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Abstract

This thesis presents the functional analysis and design methodology FAD. By func-
tional we mean that it naturally supports software development within the functional
programming paradigm (FP).

Every popular methodology has a graphical modelling language which presents vari-
ous pictorial representations of a system. FAD’s modelling language provides the typical
elements of functional programming, types and functions, plus elements to support mod-
ular development such as modules, subsystems and two forms of signature which specify
an interface or a behavioural requirement. The language also includes relationships and
associations between these elements, and provides simple representations of functional
designs. The methodology has an integrated set of techniques which guide the develop-
ment of an implementable solution from the deliverables of requirements engineering.
FAD’s data dictionary provides an organised repository for entities during and after
development.

The thesis thus provides a development medium which has been hitherto absent

from the functional programming paradigm.
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Chapter 1

Introduction

1.1 Motivation

Developing well-designed software is difficult; developing poorly designed software is a
lot easier. Anybody with some programming skills can produce programs that satisfy
some basic stated requirements. Problems may arise when the code is passed to some-
body else to maintain or one attempts to reuse elements of the program or the program
itself. Can segments of code be used independently of the program for which they were
originally developed? What are the major data structures of the system and how are
they constructed? What is the major functionality supported by the system? If one
makes changes to a certain piece of code what effect will this have? If the answers to
these types of questions tend to be negative or difficult to determine the software is
probably poorly designed. Unfortunately good design does not flow naturally from the
fingertips of programmers.

Good design requires support.

Some support is provided by programming languages. Object-oriented (OO) lan-
guages provide mechanisms for developing software built on units that encapsulate their
state and provide an explicit interface for potential clients. Thus, if practised sensibly,
one can develop software where changes have a local effect, significant elements are
reusable and can be reused independently. However practising sensible OO develop-
ment is not a trivial process. OO developers can seek help from a plethora of OO
analysis and design methodologies and various rules, heuristics and laws which provide

substantial guidance and support.



2 CHAPTER 1. INTRODUCTION

Programmers who use imperative languages have for some time been encouraged
to adopt a structured programming approach supported by various structured analysis
and/or design methodologies. In common with object-orientation, the development
paradigm is consistent within all the media of development.

Therefore when deciding which software development approach to adopt, the support
afforded by either of these paradigms may have a significant influence.

It is certainly the case that the functional programming (FP) paradigm has been rel-
atively unsuccessful in competing in the marketplace with the object-oriented and struc-
tured paradigms. Although one can enumerate an ever growing list of ‘real world’ appli-
cations [141, 123] written in functional languages, in comparison to the other paradigms
it is relatively insignificant. Proponents of the FP paradigm can present several good
reasons why it should be adopted in preference to its competitors. For example, the
higher-order and typed (HOT) characteristics of modern FP languages have certainly
influenced the design of non-FP languages such as Java. However one can present a
range of historical (programming and non-programming related) cases where the fittest
didn’t always survive, and therefore, there is clearly a need to focus on the possible
reasons for this slow uptake, and resolve as many of the problems as possible.

Wadler addresses this issue in his paper Why no one uses functional languages [142]
where he includes among the historic reasons: that functional languages are often under
active development, the non-compatibility with existing code written in other languages,
the relative lack of language libraries to support software reuse, and the dearth of soft-
ware development tools including software development methodologies which support
implementation in a functional language.

The Haskell community has recently defined Haskell 98 [100], a stable version of
Haskell allowing potential users to adopt it without fear of imminent change. Haskell
is now available in various implementations including the interpreter Hugs [67], GHC
[104] and the University of Chalmers’s HBC compiler [55]. Standard ML [88] is evidence
of similar developments within the ML community.

Compatibility with code written in other languages is addressed through recent work
on H/Direct which allows a functional language, Haskell, to inter-operate with C and
COM, and allows a Haskell component to be wrapped in a C or COM interface [42].

Software libraries are being developed to support a variety of application domains
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in the functional paradigm. For example, TclHaskell is a library of functions for writing
platform independent, graphical user interfaces in Haskell [135] and FranTk, a declara-
tive library for building GUIs in Haskell [48].

There has also been a lot of excellent work on developing correct programs [124] and
in the complementary areas such as compiler efficiency [128, 5]. What has been lacking
however, is a parallel focus on the development of certain support materials.

Some profilers have been developed [121], a lot of research is focusing on improv-
ing error messages [40, 10] and a small amount of work has been done on debug-
ger development [136], but software development methodologies to support functional
programming-in-the-large are virtually non-existent.

Particular languages such as Erlang [6] are accompanied by development environ-
ments, but for functional programming to be taken seriously, and not to be viewed as a
toy to be either played with in academic departments or research groups, or whose only
use is as an executable prototyping tool, then we need to support development using any
functional language with language-independent but paradigm-dependent analysis and
design methodologies and their accompanying CASE tools. Functional programming’s
competitors have not only been doing this for some time but they have also been doing

it with evident success.

1.2 Graphical Notation

A functional analysis and design methodology requires a modelling language whose ele-
ments deliver natural models of functional programming designs. A graphical language
is preferable since one is focusing on modelling abstractions rather than algorithmic
details. Graphical representations of functional programs have been used for sometime
albeit informally. For example, in Figure 1 we present a box-and-arrow (or purely func-
tional data flow) diagram of a function which returns the sum of the integers within a
stated range [111]. Jeffrey [45] has written a Java applet Flow Graph Editor in which
one can create such diagrams.

One would be hard pushed to claim that the diagram is easier to understand than

the equivalent code written in Haskell which also includes explicit type information.
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Figure 1: Box-and-Arrow Diagram

sumBetween :: Int -> Int -> Int

sumBetween x y

= let sumG =x +y
diffG =x - y
sizel = abs diffG + 1

in sumG * sizel ‘div‘ 2

Cardelli [24] and Reekie [112] describe notations for visual functional programming
languages in which functions are defined graphically. However, once again the focus is

on representing algorithms rather than abstract models of programs.

1.3 Overview of the Thesis

This thesis presents an analysis and design methodology which supports software devel-
opment in the functional programming paradigm. The methodology uses a modelling
language which supports the elements of functional programming and naturally models
functional designs.

Chapter 2, Object-Orientation, provides a description of the OO paradigm, with an
emphasis on the features which significantly affect software development. We chose to
focus on OO rather than the structured approach since OO is certainly the predominant
paradigm for developing new software. The OO features are highlighted both within the
languages of the paradigm and its methodologies. We argue that adopting a packaged
approach using a methodology and implementation language of the same paradigm
should improve the development process and remove a lot of accidental complexity due
to having to switch from one paradigm to another.

Chapter 3, Functional Programming, provides a similar description of the functional
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programming paradigm, drawing comparisons where appropriate with OO. FP is a sig-
nificantly different approach to developing software, and therefore, requires significantly
different methodologies to support the process.

Chapter 4, Analysis and Design Methodologies, gives a brief description of method-
ologies, their modelling languages and the techniques which together deliver a method-
ology.

Chapter 5, FAD Modelling Language, describes the modelling language of the Func-
tional Analysis and Design Methodology (FAD). We describe each of the elements of
the language which are used to model FAD designs. In the first section a case study
is described which provides a major example upon which the language and techniques
of the methodology can be illustrated. The case study is the development of an auto-
mated football results processing system. A data entry clerk enters recent results and
can request the generation of various football-related information. The case study was
chosen because it is large enough to illustrate the application of the methodology but
small enough to comprehend fully. Each element of the language is accompanied by
its graphical notation. The syntax and semantics of the methodology’s diagrams are
presented in an informal manner.

Chapter 6, FAD Functional Designs, presents illustrative examples of the ease with
which functional designs can be modelled in FAD.

Chapter 7, FAD Methodology, describes the methodology as a list of tasks. The
presentational style is linear, within the phases analysis and design but we emphasise
that the methodology should be practised as an iterative and incremental process. The
methodology includes several techniques, many of which are used within more than
one task. Each technique is describe in terms of its required inputs, deliverables and
activities. The deliverables are typically presented in diagrams and recorded in various
documentation.

Chapter 8, Data Dictionary, presents an overview of the data dictionary which deliv-
ers an efficiently organised medium for storing entities. This supports the development
of designs built on existing entities, and the discovery of common abstractions. Each
entity is recorded in a description document which provides keys to their storage loca-
tion.

Finally, Chapter 9, Summary, summarises the thesis and lists its key contributions.



6 CHAPTER 1. INTRODUCTION

Future research and development requirements are presented including the need for
CASE tools to support the use of the methodology.

Throughout this thesis the names of case study entities - types, functions, signatures,
modules, subsystems, files and projects - are presented in teletype, as is implemen-
tation language code. All functional programs in this thesis are written in Haskell 98.
Object-oriented models are developed in UML [16]. Each FAD technique is introduced
in talics which are also occasionally used for emphasis. Non-code example names are

written in bold font.



Chapter 2

Object-Orientation

Much has been written about object-oriented (OO) software development. It has been
variously described as evolutionary, revolutionary or both when compared to its prede-
cessors. Whichever is the case it has been successful when measured in terms of the
number of job adverts requiring skills in particular OO languages or OO development in
general. The sizeable number of object-oriented languages (OOLs) and object-oriented
analysis and design methodologies (OOADMs) are supported by innumerable texts, lan-
guage implementations and CASE support tools. There is a wide variety of texts on spe-
cific languages such as Java [36, 148], Smalltalk [56, 51], Eiffel [115], C++ [133, 85, 86,
and JavaScript [44], and equally prolific are the texts on particular OOADMs including
the Booch Method [15, 82], OMT [120], OOSE/Objectory [64], Fusion [30] and more re-
cently development approaches supported by the modelling language UML [16, 46, 109].
CASE tools include Rational’s Rose [33, 34] which supports Booch, OMT, and UML no-
tation, and OOAT 00l™™ and OODTool™ which support Coad/Yourdon’s OOA/OOD
methodologies [28, 29].

The ubiquity of the object-oriented paradigm in its various guises leads one to con-
clude that the argument often-made that the object-oriented (OO) approach is the most
natural and robust way to develop software, through its focus on managing dependen-
cies, is certainly not vacuous [82, 29]. Budd [21] provides a quote from Newsweek which

gives an insight into the reasons for the popularity of object-orientation

Unlike the usual programming method - writing software one line at a time
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- NeXT’s “object-oriented” system offers larger building blocks that devel-

opers can quickly assemble the way a kid builds faces on Mr. Potato Head.

There are however other reasons for OO’s popularity. Software can be developed
from its inception, through to implementation and beyond, within the OO paradigm.
That is, one can adopt a single packaged approach to software development aided by
a significant number of modelling languages, methodologies and CASE tools. Object-
orientation is presented as a software development philosophy and not simply a term
for classifying a collection of implementation languages. Each member of the paradigm
supports, at a certain level of abstraction, a consistent approach to software develop-
ment.

In this chapter we present an overview of the paradigm with an emphasis on those
features that have a major impact on software development. In the first section we
describe the features of the paradigm that have a significant effect on software develop-
ment, and in some cases, distinguish it from other paradigms. These include: objects
and classes as the fundamental building blocks of the paradigm; inheritance, composi-
tion and aggregation as the essential glue for construction of programs; and, inclusion
polymorphism, dynamic binding and subtyping, which provide significant support for
reuse. Where appropriate we will provide the motivation for the introduction of a
feature and draw comparisons with its predecessors such as structured development.
Section 2.2 presents an overview of current OO languages highlighting their similarities
and differences. We discuss single and multiple inheritance, and the various approaches
to encapsulation. This is followed in Section 2.3 with a review of existing analysis and
design methodologies and modelling languages. We conclude with some brief remarks
on the benefits of analyzing, developing, and implementing software wholly within the
OO paradigm. Where possible we will endeavour to introduce notation before using it,

but will undoubtedly on occasion be unable to uphold this principle.

2.1 The OO Paradigm — Motivation and Features

The object-oriented paradigm is evident in a collection of programming languages, soft-
ware development methodologies and database systems. There are actually two OO

paradigms. The ‘classical’ OO paradigm which refers to the class/object approach,
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and the ‘delegation/prototyping’ OO paradigm where objects delegate responsibility to
other objects, as in the languages Self [137] and JavaScript [44]. We will primarily focus
on the classical approach since most OO languages and OOADMSs adopt this paradigm.

Object-Orientation: Evolution or Revolution

Object-orientation is described by some of its proponents as both an evolution and a
revolution [21]. It is an evolution because it follows on naturally from earlier software
development approaches. OO has addressed the various problems with the structured
development approach. These include its lack of support for modularity, the potential for
data insecurity due to the separation of data and functionality, and the higher priority
given to the solution domain rather than the problem domain. However the foundations
of most OO languages remain imperative in nature. One must not forget of course that
structured programming was itself a reaction to problems with its predecessors [38, 35].

0O is regarded as revolutionary since it adopts an approach to modelling a software
solution that is significantly different from its predecessors [82]. Where the structured
approach focuses on data and processes that are universally accessible, OO describes
them through abstractions which hide their details, and instead presents an explicit
interface for any potential clients. Although structured programming is sometimes
referred to as a predecessor of OO they were actually mooted at the same time [35].
However structured programming was easier to put into practice due to the availability
of appropriate languages.

Booch [15] and others disagree with this revolutionary emphasis, and argue that OO
simply reflected developments in various fields of computer science in the early 1970s.
Objects were introduced to deal with the increasing complexity of software systems. For
example, database technology introduced the idea of the entity-relationship approach to
data modelling [119, 26] where a system is described as a set of entities, their attributes
and relationships. Entities in entity-relationship diagrams (ERDs) are similar to classes

without the operations.

Object-Orientation: Approach to Software Development

OO software is developed through a collection of interacting, extensible, abstractions

which host their own state, provide mechanisms for manipulating the state, and deliver
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an explicit behavioural contract to other abstractions. That is, OO delivers an archi-
tecture within which control is decentralised to a focused collection of entities. The OO
software engineering philosophy is to be problem-centred rather than solution-centred.
One should therefore describe and model the problem in terms that are familiar to the
system user and not to the computer professional. That is, one models tangible and
intangible problem elements as abstractions in which data and process are combined.
Systems are developed through extending these abstractions and declaring other
associations to support communication between the abstractions. The communications
are controlled via an explicit interface. That is, each abstraction knows enough and
no more about any abstraction with which it communicates. This is achieved through
building the abstractions guided by the complementary concepts of abstraction and

encapsulation. Pooley and Stevens [109] summarize these terms in the following manner.

Abstraction is when a client of a module doesn’t need to know more than
is in the interface. Encapsulation is when a client of a module isn’t able to

know more than is in the interface.

Thus, OO is explicitly modular, encourages information hiding through encapsula-
tion of state and functionality, and if practised effectively should minimise maintenance
costs and maximise reuse. These are not characteristics of object-orientation’s historic
competitors. Action-oriented structured development is procedure-driven and thus sup-
ports techniques for procedure development. These include algorithmic decomposition
through the stepwise refinement of procedures, and building algorithms through the
three constructs: sequence, selection and iteration [12]. Although adopting a structured
approach should result in effective procedural code, it provides limited support for the
development of complex systems and certainly no support for developing models which
can be naturally implemented in an OO language. Structured programming is supported
by methodologies including SSADM [41] and SA/SD [152, 153]. SSADM, in common
with most structured programming methodologies, emphasizes three views of a system:
structural, functional and dynamic, each supported by graphical representations in the
form of logical data structure diagrams (or entity-relationship diagrams), data flow dia-
grams and entity life history diagrams. Although the structured approach recognises the

importance of describing the data in the system through entities and their attributes
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as first described by DeMarco [37], and also supports entity subtype/supertype rela-
tionships, each entity has no behavioural characteristics and is acted upon by external
procedures and functions.

The models produced through the adoption of structured methodologies are most
naturally implemented in various imperative languages such as C [72], and COBOL
[130]. Although data-driven design methodologies such as JSD [134] (Jackson System
Development) do promote more of a problem focus, where the structure of the solution
mirrors the structure of the data being processed, they still encourage a structured
approach to algorithm development and lack support for modularity and information
hiding.

Object FAQ [92], a web site which provides answers to frequently asked questions
regarding object technology and object-orientation, presents the following motivation

for the introduction of object-orientation.

Modelling in analysis and software design and languages for programming
originally focused on process. But many metrics and results indicated the
process approach was problematic and a limiting factor in what could be
achieved, perhaps by several orders of magnitude, which led to the software
crisis [14]...The inclusion of objects to better represent concepts and process
offers a superior capability that can be viewed as an improvement over the
older (structured) techniques, or as a totally reengineered breakthrough ad-
vance resulting from philosophical inquiry and methodological improvement,

the latter in terms of both pedagogy and pragmatics.

In common with any paradigm there is some debate regarding what constitutes
object-orientation. Cardelli and Wegner [25] use the following equation in describing

OO0 languages.
object-oriented = data abstractions + object types + type inheritance

This equation describes OO languages as extensions of procedure-oriented (or imper-
ative) languages which support data abstractions, collecting objects with a common
interface (type), and construction of a new interface through inheritance. If one re-
moved the last operand, the right hand side of the equation would describe object-based

languages. Coad [28] provides a different but similar equation whose right hand side is:
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classes and objects + inheritance + communication with messages

This equation describes the significant majority of OO languages which create objects
through the instantiation of a class. These languages are typically referred to as class-
based languages. This equation also indicates that objects are a mechanism for encapsu-
lation, where behaviour is implemented through objects communicating via messages.
In the following sections we describe the essential features of OO and how they
influence software development within the paradigm. They include objects and classes,
inheritance, composition and aggregation, and inclusion polymorphism and subtyping.

The first and most obvious feature is the use of objects as software building blocks.

2.1.1 The Building Blocks — Objects and their Classes

An object is a mechanism for encapsulation and abstraction. It hosts state, the methods
which act on the state, and an interface to the object for any potential clients. Thus an
object normally has a number of named attributes or variables representing its state, and
a collection of methods that implement the behaviour required of the object. A subset
of these methods and attributes, typically empty in the latter case, will be specified in
the object’s interface. Each object actually presents two interfaces sometimes referred
to as the public and protected interfaces. The public interface is the interface presented
to all potential clients and we will refer to this simply as the interface. The protected
interface is presented to clients from within the object’s inheritance hierarchy. We
describe inheritance and clarify this distinction in Section 2.1.2. Each object has a
unique identity which is independent of the values of its variables.

OO0 development emphasizes the separation of what from how through encapsulation
and abstraction. A client module wants to know what it can do with a server module,
and not how the server supports this functionality. An object’s interface specifies the
what, with the how largely inaccessible to clients. One can therefore quite naturally
adopt Parnas’s information hiding modular development criterion when developing OO

software [95], using objects as the mechanism for information hiding.

Class-based versus delegation-based

Most object-oriented languages are class-based and thus sit within the classical OO

paradigm. Objects are created through the instantiation of an abstraction called a class
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which defines each of its object’s attributes, methods and interface. It is not uncommon
to equate an object’s class and its type. However the object-oriented view of a type is
as a behaviour specification. Since an object’s interface specifies behaviour, every object
of a class shares a type. However, objects of other classes may also support the same
behaviour and therefore have the same type. In addition, an object may support a
subset of the behaviour declared in its class, and thus an object can have more than one
type. The relationship between classes and types are generally linked to the inheritance
mechanism that we describe in Section 2.1.2. Thus the class X defines objects with a
single constructor method (also called X), a single attribute i of type int, and two other
methods methodl and method2. The three methods together form the interface specified
by the class as indicated by the keyword public. The keyword private indicates that
the attribute is not part of the interface. The object xObject is an instantiation of the

class X.

class X {
public X(int n){i=n;}
public int method1(Y y){
return (ixy.get());}
public int method2(){
return i;}
private int i;
}
X x0Object;

In dynamically-typed, class-based languages such as Smalltalk, an object’s class
is simply used for object implementation and not to provide type information. In
statically-typed languages like Java, a class both provides object implementation de-
tails, including mechanisms for object construction, and type information through the
declared interface.

One can decouple interface declaration from implementation declaration through
only providing specifications and no implementations in a class declaration. Implemen-
tations can be added to a class which inherits from an ‘interface-only’ class. A full

description of the inheritance mechanism is presented in Section 2.1.2. A class which
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provides either no implementations or an incomplete set of implementations is referred
to as an abstract class or alternatively an abstract base class or abstract parent class.
The latter two names signal their use in class development through inheritance. Since
an abstract class provides an incomplete blueprint for an object, there are no objects
of the class. However one can use abstract classes to declare an interface that will be
supported by any object whose class inherits from the abstract class. Thus the class X
could inherit from the abstract class, AbstractX. The keyword abstract indicates that
the class is abstract and therefore has no instance objects. An abstract method does

not have a method body, and therefore requires definition in any subclass.

abstract class AbstractX {
public X(int n){i=n;}
public abstract int method1(Y);
public int method2(SubY y){
return i;}

private int i;

JavaScript and Self are OO languages which are not class-based. These are delega-
tion/prototyping languages where object prototypes are used as the mechanism for the
creation of new objects with extended behaviour. These are created through the addi-
tion of methods and/or attributes to those provided by the prototype object. This form
of OO is sometimes referred to as single hierarchy since one simply has a hierarchy of
objects (and no hierarchy of classes). Languages of this paradigm support both static

and dynamic inheritance which we will discuss in Section 2.1.2.

Message Passing

Communication between objects is marshalled via their public interfaces. Budd [21]

presents his first principle of object-oriented problem solving as

action is initiated in object-oriented programming by the transmission of a

message to an agent (an object) responsible for the action.

That is, a message is passed to an object, where the message includes information

about which method to call and with which arguments. The object is responsible for
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invoking the method that satisfies the request. The behaviour of an object may depend
both on the method’s parameter values and on the values of the object’s attributes.
That is, it is not unusual for behaviour to be dependent on the state as it is in im-
perative systems. The difference is that the state is typically local rather than global.
In functional programming systems, behaviour depends solely on a function’s inputted
values.

Ideally one should be able to send a message to any object capable of invoking
the appropriate method. In practice, most OO languages are statically-typed which
imposes constraints on which objects can receive a message. Whatever the typing
mechanism method invocation is controlled by the object receiving the message. The
route of message passing between objects has a significant effect on the amount of
coupling between objects. The Law of Demeter [77], named after an object-oriented
programming tool, provides guidance on the development of interacting objects. It

states that an object, in response to a message, should only send messages to:
e the object itself or one of its attribute objects;
e objects created due to the message; or,
e an object provided as an argument to the message.

The tool will check whether a program conforms to the law.
The following section presents an overview of the OO mechanisms for developing
software using objects and classes as the basic building blocks. These include attribute

objects and objects as arguments alluded to in the Law of Demeter.

2.1.2 The Glue

In this section we describe various mechanisms for building OO software. These include
inheritance, attribute objects and objects as arguments to methods. It is clear that ob-
jects and their classes provide a mechanism for modular software development guided
by the requirements of encapsulation and abstraction. What distinguishes object-
orientation from abstraction (or object) based development, which is supported by
languages such as Modula-2 [150], is inheritance [15]. This is the primary develop-

ment mechanism used within the object-oriented paradigm. It is a mechanism that,



16 CHAPTER 2. OBJECT-ORIENTATION

for better or worse, supports a range of use semantics including interface reuse, inter-
face extension, and implementation or code reuse. Before describing other development

mechanisms, we describe the various forms of inheritance.

Inheritance
The verb to inherit has two transitive definitions [31]

to receive by legal descent, as heir or,
to derive from parents

and a single intransitive definition
to succeed as heir.

It is the second of the transitive definitions that best describes inheritance within the
classical OO paradigm. A parent class is a class from which another class derives some
of its features. Each class-based OO language either supports single inheritance, where
a class can only inherit from a single class, or multiple inheritance, which supports
multiple parent classes. Inheritance within the delegation/prototyping paradigm, links
an object to a list of objects to which it delegates some of its responsibilities.

The terms ‘parent class’ and ‘child class’ are accepted terminology within the clas-
sical OO paradigm [16]. They are also referred to as a superclass and subclass. In fact,
both the verb and the inheritance relation are transitive. That is, if the class A inherits
from the class B, and B inherits from the class C, then A inherits from C. To take
the parental metaphor one step further, C is a grandparent of A. Thus when using a
class-based language one develops a hierarchy of classes linked through inheritance.

A class Child which inherits from a class Parent can adopt the attribute and method
specifications, any attribute and method implementations, and the interface of the class
Parent. If the class Parent is abstract then any non-implemented methods can be
implemented in the Child class. Any implemented method of the class Parent can either
be adopted or overridden by the class Child. An object of the Child class typically
has special privileges in regard to access to entities of an object of the Parent class.
These access rights are declared in the protected interface of the Parent class which is

typically the public interface of the class plus some attributes which are hidden from
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general clients. We illustrate inheritance using the classes X and AbstractX referred to
earlier in this chapter. X inherits the attributes and methods of AbstractX and provides

an implementation for method1.

abstract class AbstractX {
public X(int n){int i=n;}
public abstract int method1(Y);
public int method2(SubY y){

return 1i;}

private int i;

}

class X extends AbstractX {
public int methodl(Y y){

return (ixy.get());}

The mechanics of interface declaration are language-specific, some of which are presented

in Section 2.2.

Statically-typed, class-based OO languages only support static inheritance, or inher-
itance declared at compile time. Smalltalk, a dynamically-typed, class-based language
and delegation/prototype languages support both static and dynamic inheritance. That

is, one can create new forms of objects through inheritance at run time.

Every object of a class presents to clients the interface declared in the class. They
can also present the interface of any ancestor class. Hence, two objects can have different
classes but support the same behaviour as described by an interface. They thus have
the same type. Thus an object can have more than one type, and a type be exhibited by
objects of more than one class. In statically-typed, class-based languages, each variable
is declared with an explicit class which states the variable’s type. The variable can
then be assigned any object of the stated class or its subclasses. In dynamically-typed
languages, a check to determine if an object’s class supports a required interface is
performed at run time, and therefore one is not constrained to use objects of classes

within a particular inheritance chain.
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Inheritance is object-orientation’s primary mechanism for reusing existing entities.
Since an object has three roles, a host of a set of attributes which make up the object’s
state, state manipulation through its methods, and access control through an interface,
inheritance can enable reuse of any combination of these. Thus a child class could inherit
only an interface from a parent class if that is all the parent class provides. Alternatively
a child class could inherit attributes, functionality and an interface from its parent. This
overloading of the inheritance mechanism can be viewed as both a positive and negative
feature. It is positive simply because it is overloaded, and thus one can achieve multiple
versions of reuse with the same mechanism. It is however a negative feature, since the
semantics of a particular application of inheritance is a function of the characteristics
of the parent class and child class, and not of the inheritance mechanism itself. Budd
[21] presents a comprehensive list of the various forms of inheritance.

The combination of multiple role abstractions, and development through extension
has important implications for software development within the paradigm. One is re-
quired in some sense to ‘see the future’ when modelling a collection of classes. Several

questions need to be answered which include:

e Will the class’s interface ever be reused without its implementations?
e Will I need a class with a subset of the functionality of the class?

e Will I need a class with more functionality than the class but less than another

class that is being developed through inheritance?

Many texts on object-orientation devote substantial space to warnings about overuse
or misuse of inheritance, often describing alternative designs available to the developer
[49]. Although one can reuse code through inheritance it is generally accepted as bad
practice since it breaks class-based encapsulation. A child class that reuses implementa-
tions from a parent class is tightly coupled to the parent class and, therefore, any change
to implementations in the parent class could potentially have an effect in the child class.
In addition, program correctness can be difficult to determine since an object’s response
to a message may be a method declared in an ancestor class.

Meyer’s design by contract [84] has addressed this issue through the introduction of
some formal rules of practice. These rules give formal guidance on the behaviour of a

method, and on the development of overridden methods in subclasses. The rules require
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that a method should be accompanied by one or more preconditions (require clauses) on
input values and host object attribute values, and state-related postconditions (ensure
clauses). Methods which are overridden in child classes must have require clauses that
are no more constraining then their ancestors, and ensure clauses which are no less
constraining. Design by contract makes explicit the need for behavioural consistency
between classes and their subclasses, where overridden methods in a child class preserve
the behavioural characteristics of their parental counterparts. Design by contract is
supported by the OO language Eiffel, and by the modelling language of BON (Business
Object Notation) [143], but it is not generally supported by OO languages or OOADMs.

In summary, although inheritance provides a useful and natural medium for reusing
interfaces and implementations, it can result in software built on tightly coupled mod-
ules, which is poor modular design. In addition, the reliance on inheritance for class
and object building requires the developer to foresee any potential future developments,
which makes iterative development difficult. Gamma [49] points to the problem of in-
heritance hierarchies continually having to be rearranged as the prime motivator of
his work on reusable design patterns. In the following section we describe alternative

mechanisms for developing OO software.

Other OO Glue

A developer using the object-oriented paradigm can draw upon other non-inheritance
object/class associations during system development. They include passing objects as
parameters to methods, and objects as attributes of other objects.

The functional programming paradigm and the object-oriented paradigm differ in
which constructs are first-class where first-class constructs are those that can be treated
like any data value. Functions are first-class in functional programming and therefore
can appear in data structures and be supplied as arguments to functions. Objects are
first-class in the object-oriented paradigm and for example, can be passed as parameters
to methods of other objects. In a pure OO language with no non-object values, only
objects (or in certain cases classes (see Section 2.2)) can be passed as arguments to
methods.

An alternative to adopting another class’s behaviour through inheritance is to build

objects which ‘include’ other objects as attributes. There are two general forms of
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object attribution. The first is where the object attribute is declared in the host object,
and thus is dependent for its existence on its host. This is sometimes referred to as
composition or composite aggregation. In the second form the attribute object could
be declared independently of any potential host object, which associates itself with the
attribute through a variable which references the used object. Thus the attribute object
may be used in this manner by several other objects. This form of object attribution
is sometimes referred to as aggregation and simply declares an association between the
client and server object. Support for these mechanisms is language-dependent. For
example, C++ supports both composition and aggregation, where others such as Eiffel

and Java only support aggregation.

Attribute objects can either be used as an alternative to implementation reuse
through inheritance or in collusion with inheritance. When used as an alternative one
benefits from the decoupling of the implementation of the used (server) object and the
implementation of the client object. The host object can then delegate method respon-
sibility to an attribute object. This highlights a tension between the development of
a system through a natural model of the problem, and providing a model which can
be implemented in the most efficient manner. For example, if an item A ‘s o’ B with
some added features, then the most natural object-oriented design is one where class
A inherits from class B. However, a containment (or ‘has a’) relationship may be more

appropriate as an implementation mechanism.

Development through attribution increases the potential for reuse. In a statically-
typed language, any inheritance-based development must be declared at compile time.
In contrast, if an object of class A ‘has an’ attribute of class B, the object assigned to
the attribute variable can be of class B or any of its subclasses. This will be determined
at run time. That is, attribution and inheritance can be used in tandem to deliver a

design that maximises reuse.

In summary, OO provides several mechanisms for building software which take ad-
vantage of the primary role played by objects, and in most cases, their classes. One
is also provided with a means of maximising the use of language constructs through

polymorphism.
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2.1.3 Polymorphism

Object-orientation supports three forms of polymorphism. The first is where one can
send the same message to a collection of objects of different classes and each object will
respond in an object-dependent way. Cardelli and Wegner [25] extending the polymor-
phism categorizations of Strachey [131] describe this form of polymorphism as inclu-
sion polymorphism [25]. Together with parametric polymorphism, where a method or
function works uniformly on a range of types, they comprise the two major forms of
universal polymorphism. Although parametric polymorphism is universally supported
by functional programming languages, it is only provided by a subset of OO languages.
Eiffel’s generic classes and C++’s templates allow classes to be declared with formal
parameters, which are used to create instantiable classes when provided with an actual
parameter [133, 84]. Thus one has the ability to achieve reuse over several types in a
manner which is orthogonal to reuse via inheritance. Eiffel also provides constrained
genericity where one can require the actual parameter to be of a particular class or
one of its descendants, and thus guarantee a particular behavioural requirement of the
generic class. We discuss (constrained and unconstrained) genericity further in Chapter
3.1, when comparing these approaches to functional programming’s constrained poly-

morphism and parametric polymorphism.

The final form of polymorphism is ad-hoc polymorphism, where a method works (or
appears to) on several different types in possibly different ways, and is often known
simply as function/method identifier overloading. Ad-hoc polymorphism is in fact also

supported in some non-O0 languages.

Inclusion polymorphism is the dominant form of polymorphism within OO, whereas
in functional programming parametric polymorphism is the dominant form and over-
loading is variably supported. This has a significant effect on the way one builds systems
within the two paradigms. The OO approach is to factor out the common behaviour
exhibited in various abstractions, and to build classes that support this behaviour.
These are then the building blocks from which one can develop new abstractions with

additional behaviour either through inheritance, composition or aggregation.

In the functional programming paradigm, one analyses the behaviour of functions.

If more than one function exhibits the same behaviour it could be replaced by a single
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(polymorphic) function. In addition, if several functions have common patterns of

computation they could be replaced by a single (higher-order) function.

An OO polymorphic variable can contain (or refer to) an object of more than one
class. With statically-typed languages where each variable is declared with an explicit
class, the contents of a polymorphic variable are constrained by the inheritance hier-
archy. That is, the object must be of the declared class or one of its subclasses. In
dynamically-typed languages all variables are polymorphic, since they can hold any

value. Therefore all methods which take arguments are also polymorphic.

Any object that receives a message should be able to respond appropriately. That
is, each object should deliver some common behaviour specified in its interface. If an
object of class X supports the behaviour of objects of class Y, X is called a subtype
of Y and Y a supertype of X [79]. Each object of a subtype can be used in place
of an object of a supertype. A subtype is not necessarily a subclass and vice versa.
For example, a subclass with less behaviour than its superclass is not a subtype. A
subtype which is not related to its supertype through inheritance is not a subclass.
However subtyping is typically introduced through inheritance. The main problem
with achieving ‘polymorphism through inheritance’ is that inheritance is concerned with
implementations, where subtypes focus on interfaces. That is inheritance supports code

reuse by the ‘implementor’, where subtyping supports code reuse by ‘clients’ [108].

Java supports ‘polymorphism without inheritance’ by using a construct called an
interface which provides a behavioural protocol, but no implementation. It is therefore
similar to an abstract class, except that unlike an abstract class, one cannot provide
any implementations for any methods of the interface. One is then able to achieve
subtyping through an interface instantiation, since every class that implements the

interface will be a subtype of the type specified by the interface.

Development Principles and Complexity

Although OO is often described as a natural way to develop software through its support
for modelling the problem, developing an efficient, implementable solution is not a trivial
task. This is signalled by the various laws, principles, and heuristics which guide the

OO developer [114, 49, 85, 86]. Gamma et al [49] begin their book with the warning:
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Designing object-oriented software is hard, and designing reusable object-
oriented software is even harder...Your design should be specific to the prob-
lem at hand but also general enough to address future problems and require-

ments. You also want to avoid redesign, or at least minimize it.

Meyer [84] argues that one should adopt the open-closed principle which requires
software entities to be open for extension but closed for modification. That is, if one
wants to add behaviour to a module then extend it do not change it. If one wants to
increase the range of objects over which a function applies, then introduce a new class
with the required behaviour. Satisfying this principle and many other principles comes
at a cost and is not achieved by simply translating a ‘natural’ model of a problem into
a design and then implementation. For example, if one needs to add behaviour to a
parent class that is not currently supported by any of its child classes, one could extend
the existing base class but would then need to restructure the class hierarchy. Thus
although it has been argued that object-oriented software is easier to maintain than its
alternatives [84], there is evidence to suggest that it often requires significant redesign

and possibly even automated support [93].

The problems described above can be categorised as same-paradigm problems or the
essential complezity between a design and implementation [20]. However, the accidental
complezity which arises when one mixes paradigms is far more severe and difficult to re-
solve. As an illustrative example of this we describe the approaches to implementing in
an OO language, a design that uses higher-order functions. With pure object-oriented
languages one has to mimic ‘functions as arguments’ by applying a method to a param-
eter object whose only responsibility is a single method. That is, one needs to construct
a stateless object whose only purpose is to support some behaviour. Since this method
object or function object will act on the state of another object one breaks the encap-
sulation required of any OO model. In C++ one can overload the parenthesis operator
(), which enables an object to be used as a function. C++ also supports a non-OO
approach through the creation of a parameterised class, which can be instantiated with

a pointer to a function.

In conclusion, OO models are best implemented in OO languages. In the following

section we provide a brief overview of some modern OO languages.
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2.2 OO Languages

In this section we present a brief overview of OO languages, highlighting their similarities
and describing some of their differences. Object-oriented languages naturally support
the features of object-orientation described in the previous section. This does not imply
that every object-oriented model built using these features can be implemented in every
object-oriented language, or that if they can they will result in the most effective and
efficient implementation. However, it is more natural to implement an OO design in
an OO language than in a non-OO language, because the development approach is the
same. That is, they share common building blocks and glue, and a common development

philosophy. We believe that this equally applies to any paradigm.

2.2.1 What is an OO language?

There are many descriptions of object-oriented programming or the properties required
of an object-oriented language [71, 132, 87, 43]. The features possessed by languages
that claim to be object-oriented include the ability to declare abstractions which support
encapsulation and are extendible through inheritance, subtyping, and the binding of a
method to a message at runtime (dynamic binding). Each OO language is either pure
and sits wholly within OO, or includes features of other paradigms and is thus impure.
Smalltalk, Java (which does however have non-object primitive types [3]) and Eiffel
[115] are pure languages, where C++, Object Pascal [17], UFO (United Functions and
Objects) [125] and OCaml (Objective Caml) [75] include various impurities. Further
examples of impure OO languages are Pizza [105], which has added support for higher-
order functions and parametric polymorphism to Java, and O’Haskell [91], an object-
oriented extension of Haskell.

The typing mechanism of a language influences the scope of objects to which a
message can be passed. Although statically-typed OO languages provide the benefits
of compile-time type checking they also constrain the classes whose objects may receive
a message. Statically-typed languages partially resolve this dilemma by supporting
inclusion polymorphism through inheritance. Smalltalk, which is dynamically-typed or
class-focused rather than type-focused [49], adopts the opposite approach of not catching

any type errors at compile time, but having the freedom to send a message to any object
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that supports the appropriate behaviour through a matching method. Thus Smalltalk
classes are not used for checking the type correctness of a program but to specify, and
in most cases, implement objects. Most languages that are class-focused have classes
as first-class citizens which can be manipulated at run-time. OO languages can be
differentiated both through the type of inheritance they support and their approach to

encapsulation.

2.2.2 Encapsulation and Inheritance

The interface provided by any object is dependent on the client object. In most OO
languages, if the communicating objects are of the same class, then the interface is
total or includes everything declared in the class. If the client object is of a subclass
of the other object, then it is presented with an interface that includes all non-private
entities. If there is no inheritance association between the objects, then the client ob-
ject is presented with the most restrictive interface that only includes public entities.
In contrast, Smalltalk, restricts access to an object’s private parts to the object itself.
That is, Smalltalk is truly object-oriented where each object fully encapsulates its state.
Smalltalk enforces the encapsulation of state by making every attribute private and con-
versely, every method public. One is unable therefore to provide non-interface methods
which are used to service interface methods. Other OO languages are not as draconian
as Smalltalk, and allow the developer to decide on the (public and protected) interface
of an object.

Many OO designs include classes that inherit features from more than one parent
class through multiple inheritance. Although many problems are most naturally de-
signed using multiple inheritance, it is not typically supported by OO languages. There
are many reasons for this including the potential for ambiguity when invoking methods
in response to a message. For example, when a message is passed to a child class object
whose class doesn’t provide an implementation of the required method, the message is
deferred to a parent class (analogous to delegation in prototype/delegation languages).
If both parent classes provide their own implementations the compiler will be unable to
decide which one to invoke.

The large number of modern OO languages are matched by an ever increasing num-

ber of OO analysis and design methodologies. They can equally be categorised through
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their purity or impurity, and also through the approach to abstraction discovery.

2.3 OO Analysis and Design Methodologies

This section presents an overview of OO analysis and design methodologies (OOADMs).
This is in no sense a complete overview. However it provides an insight into the essen-
tial features common to methodologies within the paradigm and how they support the
development of OO software. A detailed, albeit dated critique is presented in [89]. A
more recent survey of structured and OO techniques and methods is presented in [147],
and a web-based comparative review of OOADMs can be found at [32]. In common
with the imperative/structured paradigm, the OO paradigm supports the efficient and
effective development of software. This is achieved by using development methodolo-
gies and implementation languages that use the same building blocks and glue. The
methodologies are normally marketed through CASE tools that support their particular
notation and techniques. The OO paradigm has a large set of such methodologies in-
cluding the Booch Method [15, 82], OMT [120], BON [143], OOA/OOD |29, 28], Fusion
[30, 80] and OOSE/Objectory [64]. Recently there has been a focus on developing a
unified language, the Unified Modelling Language (UML) [16]. Although it is only a

modelling language, and is therefore process independent

it should be used in a process that is use case driven, architecture-centric,

iterative, and incremental. [16]

The Unified Software Development Process has recently been developed using UML
as its modelling language [63].

Each OOADM is a combination of a modelling language and a collection of integrated
techniques which convert the results of requirements engineering into an implementable
design. Most OOADMs provide a collection of diagrams that graphically represent
various views of the models in development. Typically these diagrams can be used
through all phases of development. Each OOADM can be categorised as pure, if it only
models systems through communicating objects or their classes, or impure (or even

hybrid) if action-oriented or data-oriented techniques and models are supported.
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2.3.1 Pure and Impure OOADMs

A pure OOADM only uses object-oriented techniques and models to analyse a problem
and design a solution. That is, the techniques aim to build models using objects and/or
classes and their various associations. Functionality is analysed and described through
communicating objects, and data is similarly described through its host objects. Im-
pure methodologies combine object-oriented and non-object-oriented techniques, such
as data-flow diagrams, into a single methodology. Examples include OMT [120] and
the Schlaer and Mellor [126] approach which use functional models described through
data-flow diagrams, and structural models using ERD type diagrams.

