
FAD: A FUNCTIONAL ANALYSIS AND DESIGNMETHODOLOGY
a thesis submitted toThe University of Kent at Canterburyin the subje
t of
omputer s
ien
efor the degreeof do
tor of philosophy.

ByDaniel John RussellAugust 2000

 Copyright 2000byDaniel John Russell

ii

This thesis was supervised and approved by:Dr. S. J. ThompsonExaminers:Dr. I. Ma
Callum (External)Dr. S. Kent (Internal)

iii

To Mum, Dad and Anita

iv

Abstra
t
This thesis presents the fun
tional analysis and design methodology FAD. By fun
-tional we mean that it naturally supports software development within the fun
tionalprogramming paradigm (FP).Every popular methodology has a graphi
al modelling language whi
h presents vari-ous pi
torial representations of a system. FAD's modelling language provides the typi
alelements of fun
tional programming, types and fun
tions, plus elements to support mod-ular development su
h as modules, subsystems and two forms of signature whi
h spe
ifyan interfa
e or a behavioural requirement. The language also in
ludes relationships andasso
iations between these elements, and provides simple representations of fun
tionaldesigns. The methodology has an integrated set of te
hniques whi
h guide the develop-ment of an implementable solution from the deliverables of requirements engineering.FAD's data di
tionary provides an organised repository for entities during and afterdevelopment.The thesis thus provides a development medium whi
h has been hitherto absentfrom the fun
tional programming paradigm.

v

vi

A
knowledgements
I would �rst of all like to thank my supervisor Dr. Simon Thompson who, if you willpardon the pun, was a model supervisor. When asked by some of my
olleagues in anegative tone, to \tell me about your supervision", I
ould only disappoint them and sayit was ex
ellent. I am indebted to Phil Molyneux who some years ago en
ouraged me totake a
opy of Bird and Wadler's Introdu
tion to Fun
tional Programming on holiday toIndia. It's strange, I loved it but it was not that popular with my fellow travellers! Inaddition, Phil has been a
onstant sour
e of information, and an enthusiasti
 advo
atefor the beauty of fun
tional programming. Other
olleagues who have en
ouraged me allthe way in
lude Barry Walters, Sue Preston, Eva Smith, Huw Morris, Charles Blankson,and Phil Samouel. My weekend friend Stavros Kalafatis has been positive when I wantedhim to be, and assertive at other times. Can I
ome out of my room now Stavros?Many of my friends have provided endless support. Jane Hillston many, many yearsago en
ouraged me to embark on su
h a venture, and has always been there to listenwhen ne
essary, and provide advi
e when appropriate. Ri
hard Burke has been brilliant!With periodi
 en
ouraging advi
e like just get on with it, he has been with me all theway and has simply been a friend. Judy Arroyo has been another great friend, althoughI think her motivation for en
ouraging me to �nish is so that I
an go and visit herin the States. My last thanks must go to my family. My mum was always interestedin what I was doing and provided love all the way. My dad, brother and sister have
ontinued to provide love, support and en
ouragement. And �nally, my wife Anita - ifshe remembers who I am - has
arried me through this pro
ess. She has been simplywonderful.

vii

viii

Contents
Abstra
t vA
knowledgements viiList of Tables xiiiList of Figures xvii1 Introdu
tion 11.1 Motivation . 11.2 Graphi
al Notation . 31.3 Overview of the Thesis . 42 Obje
t-Orientation 72.1 The OO Paradigm { Motivation and Features 82.1.1 The Building Blo
ks { Obje
ts and their Classes 122.1.2 The Glue . 152.1.3 Polymorphism . 212.2 OO Languages . 242.2.1 What is an OO language? . 242.2.2 En
apsulation and Inheritan
e 252.3 OO Analysis and Design Methodologies 262.3.1 Pure and Impure OOADMs . 272.3.2 OO Development . 272.4 Summary . 323 Fun
tional Programming 333.1 The Fun
tional Programming Paradigm 343.1.1 Fun
tions, Values and Referential Transparen
y 353.1.2 Strong Typing . 373.1.3 Parametri
 Polymorphism . 383.1.4 First-Class Citizens . 403.1.5 User-De�ned Types . 443.2 Other Features . 483.2.1 Laziness . 493.2.2 Overloading . 503.2.3 Modular Development . 543.2.4 Monads . 56ix

3.3 Summary . 594 Analysis and Design Methodologies 634.1 Analysis and Design Methodologies . 634.1.1 Modelling Language . 644.1.2 Te
hniques . 654.2 What are the Bene�ts of Using an ADM? 674.2.1 A Language for Modelling . 674.2.2 Development Guidan
e Provided by a Set of Te
hniques 684.2.3 System Viewer and Complexity Manager 694.2.4 System Do
umentation . 704.3 Paradigm-Consistent Approa
h to Development 714.4 Summary . 725 FAD Modelling Language 755.1 Case Study . 775.2 FAD Mi
ro Units . 785.2.1 Types . 795.2.2 Fun
tions . 825.2.3 Permissive Signatures . 865.3 FAD Ma
ro Units . 905.3.1 Module . 925.3.2 Subsystem . 945.3.3 Ex
lusive Signatures . 985.3.4 Proje
t . 1015.3.5 File . 1035.4 FAD Relationships and Asso
iations . 1055.4.1 Argument of a Fun
tion . 1065.4.2 Result of a Fun
tion . 1085.4.3 Curried Fun
tions . 1085.4.4 Type/Permissive Signature Asso
iation 1095.4.5 Module/Ex
lusive Signature Asso
iation 1125.4.6 Subsystem/Ex
lusive Signature Asso
iation 1145.4.7 Signature Inheritan
e Relationship 1145.4.8 Type Use Relationship . 1175.4.9 Fun
tion Use Relationship . 1185.4.10 Module Use Relationship . 1215.4.11 Subsystem Use Relationship . 1225.4.12 Proje
t Use Relationship . 1245.4.13 File Use Relationship . 1245.4.14 Partition Relationship . 1255.4.15 Containment Relationship . 1255.4.16 FAD Comments . 1265.5 Summary . 126x

6 FAD Fun
tional Designs 1296.1 Tuple Types . 1296.2 Re
ords . 1306.3 Algebrai
 Types . 1316.4 Abstra
t Type . 1336.5 Polymorphi
 Fun
tions . 1346.6 Type Classes, Instantiations and Overloaded Fun
tions 1356.7 Multi-Parameter Classes . 1366.8 ML Stru
tures, Signatures and Fun
tors 1396.9 Higher-Order Fun
tions . 1436.10 Existential Types . 1436.11 Summary . 1457 FAD Methodology 1477.1 FAD's Phases and High-Level Pro
ess Models 1487.2 Analysis . 1517.2.1 Fun
tional Requirements Analysis 1517.2.2 S
enario Analysis . 1557.2.3 Type Dependen
y Analysis . 1597.2.4 Subsystem Ar
hite
ture Analysis 1637.2.5 Type/Fun
tion Host Analysis . 1657.2.6 Subsystem Ex
lusive Signature Analysis 1707.2.7 Module Ar
hite
ture Analysis . 1787.2.8 Module Ex
lusive Signature Analysis 1817.3 Design . 1847.3.1 Permissive Signature Analysis . 1867.3.2 Polymorphism/Overloading Design 1907.3.3 Higher-Order Fun
tion Design 1947.3.4 Type Design . 1957.3.5 Ex
lusive Signature Design . 1987.3.6 Permissive Signature Design . 1987.4 Summary . 2008 Data Di
tionary 2018.1 Related Work . 2028.2 FAD Data Di
tionary . 2048.2.1 Fun
tions . 2058.2.2 Types . 2068.2.3 Permissive Signatures . 2078.3 Summary . 2079 Summary 2099.1 Summary of Contributions . 2119.2 Future Resear
h . 212xi

A Analysis and Design of a Consisten
y Che
ker 215A.1 Consisten
y Che
ker . 216A.2 Requirements Analysis . 217A.3 S
enario and Type Dependen
y Analyses 224A.3.1 Consisten
y of a Model . 225A.3.2 The Types state and model . 227A.3.3 Che
king a New Model . 232A.3.4 Che
king an Update . 243A.4 A Sele
tion of Element Che
k Analyses 248A.4.1 Analysis of fun
tionUseChe
k 248A.4.2 Analysis of moduleUseChe
k . 251A.4.3 Analysis of typePermSigChe
k 252A.5 Module Ar
hite
ture . 256A.5.1 Module Ar
hite
ture Analysis . 257A.5.2 Fun
tion Host Analysis . 258A.5.3 Ex
lusive Signature Analysis . 263A.5.4 S
enario Analysis of the Fun
tion singleUse 264A.6 Design of Consisten
yChe
kerSS . 266A.6.1 Module Ar
hite
ture Design . 268A.6.2 Ex
lusive Signature Design . 270A.6.3 Design of the Permissive Signature CONTAINERPLUS 274A.6.4 Design of the Type elements . 275A.6.5 Fun
tion Design . 276A.7 Summary . 277Index 278

xii

List of Tables1 FAD Methodology { Analysis Phase . 1502 Fun
tion Host Analysis for the Fun
tion inpRes 1673 Type Host Analysis for the Fun
tion inpRes 1674 Fun
tion Host Analysis Related to the Fun
tion generateLT 1795 Type Host Analysis Related to the Fun
tion generateLT 1806 Entity Signature Spe
i�
ations . 1827 FAD Methodology { Design Phase . 1858 Fun
tion Host Analysis . 2619 Fun
tion Host Analysis (
ontinued) . 262

xiii

xiv

List of Figures1 Box-and-Arrow Diagram . 42 Class Diagram . 303 Collaboration and Sequen
e Diagrams 314 Higher-order Development . 435 Algebrai
 Types . 456 Monadi
 Fun
tion . 597 Mi
ro Unit Guide . 788 Type Des
ription Do
ument for the Type teams 809 A Type, Parameter of a Type, and a Named Value of a Type 8210 Fun
tion Des
ription Do
ument for the Fun
tion getData 8511 Fun
tion Representation . 8612 Constru
tor Signature . 8813 Permissive Signature Des
ription Do
ument for EQ 8914 A Permissive signature . 9015 Ma
ro Unit Guide . 9116 Module Des
ription Do
ument for the Module TeamsMod 9317 The Module TeamsMod . 9418 Subsystem Des
ription Do
ument for the Subsystem FootballSS 9619 A Basi
 Subsystem . 9820 Ex
lusive Signature Des
ription Do
ument for TEAMSSIG 10021 The Ex
lusive Signature TEAMSSIG . 10122 Proje
t Des
ription Do
ument for the Proje
t Football 10223 The Proje
t Football . 10324 File Des
ription Do
ument for the File Teams.hs 10425 The File Teams.hs . 10526 A Fun
tion and its Type with Modular Annotations 10827 The Curried Fun
tion addResultToPlayers 10928 Partial Appli
ation of the Fun
tion sele
t 10929 Type Dependen
y Diagram for the Type teams with Signature Instantiation11030 Type Instantiation of a Signature . 11131 Type Constru
tor/Signature Asso
iation 11132 Module/Ex
lusive Signature Asso
iation for the Module ResMod 11333 Subsystem/Ex
lusive Signature Asso
iation for the Subsystem UISS . . 11534 Signature Inheritan
e Relationship between EQ and ORD 11635 Type Dependen
y Diagram for the Type teams 11836 Fun
tion Dependen
y Diagram for the Fun
tion updPlayersPerf 11937 Conditional Fun
tion Diagrams . 12138 A Module Diagram . 122xv

39 A Subsystem Diagram . 12340 FAD's Partition and Containment Relationships 12641 FAD Comment . 12742 A FAD tuple type model . 13043 A FAD re
ord type model . 13144 A FAD Algebrai
 Type . 13245 A FAD Abstra
t Data Type Model . 13446 Polymorphi
 Fun
tion Model . 13547 Class Instantiation and Class De
laration 13648 Class Instantiation and Fun
tion De�nition with Non-Empty Context . 13649 Overloading with Coupled Parameters 13850 Overloading with Constrained Parameters 13951 Type Relations . 13952 Stru
tures and Signatures . 14153 Fun
tor Appli
ation Model . 14254 Higher-Order Fun
tion Model . 14355 Existential Type Model . 14556 User Requirements Fun
tions . 15257 Initial Fun
tion Des
ription Do
ument for produ
eLT 15458 Initial Fun
tion Dependen
y Diagram for produ
eLT 15759 Initial Type Dependen
y Diagram for the Type teams 15860 Dependen
y Diagram for the Su

essful Case of inpRes 15961 Dependen
y Diagram for the Failed Parse inpRes 16062 Dependen
y Diagram for the Failed Result Che
k Case of inpRes 16063 Type Dependen
y Diagram for the Type team 16164 Type Des
ription Do
ument for the Type team 16265 Subsystem Diagram for the Proje
t Football 16566 Updated Su

essful Dependen
y Diagram for inpRes 16867 Updated Failed Parse Dependen
y Diagram for inpRes 16868 Updated Failed Result Dependen
y Diagram for inpRes 16969 Read and Write Dependen
ies . 17070 Updated Subsystem Dependen
y Diagram 17271 Subsystem Des
ription Do
ument for the Subsystem UISS 17472 Ex
lusive Signature Des
ription Do
ument for the Signature FOOTBALLSIG17573 Updated Type Dependen
y Diagram for the Type teams 17774 Fun
tion Dependen
y Diagram for generateLT 17775 Updated Fun
tion Dependen
y Diagram for generateLT 18176 Ex
lusive Signature Des
ription Do
ument for the Signature RESULTSSIG 18377 Module Ar
hite
ture for FootballSS . 18478 Fun
tion Dependen
y Diagram for the Fun
tion teamEntry 18779 Fun
tion Des
ription Do
ument for sele
tNamesAndData 18880 Permissive Signature Des
ription Do
ument for MAP 18981 Updated Model for the Fun
tion sele
tNamesAndData 18982 Updated Fun
tion Models for readResFile and writeResFile 19083 Permissive Signature Des
ription Do
ument for CONTAINER 19284 Potential Polymorphi
 or Overloaded Fun
tion 19385 The Higher-Order Fun
tion sele
t . 19486 Updated Version of the Fun
tion generateLT 195xvi

87 A Model of the Type results . 19788 Updated Ex
lusive Signature Design for Modules of FootballSS 19989 Ex
lusive Signatures Asso
iated with the Module ResultsMod 19990 An Example of In
onsisten
y . 21791 Illustration of visible from Relationship 21992 Constrained Polymorphism Example . 22293 Abstra
tion Example . 22494 modelChe
k fun
tion and the type state 22695 Conditional Behaviour of modelChe
k and Design of model 22896 Fun
tion Des
ription Do
ument for the Fun
tion modelChe
k 22997 Type Des
ription Do
ument for the Type state 23198 The Types state and model . 23399 The Permissive Signatures FOLD, EQ, CHECKABLE and CONTAINER 234100 Permissive Signature Des
ription Do
ument for CHECKABLE 234101 Partial Order for Consisten
y Che
ks . 236102 Analysis of type element . 241103 newModelChe
k Fun
tion . 244104 Update of modelChe
k Fun
tion . 247105 Analysis of fun
tionUseChe
k . 250106 Analysis of moduleUseChe
k . 252107 Fun
tion Des
ription Do
ument for the Fun
tion moduleUseChe
k . . . 253108 mi
roUnit Type Design . 255109 Type Des
ription Do
ument for the Type permSig 255110 Initial Design of Subsystem Consisten
yChe
kerSS 259111 Update of Module Ar
hite
ture . 260112 Fun
tion Dependen
y Diagram for singleUse 266113 Fun
tion Des
ription Do
ument for the Fun
tion singleUse 267114 Module Ar
hite
ture Design . 271115 Module Des
ription Do
ument for the Module Che
kMod 272116 Another Module Ar
hite
ture Design . 273117 Design of CONTAINERPLUS . 275118 Design of the type elements . 276

xvii

xviii

Chapter 1
Introdu
tion
1.1 MotivationDeveloping well-designed software is diÆ
ult; developing poorly designed software is alot easier. Anybody with some programming skills
an produ
e programs that satisfysome basi
 stated requirements. Problems may arise when the
ode is passed to some-body else to maintain or one attempts to reuse elements of the program or the programitself. Can segments of
ode be used independently of the program for whi
h they wereoriginally developed? What are the major data stru
tures of the system and how arethey
onstru
ted? What is the major fun
tionality supported by the system? If onemakes
hanges to a
ertain pie
e of
ode what e�e
t will this have? If the answers tothese types of questions tend to be negative or diÆ
ult to determine the software isprobably poorly designed. Unfortunately good design does not
ow naturally from the�ngertips of programmers.Good design requires support.Some support is provided by programming languages. Obje
t-oriented (OO) lan-guages provide me
hanisms for developing software built on units that en
apsulate theirstate and provide an expli
it interfa
e for potential
lients. Thus, if pra
tised sensibly,one
an develop software where
hanges have a lo
al e�e
t, signi�
ant elements arereusable and
an be reused independently. However pra
tising sensible OO develop-ment is not a trivial pro
ess. OO developers
an seek help from a plethora of OOanalysis and design methodologies and various rules, heuristi
s and laws whi
h providesubstantial guidan
e and support. 1

2 CHAPTER 1. INTRODUCTIONProgrammers who use imperative languages have for some time been en
ouragedto adopt a stru
tured programming approa
h supported by various stru
tured analysisand/or design methodologies. In
ommon with obje
t-orientation, the developmentparadigm is
onsistent within all the media of development.Therefore when de
iding whi
h software development approa
h to adopt, the supporta�orded by either of these paradigms may have a signi�
ant in
uen
e.It is
ertainly the
ase that the fun
tional programming (FP) paradigm has been rel-atively unsu

essful in
ompeting in the marketpla
e with the obje
t-oriented and stru
-tured paradigms. Although one
an enumerate an ever growing list of `real world' appli-
ations [141, 123℄ written in fun
tional languages, in
omparison to the other paradigmsit is relatively insigni�
ant. Proponents of the FP paradigm
an present several goodreasons why it should be adopted in preferen
e to its
ompetitors. For example, thehigher-order and typed (HOT)
hara
teristi
s of modern FP languages have
ertainlyin
uen
ed the design of non-FP languages su
h as Java. However one
an present arange of histori
al (programming and non-programming related)
ases where the �ttestdidn't always survive, and therefore, there is
learly a need to fo
us on the possiblereasons for this slow uptake, and resolve as many of the problems as possible.Wadler addresses this issue in his paper Why no one uses fun
tional languages [142℄where he in
ludes among the histori
 reasons: that fun
tional languages are often undera
tive development, the non-
ompatibility with existing
ode written in other languages,the relative la
k of language libraries to support software reuse, and the dearth of soft-ware development tools in
luding software development methodologies whi
h supportimplementation in a fun
tional language.The Haskell
ommunity has re
ently de�ned Haskell 98 [100℄, a stable version ofHaskell allowing potential users to adopt it without fear of imminent
hange. Haskellis now available in various implementations in
luding the interpreter Hugs [67℄, GHC[104℄ and the University of Chalmers's HBC
ompiler [55℄. Standard ML [88℄ is eviden
eof similar developments within the ML
ommunity.Compatibility with
ode written in other languages is addressed through re
ent workon H/Dire
t whi
h allows a fun
tional language, Haskell, to inter-operate with C andCOM, and allows a Haskell
omponent to be wrapped in a C or COM interfa
e [42℄.Software libraries are being developed to support a variety of appli
ation domains

1.2. GRAPHICAL NOTATION 3in the fun
tional paradigm. For example, T
lHaskell is a library of fun
tions for writingplatform independent, graphi
al user interfa
es in Haskell [135℄ and FranTk, a de
lara-tive library for building GUIs in Haskell [48℄.There has also been a lot of ex
ellent work on developing
orre
t programs [124℄ andin the
omplementary areas su
h as
ompiler eÆ
ien
y [128, 5℄. What has been la
kinghowever, is a parallel fo
us on the development of
ertain support materials.Some pro�lers have been developed [121℄, a lot of resear
h is fo
using on improv-ing error messages [40, 10℄ and a small amount of work has been done on debug-ger development [136℄, but software development methodologies to support fun
tionalprogramming-in-the-large are virtually non-existent.Parti
ular languages su
h as Erlang [6℄ are a

ompanied by development environ-ments, but for fun
tional programming to be taken seriously, and not to be viewed as atoy to be either played with in a
ademi
 departments or resear
h groups, or whose onlyuse is as an exe
utable prototyping tool, then we need to support development using anyfun
tional language with language-independent but paradigm-dependent analysis anddesign methodologies and their a

ompanying CASE tools. Fun
tional programming's
ompetitors have not only been doing this for some time but they have also been doingit with evident su

ess.1.2 Graphi
al NotationA fun
tional analysis and design methodology requires a modelling language whose ele-ments deliver natural models of fun
tional programming designs. A graphi
al languageis preferable sin
e one is fo
using on modelling abstra
tions rather than algorithmi
details. Graphi
al representations of fun
tional programs have been used for sometimealbeit informally. For example, in Figure 1 we present a box-and-arrow (or purely fun
-tional data
ow) diagram of a fun
tion whi
h returns the sum of the integers within astated range [111℄. Je�rey [45℄ has written a Java applet Flow Graph Editor in whi
hone
an
reate su
h diagrams.One would be hard pushed to
laim that the diagram is easier to understand thanthe equivalent
ode written in Haskell whi
h also in
ludes expli
it type information.

