men
zer, 1999; Morton-Firth and Bray, 1998). This ap-proa
h may be more s
alable than the GA approa
h, as the population 
ansplit into smaller subgroups whereas in the GA approa
h the population willoften follow a single ni
he until it is fully exploited, then move onto anotherni
he, rather than exploiting 
ommonalities between ni
hes to explore ea
hni
he in a faster way.Another biologi
al system whi
h might be useful here are arti�
ial im-
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mune systems (Dasgupta, 1998). The idea of an immune system is that itlearns to re
ognize self from non-self obje
ts, so it might be possible to usean immunity inspired system alongside some sear
h method to learn whatparts of the spa
e have already been mined for examples (self) and whi
hremains to be explored (non-self).A �nal alternative might be to 
arry out a more symboli
, mathemati
altreatment of these problems. This 
ould work by the use of some indu
tivepro
ess for learning 
onstraints, e.g. the system 
ould learn that 
ertain partsof the sear
h spa
e are mined out and put a 
onstraint on exploring that partof the spa
e. Constraint programming (Marriott and Stu
key, 1998) 
ouldthen be used to 
al
ulate areas of the sear
h spa
e that are most worthyof future exploration. Other related possibilities would be to analyse setsof 
urrent novel solutions dire
tly for 
ommon substru
tures, and explore
ombinations of these substru
tures.
Con
lusions and questions.
We has dis
ussed the requirements for a sear
h-based qualitative example�nding heuristi
, explained how we have implemented this heuristi
 using avariant on GAs and outlined alternative approa
hes. Our major e�ort nowis 
on
erned with s
aling these approa
hes up to more realisti
 problems. Anumber of outstanding questions remain.

� How well do these methods s
ale to realisti
 problems?
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� How general 
an these heuristi
s be? Will they be 
apable of beingapplied to a wide variety of problems as e.g. GAs, simulated annealingand neural networks have been, or will they need a lot of individualtuning for individual problems?
� How 
an we analyse these methods theoreti
ally? Are there analogiesof Holland's s
hema theorem (Holland, 1975) whi
h will allow us toformalize some of the informal statements about how substru
tures
ome together.
� What kinds of tunable test examples 
an we 
reate whi
h will allow usto test 
onje
tures about how these algorithms work?

CONCLUSIONS.
In this paper we have shown how a large number of problems from severaldi�erent areas 
an be shown to be examples of the qualitative example �ndingproblem. This motivates work on general meta-heuristi
s for this problem.We have shown that the problem is distin
t from a number of other wellknown problems, and dis
ussed how solutions to the well-known problems
an be used as inspiration for our problem area. Finally we have dis
ussedthe design of qualitative example �nding algorithms, and explained how wehave modi�ed the traditional geneti
 algorithm to provide a meta-heuristi
for these problems.

39



ACKNOWLEDGEMENTS.
This paper was �rst given as a resear
h seminar to the information systemsresear
h group at Kingston University, and I would like to thank the membersof that group for their 
omments.

40



REFERENCES
Adams, C. A. (1994). The Knot Book. W.H. Freeman.
Anderson, R. and May, R. (1991). Infe
tious diseases of humans : dynami
sand 
ontrol. Oxford University Press.
Aneziris, C. (1994). Is a knot 
lassi�
ation possible? Preprint DESY-94-230,Deuts
hes Elektronen-Syn
hrotron, Hamburg.
B�a
k, T. (1996). Evolutionary Algorithms in Theory and Pra
ti
e. OxfordUniversity Press.
B�a
k, T., Fogel, D. B., and Mi
halewi
z, Z., editors (1997). Handbook of Evo-lutionary Computation. Oxford University Press / Institute of Physi
s.
Bailey, N. (1975). The Mathemati
al Theory of Infe
tious Diseases and itsAppli
ations. GriÆn.
Baluja, S. (1994). Population-based in
remental learning. Te
hni
al ReportCMU-CS-94-163, Carnegie Mellon University.
Baumslag, G. (1993{present). Magnus: a system for exploring in�nite groups.Mathemati
s Department, City College of New York. Available fromhttp://zebra.s
i.

ny.
uny.edu/web/.
Baumslag, G., Miasnikov, A., Miasnikov, A., and Shpilrain, V. (1999). Onthe Andrews-Curtis equivalen
e. Preprint, City College of New YorkMathemati
s Department. 41