The Booch Method, OOSE, and BON are all pure object-oriented methods. For
example, the Booch Method presents a static view of a system through class diagrams,
a functional view through object-scenario diagrams/object-interaction diagrams and a
dynamic view of the internals of an object via state diagrams. BON simply has static
diagrams, dynamic diagrams and diagrams that present class details in a similar fashion
to CRC (Class,Responsibility,Collaboration) cards [8]. CRC cards are used in many
methodologies to record the name of a class, the attributes and methods it supports,
and the other classes it collaborates with to achieve required functionality. They have
typically been used in brainstorming sessions and can be physically arranged to illustrate
particular designs.

Every methodology, pure and impure, supports the building blocks and glue of
the OO paradigm. However, each methodology is typically described using its own
modelling language and graphical representation of OO constructs and relationships.
In the following section we present the steps in OO software development typically

supported by an OOADM.

2.3.2 OO Development

OOADMSs can be further classified by the driving factor of initial development. The
classifications are user-driven, data-driven and responsibility-driven. With user-driven
development the needs of the system users drive development. Jacobson [64] introduced
use case analysis in his OOSE/Objectory method. Initial development models user

interactions with the system through applications of use case analysis. We describe use
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case analysis later in this section. All OOADMs encourage an iterative approach to
development. A system can initially be developed using a subset of user requirements,
with any additional requirements introduced iteratively.

Data-driven methodologies such as OMT, initially focus on the major nouns in the
requirements documentation and return a collection of matching objects and/or classes.
The Booch Method and Martin and Odell’s OOAD method [81] adopt a behaviour-
driven approach, where the verbs in the requirements documentation guide the devel-
opment of objects to support the behaviour indicated by a verb. Whichever approach
is adopted there is a common underlying theme to development, which is summarized

in the following list.

e Discovery of an initial collection of classes;

e description of class collaborations required to satisfy the system’s functional re-

quirements;
e assignment of responsibilities to each class;
e analysis of classes with significant state dynamics;

e development of classes, class collaborations and class responsibilities using be-

haviour scenarios;

e conversion of an analytical model which represents the problem to a design model
of an implementable solution. New classes are introduced either to manage other

classes or to reduce the coupling between existing classes.

Each methodology has its own techniques, notation and development themes. For
example, OMT divides development into three modelling strands object modelling, dy-
namic modelling and functional modelling, OOA/OOD has the multilayer, multicom-
ponent model, and BON encourages the development of models built on seamlessness,
reversibility and contracting.

The initial step in object-oriented development is eliciting objects and their classes,
from the deliverables of system’s requirements engineering. The route to their discovery

will depend on whether the methodology is user-driven, data-driven or behaviour-driven.
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In each case, any data or behaviour are described through a host object. The develop-
ment is immediately modelled through abstractions which encapsulate their state and
host the methods which may act on the state. These abstractions should be extensible
and each should model a real world entity or behavioural characteristic of the problem.
Future development, for example of system functionality, is modelled through these ab-
stractions. That is, functions or methods must be developed through communicating

objects and guided by the interfaces of the objects.

We will illustrate the user-driven approach with a brief description of use case anal-
ysis [64]. A use case is a description of a set of sequences of actions that a system
performs to achieve a desired result. Each sequence of events represents an interaction

between system users, sometimes referred to as actors, and the system.

A use case is an analysis technique in that it captures the intended behaviour of
the system, but does not specify how this is achieved. Each use case will be described
by one or more scenarios which specify the semantics of the use case. For example a
use case could be ‘The data entry clerk inputs a result into a football results processing
system’. The textual description of the use case that includes details of the user will be
translated into a set of scenarios which describe its achievement within the system. This
may result in the introduction of new classes, new responsibilities assigned to existing
classes and new collaborations between classes.

Wirfs-Brock et al. [149] subdivide OO software development into three phases:
initial exploration, detailed analysis and building subsystems. The second phase puts
the meat on the bones of the entities delivered by the first phase. One has to clarify
through detailed inspection the class responsibilities - the data and methods - and
the collaborations - inter-class dependencies - required of the system. Since classes
are extendible one is encouraged to minimise the characteristics, both attributional
and behavioural, of any class, and use inheritance and composition as mechanisms for
building more complex abstractions.

Each class’s attributes, methods, and collaborations can be gleaned from require-
ments information through the application of various analytical techniques including
use case analysis and CRC cards. As one moves through analysis and into design a
class’s responsibilities and collaborations are scrutinized so that each class has a clear

purpose and a high degree of cohesion, reuse is maximised, and inter-class dependency is
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Results

1..
Result

Date

Figure 2: Class Diagram

minimised. One can use operational rules such as those described in the Law of Demeter

[78] during such development.

Class collaborations are typically represented in class diagrams. These are similar
to SSADM’s logical data structures or entity relationship diagrams [26] in that they
describe the major data entities in the system. In a class diagram the entities also
include behavioural responsibilities. Figure 2 presents a class diagram where the class
Results has a single Date attribute through aggregation, and one or more Result

attributes through composition.

All OOADMSs have a graphical notation for objects and classes, and their various
collaborations. They also tend to support annotations which increase the semantics
of the modelling languages. Thus one can present multiplicity of collaborations, or an
insight into the actual relationship through textual information juxtaposed with the

graphical notation.

A system’s functional requirements are delivered through communicating objects.
Since objects encapsulate state and behaviour, method development relies on the in-
teraction of objects through message passing. Thus the appropriate metaphor is of a
network of abstractions sending messages to other abstractions. In each case the receiv-
ing abstraction is responsible for managing the response to a message. One can present
a view of function or method development through object diagrams. UML supports
two types of object or interaction diagrams. Collaboration diagrams (object-scenario
diagrams in the Booch Method, instance diagrams in OMT) have objects as the main

subjects, and methods are described through messages passing between the objects. The
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Figure 3: Collaboration and Sequence Diagrams

reverse is the case with sequence diagrams in which the messages take pre-eminence over
their associated objects. Sequence diagrams emphasise the ordering of the messages,
where the emphasis in a collaboration diagram is on the objects that are communicating.
Sequence diagrams have similarities to Gantt charts (a popular graphical representation
of a project’s activities) of use within a field of operations research. We give examples
of these types of diagrams in Figures 3(a) and 3(b).

The models described thusfar focus on the static, and functional requirements of
a system. Many objects’ response to a message will be state-dependent. That is, the
values of an object’s attributes will often influence an object’s behaviour. One can
model these object state dynamics through state diagrams which describe a collection
of object states, and the actions which lead to transitions between the states. The state

diagrams used by most OOADMs follow the notation of Harel [54].
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Once an acceptable analytical model of the problem is in place, the focus turns to
the development of an implementable design. At this stage one may introduce classes
that manage the interaction of other classes, or others which support some common
behaviour required of existing classes. Where analytical models simply reflect a system’s
requirements, design models need to be efficient, effective and implementable. The

developer can adopt various principles, laws, and existing designs during this process.

2.4 Summary

In conclusion, the object-oriented paradigm has marketed itself as a packaged develop-
ment approach. From the initial stages of development one can describe a problem in
terms of OO elements and models using one of a significant number of modelling lan-
guages, methodologies and supporting CASE tools. The translation from an abstract
model to implementation code is eased through removing the accidental complexity in-
curred when switching paradigms. Although translating a model of the problem into an
effective and efficient model of a solution is not a trivial task, once achieved there are
a large number of OO programming languages in which OO models can be naturally
implemented.

The functional programming paradigm is currently without any analysis and design
methodologies. Therefore, if one wants to model a problem one either has to adopt
an ad hoc approach or use an existing non-functional methodology. In the following
chapter we describe the functional programming paradigm, placing emphasis on the

features which have a major influence on the design of functional software.



Chapter 3

Functional Programming

In this chapter we clarify the main features of the functional programming paradigm
and how they influence software development within the paradigm. We begin with
a brief overview of the paradigm that lists its major features. These are: functions
as the basic unit of program development; strong typing as an aid to development
pre-implementation, during implementation and post-implementation; parametric poly-
morphism and the first-class nature of functions as the major routes to reuse; and, the
support provided for developing user-defined datatypes. Each of these features are de-
scribed with illustrative examples, and, where appropriate we draw comparisons with
approaches adopted within the OO paradigm. For example, parametric polymorphism
is supported by both paradigms, but has a greater influence on software development
within the functional paradigm. In Section 3.2 we review features which are either
variably supported or are supported by a significant minority of modern functional pro-
gramming languages (FPLs). These include lazy evaluation that supports programming
with infinite data structures, overloading of function names, and the mechanisms for
delivering modularity-in-the-large. We include various pointers to the modelling of func-
tional designs using FAD. For example, we introduce the FAD units ezclusive signature
and permissive signature. These are defined briefly in this chapter, with a more detailed
coverage provided in Chapter 5. In the final section, we present the arguments for the
need for (and requirements of) a functional analysis and design methodology (FADM).
Chapter 4 provides a more detailed argument in support of analysis and design method-

ologies.

33
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3.1 The Functional Programming Paradigm

The functional programming paradigm, in its purest form, is about building programs
from functions. Each function computes a value that depends solely on the values of
the function’s inputs. Every function has a type that in most functional languages
is determined statically, and functions are first-class and thus can be treated as data

values. If an OO system is built through

a collection of interacting abstractions that host their own state, provide
mechanisms for manipulating the state, and deliver an explicit behavioural

contract to other abstractions
functional programming relies on

a collection of abstractions that generate values dependent only on the values

they receive.

Functional languages also offer significant support for modular development and
thus for programming-in-the-large. Although it is beyond the scope of this thesis to
provide an exhaustive list of features of the paradigm, we list below those features
which we believe have the most significant impact on how one develops software within
the paradigm. The following subsections present details on each feature in turn with
some commentary on its influence on the development of software within the paradigm.
We will illustrate many of the features with example code written in Hugs 98 [70]. The

functional programming paradigm includes the following features:
e functions as the fundamental building-blocks of programs;
e strong typing;
e parametric polymorphism;
e functions as ‘first-class citizens’; and,

e substantial support for the development of user-defined types, both concrete and

abstract.

Collectively these features describe a clean, mathematically tractable and robust

technology with significant support for reuse. It enables the developer to focus directly
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on the functional characteristics of a system without either the loss of data security
inherent in imperative programming, or the indirect approach imposed by the object-

oriented paradigm.

3.1.1 Functions, Values and Referential Transparency

Programming in a functional style using a functional language involves building defini-

tions and evaluating expressions. As Bird and Wadler [11] concisely state:

The primary role of the programmer is to construct a function to solve a

given problem.

The behaviour of these functions depend only on the values of their arguments, and
not on the value of any variables which model the state. Thus functional programming
encourages a view of computing that is significantly different to that of a sequence of
state modifications.

Imperative programs are built through a collection of mutable variables which model
the state, and procedures which modify these (typically global) variables. The behaviour
of the procedures typically depend on the values of the mutable variables, which can be
changed as the procedures run. There are various problems with this approach. Global
data is inherently insecure since there is no explicit restriction of access to a variable’s
contents, and it can be difficult to understand a program given that the value contained
by any variable will depend on the program itself. Non-modular, unstructured programs
written in an imperative style also suffer from multiple entry and exit points and little
support for programming-in-the-large [38]. Although structured programming [35] has
addressed some of these problems, and object-based languages such as Modula-2 [146]
have addressed the issue of modular software development, the imperative paradigm
has generally lacked significant modular support.

Object-orientation has addressed these issues through the encapsulation of variables
with the procedures that act on the variables within abstractions called objects. Al-
though the variables remain mutable, and thus their contents can be changed, access
to a variable is constrained by the interface supplied by the object that hosts the vari-
able. Objects, and not variables and independent procedures, are the units upon which

a program is developed. New functionality is developed through collaborating objects
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rather than directly gluing together existing procedures.

The (pure) functional programming paradigm has adopted a quite different ap-
proach. All variables are immutable. That is, variables in the functional programming
context (in common with mathematics) do not vary but always denote the same value.
Functions are therefore the mechanisms for creating new values and not for updating
the values of existing variables. That is, a function takes one or more input values and
returns a new value that is determined completely by the inputted values.

This has a significant impact not only on how one builds a program, but also on the
meaning of a program. The meaning of an imperative or OO program is understood by
the effect it has on the state (the collection of variables) of the machine as it runs. In
contrast, the meaning of a functional program is understood by the values it computes.
That is, the meaning of an expression in a pure functional language is simply its value.
There are no side effects (state changing actions) accompanying the evaluation of an
expression.

One benefit of using a side effect-free language is that any expression of the language
that has a well-defined value can be evaluated in any order. Order of evaluation only
matters when a variable’s value may depend on the order of evaluation of some sub-
expressions. Many pure functional languages can therefore support non-strict semantics
whose influence on software development we describe in Section 3.2.1.

An expression written in a side effect-free language can have any subexpression
substituted by its value without altering the value of the expression. This characteristic
is a particular case of referential transparency, the ability to substitute equals for equals.
Since an expression ‘equals’ its value the substitution will not affect the value of the
expression.

In conclusion, in a pure functional language all computations are performed via
function application. Ingenious mechanisms for supporting impure interactions such as
I/0 have been developed, the most recent of which is the monadic approach adopted by
Haskell [53, 103]. Software development within the functional programming paradigm is
built predominantly on functions. Various mechanisms exist for building new functions
from existing functions and maximising the scope of a given function, some of which
are described in the following sections. The scope of a given function is intimately tied

to its type. We describe in the following section how a function’s type constrains the
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application of a function, and in Section 3.1.3, how parametric polymorphism allows

the functional programmer to reuse a single function over more than one type.

3.1.2 Strong Typing

Most modern functional languages are strongly typed. That is, every well-formed ex-
pression of a functional language has a type that can be determined at compile time.
This means that no run-time errors are due to type mismatches. Just as the value of an
expression depends only on the values of its subexpressions, the type of an expression
can be deduced from the type of its components’ expressions. For example, the function

frontPlusBack is defined as follows:
frontPlusBack x = head x + last x

From the right hand side of the definition we can determine that the function is well
defined if x is a value of any list type (denoted [al), since the functions head and last
take values of any list type and return the first and last element of the list respectively.
In addition, since the values returned by these functions are added together, the list

must contain numeric values. In Haskell we write that frontPlusBack has the type
Num a => [a] -> a

where a is a type variable, and Num a => constrains the binding of the type variable to
numeric types.

Since strong type checking involves type inference, the developer is not required (but
is encouraged) to specify the type associated with each definition.

Therefore, the function frontPlusBack should be defined with an accompanying

type specification.

frontPlusBack :: Num a => [a] -> a

frontPlusBack x = head x + last x

An explicit type specification is encouraged since it aids software development in several

ways which include:

e a signal to the type-checker regarding the expected type of the associated entity;
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e a guide to the requirements of a function in terms of its expected input and
required output. This can be used both in advance of implementation of the

entity and as an interface to entity use;
e a documentation device; and,

e as a pointer to potential reuse of library constructs where functions can be cate-

gorised by their types.

Strong typing therefore provides support both at the implementation stage of devel-
opment and during pre-implementation analysis and design. The type of a function is a
constraint on how the function can be used. This could lead to a rather inefficient and
expensive approach to development, where functions have to be redefined every time
one wants to use them over a different type. However, in common with statically-typed,
object-oriented languages, mechanisms exist for minimising this cost and maximising the
scope of use of existing entities. Where statically-typed, class-based, object-oriented lan-
guages have adopted inclusion polymorphism as the predominant mechanism for reuse,

functional languages support parametric polymorphism.

3.1.3 Parametric Polymorphism

In Chapter 2 we described how inclusion polymorphism is the dominant form of poly-
morphism supported by object-orientation. Inclusion polymorphism supports the no-
tion of ‘one type many methods’ where the method called is determined dynamically
through the class of the object that receives the message rather than the declared class.
Parametric polymorphism can be viewed as the antithesis of inclusion polymorphism.
Parametric polymorphism enables ‘one function many types’, where a function is not
restricted to single monomorphic types but can be used over a range of types. However,
the arguments of a polymorphic function must themselves be monomorphic. Polymor-
phic arguments require rank-2 polymorphism which although supported, for example,
by Hugs 98 [70], is not a ubiquitous feature within the paradigm. Polymorphism in the
functional world therefore supports the reuse of code rather than the ability to supply
arguments of various forms with a common interface.

One can achieve significant reuse within the functional programming paradigm by

taking advantage of parametric polymorphism. If two or more monomorphic functions
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with the same arity exhibit common behaviour over values of distinct types, they could
possibly be replaced by a single polymorphic function. For example, the Haskell function
length which takes a list of values and returns the number of items in the list, operates
in a consistent fashion for a list of elements of any type. Similarly, the pair selector
functions fst and snd require no specific characteristics of the pair element values, and

thus can be applied to pairs whose elements are of any type.

length :: [a] -> Int

length = foldl’ (\n _ ->n + 1) 0
fst :: (a,b) > a

fst (x,_) = x

snd :: (a,b) > b

snd (_,y) =y

In OO one could achieve a similar form of reuse through C++ templates or Eiffel’s
generic classes. For example, in C4++ one can declare a parameterised container class
List<Type> which includes a method which returns the length of a list. One can
create instantiable classes by providing the parameterised class with an actual parameter
such as List<String>, a list of strings class, and List<Person>, a list of people class.
Since the method which returns the length of the list, and all other methods of the
parameterised class, requires no particular characteristics of the actual parameter class,
the same method can be applied over objects of any instantiating class. Some languages
in both paradigms support constrained parameterisation in which the actual parameter
is required to support some particular behaviour. This is described in Section 3.2.2.

An important indicator of potential parametric polymorphism is the lack of be-
haviour required over the types associated with a function or the types that provide
the values for a data structure over which a function is defined. That is, although the
function length requires the container type (in this case a list) to support certain be-
havioural requirements, the type that provides the values contained in the list has no
such requirements. The function length can be applied to a list of any type, since it

does not require a list’s values to conform to any particular specification. This is also
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true of the pair selection functions.

Where parametric polymorphism supports the use of a single function over many
types, higher-order functions which take functional arguments capture common pat-
terns of computation between several functions. In the following section we describe
the influence that ‘functions as values’ has on software design within the functional

programming paradigm.

3.1.4 First-Class Citizens

Hughes [57] argues that the two features of functional languages which have the most sig-
nificant impact on (small scale) modular development are higher-order functions which
rely on the first-class citizenship of functions and laziness. Since laziness is not a fea-
ture of all functional languages it would be inappropriate to describe it as a feature
of the paradigm. However it is supported by a significant minority of pure functional
languages and we will describe it in Section 3.2.1.

One way of distinguishing the OO paradigm from the functional programming
paradigm is through which constructs are first-class. Where objects are first-class cit-
izens in an object-oriented language and thus can be treated as data, functions are
first-class in functional programming. Therefore, a function can be an argument of a
function, returned by a function, or an element of a data structure.

Functions that either take functions as arguments or return a function as a result are
classified as higher-order functions or functionals. They provide a significant glue for
building programs in the functional programming paradigm. Functions with multiple
arguments can be modelled in a curried form where they take their arguments one at a
time. The uncurried form typically presents the arguments in a tuple. Curried functions
can be partially applied to return a new function. These functions can either be created
at compile time or at run time. The functions curriedPlus and uncurriedPlus illus-
trate these two forms, and plus5 is a function created through the partial application

of the function curriedPlus to the argument 5.

curriedPlus :: Int -> Int -> Int

curriedPlus m n = m+n
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uncurriedPlus :: (Int,Int) -> Int
uncurriedPlus (m,n) = m+n

plusb :: Int -> Int

plusb = curriedPlus 5

Functions that take functions as arguments model common patterns of computa-
tion between several first-order functions. For example, the functions doubleList and
treblelist multiply every integer in a list by two and three respectively. They can be
replaced by a single higher-order function applyArithList which takes an arithmetic
function as its first argument, a list of integers as its second argument and returns the

list where the function has been applied to each element.

applyArithlist :: (Int => Int) -> [Int] -> [Int]

applyArithList f 1s = map f 1s

Functionals are not unique to the functional programming paradigm but are imple-
mented more naturally than in non-functional languages. For example, in C one can
indirectly use functional arguments through pointers, and Pascal supports functional
arguments of a simple kind but not functional results. In object-oriented languages
where objects not functions are first-class, there are various mechanisms for mimicing
functions as arguments. These include: applying methods to function objects (objects
with no state and a single method); applying methods to objects with an overloaded
parenthesis operator (in C++); taking advantage of impurities in certain languages and
using templates/generics; and, by using static methods (in class-based languages) which
can be called without reference to an object.

Hutton’s paper Higher-order functions for parsing [59] presents a collection of higher-
order functions (or combinators) which are used to build parsers through the combi-
nation of existing parsers. More recently Hutton and Meijer have re-implemented the
combinators using monads [60] to which we will refer in Section 3.2.4. Through a col-
lection of combinators such as then, alt and using which correspond to sequencing in
BNF, alternation in BNF, and the {...} operator in Yacc, and a collection of primitive
parsers which amongst other things represent success and failure, one can quickly build

recursive descent parsers which are both simple to understand and easy to modify. This
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is not the case with parsers developed using imperative or OO languages.
We illustrate parser combinators below. The functions are written in Haskell rather

than Miranda' as used in Hutton’s paper.

type Parser a = String -> [(a,String)]

alt :: Parser a -> Parser a -> Parser a

pl ‘alt® p2 = \ inp -> pl inp ++ p2 inp

then :: Parser a —> Parser b -> Parser (a,b)
pl ‘then® p2 inp = \ inp -> [((v1,v2), out2)
| (vi, outl) <- pil inp,

(v2, out2) <- p2 outl]

using :: Parser a -> (a -> b) -> Parser b

p ‘using® £ = \ inp -> [(f v, out) | (v, out) <- p inp]

The first line of the code declares the type Parser which is parameterised over the
type of result values. In Hutton’s paper the parser type was parameterised over the
input value type as well. A parser is a function that takes a collection of input tokens
(as a string of characters) and returns a list of ‘parsed input/unconsumed input’ pairs
as results. A list of results is returned so as to deal with an ambiguous underlying
grammar.

The combinator approach to parser generation differs from that of parser generators
such as Lex and Yacc [2] and Happy [50], in offering an extensible rather than a fixed set
of combinators for describing grammars. Another example of a combinator approach to
functional development is described by Wallace and Runciman [144] who have developed
a toolkit of components for processing XML documents in Haskell which includes a set
of combinators for scripting stylesheets and a set of selection combinators.

Any functional analysis and design methodology must both encourage and support
the development of higher-order functions. FAD’s modelling language includes a graph-

ical representation for curried functions and supports function development through the

!'Miranda is a trademark of Research Software Ltd
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Inf | sum | [Int]

Int [eroduct | [ Int ]

Figure 4: Higher-order Development

partial application of a function to an incomplete set of arguments (see Section 5.4.3).
In addition, one is encouraged to use permissive signatures to discover higher-order
functions. A permissive signature provides a specification of functions defined over an
associated type. It does not provide an interface to a type, but rather a guarantee
that the functions specified are defined over the type. Permissive signatures are fully
described in Section 5.2.3, but we briefly illustrate their use with the functions sum
and product. Each function takes a list of integers and return their sum and product
respectively. Both functions require the elements in their argument lists to be combined
using an arithmetic operator. That is, they both require that ‘folding’ behaviour be
supported by the list type. One can make this common pattern of behaviour explicit
through the association of a permissive signature - in this case FOLD - with the list
type. This is illustrated by the FAD representations of the functions sum and product

in Figure 4.

Although this does not guarantee that a higher-order function would be appropriate,
it certainly signals that it is a possibility. See Chapter 5 for full details on FAD’s
modelling language and graphical notation, and Section 7.3.3 for a fuller description of

this approach to the discovery of potential higher-order functions.

Thusfar the functional programming features described have been largely function-
oriented. The last ubiquitous feature which we believe has a significant influence on

software development is the support for user-defined types.
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3.1.5 User-Defined Types

Every modern functional language provides a wealth of built-in types. These include
base types such as the type of characters and the Boolean values, and various composite
types such as tuple types and function types. However the languages in the paradigm
also provide the developer with mechanisms for developing new types. The predominant

mechanism is through the declaration of algebraic types.

Algebraic Types

Algebraic types are a single mechanism for the creation of various forms of types that
would otherwise have to be delivered through separate mechanisms. These include, sum
types which have alternative domains and product types which are types with multiple
components. They are called ‘algebraic’ since they are examples of term (or initial)
algebras whose elements are uniquely created through a set of value constructors. Here
we must make a distinction between value constructors which construct values of a type,
and type constructors which construct types. In Haskell, algebraic types are declared
using the keyword data, and introduce a new type constructor such as TC, and one or

more new value constructors, VC1, VC2 and so on.

data TC tvl ... tvk = VC1 t11 ... tim | ... | VCn tnl ... tnp

A type constructor can take zero or more parameters made explicit by the type vari-
able(s) which follow its name. We have represented these as tv1, tv2 and so on. Each
value constructor may take one or more parameters, which in each case will either a
type variable used by the type constructor or a type. We have named these t11 to tnp.

For example, the algebraic sum type IntOrFloat, in common with the built-in types
Int and Char, is a nullary type constructor since it takes no parameters. Its values are
constructed by applying the unary value constructor ConsInt to an Int value, or the
unary value constructor ConsFloat to a Float value. anIntValue and aFloatValue

are both values of type IntOrFloat.

data IntOrFloat ConsInt Int | ConsFloat Float

anIntValue ConsInt 3

aFloatValue ConsFloat 3.0
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Sunday | Monday | Tuesday | Wednesday|
Thursday | Friday | Saturday

data Days

data ThisOrThat a b This a | That b

data Tree a EmptyTree | Node a (Tree a) (Tree a)

Figure 5: Algebraic Types

For the remainder of this thesis, to ease exposition, we will refer to nullary type

constructors simply as types and non-nullary type constructors as type constructors.

The algebraic type mechanism also supports

e enumerated types through the declaration of a set of nullary value constructors.

This is illustrated in Figure 5 with the type Days;

parameterised types. These are types that are created through the application of
a type constructor to one or more parameters. Each type constructor has a kind
which specifies the number and form of parameters of the type constructor. That
is, a kind is to type constructors what a type is to functions [66]. Using Jones’
notation [66], all types have the kind *, and the kind k; — k2 represents type
constructors that take an entity of kind x; and returns one of kind k5. This is
illustrated in Figure 5 with the parameterised type ThisOrThat a b whose type
constructor ThisOrThat takes two parameters of any, and possibly differing, types.
For example, values of the type ThisOrThat Int Bool are created through the
application of the unary value constructors This and That to Int and Bool values

respectively. The constructor ThisOrThat has kind * -> * -> *;

recursive types which are described in terms of themselves. This is illustrated in

Figure 5 with the type Tree a.

Functions over an algebraic type that have value-dependent behaviour are most

naturally defined using pattern matching. Actual arguments are matched against an

argument pattern presented in a function definition, and if successful the associated

expression is evaluated. If the match fails, the next argument pattern is checked and so

on. For example, the polymorphic function zeroOr0One takes a value of type ThisOrThat
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a b and returns 0 if the value is constructed using the value constructor This and 1

otherwise. That is:

zero0rOne :: ThisOrThat a b -> Int

I
o

zeroOrOne (This _)

zeroOrOne (That _) =1

The underscore is the wildcard pattern that can be used when a part of a pattern is not
used in the body of the function definition.

Clearly pattern-matching requires that the function has access to the implementation
of the type, which results in tight coupling between the function and type. This is poor
modular design, since any change in the type implementation will require a change to
the function definition. A modular approach built on information hiding is achieved by

using abstract data types which we describe in the following section.

Abstract Data Types

Abstract data types support a separation of a type’s interface from its implementation.
They are a mechanism for decoupling a type and its clients. An abstract data type is
a type with an explicit collection of operations defined over the type. These operations
are specified in the interface to the type. Thus one can only use values of the type
by using one of its interface operations. One can then reimplement the type and its
operations with the interface remaining consistent for any existing or future client.
Abstract data types are therefore integral to the modular development of functional
programs. It is therefore essential that they are both supported in any functional
modelling language, and play a predominant role in the methodology. The mechanism(s)
for the implementation of abstract data types is language-specific. Many functional
languages use modules as the type host, which is accompanied by a restrictive interface.
We describe modules in functional languages in Section 5.3.1. We present here a brief
overview of the various mechanisms for implementing abstract data types (ADTSs).
Miranda uses the keyword abstype to declare such a type, which is followed by the
type’s identifier and interface, which is presented as a collection of type specifications.
SML has both a keyword and a means of abstracting the contents of a structure through

an opaque signature. Any types declared in such a structure will become abstract due
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to the associated signature. The signature provides full syntactic details regarding each
of its entities. Haskell supports ADTs through its module system. A module export
list that includes a type without its value constructors declares the type as abstract.
However the type’s operations are simply named without any type specification. Clean
delivers ADTs through their definition modules, which are similar to SML’s signatures
except that each implementation module can be associated with only one definition
module.

Abstract data types are essential to the development of a modular system, whose
components can be modified, reused, and maintained, in an efficient and effective man-
ner. FAD supports abstract data types through the assigning of a type to a module,
and associating an ezclusive signature with the module. An exclusive signature is a
collection of entity specifications which, when associated with a module which hosts
the entities, acts as an interface to the module. That is, a client of the module has
access only to those entities specified in the exclusive signature which mediates use of
the module by the client. One can impose abstraction on a type by hosting it in a
module whose clients have no knowledge of how the type is constructed. That is, the
type is specified in an exclusive signature E but its constructor signature is absent. A
constructor signature is a permissive signature which specifies the value constructors of
a type. This example highlights the differing roles of the two forms of signature provided
by FAD. An exclusive signature provides an interface to a construct which hosts various
declarations, whereas a permissive signature declares a minimal set of operations over
one or more types.

A type is therefore not abstract by default, but instead can have abstraction imposed
when used by an entity of another module.

The module AbstractTypeModule hosts the type ThisOrThat a b but only exports
its type constructor and not its value constructors. Thus any entity of another module
which uses the type, uses it as an abstract type via the operations specified in the export
list that follows the module name in parentheses. In this example, the type constructor
ThisOrThat is accompanied by two selection functions getl and get2. In FAD, the

export list will be modelled as an exclusive signature.

module AbstractTypeModule (ThisOrThat, getl, get2) where

data ThisOrThat a b = This a | That b
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getl :: ThisOrThat a b -> a

getl (This x) = x

getl error "Inappropriate application'

get2 :: ThisOrThat a b -> b

get2 (That x) = x

get2 error "Inappropriate application'

The development of module (and subsystem) architectures and the development of
associated exclusive signatures are integral to the FAD methodology. Full details of
modules, exclusive signatures and abstract data type support are provided in Chapter

5. The methodology is described in Chapter 7.

In the following section we discuss features which are common to significant subsets
of functional programming languages, but are also important in influencing the way one
develops functional programming software. The section begins with a very brief scan of

the differing characteristics of modern functional programming languages.

3.2 Other Features

Functional programming languages are characterised in various ways. For example,
Haskell, Miranda and Gofer [65] are pure, non-strict, sequential languages. ML is an
impure, strict, sequential language. Erlang and Clean [106] are concurrent languages
that are impure, strict and pure, non-strict respectively. All of these languages de-
liver the functional programming features described in Section 3.1. Impure languages
also support features typically associated with imperative languages such as variable

assignment. FAD does not support impure features.

Although FAD describes software models which may be implemented using any
functional language, a significant minority of functional programming languages support
non-strict semantics through lazy evaluation, which encourages a particular approach
to program design and development. The following section provides a review of laziness

and its impact on software development.
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3.2.1 Laziness

Programming languages are initially classified first through the (predominant) paradigm
they support, and then by their type-checking approach. Functional languages are fur-
ther classified as either strict or non-strict. Languages with strict semantics, supported
by eager evaluation (or call-by-value reduction), force the full evaluation of all argu-
ments. In contrast, those with non-strict semantics delivered through lazy evaluation
(or call-by-need reduction), only require those arguments that are needed in the function
body expression to be evaluated [97]. That is, every argument is evaluated exactly once
in strict languages, and at most once in non-strict languages. When both approaches
lead to termination the values returned will be identical. However there are simple
examples that will not terminate when using eager evaluation, such as the application
of the function fst - which selects the first element of a pair - to a pair whose second

element is undefined.

fst :: (a,b) > a
fst (x,_) = x
f = fst (True, 1/0)

Since the function fst only uses the first element of a pair on the right hand side of
the definition, the second element will not be evaluated when using lazy evaluation.
Thus f will evaluate to True. With eager evaluation, both parts of the pair need to be
evaluated, and hence, f would be undefined.

Lazy evaluation distinguishes most pure functional languages from imperative lan-
guages and most object-oriented languages. Programs written in those languages often
rely on side effects, which are intimately linked to evaluation order and thus require
strict semantics where evaluation order is clear. Lazy evaluation is effectively ‘demand
driven evaluation’, and hence it is more difficult to predict evaluation order, and there-
fore harder to predict when side effects will take place.

Lazy evaluation supports programming with infinite data structures, such as infinite
lists, through enabling partial evaluation of a data structure. For example, the higher-
order function filter takes a predicate and a list and returns those elements of the

(possibly infinite) list that satisfy the predicate. The higher-order function take takes
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an integer n and a list and returns the first n elements of the list. If filter even is
composed (denoted .) with take 2, the resulting function will return the first 2 even

numbers in a list.

first2Even :: [Int] -> [Int]

first2Even xs = (take 2 . filter even)

With lazy evaluation one only evaluates as much of the list as is required to return 2 even
numbers. Thus as each even number is confirmed, it is outputted until 2 numbers are
returned. That is, if we apply first2Even to the infinite list of positive integers, denoted

[1..], evaluation proceeds as follows where ‘~»’ indicates a step of the calculation.

first2Even [1..]
~» (take 2 . filter even) [1..]
~» (take 2 . filter even) [2..]
~ 2 : (take 1 . filter even) [3..]
~ 2 : (take 1 . filter even) [4..]
~ 2 : 4 : (take 0 . filter even) [5..]
~ 2 : 4 : [
~ [2,4]
Laziness has enabled a modular design where there is a separation of value generation
and value use. One is therefore able to adopt a software development approach where
behavioural requirements are delivered by separate entities that can be independently

developed and maintained.

3.2.2 Overloading

All modern functional languages support parametric polymorphism. However recent
developments within several languages deliver support for the middle ground between
monomorphism and polymorphism. The motivation for this development is that there
are many examples where monomorphism is too restrictive and polymorphism is too

general. For example, the function sum of Section 3.1.4 could be given a monomorphic

type

sum :: [Int] -> Int
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which disallows application to lists of other numeric values. Alternatively we could give

it the type
sum :: [a] -> a

that suggests that the function can be applied to a list of non-numeric values, which is
clearly not the case.

The OO language Eiffel provides constrained genericity to solve this problem of con-
strained parametric polymorphism [84]. Whereas unconstrained genericity allows any
actual parameter to be bound to the formal parameter of a generic class declaration,
constrained genericity requires the parameter to be of a stated class or one of its sub-
classes. Thus one can guarantee that a required behaviour is supported by any potential
instance object.

A collection of functional languages, such as Haskell and Clean, have resolved this
dilemma through supporting constrained polymorphism via type and constructor classes.
A type class is a collection of types. Type constructors of the same kind can be collected
in constructor classes. Current language support is largely restricted to single parameter
classes, multiple parameter classes which collect associated type constructors of the
appropriate kinds are supported, for example, by Hugs98.

Each type or constructor class specifies a collection of entities with their type spec-
ifications. A type or type constructor instantiates a class when each specified entity is
matched by one of the same name defined over the type constructor, and with a type
that is an instance of that specified in the class. Thus one may overload function and
value names in a controlled manner using this mechanism.

The type class ZeroOne specifies the function zeroOne which takes a value of an
instantiating type and returns either 0 or 1. The constructor class EmptyOrNot specifies
the function empty0OrNot, which takes a value of an algebraic type whose type construc-
tor has the kind * -> * and returns O if it is ‘empty’ and 1 otherwise. The types Int
and Bool instantiate the type class ZeroOne, and the type constructors [1 (the list type

constructor), and Tree instantiate the constructor class Empty0OrNot.

class ZeroOne t where
zeroOne :: t -> Int

instance ZeroOne Int where
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zerolOne i
| even i =0
| otherwise =1

instance ZeroOne Bool where

I
o

zeroOne False

zerolOne _ =1
class EmptyOrNot c where

emptyOrNot :: ¢ a —> Int

instance EmptyOrNot [] where

empty0OrNot [] 0
emptyOrNot _ =1

instance EmptyOrNot Tree where

]
o

empty0OrNot EmptyTree

emptyOrNot =1

In common with types, the languages that support type classes provide built-in classes
and enable the user to define new classes, extend existing classes, or instantiate ex-
isting classes. A type/constructor class presents an interface that is implemented by
any type/type constructor that instantiates the class. For example, all numerical types
instantiate the (single parameter) type class Num’s interface that includes various arith-
metic operations and numeric functions. We present the class in an elided form below

followed by a collection of instantiations.

class (Eval a, Show a, Eq a) => Num a where

(#4) :: a —>a > a

(<) :: a—>a->a

() :: a->a->a

negate :: a -> a
-- instances:

instance Num Int
instance Num Integer

instance Num Float
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instance Num Double

The class Num extends the interfaces of the classes Eval, Show and Eq, and is instantiated

by the types Int, Integer, Float, and Double. We can now declare sum as follows:

sum :: Num a => [a] -> a

sum = foldl (+) O

where the context Num a => states that the type variable a is constrained to range over
types that belong to the type class Num. sum can be applied to a list of values of a type
in the type class Num. The version of the addition operator used is determined by the
type of values in the list.

Constructor classes support higher-order polymorphism or the application of func-
tions uniformly over (potentially) all type constructors of a particular kind [66]. For
example, the constructor class Fold specifies folding behaviour through a collection of
functions. The class has a single parameter of kind * -> *, and thus can be instantiated

by unary type constructors such as the list constructor [].

class Fold £ where

ffoldl i (a->b->a) >a->fb->a
ffoldll :: (a->a->a) >fa->a
ffoldr :: (Aa->b->b) >b >fa->b
ffoldri :: (a->a->a) >fa->a

Now we can declare a function sumC that sums the numeric values contained in any
data structures built using an instantiating type constructor. The version of ffoldl

used depends on the argument type of the function.

sumC :: (Fold ¢, Num a) => ¢c a => a

sumC = ffoldl (+) O

In conclusion, type/constructor classes deliver a methodical approach to function
name overloading. They provide a mechanism for associating a collection of types or
type constructors that support some specified behaviour, which is typically indicated by
the name of the class. We can regard constrained polymorphism as a natural generalisa-

tion of polymorphism, where polymorphism is simply unconstrained use of the general
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case. That is, where polymorphism delivers abstraction over any type, constrained
polymorphism requires the types to support some specified behaviour.

FAD represents type and constructor classes through permissive signatures. How-
ever, a permissive signature does not have to be implemented as a type or constructor
class. Permissive signatures indicate that a type must support some stated behaviour
or that a function requires a certain behaviour over one of its types. Whether the
implementation involves overloaded functions and type classes will depend both on
the implementation language and other design decisions. A full description of FAD’s
permissive signatures is presented in Section 5.2.3, and the development of permissive

signatures to support functions and type development is described in Section 7.3.1.

3.2.3 Modular Development

Modern functional languages, in common with their object-oriented counterparts, pro-
vide significant support for modular development. ‘Modularity-in-the-small’ is achieved
through building programs using small single-purpose functions, and where possible
taking advantage of the non-strict semantics of a language. In this section we describe
the various language-specific mechanisms for supporting ‘modularity-in-the-large’.
SML provides significant support for modular programming. It has separate con-
structs for module implementation, structures, and module interface, signatures, which
enables reuse either through attaching various signatures to a single structure or as-
sociating a single signature with multiple structures. Each SML structure provides a
default signature, everything in the structure, which is overridden by any explicit signa-
ture association. SML’s signatures provide detailed syntactic information for potential
users of an associated module, and type abstraction can be achieved through assigning
an opaque signature to a structure. SML’s modules are not first class but are supported
by an extension of the core language. However they can be used to create new modules
either simply through containment or through the application of functors to existing
modules. These parameterised modules are also part of the extended language.
Haskell’s modules are largely used as a name space control mechanism. Implemen-
tation and interface details are provided by the same entity, whose export list names
those entities that are available to any potential client. This list is devoid of any type

signatures. A module’s interface can also be declared when the module is used, but
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is constrained by the interface declared by the module. Haskell’s module system also
provides a means of creating abstract types by specifying a type constructor without
its value constructors in a module export list.

We illustrate the Haskell module system with two simple modules Exp and Imp. Exp
includes a declaration of a type class ExpTC, a data type ExpT, and an instantiation of
the type class. All of these entities are in the interface of the module including the value
constructors Conl and Con2 of the data type. Thus the data type ExpT is not abstract
when used by any client of the module Exp. Module Imp imports the type class ExpTC
from the module Exp and declares a data type ImpT which instantiates the imported
type class. The type is abstract to any client since it is presented in the export list

without its value constructors.

module Exp (ExpTC, ExpT(Conl, Con2), expFun) where
data ExpT = Conl Int | Con2 Bool deriving Show
class ExpTC a where
expFun :: a -> a
instance ExpTC ExpT where

expFun = id

module Imp (ImpT, expFun, createImpT) where
import Exp(ExpTC, expFun)
data ImpT = Con (Int,Bool) deriving Show
createImpT = Con (0,True)
instance ExpTC ImpT where

expFun = id

Nicklisch and Peyton Jones [90] describe how SML’s substantive support for modu-
larity can be largely expressed in Haskell using its module system.

Clean also provides a robust environment for modular programming which is similar
to that of Modula-2 [146], where module implementation and module interface are
provided by distinct constructs, an implementation module and a definition module,
but each implementation has at most one interface. Clean’s module-based abstraction

support is similar to that of Haskell.
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Although Miranda does not have an explicit module construct, modules are delivered
through Miranda scripts (files). That is, a Miranda script can be viewed as a module.
The Miranda %export directive provides interface control which is used when a script
is imported into a client script. That is, modular development in Miranda is supported
by defining program entities in different scripts, and enabling reuse through the lan-
guage’s file import/export mechanism. Miranda also supports parameterised scripts

where definitions rely on information provided when the script is used by a client script.