4 CHAPTER 1. INTRODUCTION

Figure 1: Box-and-Arrow DiagramsumBetween :: Int -> Int -> IntsumBetween x y= let sumG = x + ydiffG = x - ysize1 = abs diffG + 1in sumG * size1 `div` 2Cardelli [24℄ and Reekie [112℄ des
ribe notations for visual fun
tional programminglanguages in whi
h fun
tions are de�ned graphi
ally. However, on
e again the fo
us ison representing algorithms rather than abstra
t models of programs.1.3 Overview of the ThesisThis thesis presents an analysis and design methodology whi
h supports software devel-opment in the fun
tional programming paradigm. The methodology uses a modellinglanguage whi
h supports the elements of fun
tional programming and naturally modelsfun
tional designs.Chapter 2, Obje
t-Orientation, provides a des
ription of the OO paradigm, with anemphasis on the features whi
h signi�
antly a�e
t software development. We
hose tofo
us on OO rather than the stru
tured approa
h sin
e OO is
ertainly the predominantparadigm for developing new software. The OO features are highlighted both within thelanguages of the paradigm and its methodologies. We argue that adopting a pa
kagedapproa
h using a methodology and implementation language of the same paradigmshould improve the development pro
ess and remove a lot of a

idental
omplexity dueto having to swit
h from one paradigm to another.Chapter 3, Fun
tional Programming, provides a similar des
ription of the fun
tional

1.3. OVERVIEW OF THE THESIS 5programming paradigm, drawing
omparisons where appropriate with OO. FP is a sig-ni�
antly di�erent approa
h to developing software, and therefore, requires signi�
antlydi�erent methodologies to support the pro
ess.Chapter 4, Analysis and Design Methodologies, gives a brief des
ription of method-ologies, their modelling languages and the te
hniques whi
h together deliver a method-ology.Chapter 5, FAD Modelling Language, des
ribes the modelling language of the Fun
-tional Analysis and Design Methodology (FAD). We des
ribe ea
h of the elements ofthe language whi
h are used to model FAD designs. In the �rst se
tion a
ase studyis des
ribed whi
h provides a major example upon whi
h the language and te
hniquesof the methodology
an be illustrated. The
ase study is the development of an auto-mated football results pro
essing system. A data entry
lerk enters re
ent results and
an request the generation of various football-related information. The
ase study was
hosen be
ause it is large enough to illustrate the appli
ation of the methodology butsmall enough to
omprehend fully. Ea
h element of the language is a

ompanied byits graphi
al notation. The syntax and semanti
s of the methodology's diagrams arepresented in an informal manner.Chapter 6, FAD Fun
tional Designs, presents illustrative examples of the ease withwhi
h fun
tional designs
an be modelled in FAD.Chapter 7, FAD Methodology, des
ribes the methodology as a list of tasks. Thepresentational style is linear, within the phases analysis and design but we emphasisethat the methodology should be pra
tised as an iterative and in
remental pro
ess. Themethodology in
ludes several te
hniques, many of whi
h are used within more thanone task. Ea
h te
hnique is des
ribe in terms of its required inputs, deliverables anda
tivities. The deliverables are typi
ally presented in diagrams and re
orded in variousdo
umentation.Chapter 8, Data Di
tionary, presents an overview of the data di
tionary whi
h deliv-ers an eÆ
iently organised medium for storing entities. This supports the developmentof designs built on existing entities, and the dis
overy of
ommon abstra
tions. Ea
hentity is re
orded in a des
ription do
ument whi
h provides keys to their storage lo
a-tion.Finally, Chapter 9, Summary, summarises the thesis and lists its key
ontributions.

6 CHAPTER 1. INTRODUCTIONFuture resear
h and development requirements are presented in
luding the need forCASE tools to support the use of the methodology.Throughout this thesis the names of
ase study entities - types, fun
tions, signatures,modules, subsystems, �les and proje
ts - are presented in teletype, as is implemen-tation language
ode. All fun
tional programs in this thesis are written in Haskell 98.Obje
t-oriented models are developed in UML [16℄. Ea
h FAD te
hnique is introdu
edin itali
s whi
h are also o

asionally used for emphasis. Non-
ode example names arewritten in bold font.

Chapter 2
Obje
t-Orientation
Mu
h has been written about obje
t-oriented (OO) software development. It has beenvariously des
ribed as evolutionary, revolutionary or both when
ompared to its prede-
essors. Whi
hever is the
ase it has been su

essful when measured in terms of thenumber of job adverts requiring skills in parti
ular OO languages or OO development ingeneral. The sizeable number of obje
t-oriented languages (OOLs) and obje
t-orientedanalysis and design methodologies (OOADMs) are supported by innumerable texts, lan-guage implementations and CASE support tools. There is a wide variety of texts on spe-
i�
 languages su
h as Java [36, 148℄, Smalltalk [56, 51℄, Ei�el [115℄, C++ [133, 85, 86℄,and JavaS
ript [44℄, and equally proli�
 are the texts on parti
ular OOADMs in
ludingthe Boo
h Method [15, 82℄, OMT [120℄, OOSE/Obje
tory [64℄, Fusion [30℄ and more re-
ently development approa
hes supported by the modelling language UML [16, 46, 109℄.CASE tools in
lude Rational's Rose [33, 34℄ whi
h supports Boo
h, OMT, and UML no-tation, and OOAToolTM and OODToolTM whi
h support Coad/Yourdon's OOA/OODmethodologies [28, 29℄.The ubiquity of the obje
t-oriented paradigm in its various guises leads one to
on-
lude that the argument often-made that the obje
t-oriented (OO) approa
h is the mostnatural and robust way to develop software, through its fo
us on managing dependen-
ies, is
ertainly not va
uous [82, 29℄. Budd [21℄ provides a quote from Newsweek whi
hgives an insight into the reasons for the popularity of obje
t-orientationUnlike the usual programming method - writing software one line at a time7

8 CHAPTER 2. OBJECT-ORIENTATION- NeXT's \obje
t-oriented" system o�ers larger building blo
ks that devel-opers
an qui
kly assemble the way a kid builds fa
es on Mr. Potato Head.There are however other reasons for OO's popularity. Software
an be developedfrom its in
eption, through to implementation and beyond, within the OO paradigm.That is, one
an adopt a single pa
kaged approa
h to software development aided bya signi�
ant number of modelling languages, methodologies and CASE tools. Obje
t-orientation is presented as a software development philosophy and not simply a termfor
lassifying a
olle
tion of implementation languages. Ea
h member of the paradigmsupports, at a
ertain level of abstra
tion, a
onsistent approa
h to software develop-ment.In this
hapter we present an overview of the paradigm with an emphasis on thosefeatures that have a major impa
t on software development. In the �rst se
tion wedes
ribe the features of the paradigm that have a signi�
ant e�e
t on software develop-ment, and in some
ases, distinguish it from other paradigms. These in
lude: obje
tsand
lasses as the fundamental building blo
ks of the paradigm; inheritan
e,
omposi-tion and aggregation as the essential glue for
onstru
tion of programs; and, in
lusionpolymorphism, dynami
 binding and subtyping, whi
h provide signi�
ant support forreuse. Where appropriate we will provide the motivation for the introdu
tion of afeature and draw
omparisons with its prede
essors su
h as stru
tured development.Se
tion 2.2 presents an overview of
urrent OO languages highlighting their similaritiesand di�eren
es. We dis
uss single and multiple inheritan
e, and the various approa
hesto en
apsulation. This is followed in Se
tion 2.3 with a review of existing analysis anddesign methodologies and modelling languages. We
on
lude with some brief remarkson the bene�ts of analyzing, developing, and implementing software wholly within theOO paradigm. Where possible we will endeavour to introdu
e notation before using it,but will undoubtedly on o

asion be unable to uphold this prin
iple.2.1 The OO Paradigm { Motivation and FeaturesThe obje
t-oriented paradigm is evident in a
olle
tion of programming languages, soft-ware development methodologies and database systems. There are a
tually two OOparadigms. The `
lassi
al' OO paradigm whi
h refers to the
lass/obje
t approa
h,

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 9and the `delegation/prototyping' OO paradigm where obje
ts delegate responsibility toother obje
ts, as in the languages Self [137℄ and JavaS
ript [44℄. We will primarily fo
uson the
lassi
al approa
h sin
e most OO languages and OOADMs adopt this paradigm.Obje
t-Orientation: Evolution or RevolutionObje
t-orientation is des
ribed by some of its proponents as both an evolution and arevolution [21℄. It is an evolution be
ause it follows on naturally from earlier softwaredevelopment approa
hes. OO has addressed the various problems with the stru
tureddevelopment approa
h. These in
lude its la
k of support for modularity, the potential fordata inse
urity due to the separation of data and fun
tionality, and the higher prioritygiven to the solution domain rather than the problem domain. However the foundationsof most OO languages remain imperative in nature. One must not forget of
ourse thatstru
tured programming was itself a rea
tion to problems with its prede
essors [38, 35℄.OO is regarded as revolutionary sin
e it adopts an approa
h to modelling a softwaresolution that is signi�
antly di�erent from its prede
essors [82℄. Where the stru
turedapproa
h fo
uses on data and pro
esses that are universally a

essible, OO des
ribesthem through abstra
tions whi
h hide their details, and instead presents an expli
itinterfa
e for any potential
lients. Although stru
tured programming is sometimesreferred to as a prede
essor of OO they were a
tually mooted at the same time [35℄.However stru
tured programming was easier to put into pra
ti
e due to the availabilityof appropriate languages.Boo
h [15℄ and others disagree with this revolutionary emphasis, and argue that OOsimply re
e
ted developments in various �elds of
omputer s
ien
e in the early 1970s.Obje
ts were introdu
ed to deal with the in
reasing
omplexity of software systems. Forexample, database te
hnology introdu
ed the idea of the entity-relationship approa
h todata modelling [119, 26℄ where a system is des
ribed as a set of entities, their attributesand relationships. Entities in entity-relationship diagrams (ERDs) are similar to
lasseswithout the operations.Obje
t-Orientation: Approa
h to Software DevelopmentOO software is developed through a
olle
tion of intera
ting, extensible, abstra
tionswhi
h host their own state, provide me
hanisms for manipulating the state, and deliver

10 CHAPTER 2. OBJECT-ORIENTATIONan expli
it behavioural
ontra
t to other abstra
tions. That is, OO delivers an ar
hi-te
ture within whi
h
ontrol is de
entralised to a fo
used
olle
tion of entities. The OOsoftware engineering philosophy is to be problem-
entred rather than solution-
entred.One should therefore des
ribe and model the problem in terms that are familiar to thesystem user and not to the
omputer professional. That is, one models tangible andintangible problem elements as abstra
tions in whi
h data and pro
ess are
ombined.Systems are developed through extending these abstra
tions and de
laring otherasso
iations to support
ommuni
ation between the abstra
tions. The
ommuni
ationsare
ontrolled via an expli
it interfa
e. That is, ea
h abstra
tion knows enough andno more about any abstra
tion with whi
h it
ommuni
ates. This is a
hieved throughbuilding the abstra
tions guided by the
omplementary
on
epts of abstra
tion anden
apsulation. Pooley and Stevens [109℄ summarize these terms in the following manner.Abstra
tion is when a
lient of a module doesn't need to know more thanis in the interfa
e. En
apsulation is when a
lient of a module isn't able toknow more than is in the interfa
e.Thus, OO is expli
itly modular, en
ourages information hiding through en
apsula-tion of state and fun
tionality, and if pra
tised e�e
tively should minimise maintenan
e
osts and maximise reuse. These are not
hara
teristi
s of obje
t-orientation's histori

ompetitors. A
tion-oriented stru
tured development is pro
edure-driven and thus sup-ports te
hniques for pro
edure development. These in
lude algorithmi
 de
ompositionthrough the stepwise re�nement of pro
edures, and building algorithms through thethree
onstru
ts: sequen
e, sele
tion and iteration [12℄. Although adopting a stru
turedapproa
h should result in e�e
tive pro
edural
ode, it provides limited support for thedevelopment of
omplex systems and
ertainly no support for developing models whi
h
an be naturally implemented in an OO language. Stru
tured programming is supportedby methodologies in
luding SSADM [41℄ and SA/SD [152, 153℄. SSADM, in
ommonwith most stru
tured programming methodologies, emphasizes three views of a system:stru
tural, fun
tional and dynami
, ea
h supported by graphi
al representations in theform of logi
al data stru
ture diagrams (or entity-relationship diagrams), data
ow dia-grams and entity life history diagrams. Although the stru
tured approa
h re
ognises theimportan
e of des
ribing the data in the system through entities and their attributes

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 11as �rst des
ribed by DeMar
o [37℄, and also supports entity subtype/supertype rela-tionships, ea
h entity has no behavioural
hara
teristi
s and is a
ted upon by externalpro
edures and fun
tions.The models produ
ed through the adoption of stru
tured methodologies are mostnaturally implemented in various imperative languages su
h as C [72℄, and COBOL[130℄. Although data-driven design methodologies su
h as JSD [134℄ (Ja
kson SystemDevelopment) do promote more of a problem fo
us, where the stru
ture of the solutionmirrors the stru
ture of the data being pro
essed, they still en
ourage a stru
turedapproa
h to algorithm development and la
k support for modularity and informationhiding.Obje
t FAQ [92℄, a web site whi
h provides answers to frequently asked questionsregarding obje
t te
hnology and obje
t-orientation, presents the following motivationfor the introdu
tion of obje
t-orientation.Modelling in analysis and software design and languages for programmingoriginally fo
used on pro
ess. But many metri
s and results indi
ated thepro
ess approa
h was problemati
 and a limiting fa
tor in what
ould bea
hieved, perhaps by several orders of magnitude, whi
h led to the software
risis [14℄...The in
lusion of obje
ts to better represent
on
epts and pro
esso�ers a superior
apability that
an be viewed as an improvement over theolder (stru
tured) te
hniques, or as a totally reengineered breakthrough ad-van
e resulting from philosophi
al inquiry and methodologi
al improvement,the latter in terms of both pedagogy and pragmati
s.In
ommon with any paradigm there is some debate regarding what
onstitutesobje
t-orientation. Cardelli and Wegner [25℄ use the following equation in des
ribingOO languages.obje
t-oriented = data abstra
tions + obje
t types + type inheritan
eThis equation des
ribes OO languages as extensions of pro
edure-oriented (or imper-ative) languages whi
h support data abstra
tions,
olle
ting obje
ts with a
ommoninterfa
e (type), and
onstru
tion of a new interfa
e through inheritan
e. If one re-moved the last operand, the right hand side of the equation would des
ribe obje
t-basedlanguages. Coad [28℄ provides a di�erent but similar equation whose right hand side is:

12 CHAPTER 2. OBJECT-ORIENTATION
lasses and obje
ts + inheritan
e +
ommuni
ation with messagesThis equation des
ribes the signi�
ant majority of OO languages whi
h
reate obje
tsthrough the instantiation of a
lass. These languages are typi
ally referred to as
lass-based languages. This equation also indi
ates that obje
ts are a me
hanism for en
apsu-lation, where behaviour is implemented through obje
ts
ommuni
ating via messages.In the following se
tions we des
ribe the essential features of OO and how theyin
uen
e software development within the paradigm. They in
lude obje
ts and
lasses,inheritan
e,
omposition and aggregation, and in
lusion polymorphism and subtyping.The �rst and most obvious feature is the use of obje
ts as software building blo
ks.2.1.1 The Building Blo
ks { Obje
ts and their ClassesAn obje
t is a me
hanism for en
apsulation and abstra
tion. It hosts state, the methodswhi
h a
t on the state, and an interfa
e to the obje
t for any potential
lients. Thus anobje
t normally has a number of named attributes or variables representing its state, anda
olle
tion of methods that implement the behaviour required of the obje
t. A subsetof these methods and attributes, typi
ally empty in the latter
ase, will be spe
i�ed inthe obje
t's interfa
e. Ea
h obje
t a
tually presents two interfa
es sometimes referredto as the publi
 and prote
ted interfa
es. The publi
 interfa
e is the interfa
e presentedto all potential
lients and we will refer to this simply as the interfa
e. The prote
tedinterfa
e is presented to
lients from within the obje
t's inheritan
e hierar
hy. Wedes
ribe inheritan
e and
larify this distin
tion in Se
tion 2.1.2. Ea
h obje
t has aunique identity whi
h is independent of the values of its variables.OO development emphasizes the separation of what from how through en
apsulationand abstra
tion. A
lient module wants to know what it
an do with a server module,and not how the server supports this fun
tionality. An obje
t's interfa
e spe
i�es thewhat, with the how largely ina

essible to
lients. One
an therefore quite naturallyadopt Parnas's information hiding modular development
riterion when developing OOsoftware [95℄, using obje
ts as the me
hanism for information hiding.Class-based versus delegation-basedMost obje
t-oriented languages are
lass-based and thus sit within the
lassi
al OOparadigm. Obje
ts are
reated through the instantiation of an abstra
tion
alled a
lass

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 13whi
h de�nes ea
h of its obje
t's attributes, methods and interfa
e. It is not un
ommonto equate an obje
t's
lass and its type. However the obje
t-oriented view of a type isas a behaviour spe
i�
ation. Sin
e an obje
t's interfa
e spe
i�es behaviour, every obje
tof a
lass shares a type. However, obje
ts of other
lasses may also support the samebehaviour and therefore have the same type. In addition, an obje
t may support asubset of the behaviour de
lared in its
lass, and thus an obje
t
an have more than onetype. The relationship between
lasses and types are generally linked to the inheritan
eme
hanism that we des
ribe in Se
tion 2.1.2. Thus the
lass X de�nes obje
ts with asingle
onstru
tor method (also
alled X), a single attribute i of type int, and two othermethods method1 and method2. The three methods together form the interfa
e spe
i�edby the
lass as indi
ated by the keyword publi
. The keyword private indi
ates thatthe attribute is not part of the interfa
e. The obje
t xObje
t is an instantiation of the
lass X.
lass X {publi
 X(int n){i=n;}publi
 int method1(Y y){return (i*y.get());}publi
 int method2(){return i;}private int i;}X xObje
t;In dynami
ally-typed,
lass-based languages su
h as Smalltalk, an obje
t's
lassis simply used for obje
t implementation and not to provide type information. Instati
ally-typed languages like Java, a
lass both provides obje
t implementation de-tails, in
luding me
hanisms for obje
t
onstru
tion, and type information through thede
lared interfa
e.One
an de
ouple interfa
e de
laration from implementation de
laration throughonly providing spe
i�
ations and no implementations in a
lass de
laration. Implemen-tations
an be added to a
lass whi
h inherits from an `interfa
e-only'
lass. A fulldes
ription of the inheritan
e me
hanism is presented in Se
tion 2.1.2. A
lass whi
h

14 CHAPTER 2. OBJECT-ORIENTATIONprovides either no implementations or an in
omplete set of implementations is referredto as an abstra
t
lass or alternatively an abstra
t base
lass or abstra
t parent
lass.The latter two names signal their use in
lass development through inheritan
e. Sin
ean abstra
t
lass provides an in
omplete blueprint for an obje
t, there are no obje
tsof the
lass. However one
an use abstra
t
lasses to de
lare an interfa
e that will besupported by any obje
t whose
lass inherits from the abstra
t
lass. Thus the
lass X
ould inherit from the abstra
t
lass, Abstra
tX. The keyword abstra
t indi
ates thatthe
lass is abstra
t and therefore has no instan
e obje
ts. An abstra
t method doesnot have a method body, and therefore requires de�nition in any sub
lass.abstra
t
lass Abstra
tX {publi
 X(int n){i=n;}publi
 abstra
t int method1(Y);publi
 int method2(SubY y){return i;}private int i;}JavaS
ript and Self are OO languages whi
h are not
lass-based. These are delega-tion/prototyping languages where obje
t prototypes are used as the me
hanism for the
reation of new obje
ts with extended behaviour. These are
reated through the addi-tion of methods and/or attributes to those provided by the prototype obje
t. This formof OO is sometimes referred to as single hierar
hy sin
e one simply has a hierar
hy ofobje
ts (and no hierar
hy of
lasses). Languages of this paradigm support both stati
and dynami
 inheritan
e whi
h we will dis
uss in Se
tion 2.1.2.Message PassingCommuni
ation between obje
ts is marshalled via their publi
 interfa
es. Budd [21℄presents his �rst prin
iple of obje
t-oriented problem solving asa
tion is initiated in obje
t-oriented programming by the transmission of amessage to an agent (an obje
t) responsible for the a
tion.That is, a message is passed to an obje
t, where the message in
ludes informationabout whi
h method to
all and with whi
h arguments. The obje
t is responsible for

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 15invoking the method that satis�es the request. The behaviour of an obje
t may dependboth on the method's parameter values and on the values of the obje
t's attributes.That is, it is not unusual for behaviour to be dependent on the state as it is in im-perative systems. The di�eren
e is that the state is typi
ally lo
al rather than global.In fun
tional programming systems, behaviour depends solely on a fun
tion's inputtedvalues.Ideally one should be able to send a message to any obje
t
apable of invokingthe appropriate method. In pra
ti
e, most OO languages are stati
ally-typed whi
himposes
onstraints on whi
h obje
ts
an re
eive a message. Whatever the typingme
hanism method invo
ation is
ontrolled by the obje
t re
eiving the message. Theroute of message passing between obje
ts has a signi�
ant e�e
t on the amount of
oupling between obje
ts. The Law of Demeter [77℄, named after an obje
t-orientedprogramming tool, provides guidan
e on the development of intera
ting obje
ts. Itstates that an obje
t, in response to a message, should only send messages to:� the obje
t itself or one of its attribute obje
ts;� obje
ts
reated due to the message; or,� an obje
t provided as an argument to the message.The tool will
he
k whether a program
onforms to the law.The following se
tion presents an overview of the OO me
hanisms for developingsoftware using obje
ts and
lasses as the basi
 building blo
ks. These in
lude attributeobje
ts and obje
ts as arguments alluded to in the Law of Demeter.2.1.2 The GlueIn this se
tion we des
ribe various me
hanisms for building OO software. These in
ludeinheritan
e, attribute obje
ts and obje
ts as arguments to methods. It is
lear that ob-je
ts and their
lasses provide a me
hanism for modular software development guidedby the requirements of en
apsulation and abstra
tion. What distinguishes obje
t-orientation from abstra
tion (or obje
t) based development, whi
h is supported bylanguages su
h as Modula-2 [150℄, is inheritan
e [15℄. This is the primary develop-ment me
hanism used within the obje
t-oriented paradigm. It is a me
hanism that,

16 CHAPTER 2. OBJECT-ORIENTATIONfor better or worse, supports a range of use semanti
s in
luding interfa
e reuse, inter-fa
e extension, and implementation or
ode reuse. Before des
ribing other developmentme
hanisms, we des
ribe the various forms of inheritan
e.Inheritan
eThe verb to inherit has two transitive de�nitions [31℄to re
eive by legal des
ent, as heir or,to derive from parentsand a single intransitive de�nitionto su

eed as heir.It is the se
ond of the transitive de�nitions that best des
ribes inheritan
e within the
lassi
al OO paradigm. A parent
lass is a
lass from whi
h another
lass derives someof its features. Ea
h
lass-based OO language either supports single inheritan
e, wherea
lass
an only inherit from a single
lass, or multiple inheritan
e, whi
h supportsmultiple parent
lasses. Inheritan
e within the delegation/prototyping paradigm, linksan obje
t to a list of obje
ts to whi
h it delegates some of its responsibilities.The terms `parent
lass' and `
hild
lass' are a

epted terminology within the
las-si
al OO paradigm [16℄. They are also referred to as a super
lass and sub
lass. In fa
t,both the verb and the inheritan
e relation are transitive. That is, if the
lass A inheritsfrom the
lass B, and B inherits from the
lass C, then A inherits from C. To takethe parental metaphor one step further, C is a grandparent of A. Thus when using a
lass-based language one develops a hierar
hy of
lasses linked through inheritan
e.A
lass Child whi
h inherits from a
lass Parent
an adopt the attribute and methodspe
i�
ations, any attribute and method implementations, and the interfa
e of the
lassParent. If the
lass Parent is abstra
t then any non-implemented methods
an beimplemented in the Child
lass. Any implemented method of the
lass Parent
an eitherbe adopted or overridden by the
lass Child. An obje
t of the Child
lass typi
allyhas spe
ial privileges in regard to a

ess to entities of an obje
t of the Parent
lass.These a

ess rights are de
lared in the prote
ted interfa
e of the Parent
lass whi
h istypi
ally the publi
 interfa
e of the
lass plus some attributes whi
h are hidden from

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 17general
lients. We illustrate inheritan
e using the
lasses X and Abstra
tX referred toearlier in this
hapter. X inherits the attributes and methods of Abstra
tX and providesan implementation for method1.abstra
t
lass Abstra
tX {publi
 X(int n){int i=n;}publi
 abstra
t int method1(Y);publi
 int method2(SubY y){return i;}private int i;}
lass X extends Abstra
tX {publi
 int method1(Y y){return (i*y.get());}}The me
hani
s of interfa
e de
laration are language-spe
i�
, some of whi
h are presentedin Se
tion 2.2.Stati
ally-typed,
lass-based OO languages only support stati
 inheritan
e, or inher-itan
e de
lared at
ompile time. Smalltalk, a dynami
ally-typed,
lass-based languageand delegation/prototype languages support both stati
 and dynami
 inheritan
e. Thatis, one
an
reate new forms of obje
ts through inheritan
e at run time.Every obje
t of a
lass presents to
lients the interfa
e de
lared in the
lass. They
an also present the interfa
e of any an
estor
lass. Hen
e, two obje
ts
an have di�erent
lasses but support the same behaviour as des
ribed by an interfa
e. They thus havethe same type. Thus an obje
t
an have more than one type, and a type be exhibited byobje
ts of more than one
lass. In stati
ally-typed,
lass-based languages, ea
h variableis de
lared with an expli
it
lass whi
h states the variable's type. The variable
anthen be assigned any obje
t of the stated
lass or its sub
lasses. In dynami
ally-typedlanguages, a
he
k to determine if an obje
t's
lass supports a required interfa
e isperformed at run time, and therefore one is not
onstrained to use obje
ts of
lasseswithin a parti
ular inheritan
e
hain.