Belew, R. K. (2000). Finding out about : information retrieval and otherte
hnologies for seeking knowledge. Cambridge University Press.
Bentley, P. J., editor (1999). Evolutionary design by 
omputers. A
ademi
Press.
Birman, J. S. and Hirs
h, M. D. (1998). A new algorithm for re
ognizing theunknot. Geometry and Topology, 2:175{220.
Bishop, C. and Hinton, G. (1995). Neural Networks for Pattern Re
ognition.Clarendon Press.
Boden, M. (1990). The Creative Mind: Myths and Me
hanisms. Aba
us.
Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997).Synta
ti
 
lustering of the web. In Sixth World Wide Web Conferen
e.
Brooks, R. A. (1991a). Intelligen
e without reason. Te
hni
al Report (A.I.Memo No. 1293), Massa
husetts Institute of Te
hnology Arti�
al Intel-ligen
e Laboratory.
Brooks, R. A. (1991b). Intelligen
e without representation. Arti�
ial Intel-ligen
e, 47:139{159.
Cal�egari, P., Guidi
, F., Kuonen, P., and Kobler, D. (1997). Parallel island-based geneti
 algorithm for radio network design. Journal of Paralleland Distributed Computing, 47:86{90.

42



Cohen, H. (1999). Colouring without seeing: a problem in ma
hine 
reativity.AISB Quarterly, 102.
Corne, D., Dorigo, M., and Glover, F., editors (1999). New Ideas in Opti-mization. M
Graw-Hill.
Culberson, J. (1998). On the futility of blind sear
h: An algorithmi
 view of`no free lun
h'. Evolutionary Computation, 6(2):109{128.
Dasgupta, D., editor (1998). Arti�
ial Immune Systems and their Appli
a-tions. Springer.
Dasgupta, D. and Attoh-Okine, N. (1997). Immunity-based systems: a sur-vey. In Pro
eedings of the 1997 IEEE International Conferen
e on Sys-tems, Man and Cyberneti
s. IEEE Press.
De Bono, E. (1990). Lateral Thinking. Penguin.
Dean, J. and Henzinger, M. R. (1999). Finding related pages in the worldwide web. In Eighth World Wide Web Conferen
e.
DeAngelis, D. and Gross, L., editors (1992). Individual-based Models andApproa
hes in E
ology. Chapman and Hall.
Deb, K. and Goldberg, D. (1989). An investigation of ni
he and spe
iesformation in geneti
 fun
tion optimization. In (S
ha�er, 1989), pages42{50.

43



Deb, K. and Spears, W. M. (1997). Spe
iation methods. In (B�a
k et al.,1997), pages C6.2.1{C.6.2.5.
Degeratu, M. and Men
zer, F. (2000). Infospiders: Complementing sear
hengines with online browsing agent. Submitted to IAAI-2000.
D'haeseleer, P., Forrest, S., and Helman, P. (1996). An immunologi
al ap-proa
h to 
hange dete
tion: Algorithms, analysis and impli
ations. InIEEE Symposium on Se
urity and Priva
y. IEEE Press.
�Ekart, A. (2000). Shorter �tness distan
e preserving geneti
 programs. In(Fonlupt et al., 2000). Le
ture Notes in Computer S
ien
e 1829.
Epstein, S. (1988). Learning and dis
overy: One system's sear
h for mathe-mati
al knoweldge. Computational Intelligen
e, 4(1):42{53.
Ewald, P. (1994). The Evolution of Infe
tious Disease. Oxford UniversityPress.
Falkenauer, E. (1998). Geneti
 Algorithms and Grouping Problems. Wiley.
Fonlupt, C., Hao, J.-K., Lutton, E., Ronald, E., and S
hoenhauer, M., editors(2000). Arti�
ial Evolution 1999. Springer. Le
ture Notes in ComputerS
ien
e 1829.
Forrest, S., Somayaji, A., and A
kley, D. H. (1997). Building diverse 
om-puter systems. In Sixth IEEE Workshop on Hot Topi
s in OperatingSystems, pages 67{72. IEEE Press.