FAD’s modelling language includes the macro units subsystem and module. These
units support a hierarchical approach to managing the development of a large system.
A system can be divided into several subsystems which are developed independently
but to known requirements. A subsystem is further divided into several modules each
of which should be a cohesive unit with a clear, specific purpose. External access to a
subsystem’s or module’s entities is mediated through an exclusive signature associated
with the host macro unit. Descriptions of FAD’s macro units, exclusive signatures, and

the various relationships between units are presented in Chapter 5.

In conclusion, object-oriented software development as described in Chapter 2 is
guided by modularity. That is, modularity drives functionality. The reverse is true in the
functional paradigm and therefore when developing using FAD. One first describes the
functional requirements of a system and then builds a modular system which supports
them in as effective and efficient manner as possible. The main reason for this is that
in an OO system, objects (or modules) are first-class and are therefore the fundamental
building block upon which a system is developed. Functional programming has first-

class functions, and modules are used to aid the management of development.

In the final section we describe the recent influence that monads have had on software

development within the functional programming paradigm.

3.2.4 Monads

Monads are a recent addition to the functional programmers’ toolbox. They encourage
a structured and sequential approach to program development, and have resulted in
a new approach to interactive programming in pure, non-strict, functional languages

(139, 138, 140, 103].
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Although monads have their roots in category theory where they are sometimes re-
ferred to as triples, one does not have to be a category theorist either to understand
their structure or to practise their use. For the purposes of functional programming,
the simplest view of a monad is as a unary type constructor (commonly called m) ac-
companied by a pair of polymorphic functions. One function (variously called unit,
unitM, return, or result) takes a value of a particular type, and creates an item of the
monadic type. The other function (variously called bind, bindM, then, (>>=), or (*))
takes an item of the monadic type and a function from a value (wrapped in the first
monadic type) to another monadic type, and returns an item of the second monadic
type. From now on we will view a monad as the triple (m, return, (>>=)), where

return and (>>=) have the following type specifications:

return :: a ->m a

>>) ::ma->((a->mb) ->mb

Haskell 98 provides a monad constructor class that includes additional function specifi-
cations to those presented above.

Another description of a monad is as a type of computations so that m a is the
type of computations (of a certain sort) of values of type a. With this view in mind,
return turns a value into the computation that simply returns the value. (>>=) takes
a computation which returns a value of type a, extracts the value returned by the
computation, and applies the second (functional) argument to this value which returns
a computation that returns a value of type b. In essence programming with monads
replaces functions from values to values by functions from values to computations, where
the notion of a computation has several different interpretations such as one that does
some I/0.

Monadic I/0 is part of the Haskell language definition, and compares favourably
to the other functional I/O alternatives, dialogues or continuations [53]. Peyton Jones
and Wadler describe how the type I0 a integrates the functional world with the non-
functional world (pure and impure) [103]. The functional world is all about being, in
that an expression in a functional language denotes a value. In contrast, the imperative
world in which IO more naturally sits, is about doing, and an IO command should

perform an action. Thus the type I0 a in the words of Peyton Jones and Wadler
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denotes actions that, when performed, may do some I/O and then return

some value of type a.

One of the main design implications of monad use is that it encourages encapsulation
and programming through an (monad) interface. Encapsulation prevents any changes
to code from having a rippling effect through the software, and simple interfaces make
explicit how one can combine program components. Monadic development enforces a
particular evaluation strategy that is sequential in nature. For any function defined over
a ‘monadic’ datatype - a datatype with associated monad combinators - the computation
will be sequential and guided by the combinators (>>=) and return. That is, one
abstracts over the computation as opposed to the more common approach of abstracting
over the particular data representation.

We present two illustrative examples. The first is the function exI0 which illustrates
monadic I/O that looks very similar to the code one would write in an imperative
language like C [72]. The second example presents the function allSquarePlusOne

which takes a list of integers, each of which is squared and then incremented.

exI0 :: I0 O

exI0 = getChar >>=\ cl ->
getChar >>=\ ¢2 >
putChar c2 >>=\ _
putChar ci

allSquarePlusOne :: [Int] -> [Int]
allSquarePlusOne xs
= X8 >>=\ x >
return (square x) >=\y >

return (y+1)

getChar and putChar mimic the C functions getC and putC, and exIO0 clearly illustrates
the sequential nature of functions defined using monads. That is, exI0:

takes a character from the standard input and binds it to cl. It then takes another
character from the standard input and binds it to c2. c2 is then sent to the standard output

and the non-existent result bound to a wildcard. Finally cl is sent to the standard output.
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[ Int ] fallSquarePlusOne| | Int]

Figure 6: Monadic Function

The design of exID is very similar to the design one would use in an imperative
language like C. This is an excellent illustration of one of the main benefits of monads:
the ability to mimic impure features without losing all the benefits of pure, non-strict,
functional programming such as referential transparency, higher-order functions and
lazy evaluation. In addition, quite disparate functions can be described using the same

computational abstraction.

As with other forms of encapsulation, modification of code can be achieved relatively
painlessly, and more importantly, locally. A large scale example of monadic software
design is the Glasgow Haskell compiler, itself written in Haskell. The compiler uses
monads for various bookkeeping tasks, and when the type checker needed to be updated
to maintain information about the current line number, this was not an onerous task
[104].

FAD supports monadic development through a permissive signature MONAD which
specifies the monadic combinators. Thus allSquarePlus0One is represented in FAD as

in Figure 6.

3.3 Summary

In this chapter we have described an approach to software development which is sig-
nificantly different to that practised in other paradigms. We described the following
constructs which have a significant impact upon software development in the functional

programming paradigm:

e functions are the fundamental building blocks of the paradigm. Their output

depends solely on their input;
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e types are sets of values that provide guidance through all the stages of software
development. They make explicit the values that are acceptable as arguments for

a function, and those that will be returned by a function;

o type constructors construct the aforementioned types. They may take one or
more arguments to construct a type. Type constructors can be categorised by
their kind which specifies the number and form of parameters required by the

type constructor;

e value constructors construct values of a type. They also may take one or more

arguments;

e every functional programming language provides support for the development of
user defined types through the algebraic type mechanism. A new type is created
through the declaration of a new type constructor and its associated (new) value

constructors;

e abstract types are types whose construction details - value constructors - are in-

visible to potential clients;

e parametric polymorphism is the predominant form of polymorphism supported by

the paradigm. It enables a function to be reused over several types;

e permissive signatures are FAD units (fully described in Section 5.2.3) that specify
entities that are defined over an associated type(s). They provide a behavioural
guarantee for an associated type and can be implemented as type or constructor
classes in certain languages. A permissive signature is not an interface to a type

but rather states the minimum functionality defined over the type; and,

e czclusive signatures, which are also FAD units (fully described in Section 5.3.3)
that specify an interface to an associated macro unit such as a module. Where
a permissive signature states at least this, an exclusive signature state only this.

They play an important role in developing software based on abstract types.
Functional programming is different to other paradigms in that:

e mutable variables are replaced by values;
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e procedures and methods are replaced by functions whose output depends only on

their input; and,
e encapsulation for data protection is replaced by encapsulation for modularity.

Thus software is developed through functions that delegate their behaviour to simple
functions with a clear singular purpose. That is, one is encouraged to develop functions
using simpler functions that implement a required behaviour. How this behaviour is
implemented is not of interest to the client function. Large systems can be built using
the support for modularity-in-the-large. Abstract data types provide a mechanism for
modular design based on information hiding.

A different approach to software development requires a different approach to mod-
elling systems, which in turn requires new modelling languages and methodologies. In
the following chapter we describe methodologies and their languages, emphasising the
benefits of their application. In Chapter 5 we describe the modelling language of FAD,
and in Chapter 7 the methodology and its techniques.
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Chapter 4

Analysis and Design
Methodologies

The previous two chapters have described the object-oriented and functional program-
ming paradigms with an emphasis on their different approaches to software develop-
ment. Chapter 2 also included a brief overview of object-oriented analysis and design
methodologies and how in combination with object-oriented languages they can deliver
a packaged approach to software development. In this chapter we present a description
of analysis and design methodologies (ADMs) as a modelling language and set of in-
tegrated techniques that deliver models using elements of the modelling language. In
Section 4.2 we outline the benefits of using an ADM within a software development
project. These include using a language whose purpose is modelling problems and so-
lutions rather than implementing them. In Section 4.3 we will describe the benefits of
adopting a packaged approach where the ADM and implementation language are from

the same paradigm.

4.1 Analysis and Design Methodologies
Sutcliffe [134] argues the case in favour of ADMs as follows:
e Before building systems we have to understand them.

e To understand systems we should make a model.
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An analysis and design methodology is a medium for understanding a problem, mod-
elling a solution, and managing and documenting software development. Each method-
ology is a combination of a modelling language, typically with associated graphical
notation, and a collection of integrated techniques which support analysis and design.

The development of large software systems requires three forms of management.
Firstly, there are a collection of project management tasks which include the general
management of multiple development teams, ensuring that deadlines are met within
budget, and that resources are available and accessible. Secondly, documentation man-
agement is integral to successful software development. System entities and decisions
should be documented and made available for current and future reference. Finally there
is development management which may involve the application of an in-house or named
development method. Within this thesis and with FAD, we will focus solely on the final
two forms of management since project management can be delivered independently of
any particular methodology.

In the following two sections we present the essential elements of a methodology -

its modelling language and techniques.

4.1.1 Modelling Language

Every ADM has an associated modelling language through which systems are modelled
and documented. In most cases the modelling language will support both graphical
representations and textual descriptions of its units and their interactions. Thus, struc-
tured methodologies such as SSADM [41] and SA/SD [37, 153, 152] have modelling
languages which deliver, for example, data flow diagrams and logical data structures.
Every language unit, such as process, and data store, will have a clear definition and
associated graphical representation. That is, most modelling languages, in common
with implementation languages, have a defined syntax and semantics. Typically the
semantics of a modelling language are described informally.

The modelling languages associated with OOADMSs include elements which represent
the OO building blocks - classes, objects - and their various associations. Each descrip-
tion of a class includes class responsibilities and details of associations with other classes.
Class documentation has similarities to CRC (Class,Responsibility,Collaboration) cards

[8] where one presents the class name, followed by a list of responsibilities and then any
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links to other classes in the system.

A modelling language is specifically used for modelling systems and not for im-
plementing systems. Although one can (partially) generate source code using CASE
tools such as Rational’s Rose [33, 34], a modelling language should aid development of
an implementable solution, and not provide full details of a specific implementation.
Therefore a graphical modelling language is not a visual programming language such as
Prograph [110], or Visual Haskell as put forward by Reekie in his thesis Realtime Signal
Processing: Dataflow, Visual, and Functional Programming [112]. Modelling languages
are typically smaller and semantically less rich than their implementation language
counterparts since abstractions take precedence over detail. There are however benefits
in having a correspondence between the modelling language and potential implemen-
tation language. This correspondence is maximised when the modelling language and

implementation language are of the same paradigm.

A modelling language is in essence an abstraction of an implementation language,
where one focuses on the essential features of the paradigm whilst disregarding the ele-
ments that are only required by an implementation language. Most graphical modelling
languages do however support the embedding of either implementation language code
or pseudocode into their models. For example, one typically records a method within
a class using the syntax of an OO language. The techniques of a methodology take as

input and return as deliverables models developed using the modelling language.

4.1.2 Techniques

Each methodology provides the user with a collection of integrated techniques. With
action-oriented, structured development the techniques focus on delivering data flow-
centric descriptions of the system, which are refined top-down into more detailed descrip-
tions. The models are typically presented as data flow diagrams, logical data structures
and structured English, or graphical representations of process dependencies built via
the three common imperative constructs: sequencing, selection and iteration. In data-
driven approaches such as Jackson System Development [62], the modelling components
are similar but the techniques guide the developer in building processes which reflect

the structure of the system’s data, such as files.
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OO0 methodologies encompass techniques that describe the problem in terms of ab-
stractions which encapsulate their state. The various analytical models will be itera-
tively modified through a collection of techniques that return an implementable solution.

The models delivered include:

e models of the major classes and their various associations;

e the objects that collaborate to deliver some specified functionality. These models

include the messages passed between objects; and,

e models of classes with significant state dynamics.

Most modern methodologies support both analysis and design. Analysis techniques
focus on developing models of what is required, where design techniques deliver how it
is achieved. That is, analytical techniques tend to be problem-centric, reflecting what
is required without imposing any design choices. The results of the analysis phase are
delivered to the design phase, where techniques manipulate the models to deliver an
implementable, maintainable and potentially reusable design.

Each technique will have a clear purpose, explicit input requirements and a set of
deliverables. For example, use case analysis which is an essential analytical tool of use
in OOSE [64], the Booch Method [15], and supported by UML [16], is a methodical
approach for gleaning information from the requirements of a system. It produces a
collection of scenarios that can be used in the development of classes and their collab-
orations. CRCs can then be used as a technique for analyzing the scenarios returned
by use case analysis. Similarly the entity action step of Jackson System Development
[62] aims to produce an abstract description of the real world using only interdependent
nouns and verbs as the medium. The entity structure step takes such a description and
delivers models of the life span of each entity.

Methodologies which encourage a strictly linear application of their techniques typ-
ically have models that are linked to a particular phase of development. For example,
SSADM’s effect correspondence diagrams, which identify effects caused by a single event,
are produced midway through the process. They are developed from existing logical
data structures, which present a static view of the system’s data and interrelationships.
Methodologies that encourage iterative and incremental development tend to have a set

of models (and associated diagrams) that are of use throughout system development.
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Whether practised iteratively or linearly there are several benefits in using an ADM

to support software development, which are described in the following section.

4.2 What are the Benefits of Using an ADM?

Birrell and Ould [12] present the following argument in favour of using a methodology

during software development.

Anyone undertaking software development, on no matter what scale, must
be strongly advised to establish a methodology for that development - one
or more techniques that, by integration and control, will bring order and

direction to the production process.

We will present the reasons for using an analysis and design methodology as an aid
to successful software development in the following sections. The first describes the
benefits of using a language whose raison d’étre is modelling rather than implementing

an efficient solution.

4.2.1 A Language for Modelling

Each methodology delivers a collection of models using the units and relationships
defined in its modelling language. Since a model is an abstract representation of a
design or specification, a modelling language is a collection of elements that support the
construction of an abstract description of a problem or solution. Thus one can produce
models of a system or design that emphasize the major abstractions involved whilst
avoiding the unnecessary details required in implementation language code.

A modelling language enables development which reflects best practice in a paradigm
rather than best practice due to the idiosyncrasies of a particular implementation lan-
guage. A modelling language thus enables a separation of concerns, by allowing the
designer the freedom to develop systems beyond the constraints enforced by the nuances
and eccentricities of a particular programming language. That is, the implementation
language does not drive design but instead enables a design to reach fruition. For ex-
ample, an FP design may require a type that provides an explicit interface to potential
clients. Abstract data types provide an explicit interface but their implementation is

not uniform across the languages of the paradigm. For example:
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e in Haskell one declares a type in a module which does not export any of the type’s

construction details;

e in SML one can either use the abstype mechanism or declare the type in a struc-

ture which is associated with an opaque signature; and,

e in Clean one specifies a type constructor without its value constructors in the
definition module associated with the implementation module within which the

type was declared.

It is not relevant to a design whether one declares an ADT through a module in-
terface, or whether the implementation language has a keyword to indicate such a
construct. For design purposes one simply requires a clear model of an abstract type
and information regarding what one can do to values of the type.

A methodology’s modelling language provides accessibility to a system’s design to
those who have an interest in the system but are not familiar with the (potential)
implementation language(s). A graphical representation of a design typically presents a
clearer picture than several pages of code, and most modelling languages support several
orthogonal views of the same system.

In the following section we describe how a methodology delivers an integrated set of

techniques that deliver models using the elements of the modelling language.

4.2.2 Development Guidance Provided by a Set of Techniques

An ADM can aid the development of large systems by providing a collection of integrated
techniques that guide and drive the development process. There are parallels here with
the use of operational research (OR) techniques to aid business decisions. OR techniques
encourage the user to look at a problem at a level of abstraction that would not otherwise
be achieved. They also offer a set of well-defined steps that enable the user to break the
problem down into understandable pieces, and then to put them back together again
in the most effective way. ADMs mimic this process. They cannot guarantee the best
design, but they can improve one’s chances of achieving an effective and acceptable
design.

One of course must be careful not to make any false claims. There is no statistical

evidence that a particular methodology outperforms others, or that methodology use
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has significantly improved performance. Such research is difficult to perform for many
reasons including problem consistency, costs of failure and so on. However, modelling
processes are used in other fields with evident success and there is no obvious reason to
dispute their transferability to software development.

Each ADM provides a template for development built on a collection of techniques.
How strictly one adheres to the template will depend on the type of problem and one’s

familiarity with the problem domain. The collection typically includes:

e techniques for discovering the essential data and functionality requirements in the

problem and for representing them using elements of the modelling language;

e techniques for analysing the data and functional requirements and modelling them

in terms of collaborating elements;

e techniques for dividing the system into manageable units (components) which can

be developed independently;

e techniques for describing the system in terms of its major components and their

interactions; and,
e techniques for translating models of the problem into models of the solution.

Thus beyond the support for discovering the required data and procedures, methods
or functions, most modern ADM’s also include techniques for developing large systems
through giving guidance on how to divide a system into sensible components. This
division is normally directed through one or more criterion for modular development.
The modelling language of each ADM will provide elements that present the modular

architecture of a system, one of several system insights or views that can be described.

4.2.3 System Viewer and Complexity Manager

All ADMs support several views of a system both during development and upon com-
pletion. Where an implementation language presents one view of the system based on

the syntax of the language, ADMs provide some or all of the following;:

e a static view which represents the major data elements of the system and their

relationships;
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e a functional view which describes system functionality;
e a dynamic view which focuses on the effects of events on a system entity; and,
e a modular view which describes the high-level architecture of the system.

Thus an ADM is a medium for communicating a design in various formats typically
using graphical notation. In the object-oriented paradigm, design patterns [27, 113, 49],
are becoming an increasingly popular means of sharing effective and reusable designs.

A pattern is

the abstraction from a concrete form which keeps recurring in specific non-

arbitrary contexts. [113]

These abstract patterns, could not, and more importantly, should not be presented in
any of the many object-oriented implementation languages. Through graphical repre-
sentations using modelling language notation (Gamma et al. use OMT, Objectory and
the Booch Method notation [49]), accompanied by some commentary on their develop-
ment, one can present a clear picture of a pattern that can be understood by any OO
practitioner.

Beyond presenting clear views of a system in development, a methodology will en-

courage the user to produce a thorough collection of system documentation.

4.2.4 System Documentation

Although most modern implementation languages provide mechanisms for accompany-
ing code with some commentary, this tends to only support a description of the terminal
construction of the software. There is no obvious site for a historical description of de-
velopment or non-implementation documentation.

An ADM will support full documentation of the entities of the system, which can
include a development history for a particular entity or a snapshot of a system or
component of the system during development.

In conclusion, most ADMSs provide generic support for system development which
can be categorised as in the previous sections. However, modelling a system using any
methodology and implementing its design in any language is not advised. Instead one

should look to analyse a problem, and design and implement a solution using tools of
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the same paradigm. We present the reasons for this recommendation in the following

section.

4.3 Paradigm-Consistent Approach to Development

Most analysis and design methodologies can be classified by the paradigm they support.
The Booch Method [15], OMT [120], Coad-Yourdon’s OOA/OOD [28, 29] can all be
classified as object-oriented methodologies. UML [46, 16] though not a methodology, is
a notation for supporting object-oriented analysis and design. Similarly, SSADM [41]
and SA/SD [152, 153] are structured development approaches which naturally support
the constructs found within the imperative/structured paradigm.

The paradigm associations of each methodology are not coincidental. Structured
methodologies were introduced in response to perceived faults in the systems developed
using imperative languages. They encourage a particular approach to system devel-
opment and construction through their concentration on data flows, and the stepwise
refinement of system processes which are developed using the procedural programming
constructs, iteration, sequencing and selection. That is, they are fundamentally un-
derpinned by imperative constructs. Object-oriented methodologies, in common with
object-oriented languages, naturally support object-oriented development. Although
each methodology has its own notation and specific set of techniques, they each support
the development of object-oriented systems.

Coad and Yourdon [29] argue that

It was difficult to think about structured programming when the languages
of choice were assembler and FORTRAN; things became easier with Pascal,
PL/1, and ALGOL. Similarly, it was difficult to think about coding in an
object-oriented fashion when the language of choice was COBOL or plain-

vanilla C; it has become easier with C++ and Smalltalk.

Of course one can always implement a ‘paradigm A’ design in a ‘paradigm B’ imple-
mentation language but not without development costs. Rumbaugh [120] claims that
object-oriented designs can be implemented in non-object-oriented languages but the

programmer will be required to: translate classes into data structures, pass arguments
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to methods, allocate storage for objects, implement inheritance in data structures and

so on. Booch [15] is more dismissive, arguing that

object-oriented analysis and design is fundamentally different than tradi-
tional structured design approaches: it requires a different way of think-
ing about decomposition, and it produces software architectures that are
largely outside the realm of the structured design culture. These differences
arise from the fact that structured design methods build upon structured
programming, whereas object-oriented design builds upon object-oriented

programming.

A methodology that builds upon functional programming also requires a different
design approach, and should be built from the underlying abstractions of functional pro-
gramming. Brooks [20] describes a mismatch of paradigms as an example of accidental
complezity which adds to the underlying essential complezity of software development.
The degree of essential complexity is a function of the type of problem and familiarity
with the problem domain, and thus cannot be avoided. Accidental complexity can be
avoided by adopting a paradigm-consistent approach from the modelling of requirements
through to the design and implementation of a solution.

Simply using a combination of stepwise refinement, data flow design and a general
modular approach will ignore the specific benefits of programming in a functional style
with a functional language. Equally so if one models the problem as a collection of

interacting objects that communicate with one another through their interfaces.

4.4 Summary

This chapter has outlined the structure of ADMs and the benefits of their application
within a software development project. Although modelling in itself is a constructive
practice, modelling using elements that are familiar to a potential implementation lan-
guage enhances the applicability of its products. We therefore believe that there are
strong arguments in favour of a functional ADM that supports the essential features of
the functional programming paradigm, and whose language units are accompanied by a

graphical representation. In the following chapters we describe the modelling language
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and techniques of FAD, an analysis and design methodology that supports software

development within the functional programming paradigm.
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Chapter 5

FAD Modelling Language

In the previous chapter we outlined the benefits of using analysis and design method-
ologies (ADMs) as aids to software development. In addition we argued that the best
results are achieved when the ADM and implementation language support development
within the same paradigm. That is, one can argue at length regarding which paradigm
provides the best support for software development, but one achieves the most natural,
efficient and effective development package when one remains within a single paradigm

from problem description through to implementation and delivery.

Chapters 2 and 3 described and contrasted the object-oriented and functional pro-
gramming paradigms. Although they have their similarities there are clearly significant
differences. These differences impact on the software designs of each paradigm and
a cost is incurred if one attempts to switch paradigms between any phases of develop-
ment. The object-oriented and structured paradigms have several ADMs which support
a complete development package within their paradigm. We believe that the functional
programming paradigm requires methodologies to support its software development ap-

proach.

In Chapter 3 the major building blocks and glue of the functional programming
paradigm were described. In this chapter we describe the modelling language of FAD
(Functional Analysis and Design). We believe that any paradigm-specific ADM should
support, in a natural manner, software development within the paradigm with minimal
notational overhead. In addition, a paradigm-specific ADM should not reinvent or over-

constrain the software development process but should reflect and encourage common
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practice. This requires a modelling language that supports the major building blocks
and glue of the paradigm with a minimal collection of graphical notations for pictori-
ally representing analytical and design models. The methodology should support the
recording and storing of entities in a manner that eases use and maximises discovery of
potentially reusable entities.

FAD is both a modelling language and a set of techniques to support software devel-
opment within the functional programming paradigm. FAD should be practised within
an iterative and incremental development process. This is facilitated by adopting a
single set of notations and diagrams that are applicable throughout development. That
is, one does not use particular types of diagram and entity representations at particular
stages of development and then convert them to new diagram types and representations
applicable to later stages as is the case with most structured methodologies such as
SSADM. Any FAD diagram and its constituent notation is of use throughout the de-
velopment process but will be iteratively updated in step with iterations in the system

design. FAD diagrams include:

e function dependency diagrams which present a function with those it uses in its

implementation;
e type dependency diagram which provides the same service for types; and,

e module dependency diagrams which present views of the module architecture of

the system.

FAD supports development in any functional language and not in a specific language.
It therefore needs to support constructs that are common to all functional languages,
or shared by just a few. In Section 5.2 we describe the basic units of the language.
We divide them into the micro units: types, functions and permissive signatures, and
the macro units: exclusive signatures, modules, subsystems, projects, and files. We
provide both informal definitions of the units and their FAD notation. For each unit we
provide a brief qualification for the chosen notation. Each type of unit has an associated
Unit Description Document in which one can record the unit’s name, version and other
relevant information. These description documents provide an historical record of the

development of a particular component of a system.
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In Section 5.4 the inter-unit relationships supported by FAD are described. These
include: the type use relationship, function use relationship and associations between
types and permissive signatures, modules and exclusive signatures, and subsystems and
exclusive signatures. Once again the informal definition is accompanied by a description
of the FAD notation which includes some commentary on the choice of notation. In
describing the units and relationships of the modelling language we present the diagrams
of FAD that afford various views of a system.

In Chapter 6, we demonstrate how common functional constructs are defined and
represented in FAD. In the following section we present a case study that will be used to

illustrate elements of FAD’s modelling language and the application of its techniques.

5.1 Case Study

The case study was chosen because it is both small enough to comprehend fully and large
enough to illustrate the various components of FAD. A larger case study - a CASE tool
consistency checker - is presented in the appendix to this thesis. A system is required
to automate the production of various football league related data. The system stores
current data on the league’s football teams, the teams’ players, historical data on league
tables, results, and scoring tables. New results are entered by a data entry clerk and,
upon request, a current version of the league table or scoring table is generated.

In brief, the system must support the following functional requirements:

the inputting of football results (for as many leagues as required);
e the production of league tables;

e the production of scoring tables which present the top scorers in the league, their

team, and the number of goals scored;

e the production of attendance tables which present teams in order of average home

attendances;
e the transfer of players between teams;

e the updating of team data due to recent results; and,
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Figure 7: Micro Unit Guide

e the updating of player data due to recent results where the data include appear-

ances and goals scored.

No non-functional requirements are stated and the system should be developed so

that if new functionality is required, it can be introduced at a minimum cost.

5.2 FAD Micro Units

The basic micro units of FAD are types, functions and permissive signatures.

We

describe each in turn and then describe how they can be combined to support common

constructs of the functional paradigm. Figure 7 presents a ‘Micro Unit Guide’ which

summarizes the micro units, their relationships and diagrams.

The diagrams built using these units and relationships have a (informally) declared

syntax and semantics. These are described in the following sections and in Sections 5.3
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and Section 5.4 where we present the macro units and relationships of FAD. Each unit

and relationship is illustrated by an example from the case study.

5.2.1 Types

A type is a collection of related values which have some common usage. Examples
include the type of characters and the type of Boolean values. A type typically has
a mnemonic name that reflects the characteristics of its values. Modern functional
languages support type aliases which assign a name to a type which is appropriate in a
given context. In FAD each type has a unique name which begins with a lower case letter.
In Section 3.1.2 we emphasised the importance of types to software development within
the functional programming paradigm. They provide a specification of a program’s
entities, and enable the early detection of errors.

Every functional language (and other typed languages) provides a set of built-in basic
types whose values are primitive to the language. Most languages provide characters,
Booleans and various collections of numerical values as basic types. They are typically
accompanied by built-in functions and operators defined over the types. These normally
include the arithmetic, relational and logical operators.

The languages also support built-in and user-defined composite types whose values
are constructed using values of existing types. Tuples and lists are usually provided
by a functional programming language. In common with basic types the languages
provide functions and operators defined over these built-in composite types, such as list
construction operators, and pair selection functions.

Types can be constructed by users through the multi-purpose algebraic type mech-
anism using a unique type constructor. The values of an algebraic type are constructed
by using one of the value constructors declared with the type. Enumerated types, sum
types, product types, parameterised types and recursive types can all be declared using
the same mechanism as described in Section 3.1.5.

Abstract data types, which provide a mechanism for modular development through
information hiding, are supported by all modern functional languages. Recently there
has been much interest in existential types [74] as a mechanism for implementing first-
class abstract data types. FAD’s support for these and for tuple types, record types,
algebraic types and abstract data types are left to Sections 6.10, 6.1, 6.2, 6.3 and 6.4
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Type Description Document Football
Constructor Name:  teams
Version: 19990620:0
Kind: *
Module:
Types Used: date, team, collection
Parameters:
Permissive sigs.: TEAMSCON
Description:
The type of football teams. Each team must be accessible and
their information updateable. The date represents the latest
update to the teams’ data. Each team will include data on its
results, attendances and other team-related information.

Figure 8: Type Description Document for the Type teams

respectively.

The details of a type are described in a Type Description Document (TDD) as
illustrated by the TDD for the type teams presented in Figure 8. FEach type may
have several TDDs illustrating the iterative development of the type. However each
type will have a TDD which represents the current form of the type which will be the
chronologically most recent version determined by the version number.

Each type description document presents a description of a type. To the right of
the header is the project within which the entity is defined. The list in the body of the

document presents the following information:
e the name of the type constructor of the type which begins with a lower case letter;

e the version of the type denoted by a date:natural number value to accommodate

multiple versions in a single day;

e the kind of the type constructor. Type constructors with the kind * are simply
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types;

e the module in which the type is declared. Every micro unit is declared in a unique
and identified module. The organization of modules and their entities is a design
decision and therefore the containing module will typically be recorded in a later

version of a TDD;
e the types used in constructing values of the type;

e the type variables and associated permissive signatures. This entry will be blank
for any type whose type constructor is of kind *. We write PERMSIG a for each
type/permissive signature contract association. This association is described in
Section 5.4.4. A type variable is written as a single lower case letter. This name
has no intrinsic value and if there are no associated permissive signatures then no

entry will be recorded;

e the permissive signatures instantiated by the type (see Section 5.4.4). The pa-
rameter (or a parameter for permissive signatures with more than one parameter)
of the permissive signature must have the same kind as the type constructor of
the type. Each algebraic type instantiates a constructor signature as described in

Section 6.3;

e a textual description of the type.

In summary, a type description document is a host for information relating to the
development of a type. As a type is iteratively developed the document will be updated
to reflect design decisions. The document is stored in FAD’s data dictionary as described

in Chapter 8.

FAD Notation

Types and values of types are represented in FAD by similar notation. A type is
represented in FAD by a rectangle (or box) enclosing the type’s name as illustrated in
Figure 9. This notation was chosen because a type is a collection or box of values with
some common characteristics. Alternatively, one can view types as a mechanism for
partitioning the universe of values (ignoring some overloading of numeric literals), and

partitions are often represented as rectangular segments of a set.
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tfeam t:team leeds

Figure 9: A Type, Parameter of a Type, and a Named Value of a Type

If the type is constructed through the application of a non-nullary type constructor
to one or more types or is a parameterised type, the name of the type must include
the type constructor and the name of the parameters. Typically the constructor name
will prefix the parameter names. A type variable is simply represented by a lower case

letter.

One can also add a name to a particular use of a type to make explicit how a type’s
value is being used in a particular context. That is, parameter names or type values
in the form of a valid expression or literal, or names associated with a value can also
be included in a type rectangle. A parameter is written parameterName :typeName or
simply parameterName if the type is clear due to the context, and a value can similarly
prefix a type name or appear on its own. The rectangle enclosing a value of a type has
a thick solid perimeter. This notation differentiates a type from a value of a type but
with minimal added notational overload. One can use this value notation to represent
partial application. This is described along with FAD’s support for the curried form
of multiple argument functions in Section 5.4.3. Hence one is able to reuse the same
notation for a type, a type variable, a non-nullary type constructor, a named parameter
of a type and a value of a type or a name associated with a value. A functional type

has its own notation as described in the following section.

5.2.2 Functions

The major building blocks of the functional paradigm are pure functions that map
values from a single type (argument type) or multiple argument types, to a value of
another type (result type). Functions are first-class citizens in functional languages
and therefore can be arguments of other functions, be returned by functions and be

components in data structures. Functions can be created statically or dynamically
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through the application of a curried function to an incomplete set of arguments known
as partial application

FAD supports all forms of function use including functions that are defined using
subsidiary functions (see Section 5.4.9), functional arguments (see Section 6.9) and
functions with multiple arguments in the form of curried functions (see Section 5.4.3).

The details of each function are described in a Function Description Document
(FDD) which in common with TDDs will be developed iteratively. We present in Figure
10 the FDD for getData, the higher-order polymorphic function which takes a functional
argument and a value of the type teams, which is a collection of values of type team,
and returns the result of applying the function to each team value. The return type is
collection a where the type collection a is used by the type teams.

In common with TDDs, the collection of a function’s FDDs describe the iterative
development of functions. That is, the collection of documents presents a record of de-
sign decisions for a particular function. These are of potential use in future maintenance
of the system, in supporting reusable designs and to allow rollback within an iterative
design framework.

The project within which the function is defined is presented to the right of the

document’s header. The list in the body of the document presents:

e the function’s name which begins with a lower case letter. An operator name is
presented in prefix form enclosed in parenthesis. Function names are not neces-
sarily unique since mnemonic identifiers are encouraged in order to support the
discovery of abstractions such as polymorphic functions and overloading. However
no two functions with the same type specification will have the same name. This
also prohibits the co-existence of a polymorphic function and its monomorphic
instantiations. In Chapter 7 we describe a technique for developing polymorphic
functions that includes the removal of its monomorphic counterparts. Functions
with the same name can be discriminated by qualifying their name with the name
of the module in which they are defined. For example, the function getData can
be qualified as TeamsMod . getData. This naming convention can be applied to any

module entities;

e the version of the FDD represented by a date:natural number value;
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the module within which the function is declared (see Section 5.3.1). During the
early stages of development one may record a subsystem as host. This applies to

micro units of any kind;

the function’s arity. This will be used as a key for storing the function in the data

dictionary as described in Chapter 8;
the function’s type specification written using the function type operator -> ;

the required type/permissive signature associations. This information will help
guide development of the function and its associated types. For polymorphic
functions, the permissive signatures provide constraints on the types that can in-
stantiate the associated type variable. Type/permissive signature contract asso-
ciations are written PERMSIG a where a is the name assigned to the type variable.
For multiple parameter signatures the signature name is followed by the requi-
site number of type variables. See Section 5.2.3 for a description of permissive
signatures, and Section 5.4.4 for an explanation of the type/permissive signature
association. This information provides another means of selecting functions for

potential (re)use;

the required type/signature instantiation associations. These are written as above
replacing the variable name with the type name. For example, PERMSIG typeName.
Many functions will initially be developed as monomorphic functions. Any associ-
ated permissive signatures will provide information regarding the behaviour of the
function. They will also provide constraints on the implementation of any asso-
ciated types, and suggest potential function overloading when implementing in a
language with such support. A type or used type may be required to instantiate a
particular signature. This information aids the discovery of potential polymorphic

and overloaded functions as described in Section 7.3.2;

the non-argument functions used in the definition of the function. Each function
is presented with its type specification to distinguish overloaded function names.
A colon separates a function name from its type. A function with conditional
behaviour will not necessarily use all the functions. The function’s dependency

diagram(s) will clarify the dependencies as described in Section 7.2.2;
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Function Description Document Football
Name: getData
Version: 19980810:1
Module: TeamsMod
Arity: 2

Type Specification: (team -> a) -> teams -> collection a

Contract Associa-
tion:

Instantiations: CONTAINER collection

Functions Used:

Description:

This function retrieves data from a collection of teams
through the application of a data-getting function to each
team in the collection. The type teams is required to support

‘mapping’ behaviour.

Figure 10: Function Description Document for the Function getData

e a description of the function.

The function description document provides significant information for developing
a function and storing it in the data dictionary. The function’s arity and permissive
signature instantiations are used to store and retrieve functions for potential reuse. This
approach is built on that described by Park and Ramjisingh [94] and An and Park [4],

and is fully described in Chapter 8.

FAD Notation

A function is represented in FAD by a grey rectangle or box juxtaposed with its ar-
gument types to its right (consistent with function application syntax in all modern
functional languages) and the result type to its left. The function rectangle is larger

than the type rectangles. The grey box notation is motivated by the idea of a ‘black
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collection a |getData E. teams

Figure 11: Function Representation

box’ view of a function where one is only interested in the mapping between a function’s
inputs and outputs. Thus, one presents the type(s) of the input values and the type of
the output value linked by a box whose inner details are not visible. The type boxes
are external to the function box since it: conforms to the juxtaposition-based syntax
between a function and its arguments found in most functional languages; it avoids
potentially messy nested notation for the representation of permissive signature/type
associations as described in Section 5.4.4; and, it simplifies the representation of func-
tions with functional arguments or results.

A function name is written inside the shaded box, as is a functional parameter name
if required. If a function has multiple arguments then its first argument appears next to
the function rectangle, and each further argument appears to the right of each existing
argument.

We illustrate FAD’s function notation in Figure 11 where we present the FAD rep-
resentation of the curried function getData. which takes two arguments. The first
argument is of the function type team -> a. A function type is represented as a func-
tion with no name in the function box. When used as an argument or result type of a

function it is enclosed in a type box.

5.2.3 Permissive Signatures

The development of functions and types requires as much information as possible. A
function’s development is guided by its type and required behaviour, and a type’s devel-
opment by the data and behaviour it needs to support. Permissive signatures provide
a mechanism for specifying behavioural requirements.

Before describing permissive signatures we present an example which motivates their
introduction and application. The function getPlayer takes a player’s name and the
collection of players of type player, and returns the relevant player. The function will

test each player in the collection against the inputted name until a match is achieved.
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If no match is reached an exceptional value is returned. The function therefore requires
a test of equality of player names and needs to check each player in turn. These be-
havioural requirements can be made explicit through associating permissive signatures
with the relevant type or type constructor. We associate the signature EQ, which deliv-
ers an equality testing function, with the type of players’ names, pName. In addition,
we associate the permissive signature MAP that specifies mapping behaviour, with the

type collection a which is used by the type players.

A permissive signature declares operations that implement the behaviour indicated
by the name of the signature. The operations are specified in terms of the parameter(s)
of the signature. That is, a signature will have one or more parameters that are bound
to the type constructors of the types that instantiate the signature. For example, the
Haskell type classes Eq and Ord can be modelled in FAD as permissive signatures whose
operations deliver equality and ordering behaviour. They are instantiated, for example,

by the various numeric types.

Each entity may only be specified in a single permissive signature but can be reused
in another signature through inheritance. Signature inheritance is described in Section
5.4.7. That is, since (==) is specified in the permissive signature EQ it cannot appear in
any other permissive signature except through inheritance. Each permissive signature
will be associated with one or more types that will instantiate the signature (see Section
5.4.4 for details on how this is achieved) such as the type Int and Char which instantiate
the Haskell classes presented above. A type instantiates a permissive signature when
bindings exist for each entity specified in the signature defined over the type.

A permissive signature provides a contract of usability for any type (or types when
there is more than one parameter) which instantiate the signature. Each parameter will
have an explicit kind where a kind identifies collections of type constructors in the same
manner that types describe collections of values [66].

Each algebraic type instantiates at least one permissive signature which we call its
constructor signature. In most cases the signature will have a single parameter that
is bound to the instantiating type’s constructor. Since most functional languages do
not allow reuse of a type’s value constructors, constructor signatures will generally be
instantiated by a single type. That is, there will typically be a 1-1 correspondence

between constructor signatures and algebraic types. The operations of a constructor
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MAYBE x

xal  Just E

Nothing : x a

Figure 12: Constructor Signature

signature are the value constructors of an instantiating type. This is illustrated in
Figure 12 where the constructor signature of the Haskell type Maybe is presented. The
type has two constructors, Just which takes a value of any type a and returns a value
of type Maybe a and Nothing which is a value of the type Maybe a.

The details of each signature are described in a Permissive Signature Description
Document (PSDD) as illustrated by the PSDD for EQ which is equivalent to the Haskell
class Eq. This PSDD is presented in Figure 13. In FAD, a name is associated with a
type specification by writing the name followed by a colon and then the type.

The project within which the signature is defined is presented to the right of the

header. The list in the body of the document presents:

e the signature’s unique name which is written in upper-case letters;

e the version of the signature;

e the module in which the signature is declared;

e the signature’s parameters and their kind. Although the parameter name is not
important it must not clash with any type variable names that are not matched
with the parameter. For example, a signature whose parameter is of kind * ->
*, will possible specify operations over at least two type variables. One of kind *
-> * will use the parameter name and the other of kind * must have a different

name;
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Name:

Version:

Module:
Parameter(s):
Operations:

(with type specs.)
Inherited Signature(s):

Description:

over an instantiating type.

Permissive Signature Description Document

EQ
19990317:1

(==): a => a -> bool

(/=): a => a => bool

This signature specifies the ability to test for equality

Football

Figure 13: Permissive Signature Description Document for EQ
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e the signature’s operations and type specifications. The specifications are written

using the name of the parameter(s);

e the signature(s) from which the signature has inherited operations;

e a description of the signature.

Permissive signatures not only present the names of operations defined over a type

but also the types of the operations. This is important development information since

one wants to know not only what is available but how to use it. However, the information

is purely syntactic and provides no semantic guarantee. That is, one can guarantee that

a named function exists over a certain type, but one cannot guarantee that the behaviour

implied is actually delivered. This would require a formal approach to development that

is beyond the scope of FAD.

FAD Notation

A signature is represented in FAD by a double-edged rectangle as shown in Figure 14.