18 CHAPTER 2. OBJECT-ORIENTATIONInheritan
e is obje
t-orientation's primary me
hanism for reusing existing entities.Sin
e an obje
t has three rôles, a host of a set of attributes whi
h make up the obje
t'sstate, state manipulation through its methods, and a

ess
ontrol through an interfa
e,inheritan
e
an enable reuse of any
ombination of these. Thus a
hild
lass
ould inheritonly an interfa
e from a parent
lass if that is all the parent
lass provides. Alternativelya
hild
lass
ould inherit attributes, fun
tionality and an interfa
e from its parent. Thisoverloading of the inheritan
e me
hanism
an be viewed as both a positive and negativefeature. It is positive simply be
ause it is overloaded, and thus one
an a
hieve multipleversions of reuse with the same me
hanism. It is however a negative feature, sin
e thesemanti
s of a parti
ular appli
ation of inheritan
e is a fun
tion of the
hara
teristi
sof the parent
lass and
hild
lass, and not of the inheritan
e me
hanism itself. Budd[21℄ presents a
omprehensive list of the various forms of inheritan
e.The
ombination of multiple rôle abstra
tions, and development through extensionhas important impli
ations for software development within the paradigm. One is re-quired in some sense to `see the future' when modelling a
olle
tion of
lasses. Severalquestions need to be answered whi
h in
lude:� Will the
lass's interfa
e ever be reused without its implementations?� Will I need a
lass with a subset of the fun
tionality of the
lass?� Will I need a
lass with more fun
tionality than the
lass but less than another
lass that is being developed through inheritan
e?Many texts on obje
t-orientation devote substantial spa
e to warnings about overuseor misuse of inheritan
e, often des
ribing alternative designs available to the developer[49℄. Although one
an reuse
ode through inheritan
e it is generally a

epted as badpra
ti
e sin
e it breaks
lass-based en
apsulation. A
hild
lass that reuses implementa-tions from a parent
lass is tightly
oupled to the parent
lass and, therefore, any
hangeto implementations in the parent
lass
ould potentially have an e�e
t in the
hild
lass.In addition, program
orre
tness
an be diÆ
ult to determine sin
e an obje
t's responseto a message may be a method de
lared in an an
estor
lass.Meyer's design by
ontra
t [84℄ has addressed this issue through the introdu
tion ofsome formal rules of pra
ti
e. These rules give formal guidan
e on the behaviour of amethod, and on the development of overridden methods in sub
lasses. The rules require

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 19that a method should be a

ompanied by one or more pre
onditions (require
lauses) oninput values and host obje
t attribute values, and state-related post
onditions (ensure
lauses). Methods whi
h are overridden in
hild
lasses must have require
lauses thatare no more
onstraining then their an
estors, and ensure
lauses whi
h are no less
onstraining. Design by
ontra
t makes expli
it the need for behavioural
onsisten
ybetween
lasses and their sub
lasses, where overridden methods in a
hild
lass preservethe behavioural
hara
teristi
s of their parental
ounterparts. Design by
ontra
t issupported by the OO language Ei�el, and by the modelling language of BON (BusinessObje
t Notation) [143℄, but it is not generally supported by OO languages or OOADMs.In summary, although inheritan
e provides a useful and natural medium for reusinginterfa
es and implementations, it
an result in software built on tightly
oupled mod-ules, whi
h is poor modular design. In addition, the relian
e on inheritan
e for
lassand obje
t building requires the developer to foresee any potential future developments,whi
h makes iterative development diÆ
ult. Gamma [49℄ points to the problem of in-heritan
e hierar
hies
ontinually having to be rearranged as the prime motivator ofhis work on reusable design patterns. In the following se
tion we des
ribe alternativeme
hanisms for developing OO software.Other OO GlueA developer using the obje
t-oriented paradigm
an draw upon other non-inheritan
eobje
t/
lass asso
iations during system development. They in
lude passing obje
ts asparameters to methods, and obje
ts as attributes of other obje
ts.The fun
tional programming paradigm and the obje
t-oriented paradigm di�er inwhi
h
onstru
ts are �rst-
lass where �rst-
lass
onstru
ts are those that
an be treatedlike any data value. Fun
tions are �rst-
lass in fun
tional programming and therefore
an appear in data stru
tures and be supplied as arguments to fun
tions. Obje
ts are�rst-
lass in the obje
t-oriented paradigm and for example,
an be passed as parametersto methods of other obje
ts. In a pure OO language with no non-obje
t values, onlyobje
ts (or in
ertain
ases
lasses (see Se
tion 2.2))
an be passed as arguments tomethods.An alternative to adopting another
lass's behaviour through inheritan
e is to buildobje
ts whi
h `in
lude' other obje
ts as attributes. There are two general forms of

20 CHAPTER 2. OBJECT-ORIENTATIONobje
t attribution. The �rst is where the obje
t attribute is de
lared in the host obje
t,and thus is dependent for its existen
e on its host. This is sometimes referred to as
omposition or
omposite aggregation. In the se
ond form the attribute obje
t
ouldbe de
lared independently of any potential host obje
t, whi
h asso
iates itself with theattribute through a variable whi
h referen
es the used obje
t. Thus the attribute obje
tmay be used in this manner by several other obje
ts. This form of obje
t attributionis sometimes referred to as aggregation and simply de
lares an asso
iation between the
lient and server obje
t. Support for these me
hanisms is language-dependent. Forexample, C++ supports both
omposition and aggregation, where others su
h as Ei�eland Java only support aggregation.Attribute obje
ts
an either be used as an alternative to implementation reusethrough inheritan
e or in
ollusion with inheritan
e. When used as an alternative onebene�ts from the de
oupling of the implementation of the used (server) obje
t and theimplementation of the
lient obje
t. The host obje
t
an then delegate method respon-sibility to an attribute obje
t. This highlights a tension between the development ofa system through a natural model of the problem, and providing a model whi
h
anbe implemented in the most eÆ
ient manner. For example, if an item A `is a' B withsome added features, then the most natural obje
t-oriented design is one where
lassA inherits from
lass B. However, a
ontainment (or `has a') relationship may be moreappropriate as an implementation me
hanism.Development through attribution in
reases the potential for reuse. In a stati
ally-typed language, any inheritan
e-based development must be de
lared at
ompile time.In
ontrast, if an obje
t of
lass A `has an' attribute of
lass B, the obje
t assigned tothe attribute variable
an be of
lass B or any of its sub
lasses. This will be determinedat run time. That is, attribution and inheritan
e
an be used in tandem to deliver adesign that maximises reuse.In summary, OO provides several me
hanisms for building software whi
h take ad-vantage of the primary rôle played by obje
ts, and in most
ases, their
lasses. Oneis also provided with a means of maximising the use of language
onstru
ts throughpolymorphism.

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 212.1.3 PolymorphismObje
t-orientation supports three forms of polymorphism. The �rst is where one
ansend the same message to a
olle
tion of obje
ts of di�erent
lasses and ea
h obje
t willrespond in an obje
t-dependent way. Cardelli and Wegner [25℄ extending the polymor-phism
ategorizations of Stra
hey [131℄ des
ribe this form of polymorphism as in
lu-sion polymorphism [25℄. Together with parametri
 polymorphism, where a method orfun
tion works uniformly on a range of types, they
omprise the two major forms ofuniversal polymorphism. Although parametri
 polymorphism is universally supportedby fun
tional programming languages, it is only provided by a subset of OO languages.Ei�el's generi

lasses and C++'s templates allow
lasses to be de
lared with formalparameters, whi
h are used to
reate instantiable
lasses when provided with an a
tualparameter [133, 84℄. Thus one has the ability to a
hieve reuse over several types in amanner whi
h is orthogonal to reuse via inheritan
e. Ei�el also provides
onstrainedgeneri
ity where one
an require the a
tual parameter to be of a parti
ular
lass orone of its des
endants, and thus guarantee a parti
ular behavioural requirement of thegeneri

lass. We dis
uss (
onstrained and un
onstrained) generi
ity further in Chapter3.1, when
omparing these approa
hes to fun
tional programming's
onstrained poly-morphism and parametri
 polymorphism.The �nal form of polymorphism is ad-ho
 polymorphism, where a method works (orappears to) on several di�erent types in possibly di�erent ways, and is often knownsimply as fun
tion/method identi�er overloading. Ad-ho
 polymorphism is in fa
t alsosupported in some non-OO languages.In
lusion polymorphism is the dominant form of polymorphism within OO, whereasin fun
tional programming parametri
 polymorphism is the dominant form and over-loading is variably supported. This has a signi�
ant e�e
t on the way one builds systemswithin the two paradigms. The OO approa
h is to fa
tor out the
ommon behaviourexhibited in various abstra
tions, and to build
lasses that support this behaviour.These are then the building blo
ks from whi
h one
an develop new abstra
tions withadditional behaviour either through inheritan
e,
omposition or aggregation.In the fun
tional programming paradigm, one analyses the behaviour of fun
tions.If more than one fun
tion exhibits the same behaviour it
ould be repla
ed by a single

22 CHAPTER 2. OBJECT-ORIENTATION(polymorphi
) fun
tion. In addition, if several fun
tions have
ommon patterns of
omputation they
ould be repla
ed by a single (higher-order) fun
tion.An OO polymorphi
 variable
an
ontain (or refer to) an obje
t of more than one
lass. With stati
ally-typed languages where ea
h variable is de
lared with an expli
it
lass, the
ontents of a polymorphi
 variable are
onstrained by the inheritan
e hier-ar
hy. That is, the obje
t must be of the de
lared
lass or one of its sub
lasses. Indynami
ally-typed languages all variables are polymorphi
, sin
e they
an hold anyvalue. Therefore all methods whi
h take arguments are also polymorphi
.Any obje
t that re
eives a message should be able to respond appropriately. Thatis, ea
h obje
t should deliver some
ommon behaviour spe
i�ed in its interfa
e. If anobje
t of
lass X supports the behaviour of obje
ts of
lass Y, X is
alled a subtypeof Y and Y a supertype of X [79℄. Ea
h obje
t of a subtype
an be used in pla
eof an obje
t of a supertype. A subtype is not ne
essarily a sub
lass and vi
e versa.For example, a sub
lass with less behaviour than its super
lass is not a subtype. Asubtype whi
h is not related to its supertype through inheritan
e is not a sub
lass.However subtyping is typi
ally introdu
ed through inheritan
e. The main problemwith a
hieving `polymorphism through inheritan
e' is that inheritan
e is
on
erned withimplementations, where subtypes fo
us on interfa
es. That is inheritan
e supports
odereuse by the `implementor', where subtyping supports
ode reuse by `
lients' [108℄.Java supports `polymorphism without inheritan
e' by using a
onstru
t
alled aninterfa
ewhi
h provides a behavioural proto
ol, but no implementation. It is thereforesimilar to an abstra
t
lass, ex
ept that unlike an abstra
t
lass, one
annot provideany implementations for any methods of the interfa
e. One is then able to a
hievesubtyping through an interfa
e instantiation, sin
e every
lass that implements theinterfa
e will be a subtype of the type spe
i�ed by the interfa
e.Development Prin
iples and ComplexityAlthough OO is often des
ribed as a natural way to develop software through its supportfor modelling the problem, developing an eÆ
ient, implementable solution is not a trivialtask. This is signalled by the various laws, prin
iples, and heuristi
s whi
h guide theOO developer [114, 49, 85, 86℄. Gamma et al [49℄ begin their book with the warning:

2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 23Designing obje
t-oriented software is hard, and designing reusable obje
t-oriented software is even harder...Your design should be spe
i�
 to the prob-lem at hand but also general enough to address future problems and require-ments. You also want to avoid redesign, or at least minimize it.Meyer [84℄ argues that one should adopt the open-
losed prin
iple whi
h requiressoftware entities to be open for extension but
losed for modi�
ation. That is, if onewants to add behaviour to a module then extend it do not
hange it. If one wants toin
rease the range of obje
ts over whi
h a fun
tion applies, then introdu
e a new
lasswith the required behaviour. Satisfying this prin
iple and many other prin
iples
omesat a
ost and is not a
hieved by simply translating a `natural' model of a problem intoa design and then implementation. For example, if one needs to add behaviour to aparent
lass that is not
urrently supported by any of its
hild
lasses, one
ould extendthe existing base
lass but would then need to restru
ture the
lass hierar
hy. Thusalthough it has been argued that obje
t-oriented software is easier to maintain than itsalternatives [84℄, there is eviden
e to suggest that it often requires signi�
ant redesignand possibly even automated support [93℄.The problems des
ribed above
an be
ategorised as same-paradigm problems or theessential
omplexity between a design and implementation [20℄. However, the a

idental
omplexity whi
h arises when one mixes paradigms is far more severe and diÆ
ult to re-solve. As an illustrative example of this we des
ribe the approa
hes to implementing inan OO language, a design that uses higher-order fun
tions. With pure obje
t-orientedlanguages one has to mimi
 `fun
tions as arguments' by applying a method to a param-eter obje
t whose only responsibility is a single method. That is, one needs to
onstru
ta stateless obje
t whose only purpose is to support some behaviour. Sin
e this methodobje
t or fun
tion obje
t will a
t on the state of another obje
t one breaks the en
ap-sulation required of any OO model. In C++ one
an overload the parenthesis operator(), whi
h enables an obje
t to be used as a fun
tion. C++ also supports a non-OOapproa
h through the
reation of a parameterised
lass, whi
h
an be instantiated witha pointer to a fun
tion.In
on
lusion, OO models are best implemented in OO languages. In the followingse
tion we provide a brief overview of some modern OO languages.

24 CHAPTER 2. OBJECT-ORIENTATION2.2 OO LanguagesIn this se
tion we present a brief overview of OO languages, highlighting their similaritiesand des
ribing some of their di�eren
es. Obje
t-oriented languages naturally supportthe features of obje
t-orientation des
ribed in the previous se
tion. This does not implythat every obje
t-oriented model built using these features
an be implemented in everyobje
t-oriented language, or that if they
an they will result in the most e�e
tive andeÆ
ient implementation. However, it is more natural to implement an OO design inan OO language than in a non-OO language, be
ause the development approa
h is thesame. That is, they share
ommon building blo
ks and glue, and a
ommon developmentphilosophy. We believe that this equally applies to any paradigm.2.2.1 What is an OO language?There are many des
riptions of obje
t-oriented programming or the properties requiredof an obje
t-oriented language [71, 132, 87, 43℄. The features possessed by languagesthat
laim to be obje
t-oriented in
lude the ability to de
lare abstra
tions whi
h supporten
apsulation and are extendible through inheritan
e, subtyping, and the binding of amethod to a message at runtime (dynami
 binding). Ea
h OO language is either pureand sits wholly within OO, or in
ludes features of other paradigms and is thus impure.Smalltalk, Java (whi
h does however have non-obje
t primitive types [3℄) and Ei�el[115℄ are pure languages, where C++, Obje
t Pas
al [17℄, UFO (United Fun
tions andObje
ts) [125℄ and OCaml (Obje
tive Caml) [75℄ in
lude various impurities. Furtherexamples of impure OO languages are Pizza [105℄, whi
h has added support for higher-order fun
tions and parametri
 polymorphism to Java, and O'Haskell [91℄, an obje
t-oriented extension of Haskell.The typing me
hanism of a language in
uen
es the s
ope of obje
ts to whi
h amessage
an be passed. Although stati
ally-typed OO languages provide the bene�tsof
ompile-time type
he
king they also
onstrain the
lasses whose obje
ts may re
eivea message. Stati
ally-typed languages partially resolve this dilemma by supportingin
lusion polymorphism through inheritan
e. Smalltalk, whi
h is dynami
ally-typed or
lass-fo
used rather than type-fo
used [49℄, adopts the opposite approa
h of not
at
hingany type errors at
ompile time, but having the freedom to send a message to any obje
t

2.2. OO LANGUAGES 25that supports the appropriate behaviour through a mat
hing method. Thus Smalltalk
lasses are not used for
he
king the type
orre
tness of a program but to spe
ify, andin most
ases, implement obje
ts. Most languages that are
lass-fo
used have
lassesas �rst-
lass
itizens whi
h
an be manipulated at run-time. OO languages
an bedi�erentiated both through the type of inheritan
e they support and their approa
h toen
apsulation.2.2.2 En
apsulation and Inheritan
eThe interfa
e provided by any obje
t is dependent on the
lient obje
t. In most OOlanguages, if the
ommuni
ating obje
ts are of the same
lass, then the interfa
e istotal or in
ludes everything de
lared in the
lass. If the
lient obje
t is of a sub
lassof the other obje
t, then it is presented with an interfa
e that in
ludes all non-privateentities. If there is no inheritan
e asso
iation between the obje
ts, then the
lient ob-je
t is presented with the most restri
tive interfa
e that only in
ludes publi
 entities.In
ontrast, Smalltalk, restri
ts a

ess to an obje
t's private parts to the obje
t itself.That is, Smalltalk is truly obje
t-oriented where ea
h obje
t fully en
apsulates its state.Smalltalk enfor
es the en
apsulation of state by making every attribute private and
on-versely, every method publi
. One is unable therefore to provide non-interfa
e methodswhi
h are used to servi
e interfa
e methods. Other OO languages are not as dra
onianas Smalltalk, and allow the developer to de
ide on the (publi
 and prote
ted) interfa
eof an obje
t.Many OO designs in
lude
lasses that inherit features from more than one parent
lass through multiple inheritan
e. Although many problems are most naturally de-signed using multiple inheritan
e, it is not typi
ally supported by OO languages. Thereare many reasons for this in
luding the potential for ambiguity when invoking methodsin response to a message. For example, when a message is passed to a
hild
lass obje
twhose
lass doesn't provide an implementation of the required method, the message isdeferred to a parent
lass (analogous to delegation in prototype/delegation languages).If both parent
lasses provide their own implementations the
ompiler will be unable tode
ide whi
h one to invoke.The large number of modern OO languages are mat
hed by an ever in
reasing num-ber of OO analysis and design methodologies. They
an equally be
ategorised through

26 CHAPTER 2. OBJECT-ORIENTATIONtheir purity or impurity, and also through the approa
h to abstra
tion dis
overy.2.3 OO Analysis and Design MethodologiesThis se
tion presents an overview of OO analysis and design methodologies (OOADMs).This is in no sense a
omplete overview. However it provides an insight into the essen-tial features
ommon to methodologies within the paradigm and how they support thedevelopment of OO software. A detailed, albeit dated
ritique is presented in [89℄. Amore re
ent survey of stru
tured and OO te
hniques and methods is presented in [147℄,and a web-based
omparative review of OOADMs
an be found at [32℄. In
ommonwith the imperative/stru
tured paradigm, the OO paradigm supports the eÆ
ient ande�e
tive development of software. This is a
hieved by using development methodolo-gies and implementation languages that use the same building blo
ks and glue. Themethodologies are normally marketed through CASE tools that support their parti
ularnotation and te
hniques. The OO paradigm has a large set of su
h methodologies in-
luding the Boo
h Method [15, 82℄, OMT [120℄, BON [143℄, OOA/OOD [29, 28℄, Fusion[30, 80℄ and OOSE/Obje
tory [64℄. Re
ently there has been a fo
us on developing auni�ed language, the Uni�ed Modelling Language (UML) [16℄. Although it is only amodelling language, and is therefore pro
ess independentit should be used in a pro
ess that is use
ase driven, ar
hite
ture-
entri
,iterative, and in
remental. [16℄The Uni�ed Software Development Pro
ess has re
ently been developed using UMLas its modelling language [63℄.Ea
h OOADM is a
ombination of a modelling language and a
olle
tion of integratedte
hniques whi
h
onvert the results of requirements engineering into an implementabledesign. Most OOADMs provide a
olle
tion of diagrams that graphi
ally representvarious views of the models in development. Typi
ally these diagrams
an be usedthrough all phases of development. Ea
h OOADM
an be
ategorised as pure, if it onlymodels systems through
ommuni
ating obje
ts or their
lasses, or impure (or evenhybrid) if a
tion-oriented or data-oriented te
hniques and models are supported.