44



Glover, F. (1989). Tabu sear
h|part I. ORSA Journal on Computing,1(3):190{206.
Glover, F. (1990). Tabu sear
h|part II. ORSA Journal on Computing,2(1):4{32.
Glover, F., Taillard, E., and de Werra, D. (1993). A user's guide to tabusear
h. Annals of Operations Resear
h, 41:3{28.
Goldberg, D. and Ri
hardson, J. (1987). Geneti
 algorithms with sharingfor multimodal fun
tion optimization. In (Gre�enstette, 1987), pages41{49.
Goldberg, D. E. (1989). Geneti
 Algorithms in Sear
h, Optimization andMa
hine Learning. Addison-Wesley.
Gre�enstette, J., editor (1987). Geneti
 Algorithms and their Appli
ations: Pro
eedings of the Se
ond International Conferen
e on Geneti
 Algo-rithms. Erlbaum.
Gr�uninger, T. and Walla
e, D. (1996). Multimodal optimization using ge-neti
 algorithms. Te
hni
al report, Massa
hussets Institute of Te
hnol-ogy Computer Aided Design Laboratory.
Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introdu
tion to the Theoryof Neural Computation. Addison Wesley.

45



Hofstadter, D. and The Fluid Analogies Resear
h Group (1998). Fluid Con-
epts and Creative Analogies. Penguin.
Holland, J. H. (1975). Adaptation in Natural and Arti�
ial Systems. MITPress. Se
ond edition 1992.
Hoste, J., Thistlethwaite, M., and Weeks, J. (1998). The �rst 1,701,936knots. The Mathemati
al Intelligen
er, 20(4):33{48.
Huhns, M. N. and Singh, M. P., editors (1998). Readings in Agents. MorganKaufmann.
Ja
kson, H. (1999). A symbioti
 
oevolutionary approa
h to ar
hite
ture. In(Patrizio et al., 1999), pages 49{54.
Jain, A., Bolle, R., and Pankanti, S., editors (1999). Biometri
s: PersonalIdenti�
ation in Networked So
iety. Kluwer.
Jia, X. and Nixon, M. (1995). Extending the feature ve
tor for automati
fa
e re
ognition. IEEE Transa
tions on Pattern Mat
hing and Ma
hineIntelligen
e, 17(12):1167{1176.
Johnson, C. G. (1999). Exploring the sound-spa
e of synthesis algorithms us-ing intera
tive geneti
 algorithms. In Wiggins, G. A., editor, Pro
eedingsof the AISB Workshop on Arti�
ial Intelligen
e and Musi
al Creativity,Edinburgh.

46



Johnson, C. G. (2000). Qualitative example-�nding using geneti
 algorithms.In John, R. and Birkenhead, R., editors, Pro
eedings of Re
ent Advan
esin Soft Computing 2000. Physi
a-Verlag/Springer.
Jones, V. F. (1985). A polynomial invariant for knots via Von Neumannalgebras. Bulletin of the Ameri
an Mathemati
al So
iety, 12(1).
Kau�man, L. H. (1987). State models and the Jones polynomial. Topology,23(3).
Kau�man, L. H. (1988). New invariants in the theory of knots. Ameri
anMathemati
al Monthly, pages 195{242.
King, R., Muggleton, S., and Sternberg, M. (1992). Drug design by ma-
hine learning: The use of indu
tive logi
 programming to model thestru
ture-a
tivity relationships of trimethoprim analogues binding to di-hydrofolate redu
tase. Pro
eedings of the National A
ademy of S
ien
es,89(23):11322{11326.
King, R., Srinivasan, A., and Sternberg, M. (1995). Relating 
hemi
al a
-tivity to stru
ture: an examination of ILP su

esses. New GenerationComputing, 13(3{4):411{433. See also 
orre
tion in 14(1), page 109.
Koza, J. R. (1992). Geneti
 Programming : On the Programming of Comput-ers by means of Natural Sele
tion. Series in Complex Adaptive Systems.MIT Press.