The notation was chosen since a permissive signature is in essence an outerface to a
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Figure 14: A Permissive signature

type (as opposed to an interface) and the notation mimics such a wrapping around a
type. That is, a type with an extra layer of information. It encloses the signature’s
name which may be followed by the name of the instantiating type or type constructor,
or a type variable. If the instantiating type is clear by the context of its use, then the
type name can be left out. Section 5.4.4 describes type/signature associations.

Any operations of the signature may be added below the signature’s name (either
graphically or using the textual syntax name : type), separated by a horizontal line.
One may elide a signature if it has a large number of operations or if the operations are
presented elsewhere such as an inherited signature.

That completes the description of FAD’s micro units. In order to model large systems
one needs to be able to describe modular structures and their relationships. Thus
FAD’s modelling language includes a collection of macro units which are described in

the following section.

5.3 FAD Macro Units

FAD’s micro units and their various relationships deliver models of the functionality and
data structures required of a system. The relationships are described in Section 5.4.
They do not provide a means of describing the high level modular structure of a system.
For this we require the macro units of FAD, which are modules, subsystems, exclusive
signatures, projects, and files. In the following sections we present descriptions of each
of these units accompanied by their graphical notation. The various macro unit and

macro/micro unit relationships are described in Section 5.4. Figure 15 presents a ‘Macro
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FAD Macro Unit Guide

A project is partiioned into

several subsystems whose
available entities are specified

in an exclusive signature. A
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through a containment
relationship. D

<] A project is the top level of the
logical architecture of a system.

< The project uses another project
through the project use relationship.

UsedProject
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specifies accessible entities in b
an associated macro unif.
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EXSIG
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UsedSubsystem

A subsystem is linked to its
modules by a partition
relationship.

Afile is linked fo the modules it
defines through a containment

relationship. A module hosts the micro units of
Module <] a project. It is associated with an
exclusive signature which mediates

access to its entities.

A subsystem which is partitioned
into one or more modules. D
A subsystem is the responsibility

of a single development unit.

Afile is a building block of the
physical architecture of the
software.

A subsystem uses another
subsystem through a subsystem

<] A file uses other files through the
use relationship. Use is mediated

file use relationship.

A file is linked o the modules that
@ it implements through a containment
relafionship.

A module uses other modules of the
same subsystem through a module
use relationship.

UsedModule

A A A A

A module diagram. A file diagram.
A subsystem diagram. A project diagram.

Figure 15: Macro Unit Guide

Unit Guide’ which summarizes the macro units, their relationships and diagrams.

A project is the software system being developed. That is, it is the collection of micro
units gathered in some hierarchical architecture to deliver the functionality required of
an automated system. A project can be partitioned into a collection of linked subsystems
(subsystem architecture), each of which can be further partitioned into several modules
with various inter-dependencies (module architecture). That is, subsystems partition
a project, which are themselves partitioned by modules. Each module is the host of
the definitions of various micro units. Each subsystem can be used in other projects
independently of the project for which it was originally developed. This is also true
of modules. Therefore, there are several levels of reusability within a project. The

project itself can become a component of a new project. A subsystem can be used
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in the development of a new project, and modules can be used independently in the

development of subsystems of new projects.

5.3.1 Module

A module is an identified collection of micro units. In FAD, a project is partitioned into
a collection of subsystems (which are described in the following section) and these are
further partitioned into a collection of modules. Every type, function and permissive
signature is declared in a module, which provides a medium for the development of a
cohesive unit and in association with exclusive signatures, support for encapsulation
and a mechanism for type abstraction. Every entity declared in a module is visible from
every other entity declared in the same module. Entities declared in module A can use
entities declared in module B if there is a module use relationship from A to B, and
the required entity is specified in the mediating exclusive signature. The module use
relationship is described in Section 5.4.10, and exclusive signatures in Section 5.3.3. If
the two entities are declared in modules of different subsystems then the subsystems
must be associated through a subsystem use relationship as described in Section 5.4.11.

Thus FAD supports modular program development based on information hiding
through the use of modules, subsystems and their associated exclusive signatures. The
methodology encourages the development of an architecture that maximises the cohesion
of its units and minimises the coupling between the units. This is fully described in
Chapter 7.

All modern functional programming languages support a modular approach to pro-
gram development. Although there is some commonality in their approaches there are
also some significant differences as described in Section 3.2.3.

The details of each module are described in a Module Description Document (MDD)
as illustrated by the MDD for TeamsMod, the module which delivers the types and
functions associated with football teams. This MDD is presented in Figure 16.

In each MDD, the project within which the module is defined is presented to the

right of the header. The list in the body of the document presents:
e the module’s unique name which begins with an upper case letter;

e the version of the module;



5.3. FAD MACRO UNITS

93

Name:

Version:

Type(s):
Permissive sig(s):

Function(s):

Modules used:
Subsystem:
File:

Description:

Module Description Document

TeamsMod

19990711:1

teams, matchTeams

TEAMSCON, MATCHTEAMSCON
addResultsToTeams:

results -> teams -> teams
addResultToTeams:

result -> teams -> teams

addTeams: matchTeams -> teams -> teams
selectTeams:

result -> teams —> matchTeams
updatePerfs:

matchTeams -> result -> matchTeams
ResultsMod : RESULTSSIG3

FootballSS

This module hosts the type of football teams and its associated
functions. It also hosts the type which represent the teams which
played in a match. The type which represents a football team will

be hosted in a separate module to decouple it from the teams type.

Football

Figure 16: Module Description Document for the Module TeamsMod
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TeamsMod

teams| |teams|addResulisToleams| results|teams

Figure 17: The Module TeamsMod

e the types, permissive signatures and functions declared in the module. Each

function is accompanied by its type;

e the modules used by the module. In each case the module name is declared with
the associated exclusive signature which mediates its use. The name of the module

and signature are separated by a colon;
e the subsystem within which the module is declared;
e the file in which the module is implemented;
e a description of the module.
In common with FDDs and TDDs, the description document for a module will be
updated to record iterative developments of the module.

FAD Notation

A module is represented in FAD by a semi-circular ended rectangle enclosing the mod-
ule’s name. Since a module supports encapsulation which can be defined as in a capsule,
we have chosen a capsule-like notation. One can enclose any subset of the module’s en-
tities represented graphically or textually. The module TeamsMod is presented with one

of its functions in Figure 17.

5.3.2 Subsystem

A subsystem is a collection of modules and exclusive signatures. That is, each module
is declared in a subsystem along with any associated exclusive signatures. The rules

regarding module/exclusive signature associations are described in Section 5.4.5. Each
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subsystem should be developed by a single development unit. Partitioning a project into
a collection of subsystems supports an incremental approach to software development
and provides a robust filing system for system entities. That is, each entity will be

defined in a named module, which itself is part of a named subsystem.

An entity EA of a module A may use an entity EB of module B declared in
the same subsystem, if there exists a module use relationship from A to B which is
mediated by an exclusive signature in which EB is specified. If however, modules A
and B are declared in the subsystems SA and SB then there must be a subsystem
use relationship from SA to SB which is mediated by an exclusive signature in which
EB is specified. We describe the subsystem/exclusive signature association in Section
5.4.6 and the subsystem use relationship in Section 5.4.11. Exclusive signatures are an
important developmental aid in that they support the principle of least commitment,
where one can delay detailed design until absolutely necessary. The role of exclusive

signatures in development using the FAD methodology is described in Chapter 7.

Subsystems are not assigned a unique construct by any functional programming
languages. However, they can be realised through the modular system of each language.
For example, in SML a structure (which is a collection of declarations) can include other
structures. Similarly one can use Haskell’s module import mechanism to mimic the
assignment of several modules to a single module, which then controls access to all the
modules through a single interface. Thus a subsystem-based design can be supported

by modern functional languages.

The details of each subsystem are described in a Subsystem Description Document
(SSDD) as illustrated by the SSDD for the subsystem FootballSs, the subsystem which
will deliver the problem domain functionality for the football system. That is, it will
deliver through a collection of modules, the essential types specific to the football system,
teams, results and so on, and the functions which implement the functionality required

of any football league. This SSDD is presented in Figure 18.

In each SSDD, the project within which the subsystem is declared is presented to
the right of the header. The list in the body of the document presents:

e the subsystem’s unique name which begins with an upper-case letter and must

not clash with any module or existing subsystem name;
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Subsystem Description Document Football
Name: FootballSS
Version: 19990821:0
Module(s): TeamsMod : TEAMSSIG

PlayersMod : PLAYERSSIG
ResultsMod : RESULTSMODSIG1
LeagueTableMod : LTSIG
TeamMod
ResultMod
PlayerMod
Ezclusive Sigs: RESULTSSIG2, TEAMSIG
PLAYERSIG, RESULTSIG
Subsystems Used: GeneralSS : GENERALSIG
Developed by:
Description:
This subsystem hosts the modules which are essential to the
processing of football results. That is, the modules host the
football related types and functions. The subsystem also
includes the exclusive signatures which provide the interfaces

to its modules.

Figure 18: Subsystem Description Document for the Subsystem FootballSS
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e the version of the subsystem;

e the modules declared in the subsystem. Those modules that are associated with
the subsystem via a partition relationship (described in Section 5.4.14) are pre-
sented with the exclusive signature which mediates the relationship. The exclusive
signature makes explicit the module’s entities that can be used by a client from
another subsystem. That is, these are the only entities that can be specified in
any exclusive signature associated with the subsystem. Modules which are only
used by other modules of the subsystem are presented without an accompanying

signature;

the other exclusive signatures declared in the subsystem. These signatures are

used to mediate interaction between the modules of the subsystem;

the subsystem(s) used by the subsystem and the associated exclusive signatures

which mediate access to their entities;

a reference to the programming unit which is responsible for the development of

the subsystem;

a description of the subsystem.

The subsystem FootballSS hosts seven modules, and is dependent on a single sub-

system GeneralSS that provides types and functions that are of general use, such as

those typically declared in a language’s standard environment.

FAD Notation

A subsystem is represented in FAD by a semi-ellipse enclosing the subsystem’s name.

This notation was chosen since a project is represented as an ellipse, and a subsystem is

a part of a project. The modules declared in the subsystem can be presented textually

below a horizontal line which delimits them from the subsystem’s name. Alternatively

one can present hosted modules through the partition relationship described in Section

5.4.

14. We present the graphical notation for a subsystem in Figure 19.
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\ Footballss |

ResultsMod
PlayersMod
TeamsMod

Figure 19: A Basic Subsystem

5.3.3 Exclusive Signatures

The development of any large system requires the division of work among several devel-
opment units. How one divides the work and the information provided to each devel-
opment team, is essential to successful development. In FAD the unit of subdivision is
the subsystem which was described in the previous section. The information regarding
what is required of a subsystem, and how each can interact with other subsystems, is
provided by exclusive signatures. They are also used to guide the development of mod-
ules. That is, during software development exclusive signatures play an essential role
in specifying system requirements, and later in designing an implementable solution.
Full details of the methodology and the techniques that develop exclusive signatures are
given in Chapter 7.

An exclusive signature specifies a collection of micro units. These units are the only
units visible to a client declared in another macro unit. A module or subsystem can
only be used via an associated exclusive signature which declares the entities that are
available for use. That is, an exclusive signature mediates access to an associated item.
Module use and subsystem use are described in Sections 5.4.10 and 5.4.11 respectively.

Each signature entity is accompanied by its type specification. An exclusive sig-
nature can be associated with any module or subsystem which provides a binding for
all of the signature’s entities. This does not imply that the bindings are hosted by
the associated macro unit, but that the unit is visible from the associated macro unit.
Visibility of one micro unit from another is defined in Section 5.4.1. Module and sub-
system associations with exclusive signatures are described in Sections 5.4.5 and 5.4.6
respectively.

Standard ML signatures, Miranda abstract type signatures, Clean definition modules

and Haskell module export and import lists are thus supported through FAD’s exclusive
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signatures. Some recent research has focused on using parameterised signatures to
support a type-theoretic framework for modular programming [69]. FAD however has
a clear distinction between the semantics of a (parameterised) permissive signature and
that of a (non-parameterised) exclusive signature. A permissive signature presents the
minimal functionality supported by its associated type(s), where an exclusive signature
mediates access to the entities of an associated item. That is, a permissive signature
specifies at least this where an exclusive signature specifies only this.

The implementation details regarding signature declaration and application are
language-specific and are not a design issue. FAD provides a clear description of a
design decision without imposing a particular implementation approach. The FAD de-
scription may present more information than that provided by an implementation lan-
guage. Haskell, for example, presents (in a module’s export or import list) the names of
accessible entities without any type information (although this may be added to Haskell
2). In contrast, ML signatures and Clean definition modules provide type information
alongside the entity names.

The details of each exclusive signature are presented in an Ezclusive Signature De-
seription Document (ESDD) as illustrated by the ESDD for TEAMSSIG, an interface to
the module in which the type teams and associated types and functions are defined.
This is presented in Figure 20.

The project within which the signature is defined is presented to the right of the

header. The list in the body of the document presents:

e the unique name of the signature written in upper-case letters. The name must

not clash with any (permissive or exclusive) existing signature name;
e the version of the signature;

e the subsystem in which the signature is declared. If the signature is associated
with a subsystem then this will appear blank since it is declared in the project

and not any of its subsystems;

e the types specified in the signature. If the type’s constructor signature is not
specified in the signature then the type is used as an abstract type. Section 6.4

provides full details of FAD’s support for abstract types;
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Exclusive Signature Description Document Football
Name: TEAMSSIG
Version: 19990827:0
Subsystem: FootballSSs
Type(s): teams

Permissive sig(s):
Function(s): addResultsToTeams:
results -> teams -> teams
Inherited Sig(s):
Description:
This signature provides an interface to the module TeamsMod

when used by its subsystem.

Figure 20: Exclusive Signature Description Document for TEAMSSIG
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TEAMSSIG

teams

teams|addResulisToleams| results| teams

Figure 21: The Exclusive Signature TEAMSSIG

the permissive signatures specified in the signature. Any constructor signatures

will appear here;

the functions specified in the signature with their type specifications;

the signatures inherited by this signature. Signature inheritance is described in

Section 5.4.7;

a description of the signature.

FAD Notation

An exclusive signature has the same graphical notation as its permissive counterpart
although its name will always appear by itself. The notation was chosen since an
exclusive signature acts as an an interface to an associated macro unit and the notation
mimics such a barrier to entry. This is illustrated with the exclusive signature TEAMSSIG

presented in Figure 21.

5.3.4 Project

A system is developed as a project. A project is typically partitioned into several
subsystems. Thus one declares subsystems and their associated exclusive signatures in
a project. A project in no sense owns its subsystems. That is, any collection of the
subsystems can be used in the development of another project. The only constraints on

the use of a subsystem’s entities are those imposed by an associated exclusive signature.
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Project Description Document

Name: Football
Subsystem(s): FootballSS : FOOTBALLSIG
UISS : UISIG

FileSS : FILESIG
ParseSS : PARSESIG
GeneralSS : GENERALSIG
Ezclusive Sigs:
Projects Used:
Development Units:
Description:
A project which implements an automated football results

processing system.

Figure 22: Project Description Document for the Project Football

The details of each project are described in a Project Description Document (PDD)
as illustrated by the PDD for Football, the football system project. This PDD is
presented in Figure 22.

A PDD presents:

e the unique name of the project which begins with an upper-case letter and must

not clash with any names of modules, subsystems or existing projects;

e the subsystems declared in the project. These are presented with the associated
exclusive signature which mediates use of the subsystem’s entities. That is, any
other signature associated with a subsystem must provide a subset of the specifi-

cations declared in this signature;

o the other exclusive signatures declared in the project. These are used to mediate

interaction between entities of the project’s subsystems;



5.3. FAD MACRO UNITS 103

Football

UISS
FootballSS
ParseSS
FileSS
GeneralSS

Figure 23: The Project Football

e the other projects used by the project;

e the development units assigned to the project, and the subsystem(s) for which

they are responsible;

e a brief description of the project.

FAD Notation

A project is represented in FAD by an ellipse enclosing the project’s name. An ellipse
was chosen since it is nicely represents the global nature of a project. Below a delimiting
horizontal line one can present the names of the project’s subsystems. Alternatively
these can be linked to the project using the partition relationship described in Section

5.4.14. The graphical representation of the project Football is illustrated in Figure 23.

5.3.5 File

Each project will be implemented as a collection of files. These may include standard
environment file(s), library files, data files and files in which the project’s modules
are declared. That is, a file is a component of the system that delivers a part of an
implemented project. Where the subsystem and module architecture provides a logical
model of a system, the collection of files and their collaborations describe a physical model
of the software which implements the system. Since files are units of implementation,
their architecture is determined late in any development process.

Every module will be defined in a single file but a file could include the definition of
several modules. A subsystem will normally be defined through several files, but every
file will be associated with a single subsystem. Every exclusive signature will be defined

in a single file although once again several could be defined in the same file.
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File Description Document Football
Name: Teams.hs
Subsystem: FootballSS
Module(s): TeamsMod
Ezclusive sig(s): TEAMSSIG

Data hosted:
Files used:
Description:

The implementation of the football teams module.

Figure 24: File Description Document for the File Teams.hs

The details of each file are described in a File Description Document (FIDD) as
illustrated in Figure 24 by the FIDD for teams.hs.

In each FIDD the project being implemented is presented to the right of the header.
The list in the body of the document presents:

e the file’s unique name which will be written in a manner consistent with the

implementation language;
e the subsystem supported by the file;
e the module(s) implemented in the file;
e the exclusive signatures implemented in the file;
e the data hosted by the file. For example, the current record of the football teams;

e the files used in the implementation of the file. The file use relationship is described

in Section 5.4.13;

a description of the file.

Each modern functional programming language adopts its own conventions regarding

the assignment of modules to files. In Haskell each module must be declared in a separate
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Teams.hs

TeamsMod

Figure 25: The File Teams.hs

file typically of the same name. The module definitions are normally accompanied by an
export list of entities available to potential clients. SML imposes no such restriction, and
thus multiple modules can be declared in a single file. Clean requires two files for any
module which contains entities available to other modules, one to host the definitions
and the other to declare the entities that are for export. In each case the file name
must match the module name with the file extension signalling its use. That is, an
implementation module file has the extension icl as opposed to dcl for a definition
module file. Miranda has no language notation for a module, providing its support for
modular programming directly through its files. A more detailed description of modular

support in modern functional languages is presented in Chapter 3.

FAD Notation

A file is represented in FAD as a blackened rectangle with a white border. This looks
similar to a filing cabinet with the names representing each drawer. The file name is
written in the rectangle, which can also include the name(s) of the module(s) declared
in the file. This is illustrated in Figure 25.

This concludes the description of FAD’s micro and macro units. How they collabo-

rate is described in the following section.

5.4 FAD Relationships and Associations

Various relationships and associations between the modelling language’s units are sup-
ported by FAD. These include instantiation of a permissive signature by a type, mod-
ule/exclusive signature association and several ‘use relationships’. In this section we
will describe the syntax and semantics of each relationship. We will illustrate each with

an example from the case study.
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5.4.1 Argument of a Function

Since all data flow is explicit in a pure functional program, and most modern functional
languages are strongly typed, the argument and result type(s) of a function play an
important role both in guiding development of software and in recording the character-
istics of a program. Although a functional programmer is not required to specify the
types of functions, as is the case in statically-typed OO languages, as a development
tool it is extremely beneficial and is therefore encouraged by FAD. The relationship
between a function and its argument (and result types) is a use relationship since the
function uses values of the argument type(s) to create values of the result type.

All argument types must be wisible from their associated function. The visiblity
rules are the same for all micro units. That is, micro unit B is visible from micro unit

A if and only if precisely one of the following is true:
e A and B are hosted by the same module;

e B is hosted by a module BMod in the same subsystem as the module AMod
which hosts A. There is either a module use relationship from AMod to BMod
with B specified in the mediating exclusive signature, or there is a path from
AMod to BMod via one or more intermediate modules where each module use

relationship linking the modules is mediated by an exclusive signature that spec-

ifies B;

e B is hosted by a module BMod hosted by a subsystem BS which is used by the
subsystem which hosts the module in which A is declared. B must be specified in
the exclusive signature which mediates use of the subsystem, and in the exclusive
signature which mediates the partition relationship between the subsystem BS
and BMod or a module which is linked to BMod via a path as described in
the case above. This is illustrated in Figure 91 where to aid readibility we have
limited the specifications presented in the exclusive signatures to those required

for the example.

The module use relationship, subsystem use relationship, partition relationship,
module/exclusive signature association and subsystem/exclusive signature association

are described in Sections 5.4.10, 5.4.11, 5.4.14, 5.4.5 and 5.4.6 respectively.
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Polymorphic functions are restricted in their application to types that are visible.
Constrained polymorphic functions are dependent on the permissive signature which
declares the constraint. They are restricted in their application to types that are visible
and instantiate the permissive signature as described in Section 5.4.4. This implies that
software must be designed in such a way that a function has access, maybe only in an
abstract sense, to its argument type(s).

Higher-order functions with functional arguments imply a dependency between the
higher-order function and any actual functional argument. This is described in Section

6.9.

FAD Notation

A function argument type is represented in FAD through the juxtaposition of the type
to the right of the function as illustrated in Figure 26. The type boxes are external
to the function box since it: conforms to the juxtaposition-based syntax between a
function and its arguments found in most functional languages; it avoids potentially
messy nested notation for the representation of permissive signature/type associations
as described in Section 5.4.4; and, it simplifies the representation of functions with
functional arguments.

To support modular development, one can annotate the type notation to indicate
whether the function and type are declared in the same subsystem or if they are declared
in the same module. The default notation represents an intra-module relationship.
That is the function and type are declared in the same modules. An inter-subsystem
relationship is indicated by a broken vertical line in the type box at the function end of
the link. An intra-subsytem, inter-module relationship is indicated by a solid vertical
line in the type box at the function end of the link.

The function checkResult which checks the acceptability of a result against existing
results and the collection of football teams, is declared in the module ResultMod of the
subsystem FootballSS. It takes three arguments. The first is of type result which
is declared in the same module. The second and third of types results and teams
are declared in the modules ResultsMod and TeamsMod of the same subsystem. The
result type bool is a general-purpose type that is declared in a module of the subsystem

GeneralSS.
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bool ' | CheckResult | result | [results |[teams

Figure 26: A Function and its Type with Modular Annotations

5.4.2 Result of a Function

A function is dependent both on its argument type(s) and result type. Therefore, the
visibility rules described in the previous section equally apply to a function and its result
type. Hence a function has a use relationship with its result type and the same design

implications apply as those stated in Section 5.4.1.

FAD Notation

A result type is represented in FAD through juxtaposing the type box to the left of
its function box. That is, a type to the left of a function box is the result type of the
function. The reasons for this notation are as described for an argument type.

A function/result type association is also illustrated in Figure 26.

5.4.3 Curried Functions

All modern functional languages afford the developer a choice of designs for multiple
argument functions. The first form, which is also common to non-functional languages,
is to present the arguments in a tuple. The second form delivers the arguments one at
a time and is known as the curried form. The benefits of currying were described in

Section 3.1.4.

FAD Notation

Curried functions are represented through juxtaposing the first type box to the right of
the function box, and then each further type box to the right of the previous type box.
In Figure 27 we present FAD notation for the curried function addResultToPlayers

which in Haskell has the following specification.

addResultToPlayers :: Result -> Players -> Players
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players|addResultToPlayers| result | players

Figure 27: The Curried Function addResultToPlayers

namesAndData| select seleciNcmeAndDdro feams

Figure 28: Partial Application of the Function select

New functions can be statically or dynamically created through the partial applica-
tion of the function to an incomplete set of argument values. FAD represents partial
application by replacing a type with a value of a type as illustrated in Figure 28 where
the function select is applied to a functional value selectNameAndData. select is a
higher-order function which retrieves data from a collection of values by applying its

first argument to each element in its second argument.

5.4.4 Type/Permissive Signature Association

A permissive signature provides the minimum functionality supported by any associ-
ated type. There are two forms of association that FAD supports. The first is that
between type variables and a permissive signature which we call the type/permissive
signature contract association. A permissive signature restricts the type which can be
bound to the type variable(s) to those that provide bindings for each of the signature’s
operations. These types are linked to the permissive signature through the second form
of association that we call the type/permissive signature instantiation association. The
type constructors of any type(s) that instantiate a permissive signature must have the
same kind as the signature’s parameter(s). Type instantiation of a signature implies

that bindings exist for the operations of the signature defined over the type.

FAD Notation

The association between a permissive signature and a type (or type variable) is rep-

resented through juxtaposing the two. Juxtaposition was chosen since a permissive



110 CHAPTER 5. FAD MODELLING LANGUAGE

teams

collection a | CONTAINER

date team matchTeams

ORD

Figure 29: Type Dependency Diagram for the Type teams with Signature Instantiation

signature is adding an extra layer of information to a type. This is illustrate in Fig-
ure 29 where we present part of the type dependency diagram for the type teams. We
will return to this diagram to illustrate other relationships but for now we focus on
the instantiation of the permissive signature ORD by the type date, and the permissive
signature CONTAINER by the type collection a. In both cases one could represent
the instantiation simply through the signature notation with the entry EQ date and
CONTAINER collection respectively. Here one simply presents the type constructor
name (without any parameters) after the permissive signature name.

When more than one signature is instantiated by a type this can be represented
either by juxtaposing the signatures, or juxtaposing each signature with the type. In
addition one can represent multiple instantiations of a single signature by juxtaposing
the signature with each type as in Figure 30.

Thus the types int, bool, char, and float all instantiate the signature EQ.

Instantiation of a multiple parameter permissive signature is represented by enclosing
the instantiating types inside a type box juxtaposed with the signature. We illustrate
this in Figure 30 with a FAD representation of an example similar to one described in
[102]. In [102] the example refers to a multiple parameter type class Collection with
two parameters of kind * -> * and *. The second parameter enables constraints to be
applied to the type variable which represents the elements of a collection type. We have
called the permissive signature SET.

One can include type/permissive signature associations in the description of a func-

tion. The methodology encourages such associations in a function description since they
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EQa SETc a

@ (==) E empty.c a
bool (/=) EE E union co

H

int bool | char | float [o] a

Figure 30: Type Instantiation of a Signature

MAP collection

collection a | select | [ a| team teams

Figure 31: Type Constructor/Signature Association

provide information regarding the potential for higher-order and constrained polymor-
phic functions. They also provide a key for storing a function in the data dictionary.
FAD’s techniques for developing higher-order, and overloaded or polymorphic functions
is described in Sections 7.3.3 and 7.3.2. The data dictionary is presented in Chapter 8.

We illustrate with an example from the case study. The function select was first
described in Section 5.4.3 to illustrate partial application. The description of the func-
tion in Figure 31 has been updated with the association of the permissive signature MAP
with the type collection a, which is used by the type teams to construct values of
the type. This indicates that the function select requires ‘mapping’ behaviour over
its second argument. That is, it needs to apply a function to each of the elements in
a collection. The type description of the type collection a will need to be updated
accordingly unless the instantiation has already been declared.

Function overloading is not supported by all modern functional programming lan-
guages. Miranda only provides overloading for the built-in comparison operators and

the function show which converts a value to its printable form as a string. SML allows
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function identifier reuse through module name qualification but not function overload-
ing. Haskell and Clean both provide first and higher-order overloading through type and
constructor classes [66]. The class presents the signature supported by any instantiating
type. A class can therefore implement a permissive signature.

Although support for function overloading is not provided by all functional lan-
guages, the design benefits of making explicit the behaviour required by a type, or
the behaviour defined over a type is invaluable during development. Permissive signa-
tures and their associations can be modelled either directly or indirectly in any modern

functional language.

5.4.5 Module/Exclusive Signature Association

In Section 5.3.1 we presented a brief overview of the support within functional program-
ming for modular programming. When designing a system it is important to be able
to separate the implementation of a module’s entities from its interface to the outside
world so that the effect of any implementation changes are localised. FAD supports this
approach both notationally and in its methodology described in the following chapter.

FAD provides modules in which micro units are defined, and exclusive signatures
that specify an interface to a module. A module/exclusive signature association specifies
the entities of a module which are available to a client module which is linked to the
module via a module use relationship. Each entity specified in the signature is either
declared in the associated module, or in a module which is connected to the associated
module by a path of module use relationships and is specified in each mediating exclusive
signature. Thus one can associate an exclusive signature with any module which can
provide a binding for each entity specified in the signature, where the binding may be
provided by entities declared in the module, declared in modules (and specified in the
associated exclusive signature) used by the module, or declared in a module used by
a used module (and specified in the associated exclusive signatures) and so on. The
module use relationship is described in Section 5.4.10.

Each module will be associated with at least one exclusive signature, but could
be associated with several signatures. Fach signature will present an interface to the
module for a particular client. For example, module A may require access to the types

declared in module B and require knowledge of how they are constructed. Module C
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RESULTSIG

result

result | CreateRres| parsedRes
checkResult| result

|elele)

ResultMod

Figure 32: Module/Exclusive Signature Association for the Module ResMod

simply requires access to the types of module B and some operations over the types. The
exclusive signature associated with module B and used by module A will include the
types of B and their associated constructor signature, often referred to as a transparent
signature. In contrast, the signature used by module C includes the types without their
constructor signatures (abstract data types) and the required operations. Multiple

interfaces to a single module are supported by most modern functional languages.

FAD Notation

A module/exclusive signature association is represented through juxtaposing an ex-
clusive signature with a module. We chose this notation since an exclusive signature
provides an interface to the macro unit to which it is juxtaposed. In Figure 32 each
entity of the signature RESULTSIG is declared in the module ResultMod. Entities not
specified in the signature may also be declared in the module. They are not however

visible to external clients.

Hence FAD supports and encourages the separation of a module definition from
its interface, and encourages the explicit statement of the functionality availed by a
module through its associated signature(s). This allows the developer to describe the
collaboration between modules at the interface level before focusing on the internal

implementation details of each module.
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5.4.6 Subsystem/Exclusive Signature Association

In Section 5.3.2 we described subsystems and how they can be used during the develop-
ment of a system. Subsystems provide a mechanism for managing large projects through
hosting a collection of modules with some common purpose. The subsystem/exclusive
signature association mirrors the module/exclusive signature association described in
Section 5.4.5.

Every entity specified in an exclusive signature associated with a subsystem must
also be specified in the exclusive signature which mediates use of a contained module’s
entities through a partition relationship, or in an exclusive signature which mediates
use of another subsystem via a subsystem use relationship. We describe the subsystem
use relationship in Section 5.4.11 and the subsystem/module partition relationship in
Section 5.4.14.

During development the design of module interfaces is guided by the usage require-
ments of their host subsystem and not vice versa. That is, subsystem use drives the
development of its modules and associated signatures. Full details of this process are

presented in the following chapter.

FAD Notation

The subsystem/exclusive signature association in common with the module/exclusive
signature association is represented in FAD by the juxtaposition of an exclusive signa-
ture with a subsystem. This notation was chosen for the same reasons presented in
Section 5.4.5. This is illustrated in Figure 33 where the user interface subsystem UISS
is associated with the exclusive signature UISIG which is presented in an elided form.
The signature declares a collection of I/O functions available for use. We describe
in Section 7.2.1 some issues regarding the representation of impure actions within the

purity of FAD.

5.4.7 Signature Inheritance Relationship

A signature can adopt the entities specified in another signature, through the transitive
signature inheritance relationship. The only mechanism for respecifying an entity in a

new signature is through inheriting its specification from an existing signature.
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Figure 33: Subsystem/Exclusive Signature Association for the Subsystem UISS

A signature can only inherit from one or more signatures of the same form. That
is an exclusive signature can only inherit from other exclusive signatures. Permissive
signatures are restricted to inheritance of other permissive signatures where they have
matching parameter kinds. A signature can only inherit from a signature that is visible.
That is, if one wants a signature to inherit from another signature then they must either
be declared in the same macro unit (the only possibility for exclusive signatures since
they do not appear in other interfaces), or are declared in the appropriate interface(s).
Since a permissive signature may be instantiated by several unrelated types they should
be as visible as possible. For example, in the case study all permissive signatures are
declared in the subsystem GeneralSS and specified in the mediating exclusive signature
GENERALSIG. This subsystem is used by all other subsystems of the project.

In functional languages that support type and constructor classes, inheritance is
a common mechanism for constructing new classes. For example, in Haskell 98 [100]

several of the built-in classes such as Eq and Ord are related through inheritance.

FAD Notation

The signature inheritance relationship is represented by an arrow between two signa-
tures, pointing towards the bequeathing signature and from the inheriting signature.

Parameter names should be supplied when needed for clarification. For example, if a
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EQ

ORD
(>) :a->a ->bool
(>=): a ->a -> bool
(<) :a->a ->bool
(>=): a ->a -> bool

Figure 34: Signature Inheritance Relationship between EQ and ORD

multiple parameter signature inherits from a single parameter signature, one should use

a consistent name for the related parameters in the two signatures.

The graphical notation is the reverse of that adopted in the Haskell 98 Report [100].
We argue that this is a more natural representation since the direction of the arrow
reflects the fact that an inherited signature is implied by an inheriting signature. That
is, if a type instantiates a signature A which inherits from signature B then it also
instantiates signature B. A similar argument can be made for modules or subsystems

and their associated signatures.

Extensible algebraic types have recently been mooted as a means of supporting
subtyping within functional languages [107]. FAD supports them through the signa-
ture inheritance relationship between constructor signatures. As yet modern functional

languages do not support extensible algebraic types.

We illustrate signature inheritance in Figure 34, where the permissive signature
ORD inherits from the permissive signature EQ. The new operations specified in ORD are

presented below its name.

In the following section we describe the various use relationships between units of

the same form.
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5.4.8 Type Use Relationship

A type can be defined in terms of one or more existing types. FAD’s non-transitive type
use relationship declares a unidirectional dependency from the using type to the used
type(s). The using type could be an alias for the used type or could be a composite type
whose values are constructed using values of the used type(s). For design purposes it is
important to make explicit these dependencies since they will influence the architecture
of the system. A type may only use a type that is visible.

A type is visible from another type if one of the cases for visibility presented in
Section 5.4.1 is true. The relationship is non-transitive since the type t1 could be visible
from the type t2 which is visible from the type t3. However the type t1 may not be
visible from t3. In a modular design in which a minimum of coupling between modules
is practised, one would expect and encourage these patterns of design. A constrained
parameterised type requires an association between a type variable and at least one
permissive signature. The permissive signature(s) must be visible from the type, which
will always be the case if one practises a design approach where all permissive signatures

are visible from all entities.

FAD Notation

The type use relationship is represented by a link from the user type to the used type or
an associated permissive signature. The link is connected to the using type by a filled-
in rectangle. This notation was chosen because we required a simple (and reusable)
notation that made clear the direction of usage. We use this same notation for all
use relationships between units of the same form. In support of modular development
the use relationships may reflect whether the entities at each end are declared in the
same subsystem and also if they are declared in the same module. A broken line link
indicates an inter-subsystem relationship; a thin line link indicates an intra-subsystem
but inter-module relationship and a thick line link an intra-module relationship. The
thin line link is used by default and will be updated if necessary.

A sum type can be modelled by annotating the use relationship with comma delim-
ited natural numbers, to indicate which types and type constructors are used by each

element of the sum. We need an annotation that supports more than one number since
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Figure 35: Type Dependency Diagram for the Type teams

some types will be used in more than one element of the sum.

We illustrate the type use relationship in Figure 35 with a type dependency diagram
for the type teams. Type dependency diagrams present a data-centric view of a system
or part of a system. The type teams uses three types, date, team, and collection ain
the construction of its values. The types teams and team are both declared in modules
of the subsystem FootballSS. The types date and collection a are defined in the
subsystem GeneralSS. The type team uses the types tName, perfData and teamInfo

which are all declared in the module TeamMod.

5.4.9 Function Use Relationship

Functional programmers are encouraged to design programs that are both ‘modular-in-
the-large’ and ‘modular-in-the-small’. FAD’s macro units and macro unit relationships
support the first form of modularity. The function use relationship supports the latter
through the development of designs built on small functions with a clear single purpose.

FAD’s non-transitive function use relationship declares a unidirectional dependency
from a using function to a non-argument used function. The same visibility rules apply

for used functions as for used types.
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Figure 36: Function Dependency Diagram for the Function updPlayersPerf

FAD Notation

The functions used in the body of a function are linked to the using function through
the same uses notation as for type use. This is illustrated in Figure 36 with the function

dependency diagram for the function updPlayersPerf.

The I/O function updPlayersPerf uses the file I/O functions readPlayersFile,
readResFile, and writePlayersFile. It also uses the function addResultsToPlayers

which in turn uses the functions filterByDate and addResultsToPlayers.

One can annotate function use relationships to indicate sequentiality of used function
application and conditional behaviour. One can also use annotation to indicate nested
sequentiality. We first describe non-nested sequential annotation. Each use relationship
link is annotated with a natural number that indicates the order of application of the
functions. A function with a link indexed with a natural number n will be applied in
advance of all functions with a link whose index is greater than n and after any with
an index less than n. Since functions can exhibit both sequential and non-sequential
behaviour, those functions with identical indexes require no mutually sequential appli-

cation. If the use relationship links have no annotations then one can assume that no
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sequentiality of application of the functions is required.

Nested sequential behaviour is represented through qualified indexes. That is, the
index is written by postfixing the index of the link to the using function, with a full
stop followed by a natural number index. This indexing can be repeated to any level of
dependency, although we would encourage models which have several levels of depen-
dency to be represented using a collection of diagrams as is common when using data
flow diagrams. That is, each function with significant dependency requirements should
be described in a separate diagram.

Functions with conditional behaviour will require sequential behaviour for the de-
termination of which case is true, and the evaluation of the associated expression. The
implementation of the conditional function could be as a collection of guards or as a
conditional expression. These details are left to the software implementers and may
reflect the idiosyncrasies of a particular implementation language.

A conditional function is best represented using a separate diagram for each case.
A condition can be represented as a function that returns a Boolean value. Success can
be represented by the value True in the result rectangle and failure by the value False.
A function with more than two cases will have more than one condition function. We
illustrate in Figures 37(a) and 37(b) the FAD diagrams that model the function condFun.
If the predicate function predFun, when applied to the inputted integer returns True,

condFun uses the function funl. Otherwise it uses the function fun2.

condFun :: Int -> Int

condFun i
| predFun i = funl i
| otherwise = fun2 i

Thus one can use annotations to aid the reading of multiple diagrams that represent
the model of a function with conditional behaviour. In Figure 37(a) we represent the
case where the first condition is satisfied. The annotations are simply those for sequen-
tiality. Figure 37(b) models failure of the first condition and success of the second. The
annotation to the function fun2 is extended with the letter a to indicate that this is an

alternative to the model in Figure 37(a).
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Figure 37: Conditional Function Diagrams

One can add comments to any FAD diagram through enclosing the commentary in a
circle and attaching it to the relevant item through a broken line as illustrated in Figure

36.

5.4.10 Module Use Relationship

Hosting functions and types in modules aids the management of software development
and if practised effectively will minimise the scope of any changes to the software.
One should develop cohesive modules which have a minimal but explicit coupling with
other modules. We describe in the following chapter how FAD’s methodology both aids
and encourages the development of modular designs where information hiding is the
dominant criterion. In this section we describe how entities declared in one module can
use entities declared in another module of the same subsystem. The following section
describes a similar relationship between subsystems.

FAD supports inter-module development through its module use relationship. This
is a non-transitive, unidirectional relationship between two modules mediated by an
exclusive signature associated with the used module. Entities in one module may make
use of entities declared in another module of the same subsystem if and only if there
is a module use relationship from the client module to the used module. The entities
available for use are those specified in the associated exclusive signature.

Module use is only supported between modules of the same subsystem. Entities
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Figure 38: A Module Diagram

declared in modules of different subsystems of a project require a subsystem use re-
lationship from the client subsystem to the used subsystem. This is described in the

following section.

FAD Notation

FAD uses the same graphical notation for module use as for type and function use
except one only uses the inter-subsystem and intra-subsystem versions of the notation.
That is, a module use relationship is a rectangle-ended link between the client module
and the used module, although it must be linked to an exclusive signature associated
with the used module.

We illustrate module use in the module diagram presented in Figure 38. The module
ResultsMod hosts the type results, which is a collection of values of type result. That
is, results uses result. The type result is hosted by the module ResultMod and is

specified in the associated exclusive signature RESULTSIG.

5.4.11 Subsystem Use Relationship

FAD not only provides modules to support the management of the software development
process but also subsystems that host a collection of modules. One can make the same
arguments for a sensible subsystem architecture as stated for the module architecture in
the previous section. FAD supports inter-subsystem development through its subsystem

use relationship, a non-transitive, unidirectional link between two subsystems.
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Figure 39: A Subsystem Diagram

A subsystem use relationship indicates that the entities of the client subsystem may
be able to use entities declared in the used subsystem. A subsystem may only be used

via an associated exclusive signature that specifies entities that are available for use.

The subsystem use relationship supports the dependency of a micro unit declared in
a module of one subsystem on a micro unit declared in a module of another subsystem.
Intra-subsystem dependency is supported by the module use relationship described in
the previous section. That is, if a function declared in a module of one subsystem needs
access to a function declared in a module of another subsystem then this is modelled in

FAD through a subsystem use relationship between the relevant subsystems.

FAD Notation

The notation used in FAD is the same as the default use relationship notation for the
type use, function use, and module use relationships. We illustrate in Figure 39 with a

subsystem diagram from the case study.

The subsystem UISS that hosts the modules which implement user interface types
and functions, is linked to the subsystem FileSS in which the file-handling functionality
is supported. Various text-based I/O functions declared in modules of UISS depend on
functions that write to files or read from files. These are declared in modules of the

subsystem FileSS.
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5.4.12 Project Use Relationship

A project can make use of another project through FAD’s non-transitive, unidirectional
project use relationship. Alternatively a project can use individual subsystems of an-
other project, or develop new subsystems from the modules declared in another project.
That is, although a project is partitioned into subsystems that themselves are further
partitioned into modules, the architecture is project-specific. A new project can reuse
an existing project with its declared architecture, or one or more of an existing project’s
subsystems with their declared architecture, or one or more modules developed for an
existing project. In summary, subsystems are independent of the project for which they
were originally developed. Modules are also independent of the subsystems for which
they were originally developed. They can therefore be reconfigured to support a new

project, or be used collectively as a component of a larger project.