2.3. OO ANALYSIS AND DESIGN METHODOLOGIES 272.3.1 Pure and Impure OOADMsA pure OOADM only uses obje
t-oriented te
hniques and models to analyse a problemand design a solution. That is, the te
hniques aim to build models using obje
ts and/or
lasses and their various asso
iations. Fun
tionality is analysed and des
ribed through
ommuni
ating obje
ts, and data is similarly des
ribed through its host obje
ts. Im-pure methodologies
ombine obje
t-oriented and non-obje
t-oriented te
hniques, su
has data-
ow diagrams, into a single methodology. Examples in
lude OMT [120℄ andthe S
hlaer and Mellor [126℄ approa
h whi
h use fun
tional models des
ribed throughdata-
ow diagrams, and stru
tural models using ERD type diagrams.The Boo
h Method, OOSE, and BON are all pure obje
t-oriented methods. Forexample, the Boo
h Method presents a stati
 view of a system through
lass diagrams,a fun
tional view through obje
t-s
enario diagrams/obje
t-intera
tion diagrams and adynami
 view of the internals of an obje
t via state diagrams. BON simply has stati
diagrams, dynami
 diagrams and diagrams that present
lass details in a similar fashionto CRC (Class,Responsibility,Collaboration)
ards [8℄. CRC
ards are used in manymethodologies to re
ord the name of a
lass, the attributes and methods it supports,and the other
lasses it
ollaborates with to a
hieve required fun
tionality. They havetypi
ally been used in brainstorming sessions and
an be physi
ally arranged to illustrateparti
ular designs.Every methodology, pure and impure, supports the building blo
ks and glue ofthe OO paradigm. However, ea
h methodology is typi
ally des
ribed using its ownmodelling language and graphi
al representation of OO
onstru
ts and relationships.In the following se
tion we present the steps in OO software development typi
allysupported by an OOADM.2.3.2 OO DevelopmentOOADMs
an be further
lassi�ed by the driving fa
tor of initial development. The
lassi�
ations are user-driven, data-driven and responsibility-driven. With user-drivendevelopment the needs of the system users drive development. Ja
obson [64℄ introdu
eduse
ase analysis in his OOSE/Obje
tory method. Initial development models userintera
tions with the system through appli
ations of use
ase analysis. We des
ribe use

28 CHAPTER 2. OBJECT-ORIENTATION
ase analysis later in this se
tion. All OOADMs en
ourage an iterative approa
h todevelopment. A system
an initially be developed using a subset of user requirements,with any additional requirements introdu
ed iteratively.Data-driven methodologies su
h as OMT, initially fo
us on the major nouns in therequirements do
umentation and return a
olle
tion of mat
hing obje
ts and/or
lasses.The Boo
h Method and Martin and Odell's OOAD method [81℄ adopt a behaviour-driven approa
h, where the verbs in the requirements do
umentation guide the devel-opment of obje
ts to support the behaviour indi
ated by a verb. Whi
hever approa
his adopted there is a
ommon underlying theme to development, whi
h is summarizedin the following list.� Dis
overy of an initial
olle
tion of
lasses;� des
ription of
lass
ollaborations required to satisfy the system's fun
tional re-quirements;� assignment of responsibilities to ea
h
lass;� analysis of
lasses with signi�
ant state dynami
s;� development of
lasses,
lass
ollaborations and
lass responsibilities using be-haviour s
enarios;�
onversion of an analyti
al model whi
h represents the problem to a design modelof an implementable solution. New
lasses are introdu
ed either to manage other
lasses or to redu
e the
oupling between existing
lasses.Ea
h methodology has its own te
hniques, notation and development themes. Forexample, OMT divides development into three modelling strands obje
t modelling, dy-nami
 modelling and fun
tional modelling, OOA/OOD has the multilayer, multi
om-ponent model, and BON en
ourages the development of models built on seamlessness,reversibility and
ontra
ting.The initial step in obje
t-oriented development is eli
iting obje
ts and their
lasses,from the deliverables of system's requirements engineering. The route to their dis
overywill depend on whether the methodology is user-driven, data-driven or behaviour-driven.

2.3. OO ANALYSIS AND DESIGN METHODOLOGIES 29In ea
h
ase, any data or behaviour are des
ribed through a host obje
t. The develop-ment is immediately modelled through abstra
tions whi
h en
apsulate their state andhost the methods whi
h may a
t on the state. These abstra
tions should be extensibleand ea
h should model a real world entity or behavioural
hara
teristi
 of the problem.Future development, for example of system fun
tionality, is modelled through these ab-stra
tions. That is, fun
tions or methods must be developed through
ommuni
atingobje
ts and guided by the interfa
es of the obje
ts.We will illustrate the user-driven approa
h with a brief des
ription of use
ase anal-ysis [64℄. A use
ase is a des
ription of a set of sequen
es of a
tions that a systemperforms to a
hieve a desired result. Ea
h sequen
e of events represents an intera
tionbetween system users, sometimes referred to as a
tors, and the system.A use
ase is an analysis te
hnique in that it
aptures the intended behaviour ofthe system, but does not spe
ify how this is a
hieved. Ea
h use
ase will be des
ribedby one or more s
enarios whi
h spe
ify the semanti
s of the use
ase. For example ause
ase
ould be `The data entry
lerk inputs a result into a football results pro
essingsystem'. The textual des
ription of the use
ase that in
ludes details of the user will betranslated into a set of s
enarios whi
h des
ribe its a
hievement within the system. Thismay result in the introdu
tion of new
lasses, new responsibilities assigned to existing
lasses and new
ollaborations between
lasses.Wirfs-Bro
k et al. [149℄ subdivide OO software development into three phases:initial exploration, detailed analysis and building subsystems. The se
ond phase putsthe meat on the bones of the entities delivered by the �rst phase. One has to
larifythrough detailed inspe
tion the
lass responsibilities - the data and methods - andthe
ollaborations - inter-
lass dependen
ies - required of the system. Sin
e
lassesare extendible one is en
ouraged to minimise the
hara
teristi
s, both attributionaland behavioural, of any
lass, and use inheritan
e and
omposition as me
hanisms forbuilding more
omplex abstra
tions.Ea
h
lass's attributes, methods, and
ollaborations
an be gleaned from require-ments information through the appli
ation of various analyti
al te
hniques in
ludinguse
ase analysis and CRC
ards. As one moves through analysis and into design a
lass's responsibilities and
ollaborations are s
rutinized so that ea
h
lass has a
learpurpose and a high degree of
ohesion, reuse is maximised, and inter-
lass dependen
y is

30 CHAPTER 2. OBJECT-ORIENTATION

Figure 2: Class Diagramminimised. One
an use operational rules su
h as those des
ribed in the Law of Demeter[78℄ during su
h development.Class
ollaborations are typi
ally represented in
lass diagrams. These are similarto SSADM's logi
al data stru
tures or entity relationship diagrams [26℄ in that theydes
ribe the major data entities in the system. In a
lass diagram the entities alsoin
lude behavioural responsibilities. Figure 2 presents a
lass diagram where the
lassResults has a single Date attribute through aggregation, and one or more Resultattributes through
omposition.All OOADMs have a graphi
al notation for obje
ts and
lasses, and their various
ollaborations. They also tend to support annotations whi
h in
rease the semanti
sof the modelling languages. Thus one
an present multipli
ity of
ollaborations, or aninsight into the a
tual relationship through textual information juxtaposed with thegraphi
al notation.A system's fun
tional requirements are delivered through
ommuni
ating obje
ts.Sin
e obje
ts en
apsulate state and behaviour, method development relies on the in-tera
tion of obje
ts through message passing. Thus the appropriate metaphor is of anetwork of abstra
tions sending messages to other abstra
tions. In ea
h
ase the re
eiv-ing abstra
tion is responsible for managing the response to a message. One
an presenta view of fun
tion or method development through obje
t diagrams. UML supportstwo types of obje
t or intera
tion diagrams. Collaboration diagrams (obje
t-s
enariodiagrams in the Boo
h Method, instan
e diagrams in OMT) have obje
ts as the mainsubje
ts, and methods are des
ribed through messages passing between the obje
ts. The

2.3. OO ANALYSIS AND DESIGN METHODOLOGIES 31

Figure 3: Collaboration and Sequen
e Diagramsreverse is the
ase with sequen
e diagrams in whi
h the messages take pre-eminen
e overtheir asso
iated obje
ts. Sequen
e diagrams emphasise the ordering of the messages,where the emphasis in a
ollaboration diagram is on the obje
ts that are
ommuni
ating.Sequen
e diagrams have similarities to Gantt
harts (a popular graphi
al representationof a proje
t's a
tivities) of use within a �eld of operations resear
h. We give examplesof these types of diagrams in Figures 3(a) and 3(b).The models des
ribed thusfar fo
us on the stati
, and fun
tional requirements ofa system. Many obje
ts' response to a message will be state-dependent. That is, thevalues of an obje
t's attributes will often in
uen
e an obje
t's behaviour. One
anmodel these obje
t state dynami
s through state diagrams whi
h des
ribe a
olle
tionof obje
t states, and the a
tions whi
h lead to transitions between the states. The statediagrams used by most OOADMs follow the notation of Harel [54℄.

32 CHAPTER 2. OBJECT-ORIENTATIONOn
e an a

eptable analyti
al model of the problem is in pla
e, the fo
us turns tothe development of an implementable design. At this stage one may introdu
e
lassesthat manage the intera
tion of other
lasses, or others whi
h support some
ommonbehaviour required of existing
lasses. Where analyti
al models simply re
e
t a system'srequirements, design models need to be eÆ
ient, e�e
tive and implementable. Thedeveloper
an adopt various prin
iples, laws, and existing designs during this pro
ess.2.4 SummaryIn
on
lusion, the obje
t-oriented paradigm has marketed itself as a pa
kaged develop-ment approa
h. From the initial stages of development one
an des
ribe a problem interms of OO elements and models using one of a signi�
ant number of modelling lan-guages, methodologies and supporting CASE tools. The translation from an abstra
tmodel to implementation
ode is eased through removing the a

idental
omplexity in-
urred when swit
hing paradigms. Although translating a model of the problem into ane�e
tive and eÆ
ient model of a solution is not a trivial task, on
e a
hieved there area large number of OO programming languages in whi
h OO models
an be naturallyimplemented.The fun
tional programming paradigm is
urrently without any analysis and designmethodologies. Therefore, if one wants to model a problem one either has to adoptan ad ho
 approa
h or use an existing non-fun
tional methodology. In the following
hapter we des
ribe the fun
tional programming paradigm, pla
ing emphasis on thefeatures whi
h have a major in
uen
e on the design of fun
tional software.

Chapter 3
Fun
tional Programming
In this
hapter we
larify the main features of the fun
tional programming paradigmand how they in
uen
e software development within the paradigm. We begin witha brief overview of the paradigm that lists its major features. These are: fun
tionsas the basi
 unit of program development; strong typing as an aid to developmentpre-implementation, during implementation and post-implementation; parametri
 poly-morphism and the �rst-
lass nature of fun
tions as the major routes to reuse; and, thesupport provided for developing user-de�ned datatypes. Ea
h of these features are de-s
ribed with illustrative examples, and, where appropriate we draw
omparisons withapproa
hes adopted within the OO paradigm. For example, parametri
 polymorphismis supported by both paradigms, but has a greater in
uen
e on software developmentwithin the fun
tional paradigm. In Se
tion 3.2 we review features whi
h are eithervariably supported or are supported by a signi�
ant minority of modern fun
tional pro-gramming languages (FPLs). These in
lude lazy evaluation that supports programmingwith in�nite data stru
tures, overloading of fun
tion names, and the me
hanisms fordelivering modularity-in-the-large. We in
lude various pointers to the modelling of fun
-tional designs using FAD. For example, we introdu
e the FAD units ex
lusive signatureand permissive signature. These are de�ned brie
y in this
hapter, with a more detailed
overage provided in Chapter 5. In the �nal se
tion, we present the arguments for theneed for (and requirements of) a fun
tional analysis and design methodology (FADM).Chapter 4 provides a more detailed argument in support of analysis and design method-ologies. 33

34 CHAPTER 3. FUNCTIONAL PROGRAMMING3.1 The Fun
tional Programming ParadigmThe fun
tional programming paradigm, in its purest form, is about building programsfrom fun
tions. Ea
h fun
tion
omputes a value that depends solely on the values ofthe fun
tion's inputs. Every fun
tion has a type that in most fun
tional languagesis determined stati
ally, and fun
tions are �rst-
lass and thus
an be treated as datavalues. If an OO system is built througha
olle
tion of intera
ting abstra
tions that host their own state, provideme
hanisms for manipulating the state, and deliver an expli
it behavioural
ontra
t to other abstra
tionsfun
tional programming relies ona
olle
tion of abstra
tions that generate values dependent only on the valuesthey re
eive.Fun
tional languages also o�er signi�
ant support for modular development andthus for programming-in-the-large. Although it is beyond the s
ope of this thesis toprovide an exhaustive list of features of the paradigm, we list below those featureswhi
h we believe have the most signi�
ant impa
t on how one develops software withinthe paradigm. The following subse
tions present details on ea
h feature in turn withsome
ommentary on its in
uen
e on the development of software within the paradigm.We will illustrate many of the features with example
ode written in Hugs 98 [70℄. Thefun
tional programming paradigm in
ludes the following features:� fun
tions as the fundamental building-blo
ks of programs;� strong typing;� parametri
 polymorphism;� fun
tions as `�rst-
lass
itizens'; and,� substantial support for the development of user-de�ned types, both
on
rete andabstra
t.Colle
tively these features des
ribe a
lean, mathemati
ally tra
table and robustte
hnology with signi�
ant support for reuse. It enables the developer to fo
us dire
tly

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 35on the fun
tional
hara
teristi
s of a system without either the loss of data se
urityinherent in imperative programming, or the indire
t approa
h imposed by the obje
t-oriented paradigm.3.1.1 Fun
tions, Values and Referential Transparen
yProgramming in a fun
tional style using a fun
tional language involves building de�ni-tions and evaluating expressions. As Bird and Wadler [11℄
on
isely state:The primary role of the programmer is to
onstru
t a fun
tion to solve agiven problem.The behaviour of these fun
tions depend only on the values of their arguments, andnot on the value of any variables whi
h model the state. Thus fun
tional programmingen
ourages a view of
omputing that is signi�
antly di�erent to that of a sequen
e ofstate modi�
ations.Imperative programs are built through a
olle
tion of mutable variables whi
h modelthe state, and pro
edures whi
h modify these (typi
ally global) variables. The behaviourof the pro
edures typi
ally depend on the values of the mutable variables, whi
h
an be
hanged as the pro
edures run. There are various problems with this approa
h. Globaldata is inherently inse
ure sin
e there is no expli
it restri
tion of a

ess to a variable's
ontents, and it
an be diÆ
ult to understand a program given that the value
ontainedby any variable will depend on the program itself. Non-modular, unstru
tured programswritten in an imperative style also su�er from multiple entry and exit points and littlesupport for programming-in-the-large [38℄. Although stru
tured programming [35℄ hasaddressed some of these problems, and obje
t-based languages su
h as Modula-2 [146℄have addressed the issue of modular software development, the imperative paradigmhas generally la
ked signi�
ant modular support.Obje
t-orientation has addressed these issues through the en
apsulation of variableswith the pro
edures that a
t on the variables within abstra
tions
alled obje
ts. Al-though the variables remain mutable, and thus their
ontents
an be
hanged, a

essto a variable is
onstrained by the interfa
e supplied by the obje
t that hosts the vari-able. Obje
ts, and not variables and independent pro
edures, are the units upon whi
ha program is developed. New fun
tionality is developed through
ollaborating obje
ts

36 CHAPTER 3. FUNCTIONAL PROGRAMMINGrather than dire
tly gluing together existing pro
edures.The (pure) fun
tional programming paradigm has adopted a quite di�erent ap-proa
h. All variables are immutable. That is, variables in the fun
tional programming
ontext (in
ommon with mathemati
s) do not vary but always denote the same value.Fun
tions are therefore the me
hanisms for
reating new values and not for updatingthe values of existing variables. That is, a fun
tion takes one or more input values andreturns a new value that is determined
ompletely by the inputted values.This has a signi�
ant impa
t not only on how one builds a program, but also on themeaning of a program. The meaning of an imperative or OO program is understood bythe e�e
t it has on the state (the
olle
tion of variables) of the ma
hine as it runs. In
ontrast, the meaning of a fun
tional program is understood by the values it
omputes.That is, the meaning of an expression in a pure fun
tional language is simply its value.There are no side e�e
ts (state
hanging a
tions) a

ompanying the evaluation of anexpression.One bene�t of using a side e�e
t-free language is that any expression of the languagethat has a well-de�ned value
an be evaluated in any order. Order of evaluation onlymatters when a variable's value may depend on the order of evaluation of some sub-expressions. Many pure fun
tional languages
an therefore support non-stri
t semanti
swhose in
uen
e on software development we des
ribe in Se
tion 3.2.1.An expression written in a side e�e
t-free language
an have any subexpressionsubstituted by its value without altering the value of the expression. This
hara
teristi
is a parti
ular
ase of referential transparen
y, the ability to substitute equals for equals.Sin
e an expression `equals' its value the substitution will not a�e
t the value of theexpression.In
on
lusion, in a pure fun
tional language all
omputations are performed viafun
tion appli
ation. Ingenious me
hanisms for supporting impure intera
tions su
h asI/O have been developed, the most re
ent of whi
h is the monadi
 approa
h adopted byHaskell [53, 103℄. Software development within the fun
tional programming paradigm isbuilt predominantly on fun
tions. Various me
hanisms exist for building new fun
tionsfrom existing fun
tions and maximising the s
ope of a given fun
tion, some of whi
hare des
ribed in the following se
tions. The s
ope of a given fun
tion is intimately tiedto its type. We des
ribe in the following se
tion how a fun
tion's type
onstrains the

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 37appli
ation of a fun
tion, and in Se
tion 3.1.3, how parametri
 polymorphism allowsthe fun
tional programmer to reuse a single fun
tion over more than one type.3.1.2 Strong TypingMost modern fun
tional languages are strongly typed. That is, every well-formed ex-pression of a fun
tional language has a type that
an be determined at
ompile time.This means that no run-time errors are due to type mismat
hes. Just as the value of anexpression depends only on the values of its subexpressions, the type of an expression
an be dedu
ed from the type of its
omponents' expressions. For example, the fun
tionfrontPlusBa
k is de�ned as follows:frontPlusBa
k x = head x + last xFrom the right hand side of the de�nition we
an determine that the fun
tion is wellde�ned if x is a value of any list type (denoted [a℄), sin
e the fun
tions head and lasttake values of any list type and return the �rst and last element of the list respe
tively.In addition, sin
e the values returned by these fun
tions are added together, the listmust
ontain numeri
 values. In Haskell we write that frontPlusBa
k has the typeNum a => [a℄ -> awhere a is a type variable, and Num a =>
onstrains the binding of the type variable tonumeri
 types.Sin
e strong type
he
king involves type inferen
e, the developer is not required (butis en
ouraged) to spe
ify the type asso
iated with ea
h de�nition.Therefore, the fun
tion frontPlusBa
k should be de�ned with an a

ompanyingtype spe
i�
ation.frontPlusBa
k :: Num a => [a℄ -> afrontPlusBa
k x = head x + last xAn expli
it type spe
i�
ation is en
ouraged sin
e it aids software development in severalways whi
h in
lude:� a signal to the type-
he
ker regarding the expe
ted type of the asso
iated entity;

38 CHAPTER 3. FUNCTIONAL PROGRAMMING� a guide to the requirements of a fun
tion in terms of its expe
ted input andrequired output. This
an be used both in advan
e of implementation of theentity and as an interfa
e to entity use;� a do
umentation devi
e; and,� as a pointer to potential reuse of library
onstru
ts where fun
tions
an be
ate-gorised by their types.Strong typing therefore provides support both at the implementation stage of devel-opment and during pre-implementation analysis and design. The type of a fun
tion is a
onstraint on how the fun
tion
an be used. This
ould lead to a rather ineÆ
ient andexpensive approa
h to development, where fun
tions have to be rede�ned every timeone wants to use them over a di�erent type. However, in
ommon with stati
ally-typed,obje
t-oriented languages, me
hanisms exist for minimising this
ost and maximising thes
ope of use of existing entities. Where stati
ally-typed,
lass-based, obje
t-oriented lan-guages have adopted in
lusion polymorphism as the predominant me
hanism for reuse,fun
tional languages support parametri
 polymorphism.3.1.3 Parametri
 PolymorphismIn Chapter 2 we des
ribed how in
lusion polymorphism is the dominant form of poly-morphism supported by obje
t-orientation. In
lusion polymorphism supports the no-tion of `one type many methods' where the method
alled is determined dynami
allythrough the
lass of the obje
t that re
eives the message rather than the de
lared
lass.Parametri
 polymorphism
an be viewed as the antithesis of in
lusion polymorphism.Parametri
 polymorphism enables `one fun
tion many types', where a fun
tion is notrestri
ted to single monomorphi
 types but
an be used over a range of types. However,the arguments of a polymorphi
 fun
tion must themselves be monomorphi
. Polymor-phi
 arguments require rank-2 polymorphism whi
h although supported, for example,by Hugs 98 [70℄, is not a ubiquitous feature within the paradigm. Polymorphism in thefun
tional world therefore supports the reuse of
ode rather than the ability to supplyarguments of various forms with a
ommon interfa
e.One
an a
hieve signi�
ant reuse within the fun
tional programming paradigm bytaking advantage of parametri
 polymorphism. If two or more monomorphi
 fun
tions

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 39with the same arity exhibit
ommon behaviour over values of distin
t types, they
ouldpossibly be repla
ed by a single polymorphi
 fun
tion. For example, the Haskell fun
tionlength whi
h takes a list of values and returns the number of items in the list, operatesin a
onsistent fashion for a list of elements of any type. Similarly, the pair sele
torfun
tions fst and snd require no spe
i�

hara
teristi
s of the pair element values, andthus
an be applied to pairs whose elements are of any type.length :: [a℄ -> Intlength = foldl' (\n _ -> n + 1) 0fst :: (a,b) -> afst (x,_) = xsnd :: (a,b) -> bsnd (_,y) = yIn OO one
ould a
hieve a similar form of reuse through C++ templates or Ei�el'sgeneri

lasses. For example, in C++ one
an de
lare a parameterised
ontainer
lassList<Type> whi
h in
ludes a method whi
h returns the length of a list. One
an
reate instantiable
lasses by providing the parameterised
lass with an a
tual parametersu
h as List<String>, a list of strings
lass, and List<Person>, a list of people
lass.Sin
e the method whi
h returns the length of the list, and all other methods of theparameterised
lass, requires no parti
ular
hara
teristi
s of the a
tual parameter
lass,the same method
an be applied over obje
ts of any instantiating
lass. Some languagesin both paradigms support
onstrained parameterisation in whi
h the a
tual parameteris required to support some parti
ular behaviour. This is des
ribed in Se
tion 3.2.2.An important indi
ator of potential parametri
 polymorphism is the la
k of be-haviour required over the types asso
iated with a fun
tion or the types that providethe values for a data stru
ture over whi
h a fun
tion is de�ned. That is, although thefun
tion length requires the
ontainer type (in this
ase a list) to support
ertain be-havioural requirements, the type that provides the values
ontained in the list has nosu
h requirements. The fun
tion length
an be applied to a list of any type, sin
e itdoes not require a list's values to
onform to any parti
ular spe
i�
ation. This is also