47



Krzanowski, W. J. (1990). Prin
iples of multivariate analysis : a user'sperspe
tive. Oxford University Press.
Langley, P., Simon, H., Bradshaw, G., and Zytow, J. (1987). S
ienti�
Dis
overy. MIT Press.
Lenat, D. B. and Brown, J. S. (1984). Why am and eurisko appear to work.Arti�
ial Intelligen
e, 23:269{294.
Levine, D. (1994). A Parallel Geneti
 Algorithm for the Set PartitioningProblem. PhD thesis, Illinois Institute of Te
hnology/Argonne NationalLaboratory.
Maes, P. (1994). Agents that redu
e work and information overload. Com-muni
ations of the Asso
iation of Computing Ma
hinery, 37(7).
Mafoud, S. W. (1992). Crowding and presel
tion revisited. In M�anner, R.and Manderi
k, B., editors, Parallel Problem Solving from Nature II,pages 27{36. Elsevier.
Mafoud, S. W. (1997). Ni
hing methods. In (B�a
k et al., 1997), pagesC6.1.1{C6.1.4.
Maley, C. C. (1998). The Evolution of Biodiversity : A Simulation Approa
h.PhD thesis, Massa
husetts Institute of Te
hnology.
Maley, C. C. (1999). Four steps toward open-ended evolution. In Banzhaf,W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M.,

48



and Smith, R. E., editors, Pro
eedings of the Geneti
 and EvolutionaryComputation Conferen
e, pages 1336{1343. Morgan Kaufmann.
Marriott, K. and Stu
key, P. J. (1998). Programming with Constraints. MITPress.
Meehan, J. (1977). Tale-spin, an intera
ive program that writes stories.In Pro
eedings of the Fifth International Joint Conferen
e on Arti�
ialIntelligen
e, pages 91{98.
Men
zer, F. (1999). Is agent-based online sear
h feasible? In Working Notesof the AAAI Spring Symposium on Intelligent Agents in Cyberspa
e.
Men
zer, F. and Belew, R. K. (1998). Lo
al sele
tion. In Porto, V. W.,Saravanan, N., Waagen, D., , and Eiben, A., editors, Evolutionary Pro-gramming VII : Pro
eedings of the Seventh Annual Conferen
e on Evo-lutionary Programming. Springer. Le
ture Notes in Computer S
ien
e.
Men
zer, F., Street, W., and Degeratu, M. (1999). Evolving heterogeneousneural agents by lo
al sele
tion. In Honavar, V., Patel, M., and Balakr-ishnan, K., editors, Advan
es in the Evolutionary Synthesis of NeuralSystems. MIT Press.
Miasnikov, A. D. (1999). Geneti
 algorithms and the Andrews-Curtis 
on-je
ture. International Journal of Algebra and Computation, 9(6).
Miller, B. and Shaw, M. (1995). Geneti
 algorithms with dynami
 ni
he

49



sharing for multimodal fun
tion optimization. Te
hni
al Report 95-010,University of Illinois Geneti
 Algorithms Laboratory.
Miller, J., Kalganova, T., Lipnitskaya, N., and Job, D. (1999). The geneti
algorithm as a dis
overy engine: strange 
ir
uits and new prin
iples. In(Patrizio et al., 1999), pages 65{74.
Mit
hell, M. (1996). An Introdu
tion to Geneti
 Algorithms. Series in Com-plex Adaptive Systems. Bradford Books/MIT Press.
Morton-Firth, C. and Bray, D. (1998). Predi
ting temporal 
u
tuationsin an intra
ellular signalling pathway. Journal of Theoreti
al Biology,192:117{128.
Murasugi, K. (1996). Knot Theory and its Appli
ations. Birkh�auser.
Nelson, P. (1999). Creativity and embodied rationalization. In Patrizio, A.,Wiggins, G. A., and Pain, H., editors, Pro
eedings of the AISB'99 Sym-posium on Musi
al Creativity, pages 1{6. So
iety for Arti�
al Intelligen
eand the Simulation of Behaviour.
Nesse, R. and Williams, G. (1995). Evolution and Healing : The New S
ien
eof Darwinian Medi
ine. Weidenfeld and Ni
holson.
Nowak, M. A. and Sigmund, K. (1992). Tit for tat in heterogeneous popula-tions. Nature, 355:250{253.
Osman, I. (1996). Meta-heuristi
s. Kluwer A
ademi
 Publishers.