FAD Notation

The notation for the project use relationship between two projects is identical to that

for the subsystem use relationship, except there is no associated exclusive signature.

5.4.13 File Use Relationship

In Section 5.3.5 we described how software is implemented as a collection of files. The
file architecture will depend both on the software design and the idiosyncrasies of an
implementation language. For example, Clean requires each module to be declared
in a separate implementation file with a single associated definition file that declares
the interface to the implemented module. Thus a module/signature association will be
delivered as two files linked by a use relationship. FAD’s non-transitive, unidirectional
file use relationship, declares a dependency between two files. That is, the client file
hosts entities that are dependent on entities hosted by the used file. Access rights are
determined at the logical level, subsystems, modules and so on and not at the physical
level. Therefore, accessibility will be dependent on the logical architecture of the system.
A system’s file architecture is presented in a collection of file diagrams which are simply

files linked by file use relationships.
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FAD Notation

The file use relationship has the same notation as the default notation for all other FAD

use relationships. Of course there are no exclusive signatures mediating access.

5.4.14 Partition Relationship

A FAD project is partitioned into one or more subsystems which are themselves parti-
tioned into one or more modules. Each module hosts one or more micro units. These
relationships are modelled in FAD as the transitive partition relationships. Thus a
partition relationship links either a project with a subsystem or a subsystem with a

module.

FAD Notation

A partition relationship is a filled semi-circle ended link from the partitioned macro
unit to a partition element. This notation was also chosen for its simplicity. The
semi-circle end emphasises that it is a whole/part relationship, where a semi-circle
is a part of a circle. This relationship is illustrated in Figure 40 where the project
Football’s partition includes the subsystem FootballSS that itself includes the module
ResultsMod. If the partition element is associated with an exclusive signature this
signature specifies the element’s entities that can be included in an associated signature

of the partitioned unit. This only applies to the subsystem/module partition.

5.4.15 Containment Relationship

A file contains one or more logical units. This implies that the unit is defined in the file.
Of course, more than one file could implement the same unit and possibly in different

languages. A file is linked to a contained unit through the containment relationship.

FAD Notation

A containment relationship is a filled triangle ended link from a file to a unit defined
in the file. This notation was chosen for its simplicity. The triangle end was chosen to
discriminate this relationship from the various use relationships and partition relation-

ships. This relationship is illustrated in Figure 40 where the module ResultsMod and



126 CHAPTER 5. FAD MODELLING LANGUAGE

Football

FOQOTBALLSIG

Results.hs
FootballSS

( ResultsMod )

Figure 40: FAD’s Partition and Containment Relationships

its associated signature are implemented in the file Results.hs.

5.4.16 FAD Comments

One can add comments to FAD diagrams. These can be attached to any FAD unit or

relationship. They are used to add detail to a particular unit or relationship.

FAD Notation

FAD comments are presented inside a circle that is attached to the item for which the
comment is made via a broken line. This notation was chosen since it looks like a
‘callout’, which is often used to relate text to an item on a picture or a slide. This is

illustrated in Figure 41.

5.5 Summary

This chapter provided a description of the elements, syntax and semantics of the mod-
elling language of FAD. There are three micro units, types, functions and permissive
signatures and five macro units, projects, subsystems, modules, exclusive signatures and
files. Various associations and relationships are supported between items of the same

unit, and between items of different units.
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Figure 41: FAD Comment

The modelling language supports a range of diagrams that provide various views of
a system. A function dependency diagram is a collection of functions linked by function
use relationships. They model the functional requirements of a system and can include
modular architecture information. A type dependency diagram is a collection of types
and type use relationships. They present a static view of a system, and can also include
modular architecture information. Project, subsystem and module diagrams model the
various levels of a system architecture. A file diagram describes the physical architecture
of an implemented system.

In the following chapter we illustrate how common designs used in functional pro-
gramming can be modelled using this modelling language. In Chapter 7 we describe the
methodology of FAD. It uses the elements presented in this chapter to develop models

of a system.
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Chapter 6

FAD Functional Designs

In Chapter 3 we described the main features of the functional programming paradigm
and how they influence software development within the paradigm. Various designs
are commonly used such as higher-order functions and algebraic types. In the previous
chapter we described the modelling language of FAD. In this chapter we describe the
modelling of common functional programming designs in FAD’s modelling language.
Since the language has been developed specifically to model functional programs, the
designs should be natural to model. In practice however, one should not be looking to
model particular designs but to model a problem, which can be iteratively developed to
a model of an implementable design. Each design will be illustrated by an example and

accompanied by a graphical representation of the FAD model.

6.1 Tuple Types

Tuple types are composite types with a special syntax in all modern functional lan-
guages, a parenthesis enclosed, comma-delimited collection of types. Values of the type
are similarly represented with values replacing the types. Elements of a tuple value can

be selected through pattern matching.

FAD Model

FAD represents a tuple type as a type that uses the tuple component types, and is asso-
ciated with a constructor signature that specifies the relevant tuple-forming constructor.

We illustrate in Figure 42 with the model of the following pair type:

129
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Figure 42: A FAD tuple type model

The pair

type pairType = (typel, type2)

6.2 Records

A record is similar to a tuple with the additional property of element selection through a
field name. That is, a record is a tuple with named fields. For example, the record aRec
(written in Hugs98 running in Hugs mode) has two fields, a of type Int and containing

the number 3, and b of type Bool and containing the Boolean value False.
aRec = (a = 3::Int, b = False)

Each record is accompanied by a set of selector functions - one for each field of the

record. For example, the value held in field a can be inspected as follows:
#a aRec

Most modern functional languages support records. Hugs supports a flexible system of
extensible records or “Trex” [68], the name reflecting the incremental building of the
records. Clean and SML also support records but both are more restrictive in their use
than Hugs. For example, in both these languages functions can only be defined over

complete records.
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Figure 43: A FAD record type model

FAD Model

A record is presented in FAD in a similar way to a tuple. The constructor signature
associated with the type also includes the selection functions. The constructor signature
could be created through inheriting a tuple constructor signature, which reinforces the
fact that a record is a tuple with some extra functionality. A constructor will be applied
to named parameter types, and the signature will be extended with the relevant selector
functions. We illustrate this with the FAD representation of someRec, the type of the
value aRec, in Figure 43.

Extensible records can thus be naturally represented through a type associated with

a permissive signature, with extensions declared through signature inheritance.

6.3 Algebraic Types

Algebraic or concrete types are either built in to the implementation language, such as
the Booleans, or are declared by the user. Each new algebraic type is declared using a
type constructor such as the Haskell type constructor Maybe. Its values are constructed
through one or more value constructors which are declared with the type constructor.

Algebraic types were fully described in Section 3.1.5.
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Figure 44: A FAD Algebraic Type

Any algebraic type with at least one non-zero arity value constructor uses at least
one type. That is, some values of the type are created by applying one of its value
constructors to a value or values of particular types. The sum type AlgTypel uses

values of type Int or Char, and the parameterised type AlgType2 t uses values of any

type t.

data AlgTypel Conl Int | Con2 Char

data AlgType2 t = Con t

See Section 3.1.5 for a more detailed description of algebraic types.

FAD Model

An algebraic type instantiates a permissive signature that specifies the constructors of
the values of the type. FAD represents the types algTypel and algType2 as presented
in Figures 44(a) and 44(b). The names of value constructors begin with an upper-case
letter. A sum type is indicated by annotating the use relationship links as described in

Section 5.4.8.
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6.4 Abstract Type

An abstract type in contrast to a concrete type hides information regarding the con-
struction of values of the type. An abstract type focuses attention on what one can do
with values of the type in ignorance of its implementation details. Abstract types are
the functional programmers’ mechanism for modular development based on encapsu-
lation and abstraction. They achieve encapsulation through preventing access to their

implementation, and abstraction by providing an explicit interface.

Abstract data types are therefore integral to the development of a modular system
based on information hiding. The methodology encourages designs built on abstract

types as will become clear in the following chapter.

FAD Model

FAD supports type abstraction through its modules and exclusive signatures. Every
type is declared in a module. Abstraction is achieved through associating with the
module an exclusive signature that specifies the type but not its constructor signature.
Hence, within the module the type is concrete but when used via the exclusive signature
described above, the type is abstract. That is, an entity declared in the same module
has access to the type’s implementation. Any entity declared in another module whose
use relationship is mediated by an exclusive signature that enforces abstraction, does

not have access to the type’s implementation.

We illustrate in Figure 45 with a model of the following code. The module imple-

mentation has been elided for space reasons.

module TreeMod(Tree, treeFunl, treeFun2) where
data Tree a = Nil | Node a (Tree a) (Tree a)

treeFunl :: Tree a -> a

treeFun2 :: Tree a -> Int
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Figure 45: A FAD Abstract Data Type Model

6.5 Polymorphic Functions

Polymorphic functions provide a significant reuse mechanism for functional program-
mers. Parametric polymorphic functions can be applied to values of many types. The
type of any polymorphic function includes at least one (unconstrained) type variable of
kind *, which can be instantiated by any type. That is, a polymorphic function does
not require any specific characteristics of the types that instantiate at least one of the

type variables of kind * in its type.

FAD Model

One represents a polymorphic function in FAD as a function whose type includes at

least one type variable of kind * that is not associated with any permissive signature.

Any function description that does not include any associations with permissive sig-
natures, or only associations with permissive signatures without parameters of kind *,
could possibly be implemented as a polymorphic function. Full details of the develop-
ment of polymorphic functions are described in Section 7.3.2. The polymorphic identity

function id is presented in Figure 46.
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Figure 46: Polymorphic Function Model

6.6 Type Classes, Instantiations and Overloaded Func-

tions

We stated in Section 5.2.3 that a permissive signature associated with a type presents
a contract of use for values of that type. That is, the signature is not acting as an
interface, in the sense of controlling access to entities of an associated item, but simply
as a guarantor that certain functions are defined over the type. That is the minimum
functionality supported over the type is that declared by the permissive signatures

instantiated by the type.

FAD Model

Since type classes (and constructor classes) provide a guarantor service for a set of
overloaded functions they are presented as permissive signatures in FAD. Type class
instantiation is simply type/permissive signature instantiation in FAD, and class decla-
ration with a non-empty context is supported by permissive signature inheritance. We
illustrate both of these situations in Figure 47, in which the following code is graphically

represented.

class SomeClass a where
funl :: a -> a
instance SomeClass SomeType where
funl = id
class SomeClass a => AnotherClass a where

fun2 :: a -> a

Non-empty contexts can also appear in instance definitions and function definitions.
A function with a non-empty context is an overloaded function. Each element in the

context is represented in FAD as a type/permissive signature contract association. This
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Figure 48: Class Instantiation and Function Definition with Non-Empty Context

is illustrated in Figures 48(a) and 48(b) where the following instance declaration and

function declaration are modelled respectively.

instance Eq a => Eq (Set a) where...

dfs :: Tree t => t -> [t]

6.7 Multi-Parameter Classes

Where single parameter classes are supported by Haskell 98, Gofer and Clean, multi-

parameter classes have not been included in Haskell 98, and are only supported by
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Gofer (and extensions of Hugs 98 and the Glasgow Haskell compiler). They are however
rapidly gathering support in the functional programming community and have been
proposed by Peyton Jones [98] for inclusion in the next standard Haskell release. The
proposal uses the detailed arguments provided in [102]. We therefore believe that FAD

should support multi-parameter classes.

FAD Models

The paper [102] outlines three types of support provided by multi-parameter type

classes:
e overloading with coupled parameters
e overloading with constrained parameters and,
e type relations

which we will represent using FAD notation.

Overloading with coupled parameters is the natural generalization of the single pa-
rameter overloading supported by type classes. There are many situations where a tuple
of types (with each type possibly exhibiting certain behaviours) exhibit a particular set
of behaviours, and multi-parameter type classes naturally support such a situation. We
present an example from Jones’ paper [66], illustrated by the FAD representation in

Figure 49.

data State s a = ST (s -> (a,s))

class Monad m => StateMonad m s where
update :: (s -> s8) -> m s

instance StateMonad (State s) s where

update f = ST (\s -> (s, f s))

Single parameter type classes in which the parameter is of kind * -> * or any
non * kind, impose no constraints on the type variable(s) associated with any instan-
tiating type constructor. For example, if one wants a set type to instantiate a class
which includes a function for combining two items of the instantiating type, then one

needs to restrict the set element types to ‘equality types’ or those that instantiate an
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Figure 49: Overloading with Coupled Parameters

equality class. This requires access to the parameter of the type constructor, which is
achieved through multi-parameter type classes. This is an example of overloading with
constrained parameters.

Overloading with constrained parameters allows the user control over the type vari-
able in a constructor class, in contrast to the single parameter case where the type
variable is universally quantified. Hence one is allowed to achieve a higher level of ab-
straction by creating a type class of generic behaviours, and then support specialization
within the context of the instance definition.

Once again we provide implementation code and the corresponding FAD notation

in Figure 50.

class Multi m a where

item ::ma

combine :: ma ->ma ->ma
instance Classl a => Multi TypeCon a where

item = ...

combine

Type relations allow the user to specify a set of behavioural relationships between
two types that are looser than those described in the previous two examples. Liang,

Hudak, and Jones [76] present the following example of a class defining an isomorphism
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Figure 50: Overloading with Constrained Parameters
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Figure 51: Type Relations

between types.

class Iso a b where
iso :: a —>b

osi :: b ->a

The FAD representation of this class is presented in Figure 51.

6.8 ML Structures, Signatures and Functors

An ML structure is a collection of declarations that can include types, functions, val-
ues, other structures, and signatures. Each structure can be named and has a default
principal signature that is the collection of type specifications of the structure’s enti-
ties. However, one can override this signature through explicitly assigning a declared

signature to a structure. That is, ML supports independent modules (structures) and
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signatures. Thus several new structures can be declared by associating a single structure
with different signatures

As with all functional languages, modules are not first class and hence cannot be
passed as arguments to functions, returned as results from functions or appear in data
structures. However, SML supports parameterised modules or functors which provide a
mechanism for creating new structures from existing ones in an efficient and reusable
manner. That is, a functor takes zero or more structures as parameters and returns
a structure as a result. Functors with zero arguments are used simply to present a
consistent approach to structure development. Where a function is constrained by its
type specification, a functor is constrained by the stated signatures of the parameters
and returned value.

A structure’s signature can be either transparent or opaque, the latter making the
type’s declared in the structure abstract. Another level of abstraction control is allowed,
where the user explicitly declares particular types in the structure abstract. See [88] for

full details on SML’s modular support.

FAD Model

In FAD we represent a structure as a module and an SML signature as an exclusive sig-
nature. An opaque SML signature is represented by an exclusive signature in which any
type is specified without its constructor signature. That is, abstraction is represented
as described in Section 6.4.

We illustrate these ideas by presenting in Figure 52 the graphical representations of
the following ML structures based on those defined in Paulson’s ML for the Working
Programmer [96]. We present the structures and signatures in elided form for space

reasons.

structure Queuel =
struct
type ’a t = ’a list;

exception E;

;
fun enq(q,x) = q @ [x];

val empty
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Figure 52: Structures and Signatures

fun null(x::q) = false
| null _ = true;

end;
signature QUEUE2 =

sig

type ’a t

exception E

val null : ’a t -> bool

end;
structure Queue2 : QUEUE2 = Queuel;
structure Queue3 :> QUEUE2 = Queuel;

When declaring a functor, it is good practice to make explicit the signature that
each parameter structure is required to support, and the signature of the returned
structure. One cannot model functors directly in FAD but one can model the result
of their application. A functor when applied to its argument structure(s), which each

support an explicit interface, returns a structure that uses the argument structures and
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Figure 53: Functor Application Model

itself supports an explicit interface. A functor application can be modelled using FAD’s
modules, exclusive signatures and the module use relationship.

For example, the structure NewQueue is the result of the application of the functor
LimitedQueue to the existing structure 01dQueue, and this relationship is represented

in FAD as in Figure 53.

functor LimitedQueue (Queue: QUEUE) : QUEUE2 =
struct

structure Item = Queue;

end;
structure 01dQueue : QUEUE

struct

end;

structure NewQueue = LimitedQueue (01dQueue);

One can signal the potential for the implementation of a functor by adding a com-
ment to the diagram that states that the pattern of module development is likely to be

repeated.
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Figure 54: Higher-Order Function Model

6.9 Higher-Order Functions

A function which either takes a function as an argument or returns one as a result, is
known as a higher-order function. Thus, by definition all curried functions are higher-

order. These are supported in FAD as described in Section 5.4.3.

FAD Model

Functions which take functions as arguments are modelled as functions, with the func-
tional type enclosed in a type rectangle. This is illustrated in Figure 54(a) with the
Haskell function map. In Figure 54(b) we represent the partial application of map to
the function double which doubles a number. The permissive signature associated with
the second argument type, indicates that the function can only be applied to lists of
types that support the various arithmetic operators (plus some other functions). The
signature only needs to be associated once when there is repeated use of a parameter
or type name. Figure 54(a) declares that map is defined over all list types and thus can
be applied to values of a subset of these types as required by the associated permissive

signature in Figure 54(b).

6.10 Existential Types

Ezistential types (or existentially quantified type variables) are a mechanism for allowing
values of differing types in a single data structure. That is, one can create heterogeneous
data structures. This is in contrast to universally quantified polymorphic types in which
each value of the type must itself be monomorphic. That is, one can only construct
homogeneous data structures.

However, the use of existential types is restricted. When a constructor with an
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existentially quantified type is used in pattern matching, the actual type of the quantified
variable is not allowed to escape outside the expression tied to the pattern matching.
Existential types can therefore only be used in functions where one does not try to
access an element of the data structure for external use. For example, a length function
that simply takes a list of items and returns the number of items, could be applied to
an existentially quantified list type. However, a function that returns the nth element
of a list could not be applied to values of an existentially quantified list type, since the
actual type of each element is unknown.

Existential types are currently supported by a minority of modern functional lan-
guages or implementations of languages. These include Clean and Hugs 98.

Laiifer [74] argues that combining type classes and existential types in a single
language delivers significant expressive power. Existential types provide a mechanism
for declaring first-class abstract data types, and an associated type class declares the
type’s interface. We present below an example based on one from [74], which was written

using the Chalmers Haskell B. interpreter, HBI [7].

data KEY = (KeyClass 7a) => MakeKey 7a

Since all type variables that are free and have a name that starts with ‘?’ in a type
definition are considered to be existentially quantified, the above declares a data type
with an existentially quantified variable that is constrained by the type class KeyClass.

Thus, the type class KeyClass declares the interface to the first-class abstract type KEY.

FAD Model

FAD models existential types using types and the type use relationship. One can view
an existential type as a non-parameterised type with parameterised value constructors
that uses unknown (but possibly constrained) types to construct its values. The FAD
representation is presented in Figure 55.

The type key uses the values of unknown types signalled by the type variable a,
which is constrained by the associated permissive signature KEYCLASS. It is therefore
clear from the model that we have a non-parameterised type using an unknown type in

the construction of its values. Thus the type must be an existential type.
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Figure 55: Existential Type Model

6.11 Summary

This chapter has presented a non-exhaustive selection of functional programming de-
signs. We have illustrated how they can be naturally modelled using the modelling
language of FAD. In practice it is important for the model of the problem to guide
design and not vice versa. In the following chapter we describe the methodology, how
it supports the development of an analytical model of a problem, and the iterative

development of an implementable design.
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Chapter 7

FAD Methodology

In Chapter 5 we presented the units and relationships of the modelling language of FAD.
We also provided a syntax and semantics for the models built using these elements. In
Chapter 6 we showed how common designs used in functional programming can be
naturally modelled in the language. In this chapter we present the techniques of FAD
and describe how they fit into an overall methodology. We will use the football results
processing case study described in Section 5.1, to illustrate elements of the methodology.
Each technique will be described by explaining its activities and deliverables. Where
appropriate we will clarify how it supports software development within the paradigm
as described in Chapter 3, and how it contrasts with object-oriented development as

outlined in Chapter 2.

FAD is best used within a process that supports all phases of system development,
which are described in detail elsewhere [83, 12]. FAD is a software analysis and design
methodology and therefore does not deliver any techniques for analysing and designing
a system’s hardware needs. It provides techniques for analysing the software-specific
goals procured through requirements analysis, and techniques for developing a design

suitable for implementation in a modern functional language.

FAD can be used in the development of any software that could be implemented
in a functional language. That is, its application domain is the same as that for any
functional language. This is in contrast to, for example, the Specification and Descrip-
tion Language (SDL) [9, 19], which is best applied to real-time systems, and Jackson’s

structured programming method (JSP), which is appropriate for serial file processing
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or information processing, but inappropriate for systems with no dominant information
structure [61, 22].

We described in Chapters 5 and 6 how the modelling language supports inter alia
functions (first-order and higher-order), abstract datatypes, parametric polymorphism,
type classes (including single and multi-parameter), SML structures and functors, and
modules. In this chapter we will describe how the methodology facilitates the discovery,
use and reuse of the building blocks and glue of the functional programming paradigm.

The techniques are described within a methodology since we are not simply present-
ing a collection of techniques to be applied in an ad-hoc manner. Rather we have spec-
ified a modelling language through which models are described, and present guidance
on the application of the techniques and how their input requirements and deliverables
are related. This will be emphasised in this chapter as the description of each technique

will include details of both required inputs and deliverables.

7.1 FAD’s Phases and High-Level Process Models

The methodology is divided into two main phases, analysis and design. However, this
neither implies a strict division between the two phases, nor a linear application of the
techniques within the phases. We believe that FAD is best applied within an iterative
and incremental development approach. Thus, for example, one could develop on the
basis of a subset of functional requirements and then iteratively develop as additional
requirements are introduced. Since FAD will use the same models, notation and dia-
grams to support all parts of development through analysis and design, the developer is
free to decide on the chronology of the application of the methodology’s techniques. A
methodology with phase-linked models penalises the user for backtracking, since later
models that require significant effort in construction will require reconstruction. When
one has models and notation that are applicable throughout development, although any
change still requires work on the part of the developer, this work tends to focus on the
modification of existing models and other supporting documentation.

Most structured methods have phase-linked models and have historically been used
within a waterfall development process, which was first described by Royce [118]. This

process is inherently linear in nature and has been criticised for:
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¢ not adequately addressing changes;
e assuming a relatively uniform and orderly sequence of development steps; and,

e not providing for such methods as rapid prototyping. [58]

These shortcomings have been addressed both by Boehm’s Spiral Model [13], which
explicitly addresses the use of prototyping and other risk-resolution techniques, and the
iterative and incremental process typically encouraged when using OOADMs. Here one
separates the system into subsystems that can be delivered incrementally, and encourage
an iterative approach to the development of a system’s entities. Prototyping is also
encouraged within an iterative approach to software development. The debate here
tends to focus on the choice between same-language prototyping and different-language
prototyping [114].

The reason for using the classification into the two phases of analysis and design,
aside from simplifying exposition, is twofold. Firstly, although the methodology should
not be applied in a strictly linear fashion, there is a general linear movement through
the methodology which is highlighted by making these subdivisions. That is, initial
techniques are largely analytical in nature with design issues gradually taking precedence
as development proceeds. Secondly, some of the techniques, such as scenario analysis,
span more than one phase and cannot be optimally described without reference to their
use in each phase. Scenario analysis, to be described in Section 7.2.2, is a technique of
FAD that is initially used to investigate the major uses of the system, but will later be
used in the design of functions. That is, some techniques have phase-linked roles.

The application of FAD is linear in another sense. The early stages of analysis will
take non paradigm-specific requirements and describe them using the paradigm-specific
constructs, functions and types. As the system is developed, the ties to the paradigm
will become stronger, resulting in a model which is best implemented in a functional
language. When the implementation language is known, one can (iteratively) develop
designs that reflect the characteristics of the implementation language. This is clearly
a sensible approach, given that the early analysis part of any methodology needs to
model the problem free of any implementation language constraints, whereas the latter
design stages should be seeking an efficient, effective and maintainable solution. All

these issues should become clearer as the methodology is described.
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Phase Task Techniques

Analysis | Describe major uses as a collection | Functional Requirements Analysis

of functions.

Investigate each ‘use function’ and | Scenario Analysis

describe type and function Type Dependency Analysis
dependencies, and new ‘use

functions’.

Develop initial subsystem Subsystem Architecture Analysis

architecture and assign types and | Type/Function Host Analysis

functions to subsystems.

Further analyse functions/types Scenario Analysis
with inter-unit relationships. Type Dependency Analysis
Develop exclusive signatures. Exclusive Signature Analysis

Develop initial prototype.

Investigate subsystem ‘use Scenario Analysis
functions’. Type Dependency Analysis
Develop module architecture for Module Architecture Analysis

each subsystem and assign types Type/Function Host Analysis
and functions.

Develop exclusive signatures. Exclusive Signature Analysis

Table 1: FAD Methodology — Analysis Phase

We will therefore present the methodology within two main sections titled Analysis
and Design. In describing each technique, we will present the possible documentary
deliverables, leaving it to the developer to decide what is actually appropriate for a

given project.

The methodology will be described as a collection of tasks within each phase using
a linear presentational style. Each task is executed either through a single technique or
several techniques. Since several of the techniques span more than a single task, each
new technique will be defined where it is first introduced. However, we also describe
the application of each technique as it is used. FAD’s analysis phase is summarized in
Table 1, where we present the tasks of the phase and the techniques used to execute

each task.
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7.2 Analysis

Analysis focuses on modelling system requirements using the units and relationships of
the modelling language. One should be focusing on what is required rather than how
it will be delivered. However, in any paradigm-related ADM one is unable to totally
separate the what from the how. For example, object-oriented methodologies describe
user requirements in terms of the objects which host the methods whose collaboration
implements each requirement. Function or action-oriented structured methodologies
describe user requirements through data flow diagrams and thus in terms of independent
data and processes [37, 152]. Data-oriented structured methods model user requirements
through their effects on the data of the system [73, 23]. In all cases, one is forced into
making paradigm-related design decisions.

FAD supports software development within the functional programming paradigm
and thus user requirements will be described in terms of functions where data flow
is made explicit. The initial emphasis during analysis is on the modelling of user re-
quirements. Issues of implementation efficiency, reusability and maintainability are of
increasing importance as development proceeds.

FAD, in common with several use-case dependent OO methodologies [63, 64], is a
user-driven methodology in that users’ functional requirements dominate initial devel-
opment. Users could be humans, hardware devices or another system. Initial techniques
clarify the major uses that the system needs to support, and then investigate each in
turn. FAD encourages an iterative approach to development. One therefore may fo-
cus initially on a subset of the major user requirements, develop the system to satisfy
these requirements, and then return to add extra functionality to the system. The tech-
nique that analyses the system’s requirements and returns a list of the users’ functional

requirements is functional requirements analysis.

7.2.1 Functional Requirements Analysis

This technique takes as input the system’s requirements and returns the major func-
tional requirements of the system users. These are modelled as functions. A detailed
discussion of requirements engineering is beyond the scope of this thesis but is com-

prehensively described elsewhere [129]. Each function is declared in a FDD with its
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Figure 56: User Requirements Functions

argument and results types recorded. This immediately emphasizes the explicit nature
of data flow within the paradigm. Figure 56 presents the functions that describe the
user’s - in this case a data entry clerk - functional requirements for the football results
processing system.

To simplify exposition, each function is specified as a text-based I/O function. We
are not, however, enforcing a particular user interface on the system. The modular
approach to development, encouraged by FAD and supported by modern functional
languages, will enable an alternative (possibly GUI) interface to be introduced if re-
quired. The important issue here is clarifying the user’s requirements.

Pure functional languages have developed various mechanisms for dealing with the
impurity of I/O such as continuation passing, stream processing and most recently
monadic I/O [53, 103]. The monadic approach is popular since it presents a pattern of

computation that is not restricted to I/O alone and because

[By using monads] we have the intuitive sequential nature of imperative
input/output and the uncluttered code style that results from using global
variables, but have neither the referential opacity conveyed by both these
things in an imperative language, nor the excessive heavy framework and

lack of expressive expression forms which such languages have.[52]

However, since FAD is not tied to a specific implementation language, one is free to
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describe I/O functions in one’s own terms, as long as it is supported by clear, unam-
biguous documentation. We have chosen here a notation that is similar to that used
in the monadic I/O of Haskell [103] but is not meant to signal any particular approach
to I/O implementation. An I/O function has an argument type named IO (written in
upper case to indicate that this is not a typical type) and a return type that depends
on the function’s characteristics. For the above functions, the return type is (), which
is the type with a single value of the same name. This type specifies a function that
does some I/O and returns the value (). I/O functions that return a value of some
other type, such as a string, are similarly specified with a return type string. Of
course, if one wants to develop a system in which I/0 is delivered monadically one can
make this explicit by associating the permissive signature MONAD with the I0 type. This
however is a design decision which is typically applied later in development, possibly
when one is tailoring a design to a particular implementation language. We describe
the development of permissive signatures in Section 7.3.1.

The six functions that describe the user’s functional requirements are:

e inpRes which implements the result input functionality;

e produceLT which manages the production of a league table;

e transfer which implements the transfer of a player between two football clubs;
e produceScoringTable which implements the production of a scoring table;

e updPlayersPerf which updates a player’s performance data given recent matches;

and,

e updTeamsPerf which updates the performance data of teams involved in recent

matches.

Each function will be documented in a function description document (FDD). Ini-
tially there will be little documentation beyond the function’s name, argument and
result types. However, the FDD is an appropriate host for a textual description of the
function’s purpose. This is illustrated in Figure 57 with the initial FDD for the I/O
function for producing a league table, produceLT.

Interested parties are informed of the initial collection of ‘major use functions’ in

order to confirm that the collection is complete and correct. Upon confirmation, a
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Function Description Document Football
Name: producelT
Version: 19990620:0
Module:
Arity: 1

Type Specification: I0 > O

Contract  Associa-
tion:

Instantiations:

Functions Used:

Description:

The user requests the production of the current league table. The
table is generated from the existing team data that is stored

on file. Each football team hosts information regarding its
performances, which is selected and used to generate a league
table entry. This entry includes the points achieved by the team.
The complete league table is created from the league table
entries for each team where the position in the table is first
determined by the number of points, followed by goal difference,
goals scored, and finally alphabetically. Each league table is

stored in a file with previous league tables.

Figure 57: Initial Function Description Document for produceLT
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decision needs to be made regarding how one proceeds. One can either adopt a ‘big
bang’ approach and investigate all of the functions, or focus on a subset and return
to others later during development. The ‘big bang’ approach is appropriate if one is
dealing with a system with relatively few user requirements. However, if there are a
significant number then one should adopt an iterative approach to development.

Two techniques are used to analyse the functions: scenario analysis, which inves-
tigates functions and, type dependency analysis, which investigates types. They are

practised in parallel since each function is specified in terms of its type.

7.2.2 Scenario Analysis

Functional programs are built from functions. Thus any model of a system’s function-
ality must be built using functions. Scenario analysis, a technique which is practised
at various stages of development, investigates a system’s functions and describes them
in terms of other functions. Initially one uses the technique to model the major user
requirements of the system.

Scenario analysis investigates the behavioural characteristics of a function and de-
scribes them in a set of models that are graphically presented in function dependency
diagrams. Fach diagram describes a function in terms of one or more functions to which
it is linked via a function use relationship. A single function will be described through
several function dependency diagrams if the function has conditional behaviour. The
functional programming paradigm provides substantial support for function develop-
ment and reuse and encourages the development of simple functions that are then used
to develop more complex functions.

When applying scenario analysis, one should adopt a modular approach where each
behavioural requirement of an analysed function is delivered by functions upon which
it depends. The dependency is not an implementation dependency but a behavioural
dependency. That is, a function depends on the behaviour implemented by the functions
it uses. By adopting a modular approach, any implementation changes remain local and
thus small scale. This increases the potential for reuse of existing functions, which is
supported by FAD as described in Chapter 8.

The approach here is similar to that of use case analysis as introduced by Jacobson

in his Objectory method [64]. Although use case analysis is a popular component of
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various OOADMs - it has recently been adopted for use within the Unified Software
Development Process using UML as the modelling language [63, 127] - its prime focus
is modelling user interactions with a system which are, of course, functional in na-
ture. Thus one can argue that it sits more naturally within a functional development
methodology. Using an OO methodology one is required to deliver the results of use
case analysis in a manner consistent with the paradigm. Thus every function or method
is required to be the responsibility of a class, which forces early decisions regarding the
assigning of methods to classes. We will not present a description of use case analysis
here but instead will describe scenario analysis and support its description with ex-
amples from the development of the football system. Use case analysis is described in
Section 2.3.

Scenario analysis takes as input the description of a particular user requirement such
as that presented in an initial FDD. However, further information may be required,
which could be delivered verbally, graphically or in some textual representation such
as informal English, pseudocode or a formal language. Each analysis returns one or
more dependency diagrams and accompanying supporting documentation in the form
of description documents for the entities in the diagram(s).

To illustrate scenario analysis we present an analysis of the function produceLT,

which is informally described as below.

The user requests the production of the current league table. The table is
generated from the existing team data that is stored on file. Each football
team hosts information regarding its performances, which is selected and
used to generate a league table entry. This entry includes the points achieved
by the team. The complete league table is created from the league table
entries for each team where the position in the table is first determined by
the number of points, followed by goal difference, goals scored and finally
alphabetically. The latest league table is then appended to the file which

hosts the previous league tables.

One possible model of the function produceLT uses three functions: readTeamsFile,
which retrieves the latest team data from a file; generateLT, which takes the collection

of teams and returns a league table; and, appendLTToFile, which appends the latest
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Figure 58: Initial Function Dependency Diagram for produceLT

league table to the file that records the history of league tables. Each function is specified
in terms of its type and it is incumbent on the developer to clarify the description of
each type that is used. The type file used by readTeamsFile and appendLTToFile
could simply be a type of filepaths or could be a record like the Haskell library type
Handle, which includes properties that state whether a file can accept input and/or
output, or whether buffering is enabled or disabled and in what form [101].

As indicated previously each type used by a function will be investigated using
type dependency analysis, which we describe in Section 7.2.3. Each type dependency
analysis delivers a model that is represented in a type dependency diagram, a graphical
representation of a type and its dependencies.

The initial function dependency diagram for produceLT is presented in Figure 58.
The function generateLT takes an argument of type teams for which a type dependency
diagram is presented in Figure 59. It is clear from the type dependency diagram (and
associated documentation) that the type teams provides the required input for the
function. The FDD for the function produceLT will be updated as a result of the
scenario analysis, and FDDs and TDDs will be initiated for the new functions and
types.

The second illustrative analysis is applied to a function that exhibits conditional
behaviour. inpRes is the I/O function that supports the user’s requirement to input a
new football result. An informal description of the function’s behavioural requirements

is presented below.
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Figure 59: Initial Type Dependency Diagram for the Type teams

Upon initiation by the user, a result is read in as a string that is then parsed.
If the parse is successful the parsed result is converted into a result value. If
the parse fails, then the user is informed of this failure and the interaction
is terminated. The current collection of results are read from file as is the
current collection of teams. The (successfully parsed) result is then checked
for the existence of the teams and non-existence of the result, and if OK one
proceeds by reading the current collection of results from file. If the result
fails the check the user is requested to edit the result, which then initiates
the process again. An OK result is added to the current collection of results

that are then written to the results file.

This scenario is modelled in three function dependency diagrams presented in Figures
60, 61, and 62. Figure 60 presents the dependencies where both the parse and the result
check were successful. That is, the result is inputted as a string using readInp. The
string is parsed using parseRes which returns a successful parse of type parsedRes.
A result is created using createRes. The results history and current teams data are
retrieved from file and the inputted result is tested for acceptability by resultCheck. A

successful check is followed by the inputted result being added to the current collection
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Figure 60: Dependency Diagram for the Successful Case of inpRes

using inputResult and the new collection of results is returned and written to file
using writeResFile.

In Figure 61 we present the dependency diagram which represents the case when
the parse fails and results in the function failedResParse being called. A failed
resultCheck where there is an error in the inputted result is described in Figure 62.
In this diagram we have left out the functions preceding the result check since these are
represented in Figure 60. We have also used a comment to indicate a looping design.

The functions that model a scenario analysis are dependent on the types that they
use. It is therefore important that these types are analysed in parallel using the tech-

nique type dependency analysis, which is described in the following section.

7.2.3 Type Dependency Analysis

A type dependency analysis takes a type description and returns a model of the type

being analysed. A type is described in terms of the types it uses in the construction of
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Figure 61: Dependency Diagram for the Failed Parse inpRes
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Figure 62: Dependency Diagram for the Failed Result Check Case of inpRes
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Figure 63: Type Dependency Diagram for the Type team

its values. As development proceeds, the model may also include details that reflect the
system’s modular architecture and behavioural requirements of the types signalled by
associated permissive signatures.

We illustrate the technique with the analysis of the type team. An informal de-
scription is presented below and its type dependency diagram is presented in Figure

63.

A value of the type team represents a football team. Each team has a
unique name and a record of the team’s season’s performances. In addition,
standard team details such as the manager and average home attendances
are recorded. Each team value also has an associated date that records the

last date of data entry (assuming at most one entry per day).

Thus the type can be constructed using four other types tName, date, perfData and
teamInfo, which represent football team names, dates, team’s performance data and
the non-performance data of football teams. In common with function development,
where possible a type should be built from existing types reflecting the significant type
development support afforded the functional programmer. This approach maximizes
the potential for reuse of existing types whose storage and discovery we describe in
Chapter 8. The information presented in Figure 63 is recorded in the TDD of Figure
64.

Type dependency analysis, in common with scenario analysis, spans more than one
phase and one task of FAD. Initially it is used to describe the types used by the functions

returned by scenario analysis in order to confirm that all the required information is
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Type Description Document Football
Name: team
Version: 19990619:0
Kind: *
Module:
Types Used: date, tName, perfData, teamInfo
Parameters:

Permissive sigs.:

Description:

A value of the type team represents a football team. Each team has
a unique name and a record of the team’s season’s performances.

In addition, standard team details such as the manager and average
home attendances are recorded. Each team value also has an
associated date that records the last date of data entry (assuming

at most one entry per day).

Figure 64: Type Description Document for the Type team
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supplied by values of the type. Later it will be used within the design phase as input
into the design and implementation of types.

There is a similarity between the use in various structured methods of data flow di-
agrams (DFDs) and entity-relationship diagrams (ERDs) [26] or logical data structure
diagrams [41], and the use here of function dependency and type dependency diagrams.
Whereas data flow diagrams focus on the manipulation of data by various processes,
ERDs, or data structure diagrams, describe details not supported by DFDs such as the
structure of major data entities and their interdependencies [37]. They tend to be used
in systems that are reliant on major data or file structures such as database systems.
Functional programming’s reliance on functions with no side effects and therefore ex-
plicit data flow, requires that significant attention is always paid to the types of the
functions that deliver the required functionality of the system.

The collection of models generated through scenario analysis and type dependency
analysis provide inputs for subsystem architecture analysis, which delivers a subsystem
architecture for the system. If one is building the system initially on the basis of a
subset of the users’ functional requirements then one is building an architecture that

will need to support future iterations of development.

7.2.4 Subsystem Architecture Analysis

Scenario analyses and type dependency analyses could be applied ad infinitum or at least
until every function is described in terms of a collection of simple, atomic functions and
every type described similarly. In a large project this process can soon become unwieldy
and thus one needs guidance regarding termination of the process. A division of the
system into manageable units that can be developed independently provides both a
structure for future development and guidance regarding the termination of the initial
set of scenario and type dependency analyses.

Subsystem architecture analysis takes the deliverables of the previously applied anal-
yses, and returns a project partitioned into several subsystems. The partitioning cri-
terion is information hiding [95] through encapsulation and abstraction. That is, each
subsystem hides the details of its design from its clients, who simply require knowl-
edge of the entities available for use. One can therefore develop systems incrementally

and use the components beyond the immediate application for which they are being
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developed.

Such a system will have cohesive units that are loosely coupled. That is, by grouping
related abstractions within a subsystem (or module), and by minimising the dependen-
cies between them, one builds a system through independent and focused components.

In addition, information hiding is invaluable as a development tool since it applies
the principle of least commitment to program design [1]. That is, one can delay design
decisions in the knowledge that it neither delays nor harms the development process.
Each subsystem’s development will be assigned to a development team. The information
required of any other subsystem is presented in an associated ezclusive signature that
acts both as a mediator of usage and a specification for development.

We will illustrate this technique with an analysis of the case study. The project can

be partitioned into five subsystems that deliver:
e the interaction with the user, UISS;
e the parsing functionality required to deal with the various entered data, ParseSS;

e the file handling requirements which have been alluded to in the description of

various functions, FileSS;

e the football-related functionality, which is unique to the case study problem,

FootballSS; and,

e some general entities which are either typically supported by the standard envi-
ronment of an implementation language or need to be accessible to all entities of

the system, GeneralSS.

Each of the subsystems are likely to support functionality that is non-problem spe-
cific. For example, ParseSS is a subsystem that supports parsing functionality. Func-
tions of the subsystem will support the parsing of values of various types (not just the
string type) and for a range of grammars. Any required functions will be specified in
an associated exclusive signature that hides implementation details. That is, the im-
plementation of the parsing functions (possibly via parser combinators or even monadic
parser combinators) is left to the code writers and is likely to be dependent on the imple-

mentation language. This model is graphically represented in the subsystem dependency
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Figure 65: Subsystem Diagram for the Project Football

PARSESIG

ParseSS

diagram of Figure 65. FEach subsystem is associated with an exclusive signature that
are currently vacuous.

FAD does not provide a standard blueprint for architectural design as does, for ex-
ample, Coad and Yourdon’s method [29], or metrics for comparing one design against
another. However, it encourages modularity through information hiding, which if prac-
tised, will result in sensible, reusable designs. Thus if a function is declared in subsystem
S and its argument and result types are declared in subsystem T this suggests poor de-
sign with a high degree of coupling between the two subsystems. The models developed
through the application of FAD will provide an early indication of (potentially) poor
designs.