40 CHAPTER 3. FUNCTIONAL PROGRAMMINGtrue of the pair sele
tion fun
tions.Where parametri
 polymorphism supports the use of a single fun
tion over manytypes, higher-order fun
tions whi
h take fun
tional arguments
apture
ommon pat-terns of
omputation between several fun
tions. In the following se
tion we des
ribethe in
uen
e that `fun
tions as values' has on software design within the fun
tionalprogramming paradigm.3.1.4 First-Class CitizensHughes [57℄ argues that the two features of fun
tional languages whi
h have the most sig-ni�
ant impa
t on (small s
ale) modular development are higher-order fun
tions whi
hrely on the �rst-
lass
itizenship of fun
tions and laziness. Sin
e laziness is not a fea-ture of all fun
tional languages it would be inappropriate to des
ribe it as a featureof the paradigm. However it is supported by a signi�
ant minority of pure fun
tionallanguages and we will des
ribe it in Se
tion 3.2.1.One way of distinguishing the OO paradigm from the fun
tional programmingparadigm is through whi
h
onstru
ts are �rst-
lass. Where obje
ts are �rst-
lass
it-izens in an obje
t-oriented language and thus
an be treated as data, fun
tions are�rst-
lass in fun
tional programming. Therefore, a fun
tion
an be an argument of afun
tion, returned by a fun
tion, or an element of a data stru
ture.Fun
tions that either take fun
tions as arguments or return a fun
tion as a result are
lassi�ed as higher-order fun
tions or fun
tionals. They provide a signi�
ant glue forbuilding programs in the fun
tional programming paradigm. Fun
tions with multiplearguments
an be modelled in a
urried form where they take their arguments one at atime. The un
urried form typi
ally presents the arguments in a tuple. Curried fun
tions
an be partially applied to return a new fun
tion. These fun
tions
an either be
reatedat
ompile time or at run time. The fun
tions
urriedPlus and un
urriedPlus illus-trate these two forms, and plus5 is a fun
tion
reated through the partial appli
ationof the fun
tion
urriedPlus to the argument 5.
urriedPlus :: Int -> Int -> Int
urriedPlus m n = m + n

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 41un
urriedPlus :: (Int,Int) -> Intun
urriedPlus (m,n) = m + nplus5 :: Int -> Intplus5 =
urriedPlus 5Fun
tions that take fun
tions as arguments model
ommon patterns of
omputa-tion between several �rst-order fun
tions. For example, the fun
tions doubleList andtrebleList multiply every integer in a list by two and three respe
tively. They
an berepla
ed by a single higher-order fun
tion applyArithList whi
h takes an arithmeti
fun
tion as its �rst argument, a list of integers as its se
ond argument and returns thelist where the fun
tion has been applied to ea
h element.applyArithList :: (Int -> Int) -> [Int℄ -> [Int℄applyArithList f ls = map f lsFun
tionals are not unique to the fun
tional programming paradigm but are imple-mented more naturally than in non-fun
tional languages. For example, in C one
anindire
tly use fun
tional arguments through pointers, and Pas
al supports fun
tionalarguments of a simple kind but not fun
tional results. In obje
t-oriented languageswhere obje
ts not fun
tions are �rst-
lass, there are various me
hanisms for mimi
ingfun
tions as arguments. These in
lude: applying methods to fun
tion obje
ts (obje
tswith no state and a single method); applying methods to obje
ts with an overloadedparenthesis operator (in C++); taking advantage of impurities in
ertain languages andusing templates/generi
s; and, by using stati
 methods (in
lass-based languages) whi
h
an be
alled without referen
e to an obje
t.Hutton's paperHigher-order fun
tions for parsing [59℄ presents a
olle
tion of higher-order fun
tions (or
ombinators) whi
h are used to build parsers through the
ombi-nation of existing parsers. More re
ently Hutton and Meijer have re-implemented the
ombinators using monads [60℄ to whi
h we will refer in Se
tion 3.2.4. Through a
ol-le
tion of
ombinators su
h as then, alt and using whi
h
orrespond to sequen
ing inBNF, alternation in BNF, and the f: : :g operator in Ya

, and a
olle
tion of primitiveparsers whi
h amongst other things represent su

ess and failure, one
an qui
kly buildre
ursive des
ent parsers whi
h are both simple to understand and easy to modify. This

42 CHAPTER 3. FUNCTIONAL PROGRAMMINGis not the
ase with parsers developed using imperative or OO languages.We illustrate parser
ombinators below. The fun
tions are written in Haskell ratherthan Miranda1 as used in Hutton's paper.type Parser a = String -> [(a,String)℄alt :: Parser a -> Parser a -> Parser ap1 `alt` p2 = \ inp -> p1 inp ++ p2 inpthen :: Parser a -> Parser b -> Parser (a,b)p1 `then` p2 inp = \ inp -> [((v1,v2), out2)| (v1, out1) <- p1 inp,(v2, out2) <- p2 out1℄using :: Parser a -> (a -> b) -> Parser bp `using` f = \ inp -> [(f v, out) | (v, out) <- p inp℄The �rst line of the
ode de
lares the type Parser whi
h is parameterised over thetype of result values. In Hutton's paper the parser type was parameterised over theinput value type as well. A parser is a fun
tion that takes a
olle
tion of input tokens(as a string of
hara
ters) and returns a list of `parsed input/un
onsumed input' pairsas results. A list of results is returned so as to deal with an ambiguous underlyinggrammar.The
ombinator approa
h to parser generation di�ers from that of parser generatorssu
h as Lex and Ya

 [2℄ and Happy [50℄, in o�ering an extensible rather than a �xed setof
ombinators for des
ribing grammars. Another example of a
ombinator approa
h tofun
tional development is des
ribed by Walla
e and Run
iman [144℄ who have developeda toolkit of
omponents for pro
essing XML do
uments in Haskell whi
h in
ludes a setof
ombinators for s
ripting stylesheets and a set of sele
tion
ombinators.Any fun
tional analysis and design methodology must both en
ourage and supportthe development of higher-order fun
tions. FAD's modelling language in
ludes a graph-i
al representation for
urried fun
tions and supports fun
tion development through the1Miranda is a trademark of Resear
h Software Ltd

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 43

Figure 4: Higher-order Development
partial appli
ation of a fun
tion to an in
omplete set of arguments (see Se
tion 5.4.3).In addition, one is en
ouraged to use permissive signatures to dis
over higher-orderfun
tions. A permissive signature provides a spe
i�
ation of fun
tions de�ned over anasso
iated type. It does not provide an interfa
e to a type, but rather a guaranteethat the fun
tions spe
i�ed are de�ned over the type. Permissive signatures are fullydes
ribed in Se
tion 5.2.3, but we brie
y illustrate their use with the fun
tions sumand produ
t. Ea
h fun
tion takes a list of integers and return their sum and produ
trespe
tively. Both fun
tions require the elements in their argument lists to be
ombinedusing an arithmeti
 operator. That is, they both require that `folding' behaviour besupported by the list type. One
an make this
ommon pattern of behaviour expli
itthrough the asso
iation of a permissive signature - in this
ase FOLD - with the listtype. This is illustrated by the FAD representations of the fun
tions sum and produ
tin Figure 4.Although this does not guarantee that a higher-order fun
tion would be appropriate,it
ertainly signals that it is a possibility. See Chapter 5 for full details on FAD'smodelling language and graphi
al notation, and Se
tion 7.3.3 for a fuller des
ription ofthis approa
h to the dis
overy of potential higher-order fun
tions.Thusfar the fun
tional programming features des
ribed have been largely fun
tion-oriented. The last ubiquitous feature whi
h we believe has a signi�
ant in
uen
e onsoftware development is the support for user-de�ned types.

44 CHAPTER 3. FUNCTIONAL PROGRAMMING3.1.5 User-De�ned TypesEvery modern fun
tional language provides a wealth of built-in types. These in
ludebase types su
h as the type of
hara
ters and the Boolean values, and various
ompositetypes su
h as tuple types and fun
tion types. However the languages in the paradigmalso provide the developer with me
hanisms for developing new types. The predominantme
hanism is through the de
laration of algebrai
 types.Algebrai
 TypesAlgebrai
 types are a single me
hanism for the
reation of various forms of types thatwould otherwise have to be delivered through separate me
hanisms. These in
lude, sumtypes whi
h have alternative domains and produ
t types whi
h are types with multiple
omponents. They are
alled `algebrai
' sin
e they are examples of term (or initial)algebras whose elements are uniquely
reated through a set of value
onstru
tors. Herewe must make a distin
tion between value
onstru
tors whi
h
onstru
t values of a type,and type
onstru
tors whi
h
onstru
t types. In Haskell, algebrai
 types are de
laredusing the keyword data, and introdu
e a new type
onstru
tor su
h as TC, and one ormore new value
onstru
tors, VC1, VC2 and so on.data TC tv1 ... tvk = VC1 t11 ... t1m | ... | VCn tn1 ... tnpA type
onstru
tor
an take zero or more parameters made expli
it by the type vari-able(s) whi
h follow its name. We have represented these as tv1, tv2 and so on. Ea
hvalue
onstru
tor may take one or more parameters, whi
h in ea
h
ase will either atype variable used by the type
onstru
tor or a type. We have named these t11 to tnp.For example, the algebrai
 sum type IntOrFloat, in
ommon with the built-in typesInt and Char, is a nullary type
onstru
tor sin
e it takes no parameters. Its values are
onstru
ted by applying the unary value
onstru
tor ConsInt to an Int value, or theunary value
onstru
tor ConsFloat to a Float value. anIntValue and aFloatValueare both values of type IntOrFloat.data IntOrFloat = ConsInt Int | ConsFloat FloatanIntValue = ConsInt 3aFloatValue = ConsFloat 3.0

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 45data Days = Sunday | Monday | Tuesday | Wednesday|Thursday | Friday | Saturdaydata ThisOrThat a b = This a | That bdata Tree a = EmptyTree | Node a (Tree a) (Tree a)Figure 5: Algebrai
 TypesFor the remainder of this thesis, to ease exposition, we will refer to nullary type
onstru
tors simply as types and non-nullary type
onstru
tors as type
onstru
tors.The algebrai
 type me
hanism also supports� enumerated types through the de
laration of a set of nullary value
onstru
tors.This is illustrated in Figure 5 with the type Days;� parameterised types. These are types that are
reated through the appli
ation ofa type
onstru
tor to one or more parameters. Ea
h type
onstru
tor has a kindwhi
h spe
i�es the number and form of parameters of the type
onstru
tor. Thatis, a kind is to type
onstru
tors what a type is to fun
tions [66℄. Using Jones'notation [66℄, all types have the kind *, and the kind �1 ! �2 represents type
onstru
tors that take an entity of kind �1 and returns one of kind �2. This isillustrated in Figure 5 with the parameterised type ThisOrThat a b whose type
onstru
tor ThisOrThat takes two parameters of any, and possibly di�ering, types.For example, values of the type ThisOrThat Int Bool are
reated through theappli
ation of the unary value
onstru
tors This and That to Int and Bool valuesrespe
tively. The
onstru
tor ThisOrThat has kind * -> * -> *;� re
ursive types whi
h are des
ribed in terms of themselves. This is illustrated inFigure 5 with the type Tree a.Fun
tions over an algebrai
 type that have value-dependent behaviour are mostnaturally de�ned using pattern mat
hing. A
tual arguments are mat
hed against anargument pattern presented in a fun
tion de�nition, and if su

essful the asso
iatedexpression is evaluated. If the mat
h fails, the next argument pattern is
he
ked and soon. For example, the polymorphi
 fun
tion zeroOrOne takes a value of type ThisOrThat

46 CHAPTER 3. FUNCTIONAL PROGRAMMINGa b and returns 0 if the value is
onstru
ted using the value
onstru
tor This and 1otherwise. That is:zeroOrOne :: ThisOrThat a b -> IntzeroOrOne (This _) = 0zeroOrOne (That _) = 1The unders
ore is the wild
ard pattern that
an be used when a part of a pattern is notused in the body of the fun
tion de�nition.Clearly pattern-mat
hing requires that the fun
tion has a

ess to the implementationof the type, whi
h results in tight
oupling between the fun
tion and type. This is poormodular design, sin
e any
hange in the type implementation will require a
hange tothe fun
tion de�nition. A modular approa
h built on information hiding is a
hieved byusing abstra
t data types whi
h we des
ribe in the following se
tion.Abstra
t Data TypesAbstra
t data types support a separation of a type's interfa
e from its implementation.They are a me
hanism for de
oupling a type and its
lients. An abstra
t data type isa type with an expli
it
olle
tion of operations de�ned over the type. These operationsare spe
i�ed in the interfa
e to the type. Thus one
an only use values of the typeby using one of its interfa
e operations. One
an then reimplement the type and itsoperations with the interfa
e remaining
onsistent for any existing or future
lient.Abstra
t data types are therefore integral to the modular development of fun
tionalprograms. It is therefore essential that they are both supported in any fun
tionalmodelling language, and play a predominant role in the methodology. The me
hanism(s)for the implementation of abstra
t data types is language-spe
i�
. Many fun
tionallanguages use modules as the type host, whi
h is a

ompanied by a restri
tive interfa
e.We des
ribe modules in fun
tional languages in Se
tion 5.3.1. We present here a briefoverview of the various me
hanisms for implementing abstra
t data types (ADTs).Miranda uses the keyword abstype to de
lare su
h a type, whi
h is followed by thetype's identi�er and interfa
e, whi
h is presented as a
olle
tion of type spe
i�
ations.SML has both a keyword and a means of abstra
ting the
ontents of a stru
ture throughan opaque signature. Any types de
lared in su
h a stru
ture will be
ome abstra
t due

3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 47to the asso
iated signature. The signature provides full synta
ti
 details regarding ea
hof its entities. Haskell supports ADTs through its module system. A module exportlist that in
ludes a type without its value
onstru
tors de
lares the type as abstra
t.However the type's operations are simply named without any type spe
i�
ation. Cleandelivers ADTs through their de�nition modules, whi
h are similar to SML's signaturesex
ept that ea
h implementation module
an be asso
iated with only one de�nitionmodule.Abstra
t data types are essential to the development of a modular system, whose
omponents
an be modi�ed, reused, and maintained, in an eÆ
ient and e�e
tive man-ner. FAD supports abstra
t data types through the assigning of a type to a module,and asso
iating an ex
lusive signature with the module. An ex
lusive signature is a
olle
tion of entity spe
i�
ations whi
h, when asso
iated with a module whi
h hoststhe entities, a
ts as an interfa
e to the module. That is, a
lient of the module hasa

ess only to those entities spe
i�ed in the ex
lusive signature whi
h mediates use ofthe module by the
lient. One
an impose abstra
tion on a type by hosting it in amodule whose
lients have no knowledge of how the type is
onstru
ted. That is, thetype is spe
i�ed in an ex
lusive signature E but its
onstru
tor signature is absent. A
onstru
tor signature is a permissive signature whi
h spe
i�es the value
onstru
tors ofa type. This example highlights the di�ering roles of the two forms of signature providedby FAD. An ex
lusive signature provides an interfa
e to a
onstru
t whi
h hosts variousde
larations, whereas a permissive signature de
lares a minimal set of operations overone or more types.A type is therefore not abstra
t by default, but instead
an have abstra
tion imposedwhen used by an entity of another module.The module Abstra
tTypeModule hosts the type ThisOrThat a b but only exportsits type
onstru
tor and not its value
onstru
tors. Thus any entity of another modulewhi
h uses the type, uses it as an abstra
t type via the operations spe
i�ed in the exportlist that follows the module name in parentheses. In this example, the type
onstru
torThisOrThat is a

ompanied by two sele
tion fun
tions get1 and get2. In FAD, theexport list will be modelled as an ex
lusive signature.module Abstra
tTypeModule (ThisOrThat, get1, get2) wheredata ThisOrThat a b = This a | That b

48 CHAPTER 3. FUNCTIONAL PROGRAMMINGget1 :: ThisOrThat a b -> aget1 (This x) = xget1 _ = error "Inappropriate appli
ation"get2 :: ThisOrThat a b -> bget2 (That x) = xget2 _ = error "Inappropriate appli
ation"The development of module (and subsystem) ar
hite
tures and the development ofasso
iated ex
lusive signatures are integral to the FAD methodology. Full details ofmodules, ex
lusive signatures and abstra
t data type support are provided in Chapter5. The methodology is des
ribed in Chapter 7.In the following se
tion we dis
uss features whi
h are
ommon to signi�
ant subsetsof fun
tional programming languages, but are also important in in
uen
ing the way onedevelops fun
tional programming software. The se
tion begins with a very brief s
an ofthe di�ering
hara
teristi
s of modern fun
tional programming languages.
3.2 Other FeaturesFun
tional programming languages are
hara
terised in various ways. For example,Haskell, Miranda and Gofer [65℄ are pure, non-stri
t, sequential languages. ML is animpure, stri
t, sequential language. Erlang and Clean [106℄ are
on
urrent languagesthat are impure, stri
t and pure, non-stri
t respe
tively. All of these languages de-liver the fun
tional programming features des
ribed in Se
tion 3.1. Impure languagesalso support features typi
ally asso
iated with imperative languages su
h as variableassignment. FAD does not support impure features.Although FAD des
ribes software models whi
h may be implemented using anyfun
tional language, a signi�
ant minority of fun
tional programming languages supportnon-stri
t semanti
s through lazy evaluation, whi
h en
ourages a parti
ular approa
hto program design and development. The following se
tion provides a review of lazinessand its impa
t on software development.

3.2. OTHER FEATURES 493.2.1 LazinessProgramming languages are initially
lassi�ed �rst through the (predominant) paradigmthey support, and then by their type-
he
king approa
h. Fun
tional languages are fur-ther
lassi�ed as either stri
t or non-stri
t. Languages with stri
t semanti
s, supportedby eager evaluation (or
all-by-value redu
tion), for
e the full evaluation of all argu-ments. In
ontrast, those with non-stri
t semanti
s delivered through lazy evaluation(or
all-by-need redu
tion), only require those arguments that are needed in the fun
tionbody expression to be evaluated [97℄. That is, every argument is evaluated exa
tly on
ein stri
t languages, and at most on
e in non-stri
t languages. When both approa
heslead to termination the values returned will be identi
al. However there are simpleexamples that will not terminate when using eager evaluation, su
h as the appli
ationof the fun
tion fst - whi
h sele
ts the �rst element of a pair - to a pair whose se
ondelement is unde�ned.fst :: (a,b) -> afst (x,_) = xf = fst (True, 1/0)Sin
e the fun
tion fst only uses the �rst element of a pair on the right hand side ofthe de�nition, the se
ond element will not be evaluated when using lazy evaluation.Thus f will evaluate to True. With eager evaluation, both parts of the pair need to beevaluated, and hen
e, f would be unde�ned.Lazy evaluation distinguishes most pure fun
tional languages from imperative lan-guages and most obje
t-oriented languages. Programs written in those languages oftenrely on side e�e
ts, whi
h are intimately linked to evaluation order and thus requirestri
t semanti
s where evaluation order is
lear. Lazy evaluation is e�e
tively `demanddriven evaluation', and hen
e it is more diÆ
ult to predi
t evaluation order, and there-fore harder to predi
t when side e�e
ts will take pla
e.Lazy evaluation supports programming with in�nite data stru
tures, su
h as in�nitelists, through enabling partial evaluation of a data stru
ture. For example, the higher-order fun
tion filter takes a predi
ate and a list and returns those elements of the(possibly in�nite) list that satisfy the predi
ate. The higher-order fun
tion take takes

50 CHAPTER 3. FUNCTIONAL PROGRAMMINGan integer n and a list and returns the �rst n elements of the list. If filter even is
omposed (denoted .) with take 2, the resulting fun
tion will return the �rst 2 evennumbers in a list.first2Even :: [Int℄ -> [Int℄first2Even xs = (take 2 . filter even)With lazy evaluation one only evaluates as mu
h of the list as is required to return 2 evennumbers. Thus as ea
h even number is
on�rmed, it is outputted until 2 numbers arereturned. That is, if we apply first2Even to the in�nite list of positive integers, denoted[1..℄, evaluation pro
eeds as follows where `;' indi
ates a step of the
al
ulation.first2Even [1..℄ ; (take 2 . filter even) [1..℄; (take 2 . filter even) [2..℄; 2 : (take 1 . filter even) [3..℄; 2 : (take 1 . filter even) [4..℄; 2 : 4 : (take 0 . filter even) [5..℄; 2 : 4 : [℄; [2,4℄Laziness has enabled a modular design where there is a separation of value generationand value use. One is therefore able to adopt a software development approa
h wherebehavioural requirements are delivered by separate entities that
an be independentlydeveloped and maintained.3.2.2 OverloadingAll modern fun
tional languages support parametri
 polymorphism. However re
entdevelopments within several languages deliver support for the middle ground betweenmonomorphism and polymorphism. The motivation for this development is that thereare many examples where monomorphism is too restri
tive and polymorphism is toogeneral. For example, the fun
tion sum of Se
tion 3.1.4
ould be given a monomorphi
type sum :: [Int℄ -> Int