50



Parmee, I. (1996). Towards an optimal engineering design pro
ess usingappropriate adaptive sear
h strategies. Journal of Engineerign Design,7(4):341{362.
Parmee, I. (1997). Cluster-oriented geneti
 algorithms (
oga's) for the identi-�
ation of high-performan
e regions of design spa
es. Journal of Appliedand Industrial Mathemati
s.
Parmee, I. (1998). Evolutionary and adaptive strategies for eÆ
ient sear
ha
ross whole system engineering design hierar
hies. Arti�
ial Intelligen
efor Engineering Design, Analysis and Manufa
turing, 12:431{445.
Partridge, D. and Rowe, J. (1994). Computers and Creativity. Intelle
tBooks.
Patrizio, A., Wiggins, G. A., and Pain, H., editors (1999). Pro
eedings ofthe AISB'99 Symposium on Creative Evolutionary Systems. So
iety forArti�
al Intelligen
e and the Simulation of Behaviour.
P�etrowski, A. (1996). A 
learing pro
edure as a ni
hing method for geneti
algorithms. In IEEE International Conferen
e on Evolutionary Compu-tation. IEEE Press.
Piatetsky-Shapiro, G. and Frawley, W. J., editors (1991). Knowledge Dis-
overy in Databases. AAAI Press / The MIT Press.
Polya, G. (1945). How to Solve It: A New Aspe
t of Mathemati
al Method.Prin
eton University Press. 51



Ra
ter (1984). The Poli
eman's Beard is Half-Constru
ted. Warner Books.
Reeves, C. R., editor (1993). Modern Heuristi
 Te
hniques for CombinatorialProblems. Bla
kwells.
Rit
hie, G. and Hanna, F. (1984). am: A 
ase study in AI methodology.Arti�
ial Intelligen
e, 23:249{268.
Robillard, D. and Fonlupt, C. (2000). A shepherd and a sheepdog to guideevolutionary 
omputation. In (Fonlupt et al., 2000). Le
ture Notes inComputer S
ien
e 1829.
Rosenman, M. (2000). Evolutionary 
ase-based design. In (Fonlupt et al.,2000). Le
ture Notes in Computer S
ien
e 1829.
S
ha�er, J., editor (1989). Pro
eedings of the Third International Conferen
eon Geneti
 Algorithms. Morgan Kau�mann.
Sebag, M. and S
hoenauer, M. (1997). A so
iety of hill-
limbers. In IEEEInternational Conferen
e on Evolutionary Computation. IEEE Press.
Tanese, R. (1987). Parallel geneti
 algorithm for a hyper
ube. In (Gre�en-stette, 1987), pages 177{183.
Tanese, R. (1989). Distributed geneti
 algorithms. In (S
ha�er, 1989), pages434{439.
Tuson, A. L. (1999). No Optimisation Without Representation. PhD thesis,University of Edinburgh. 52



van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths, London.
Watson, R. A., Fi
i
i, S. G., and Polla
k, J. B. (1999). Embodied evolution:Embodying an evolutionary algorithm in a population of robots. InAngeline, P., Mi
halewi
z, Z., S
hoenhauer, M., Yao, X., and Zalzala, A.,editors, Pro
eedings of the 1999 Congress on Evolutionary Computation,pages 335{342. IEEE Press.
Witten, E. (1989). Quantum-�eld theory and the Jones polynomial. Com-muni
ations in Mathemati
al Physi
s, 121(3):351{399.
Wolfram, S. (1994). Cellular Automata and Complexity. Addison Wesley.
Wolpert, D. H. and Ma
ready, W. G. (1995). No free lun
h theorems forsear
h. Te
hni
al Report Te
hni
al Report SFI-TR-95-02-010, Santa FeInstitute.
Yin, X. and Germay, N. (1993). A fast geneti
 algorithm with sharing s
hemeusing 
luster analysis methods in multimodal fun
tion optimization. InAlbre
ht, R., Reeves, C., and Steele, N., editors, International Con-feren
e on Arti�
ial Neural Networks and Geneti
 Algorithms, pages450{457. Springer.

53



�gure 1

Stage 1. Identify the novel solutions

Pass fitness back to parentsStage 2.

1 2

Stage 3. Pass the accumulated fitness back to the children

3 42

20

2

0 21 2



Figure 
aptions.
Figure 1: A three-part algorithm for on the 
y �tness assignment.