Type/function host analysis takes the current sets of types and functions and assigns
each one to a subsystem of the project. One can then analyse their various dependencies
that will be described either as an intra-subsystem dependency or an inter-subsystem
dependency. One wants a design where the former is more frequently in evidence than

the later.

7.2.5 Type/Function Host Analysis

Type/function host analysis takes the types and functions described through earlier
analyses and assigns each to one of the subsystems. That is, each entity is the re-

sponsibility of the development unit that develops the host subsystem. Type/function
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host analysis is also applied later in development when a subsystem’s entities are as-
signed to modules of the subsystem. The analysis returns updated function and type
models whose use relationships reflect the assignment of entities to subsystems. With
OO development data and the methods that act on the data are the responsibility of
a single object. Through this mechanism one achieves data protection and localisation
of control. In functional programming the motivation for assigning entities to modules
or subsystems is to manage development and to support the reusability of components
of a system. Modules and subsystems host a collection of entities but do not provide a

single unit which can be the argument of a function or returned by a function.

Each subsystem will be documented in a series of subsystem description documents.
A record of the assignment will be written in new versions of the description documents
of the assigned entities. Every micro unit will eventually be assigned to a module of the
subsystem and the description documents will be updated to reflect this assignment.
After presenting an illustrative example from the case study, we describe how the de-
liverables of this analysis signal where it is necessary to apply further scenario and type
dependency analyses in advance of the development of each subsystem.

We illustrate this technique with the analysis of the type dependency diagrams for
the function inpRes presented in Figures 60, 61 and 62. The results are presented in
Tables 2 and 3 where each entity is presented with its host subsystem and some brief

commentary.

The information in Tables 2 and 3 is captured in updated dependency diagrams. The
use relationships now reflect whether the related units are of the same subsystem or of
different subsystems. Inter-subsystem use relationships between two functions or two
types are represented by a broken line link. See Sections 5.4.1 and 5.4.8 for a description
of the various use relationships. These updated diagrams (presented in Figures 66, 67

and 68) give a clear view of the impact of modular decomposition on the system.

Each subsystem will be developed to satisfy the requirements specified in any asso-
ciated exclusive signatures, and in the knowledge that other subsystems will provide the
types and functions specified in the exclusive signatures through which they are used. It
is therefore essential that inter-subsystem dependencies are made explicit at this stage.
These will provide input into the development of exclusive signatures that we describe

in Section 7.2.6.
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Function Subsystem ‘ Comment

inpRes UISS An I/0 function.

readInp UISS An I/0O function.

parseRes ParseSS A parsing function.

checkParse ParseSS A function that checks whether a parse is
successful.

createRes FootballSS | A function that constructs a value of
type result.

resultCheck UISS I/O function.

checkResult FootballSS | A function that tests a value of type result.

readResFile FileSS File-handling function. Uses and requires
‘readability’ of type results.

inputResult FootballSS | A function that implements a behaviour
over the type results.

writeResFile FileSS File-handling function. Uses and requires
‘writability’ of type results.

failedResParse | UISS An I/0 function.

editResult UISS An I/0 function.

Table 2: Function Host Analysis for the Function inpRes

Type Subsystem ‘ Comment

10 UISS I/0 type.

O GeneralSS | Basic type.
string GeneralSS Basic type.
parsedRes | ParseSS Parsing type.
result FootballSS | Football type.
bool GeneralSS | Basic type.

file FileSS File-handling type.
results FootballSS | Football type.

Table 3: Type Host Analysis for the Function inpRes
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Figure 66: Updated Successful Dependency Diagram for inpRes
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Figure 67: Updated Failed Parse Dependency Diagram for inpRes
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Figure 68: Updated Failed Result Dependency Diagram for inpRes

Any inter-subsystem, function/type use relationship indicates that the function
should be subjected to further analysis since the function may use other functions which
exist in the used subsystem. For example, if the type is abstract various ‘get’ and ‘set’
functions may need to be provided. Any other functions should be briefly analysed to
confirm that all used functions and types will exist in the same subsystem or in the

universally accessible subsystem GeneralSS.

We illustrate with some examples from the case study. The function createRes,
which takes the parsed result of type parsedRes and returns a value of type result,
is assigned to the subsystem FootballSS. The function uses the type parsedRes of
the subsystem ParseSS. Assuming that the type parsedRes is abstract relative to the
function, it will need to be accompanied by functions that return the team name, goals

scored and other information required to construct a value of type result.

The second example is an analysis of the related FileSS functions readResFile
and writeResFile. They both use the type results from the subsystem FootballSs.
Their respective behaviours include the conversion from (and respectively to) a print-
able string representation of a value of type results, to (and respectively from)
its actual value. They therefore depend on functions that implement this behaviour,

which we call readResults and writeResults. Both functions are assigned to the
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Figure 69: Read and Write Dependencies

subsystem FootballSS since they implement behavioural requirements of the type
results. Alternatively we could declare that the type results must instantiate re-
spectively the permissive signatures READ and SHOW in the declarations of readResFile
and writeResFile. READ includes a specification of a simple read function and SHOW
provides a simple write function. Either approach describes the same model. The analy-
sis and use of permissive signatures is described in Section 7.3.1 within the design phase
of the methodology. The dependencies described above are presented in Figures 69(a)
and 69(b).

The functionality delivered by a subsystem and required of other subsystems by
clients is currently hidden within function and type models that are best used to ex-
press particular functionality and type structure respectively. For an accurate view of
subsystem functionality and interaction one needs to add interface details to the subsys-
tem model. This is achieved through subsystem exclusive signature analysis the results

of which are represented in updated subsystem dependency diagrams.

7.2.6 Subsystem Exclusive Signature Analysis

ADMs provide mechanisms for the division of a system into manageable components

that can be developed independently. They also provide the mechanisms for gluing the



7.2. ANALYSIS 171

components together to deliver a single system. The glue provided by FAD are sub-
system (and module) use relationships. A use relationship links a client subsystem to
another subsystem that provides services that are specified in an associated exclusive
signature. That is, the interaction between entities of different subsystems is marshalled
through a collection of interfaces emphasising the information hiding approach to mod-
ular development.

Subsystem exclusive signature analysis takes the various function and type models
and filters out those entities that are used via an inter-subsystem relationship. These
entities should be specified in the exclusive signature that is associated with their sub-
system and mediates access to entities of the client subsystem. Thus exclusive signature
analysis returns exclusive signatures that provide a specification for the development
of their associated subsystem. They also make explicit the entities of subsystems that
are accessible to clients. Exclusive signature analysis returns a subsystem model that
includes interface details. If one is looking to build a prototype of a system this model
provides much of the necessary information.

At this stage we require enough information about each subsystem in order to pro-
ceed with the independent development of the subsystems. A single exclusive signature
will provide the necessary information even though it will not truly reflect the depen-
dencies between various subsystems. Signatures that provide the interface information
for a specific client, client-specific signatures will be designed later in development when
an accurate description of the system design is required. With an iterative approach to
development exclusive signatures are likely to be updated to reflect the addition of new
user requirements to the system. We describe the technique that returns client-specific
signatures in Section 7.3.5. The updated subsystem architecture for the case study is
presented in the subsystem dependency diagram of Figure 70.

The signature FOOTBALLSIG mediates the use of entities declared in the subsystem
FootballSS by entities of the subsystem UISS. Included in the signature are specifica-

tions of:

e createRes and inputResult, which are used by the function inpRes; and,

e checkResult, which is used by resultCheck.

In addition, the subsystem FileSS uses the subsystem FootballSS through the same
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Figure 70: Updated Subsystem Dependency Diagram

signature. Thus there are also specifications of:

e the type results, which is used by writeResFile and readResFile;

the function readResults , which is used by readResFile;

the function writeResults , which is used by writeResFile;

the type teams , which is used by readTeamsFile;

the function readTeams , which is used by readTeamsFile;

the type leagueTable , which is used by appendLTToFile;

the function writeLeagueTable , which is used by appendLTToFile.

Therefore the signature FOOTBALLSIG currently mediates access to its associated
subsystem for more than one client subsystem. However, it is clear that each requires
access to a different collection of entities, which will eventually be reflected in separate

exclusive signatures.
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Since we encourage an approach built on information hiding if a type is specified
in an exclusive signature it should not be accompanied by its constructor signature.
Section 6.4 describes how one can model abstract data types in FAD. The specification
of a type in an exclusive signature implies that entities of a client subsystem can be
declared over the type, but the absence of a constructor signature signals that they
have no knowledge of the construction of the type. Any intra-subsystem relationship
does not require an entry in an exclusive signature but may later be categorised as an
inter-module relationship and be specified in an exclusive signature that mediates access
to a module. We describe type/function host analysis at the module level in Section
7.2.7.

Each subsystem’s subsystem description document (SSDD) will be updated to record
the collection of subsystems upon which it is dependent. Each subsystem is recorded
with its associated exclusive signature. This is illustrated with the SSDD for UISS
presented in Figure 71. The current version of FOOTBALLSIG is declared in an exclusive
signature description document, which we present in Figure 72.

The development of exclusive signatures for each subsystem facilitates the assigning
of subsystem development responsibilities to development units. Each unit will be
responsible for one or more subsystems, but no two units have responsibility for the
same subsystem. These assignments are recorded in new versions of the subsystem

description documents.

Development of a Subsystem’s ‘used functions’

The development of each subsystem is the responsibility of a designated development
team, which is recorded in the relevant subsystem description document. The develop-
ment of a subsystem mirrors that of the whole system and should proceed in ignorance
of the development of other subsystems, but in the knowledge of the interface presented
by other used subsystems. One should begin by applying scenario analyses to the func-
tions used by external users. The users in this case will typically be functions of other
subsystems. Types used by the functions may need to be analysed simultaneously.

We illustrate this application of scenario analysis and type dependency analysis using
the function generateLT of the subsystem FootballSS, which is used by the function

produceLT of the subsystem UISS as represented in the function dependency diagram of
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Subsystem Description Document Football
Name: UISS
Version: 19990721:1
Module(s):
Ezclusive Sigs:
Subsystems Used: GeneralSS : GENERALSIG
(with signature) FootballSS : FOOTBALLSIG

ParseSS : PARSESIG

FileSS : FILESIG
Developed by:
Description:
This subsystem hosts the functions that implement the users’
requirements. It also includes general purpose text-based I/0
functions and may in future include entities that support

other user interfaces.

Figure 71: Subsystem Description Document for the Subsystem UISS
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Exclusive Signature Description Document Football
Name: FOOTBALLSIG
Version: 19990820:0
Subsystem:
Type(s): results, teams, leagueTable
Permissive sig(s):
Function(s): createRes: parsedRes -> result
inputResult:

result -> results -> results
checkResult: result -> bool
readResults: string -> results
writeResults: results -> string
readTeams: string -> teams
writeLeagueTable: leagueTable -> string

Inherited Sig(s):

Description:

Interface to the subsystem FootballSS used by entities of the

subsystems UISS and FileSS.

Figure 72: Exclusive Signature Description Document for the Signature FOOTBALLSIG
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Figure 58. generateLT takes a value of type teams and returns a leagueTable value.

The type teams is informally described as follows.

A collection of football teams with an associated date that represents the
last date of entry of information. Given the number of teams there is no
requirement that they are stored in any particular order. Although support
must be given for the retrieval, entry and updating of data there are no

efficiency requirements.

The updated type dependency diagram for the type teams is presented in Figure 73.
The diagram now reflects the assignment of entities to the subsystems of the system.
The type is dependent on two types that will be declared in the utilities subsystem
GeneralSS. The type collection a which may be an alias for a list type or some other
container type, and the type date. The type is also dependent on the type team, which
is declared in the same subsystem. The behavioural requirements of the type could be
addressed at this stage but, reflecting the linear nature of the presentation, will be left
to Section 7.3.1 when we discuss the development of permissive signatures.

The requirements of the function generateLT are presented below.

The function is responsible for generating a league table from current team
data. A league table entry must be generated for each team. The entry will
include the team’s name, its performance data home and away, and its total
points. The team entries will be ordered first by total points, then by goal

difference, goals scored and finally alphabetically.

Adopting a modular approach, the function generateLT can be described in terms of
two other functions: a function that selects the required information from every team,
selectNamesAndData, and another which generates a league table from this information,
createLT. We describe the model of this scenario analysis in the function dependency
diagram presented in Figure 74.

In common with the approach adopted earlier in Section 7.2.4 each subsystem will
be developed as a collection of modules. Development of an initial module architecture
both supports the principle of least commitment and furthers the development of a

system based on information hiding.
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7.2.7 Module Architecture Analysis

The guiding principles of modularity applied at the system level are equally applicable
at the subsystem level. That is, one should seek to develop independent cohesive units
that are loosely coupled with other units. Module architecture analysis takes the de-
scription of a subsystem, its associated exclusive signatures and the results of scenario
and type dependency analyses applied to ‘use functions’, and returns a model of the
module architecture of the subsystem. The model is described through a collection of
modules that are linked through module use relationships via their associated exclusive
signatures.

The model will satisfy the modular development criterion through localizing ‘in-
timate’ knowledge requirements within each module. That is, if an entity requires
knowledge of another entity’s implementation then they are candidates for housing in
the same module. If, however, the relationship is one where an entity only requires
knowledge of the existence of another entity (and possibly some associated operations)
then they can probably be declared in separate modules. For example, the standard
libraries for Haskell 98 [101] are a collection of modules where a type is typically de-
clared with a collection of functions that support behaviour over the type, and require
intimate knowledge of the construction of the type.

Information hiding can be achieved by creating a module for each type specified in
an exclusive signature associated with the subsystem. One then assigns the type and
functions that implement behaviour over the type to the same module. A module may
also include other types that are used by the signature type but are only of local use.
For example, the type perfData that represents the performance data of a football team
will be declared in the same module as the type team. The initial module architecture

for the subsystem FootballSS has seven modules:

e TeamsMod, which hosts the type teams that represents a collection of football

teams;

e TeamMod, the module housing the type team, which represents an individual foot-
ball team. A football team has an unique name, performance information, and

other team-specific data;

e ResultsMod, which hosts the type results that represents a collection of football
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Function Module Comment
generateLT LeagueTableMod | The function that generates
a league table.

selectNamesAndData | TeamsMod Selection function for teams.
selectNameAndData | TeamMod Selection function for team.
selectData TeamMod Selection function for team.
selectTName TeamMod Selection function for team.
createLT LeagueTableMod | The function that creates

a league table.

teamEntry TeamMod Selection function for team.

Table 4: Function Host Analysis Related to the Function generateLT

results;

e ResultMod, the module housing the type result that represents a single football

result;
e PlayersMod, which hosts the type that represents a collection of players, players;

e PlayerMod, the module housing the type player that represents a football player;

and,
e LeagueTableMod, which hosts the type of league tables, leagueTable.

Once a set of modules have been declared one applies type/function host analysis to
the micro unit entities of the subsystem. In this incarnation of the technique entities are
being assigned to modules rather than subsystems. We present in Tables 4 and 5 the
result of type/function host analysis applied to the entities in the function dependency

diagram of Figure 74.

The function generateLT could be either assigned to the module TeamsMod or the
module LeagueTableMod since it uses types declared in these modules. The func-
tion creates values of the type leagueTable and thus should be declared with the
type. The function requires access to the implementation of the type leagueTable,
where in contrast it has deferred such requirements of the type teams to the function

selectNamesAndData. Hence the function was assigned to the module LeagueTableMod.
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Type Module Comment
teams TeamsMod Host for type teams.
team TeamMod Host for type team.
leagueTable | LeagueTableMod | Host for type leagueTable.
namesAndData | TeamsMod Type constructed from components of teams.
nameAndData | TeamMod Type constructed from components of team.
perfData TeamMod Type used to construct values of team.
tName TeamMod Type used to construct values of team.
teamLTEntry | TeamMod Values generated from values of team.

Table 5: Type Host Analysis Related to the Function generateLT

The type team has been assigned to a separate module from the type teams since
the module TeamsMod should support the behaviour required of the type teams and not
that of the type team. Any functions over the type teams that use functions over the
type team should not require access to their implementation. The type team and its
associated functions can therefore implement their behaviour using any design without
affecting the dependencies. The reusability of components is significantly enhanced

through this type of modular approach.

Once all entities have been assigned to a module one can update the various depen-
dency diagrams to reflect the module architecture. The subsystem architecture resulted
in the use relationships being categorised either as inter-subsystem or intra-subsystem.
Now we further categorise the intra-subsystem relationships into either an inter-module
relationship or an intra-module relationship. This is illustrated in Figure 75 where we

present the updated function dependency diagram for the function generateLT.

The module TeamMod hosts the function selectNameAndData and the two functions
upon which it depends as indicated by the thick use relationships connecting the func-
tions. However, createLT is declared in the module LeagueTableMod and the function
it uses teamEntry is declared in TeamMod. The function generateLT of the module
leagueTableMod uses the argument type teams of a different module teamsMod, which

is indicated by the vertical line on the function side of the type box.

Any functions that use a type through an inter-module relationship should be fur-
ther investigated using scenario analysis. Abstraction will probably result in any such

function depending on other functions declared in the type’s module.
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Figure 75: Updated Function Dependency Diagram for generateLT

Entities assigned to module M can use entities of module N of the same subsystem
if and only if there is a module use relationship from M to N and the required entities
are specified in the associated exclusive signature. We describe the development of an
initial set of exclusive signatures in the following section. Upon completion one has a

set of models that could be used to support the prototyping of a subsystem.

7.2.8 Module Exclusive Signature Analysis

Module exclusive signature analysis takes the results of the analyses described in the
previous section, and the signatures associated with the host subsystem, and develops a
collection of exclusive signatures through which a subsystem’s modules are used. Every
entity declared in an exclusive signature associated with the host subsystem must also
be declared in at least one signature associated with a module of the subsystem. For
example, the function generateLT of the subsystem FootballSs is used by the function
produceLT of the subsystem UISS. It is therefore declared in the exclusive signature
FOOTBALLSIG associated with the subsystem FootballSS. The function generateLT

has been assigned to the module LeagueTableMod and therefore must be declared in
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Entity Type Specification Signature
createRes parsedRes -> result RESULTSIG
inputResult result -> results -> results | RESULTSSIG
checkResult result -> bool RESULTSIG
readResults string -> results RESULTSSIG
writeResults results -> string RESULTSSIG
readTeams string -> teams TEAMSSIG
writeLeagueTable leagueTable -> string LTSIG
results RESULTSSIG
teams TEAMSSIG
leagueTable LTSIG
generateLlT teams -> leagueTable LTSIG
selectNamesAndTeams | teams -> namesAndData TEAMSSIG
selectNameAndData team -> nameAndData TEAMSIG
teamEntry nameAndData -> teamLTEntry TEAMSIG

Table 6: Entity Signature Specifications

the exclusive signature that links the partition relationship to the module. If one was
implementing the system in Haskell this signature would typically be the export list
provided by the module. All other signatures will be implemented as import lists when

the module is used.

Any entity used by an entity declared in another module of the subsystem must be
specified in the exclusive signature that mediates access for the relevant client module.
Initially each module will be associated with a single exclusive signature and the client-
specific signatures will be developed during the design phase of the methodology. This
is described in Section 7.3.5.

We will illustrate module exclusive signature analysis through analysis of the sub-
system exclusive signature FOOTBALLSIG - described in Figure 72 - and the results of
the function/type host analysis applied to generateLT. Table 6 presents the results,
where each function is recorded with its type specification and the signature in which
it is specified. The module with which each signature is associated should be obvious

from the signature’s name.

The signature RESULTSSIG is recorded in the description document of Figure 76. The
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Exclusive Signature Description Document Football
Name: RESULTSSIG
Version: 19990823:0
Subsystem: FootballSS
Type(s): results

Permissive sig(s):

Function(s): inputResult:
result -> results -> results
readResults: string -> results
writeResults: results -> string

Inherited Sig(s):

Description:

Interface to the module ResultsMod.

Figure 76: Exclusive Signature Description Document for the Signature RESULTSSIG

module architecture for the subsystem FootballSs is presented in a module dependency
diagram in Figure 77. This is based on the analyses described thus far but will be

iteratively developed as a result of further analyses.

The analysis phase is complete for the system (at least for this iteration) once a mod-
ule architecture has been developed for each subsystem. With an incremental approach
to development each subsystem can be developed at its own pace as long as milestones
for the whole project are met. The design phase takes the deliverables of analysis and
develops implementable designs of the macro and micro units. This will include further
investigation of functions so that an efficient functional design can be modelled which
uses, for example, polymorphism, overloading and higher-order functions. This involves
taking advantage of existing entities recorded in the data dictionary. We describe FAD’s
data dictionary in Chapter 8. The following section describes the tasks and techniques

of the design phase.
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Figure 77: Module Architecture for FootballSS

7.3 Design

Design focuses on the delivery of a solution-domain focused model of the system. That
is, where analysis is tied to the problem-domain albeit described in terms of the required
paradigm, design aims to produce a model which can be implemented in as an efficient
and effective manner as possible. However, it is clear that the importance of modularity,
both in macro unit and micro unit development, has had a design impact within the
analysis phase of development.

During the design phase, one takes the deliverables of the analysis phase and, using
the various mechanisms provided by the paradigm, designs the various micro and macro
units such that an efficient implementable design is returned. The transition from a
largely analytical model to an implementable design is supported by the consistent
paradigm-focus of the methodology and the fact that the diagrams and many of the
techniques used during analysis are the same as those used during design. This also
aids any iterative steps between phases or tasks within the phases. One can of course
take the transition one step further and develop a model that reflects the idiosyncrasies
of a particular implementation language.

During analysis OOADMSs encourage the developer to build models of the system
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Phase Task Techniques
Design | Design functions for Scenario Analysis
purpose and reuse. Permissive Signature Analysis

Polymorphism/Overloading Design
Higher-Order Design

Type design. Type Dependency Analysis

Permissive Signature Analysis

Design permissive and | Exclusive Signature Design

exclusive signatures. Permissive Signature Design

Table 7: FAD Methodology — Design Phase

based on interacting objects. The design phase tends to focus on developing the in-
ternals of objects, introducing new classes that provide a controller role or some other
implementation-specific role, and redrafting the inheritance hierarchy for efficiency rea-
sons. For example, abstract classes are introduced to act as interfaces to several sub-
classes and generalization/specialization relationships are introduced where appropriate.
One can also take advantage of the growing collection of reusable design patterns [49].
That is, one is looking to convert an analytical model that is drafted in terms of units
of the OO paradigm into one that takes full advantage of the glue available to the OO

developer.

With FAD one wants to take advantage of functional glue, which include parametric
polymorphism and higher-order functions and the mechanisms available for the devel-
opment of data types. An important part of design is the reuse of existing entities.
We describe FAD’s data dictionary and its support for reuse in Chapter 8. The de-
liverables of this phase aid the storage of entities in the data dictionary in a manner
that improves the chances of reuse, and the discovery of potentially polymorphic, over-
loaded, or higher-order functions. This is simply achieved through adding to the key
information that describes a function or type. The tasks and techniques of the phase

are presented in a linear format as summarized in Table 7.

Architecture design is not included in Table 7. This is because the results of type

and function designs will determine both the module architecture of subsystems and
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the subsystem architecture of the project. For example, if a type is implemented using
a tree type, then use relationships between the relevant macro units will be declared
and exclusive signatures introduced where necessary.

The initial focus of the design phase is function design. This task takes the current
description of a function or collection of functions and further analyses them in terms of
their behavioural requirements. The potential for polymorphism, overloading and the
replacement of a collection of first-order functions with a single higher-order function
are all reviewed.

Functions are the building blocks of functional software as described in Chapter 3.
If the software implementers are provided with inadequate information upon which to
implement the required functions then the software is likely to be inadequate itself.
One cannot guarantee correctness through a FAD model, since the modelling language
of FAD is not a formal specification language like Z [39] or VDM [151]. However, there is
no reason why one can’t support development within FAD with formal models written in
a formal language. One can add formality to UML models through the object constraint
language (OCL) [145].

Scenario analyses applied during the analysis phase deliver a collection of models
that describe (to a certain level) the analysed functions. The analyses are applied until
a set of exclusive signatures can be developed which reflect those entities of a macro
unit which are used by clients. Thus functions that depend on other entities declared
in the same module may not yet have been analysed. We encourage further analyses to
be applied to such functions. For example, the function teamEntry that is used by the
function createLT as illustrated in Figure 75, takes the name and performance data of
each team and returns a league table entry. It uses two other functions declared in its
module TeamsMod that generate the total points for a team and its goal difference. The
function dependency diagram is presented in Figure 78.

A technique which provides further function development (and type development)

information is permissive signature analysis.

7.3.1 Permissive Signature Analysis

The modelling language of FAD includes two types of signatures that were described in

Sections 5.2.3 and 5.3.3. An exclusive signature presents to a client macro unit, exactly
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teamLTEntry | teamEniry | NameAndData

points | fotalPoints | NameAndData

gDiff goalDiff | nameAndData

Figure 78: Function Dependency Diagram for the Function teamEntry

those entities that can be used from its associated macro unit. A permissive signature
specifies some behaviour that is implemented over its associated type(s). That is, where
an exclusive signature signals only this, a permissive signature indicates at least this. A
permissive signature therefore makes behaviour explicit and specifies the entities that
support the behaviour. Each permissive signature can be reused through association
with another type whose type constructor is of the same kind. One can also create new
signatures through inheriting the specifications of an existing signature as described in

Section 5.4.7.

Permissive signature analysis takes a function and determines whether it requires
its types to support any particular behaviour. The behaviour may be required over a
type used by one of its types. If required, then one can either use an existing permissive
signature that specifies such functionality or declare a new one. Existing permissive
signatures are recorded in FAD’s data dictionary and we will describe how they are
categorised and the support for reuse in Chapter 8. The signature is then associated
with the appropriate type in the function specification. The type is said to instantiate

the permissive signature and this will be recorded in the type description document.

We present an example from the case study using the function selectNamesAndData
of the module TeamsMod. The function is used by the league table generating function
generateLT as modelled in Figure 75. The function is described in the FDD in Figure
79.

From the textual description of the function one can build an abstract model of the

function’s behaviour. The function applies a data extracting function to each item of
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Function Description Document Football
Name: selectNamesAndData
Version: 19990810:1
Module: TeamsMod
Arity: 1
Contract  Associa-
tion:
Instantiations:
Type Specification: teams -> namesAndData
Functions Used: selectNameAndData
Description:
This function takes the collection of teams and returns the name
and performance data of each team. Each team is selected and
its name and performance data is retrieved.

Figure 79: Function Description Document for selectNamesAndData

its collection-type argument. The function therefore requires the collection type used
by the type teams to support the application of a function to each of its items. This can
be modelled by associating the type collection a with the permissive signature MAP
which specifies mapping functionality. The signature specifies the higher-order function
map. We present the description document for MAP in Figure 80 and the updated function
specification for the function selectNamesAndData in Figure 81.

The function dependency diagram in Figure 81 provides the developer with a range

of information that includes:

e an abstraction of the function’s main behaviour. This abstraction is reusable

beyond its current application;

e the functions used to deliver the required functionality;

e the potential for the implementation of an overloaded function in a language which
supports overloading. Section 7.3.2 describes how FAD supports the design of

polymorphic and overloaded functions. If the implementation language does not
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Permissive Signature Description Document Football
Name: MAP
Version: 19990824:0
Module:
Parameter(s)(kind): m: ok —-> %
Entities: map :
(with type specs.) (a->b) >ma->mb
Inherited Signature(s):
Description:
This signature specifies mapping behaviour.

Figure 80: Permissive Signature Description Document for MAP

MAP collection

namesAndData

nameAndData

perfData team

Figure 81: Updated Model for the Function selectNamesAndData
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Figure 82: Updated Function Models for readResFile and writeResFile

support overloading then either unique or qualified names will be required for the

functions that match those specified in a permissive signature;

e some guidance on the development of the type collection a which we expand

on in Section 7.3.4.

For the second example we return to the functions readResFile and writeResFile
that were first described in Section 7.2.5. They used the functions readResults and
writeResults to implement the required ‘readability’ and ‘writability’ functionality
over the type results. Permissive signatures provide an alternative means of describ-
ing the required functionality, with the benefit that the signature is reusable and can
be associated with more than one type. We therefore introduce two permissive signa-
tures READ and WRITE that include the specifications read : string -> a and write

a -> string respectively. We present the updated specifications for the functions
readResFile and writeResFile in Figure 82.

Permissive signature analysis returns models of functions that include descriptions
of behavioural abstractions. In the following section we describe how these models play

an important role in the discovery of potentially polymorphic or overloaded functions.

7.3.2 Polymorphism/Overloading Design

Parametric polymorphism and constrained polymorphism (overloading) provide mech-
anisms for reuse in functional languages. Where parametric polymorphism supports
the use of the same code over multiple types, constrained polymorphism supports the
reusability of a name but not necessarily code. A description of polymorphism within

the functional programming paradigm and how it compares to that of OO is provided
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in Chapter 3.

A polymorphic function can replace several monomorphic functions whose behaviour
is exactly the same. For example, monomorphic identity functions over each type can be
replaced by a single polymorphic function. Functions that return the length of a list of
some monomorphic type can be replaced by a single polymorphic function that returns
the length of any list. In both of these cases the set of monomorphic functions exhibit
exactly the same behaviour, and are not reliant on any functionality being supported
by their types.

In contrast constrained polymorphic functions do require some specified functionality
to be supported either by their types, or some type(s) used by one or more of their
types. Jones [66] motivates the argument in favour of type classes through examples of
functions that sum two values of the same type and test the equality of two values of
the same type. Monomorphism is too restrictive in both cases since in most functional
languages there are several numeric types and even more types whose values can be
tested for equality. However, a polymorphic function is inappropriate in both cases
since there are non-numeric types that don’t support, for example, arithmetic operators
and some non-equality types such as the functional types.

The developer therefore needs support, both in the discovery of potentially (con-
strained) polymorphic functions and in the reuse of such existing functions. We leave
the description of the latter process to Chapter 8. Permissive signatures, or the lack of,
provide significant support in the development of (constrained) polymorphic functions.

We suggest that the following guidelines should be followed.

e If a function is specified with types with no associated permissive signatures then
the function could have a polymorphic type. This is because the function’s types
have no explicit required functionality, which suggests that the type’s values do
not influence the behaviour of the function. The identity function is an example

of this type of a function;

e If a function’s types have associated permissive signatures whose parameters are
all of non-* kind then it could have a polymorphic type. The values of the types
used to construct an argument value are not required to support any particular

functionality. The length function is an example of this type of function;
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Permissive Signature Description Document Football
Name: CONTAINER
Version: 19990826:0
Module:
Parameter(s): c i ok => %
Entities: add : a ->ca ->c¢c a
(with type specs.) remove : int -> ¢ a -> ¢ a

find :

(a => bool) -> [a] -> maybe a
Inherited Signature(s):
Description:

This signature specifies common functionality over container

types.

Figure 83: Permissive Signature Description Document for CONTAINER

e If the function is specified with at least one permissive signature then it could
be declared as an overloaded function. Clearly this will require implementation
language support for overloading. There is clearly an overlap with the above case
illustrated by the length function that could be declared as an overloaded function.

Another example is the function that sums two numeric values.

We will illustrate application of these guidelines with some examples from the case
study. The I/O function inpRes uses the function inputResult to input a new result
into the current collection of results (see Figure 60). Permissive signature analysis has
resulted in the declaration of a new permissive signature with a parameter of kind *
-> %, CONTAINER, which supports typical functionality of a container type such as the
addition of a new item and the removal of an existing item. The signature is described
in the permissive signature description document presented in Figure 83.

Three functions are specified that implement the addition of an item, the removal
of an item in a specified position, and finding a value which satisfies a particular pred-
icate. We have not included a function which removes all items matching an inputted

value since this would require equality functionality of the items’ type. The function
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CONTAINER collection

resultsfinputResult | result results

Figure 84: Potential Polymorphic or Overloaded Function

inputResult is modelled as in Figure 84. The type collection a is used to construct

values of type results, which is fully described in Section 7.3.4.

The behaviour of inputResult does not require any behaviour over the type result
that supplies the items contained in the collection. Thus the function could be defined as
(or use) a polymorphic function over the type collection a or an overloaded function

over any type that instantiates the permissive signature CONTAINER.

As a second example we return to the functions readResFile and writeResFile
that are used by the function inpRes to read results from a file and write results to
a file. The functions, which are modelled in Figures 82(a) and 82(b), require the type
results to support the behaviour specified by the associated permissive signatures READ
and WRITE. These signatures specify functions for reading and writing behaviour. Since
READ and WRITE have parameters of kind * the functions could not be polymorphic but

could possibly be implemented as overloaded functions.

A polymorphic function whose type includes unconstrained type variables must be
universally accessible and thus declared in a module in the subsystem GeneralSS. Poly-
morphic functions that are defined over constructed types should be assigned to the
same module as the type. For example, functions that are declared over any list should
be assigned to the module that hosts the list type. Overloaded functions that are spec-
ified in a permissive signature will be declared in the module that hosts the type that
is associated with the signature. Other constrained polymorphic functions are declared

in a module in the subsystem GeneralSs.

In the following section we describe how permissive signatures can signal the poten-

tial for development of higher-order functions.
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MAP collection

colectona | select E team teams

Figure 85: The Higher-Order Function select

7.3.3 Higher-Order Function Design

FAD supports the modelling of multiple argument functions in their curried and un-
curried form. With the curried form, new functions can be created through the partial
application of the functions to an incomplete set of arguments. In the following chapter
we describe how entities are stored in the data dictionary and how this supports the
potential for function creation through partial application.

In this section we describe how FAD supports the development of functions with
functional arguments. Higher-order functions capture a common pattern of computa-
tion across several functions. Thus one is able to replace several first-order functions
with a single higher-order function. In each case the function is applied to a func-
tional argument which was previously used in the body of the first-order function.
Permissive signatures can be used to highlight common patterns of computation. For
example, the function selectNamesAndData described in Figure 81, applies the func-
tion selectNameAndData to each value of type team in a collection of teams. The
pattern of computation is made explicit by the association of the permissive signature
MAP with the unary type constructor collection used by the type team. We could re-
place selectNamesAndData with a higher-order function select that takes a functional
first argument as described in Figure 85. The model of the function generateLT that
previously used selectNamesAndData requires updating as illustrated by the function
dependency diagram of Figure 86.

Of course not all higher-order functions are so easily discovered. Two functions may
use a function of the type t1 -> t2 but without any explicit behavioural requirement
beyond the application of the used function to an argument. If the functions have
similar models then they may exhibit common abstractions. That is, if their function
dependency diagrams present common patterns then there is the possibility of a common

abstraction. Common model patterns could indicate common abstractions, which may
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leagueTable | generatell| teams

namesAndData| selectNamesAndData| feams

——
leagueTable | createll | namesAndData

teamLTEntry | feamEntry nameAndData

namesAndData | select nameAndData| selectNameAndDatalteam | | teams

Figure 86: Updated Version of the Function generateLT

result in some efficiency in design. Although not currently a part of FAD, one could
look to record particular model patterns to support reuse of design and the discovery
of common abstractions. Design patterns are an interesting area of future research
within the functional programming community. They are already practised within OO
development [113, 47, 49, 27, 18].

In conclusion, FAD provides significant support for function development. This
includes modelling a function as a collection of functions upon which it depends and
providing support through permissive signatures for the development of polymorphic,
overloaded, and higher-order functions. In Chapter 8 we describe FAD’s data dictionary
and its support for reusing existing functions and developing functions in parallel. The

next section describes the task of type design.

7.3.4 Type Design

During the analysis phase, scenario analyses and type dependency analyses are practised

in parallel in order to provide the information necessary to effectively specify a function.
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In common with functions, types are investigated until every use relationship is an intra-
module one. Some types might therefore require further type dependency analysis in
advance of implementation.

Each non-basic type should be modelled in a type dependency diagram. In addi-
tion, permissive signature analysis makes explicit the behaviour that must be definable
over a type. For example, the signatures MAP and FOLD indicate particular patterns of
computation over any instantiating type, and EQ and ORD signal an equality type and
ordered type respectively. Thus far permissive signatures have been associated with
types in response to a behavioural requirement of a function. During type design one
can take each type and determine whether any further permissive signatures should be
associated with the type or any types upon which it is dependent. Types can then be
developed that either use existing types which instantiate the permissive signatures or
require the declaration of new signature instantiations.

We illustrate the results of further analysis with a detailed model of the type
results. Its type dependency diagram is presented in Figure 87.

Thus the type results must be declared using a type that instantiates the permissive
signature CONTAINER, and the date type. For example, using Haskell notation, one could

implement the type as a product type as follows:
data Results = Rs Date [Result]

where the type collection a has been implemented as a list. The list type has the
required CONTAINER functionality. We describe in the following chapter how one can
match a type in development against an existing type.

Type designs may have an impact on the subsystem architecture, and module ar-
chitecture of subsystems. For example, ResultsMod will now use ListMod, the module
that hosts the list types and their associated operations. Module architecture design is
therefore intimately linked to the design of types.

A value of the type result has four components: a date value, homeTeam and
awayTeam values (which are implemented identically), and an attendance value. Once
the design of a type is confirmed a constructor signature can be declared and associated

with the type. Here is a possible implementation for result.

data Result = R Date (HomeTeam,AwayTeam,Attendance)
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Figure 87: A Model of the Type results
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Since the types results and result are declared in separate modules and the type
result is abstract, one could change this implementation with any changes restricted
to the module ResultMod which houses the type result. The date type can be imple-
mented as any appropriate type that instantiates the permissive signature ORD, which
specifies an ordering functionality over its instantiating types. Since the signature ORD
inherits the signature EQ, any instantiating type must also have equality functionality.

Details regarding permissive signature design are described in Section 7.3.6.

7.3.5 Exclusive Signature Design

Ezclusive signature design takes the current set of exclusive signatures (which are typi-
cally one-one mapped with a subsystem or module) and designs a set of signatures that
state the exact interface presented to each client of a module or subsystem. During
the analysis phase exclusive signatures provide a specification for macro unit develop-
ers and a guide to the functions (and their types) available for use from other macro
units. Subsystem exclusive signatures provide input into the development of exclusive
signatures associated with their modules. One now needs to provide a truer reflection
of the interaction between macro units. That is, the signature associated with a unit
may be redeclared as a collection of signatures each mediating access to the unit for a
different client.

For example, the module architecture for FootballSS presented in Figure 77 is up-
dated to that presented in Figure 88. The only change is that the signature RESULTSSIG
has now been redesigned as three signatures that provide the exact interface required

by the client. Details of two of the signatures are presented in Figure 89.

7.3.6 Permissive Signature Design

Every permissive signature is recorded in a description document. In Chapter 8 we
describe the approach to storing permissive signatures on the basis of the number and
kind of their parameters.

Permissive signatures are used to declare a behavioural requirement over a type.
To avoid potential confusion a permissive signature should specify only that which
is required. That is, if a function requires mapping behaviour over a type then the

associated permissive signature should specify only that behaviour. Through signature



7.3. DESIGN

LTSIG

LeagueTableMod

TEAMSSIG

TeamsMod

FOQOTBALLSIG

FOOTBALLSS

‘ RESULTSSIGS‘ ‘ RESULTSSIG1

‘ RESULTSSIGQ‘

TEAMSIG Q

TeamMod

Figure 88: Updated Exclusive Signature Design for Modules of FootballSS
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Figure 89: Exclusive Signatures Associated with the Module ResultsMod

@ selectResTeams

result

199



200 CHAPTER 7. FAD METHODOLOGY

inheritance one can develop signatures that specify a range of behaviour. However, one
should not develop a signature through inheritance unless the resulting collection of
behaviour is actually required. That is, one should err on the side of caution, and not
tie signatures unnecessarily to an inheritance hierarchy.

For example, the signature ORD that specifies functions that implement ordering over
a type, is an extension of one that supports equality, EQ. Thus one can declare ORD by

inheriting the specifications of EQ and adding other required specifications.

7.4 Summary

In this chapter we have presented the methodology of FAD by describing its tasks and
the techniques used to implement a task. The techniques deliver models described
in terms of the modelling language of FAD. The methodology is neither intended to
reinvent good practice in functional programming nor prevent bad practice, as was the
motivation for the introduction of structured programming and its associated analysis
and design methodologies. Rather FAD should support software development in the
functional programming paradigm by plugging the hole due to the lack of paradigm-
specific methodologies. FAD’s modelling language and techniques support good practice
rather than encouraging a new approach to building systems within the paradigm.
The final element of the methodology is its data dictionary. The following chapter
presents an overview of FAD’s data dictionary, how it supports the reuse of existing

entities, and the design of entities in development.



Chapter 8

Data Dictionary

One of the benefits of using an ADM as a tool in software development outlined in
Section 4.2.4, is that it provides significant support for documenting development. This
has several uses of which we highlight two of the most significant. Firstly, it provides
a record of development for future reference either during maintenance or as an input
into the development of a new system. Secondly, it can provide excellent support during
development especially in relation to discovering common abstractions and reusable
entities. Of course implementation code provides its own form of documentation, but
this is only available when the code is written. Unsurprisingly it presents a picture of
the idiosyncrasies of a particular language rather than a clear statement of a system’s

design and functionality.

With large projects developed by multiple units there is a danger of substantial
duplication of effort. An ADM with a supporting CASE tool can reduce this risk both
through recording entities and designs in an efficient manner, and providing mechanisms
for reuse and the discovery of common abstractions in existing entities and entities in

development.

In Section 8.2 we describe FAD’s data dictionary. We describe how each type of unit
is stored and how this supports the requirements stated above. In the following section

we review related work on matching entities in development to existing entities.

201
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8.1 Related Work

Most of the research within the functional programming community on supporting reuse
has focused on matching functions in development to those defined in a library. The
matching key in most cases is the function’s type signature. Therefore, the matching
criterion is syntactic and not semantic.