3.2. OTHER FEATURES 51whi
h disallows appli
ation to lists of other numeri
 values. Alternatively we
ould giveit the typesum :: [a℄ -> athat suggests that the fun
tion
an be applied to a list of non-numeri
 values, whi
h is
learly not the
ase.The OO language Ei�el provides
onstrained generi
ity to solve this problem of
on-strained parametri
 polymorphism [84℄. Whereas un
onstrained generi
ity allows anya
tual parameter to be bound to the formal parameter of a generi

lass de
laration,
onstrained generi
ity requires the parameter to be of a stated
lass or one of its sub-
lasses. Thus one
an guarantee that a required behaviour is supported by any potentialinstan
e obje
t.A
olle
tion of fun
tional languages, su
h as Haskell and Clean, have resolved thisdilemma through supporting
onstrained polymorphism via type and
onstru
tor
lasses.A type
lass is a
olle
tion of types. Type
onstru
tors of the same kind
an be
olle
tedin
onstru
tor
lasses. Current language support is largely restri
ted to single parameter
lasses, multiple parameter
lasses whi
h
olle
t asso
iated type
onstru
tors of theappropriate kinds are supported, for example, by Hugs98.Ea
h type or
onstru
tor
lass spe
i�es a
olle
tion of entities with their type spe
-i�
ations. A type or type
onstru
tor instantiates a
lass when ea
h spe
i�ed entity ismat
hed by one of the same name de�ned over the type
onstru
tor, and with a typethat is an instan
e of that spe
i�ed in the
lass. Thus one may overload fun
tion andvalue names in a
ontrolled manner using this me
hanism.The type
lass ZeroOne spe
i�es the fun
tion zeroOne whi
h takes a value of aninstantiating type and returns either 0 or 1. The
onstru
tor
lass EmptyOrNot spe
i�esthe fun
tion emptyOrNot, whi
h takes a value of an algebrai
 type whose type
onstru
-tor has the kind * -> * and returns 0 if it is `empty' and 1 otherwise. The types Intand Bool instantiate the type
lass ZeroOne, and the type
onstru
tors [℄ (the list type
onstru
tor), and Tree instantiate the
onstru
tor
lass EmptyOrNot.
lass ZeroOne t wherezeroOne :: t -> Intinstan
e ZeroOne Int where

52 CHAPTER 3. FUNCTIONAL PROGRAMMINGzeroOne i| even i = 0| otherwise = 1instan
e ZeroOne Bool wherezeroOne False = 0zeroOne _ = 1
lass EmptyOrNot
 whereemptyOrNot ::
 a -> Intinstan
e EmptyOrNot [℄ whereemptyOrNot [℄ = 0emptyOrNot _ = 1instan
e EmptyOrNot Tree whereemptyOrNot EmptyTree = 0emptyOrNot _ = 1In
ommon with types, the languages that support type
lasses provide built-in
lassesand enable the user to de�ne new
lasses, extend existing
lasses, or instantiate ex-isting
lasses. A type/
onstru
tor
lass presents an interfa
e that is implemented byany type/type
onstru
tor that instantiates the
lass. For example, all numeri
al typesinstantiate the (single parameter) type
lass Num's interfa
e that in
ludes various arith-meti
 operations and numeri
 fun
tions. We present the
lass in an elided form belowfollowed by a
olle
tion of instantiations.
lass (Eval a, Show a, Eq a) => Num a where(+) :: a -> a -> a(-) :: a -> a -> a(*) :: a -> a -> anegate :: a -> a-- instan
es:instan
e Num Intinstan
e Num Integerinstan
e Num Float

3.2. OTHER FEATURES 53instan
e Num DoubleThe
lass Num extends the interfa
es of the
lasses Eval, Show and Eq, and is instantiatedby the types Int, Integer, Float, and Double. We
an now de
lare sum as follows:sum :: Num a => [a℄ -> asum = foldl (+) 0where the
ontext Num a => states that the type variable a is
onstrained to range overtypes that belong to the type
lass Num. sum
an be applied to a list of values of a typein the type
lass Num. The version of the addition operator used is determined by thetype of values in the list.Constru
tor
lasses support higher-order polymorphism or the appli
ation of fun
-tions uniformly over (potentially) all type
onstru
tors of a parti
ular kind [66℄. Forexample, the
onstru
tor
lass Fold spe
i�es folding behaviour through a
olle
tion offun
tions. The
lass has a single parameter of kind * -> *, and thus
an be instantiatedby unary type
onstru
tors su
h as the list
onstru
tor [℄.
lass Fold f whereffoldl :: (a -> b -> a) -> a -> f b -> affoldl1 :: (a -> a -> a) -> f a -> affoldr :: (a -> b -> b) -> b -> f a -> bffoldr1 :: (a -> a -> a) -> f a -> aNow we
an de
lare a fun
tion sumC that sums the numeri
 values
ontained in anydata stru
tures built using an instantiating type
onstru
tor. The version of ffoldlused depends on the argument type of the fun
tion.sumC :: (Fold
, Num a) =>
 a -> asumC = ffoldl (+) 0In
on
lusion, type/
onstru
tor
lasses deliver a methodi
al approa
h to fun
tionname overloading. They provide a me
hanism for asso
iating a
olle
tion of types ortype
onstru
tors that support some spe
i�ed behaviour, whi
h is typi
ally indi
ated bythe name of the
lass. We
an regard
onstrained polymorphism as a natural generalisa-tion of polymorphism, where polymorphism is simply un
onstrained use of the general

54 CHAPTER 3. FUNCTIONAL PROGRAMMING
ase. That is, where polymorphism delivers abstra
tion over any type,
onstrainedpolymorphism requires the types to support some spe
i�ed behaviour.FAD represents type and
onstru
tor
lasses through permissive signatures. How-ever, a permissive signature does not have to be implemented as a type or
onstru
tor
lass. Permissive signatures indi
ate that a type must support some stated behaviouror that a fun
tion requires a
ertain behaviour over one of its types. Whether theimplementation involves overloaded fun
tions and type
lasses will depend both onthe implementation language and other design de
isions. A full des
ription of FAD'spermissive signatures is presented in Se
tion 5.2.3, and the development of permissivesignatures to support fun
tions and type development is des
ribed in Se
tion 7.3.1.3.2.3 Modular DevelopmentModern fun
tional languages, in
ommon with their obje
t-oriented
ounterparts, pro-vide signi�
ant support for modular development. `Modularity-in-the-small' is a
hievedthrough building programs using small single-purpose fun
tions, and where possibletaking advantage of the non-stri
t semanti
s of a language. In this se
tion we des
ribethe various language-spe
i�
 me
hanisms for supporting `modularity-in-the-large'.SML provides signi�
ant support for modular programming. It has separate
on-stru
ts for module implementation, stru
tures, and module interfa
e, signatures, whi
henables reuse either through atta
hing various signatures to a single stru
ture or as-so
iating a single signature with multiple stru
tures. Ea
h SML stru
ture provides adefault signature, everything in the stru
ture, whi
h is overridden by any expli
it signa-ture asso
iation. SML's signatures provide detailed synta
ti
 information for potentialusers of an asso
iated module, and type abstra
tion
an be a
hieved through assigningan opaque signature to a stru
ture. SML's modules are not �rst
lass but are supportedby an extension of the
ore language. However they
an be used to
reate new moduleseither simply through
ontainment or through the appli
ation of fun
tors to existingmodules. These parameterised modules are also part of the extended language.Haskell's modules are largely used as a name spa
e
ontrol me
hanism. Implemen-tation and interfa
e details are provided by the same entity, whose export list namesthose entities that are available to any potential
lient. This list is devoid of any typesignatures. A module's interfa
e
an also be de
lared when the module is used, but

3.2. OTHER FEATURES 55is
onstrained by the interfa
e de
lared by the module. Haskell's module system alsoprovides a means of
reating abstra
t types by spe
ifying a type
onstru
tor withoutits value
onstru
tors in a module export list.We illustrate the Haskell module system with two simple modules Exp and Imp. Expin
ludes a de
laration of a type
lass ExpTC, a data type ExpT, and an instantiation ofthe type
lass. All of these entities are in the interfa
e of the module in
luding the value
onstru
tors Con1 and Con2 of the data type. Thus the data type ExpT is not abstra
twhen used by any
lient of the module Exp. Module Imp imports the type
lass ExpTCfrom the module Exp and de
lares a data type ImpT whi
h instantiates the importedtype
lass. The type is abstra
t to any
lient sin
e it is presented in the export listwithout its value
onstru
tors.module Exp (ExpTC, ExpT(Con1, Con2), expFun) wheredata ExpT = Con1 Int | Con2 Bool deriving Show
lass ExpTC a whereexpFun :: a -> ainstan
e ExpTC ExpT whereexpFun = idmodule Imp (ImpT, expFun,
reateImpT) whereimport Exp(ExpTC, expFun)data ImpT = Con (Int,Bool) deriving Show
reateImpT = Con (0,True)instan
e ExpTC ImpT whereexpFun = idNi
klis
h and Peyton Jones [90℄ des
ribe how SML's substantive support for modu-larity
an be largely expressed in Haskell using its module system.Clean also provides a robust environment for modular programming whi
h is similarto that of Modula-2 [146℄, where module implementation and module interfa
e areprovided by distin
t
onstru
ts, an implementation module and a de�nition module,but ea
h implementation has at most one interfa
e. Clean's module-based abstra
tionsupport is similar to that of Haskell.

56 CHAPTER 3. FUNCTIONAL PROGRAMMINGAlthough Miranda does not have an expli
it module
onstru
t, modules are deliveredthrough Miranda s
ripts (�les). That is, a Miranda s
ript
an be viewed as a module.The Miranda %export dire
tive provides interfa
e
ontrol whi
h is used when a s
riptis imported into a
lient s
ript. That is, modular development in Miranda is supportedby de�ning program entities in di�erent s
ripts, and enabling reuse through the lan-guage's �le import/export me
hanism. Miranda also supports parameterised s
riptswhere de�nitions rely on information provided when the s
ript is used by a
lient s
ript.FAD's modelling language in
ludes the ma
ro units subsystem and module. Theseunits support a hierar
hi
al approa
h to managing the development of a large system.A system
an be divided into several subsystems whi
h are developed independentlybut to known requirements. A subsystem is further divided into several modules ea
hof whi
h should be a
ohesive unit with a
lear, spe
i�
 purpose. External a

ess to asubsystem's or module's entities is mediated through an ex
lusive signature asso
iatedwith the host ma
ro unit. Des
riptions of FAD's ma
ro units, ex
lusive signatures, andthe various relationships between units are presented in Chapter 5.In
on
lusion, obje
t-oriented software development as des
ribed in Chapter 2 isguided by modularity. That is, modularity drives fun
tionality. The reverse is true in thefun
tional paradigm and therefore when developing using FAD. One �rst des
ribes thefun
tional requirements of a system and then builds a modular system whi
h supportsthem in as e�e
tive and eÆ
ient manner as possible. The main reason for this is thatin an OO system, obje
ts (or modules) are �rst-
lass and are therefore the fundamentalbuilding blo
k upon whi
h a system is developed. Fun
tional programming has �rst-
lass fun
tions, and modules are used to aid the management of development.In the �nal se
tion we des
ribe the re
ent in
uen
e thatmonads have had on softwaredevelopment within the fun
tional programming paradigm.3.2.4 MonadsMonads are a re
ent addition to the fun
tional programmers' toolbox. They en
ouragea stru
tured and sequential approa
h to program development, and have resulted ina new approa
h to intera
tive programming in pure, non-stri
t, fun
tional languages[139, 138, 140, 103℄.

3.2. OTHER FEATURES 57Although monads have their roots in
ategory theory where they are sometimes re-ferred to as triples, one does not have to be a
ategory theorist either to understandtheir stru
ture or to pra
tise their use. For the purposes of fun
tional programming,the simplest view of a monad is as a unary type
onstru
tor (
ommonly
alled m) a
-
ompanied by a pair of polymorphi
 fun
tions. One fun
tion (variously
alled unit,unitM, return, or result) takes a value of a parti
ular type, and
reates an item of themonadi
 type. The other fun
tion (variously
alled bind, bindM, then, (>>=), or (*))takes an item of the monadi
 type and a fun
tion from a value (wrapped in the �rstmonadi
 type) to another monadi
 type, and returns an item of the se
ond monadi
type. From now on we will view a monad as the triple (m, return, (>>=)), wherereturn and (>>=) have the following type spe
i�
ations:return :: a -> m a(>>=) :: m a -> (a -> m b) -> m bHaskell 98 provides a monad
onstru
tor
lass that in
ludes additional fun
tion spe
i�-
ations to those presented above.Another des
ription of a monad is as a type of
omputations so that m a is thetype of
omputations (of a
ertain sort) of values of type a. With this view in mind,return turns a value into the
omputation that simply returns the value. (>>=) takesa
omputation whi
h returns a value of type a, extra
ts the value returned by the
omputation, and applies the se
ond (fun
tional) argument to this value whi
h returnsa
omputation that returns a value of type b. In essen
e programming with monadsrepla
es fun
tions from values to values by fun
tions from values to
omputations, wherethe notion of a
omputation has several di�erent interpretations su
h as one that doessome I/O.Monadi
 I/O is part of the Haskell language de�nition, and
ompares favourablyto the other fun
tional I/O alternatives, dialogues or
ontinuations [53℄. Peyton Jonesand Wadler des
ribe how the type IO a integrates the fun
tional world with the non-fun
tional world (pure and impure) [103℄. The fun
tional world is all about being , inthat an expression in a fun
tional language denotes a value. In
ontrast, the imperativeworld in whi
h IO more naturally sits, is about doing , and an IO
ommand shouldperform an a
tion. Thus the type IO a in the words of Peyton Jones and Wadler

58 CHAPTER 3. FUNCTIONAL PROGRAMMINGdenotes a
tions that, when performed , may do some I/O and then returnsome value of type a.One of the main design impli
ations of monad use is that it en
ourages en
apsulationand programming through an (monad) interfa
e. En
apsulation prevents any
hangesto
ode from having a rippling e�e
t through the software, and simple interfa
es makeexpli
it how one
an
ombine program
omponents. Monadi
 development enfor
es aparti
ular evaluation strategy that is sequential in nature. For any fun
tion de�ned overa `monadi
' datatype - a datatype with asso
iated monad
ombinators - the
omputationwill be sequential and guided by the
ombinators (>>=) and return. That is, oneabstra
ts over the
omputation as opposed to the more
ommon approa
h of abstra
tingover the parti
ular data representation.We present two illustrative examples. The �rst is the fun
tion exIO whi
h illustratesmonadi
 I/O that looks very similar to the
ode one would write in an imperativelanguage like C [72℄. The se
ond example presents the fun
tion allSquarePlusOnewhi
h takes a list of integers, ea
h of whi
h is squared and then in
remented.exIO :: IO ()exIO = getChar >>= \
1 ->getChar >>= \
2 ->putChar
2 >>= \ _putChar
1allSquarePlusOne :: [Int℄ -> [Int℄allSquarePlusOne xs= xs >>= \ x ->return (square x) >>= \ y ->return (y+1)getChar and putCharmimi
 the C fun
tions getC and putC, and exIO
learly illustratesthe sequential nature of fun
tions de�ned using monads. That is, exIO:takes a
hara
ter from the standard input and binds it to
1. It then takes another
hara
ter from the standard input and binds it to
2.
2 is then sent to the standard outputand the non-existent result bound to a wild
ard. Finally
1 is sent to the standard output.

3.3. SUMMARY 59
Figure 6: Monadi
 Fun
tionThe design of exIO is very similar to the design one would use in an imperativelanguage like C. This is an ex
ellent illustration of one of the main bene�ts of monads:the ability to mimi
 impure features without losing all the bene�ts of pure, non-stri
t,fun
tional programming su
h as referential transparen
y, higher-order fun
tions andlazy evaluation. In addition, quite disparate fun
tions
an be des
ribed using the same
omputational abstra
tion.As with other forms of en
apsulation, modi�
ation of
ode
an be a
hieved relativelypainlessly, and more importantly, lo
ally. A large s
ale example of monadi
 softwaredesign is the Glasgow Haskell
ompiler, itself written in Haskell. The
ompiler usesmonads for various bookkeeping tasks, and when the type
he
ker needed to be updatedto maintain information about the
urrent line number, this was not an onerous task[104℄.FAD supports monadi
 development through a permissive signature MONAD whi
hspe
i�es the monadi

ombinators. Thus allSquarePlusOne is represented in FAD asin Figure 6.3.3 SummaryIn this
hapter we have des
ribed an approa
h to software development whi
h is sig-ni�
antly di�erent to that pra
tised in other paradigms. We des
ribed the following
onstru
ts whi
h have a signi�
ant impa
t upon software development in the fun
tionalprogramming paradigm:� fun
tions are the fundamental building blo
ks of the paradigm. Their outputdepends solely on their input;

60 CHAPTER 3. FUNCTIONAL PROGRAMMING� types are sets of values that provide guidan
e through all the stages of softwaredevelopment. They make expli
it the values that are a

eptable as arguments fora fun
tion, and those that will be returned by a fun
tion;� type
onstru
tors
onstru
t the aforementioned types. They may take one ormore arguments to
onstru
t a type. Type
onstru
tors
an be
ategorised bytheir kind whi
h spe
i�es the number and form of parameters required by thetype
onstru
tor;� value
onstru
tors
onstru
t values of a type. They also may take one or morearguments;� every fun
tional programming language provides support for the development ofuser de�ned types through the algebrai
 type me
hanism. A new type is
reatedthrough the de
laration of a new type
onstru
tor and its asso
iated (new) value
onstru
tors;� abstra
t types are types whose
onstru
tion details - value
onstru
tors - are in-visible to potential
lients;� parametri
 polymorphism is the predominant form of polymorphism supported bythe paradigm. It enables a fun
tion to be reused over several types;� permissive signatures are FAD units (fully des
ribed in Se
tion 5.2.3) that spe
ifyentities that are de�ned over an asso
iated type(s). They provide a behaviouralguarantee for an asso
iated type and
an be implemented as type or
onstru
tor
lasses in
ertain languages. A permissive signature is not an interfa
e to a typebut rather states the minimum fun
tionality de�ned over the type; and,� ex
lusive signatures, whi
h are also FAD units (fully des
ribed in Se
tion 5.3.3)that spe
ify an interfa
e to an asso
iated ma
ro unit su
h as a module. Wherea permissive signature states at least this, an ex
lusive signature state only this.They play an important rôle in developing software based on abstra
t types.Fun
tional programming is di�erent to other paradigms in that:� mutable variables are repla
ed by values;

3.3. SUMMARY 61� pro
edures and methods are repla
ed by fun
tions whose output depends only ontheir input; and,� en
apsulation for data prote
tion is repla
ed by en
apsulation for modularity.Thus software is developed through fun
tions that delegate their behaviour to simplefun
tions with a
lear singular purpose. That is, one is en
ouraged to develop fun
tionsusing simpler fun
tions that implement a required behaviour. How this behaviour isimplemented is not of interest to the
lient fun
tion. Large systems
an be built usingthe support for modularity-in-the-large. Abstra
t data types provide a me
hanism formodular design based on information hiding.A di�erent approa
h to software development requires a di�erent approa
h to mod-elling systems, whi
h in turn requires new modelling languages and methodologies. Inthe following
hapter we des
ribe methodologies and their languages, emphasising thebene�ts of their appli
ation. In Chapter 5 we des
ribe the modelling language of FAD,and in Chapter 7 the methodology and its te
hniques.

62 CHAPTER 3. FUNCTIONAL PROGRAMMING

Chapter 4
Analysis and DesignMethodologies
The previous two
hapters have des
ribed the obje
t-oriented and fun
tional program-ming paradigms with an emphasis on their di�erent approa
hes to software develop-ment. Chapter 2 also in
luded a brief overview of obje
t-oriented analysis and designmethodologies and how in
ombination with obje
t-oriented languages they
an delivera pa
kaged approa
h to software development. In this
hapter we present a des
riptionof analysis and design methodologies (ADMs) as a modelling language and set of in-tegrated te
hniques that deliver models using elements of the modelling language. InSe
tion 4.2 we outline the bene�ts of using an ADM within a software developmentproje
t. These in
lude using a language whose purpose is modelling problems and so-lutions rather than implementing them. In Se
tion 4.3 we will des
ribe the bene�ts ofadopting a pa
kaged approa
h where the ADM and implementation language are fromthe same paradigm.4.1 Analysis and Design MethodologiesSut
li�e [134℄ argues the
ase in favour of ADMs as follows:� Before building systems we have to understand them.� To understand systems we should make a model.63

64 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESAn analysis and design methodology is a medium for understanding a problem, mod-elling a solution, and managing and do
umenting software development. Ea
h method-ology is a
ombination of a modelling language, typi
ally with asso
iated graphi
alnotation, and a
olle
tion of integrated te
hniques whi
h support analysis and design.The development of large software systems requires three forms of management.Firstly, there are a
olle
tion of proje
t management tasks whi
h in
lude the generalmanagement of multiple development teams, ensuring that deadlines are met withinbudget, and that resour
es are available and a

essible. Se
ondly, do
umentation man-agement is integral to su

essful software development. System entities and de
isionsshould be do
umented and made available for
urrent and future referen
e. Finally thereis development management whi
h may involve the appli
ation of an in-house or nameddevelopment method. Within this thesis and with FAD, we will fo
us solely on the �naltwo forms of management sin
e proje
t management
an be delivered independently ofany parti
ular methodology.In the following two se
tions we present the essential elements of a methodology -its modelling language and te
hniques.4.1.1 Modelling LanguageEvery ADM has an asso
iated modelling language through whi
h systems are modelledand do
umented. In most
ases the modelling language will support both graphi
alrepresentations and textual des
riptions of its units and their intera
tions. Thus, stru
-tured methodologies su
h as SSADM [41℄ and SA/SD [37, 153, 152℄ have modellinglanguages whi
h deliver, for example, data
ow diagrams and logi
al data stru
tures.Every language unit, su
h as pro
ess, and data store, will have a
lear de�nition andasso
iated graphi
al representation. That is, most modelling languages, in
ommonwith implementation languages, have a de�ned syntax and semanti
s. Typi
ally thesemanti
s of a modelling language are des
ribed informally.The modelling languages asso
iated with OOADMs in
lude elements whi
h representthe OO building blo
ks -
lasses, obje
ts - and their various asso
iations. Ea
h des
rip-tion of a
lass in
ludes
lass responsibilities and details of asso
iations with other
lasses.Class do
umentation has similarities to CRC (Class,Responsibility,Collaboration)
ards[8℄ where one presents the
lass name, followed by a list of responsibilities and then any

4.1. ANALYSIS AND DESIGN METHODOLOGIES 65links to other
lasses in the system.A modelling language is spe
i�
ally used for modelling systems and not for im-plementing systems. Although one
an (partially) generate sour
e
ode using CASEtools su
h as Rational's Rose [33, 34℄, a modelling language should aid development ofan implementable solution, and not provide full details of a spe
i�
 implementation.Therefore a graphi
al modelling language is not a visual programming language su
h asPrograph [110℄, or Visual Haskell as put forward by Reekie in his thesis Realtime SignalPro
essing: Data
ow, Visual, and Fun
tional Programming [112℄. Modelling languagesare typi
ally smaller and semanti
ally less ri
h than their implementation language
ounterparts sin
e abstra
tions take pre
eden
e over detail. There are however bene�tsin having a
orresponden
e between the modelling language and potential implemen-tation language. This
orresponden
e is maximised when the modelling language andimplementation language are of the same paradigm.A modelling language is in essen
e an abstra
tion of an implementation language,where one fo
uses on the essential features of the paradigm whilst disregarding the ele-ments that are only required by an implementation language. Most graphi
al modellinglanguages do however support the embedding of either implementation language
odeor pseudo
ode into their models. For example, one typi
ally re
ords a method withina
lass using the syntax of an OO language. The te
hniques of a methodology take asinput and return as deliverables models developed using the modelling language.4.1.2 Te
hniquesEa
h methodology provides the user with a
olle
tion of integrated te
hniques. Witha
tion-oriented, stru
tured development the te
hniques fo
us on delivering data
ow-
entri
 des
riptions of the system, whi
h are re�ned top-down into more detailed des
rip-tions. The models are typi
ally presented as data
ow diagrams, logi
al data stru
turesand stru
tured English, or graphi
al representations of pro
ess dependen
ies built viathe three
ommon imperative
onstru
ts: sequen
ing, sele
tion and iteration. In data-driven approa
hes su
h as Ja
kson System Development [62℄, the modelling
omponentsare similar but the te
hniques guide the developer in building pro
esses whi
h re
e
tthe stru
ture of the system's data, su
h as �les.

66 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESOO methodologies en
ompass te
hniques that des
ribe the problem in terms of ab-stra
tions whi
h en
apsulate their state. The various analyti
al models will be itera-tively modi�ed through a
olle
tion of te
hniques that return an implementable solution.The models delivered in
lude:� models of the major
lasses and their various asso
iations;� the obje
ts that
ollaborate to deliver some spe
i�ed fun
tionality. These modelsin
lude the messages passed between obje
ts; and,� models of
lasses with signi�
ant state dynami
s.Most modern methodologies support both analysis and design. Analysis te
hniquesfo
us on developing models of what is required, where design te
hniques deliver how itis a
hieved. That is, analyti
al te
hniques tend to be problem-
entri
, re
e
ting whatis required without imposing any design
hoi
es. The results of the analysis phase aredelivered to the design phase, where te
hniques manipulate the models to deliver animplementable, maintainable and potentially reusable design.Ea
h te
hnique will have a
lear purpose, expli
it input requirements and a set ofdeliverables. For example, use
ase analysis whi
h is an essential analyti
al tool of usein OOSE [64℄, the Boo
h Method [15℄, and supported by UML [16℄, is a methodi
alapproa
h for gleaning information from the requirements of a system. It produ
es a
olle
tion of s
enarios that
an be used in the development of
lasses and their
ollab-orations. CRCs
an then be used as a te
hnique for analyzing the s
enarios returnedby use
ase analysis. Similarly the entity a
tion step of Ja
kson System Development[62℄ aims to produ
e an abstra
t des
ription of the real world using only interdependentnouns and verbs as the medium. The entity stru
ture step takes su
h a des
ription anddelivers models of the life span of ea
h entity.Methodologies whi
h en
ourage a stri
tly linear appli
ation of their te
hniques typ-i
ally have models that are linked to a parti
ular phase of development. For example,SSADM's e�e
t
orresponden
e diagrams, whi
h identify e�e
ts
aused by a single event,are produ
ed midway through the pro
ess. They are developed from existing logi
aldata stru
tures, whi
h present a stati
 view of the system's data and interrelationships.Methodologies that en
ourage iterative and in
remental development tend to have a setof models (and asso
iated diagrams) that are of use throughout system development.

4.2. WHAT ARE THE BENEFITS OF USING AN ADM? 67Whether pra
tised iteratively or linearly there are several bene�ts in using an ADMto support software development, whi
h are des
ribed in the following se
tion.4.2 What are the Bene�ts of Using an ADM?Birrell and Ould [12℄ present the following argument in favour of using a methodologyduring software development.Anyone undertaking software development, on no matter what s
ale, mustbe strongly advised to establish a methodology for that development - oneor more te
hniques that, by integration and
ontrol, will bring order anddire
tion to the produ
tion pro
ess.We will present the reasons for using an analysis and design methodology as an aidto su

essful software development in the following se
tions. The �rst des
ribes thebene�ts of using a language whose raison d'être is modelling rather than implementingan eÆ
ient solution.4.2.1 A Language for ModellingEa
h methodology delivers a
olle
tion of models using the units and relationshipsde�ned in its modelling language. Sin
e a model is an abstra
t representation of adesign or spe
i�
ation, a modelling language is a
olle
tion of elements that support the
onstru
tion of an abstra
t des
ription of a problem or solution. Thus one
an produ
emodels of a system or design that emphasize the major abstra
tions involved whilstavoiding the unne
essary details required in implementation language
ode.A modelling language enables development whi
h re
e
ts best pra
ti
e in a paradigmrather than best pra
ti
e due to the idiosyn
rasies of a parti
ular implementation lan-guage. A modelling language thus enables a separation of
on
erns, by allowing thedesigner the freedom to develop systems beyond the
onstraints enfor
ed by the nuan
esand e

entri
ities of a parti
ular programming language. That is, the implementationlanguage does not drive design but instead enables a design to rea
h fruition. For ex-ample, an FP design may require a type that provides an expli
it interfa
e to potential
lients. Abstra
t data types provide an expli
it interfa
e but their implementation isnot uniform a
ross the languages of the paradigm. For example:

68 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIES� in Haskell one de
lares a type in a module whi
h does not export any of the type's
onstru
tion details;� in SML one
an either use the abstype me
hanism or de
lare the type in a stru
-ture whi
h is asso
iated with an opaque signature; and,� in Clean one spe
i�es a type
onstru
tor without its value
onstru
tors in thede�nition module asso
iated with the implementation module within whi
h thetype was de
lared.It is not relevant to a design whether one de
lares an ADT through a module in-terfa
e, or whether the implementation language has a keyword to indi
ate su
h a
onstru
t. For design purposes one simply requires a
lear model of an abstra
t typeand information regarding what one
an do to values of the type.A methodology's modelling language provides a

essibility to a system's design tothose who have an interest in the system but are not familiar with the (potential)implementation language(s). A graphi
al representation of a design typi
ally presents a
learer pi
ture than several pages of
ode, and most modelling languages support severalorthogonal views of the same system.In the following se
tion we des
ribe how a methodology delivers an integrated set ofte
hniques that deliver models using the elements of the modelling language.4.2.2 Development Guidan
e Provided by a Set of Te
hniquesAn ADM
an aid the development of large systems by providing a
olle
tion of integratedte
hniques that guide and drive the development pro
ess. There are parallels here withthe use of operational resear
h (OR) te
hniques to aid business de
isions. OR te
hniquesen
ourage the user to look at a problem at a level of abstra
tion that would not otherwisebe a
hieved. They also o�er a set of well-de�ned steps that enable the user to break theproblem down into understandable pie
es, and then to put them ba
k together againin the most e�e
tive way. ADMs mimi
 this pro
ess. They
annot guarantee the bestdesign, but they
an improve one's
han
es of a
hieving an e�e
tive and a

eptabledesign.One of
ourse must be
areful not to make any false
laims. There is no statisti
aleviden
e that a parti
ular methodology outperforms others, or that methodology use

4.2. WHAT ARE THE BENEFITS OF USING AN ADM? 69has signi�
antly improved performan
e. Su
h resear
h is diÆ
ult to perform for manyreasons in
luding problem
onsisten
y,
osts of failure and so on. However, modellingpro
esses are used in other �elds with evident su

ess and there is no obvious reason todispute their transferability to software development.Ea
h ADM provides a template for development built on a
olle
tion of te
hniques.How stri
tly one adheres to the template will depend on the type of problem and one'sfamiliarity with the problem domain. The
olle
tion typi
ally in
ludes:� te
hniques for dis
overing the essential data and fun
tionality requirements in theproblem and for representing them using elements of the modelling language;� te
hniques for analysing the data and fun
tional requirements and modelling themin terms of
ollaborating elements;� te
hniques for dividing the system into manageable units (
omponents) whi
h
anbe developed independently;� te
hniques for des
ribing the system in terms of its major
omponents and theirintera
tions; and,� te
hniques for translating models of the problem into models of the solution.Thus beyond the support for dis
overing the required data and pro
edures, methodsor fun
tions, most modern ADM's also in
lude te
hniques for developing large systemsthrough giving guidan
e on how to divide a system into sensible
omponents. Thisdivision is normally dire
ted through one or more
riterion for modular development.The modelling language of ea
h ADM will provide elements that present the modularar
hite
ture of a system, one of several system insights or views that
an be des
ribed.4.2.3 System Viewer and Complexity ManagerAll ADMs support several views of a system both during development and upon
om-pletion. Where an implementation language presents one view of the system based onthe syntax of the language, ADMs provide some or all of the following:� a stati
 view whi
h represents the major data elements of the system and theirrelationships;

70 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIES� a fun
tional view whi
h des
ribes system fun
tionality;� a dynami
 view whi
h fo
uses on the e�e
ts of events on a system entity; and,� a modular view whi
h des
ribes the high-level ar
hite
ture of the system.Thus an ADM is a medium for
ommuni
ating a design in various formats typi
allyusing graphi
al notation. In the obje
t-oriented paradigm, design patterns [27, 113, 49℄,are be
oming an in
reasingly popular means of sharing e�e
tive and reusable designs.A pattern isthe abstra
tion from a
on
rete form whi
h keeps re
urring in spe
i�
 non-arbitrary
ontexts. [113℄These abstra
t patterns,
ould not, and more importantly, should not be presented inany of the many obje
t-oriented implementation languages. Through graphi
al repre-sentations using modelling language notation (Gamma et al. use OMT, Obje
tory andthe Boo
h Method notation [49℄), a

ompanied by some
ommentary on their develop-ment, one
an present a
lear pi
ture of a pattern that
an be understood by any OOpra
titioner.Beyond presenting
lear views of a system in development, a methodology will en-
ourage the user to produ
e a thorough
olle
tion of system do
umentation.4.2.4 System Do
umentationAlthough most modern implementation languages provide me
hanisms for a

ompany-ing
ode with some
ommentary, this tends to only support a des
ription of the terminal
onstru
tion of the software. There is no obvious site for a histori
al des
ription of de-velopment or non-implementation do
umentation.An ADM will support full do
umentation of the entities of the system, whi
h
anin
lude a development history for a parti
ular entity or a snapshot of a system or
omponent of the system during development.In
on
lusion, most ADMs provide generi
 support for system development whi
h
an be
ategorised as in the previous se
tions. However, modelling a system using anymethodology and implementing its design in any language is not advised. Instead oneshould look to analyse a problem, and design and implement a solution using tools of

4.3. PARADIGM-CONSISTENT APPROACH TO DEVELOPMENT 71the same paradigm. We present the reasons for this re
ommendation in the followingse
tion.4.3 Paradigm-Consistent Approa
h to DevelopmentMost analysis and design methodologies
an be
lassi�ed by the paradigm they support.The Boo
h Method [15℄, OMT [120℄, Coad-Yourdon's OOA/OOD [28, 29℄
an all be
lassi�ed as obje
t-oriented methodologies. UML [46, 16℄ though not a methodology, isa notation for supporting obje
t-oriented analysis and design. Similarly, SSADM [41℄and SA/SD [152, 153℄ are stru
tured development approa
hes whi
h naturally supportthe
onstru
ts found within the imperative/stru
tured paradigm.The paradigm asso
iations of ea
h methodology are not
oin
idental. Stru
turedmethodologies were introdu
ed in response to per
eived faults in the systems developedusing imperative languages. They en
ourage a parti
ular approa
h to system devel-opment and
onstru
tion through their
on
entration on data
ows, and the stepwisere�nement of system pro
esses whi
h are developed using the pro
edural programming
onstru
ts, iteration, sequen
ing and sele
tion. That is, they are fundamentally un-derpinned by imperative
onstru
ts. Obje
t-oriented methodologies, in
ommon withobje
t-oriented languages, naturally support obje
t-oriented development. Althoughea
h methodology has its own notation and spe
i�
 set of te
hniques, they ea
h supportthe development of obje
t-oriented systems.Coad and Yourdon [29℄ argue thatIt was diÆ
ult to think about stru
tured programming when the languagesof
hoi
e were assembler and FORTRAN; things be
ame easier with Pas
al,PL/1, and ALGOL. Similarly, it was diÆ
ult to think about
oding in anobje
t-oriented fashion when the language of
hoi
e was COBOL or plain-vanilla C; it has be
ome easier with C++ and Smalltalk.Of
ourse one
an always implement a `paradigm A' design in a `paradigm B' imple-mentation language but not without development
osts. Rumbaugh [120℄
laims thatobje
t-oriented designs
an be implemented in non-obje
t-oriented languages but theprogrammer will be required to: translate
lasses into data stru
tures, pass arguments

72 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESto methods, allo
ate storage for obje
ts, implement inheritan
e in data stru
tures andso on. Boo
h [15℄ is more dismissive, arguing thatobje
t-oriented analysis and design is fundamentally di�erent than tradi-tional stru
tured design approa
hes: it requires a di�erent way of think-ing about de
omposition, and it produ
es software ar
hite
tures that arelargely outside the realm of the stru
tured design
ulture. These di�eren
esarise from the fa
t that stru
tured design methods build upon stru
turedprogramming, whereas obje
t-oriented design builds upon obje
t-orientedprogramming.A methodology that builds upon fun
tional programming also requires a di�erentdesign approa
h, and should be built from the underlying abstra
tions of fun
tional pro-gramming. Brooks [20℄ des
ribes a mismat
h of paradigms as an example of a

idental
omplexity whi
h adds to the underlying essential
omplexity of software development.The degree of essential
omplexity is a fun
tion of the type of problem and familiaritywith the problem domain, and thus
annot be avoided. A

idental
omplexity
an beavoided by adopting a paradigm-
onsistent approa
h from the modelling of requirementsthrough to the design and implementation of a solution.Simply using a
ombination of stepwise re�nement, data
ow design and a generalmodular approa
h will ignore the spe
i�
 bene�ts of programming in a fun
tional stylewith a fun
tional language. Equally so if one models the problem as a
olle
tion ofintera
ting obje
ts that
ommuni
ate with one another through their interfa
es.4.4 SummaryThis
hapter has outlined the stru
ture of ADMs and the bene�ts of their appli
ationwithin a software development proje
t. Although modelling in itself is a
onstru
tivepra
ti
e, modelling using elements that are familiar to a potential implementation lan-guage enhan
es the appli
ability of its produ
ts. We therefore believe that there arestrong arguments in favour of a fun
tional ADM that supports the essential features ofthe fun
tional programming paradigm, and whose language units are a

ompanied by agraphi
al representation. In the following
hapters we des
ribe the modelling language

4.4. SUMMARY 73and te
hniques of FAD, an analysis and design methodology that supports softwaredevelopment within the fun
tional programming paradigm.

74 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIES

Chapter 5
FAD Modelling Language
In the previous
hapter we outlined the bene�ts of using analysis and design method-ologies (ADMs) as aids to software development. In addition we argued that the bestresults are a
hieved when the ADM and implementation language support developmentwithin the same paradigm. That is, one
an argue at length regarding whi
h paradigmprovides the best support for software development, but one a
hieves the most natural,eÆ
ient and e�e
tive development pa
kage when one remains within a single paradigmfrom problem des
ription through to implementation and delivery.Chapters 2 and 3 des
ribed and
ontrasted the obje
t-oriented and fun
tional pro-gramming paradigms. Although they have their similarities there are
learly signi�
antdi�eren
es. These di�eren
es impa
t on the software designs of ea
h paradigm anda
ost is in
urred if one attempts to swit
h paradigms between any phases of develop-ment. The obje
t-oriented and stru
tured paradigms have several ADMs whi
h supporta
omplete development pa
kage within their paradigm. We believe that the fun
tionalprogramming paradigm requires methodologies to support its software development ap-proa
h.In Chapter 3 the major building blo
ks and glue of the fun
tional programmingparadigm were des
ribed. In this
hapter we des
ribe the modelling language of FAD(Fun
tional Analysis and Design). We believe that any paradigm-spe
i�
 ADM shouldsupport, in a natural manner, software development within the paradigm with minimalnotational overhead. In addition, a paradigm-spe
i�
 ADM should not reinvent or over-
onstrain the software development pro
ess but should re
e
t and en
ourage
ommon75

76 CHAPTER 5. FAD MODELLING LANGUAGEpra
ti
e. This requires a modelling language that supports the major building blo
ksand glue of the paradigm with a minimal
olle
tion of graphi
al notations for pi
tori-ally representing analyti
al and design models. The methodology should support there
ording and storing of entities in a manner that eases use and maximises dis
overy ofpotentially reusable entities.FAD is both a modelling language and a set of te
hniques to support software devel-opment within the fun
tional programming paradigm. FAD should be pra
tised withinan iterative and in
remental development pro
ess. This is fa
ilitated by adopting asingle set of notations and diagrams that are appli
able throughout development. Thatis, one does not use parti
ular types of diagram and entity representations at parti
ularstages of development and then
onvert them to new diagram types and representationsappli
able to later stages as is the
ase with most stru
tured methodologies su
h asSSADM. Any FAD diagram and its
onstituent notation is of use throughout the de-velopment pro
ess but will be iteratively updated in step with iterations in the systemdesign. FAD diagrams in
lude:� fun
tion dependen
y diagrams whi
h present a fun
tion with those it uses in itsimplementation;� type dependen
y diagram whi
h provides the same servi
e for types; and,� module dependen
y diagrams whi
h present views of the module ar
hite
ture ofthe system.FAD supports development in any fun
tional language and not in a spe
i�
 language.It therefore needs to support
onstru
ts that are
ommon to all fun
tional languages,or shared by just a few. In Se
tion 5.2 we des
ribe the basi
 units of the language.We divide them into the mi
ro units: types, fun
tions and permissive signatures, andthe ma
ro units: ex
lusive signatures, modules, subsystems, proje
ts, and �les. Weprovide both informal de�nitions of the units and their FAD notation. For ea
h unit weprovide a brief quali�
ation for the
hosen notation. Ea
h type of unit has an asso
iatedUnit Des
ription Do
ument in whi
h one
an re
ord the unit's name, version and otherrelevant information. These des
ription do
uments provide an histori
al re
ord of thedevelopment of a parti
ular
omponent of a system.

5.1. CASE STUDY 77In Se
tion 5.4 the inter-unit relationships supported by FAD are des
ribed. Thesein
lude: the type use relationship, fun
tion use relationship and asso
iations betweentypes and permissive signatures, modules and ex
lusive signatures, and subsystems andex
lusive signatures. On
e again the informal de�nition is a

ompanied by a des
riptionof the FAD notation whi
h in
ludes some
ommentary on the
hoi
e of notation. Indes
ribing the units and relationships of the modelling language we present the diagramsof FAD that a�ord various views of a system.In Chapter 6, we demonstrate how
ommon fun
tional
onstru
ts are de�ned andrepresented in FAD. In the following se
tion we present a
ase study that will be used toillustrate elements of FAD's modelling language and the appli
ation of its te
hniques.5.1 Case StudyThe
ase study was
hosen be
ause it is both small enough to
omprehend fully and largeenough to illustrate the various
omponents of FAD. A larger
ase study - a CASE tool
onsisten
y
he
ker - is presented in the appendix to this thesis. A system is requiredto automate the produ
tion of various football league related data. The system stores
urrent data on the league's football teams, the teams' players, histori
al data on leaguetables, results, and s
oring tables. New results are entered by a data entry
lerk and,upon request, a
urrent version of the league table or s
oring table is generated.In brief, the system must support the following fun
tional requirements:� the inputting of football results (for as many leagues as required);� the produ
tion of league tables;� the produ
tion of s
oring tables whi
h present the top s
orers in the league, theirteam, and the number of goals s
ored;� the produ
tion of attendan
e tables whi
h present teams in order of average homeattendan
es;� the transfer of players between teams;� the updating of team data due to re
ent results; and,

78 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 7: Mi
ro Unit Guide� the updating of player data due to re
ent results where the data in
lude appear-an
es and goals s
ored.No non-fun
tional requirements are stated and the system should be developed sothat if new fun
tionality is required, it
an be introdu
ed at a minimum
ost.5.2 FAD Mi
ro UnitsThe basi
 mi
ro units of FAD are types, fun
tions and permissive signatures. Wedes
ribe ea
h in turn and then des
ribe how they
an be
ombined to support
ommon
onstru
ts of the fun
tional paradigm. Figure 7 presents a `Mi
ro Unit Guide' whi
hsummarizes the mi
ro units, their relationships and diagrams.The diagrams built using these units and relationships have a (informally) de
laredsyntax and semanti
s. These are des
ribed in the following se
tions and in Se
tions 5.3

5.2. FAD MICRO UNITS 79and Se
tion 5.4 where we present the ma
ro units and relationships of FAD. Ea
h unitand relationship is illustrated by an example from the
ase study.5.2.1 TypesA type is a
olle
tion of related values whi
h have some
ommon usage. Examplesin
lude the type of
hara
ters and the type of Boolean values. A type typi
ally hasa mnemoni
 name that re
e
ts the
hara
teristi
s of its values. Modern fun
tionallanguages support type aliases whi
h assign a name to a type whi
h is appropriate in agiven
ontext. In FAD ea
h type has a unique name whi
h begins with a lower
ase letter.In Se
tion 3.1.2 we emphasised the importan
e of types to software development withinthe fun
tional programming paradigm. They provide a spe
i�
ation of a program'sentities, and enable the early dete
tion of errors.Every fun
tional language (and other typed languages) provides a set of built-in basi
types whose values are primitive to the language. Most languages provide
hara
ters,Booleans and various
olle
tions of numeri
al values as basi
 types. They are typi
allya

ompanied by built-in fun
tions and operators de�ned over the types. These normallyin
lude the arithmeti
, relational and logi
al operators.The languages also support built-in and user-de�ned
omposite types whose valuesare
onstru
ted using values of existing types. Tuples and lists are usually providedby a fun
tional programming language. In
ommon with basi
 types the languagesprovide fun
tions and operators de�ned over these built-in
omposite types, su
h as list
onstru
tion operators, and pair sele
tion fun
tions.Types
an be
onstru
ted by users through the multi-purpose algebrai
 type me
h-anism using a unique type
onstru
tor. The values of an algebrai
 type are
onstru
tedby using one of the value
onstru
tors de
lared with the type. Enumerated types, sumtypes, produ
t types, parameterised types and re
ursive types
an all be de
lared usingthe same me
hanism as des
ribed in Se
tion 3.1.5.Abstra
t data types, whi
h provide a me
hanism for modular development throughinformation hiding, are supported by all modern fun
tional languages. Re
ently therehas been mu
h interest in existential types [74℄ as a me
hanism for implementing �rst-
lass abstra
t data types. FAD's support for these and for tuple types, re
ord types,algebrai
 types and abstra
t data types are left to Se
tions 6.10, 6.1, 6.2, 6.3 and 6.4

80 CHAPTER 5. FAD MODELLING LANGUAGE
Type Des
ription Do
ument FootballConstru
tor Name: teamsVersion: 19990620:0Kind: *Module:Types Used: date, team,
olle
tionParameters:Permissive sigs.: TEAMSCONDes
ription:The type of football teams. Ea
h team must be a

essible andtheir information updateable. The date represents the latestupdate to the teams' data. Ea
h team will in
lude data on itsresults, attendan
es and other team-related information.Figure 8: Type Des
ription Do
ument for the Type teamsrespe
tively.The details of a type are des
ribed in a Type Des
ription Do
ument (TDD) asillustrated by the TDD for the type teams presented in Figure 8. Ea
h type mayhave several TDDs illustrating the iterative development of the type. However ea
htype will have a TDD whi
h represents the
urrent form of the type whi
h will be the
hronologi
ally most re
ent version determined by the version number.Ea
h type des
ription do
ument presents a des
ription of a type. To the right ofthe header is the proje
t within whi
h the entity is de�ned. The list in the body of thedo
ument presents the following information:� the name of the type
onstru
tor of the type whi
h begins with a lower
ase letter;� the version of the type denoted by a date:natural number value to a

ommodatemultiple versions in a single day;� the kind of the type
onstru
tor. Type
onstru
tors with the kind * are simply

5.2. FAD MICRO UNITS 81types;� the module in whi
h the type is de
lared. Every mi
ro unit is de
lared in a uniqueand identi�ed module. The organization of modules and their entities is a designde
ision and therefore the
ontaining module will typi
ally be re
orded in a laterversion of a TDD;� the types used in
onstru
ting values of the type;� the type variables and asso
iated permissive signatures. This entry will be blankfor any type whose type
onstru
tor is of kind *. We write PERMSIG a for ea
htype/permissive signature
ontra
t asso
iation. This asso
iation is des
ribed inSe
tion 5.4.4. A type variable is written as a single lower
ase letter. This namehas no intrinsi
 value and if there are no asso
iated permissive signatures then noentry will be re
orded;� the permissive signatures instantiated by the type (see Se
tion 5.4.4). The pa-rameter (or a parameter for permissive signatures with more than one parameter)of the permissive signature must have the same kind as the type
onstru
tor ofthe type. Ea
h algebrai
 type instantiates a
onstru
tor signature as des
ribed inSe
tion 6.3;� a textual des
ription of the type.In summary, a type des
ription do
ument is a host for information relating to thedevelopment of a type. As a type is iteratively developed the do
ument will be updatedto re
e
t design de
isions. The do
ument is stored in FAD's data di
tionary as des
ribedin Chapter 8.FAD NotationTypes and values of types are represented in FAD by similar notation. A type isrepresented in FAD by a re
tangle (or box) en
losing the type's name as illustrated inFigure 9. This notation was
hosen be
ause a type is a
olle
tion or box of values withsome
ommon
hara
teristi
s. Alternatively, one
an view types as a me
hanism forpartitioning the universe of values (ignoring some overloading of numeri
 literals), andpartitions are often represented as re
tangular segments of a set.