Runciman and Toyn [122] describe an approach where the function in development
may not have an explicit type signature. They present techniques for developing a key
type for the new function, which can be compared against the types of existing functions.
One major limiting factor of their approach is that it enforces an ordering on the ar-
guments. That is, although the types a => b -> [b] and Int -> Char -> [Char]
match, the type Char -> Int -> [Char] will not match the latter type. Several
reusable functions will be missed due to this constraint.

Rittri [117] removed the restriction on the order of a function’s arguments and
developed a process where one could match a query type against an isomorphic type,
where the isomorphisms are the ones that hold in all cartesian closed categories. Rittri
enforces the explicit declaration of a query type but only allows exact matches up to
isomorphism. Thus, for example, a monomorphic type will not match a polymorphic
type. Once again potential matches may be missed due to this constraint.

Zaremski and Wing developed two approaches to matching modules as well as func-
tions. They have a syntactic approach called Signature matching [154] which matches
on types, and a semantic approach called Specification matching [155], which matches
formal specifications of the behavioural characteristics of functions and modules. Since
formal methods are beyond the scope of FAD, we will only review signature matching.

Zaremski and Wing define a collection of basic matches of function signatures that
can be combined to produce other matches. Modules are matched on the basis of their

signatures using these basic matches. The basic matches are:

exact match: two signatures are equal up to variable names and user-defined type

names;

generalised match: the query type exact matches an instance of the library compo-

nent type;
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specialized match: the library component type is an exact match of an instance of

the query type;
unify match: the two types have common instances that match exactly;
uncurry: the uncurried versions of the two types are exact matches;

reorder match: a reordering of the library component type is an exact match for the

query type.

A signature matcher has been implemented in SML and integrated into the author’s
local SML programming environment. However, the onus is on the user to determine the
appropriate matches to apply. This is not a trivial task since some relazed (non-exact)
matches may result in far too many functions and an exact match in too few. There
are no metrics which measure the most efficient route to a successful match.

Park and Ramjisingh [94] take a significantly different approach to those described
above. They argue that an efficiently organised component library would maximise
the potential for reuse. They describe an approach to the storage of functions where
functions are grouped through their arity. Intra-group functions are linked through type-
substitution and inter-group functions are linked through argument-substitution. That
is, two functions f1 and f2 of the same group are linked if the type of f1 is more general
than the type of f2. Alternatively one can say that the type of f2 is an instance of the
type of f1. The type of f2 can therefore be created through substituting one or more
types for type variables in the type of f1.

Two functions f3 and f4 of different groups are linked if the one of lower arity has
a type that is an instance of the type of the function of higher arity with one or more
arguments removed. That is, the type is an applicative type instance of the higher arity
type. A query type can therefore be matched against the same type, a more general
type, a more specific type, or a type with more arguments, which can be made an
instance of the query type once some arguments are removed. However, matching is
constrained by the order of the arguments.

An and Park [4] have taken grouping a step further and removed the emphasis on
the order of arguments. Thus functions are assigned to function groups based on their

arity, and within each function group is a collection of extended set types. For example,
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the extended set type {int,char} -> bool includes the types int -> char -> bool,
char -> int -> bool, (int,char) -> bool, and (char,int) -> bool. That is, each
extended set type is a collection of isomorphic types as described by Rittri [116]. A node
is created for each set type. Intra-group links are now between two nodes within the
same group and inter-group links between two nodes in different groups. The links
are defined as in Park and Ramjisingh [94]. Hence one benefits both from having a

structured repository of components and access to isomorphic functions within a node.

Although this section is titled Related Work the work on matching components has
focused on matching entities - typically functions - in development with functions defined
in libraries. The matching requirements for a methodology are more varied. Matching
with existing entities is still required, but so are matching entities being developed with
similar behavioural requirements and matching non-function entities such as types and

signatures.

In the following section we describe FAD’s data dictionary and how it provides an

efficiently organised approach to entity storage and satisfies the above requirements.

8.2 FAD Data Dictionary

FAD’s data dictionary is a medium for the storage of the collection of description docu-
ments for all the declared micro and macro entities. We describe in the following sections
the criteria for placement of each form of entity. Those entities that are not described
in a section are simply stored alphabetically. Each system entity will be described by
one or more description documents that provide an historical record of development of
the entity. The information recorded will include descriptions of any changes and the
reasons for the changes. We describe in the following sections the storage of the set of
description documents for each entity, but will use the latest version to determine its
storage situation. That is, as entities are developed they may be repositioned within
the data dictionary. For example, a type may be associated with a permissive signa-
ture when previously it had no such association. This will change where it is stored as

described in Section 8.2.2.
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8.2.1 Functions

Each function is recorded in a series of function description documents. The description
includes: the function’s arity, type specification and associations between argument
and result types and permissive signatures. These are the important entries when
determining the storage location of the function and links between functions.
Functions are stored using the following criteria, which are applied in the enumerated

order.

1. Function arity.

2. Associated permissive signature kind.

3. Alphabetical.

Functions are initially grouped by their arity. That is, we have adopted Park and
Ramjisingh’s approach of grouping all functions with a single argument together, all
functions with two arguments together and so on.

We then assign the functions in each group to a subgroup of functions whose types
instantiate a permissive signature of a specified kind. A permissive signature’s kind
is recorded in its description document. All functions which require a type/signature
association of kind * are grouped together. Functions which require the instantiation of
a permissive signature of kind * => * but not any of kind * are grouped together and
so on. Finally, any functions which do not require the instantiation of any signature
are grouped together. Within each of the subgroups the functions are stored alphabeti-
cally. For example, the function inputResult (see Figure 84) will be grouped with the
functions of arity 2, with a permissive signature of kind * -> *. Thus if one wants to
develop a function that takes two arguments and has mapping behaviour, one can look
in this group.

In contrast to the matching of functions with implicitly or explicitly declared types,
during development a function may use types that simply have a name and some as-
sociation with permissive signatures. This approach to organising functions will place
these functions with other functions with similar behavioural requirements.

Functions with the same arity and permissive signature associations will therefore
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be stored in the same group. This enhances the chances of discovering potential poly-
morphic functions and overloaded functions. It also reduces the likelihood of identical
definitions being bound to two different functions of the same type. In addition, if one
wants a function of arity n with a behavioural requirement specified by a permissive
signature of kind * -> *, then one may find a function in the subgroup of arity n+1
and permissive signature association of the same kind that could create the function
through partial application.

Finally, if one wants a function over a type t then one can initially search in the
function’s arity /permissive signature subgroup, and if unsuccessful, can then review the
module that hosts the type. Since systems are built on information hiding, functions
that implement behaviour over the type should be declared in the module that hosts

the type.

8.2.2 Types

A type is recorded in a series of type description documents. The description includes
the kind of the type’s constructor and any permissive signature associations. The types

are categorised using the following criteria applied in the enumerated order.
1. Type constructor kind.
2. Permissive signature instantiation.
3. Alphabetical.

A type is initially assigned to a group on the basis of the kind of its constructor. Thus
all types with nullary type constructors will be grouped together, as will all types with
unary type constructors. Within each of these groups the types are multiply assigned
to the subgroup of types that instantiate a specified permissive signature. However, if
a type instantiates several signatures which are related through inheritance, then it is
only assigned to the signature which permits the most behaviour. Within each of these
groups the types are stored alphabetically.

Thus if one wants to find a type that instanitates the permissive signature ORD one
only has one place to look. This reduces the chances of repetition of type definition and

increases the likelihood of reuse.
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8.2.3 Permissive Signatures

A permissive signature is recorded in a series of permissive signature description doc-
uments. The description includes a listing of parameters and their kind. Permissive

signatures are categorised using the following criteria applied in the order enumerated.
1. Number of parameters.
2. Kind of parameters.
3. Alphabetical.

Each permissive signature is assigned to a group on the basis of their number of
parameters. The signatures NUM, ORD, FOLD, and MAP each have one parameter and will
therefore be grouped together. Within each group, signatures with a parameter of kind
* are assigned to a subgroup. The remaining signatures with a parameter of kind * ->
* are assigned to another subgroup and so on. Within each subgroup the signatures
are stored alphabetically. Thus NUM and ORD are assigned to the same group, as are MAP
and FOLD.

If one is developing a signature with a single parameter of kind * -> * then one
can look in the appropriate group and determine if an acceptable one exists, or if one
could be created that extends an existing one through inheritance. Alternatively, the

new signature could be extended to create an existing signature.

8.3 Summary

We have outlined in this chapter how the FAD data dictionary provides an organised
repository for defined elements and elements in development. The criteria for storing
each element were described. Organised storage increases the likelihood of reuse and

the discovery of common abstractions.
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Chapter 9

Summary

In this thesis, we have presented arguments in favour of an analysis and design methodol-
ogy which supports software development within the functional programming paradigm.
We presented evidence of significant support for object-oriented development and the

general benefits of including a methodology within the process of software development.

Popular methodologies, such as the Booch Method and SSADM, are underpinned
by a graphical modelling language which delivers abstract models of software designs.
They are not however visual programming languages since they deal with abstractions
rather than implementation details. We believe that a methodology whose language
has elements in harmony with the functional programming paradigm and whose tech-
niques encourage and support the development of functional designs is required. We
cannot prove, in any formal and rigorous sense, that applying the methodology actually
improves the efficiency with which one develops software, or the effectiveness of the
implemented solution. However, we can offer software developers a packaged approach
to development where the media used allow focus on the essential complexity of soft-
ware development, whilst avoiding the accidental complezity inevitable when switching

paradigms.

In the appendix to this thesis we applied FAD to the development of a consistency
checker for a CASE tool. Its support for the building blocks and glue of the functional
paradigm enforced an approach that was consistent with the paradigm from the initial
stages through to design. We list below the specific successes of the application followed

by the modifications/additions that we believe will enhance the modelling language and
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methodology.

We claim the following successes:

e the notation was easy to use, unambiguous and presented the models in a clear
and readable manner. Other notations have embedded a function’s arguments and
return values within the function notation. We believe presenting types external
to their associated function - as first described in Section 5.2.2 - provides several

benefits. These include:

— a function’s type specification is clear;
— it emphasises the importance of types during development; and,

— it allows behavioural requirements to be associated with the types in a clear

and explicit form.

e the multiple views of a system supported by FAD deliver clear, focused models

uncluttered by unnecessary information;

e the adoption of a single set of diagrams naturally supported the iterative develop-
ment of models throughout development. Models tend to require updating rather

than replacement;

e permissive signatures (see Section 5.2.3) are an important element of the modelling
language. They allow behavioural requirements to be added to type information
in a form that is independent of any type and thus reusable across types of the
appropriate kind. They can be naturally implemented as types classes in imple-

mentation languages that offer such support as described in Section 6.6;

e independent macro unit and interface model elements. This proved invaluable
during development where one wants to be able to specify an interface to a module
that is appropriate for a particular relationship. For example, in the appendix we
have developed three exclusive signatures that provide interfaces to the module
StateMod. Each satisfies a particular abstraction requirement. Full details of this

example are provided in Section A.6;

e an initially type-centric approach to module development and interaction supports

the discovery of the functions that exist over a type. In some cases one may have a
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choice of modules which could host a function, but it will still minimize the search

space;

e delaying the implementation details of a type in favour of specifying the be-
havioural requirements and types used, encourages an approach to development
in which one is not tied prematurely to a particular set of implementations. That
is, we have adopted the principle of least commitment, which requires as much
abstraction as possible in order to minimize the scope of future implementa-
tion decisions. This was illustrated, for example, in the development of the type

components (see Section A.6.4) and the various substate types.

We also believe that in light of our experiences with the case study there are areas
of the modelling language and methodology that could benefit from modification and

extension. We list these below:

e there is a need for a ‘shorthand’ notation for an interface that specifies everything
in its associated module or all but a few of the hosted units. This also applies
where an interface specifies everything hosted by a module used by its associated

module;

e a review of ‘case’ notation. That is, where a function has input-specific behaviour
we currently present each alternative in a separate diagram although typically
in the same model. This can result in a lot of component repetition and is thus
somewhat inefficient. Other modelling languages have adopted an approach where
one presents the various cases on a single diagram, which although more efficient,

can result in a less readable model;

e the case study did not address any of what Peyton Jones has described as the
awkward squad [99]. FAD currently supports development using pure functional
programming languages. It will require extension to support the various means of

interacting with the external world.

9.1 Summary of Contributions

The major contribution of this thesis is a methodology for developing functional soft-

ware. Although popular within other paradigms this development medium has been
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hitherto absent from the functional programming paradigm.

We claim the following particular contributions:

1. A modelling language for building abstract models of functional designs. The
syntax and semantics of the language were described informally as is common

with modelling languages.

2. A collection of integrated techniques which takes the deliverables of requirements
engineering and return software design that is best implemented in a functional

language.

3. A set of documentation which provide a medium for recording system entities and
presenting a history of design decisions. Each document includes entries which
guide the storage of the document in the data dictionary. The data dictionary
is an organised repository for storing entities. It supports the reuse of existing

entities and the discovery of common abstractions between entities.

4. A case study that provides evidence of the suitability of FAD in a functional

software development process.

9.2 Future Research

There are several areas of future research that would be of clear benefit in the application
of FAD.

There is a need for a CASE tool that supports the application of FAD. A methodol-
ogy without a CASE tool is like a programming language without a compiler. Develop-
ers are attracted to methodologies through their CASE tools, and thus, future research
must focus on the development of a CASE tool for FAD. FAD provides no guidelines for
consistency-checking and version control. This is not unique to FAD since it is uncom-
mon for a methodology to provide (non-generic) details on how consistency-checking or
version control can be practised. One can of course use the documented material to
manually check for consistency of design, and manage version control, but this could
soon become unwieldy. CASE tools typically provide support for consistency checking

models developed using their associated methodology. Thus any CASE tool would need
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to support consistency-checking. The case study presented in the appendix could be
used as part of this research.

Design patterns are increasingly popular within the OO community. The scope and
usefulness of such patterns with functional designs is an interesting area of research. A
functional modelling language could be used to describe reusable abstract designs and

possibly to uncover common abstractions in existing designs.
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Appendix A

Analysis and Design of a

Consistency Checker

In this appendix we present a significant example of the application of FAD. FAD is
best applied through a CASE tool that will support inter alia the recording of units in
development and the checking of the consistency of the various models that together
describe a design. It is the CASE tool’s consistency checker that is the focus of this

application. It will be developed as one of the subsystems of the CASE tool project.

In the following section we provide a description of a consistency checker that in-
cludes a definition of an inconsistency, and in Section A.2 there is a detailed overview
of the requirements of the consistency checker. Sections A.3 and A.4 present a repre-
sentative selection of scenario and type dependency analyses that span the major issues
regarding the development of the functionality of the consistency checker. In Section
A.5 we analyse the module architecture of the subsystem where the modules, exclusive
signatures and module use relationships required by the consistency checker are devel-
oped. Design issues are discussed and illustrated in Section A.6, and a summary of the

development and a brief overview of work to be done are given in Section A.7.

FAD, in common with most ADMs, provides multiple views of a system in develop-
ment. This is one of the major benefits of their application. However, multiple views
can lead to inconsistencies between the views, and these inconsistencies may be very
difficult to discover if the system is of a non-trivial kind. Thus most CASE tools provide

a means of resolving such problems in the form of a consistency checker.
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A.1 Consistency Checker

A consistency checker is a significant part of a CASE tool. Although a modelling
language supports the delivery of a design for a system one cannot assume that the
design is consistent. That is, one cannot assume that the design is implementable.
This is particularly true when designing a large system that may be represented in a
series of models. This is precisely the case when using FAD where one is encouraged to
develop models that provide various views of the system in development. A visual scan
of such models is unlikely to discover potential inconsistencies either within a model or
between models. A consistency checker is the tool that enables a methodical approach
to the discovery of design inconsistencies. In addition, the incremental and iterative
approach to development encouraged by FAD, can only be practised effectively if one
has a mechanism for controlling the introduction of new elements, and the replacement

of existing elements in an updated design.

Here we are using the term model as an identified collection of elements of the
modelling language. An element is any micro unit, macro unit or relationship of FAD.
Thus, for example, a model could be a module dependency diagram or a function
dependency diagram, a mixture of both, or simply a collection of unrelated elements.
Since one is building a system with the intention of future implementation, it is necessary
to build one that can be implemented. An inconsistency is something that cannot be
implemented. We illustrate an inconsistent design with an example. In Model 1, the
function aFun uses the function bFun. In Model 2, aFun is hosted by module AMod
and bFun is hosted by module BMod. In Model 3, BMod uses AMod via the exclusive
signature ASIG but there is no module use relationship in the other direction. Figures
90(a), 90(b), and 90(c) present a graphical representation of these three models.

An inconsistency exists between the dependence of aFun on bFun and the lack of a
module use relationship from AMod to BMod. Thus any implementation of this design
would include an error due to the lack of visibility of bFun from aFun. For example,
in Hugs 98, if the module AMod is declared in the file AMod.hs and BMod is declared in

BMod .hs then the following error occurs:

ERROR "AMod.hs": Undefined variable "bFun"
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Model 1 Model 2 Model 3
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Figure 90: An Example of Inconsistency

A consistency checker should report the above inconsistency thus allowing the de-
velopers to resolve the problem pre-implementation. However, a consistency checker
neither provides solutions to any problems nor reports on poor or inefficient design. It
may highlight potential areas of concern but its primary role is to determine whether a
design based on the models of development is consistent and thus implementable. This
is analogous to the program error-spotting réle played by a compiler.

In the following section we present the requirements of a consistency checker. These

will provide the basis for the development of the checker.

A.2 Requirements Analysis

We present in this section a list of identified requirements each accompanied by some
commentary. Fach requirement is a consistency check. However they can be further
categorised as either pass/fail checks or warning checks. A pass/fail check must be
passed. The failure of such a check signals an inconsistency. A warning check discovers
an aspect of a design which may result in an inconsistency, but either because of the
limitations of a consistency checker or the variability in implementation languages, one
cannot guarantee that it is an inconsistency.

Many of the pass/fail checks rely on one unit being visible from another. This is a

non-symmetrical relationship that we define as follows:

A micro unit B is wvisible from the micro unit A if precisely one of the
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following is true:

e either A or B is not associated with a host module. During the early
stages of development micro units may be introduced without a host
module. The default is that such units are visible from any other unit
and vice versa. This is to avoid unwanted consistency checking failure

due to an incomplete design;
e A and B are hosted by the same module;

e B is hosted by a module BMod in the same subsystem as the module
AMod that hosts A. There is either a module use relationship from
AMod to BMod with B specified in the mediating exclusive signature,
or there is a path from AMod to BMod via one or more intermediate
modules where each module use relationship linking the modules is

mediated by an exclusive signature that specifies B;

e B is hosted by a module BMod hosted by a subsystem BS that is
used by the subsystem that hosts the module in which A is declared.
B must be specified in the exclusive signature that mediates use of the
subsystem, and in the exclusive signature that mediates the partition
relationship between the subsystem BS and BMod, or a module that
is linked to BMod via a path as described in the case above. This is
illustrated in Figure 91, where to aid readability, we have limited the
specifications presented in the exclusive signatures to those required for

the example.

A module M is wisible from a module N if precisely one of the following

holds:

e either M or N is not hosted by a subsystem for the same reasons given

above; or

e modules M and N are hosted by the same subsystem.
The pass/fail checks are:

Model Consistency: a model must be consistent relative to existing models. The
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EXCLSIGNATURE

Figure 91: Tllustration of wisible from Relationship

consistency of a model will depend on the consistency of its elements. This is fully

described in Section A.3.1.

Function Argument and Result Types: the types which provide the argument or

result values of a function must be wisible from the function.
Function Use: all functions used by a function must be wvisible from the function.
Type Use: all types used by a type must be wisible from the type.

Module Use: a module may only use a module which is either hosted in the same
subsystem or if either is unassigned to a subsystem. That is, module M may only
use module N if N is visible from M. A module is hosted in a unique subsystem

for a given project. It may be assigned to another subsystem in a different project.

Exclusive Signature Mediation 1: a module/exclusive signature association must
be consistent. This is true if precisely one of the following holds for each micro

unit specified in the exclusive signature:

e it is hosted by the associated module;
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e it is specified in an exclusive signature that mediates access to a module used
by the associated module and this module/exclusive signature association is

consistent.

Exclusive Signature Mediation 2: a subsystem/exclusive signature association
must be consistent. This is true if precisely one of the following holds for each

micro unit specified in the exclusive signature:

e it is hosted by a module M hosted by the subsystem and is specified in the

exclusive signature that mediates the partition relationship with M;

e it is hosted by a module which itself is hosted by a subsystem used by the sub-
system, and is specified in the mediating exclusive signature and the previous

rule holds for the used subsystem.

Permissive Signature Instantiation: a type/permissive signature association must

be consistent. This holds if:

e the permissive signature is visible from the type(s);

e for each parameter of the permissive signature there is an associated type
whose type constructor is of the same kind. Section 5.4.4 provides details of

the instantiation of a permissive signature by one or more types;

e for each micro unit specified in the signature a micro unit exists of the type

required by the signature.

Constrained Polymorphism: a function that includes a type/permissive signature

association must be consistent. This holds if:

e the function argument types and result type are visible from the function;

e the permissive signature instantiations exist and are consistent. That is, the

instantiation must have been previously declared;

e the type(s) associated with each permissive signature are wvisible from the
relevant argument or result type. That is, the type with which the permissive
signature is associated must either be the type to which it is (graphically)

juxtaposed or a type used by this type. We present an illustrative example
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in Figure 92 where the permissive signature EQ is instantiated by the type

aType that is used by the type bType. This is a consistent design.

Permissive Signature Inheritance: a permissive signature inheritance relationship

must be consistent. This holds if:

e the inheriting signature has a parameter (or parameters) of the same kind as

the parameter(s) of the inherited signature.
Uniqueness: this includes:

e uniqueness of type constructor names. Fach type must have a unique name,
which will be the type constructor name if it takes no arguments, or the type
constructor name plus associated parameters (type variables or types) for
non-nullary constructors. A type constructor name must begin with a lower

case letter;

e uniqueness of permissive signature and exclusive signature names. These

names must use only upper case letters;

e uniqueness of module and subsystem names. These names must begin with

an upper case letter;
e each micro unit hosted by a single module;
e cach module hosted by a single subsystem;
e a micro unit specified in at most one permissive signature up to inheritance;

e cach macro unit use relationship must be unique. For example, if AMod uses
BMod then there must be a unique exclusive signature which mediates this

usage.
but does not include:

e uniqueness of function names. Since polymorphism - constrained and un-
constrained - is encouraged by the methodology, the reuse of function names
must be allowed. However, they should only be reused where there is po-
tential for one of the forms of polymorphism. That is, if two functions of

different arity share the same name then this is an inconsistency. This is
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[EQ alype]

clype | aFun bType
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Figure 92: Constrained Polymorphism Example

because current functional languages do not support this form of function
name overloading. Since a consistency checker is not a type checker one can-
not perform the matching algorithms required to confirm the matching of
types. Thus one can check for arity matching but not for type matching.
However, one can report when a function name has been reused and leave it
to the user to decide on the appropriate course of action. That is, this check
uses a pass/fail check and a warning check. Arity matching is a pass/fail

check and function name reuse is a warning check.

New Host Checks: these are a collection of checks that are triggered when micro
units of existing models are assigned to a module, or a module of an existing
model is assigned to a subsystem in the new model. Elements of existing models
need to be rechecked since previously consistent designs may now be inconsistent.
For example, a type use relationship may now be inconsistent if the related types

are hosted in different non-related modules.

Update Checks: these are checks that are triggered when a model has been updated

and may cause a previously consistent design to become inconsistent.

The following checks are warning checks or use warning checks.

Abstraction: if there is an abstraction barrier between a function and each of its types,
and the function only uses functions that are not operations of the abstract type(s),
then the user should be warned of the potential for the breakage of abstraction.

Although this is not an inconsistency since it is perfectly valid for an abstract type
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to be an argument of a function that is not an operation of the type, and thus
can be implemented in most functional languages, there is the potential for the
abstraction barrier to be broken in the implementation of the function. The user
should be advised of this type of design so that a decision can be made regarding

the appropriate action.

We present an illustrative example in Figure 93. The function aFun uses the
argument types aType and bType that are abstract relative to the function, since
they are hosted in used modules and are specified in the mediating exclusive
signatures ASIG and BSIG without their constructor signatures. aFun uses the
functions usedFunl and usedFun2, neither of which is hosted with either of the
types. Thus abstraction is potentially violated. See Section 6.4 for full details of
FAD’s support for abstract types.

Argument and Return Values: a function can be applied (partially or not) to values
of the appropriate type and/or return a value of the appropriate type. Since a
consistency checker is not a type checker one cannot confirm that a value matches
the required type. However, if a type has known values one can do a matching on
values. Also, if the type is a functional type one can check the arity of the function
value against that of the functional type. Thus one can provide information for
the user regarding the appropriateness of the value(s) used. The user receives a

warning if any of the following situations occurs:

e a value is not a known value of the specified type;

e a function value’s arity does not match that of the specified type.

Recursive Dependencies: any recursive dependencies are reported. This requires
the investigation of each set of use relationships. For example, if a module M uses
a module N, which itself uses module M, this is reported since the design may be
non-implementable in some languages, and furthermore, it may indicate a poor

module architecture design.

Each of the requirements listed above can be described as a function. For example,
we have the function functionUseCheck that checks for the consistency of a function use

relationship against the existing set of elements. These functions provide the foundation
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Figure 93: Abstraction Example

upon which a system will be analysed. Each function will be analysed in regard to both
its type and behavioural requirements. The aggregation of these analyses should be
the main functions and types required to implement the system. functionUseCheck is
analysed in Section A.4.1.

We proceed in the following section with a selection of analyses of the functions that

deliver the requirements outlined in this section.

A.3 Scenario and Type Dependency Analyses

When applying the scenario analyses one has to appreciate the inter-dependency be-
tween types and functions. How one develops types will have a direct impact on function
development and vice versa. We will therefore present a mixture of scenario and type
dependency analyses that will highlight the interplay between these techniques. The
first scenario that we will investigate is that of checking the consistency of a model since
the other requirements are subordinate to this one.

We have previously outlined how a system developed using FAD can be described
by a collection of models. We will take a model-based and incremental approach to
consistency checking. That is, rather than trying to compare a collection of models,
as each model is submitted it is checked against existing models that have satisfied the
consistency checker. Model submission is the process of adding the model to the current

collection of system models. The aggregation of the elements of the existing models is
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used as the basis for the determination of the consistency of the submitted model. This
also applies to the checking of a model which is an update of an existing model.

We will adopt an approach in which we present an informal description of an analysis
followed by a description of the development of a FAD model. The informal description
will typically provide a significant input into the description presented in the Description

Documents for the units being analysed.

A.3.1 Consistency of a Model
Informal Description

The consistency of a model is tested relative to the aggregate of existing models. That
is, one does not practice pairwise comparisons between the new model and each of the
existing models but instead compares the design described by the new model against
that described collectively by the existing models. We call this information the state of
the system. A model is consistent if and only if each of its elements is consistent when
checked against the state. It is therefore inconsistent if any of its elements introduce
an inconsistency. The onus is therefore on the new (or updated) model to be consistent
relative to the existing design and not on the existing design to change in order to
accommodate the new model. However, inconsistencies can be introduced into the state
due to new hosting relationships or a model being updated.

The consistency of an element of a model will also depend on those elements of the
model which have already been checked. That is, one needs to update the information
against which the model is being checked as the check is being processed. For example,
if a model introduces a new type dependency diagram with some new types, then the
types will be checked first. If these checks succeed then the types are added to the state
against which the type use relationships are checked.

The manner in which a check proceeds depends on whether a model is new or an
update of an existing model. If new, then one checks the model against the existing
state. If an update, then the state requires some modification before checking. That
is, since the model is replacing an existing model, some of the elements of the existing
version may no longer be part of the state. This depends on whether they are part of

any other existing model or are reused in the updated version of the model. If either or
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Figure 94: modelCheck function and the type state

both of these situations hold then they remain, and if not then they should be removed.

FAD Description

The function modelCheck, which checks the consistency of a model, takes two argu-
ments of type model and state. The type model has as values the FAD models, and
state includes the aggregation of existing elements. modelCheck returns a value of type
state since it not only checks for consistency but updates the state for future checks.
The type state uses the type passOrFail whose values reflect whether the check has
been successful or not, and provides supporting information. The FAD graphical repre-
sentation of modelCheck is presented in Figure 94(a) and a preliminary design for the
type state is presented in Figure 94(b).

The function needs to determine whether the model is new or an update. Refer-
ring now to Figure 95, the type model must be an equality type whose equality is
determined through its identifier. It therefore uses the type modelID that uniquely
identifies each model and is also an equality type. Using the function isIn, one may
test whether the model is new, and if so, one proceeds with the check of a new model
using newModelCheck. Since one is checking for the existence of a model, the function
modelCheck needs access to existing models either within the type state or as a sepa-
rate type. We have decided to include this within the type state since this information
will need to be updated upon the successful completion of the check.

If the model fails the new test - if isIn returns True - which implies that the model



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 227

is an update of an existing model, then the state value requires modification using
the function modifyState, and the function oldModelCheck is applied to the state
value that is returned. These two alternatives are given in Figure 95 and a Function
Description Document for modelCheck is provided in Figure 96.

newModelCheck and oldModelCheck have similar behavioural requirements. They
both scan the elements of the model value being checked and will terminate the check if
any element check fails, and will update the state value as each check succeeds. Thus
one must be able to apply a consistency check to any element value. That is, a function
elementCheck must exist over the element type and also over any type used by this
type that represents the different units and relationships of FAD. These types, such as
function and typeUseRel will be used either directly by the type element or via types
used by this type. Details of the design of the type element are left to later in the
development process and analyses of newModelCheck and oldModelCheck are presented
in Sections A.3.3 and A.3.4.

At this point it is worth analysing the types state and model

A.3.2 The Types state and model
Informal Description

The type state plays a central role in the design of the consistency checker. It acts as
a repository for the elements of existing models, a recorder of the identities of existing
models and an indicator of the success or failure of the most recent check with additional
information for the user. It is the state value that will provide the information against
which a model is checked for consistency, and the information that determines if a model
is new or is replacing an existing model. It is important therefore that one can add,
remove and find elements, and similarly add, remove and find model identifiers.

If one is updating an existing model then the state requires modification in advance
of the consistency check. However, if the check fails one wants to be able to return the

state to its pre-modification form. This implies a design where one has three substates:
e one that records the aggregation of elements of existing models;

e one that records the elements of the model being checked that have passed their

check. These elements are used together with those of the first substate in the



228 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

state model

EQ

modellD

model

modellD

EQ

state model

modellD|

model

Figure 95: Conditional Behaviour of modelCheck and Design of model
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Function Description Document CASE
Name: modelCheck
Version: 20000710:0
Module:
Arity: 2

Type Specification: state -> model -> state

Contract Associa-

tion:

Instantiations:

Functions Used: isIn : modelIDs -> modelID -> bool
newModelCheck : state -> model -> state
modifyState : state -> model -> state
oldModelCheck : state -> model -> state

Description:

The consistency of a model is tested relative to the aggregate of existing models.
That is, one does not practice pairwise comparisons between the new model and
each of the existing models but instead compares the design described by the
new model against that described collectively by the existing models. We call
this information the state of the system. A model is consistent if and only if
each of its elements is consistent. It is therefore inconsistent if any of its
elements introduce an inconsistency. In addition, the consistency

of an element in a model will also depend on those elements of the

model which have already been checked. That is, one needs to update

the information against which the model is being checked as the check

is being processed.

The manner in which a check proceeds depends on whether a model is

new or an update of an existing model. If new, then one checks the model
against the existing state. If an update, then the state requires some
modification before checking. That is, since the model is replacing an existing
model, the elements of the existing version may no longer be part of the

state. This depends on whether they are part of any other existing model or

are reused in the updated version of the model. If either or both of these

situations hold then they remain, and if not then they should be removed.

Figure 96: Function Description Document for the Function modelCheck
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checking of future elements of the model. If the model check terminates success-
fully then these elements are added to those of the first substate. If the check is

unsuccessful then the first substate is left unchanged; and,

e one that records the elements that are (temporarily) removed from the first sub-
state when the state is modified in advance of checking a model that is an update
of an existing model. These are the elements that only exist in the previous ver-
sion of the model. If the model check terminates successfully then these elements
are discarded since they no longer exist in the design of the system. If the model
check is unsuccessful then these elements are returned to the first substate since
the previous version of the model remains in existence. Full details of the be-
havioural requirements when updating a model are presented in the analysis in

Section A.3.4.
A model is an identified collection of elements. Each element can appear in one or
more models and must be checkable for consistency against the state.
FAD Description

Here we are referring to the Type Description Document presented in Figure 97 and the

type dependency diagram in Figure 98. The type state uses the following five types:
e modelIDs, which is the type of a collection of model identifiers;
e subStatel, which is the type of existing model elements;
e subState2, which is the type of elements that satisfy checks during a model check;

e subState3, which is the type of elements that exist only in the previous version

of a model for which an update is being checked; and,

e passOrFail, which signals success or failure of a check with supporting informa-

tion.

subStatel, subState2 and subState3 make use of the type elements, which uses
values of type element. These three types may eventually be replaced by a single type
that provides three fields of the type state. However, by treating them as separate types

one has the flexibility either to implement them differently or decide to unify them into
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Type Description Document CASE

Constructor Name: state

Version: 20000710:0

Kind: *

Module:

Types Used: modelIDs, subStatel, subState2

subState3, passOrFail
Parameters:
Permissive sigs.:
Description:
The state value provides the information against which a model is checked
for consistency and the information which determines if a model is new or is
replacing an existing model. It is important therefore that one can add, remove
and find elements, and similarly add, remove and find model identifiers.
If one is updating an existing model then the state requires modification in
advance of the consistency check. However, if the check fails one wants to be
able to return the state to its pre-modification form. This implies a design
where one has three substates:
- one which records the aggregation of elements of existing models;
- one which records the elements of the model being checked that have
passed their check. These elements are used in together with those of
the first substate in the checking of future elements of the model. If
the model check terminates successfully then these elements are added
to those of the first substate. If the check is unsuccessful then the
first substate is left unchanged; and,
- one which records the elements which are (temporarily) removed from
the first substate when the state is modified in advance of checking a model
which is an update of an existing model. These are the elements that only
exist in the previous version of the model. If the model check terminates
successfully then these elements are discarded since they no longer exist
in the design of the system. If the model check is unsuccessful then
these elements are returned to the first substate since the previous

version of the model remains in existence.

Figure 97: Type Description Document for the Type state
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a single type. One is therefore not forced into an early design decision. The type
elements and modelIDs must use a collection type which instantiates the permissive
signature CONTAINER. This signature specifies the functions add, remove, empty and

isIn which guarantee:

the ability to add an item to a collection;

the ability to remove an item from a collection;

an empty value for the collection; and,

the testing for the existence of an item in the collection.

Both remove and isIn require the item type to be an equality type since in both
cases they depend on the matching of an item with one in the collection.

We now refer to Figure 99 and to the Permissive Signature Description Document
presented in Figure 100. Since each element value needs to be checked for consistency
and the state value reflects the cumulative result of the application of the checks, the
collection type used by elements must also support the folding of a function into the
collection of values. This is guaranteed by the permissive signature FOLD, which we
associate with the collection type. In addition, each element type must instantiate the
permissive signature CHECKABLE that specifies the function elementCheck.

The type model uses two types:
e the equality type modelID whose value uniquely identifies a model; and,
e elements which is the type of the elements of the model.

We will continue in the next section with an analysis of checking the consistency of

a new model.

A.3.3 Checking a New Model
Informal Description

A new model is checked against the existing set of models by checking each element of
the model. As each element passes a check it is added to the state against which future

checks are applied. If any element check fails then the model check fails and the details
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subStatel subState2 subStated model modellDs passOrFail
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element
CONTAINER
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ca
CONTAINER

Figure 98: The Types state and model
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Figure 99: The Permissive Signatures FOLD, EQ, CHECKABLE and CONTAINER

Permissive Signature Description Document CASE
Name: CHECKABLE
Version: 20000712:0
Module:
Parameter(s): c:*
Operations: elementCheck : state -> c¢ -> state

(with type specs.)
Inherited  Signa-
ture(s):
Description:

This signature specifies the function elementCheck that delivers

consistency checking over an instantiating type.

Figure 100: Permissive Signature Description Document for CHECKABLE
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of the failure are added to the state. Conversely if all element checks succeed then the
model check succeeds. However, the user may still be informed of potential recursion
or breaking of abstraction by including this information in the state.

The ordering of the checking of elements is important. The general approach is that
an element should be checked before used. Thus, for example, a type should be checked
before one checks its use by a function or another type, and a permissive signature
should be checked before checks are applied to its instantiation by a type. We define a
partially ordered set (S, <), where S is the set of consistency checks, and for two checks
z and y, x = y is defined as x must be applied in advance of y. We present a graphical
representation of (S, <) in Figure 101. Each check is presented on a node, and for any
two checks where z is the immediate predecessor of y, the node z appears above the
node y and they are connected by a link. For any two checks s and ¢ where s < ¢, s
appears above ¢ and there is a path - or sequence of nodes connected by links - from s
to .

A total ordering which satisfies the partial order is presented in the following enu-
merated list. In each case we qualify the position of a check in the list by stating those

checks that are immediate successor checks.

1. Uniqueness of type constructors. Types are fundamental to the development
of FAD models and are used in the development of all other micro units. The only
check that is required on a type is that it does not reuse a type constructor name.
That is, one wants to prevent the use of the same constructor with different kinds.
Thus if the type constructor aType is currently used with kind * and then is reused
with kind * -> * then this second occurrence is an inconsistency. Multiple use
of a type constructor name with the same kind refers to the same type. Hence if
one has multiple type dependency diagrams for a single type the conjunction of

diagrams must be used. This check must be applied in advance of:
e uniqueness of micro unit host checks since the type’s existence must be
checked before it is assigned to a module;

e uniqueness of permissive signature specifications some of which may use ex-

isting types; and,

e uniqueness of exclusive signature names and micro unit existence checks of
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2. Uniqueness of 1. Uniqueness of Type Constructors

Function Names

3. Uniqueness of Module/
Subsystem Names

6. Uniqueness of
Exclusive Signature
Names and Unit Existence

4. Uniqueness of Micro Unit Host

5. Uniqueness of
Module Host

7. Permissive Signature 9. Module Use

Inheritance

10. Partition

11. Subsystem Use 12. New Host

8. Uniqueness of Permissive

Signature Specification 13. Function Argument

and Result Type
14. Permissive Signature Instantiation

15. Type Use

16. Constrained Polymorphism

17. Argument and
Result Values

18. Function Use

. 19. Abstraction
20. Recursion

Figure 101: Partial Order for Consistency Checks
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which one or more may be a type.

. Uniqueness of function names. Functions are also fundamental to the devel-

opment of FAD models. As stated in the requirements analysis this check uses
a pass/fail check of the arity of functions that share a name, and if this check
is passed, a warning check is applied to indicate that the name is being shared.
In common with types, multiple use of a function name (and associated types)
results in the function adopting the aggregate of the information. This check must

be applied in advance of the same checks as check 1 and for equivalent reasons.

. Uniqueness of module and subsystem names. This is simply to prevent one

name being used for a module and a subsystem. Modules which share the same
name are assumed to be identical and therefore host the aggregate of elements
hosted by each. The same rule applies for subsystems. These must be checked in
advance of these macro units being used in hosting relationships. That is, they
must be applied in advance of uniqueness of micro unit host checks and uniqueness

of module host checks.

. Uniqueness of micro unit host. Every micro unit must be hosted by at most

one module. These checks must be applied in advance of module use checks which

depend on the assignment of micro units to host modules.

. Uniqueness of module host. Every module must be hosted by at most one

subsystem. These checks must be applied in advance of module use checks since a
module may only use another module that is either hosted by the same subsystem

or if either is unhosted.

. Uniqueness of exclusive signature names and unit existence. Each exclu-

sive signature specifies a particular set of micro units. Each of these units must
exist in the state before being specified in an exclusive signature. Exclusive signa-
tures whose specifications do not match must have different names. These checks
must be applied in advance of module use checks in which exclusive signatures

have a mediating role.

. Permissive signature inheritance. One way of creating new permissive signa-

tures is by inheriting from and possibly adding to existing signatures. The checks
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are based on matching the kinds of the parameters of the inheriting and inherited
signatures. That is, for each parameter of the inherited signature(s) there must
be a parameter of the same kind in the inheriting signature. These checks must
be applied in advance of uniqueness of permissive signature specification checks

that may depend on the inheritance association between permissive signatures.

Uniqueness of permissive signature specifications. This includes checking
that any specification appears in at most one permissive signature up to inheri-
tance. Permissive signatures whose specifications do not match must have different
names. In addition, one checks that any type used in a specification exists in the
state. These must be checked in advance of the use of a permissive signature in a

type/permissive signature instantiation.

Module use. These checks need to be applied in a particular order. The mod-
ule use relationships in a module dependency diagram should be checked in the

following order where we are assuming no recursion in the diagram:

(a) those at the base of the diagram should be checked first. That is, those for
which any item specified in the exclusive signature must be hosted by the

associated module should be checked first;
(b) those in the next layer up should be checked next;
(c) continue until one reaches the relationship(s) at the top of the diagram which

should be checked last.

Where one has recursive dependencies the use relationships involved in the re-
cursion are checked in any order within the appropriate position in the above

ordering.

Module use checks include:

e uniqueness of module use relationship checks; and,

e the exclusive signature mediation 1 checks described in Section A.2.

They must be applied in advance of partition checks whose success may depend

on the relationship between modules in a subsystem.
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Partition. Any partition relationship between a subsystem and a module must
be unique. That is, there must be a unique exclusive signature that mediates
the relationship. In addition, the exclusive signature mediation 1 checks must be
applied to the exclusive signatures and their associated modules. Partition checks
must be applied in advance of subsystem use checks that may rely on the partition

relationships between server subsystems and their modules.
Subsystem use. These checks use two checks:

e uniqueness of the use relationship between any two subsystems. That is,

mediation must be through a unique exclusive signature; and,

e exclusive signature mediation 2 checks, which were described in Section A.2.

These checks must be applied in an order that takes into account the subsystem
interdependencies. They must be applied in advance of new host checks, since a
function and one or more of its types may be hosted in modules that are hosted

by different subsystems.

New host. The introduction of hosts for micro units or modules that have been
declared in existing models may affect the consistency of elements that have pre-
viously passed a check. For example, a function use relationship or type use
relationship may now be inconsistent due to changes of the modules which host
the related functions. We therefore need to check all elements which are affected
by the new host relationships. These checks must be applied in advance of func-
tion argument and result type checks whose success may depend on the hosting

relationships of types that appear in existing models.

Function argument and result type checks. The argument and result types
of a function must be visible from the function. These checks must be applied in

advance of:
e argument and result value checks since a function can only use values once
the visibility of a type has been checked; and,

e permissive signature instantiation checks that require the existence of the

specified functions.
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Permissive signature instantiation. These were described in Section A.2 and
must be completed in advance of type use checks that may require used type(s)

to instantiate one or more permissive signatures.

Type use. These were described in Section A.2 and must be applied in advance

of:

e constrained polymorphism checks that may require type/permissive signature
instantiation checks between a permissive signature and a type used by an

argument or result type; and,

e recursion checks over types that depend directly on the type use relationships.

Constrained polymorphism. These were described in Section A.2 and must
be applied in advance of function use checks. A function may use a function that

requires a type/permissive signature instantiation.

Argument and result values. These checks were described in Section A.2. A
function which is either (partially) applied to its arguments or has a given return
value needs to be checked in advance of the use of the function in a function use

relationship.

Function use. These were described in Section A.2 and must be applied in
advance of abstraction and recursion checks since they both directly depend on

the set of function use relationships.

Abstraction. These checks were described in Section A.2. These warning checks

have no checks which are dependent on their outcome.

Recursion. These checks were described in Section A.2. These warning checks

have no checks which are dependent on their outcome.

Module use (9) and subsystem use (11) checks aside, there is no required ordering

of checks of the same sort.
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Figure 102: Analysis of type element

FAD Description

We now refer to Figure 103. newModelCheck uses two functions checkElements and
updateState. checkElements takes arguments of type state and elements and re-
turns a value of type state. The elements value comes from the model value to which
newModelCheck is applied. checkElements’s second argument of type elements uses
a collection type that is associated with the permissive signature FOLD since the func-
tion elementCheck is folded over the elements. The permissive signature CHECKABLE
guarantees the existence of the elementCheck function.

The type element is a union of types that represent micro units, microUnit, macro
units, macroUnit, and relationships relationship. Each of these types also instantiate
the permissive signature CHECKABLE and are themselves unions of types, which we will
return to later in the analysis. We present the current design of the type element in
Figure 102.

The function checkElements uses two functions. applyOrdering acts as a controller
of the application of the element consistency checks. That is, it checks for the existence
of different types of elements and applies the relevant elementCheck to them using

the total order described earlier in this section. applyOrdering takes three arguments
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of type state, elements and the functional type state -> element -> state. The
function is partially applied to the value elementCheck. warningChecks uses the func-
tions recursionCheck and abstractionCheck, which are non-element specific warning
checks. That is, they are not directly bound to a particular element, and their ap-
plication does not affect the various substate values. warningChecks takes a single
argument of type state and returns a value of the same type. recursionCheck and

abstractionCheck have the same type as warningChecks.

The function applyOrdering uses two functions. orderModuleUseChecks manages
the application of the function moduleUseCheck and orderSubsystemUseChecks pro-
vides a similar service for the function subsystemUseCheck. That is, they make sure
that these particular checks are applied in the appropriate order. Each function takes
the collection of the relevant use checks as one of the arguments, and requires the use
relationship type to instantiate the permissive signature ORD that guarantees an ordering

of values of the instantiating type.

Upon completion of the checks the state will require updating. This is implemented
by the function updateState that manages the state at the termination of a successful
or failed check. It simply takes the current state value as its argument, since it includes
all the information required, and returns the updated state value. If the model check
was successful then the subStatel value should be updated to reflect the ‘addition’ of
the elements of the subState3 value. Addition could mean either the introduction of
new elements or the confirmation of the use of existing elements in the new model. In
addition, the type passOrFalse’s value will indicate success and include a message that
reflects this outcome.

If the check of the model failed then the empty value of the type subState3 is
returned, and the passOrFail value signals failure with a message which describes the
details of the failure.

Each type that represents a micro unit, macro unit or relationship - such as the type
function - uses the type modelIDs to record the models in which an element appears.
The function add defined over the type elements uses the function add defined over the
type modelIDs to deliver the required functionality. Both of these functions use the add
functions guaranteed by the instantiation of the permissive signature CONTAINER by the

collection types used by the types elements and modelIDs. In Section A.6 we describe
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the design of the permissive signature CONTAINERPLUS that inherits the functionality
specified in CONTAINER but enables behaviour that is dependent on the contained item’s
type.

In the following section we present the scenario analysis when a model is an update

of an existing model.

A.3.4 Checking an Update
Informal Description

Checking an update of an existing model requires modification of the state in advance
of any consistency check. This is because the state, among other things, is meant to
represent the current set of elements against which the check of the model is being ap-
plied. Those elements that exist only in the previous version of the model being updated
should not influence the checker. Thus the modification of the state involves removing
those elements that appear only in the previous version of the model. Obviously if they
appear in other models or are repeated in the updated version then they should remain
as data in the consistency check.

Once the state has been modified one can proceed with the consistency checks. They
must now include not only the checking of elements in the model but also checking for
any inconsistencies that may have arisen due to the changes. That is, some elements
in the state will need to be rechecked. The model is checked in advance of the mod-
ified state. This is because, if one adopts the opposite approach, one may uncover
inconsistencies that are due to the non-existence of elements declared in the model.
For example, an existing type use relationship may be made inconsistent due to the
removal of a module use relationship. However, the updated version of the model may
include a new module architecture that satisfies the visibility requirements of the type
use relationship.

If the model is checked successfully then one can check for inconsistencies in the
state. That is, have any inconsistencies arisen due to the removal of elements from the
state? We use the partial order presented in Figure 101 to determine which elements
may affect the consistency of existing elements if they are removed from the state. We

present each element with the elements they may affect.
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Figure 103: newModelCheck Function
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Function: the removal of a function may affect:

e the instantiation of a permissive signature since one has to check for the

existence of a function of the required type; and,

e the unit existence checks for an exclusive signature since again one checks for

the existence of the units specified in the signature.
Type: the removal of a type may affect:

e the specification of a permissive signature that may include one or more units

whose types include the removed type; and,

e the unit existence checks for an exclusive signature since one checks for the

existence of the units specified in the signature.

Permissive Signature: the removal of a permissive signature will have no effect. If
it doesn’t exist in any models then it is not being used either in association with a

type or in the construction of a new signature through the inheritance relationship.

Module: the removal of a module will have no detrimental effect on the consistency
of existing elements since any units that were previously assigned to the module

will now be visible from any client unit;
Subsystem: the same result as for modules.

Module Use Relationship: the removal of a module use relationship may result in
previously visible units becoming invisible to their clients. This may affect the
consistency of type use, function use, function argument and result type relation-

ships and other module use relationships.

Partition Relationship: the removal of a partition relationship may result in previ-
ously visible units becoming invisible to their clients. This may affect the consis-

tency of type use, function use, function argument and result type relationships.

Subsystem Use Relationship: the removal of a subsystem use relationship may
result in previously visible units becoming invisible to their clients. This may
affect the consistency of type use, function use, function argument and result type

relationships and other subsystem use relationships;
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Exclusive Signature Specification: the removal of a micro unit from an exclusive
signature may also affect any relationship that depends on the visibility of that

unit.

Type/Permissive Signature Instantiation: the removal of a type/permissive sig-
nature instantiation may affect the consistency of functions with types associated
to permissive signatures. That is, a constrained polymorphism check depends on

the existence of the required type/permissive signature instantiations.

Type Use Relationship: the removal of a type use relationship may affect the con-
sistency of functions with types associated to permissive signatures. That is, a
constrained polymorphism check may depend on a type use relationship between

an argument or result type and the type that instantiates the permissive signature.

Those elements that exist in the previous version of the model but are absent from
the new version therefore provide a guide for the checks that are required on the re-
maining state. One should not simply recheck all elements of the types indicated above,
but rather those elements that have an association with the removed element. For
example, if a type use relationship is removed, then one has knowledge of the client
and server types and this should guide the constrained polymorphism checks that need

re-application.

FAD Description

We now refer to the update of the function dependency diagram for modelCheck pre-
sented in Figure 104. The original diagram was presented in Figure 95. The function
modifyState modifies the state. modifyState uses singleUse, which takes arguments
of type state and model and returns a value of type elements, which represents those el-
ements that only appear in the previous version of the model being updated. singleUse
makes use of the modelIDs value that is used by the types that represent each form of
FAD element. For example, the micro unit types type, function and permSig each
use the type modelIDs. This design is presented in the model in Figure 108 at the end
of this section, and singleUse is further analysed in Section A.5.4.

Each element returned by singleUse is removed from the subStatel value using

remove and added to the subState3 value using add. The subState3 value is initially
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modellD state | model

elements

elements
elements

Figure 104: Update of modelCheck Function

empty. If the model check fails then one can recreate the version of the state prior to
checking by returning the empty subState3 value and adding the previous subState3
value to subStatel. The functions add and remove are guaranteed by the permissive
signature CONTAINER instantiated by the collection type used by the type elements. If
an element appears in other models it remains in the subStatel value but the modelID
value of the model being checked is removed from its modelIDs value.

The modified state provides the first argument for the function oldModelCheck.

This function uses three functions that are applied in the order of the following list:

e the function reuse is called and returns those elements that are used in both the
previous version and updated version of the model. These elements do not need

to be rechecked;

e the function checkElements is applied to the current state value, and those

elements of the model not returned by reuse. That is, those elements that are
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new to the model; and,

e if the previous check terminates successfully then the state is checked for inconsis-
tencies using the function checkExistingElements that takes a single argument
of type state. This function manages the consistency checks applied to elements
that existed prior to the check of the current model. For example, any type use
relationship whose host modules are no longer associated through a module use
relationship needs to be rechecked for consistency. The removal of the relationship
does not by default imply an inconsistency since another module use route may ex-
ist. Thus checkExistingElements uses the subState3 value to determine those
checks that are required of the elements of the subStatel value. The function

uses the elementCheck function to apply the relevant checks.

We have concentrated thus far on the checking of models. In the following section
we present some illustrative examples of analyses of element check functions upon which

the model checks largely depend.

A.4 A Selection of Element Check Analyses

In this section we present a representative sample of analyses of element check functions.
Those selected highlight both the similarities in their behavioural requirements and cover
the interaction between units of the same sort and those of different sorts. We therefore
present a micro unit use check, a macro unit use check and a non-use check, which is
an example of what is required when checking the interaction between units of different
sorts. The first analysis that we present is that of the function which checks function

use relationships.

A.4.1 Analysis of functionUseCheck
Informal Description

If the element - a functionUseRel value - is present in the state then there is no need
to further check its consistency since its presence implies that it has previously satisfied
a check. However, one needs to update the element entry in the state to include its

appearance in the model being checked. This is true of all element checks. Thus the
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first requirement of any check is to determine whether the element is present in the
state. If the function use relationship does not exist then the use of one function by
another function is consistent if and only if the used function is wvisible from the using

function.

FAD Description

We now refer to Figure 105. The function functionUseCheck takes two arguments of
type state and functionUseRel (the type of function use relationships) and returns a
value of type state that will reflect the outcome of the check. functionUseRel first
tests for the existence of the relationship using the function inState. inState takes
two arguments of type state and functionUseRel (which is required to instantiate the
permissive signature EQ) and returns a Boolean value that indicates whether the item
exists in the state or not. The permissive signature instantiation is required since one

wants to match the relationship against one in the state.

If the relationship exists in the state then the check is terminated, and the state
value is updated to record success and the fact that the element appears in the model.
If it does not exist, functionUseCheck uses the function visibleFrom to test whether
the used function is visible from the using function. The function visibleFrom takes
an argument of type state and two of type function and returns a bool value. It
requires the state argument since the various hosting and use relationships are stored

in the state.

If the application of the function visibleFrom returns True then one adds the
function use relationship to the state using addToState. This function uses the add
function where the first argument is of type elements (whose value comes from the
subStatel value). If the visibility check fails then functionUseCheck calls the function
reportFailure that returns the state, where the value of type passOrFail includes a

message indicating the failure.



250 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

ste

state state | functionUseRel

state | functionUseRel

state | functionUseRel state

state | functionUseRel

functionUseRel

state | functionUseRel

functionUseRel

components| functionUseRel

function | function

Figure 105: Analysis of functionUseCheck
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A.4.2 Analysis of moduleUseCheck
Informal Description

A module use check begins in the same manner as the previous check. That is, one
tests for the existence of the relationship in the state. If it exists then one terminates
the check successfully. The module use relationship of the model is the same as one in
the state if the client and server modules are the same in each case, and the exclusive
signature that mediates the relationship matches. If it does not exist then one has to
test for the uniqueness of the relationship between the stated modules. That is, any
two modules M and N should have at most one module use relationship where M is
the client. This means that the use of module N by module M should be mediated
by a unique exclusive signature. If the test fails then the check is terminated and the
user informed of the problem. If the test succeeds one checks that the server module is
visible from the client module.

Once again if this test fails the check is terminated and the user informed of the
failure. If the check succeeds, the association between the mediating exclusive signature
and the server module needs to be checked. If this check succeeds then the whole check

is successful and the state can be modified to reflect this.

FAD Description

We refer now to the function dependency diagram of Figure 106 and the function de-
scription document in Figure 107. The function moduleUseCheck takes two arguments
of type state and moduleUseRel (the type of module use relationships) and returns a

value of type state. It uses the functions:

e inState that takes the same argument types as moduleUseCheck but returns a

value of type bool, which reflects whether the element exists in the state or not;

e unique that tests for the uniqueness of the relationship and has the same type as
inState. In an optimised implementation one may merge inState and unique

into a single function that returns a pair of Boolean values;

e visibleFrom that takes an argument of type state and two of type module and

returns a value of type bool; and,



252 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER
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Figure 106: Analysis of moduleUseCheck

e mediationCheck that checks the association between the exclusive signature and
module. It takes three arguments of type state, exc1Sig and module respectively.
The state value contains the existing elements which may be called upon to
confirm the consistency of the association between the exclusive signature and
the module. This function implements the exclusive signature mediation 1 check

described in Section A.2.

If inState returns True then the check terminates successfully. In the case that
inState returns False, if any of the other functions returns False then the check

terminates unsuccessfully.

A.4.3 Analysis of typePermSigCheck
Informal Description

The association between a permissive signature and one or more types (the number
depends on the number of parameters of the permissive signature) initially proceeds in
a similar fagshion to the previous checks. That is, one checks for the existence of the
relationship in the state. If it exists the check terminates successfully. If it doesn’t then

one needs to check that the permissive signature is visible from the type(s). A sensible
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Function Description Document CASE
Name: moduleUseCheck
Version: 20000712:0
Module:
Arity: 2

Type Specification: state -> moduleUseRel -> state

Contract Associa-

tion:

Instantiations: EQ moduleUseRel

Functions Used: inState : state -> moduleUseRel —-> bool
unique : state -> moduleUseRel -> bool
visibleFrom : state -> module -> module -> bool
mediationCheck : state -> exclSig -> module

-> bool
Description:

If any element exists in the state then there is no need to further check its
consistency since its existence implies that it has previously satisfied a check.
This is true of all element checks. Thus the first requirement of any check is

to determine whether the element exists in the state.

The module use relationship of the model matches one in the state if the client
and server modules match in each case, and the exclusive signature which
mediates the relationship matches. If it does not exist then one has to test for
the uniqueness of the relationship between the stated modules. That is, any
two modules M and N should have at most one module use relationship where
M is the client. This means that the use of module N by module M should be
mediated by an unique exclusive signature. If the test fails then the check is
terminated and the user informed of the problem. If the test succeeds one
checks that the server module is visible from the client module.

Once again if this test fails the check is terminated and the user informed of the
failure. If the check succeeds the association between the mediating exclusive
signature and the server module needs to be checked. If this check succeeds the

the whole check is successful and the state can be modified to reflect this.

Figure 107: Function Description Document for the Function moduleUseCheck
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design is one where all permissive signatures are visible from all types. Thus if this
check fails this should provide a warning signal regarding the design.

Upon successful completion of the visibility check one checks that the permissive
signature and type(s) have matching kinds. That is, the kind required by each parameter
of the permissive signature is matched by the kind of the type constructors of the
instantiating types. If this check succeeds then one needs to check for the existence of

the units specified in the permissive signature.

FAD Description

The function typePermSigCheck takes two arguments of type typePermSigRel (the
type of type/permissive signature relationships) and state and returns a value of type

state. It uses the functions:

e inState that takes the same argument types as typePermSigCheck but returns

a value of type bool;

e visibleFrom that takes three arguments of type state, permSig and type and
returns a value of type bool. This is the third occasion that we have used a
function called visibleFrom and in each case with a different type. In Section
A.6 we use this as an illustrative case of function development guided by name

reuse;

e kindCheck that takes two arguments of type permSig and type and returns a

bool; and,

e allInState that takes the same arguments as visibleFrom and returns a bool.
It uses the functions inState to determine whether each specified unit of the
required type exists in the state. In Section A.6 we take the various inState

functions and design a single function in their place;

The types permSig of permissive signatures and type of types must both use the
type kind, the set of kind values. We present the design of the type microUnit in
Figure 108 and the type description document for the type permSig in Figure 109.

That completes our selection of element checks. In the following section we describe

the development of an initial module architecture for the subsystem.
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CHECKABLE|
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CHECKABLE type function | |CHECKABLE
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Figure 108: microUnit Type Design

Type Description Document CASE

Constructor Name: permSig

Version: 20000713:0
Kind: *

Module:

Types Used: kind, modelIDs
Parameters:

Permissive sigs.: CHECKABLE
Description:

The type permSig is the type of permissive signatures. Each signature has a
kind and a record of the models in which it is used. As with all elements a

permissive signature must support consistency checking.

Figure 109: Type Description Document for the Type permSig
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A.5 Module Architecture

In this section we introduce a module architecture into the system. This involves the
declaration of modules, the assigning of micro units to host modules, and the introduc-
tion of module use relationships between modules and partition relationships between
the subsystem and some of its modules. These relationships require the development of
exclusive signatures to mediate access to hosted units.

The guiding principle here is to host a type with the functions that deliver the
required behaviour over the type, and to put an abstraction barrier around the type.
That is, each type should be hosted in its own module with the operations over the type.
When it is specified in an exclusive signature it should be specified, if possible, without
its constructor signature. The cost of this approach is that one may require get and set
functions to support access to the type by clients that are external to the abstraction
barrier. Although this is a sensible way initially to develop a module architecture (and
moreover one that will enable the localization of future changes), it is unlikely that it
will result in a design devoid of imperfections. There are occasions where one may need

to introduce modules that do not host any types but:

e manage the interaction between two or more types hosted elsewhere;

e present a collection of polymorphic functions that are linked by the behaviour that

they implement;

e present a collection of constrained polymorphic functions that are linked by the

permissive signature(s) that need to be instantiated; or

e simply avoid overburdening a module with an excessive number of units such that

it becomes difficult to manage.

The initial foci of attention are therefore the types. Once decisions have been made
regarding the required modules for hosting the types one assigns the remaining micro
units to the appropriate modules. Scenario and type dependency analyses are then
applied where extra information is required due to the design of the module architecture.

In the following section we develop an initial module architecture for the subsystem
using module architecture analysis. Once again we will first present a textual description

of the analysis followed by a description of the development of FAD models.
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A.5.1 Module Architecture Analysis
Informal Description

Each of the types which are exported from ConsistencyCheckerSS is assigned to its
own module. One then assigns those functions that implement the behaviour required
over a type to the same module as the type. If a function implements behaviour over
more than one type, one assigns it to a module that hosts one of the types, develops
the module architecture with the required module dependencies, and then analyses the
design of the architecture. For example, one may require mutual dependency between
modules or one may discover that a collection of functions are best hosted by a module
that delivers a particular functionality that may be reusable over more than one type
or collection of types. That is, at this stage of development one is trying to minimize
the number of modules and to emphasize the need to localize functions and their types.

The subsystem supports the consistency checker of the CASE tool and exports model
checking functionality as well as the types directly associated with model checking. The
details of the implementation of model checking are of no interest to clients within
the system. That is they will be presented with a minimal interface to the types and
function(s) associated with model checking. This enables both incremental development,
of parts of the system, and minimal disruption due to maintenance or extension of the

system.

FAD Description

We now refer to Figure 110. The subsystem ConsistencyCheckerSS is associated with
the exclusive signature CCSIG that mediates access to the subsystem. The function
modelCheck, which implements the consistency checking of a model, and the types
state and model are specified in the signature. Thus the types state and model
are our initial foci. They each need to be assigned to a module to which access is
controlled by an exclusive signature. Each exclusive signature will initially specify the
type(s) they are hosting with any required functionality added during development.
The modules are StateMod and ModelMod respectively. Each of these modules will be
associated to ConsistencyCheckerSS through a partition relationship that is mediated

by an exclusive signature. Other modules of the subsystem have no partition relationship
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with the subsystem and are not specified in the mediating exclusive signatures, since
their units should remain invisible to any clients of the subsystem.

We now proceed with type and function host analysis applied to the types used by
state and model, and the functions used by modelCheck. With reference to Figures 98

and 110, the five types used by the type state are assigned to different modules:

e subStatel is hosted by SubStateiMod;

subState2 is hosted by SubState2Mod;

subState3 is hosted by SubState3Mod;

modelIDs is hosted by ModelIDsMod; and,

passO0rFail is hosted by PassOrFailMod.

Similarly we assign the two types used by the type model to two separate modules:
e eclements is hosted by ElementsMod; and

e modelID is hosted by ModelIDMod.

Immediately one can sketch an initial module architecture that satisfies the visibility
requirements of the types state and model. For example, the module StateMod uses
the modules that host the types used in its construction. That is, SubStatelMod,
SubState2Mod, SubState3Mod, ModelIDsMod and PassOrFailMod. Both ModelMod and
ModelIDsMod use ModelIDMod, and ElementsMod is used by ModelMod, SubStatelMod,
SubState2Mod and SubState3Mod.

We now proceed with function host analysis in which we assign functions to their

relevant host module.

A.5.2 Function Host Analysis
Informal Description

Each of the functions that appears in function dependency diagrams is assigned to a
host module. We use the modules described in the previous section as the hosts. If none
of these modules is appropriate then either a new module is introduced or the function

should be the responsibility of a different subsystem.
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Figure 110: Initial Design of Subsystem ConsistencyCheckerSS
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Figure 111: Update of Module Architecture

FAD Description

We present a summary of the outcomes in Tables 8 and 9. Each function is listed along-
side its host module with some commentary supporting the assignment. This commen-
tary includes any module use relationships that are required. In Figure 111 we present
the new relationships between the modules StateMod and ModelMod, which also uses the
results of the exclusive signature development described in Section A.5.3. The recursive
dependency between the modules (and the modules StateMod and ElementsMod) will be
highlighted by the warning check on recursion and suggests a poor module architecture
design. In this instance the recursive dependency is present in a single model. How-
ever, the dependencies could have been described in two different models, and where
there are intermediate modules, several models may require investigation to unearth the

recursion. An alternative design that avoids recursion is presented in Section A.6.

Initially exclusive signatures only specify the types that they host, but once functions

are assigned to modules their associated signatures must be changed in order to avoid
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Function

Module

Comment

modelCheck

isIn

newModelCheck

modifyState

oldModelCheck

ModelMod

No Assignment

ModelMod

StateMod

ModelMod

This function takes two arguments of types
state and model. However, it is the model
type whose behaviour it implements. The
module StateMod must be used by
ModelMod.

This function is specified in the permissive
signature CONTAINER and will be hosted
with whichever collection type is used by
modelIDs. This module will be hosted by
the subsystem that delivers the general
basic types and permissive signatures

since it is not specific to consistency
checking.

This function delivers functionality over
the type model.

This function requires access to the
construction of the type state and delivers
functionality over the type. The module
StateMod uses the module ModelMod.

This function delivers functionality over

the type model.

Table 8: Function Host Analysis
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Function Module Comment

updateState StateMod This function requires access to the
construction of the type state and
implements functionality over the type.
checkElements ElementsMod | This function implements a behavioural
requirement of the elements type.

The module ElementsMod uses the
module StateMod.

applyOrdering ElementsMod | This function requires access to the
construction of the type elements

and implements functionality over the
type. The module ElementsMod uses
the module ElementMod.

reuse ModelMod This function tests for the reuse of
elements in the update version of

a model.

singleUse ModelMod This function requires access to the
construction of the type model and
implements functionality over the type.
warningCheck StateMod This function implements functionality
over the type state.
abstractionCheck | StateMod This function implements functionality
over the type state.

recursionCheck StateMod This function implements functionality

over the type state.

Table 9: Function Host Analysis (continued)
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inconsistency. It is the user who has to ensure this. This process is described in the

following section.

A.5.3 Exclusive Signature Analysis

The development of a system based on abstraction and encapsulation requires a module
architecture in which exclusive signatures mediate access to the units hosted by each
module. Initially we associate a single exclusive signature with each module. This
simplifies the initial development of use relationships by providing the developer with
a single interface to any macro unit. In addition, it emphasises the importance of
encapsulation early in development by making explicit all that an external client may
know. Later in development, multiple exclusive signatures for a single module are
designed that deliver the required mediation for a particular relationship and thus make
explicit exactly what an external client needs to know. That is, a partition relationship
between subsystem S and module M is likely to require a different exclusive signature
to that which mediates the use relationship from module N to module M.

Units are specified in an exclusive signature if they are either used in a use relation-
ship, or are permissive signatures associated with one or more types. Thus one scans
the type dependency and function dependency diagrams for those units which should
be specified in an exclusive signature. Constructor signatures will not initially appear
in any exclusive signatures.

We will illustrate this analysis with the development of the exclusive signature

MODELSIG that mediates access to the module Mode1lMod.

Informal Description

MODELSIG initially specified the type model. However, it hosts some functions that need
to be visible to clients that are external to the module. The obvious example is the
function that implements model checking, which must be visible to clients outside of
this subsystem. Thus it must be specified in the exclusive signature that mediates the
partition relationship between the subsystem and the module.

In light of the host assignments described in Tables 8 and 9, the use relationship
between modifyState and singleUse requires singleUse to be specified in the exclusive

signature that mediates access to ModelMod. In Section A.6 we illustrate exclusive
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signature design with those that mediate access to the module StateMod.
All other functions of the module are used only by functions of the same module

and therefore are not specified in the exclusive signature.

FAD Description

We refer now to Figure 111. Only three units need to be specified in MODELSIG:

e the type model that is used, for example, by the function modifyState which is

hosted by the module StateMod;

e the function modelCheck that implements the externally visible functionality sup-

ported by the module Mode1Mod; and,

e the function singleUse that is used by the function modifyState that is hosted

by the module StateMod.

The functions newModelCheck, o1ldModelCheck and reuse are used by functions of
the same module and do not have any clients from other modules or subsystems. They
do not therefore need to be visible from external clients and hence are not specified in
the exclusive signature. The module ModelMod is used by the module StateMod since
the function singleUse must be visible from the function modifyState. This results
in an update of the module architecture.

The introduction of abstraction barriers incurs a cost on the developer. One has to
introduce operations which replace direct access to the construction of a type. Further
analyses should be applied to discover such requirements. We present such an analysis

in the following subsection.

A.5.4 Scenario Analysis of the Function singleUse

In this section we provide an analysis of the function singleUse that is influenced by
the current module architecture.

Informal Description

singleUse returns the elements of a model that only appear in the previous version of

the model. Thus one needs access to the elements in the state and those in the current
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version of the model. Each state element whose model identifiers include the current
model identifier are checked against the elements of the model. Any which are not

members of the model’s elements are returned by the function.

FAD Description

We refer here to the function dependency diagram in Figure 112 and to the Function
Description Document in Figure 113. singleUse requires access to the elements of the
model and of the state. Since singleUse is hosted by the same module as the type
Model it doesn’t need to call any get functions on the type. Thus the elements of the
model can be accessed directly, but those of the state require the function getSubStatel
to be called with a state argument. This returns the subStatel value, which provides
the argument for getElements. The functions getSubStatel and getElements are
required since the types state and subStatel are abstract relative to the function
singleUse.

The function selectInModel returns those elements in the state which appear in
the previous version of the model. It takes an argument of type elements and another
of type modelID, and returns those elements for which the model identifier is included
in the modelIDs value. selectInModel uses the function getModelIDs, which takes an
argument of type element that is abstract relative to the function selectInModel that
is hosted with the type elements. getModelIDs returns the identifiers of the models
in which an element appears. The modelID argument of selectInModel is accessed
directly.

The collection type used by elements needs to support filtering behaviour to imple-
ment selectInModel. This is guaranteed by the association with the permissive signa-
ture FILTER c which specifies the function filter : (a -> bool) -> ¢ a -> ¢ a.

The elements returned by selectInModel are each tested for membership of the new
version of the model using the function setDiff. This function takes two arguments
of type elements and returns those elements from the first argument that are not in
the second. That is, it returns those elements which are not in the new version of the
model. setDiff uses the function isIn that is guaranteed by the permissive signature
CONTAINER associated with the collection type used by the type containers.

This completes our selection of analyses. In the following section of this appendix
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Figure 112: Function Dependency Diagram for singleUse

we give some illustrative examples of design phase development.

A.6 Design of ConsistencyCheckerSS

Design focuses on the delivery of a solution-domain focused model of the system. That
is, where analysis is tied to the problem-domain albeit described in terms of the required
paradigm, design aims to produce a system which can be implemented in as an efficient
and effective manner as possible. However, the two phases are not mutually exclusive
and, for example, modularity, both in macro unit and micro unit development, has had
a design impact within the analysis phase of development.

During the design phase, one takes the deliverables of the analysis phase and, using
the various mechanisms provided by the paradigm, designs the various micro and macro
units such that an efficient implementable design is returned. The transition from a
largely analytical model to an implementable design is supported by the consistent
paradigm-focus of the methodology and the fact that the diagrams, and many of the

techniques used during analysis, are the same as those used during design.

Thus upon completion of this phase one wants:
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Name:

Version:

Module:

Arity:

Type Specification:

Contract Associa-
tion:

Instantiations:

Functions Used:

Description:

Function Description Document

singleUse
20000720:0
ModelMod
2

state -> model -> elements

getElements : subStatel
-> elements
getSubStatel : state -> subStatel
selectInModel : elements -> model
-> elements

setDiff : elements -> elements

singleUse returns the elements of a model that only appear in the
previous version of the model. Thus one needs access to the elements
in the state and those in the current version of the model. Each state
element whose model identifiers include the current model identifier,
are checked against the elements of the model. Any that are not

members of the model’s elements are returned by the function.

CASE

Figure 113: Function Description Document for the Function singleUse
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a module architecture built on reusable units with minimal interfaces to other

units;
e exclusive signatures that are designed to mediate a specific relationship;

e permissive signatures which are developed to guarantee a particular behaviour

and support reuse; and,

e to make use of functional programming’s glue such as parametric polymorphism

and higher-order functions.

We present in the following subsections some illustrative examples of element design.
We begin by updating the module architecture of ConsistencyCheckerSS. In Section
A.6.2 we present the (related) design of exclusive signatures that mediate access to
the module StateMod. In Section A.6.3 we describe the development of the permis-
sive signature CONTAINERPLUS, and in Section A.6.4 the (related) design of the type
elements. In Section A.6.5 we describe the development of the functions visibleFrom,
visibleFromModule and inState, and finish with a brief summary of the the remaining

work to be done.

A.6.1 Module Architecture Design
Informal Description

The current module architecture includes a mutual dependency between the modules
ModelMod and StateMod. This is because they each host the type for which they are
named, and each host functions that use the type hosted by the other module. The
various get and set functions must remain in the same module as the type to which they
apply because they require direct access to the construction of the type.

However, one may require modules that host functions separately from the types
over which they are defined. This is either because the function does not sit naturally
with a particular type, or because one requires a module to deliver a particular set
of behavioural requirements rather than to host a type and its related functions. For
example, the Haskell 98 libraries [101] List and Monad are in turn, a module that hosts
functions over a type hosted by another module, and a module whose functions are

defined over a collection of types related by the functionality they support.



A.6. DESIGN OF CONSISTENCYCHECKERSS 269

Here we introduce the module CheckMod that hosts the functions that implement
checking functionality but does not host any types. This module hosts the functions
that implement the checking functionality required over the types state and model.
That is, the module manages the interaction between these types and therefore uses
the modules that host the types. In addition, it provides a single entry route into the
module architecture for external clients and a single focus for checking behaviour.

The modules ElementsMod and StateMod also exhibit a mutual dependency. Once
again one can reassign the functions that implement the checking behaviour over these
types to a module that uses the above modules. As with CheckMod this module manages

the interaction between the types hosted by these modules.

FAD Description

We refer now to Figure 114 and to the Module Description Document in Figure 115.
The module CheckMod provides both a single entry point into the module architecture,
and collects together the main functions that implement the model checking function-
ality required by the consistency checker. The exclusive signatures associated with the
modules StateMod and Mode1Mod now include several get and set functions that are used
by the functions hosted by CheckMod.

The module StateMod is associated with two exclusive signatures:
e STATESIG1, which mediates access to clients in the module CheckMod; and,
e STATESIG2, which mediates access to clients in the module ModelMod.

Thus updateState, which is used by newModelCheck, is specified in STATESIG1 but not
in STATESIG2. The function reuse is now specified in the exclusive signature MODELSIG
since its client function oldModelCheck is now hosted in a different module.

We present a similar design in Figure 116. The module ElementsCheckMod im-
plements the element checking behaviour that uses the types state and elements.
Here we have developed a third exclusive signature to mediate access to the module
StateMod that specifies the function warningChecks, which is used by the function
checkElements. The functions recursionCheck and abstractionCheck only have a
local client, warningChecks, and thus are not specified in the signature. The exclu-

sive signature ELEMENTSSIG1 also specifies the function elementCheck that is used by
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elementsCheck but is hosted by a module used by ElementsMod.
More details regarding exclusive signature design are provided in the following sec-

tion.

A.6.2 Exclusive Signature Design
Informal Description

STATESIG was developed to present a single signature to mediate access to StateMod
whether as part of a partition relationship or a module use relationship. However, when
implementing the system one needs more accurate information regarding the visibility
requirements of clients of a module’s units. This was illustrated in Section A.6.1 where
three uses of the module StateMod were mediated by three different exclusive signatures.

In Chapter 2 we quoted Pooley and Stevens [109] definitions for abstraction and

encapsulation:

Abstraction is when a client of a module doesn’t need to know more than
is in the interface. Encapsulation is when a client of a module isn’t able to

know more than is in the interface.

We believe that an exclusive signature’s role during analysis is to deliver encapsu-
lation: this is all that a client is allowed to know. Then during design its role becomes
the delivery of abstraction: this is what a client needs to know. Thus the exclusive
signatures delivered in the design phase should specify a subset (upto changes enforced
due to a redesign of the module architecture) of the units specified during analysis. One
is specialising the interface to a module for a particular purpose.

Thus one needs to analyse the requirements of a particular use relationship or par-

tition relationship and specify only those units in the mediating exclusive signature.

FAD Description

We refer again to Figures 114 and 116. The exclusive signatures specify that which is
required for a particular relationship and no more. For example, STATESIG3 specifies
those units required by clients hosted by ElementsCheckMod. The exclusive signature
ELEMENTSSIG1 specifies elementCheck since it is used by the function checkElements

without requiring a use relationship from ElementsCheckMod to ElementMod.
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Figure 114: Module Architecture Design
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Module Description Document CASE
Name: CheckMod
Version: 20000722:0

Type(s):

Permissive sig(s):

Function(s): modelCheck: state -> model -> state
newModelCheck: state -> model -> state
oldModelCheck: state -> model -> state
modifyState: state -> model -> state

Modules used: StateMod : STATESIG1
ModelMod : MODELSIG

Subsystem: ConsistencyCheckerSS

File:

Description:

The module CheckMod hosts the functions that implement model checking

functionality but does not host any types. This module therefore uses the

modules which host the types state and model, but provides a single entry

route into the module architecture for external clients.

Figure 115: Module Description Document for the Module CheckMod
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Figure 116: Another Module Architecture Design
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In the following section we describe the development of the permissive signature

CONTAINERPLUS.

A.6.3 Design of the Permissive Signature CONTAINERPLUS
Informal Description

The permissive signature CONTAINER specifies the behavioural requirements of a stan-
dard collection type. However, it does not support any behavioural requirements of the
items being collected. The permissive signature CONTAINERPLUS inherits the specifica-

tions of CONTAINER but adds the flexibility required over the contained items.

That is, when an element is ‘added to’ or ‘removed from’ a collection of elements one
doesn’t simply update the collection with one more or one less element. When ‘adding’
an element one needs to test whether the element already exists in the collection. If it
does then one records that the element is used in a new model. That is, one updates
its model identifiers entry. If it doesn’t exist in the collection then it is added to the

collection.

The behaviour when ‘removing’ an element depends on whether the element no
longer appears in any models. If this is the case then it is removed from the collection.
Otherwise it remains and its model identifiers entry is updated to record its removal

from a model.

FAD Description

We refer now to Figure 117. CONTAINERPLUS inherits from CONTAINER and specifies the
functions addPlus and removePlus. CONTAINERPLUS has two parameters of kind * ->*
and * respectively. addPlus and removePlus have the same type as remove (addPlus
requires the item type to be an equality type) but now support behaviour specific to

the instantiating element type as well as the instantiating collection type.

The type elements has to be updated as described in the following section, and
functions over the type that used the functions add and remove will now use addPlus

and removePlus.
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Figure 117: Design of CONTAINERPLUS

A.6.4 Design of the Type elements
Informal Description

The current design of the type elements states that it uses the types element and
a collection type that must instantiate the permissive signatures CONTAINER, FOLD
and FILTER. The new design includes the instantiation of the permissive signature
CONTAINERPLUS by the collection type and the type element. We have decided to
implement the collection type as a list, [al, since it delivers all of the required be-
haviour and there are no stated requirements regarding the efficiency of finding, adding

and retrieving elements that would require a type such as a balanced tree.

However, the type element, the types microUnit, relationship and macroUnit,
and all the types of the various sorts of micro units, macro units and relationships should
be ordered types. This is because it will ease the discovery of existing elements both for
retrieval and reuse purposes. Thus each type will instantiate the permissive signature
ORD. This signature inherits the specifications of the permissive signature EQ and hence

the types remain equality types as previously declared.
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elements | |CONTAINERPLUS [ ] element

FOLD

[a]
FILTER

element CHECKABLE| | | ORD

ORD | | microUnit | |CHECKABLE ORD | | relationship | |CHECKABLE ORD| | macroUnit | |CHECKABLE

Figure 118: Design of the type elements

FAD Description

We refer now to Figure 118 that presents an update of the model of the type elements,

which includes the various permissive signature instantiations described above.

In the final subsection we describe function development.

A.6.5 Function Design
Informal Description

The following visibleFrom and inState functions are used in the development of the

CASE system.

visibleFrom : state -> function -> function -> bool

visibleFrom : state -> module -> module -> bool
visibleFrom : state -> permSig -> type -> bool
inState : state -> functionUseRel -> bool
inState : state -> moduleUseRel -> bool

inState : state -> typePermSigRel -> bool
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Further scenario analyses have required visibleFrom functions where the second and
third argument types are: type and type; type and function and so on. That is, there
are several visibleFrom functions defined over two types used by the type microUnit.
Each of these functions will be implemented identically since they all implement the
visibility test over two micro units as described in Section A.2. They can therefore be

replaced by the function
visibleFrom : state -> microUnit -> microUnit -> bool

The visibility relationship between modules is different than that between micro
units and thus requires a different function. This function now requires a different
name. We call it visibleFromModule.

The various inState functions can similarly be replaced by a single function whose
second argument is of type element.

The checks of the micro unit use relationships - such as functionUseCheck described

in Section A.4.1 - have the following operational behaviour:
1. check if the element is present in the state using inState; and, if not
2. check that the server unit is visible from the client unit using visibleFrom; and,
if it is
3. add the element to the state using the function addToState.

We therefore replace them by a single function microUnitUseCheck whose second ar-

gument can be a value of type functionUseRel, typeUseRel, or functionTypeUseRel.

FAD Description

Various models will need to be updated to include the above changes. In the last section
of the appendix we summarize the development of the subsystem and describe work to

be done.

A.7 Summary

In this appendix we have presented the application of FAD to the development of a
consistency checker for a CASE tool. The notation, techniques and methodological

approach have been thoroughly tested.
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Requirements analysis produced a collection of consistency checks many of which
provide a service to the main checking of a model. Through scenario analyses and
type dependency analyses we established the main set of types, their requirements
and interactions, and the operational requirements of the functions that implement the
consistency checks.

A module architecture was then introduced to support the development of a system
based on encapsulation and abstraction. Initially we adopted a type-centric approach
to module assignment that was later reviewed in light of mutual dependencies and the
need for a more effective and efficient design. Exclusive signatures that mediate access
to the modules were developed in tandem, and it is these that enforce the required
abstraction barriers to external clients.

Developing the system to an implementation would involve:
e tailoring the design to a particular implementation language;

e implementing sections of the design and updating them based on the results of
the implementation. Since the development models and their associated docu-
mentation provide a record of development, they should be updated in light of

implementation experience;

e modifications due to the requirements of other subsystems. The consistency
checker has been developed in isolation of the other parts of the CASE tool.
Although the methodology supports an incremental approach to development, it
is most unlikely that the various subsystems will simply glue together as a system
free of imperfections. However, one would hope that any modifications are of a

relatively minor nature and have a localised rather than widespread effect.
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