82 CHAPTER 5. FAD MODELLING LANGUAGE
Figure 9: A Type, Parameter of a Type, and a Named Value of a TypeIf the type is
onstru
ted through the appli
ation of a non-nullary type
onstru
torto one or more types or is a parameterised type, the name of the type must in
ludethe type
onstru
tor and the name of the parameters. Typi
ally the
onstru
tor namewill pre�x the parameter names. A type variable is simply represented by a lower
aseletter.One
an also add a name to a parti
ular use of a type to make expli
it how a type'svalue is being used in a parti
ular
ontext. That is, parameter names or type valuesin the form of a valid expression or literal, or names asso
iated with a value
an alsobe in
luded in a type re
tangle. A parameter is written parameterName:typeName orsimply parameterName if the type is
lear due to the
ontext, and a value
an similarlypre�x a type name or appear on its own. The re
tangle en
losing a value of a type hasa thi
k solid perimeter. This notation di�erentiates a type from a value of a type butwith minimal added notational overload. One
an use this value notation to representpartial appli
ation. This is des
ribed along with FAD's support for the
urried formof multiple argument fun
tions in Se
tion 5.4.3. Hen
e one is able to reuse the samenotation for a type, a type variable, a non-nullary type
onstru
tor, a named parameterof a type and a value of a type or a name asso
iated with a value. A fun
tional typehas its own notation as des
ribed in the following se
tion.5.2.2 Fun
tionsThe major building blo
ks of the fun
tional paradigm are pure fun
tions that mapvalues from a single type (argument type) or multiple argument types, to a value ofanother type (result type). Fun
tions are �rst-
lass
itizens in fun
tional languagesand therefore
an be arguments of other fun
tions, be returned by fun
tions and be
omponents in data stru
tures. Fun
tions
an be
reated stati
ally or dynami
ally

5.2. FAD MICRO UNITS 83through the appli
ation of a
urried fun
tion to an in
omplete set of arguments knownas partial appli
ationFAD supports all forms of fun
tion use in
luding fun
tions that are de�ned usingsubsidiary fun
tions (see Se
tion 5.4.9), fun
tional arguments (see Se
tion 6.9) andfun
tions with multiple arguments in the form of
urried fun
tions (see Se
tion 5.4.3).The details of ea
h fun
tion are des
ribed in a Fun
tion Des
ription Do
ument(FDD) whi
h in
ommon with TDDs will be developed iteratively. We present in Figure10 the FDD for getData, the higher-order polymorphi
 fun
tion whi
h takes a fun
tionalargument and a value of the type teams, whi
h is a
olle
tion of values of type team,and returns the result of applying the fun
tion to ea
h team value. The return type is
olle
tion a where the type
olle
tion a is used by the type teams.In
ommon with TDDs, the
olle
tion of a fun
tion's FDDs des
ribe the iterativedevelopment of fun
tions. That is, the
olle
tion of do
uments presents a re
ord of de-sign de
isions for a parti
ular fun
tion. These are of potential use in future maintenan
eof the system, in supporting reusable designs and to allow rollba
k within an iterativedesign framework.The proje
t within whi
h the fun
tion is de�ned is presented to the right of thedo
ument's header. The list in the body of the do
ument presents:� the fun
tion's name whi
h begins with a lower
ase letter. An operator name ispresented in pre�x form en
losed in parenthesis. Fun
tion names are not ne
es-sarily unique sin
e mnemoni
 identi�ers are en
ouraged in order to support thedis
overy of abstra
tions su
h as polymorphi
 fun
tions and overloading. Howeverno two fun
tions with the same type spe
i�
ation will have the same name. Thisalso prohibits the
o-existen
e of a polymorphi
 fun
tion and its monomorphi
instantiations. In Chapter 7 we des
ribe a te
hnique for developing polymorphi
fun
tions that in
ludes the removal of its monomorphi

ounterparts. Fun
tionswith the same name
an be dis
riminated by qualifying their name with the nameof the module in whi
h they are de�ned. For example, the fun
tion getData
anbe quali�ed as TeamsMod.getData. This naming
onvention
an be applied to anymodule entities;� the version of the FDD represented by a date:natural number value;

84 CHAPTER 5. FAD MODELLING LANGUAGE� the module within whi
h the fun
tion is de
lared (see Se
tion 5.3.1). During theearly stages of development one may re
ord a subsystem as host. This applies tomi
ro units of any kind;� the fun
tion's arity. This will be used as a key for storing the fun
tion in the datadi
tionary as des
ribed in Chapter 8;� the fun
tion's type spe
i�
ation written using the fun
tion type operator -> ;� the required type/permissive signature asso
iations. This information will helpguide development of the fun
tion and its asso
iated types. For polymorphi
fun
tions, the permissive signatures provide
onstraints on the types that
an in-stantiate the asso
iated type variable. Type/permissive signature
ontra
t asso-
iations are written PERMSIG a where a is the name assigned to the type variable.For multiple parameter signatures the signature name is followed by the requi-site number of type variables. See Se
tion 5.2.3 for a des
ription of permissivesignatures, and Se
tion 5.4.4 for an explanation of the type/permissive signatureasso
iation. This information provides another means of sele
ting fun
tions forpotential (re)use;� the required type/signature instantiation asso
iations. These are written as aboverepla
ing the variable name with the type name. For example, PERMSIG typeName.Many fun
tions will initially be developed as monomorphi
 fun
tions. Any asso
i-ated permissive signatures will provide information regarding the behaviour of thefun
tion. They will also provide
onstraints on the implementation of any asso-
iated types, and suggest potential fun
tion overloading when implementing in alanguage with su
h support. A type or used type may be required to instantiate aparti
ular signature. This information aids the dis
overy of potential polymorphi
and overloaded fun
tions as des
ribed in Se
tion 7.3.2;� the non-argument fun
tions used in the de�nition of the fun
tion. Ea
h fun
tionis presented with its type spe
i�
ation to distinguish overloaded fun
tion names.A
olon separates a fun
tion name from its type. A fun
tion with
onditionalbehaviour will not ne
essarily use all the fun
tions. The fun
tion's dependen
ydiagram(s) will
larify the dependen
ies as des
ribed in Se
tion 7.2.2;

5.2. FAD MICRO UNITS 85
Fun
tion Des
ription Do
ument FootballName: getDataVersion: 19980810:1Module: TeamsModArity: 2Type Spe
i�
ation: (team -> a) -> teams ->
olle
tion aContra
t Asso
ia-tion:Instantiations: CONTAINER
olle
tionFun
tions Used:Des
ription:This fun
tion retrieves data from a
olle
tion of teamsthrough the appli
ation of a data-getting fun
tion to ea
hteam in the
olle
tion. The type teams is required to support`mapping' behaviour.Figure 10: Fun
tion Des
ription Do
ument for the Fun
tion getData� a des
ription of the fun
tion.The fun
tion des
ription do
ument provides signi�
ant information for developinga fun
tion and storing it in the data di
tionary. The fun
tion's arity and permissivesignature instantiations are used to store and retrieve fun
tions for potential reuse. Thisapproa
h is built on that des
ribed by Park and Ramjisingh [94℄ and An and Park [4℄,and is fully des
ribed in Chapter 8.FAD NotationA fun
tion is represented in FAD by a grey re
tangle or box juxtaposed with its ar-gument types to its right (
onsistent with fun
tion appli
ation syntax in all modernfun
tional languages) and the result type to its left. The fun
tion re
tangle is largerthan the type re
tangles. The grey box notation is motivated by the idea of a `bla
k

86 CHAPTER 5. FAD MODELLING LANGUAGE
Figure 11: Fun
tion Representationbox' view of a fun
tion where one is only interested in the mapping between a fun
tion'sinputs and outputs. Thus, one presents the type(s) of the input values and the type ofthe output value linked by a box whose inner details are not visible. The type boxesare external to the fun
tion box sin
e it:
onforms to the juxtaposition-based syntaxbetween a fun
tion and its arguments found in most fun
tional languages; it avoidspotentially messy nested notation for the representation of permissive signature/typeasso
iations as des
ribed in Se
tion 5.4.4; and, it simpli�es the representation of fun
-tions with fun
tional arguments or results.A fun
tion name is written inside the shaded box, as is a fun
tional parameter nameif required. If a fun
tion has multiple arguments then its �rst argument appears next tothe fun
tion re
tangle, and ea
h further argument appears to the right of ea
h existingargument.We illustrate FAD's fun
tion notation in Figure 11 where we present the FAD rep-resentation of the
urried fun
tion getData. whi
h takes two arguments. The �rstargument is of the fun
tion type team -> a. A fun
tion type is represented as a fun
-tion with no name in the fun
tion box. When used as an argument or result type of afun
tion it is en
losed in a type box.5.2.3 Permissive SignaturesThe development of fun
tions and types requires as mu
h information as possible. Afun
tion's development is guided by its type and required behaviour, and a type's devel-opment by the data and behaviour it needs to support. Permissive signatures providea me
hanism for spe
ifying behavioural requirements.Before des
ribing permissive signatures we present an example whi
h motivates theirintrodu
tion and appli
ation. The fun
tion getPlayer takes a player's name and the
olle
tion of players of type player, and returns the relevant player. The fun
tion willtest ea
h player in the
olle
tion against the inputted name until a mat
h is a
hieved.

5.2. FAD MICRO UNITS 87If no mat
h is rea
hed an ex
eptional value is returned. The fun
tion therefore requiresa test of equality of player names and needs to
he
k ea
h player in turn. These be-havioural requirements
an be made expli
it through asso
iating permissive signatureswith the relevant type or type
onstru
tor. We asso
iate the signature EQ, whi
h deliv-ers an equality testing fun
tion, with the type of players' names, pName. In addition,we asso
iate the permissive signature MAP that spe
i�es mapping behaviour, with thetype
olle
tion a whi
h is used by the type players.A permissive signature de
lares operations that implement the behaviour indi
atedby the name of the signature. The operations are spe
i�ed in terms of the parameter(s)of the signature. That is, a signature will have one or more parameters that are boundto the type
onstru
tors of the types that instantiate the signature. For example, theHaskell type
lasses Eq and Ord
an be modelled in FAD as permissive signatures whoseoperations deliver equality and ordering behaviour. They are instantiated, for example,by the various numeri
 types.Ea
h entity may only be spe
i�ed in a single permissive signature but
an be reusedin another signature through inheritan
e. Signature inheritan
e is des
ribed in Se
tion5.4.7. That is, sin
e (==) is spe
i�ed in the permissive signature EQ it
annot appear inany other permissive signature ex
ept through inheritan
e. Ea
h permissive signaturewill be asso
iated with one or more types that will instantiate the signature (see Se
tion5.4.4 for details on how this is a
hieved) su
h as the type Int and Char whi
h instantiatethe Haskell
lasses presented above. A type instantiates a permissive signature whenbindings exist for ea
h entity spe
i�ed in the signature de�ned over the type.A permissive signature provides a
ontra
t of usability for any type (or types whenthere is more than one parameter) whi
h instantiate the signature. Ea
h parameter willhave an expli
it kind where a kind identi�es
olle
tions of type
onstru
tors in the samemanner that types des
ribe
olle
tions of values [66℄.Ea
h algebrai
 type instantiates at least one permissive signature whi
h we
all its
onstru
tor signature. In most
ases the signature will have a single parameter thatis bound to the instantiating type's
onstru
tor. Sin
e most fun
tional languages donot allow reuse of a type's value
onstru
tors,
onstru
tor signatures will generally beinstantiated by a single type. That is, there will typi
ally be a 1-1
orresponden
ebetween
onstru
tor signatures and algebrai
 types. The operations of a
onstru
tor

88 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 12: Constru
tor Signaturesignature are the value
onstru
tors of an instantiating type. This is illustrated inFigure 12 where the
onstru
tor signature of the Haskell type Maybe is presented. Thetype has two
onstru
tors, Just whi
h takes a value of any type a and returns a valueof type Maybe a and Nothing whi
h is a value of the type Maybe a.The details of ea
h signature are des
ribed in a Permissive Signature Des
riptionDo
ument (PSDD) as illustrated by the PSDD for EQ whi
h is equivalent to the Haskell
lass Eq. This PSDD is presented in Figure 13. In FAD, a name is asso
iated with atype spe
i�
ation by writing the name followed by a
olon and then the type.The proje
t within whi
h the signature is de�ned is presented to the right of theheader. The list in the body of the do
ument presents:� the signature's unique name whi
h is written in upper-
ase letters;� the version of the signature;� the module in whi
h the signature is de
lared;� the signature's parameters and their kind. Although the parameter name is notimportant it must not
lash with any type variable names that are not mat
hedwith the parameter. For example, a signature whose parameter is of kind * ->*, will possible spe
ify operations over at least two type variables. One of kind *-> * will use the parameter name and the other of kind * must have a di�erentname;

5.2. FAD MICRO UNITS 89
Permissive Signature Des
ription Do
ument FootballName: EQVersion: 19990317:1Module:Parameter(s): a : *Operations: (==): a -> a -> bool(with type spe
s.) (/=): a -> a -> boolInherited Signature(s):Des
ription:This signature spe
i�es the ability to test for equalityover an instantiating type.Figure 13: Permissive Signature Des
ription Do
ument for EQ� the signature's operations and type spe
i�
ations. The spe
i�
ations are writtenusing the name of the parameter(s);� the signature(s) from whi
h the signature has inherited operations;� a des
ription of the signature.Permissive signatures not only present the names of operations de�ned over a typebut also the types of the operations. This is important development information sin
eone wants to know not only what is available but how to use it. However, the informationis purely synta
ti
 and provides no semanti
 guarantee. That is, one
an guarantee thata named fun
tion exists over a
ertain type, but one
annot guarantee that the behaviourimplied is a
tually delivered. This would require a formal approa
h to development thatis beyond the s
ope of FAD.FAD NotationA signature is represented in FAD by a double-edged re
tangle as shown in Figure 14.The notation was
hosen sin
e a permissive signature is in essen
e an outerfa
e to a

90 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 14: A Permissive signaturetype (as opposed to an interfa
e) and the notation mimi
s su
h a wrapping around atype. That is, a type with an extra layer of information. It en
loses the signature'sname whi
h may be followed by the name of the instantiating type or type
onstru
tor,or a type variable. If the instantiating type is
lear by the
ontext of its use, then thetype name
an be left out. Se
tion 5.4.4 des
ribes type/signature asso
iations.Any operations of the signature may be added below the signature's name (eithergraphi
ally or using the textual syntax name : type), separated by a horizontal line.One may elide a signature if it has a large number of operations or if the operations arepresented elsewhere su
h as an inherited signature.That
ompletes the des
ription of FAD's mi
ro units. In order to model large systemsone needs to be able to des
ribe modular stru
tures and their relationships. ThusFAD's modelling language in
ludes a
olle
tion of ma
ro units whi
h are des
ribed inthe following se
tion.5.3 FAD Ma
ro UnitsFAD's mi
ro units and their various relationships deliver models of the fun
tionality anddata stru
tures required of a system. The relationships are des
ribed in Se
tion 5.4.They do not provide a means of des
ribing the high level modular stru
ture of a system.For this we require the ma
ro units of FAD, whi
h are modules, subsystems, ex
lusivesignatures, proje
ts, and �les. In the following se
tions we present des
riptions of ea
hof these units a

ompanied by their graphi
al notation. The various ma
ro unit andma
ro/mi
ro unit relationships are des
ribed in Se
tion 5.4. Figure 15 presents a `Ma
ro

5.3. FAD MACRO UNITS 91

Figure 15: Ma
ro Unit GuideUnit Guide' whi
h summarizes the ma
ro units, their relationships and diagrams.A proje
t is the software system being developed. That is, it is the
olle
tion of mi
rounits gathered in some hierar
hi
al ar
hite
ture to deliver the fun
tionality required ofan automated system. A proje
t
an be partitioned into a
olle
tion of linked subsystems(subsystem ar
hite
ture), ea
h of whi
h
an be further partitioned into several moduleswith various inter-dependen
ies (module ar
hite
ture). That is, subsystems partitiona proje
t, whi
h are themselves partitioned by modules. Ea
h module is the host ofthe de�nitions of various mi
ro units. Ea
h subsystem
an be used in other proje
tsindependently of the proje
t for whi
h it was originally developed. This is also trueof modules. Therefore, there are several levels of reusability within a proje
t. Theproje
t itself
an be
ome a
omponent of a new proje
t. A subsystem
an be used

92 CHAPTER 5. FAD MODELLING LANGUAGEin the development of a new proje
t, and modules
an be used independently in thedevelopment of subsystems of new proje
ts.5.3.1 ModuleA module is an identi�ed
olle
tion of mi
ro units. In FAD, a proje
t is partitioned intoa
olle
tion of subsystems (whi
h are des
ribed in the following se
tion) and these arefurther partitioned into a
olle
tion of modules. Every type, fun
tion and permissivesignature is de
lared in a module, whi
h provides a medium for the development of a
ohesive unit and in asso
iation with ex
lusive signatures, support for en
apsulationand a me
hanism for type abstra
tion. Every entity de
lared in a module is visible fromevery other entity de
lared in the same module. Entities de
lared in module A
an useentities de
lared in module B if there is a module use relationship from A to B, andthe required entity is spe
i�ed in the mediating ex
lusive signature. The module userelationship is des
ribed in Se
tion 5.4.10, and ex
lusive signatures in Se
tion 5.3.3. Ifthe two entities are de
lared in modules of di�erent subsystems then the subsystemsmust be asso
iated through a subsystem use relationship as des
ribed in Se
tion 5.4.11.Thus FAD supports modular program development based on information hidingthrough the use of modules, subsystems and their asso
iated ex
lusive signatures. Themethodology en
ourages the development of an ar
hite
ture that maximises the
ohesionof its units and minimises the
oupling between the units. This is fully des
ribed inChapter 7.All modern fun
tional programming languages support a modular approa
h to pro-gram development. Although there is some
ommonality in their approa
hes there arealso some signi�
ant di�eren
es as des
ribed in Se
tion 3.2.3.The details of ea
h module are des
ribed in a Module Des
ription Do
ument (MDD)as illustrated by the MDD for TeamsMod, the module whi
h delivers the types andfun
tions asso
iated with football teams. This MDD is presented in Figure 16.In ea
h MDD, the proje
t within whi
h the module is de�ned is presented to theright of the header. The list in the body of the do
ument presents:� the module's unique name whi
h begins with an upper
ase letter;� the version of the module;

5.3. FAD MACRO UNITS 93
Module Des
ription Do
ument FootballName: TeamsModVersion: 19990711:1Type(s): teams, mat
hTeamsPermissive sig(s): TEAMSCON, MATCHTEAMSCONFun
tion(s): addResultsToTeams:results -> teams -> teamsaddResultToTeams:result -> teams -> teamsaddTeams: mat
hTeams -> teams -> teamssele
tTeams:result -> teams -> mat
hTeamsupdatePerfs:mat
hTeams -> result -> mat
hTeamsModules used: ResultsMod : RESULTSSIG3Subsystem: FootballSSFile:Des
ription:This module hosts the type of football teams and its asso
iatedfun
tions. It also hosts the type whi
h represent the teams whi
hplayed in a mat
h. The type whi
h represents a football team willbe hosted in a separate module to de
ouple it from the teams type.Figure 16: Module Des
ription Do
ument for the Module TeamsMod

94 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 17: The Module TeamsMod� the types, permissive signatures and fun
tions de
lared in the module. Ea
hfun
tion is a

ompanied by its type;� the modules used by the module. In ea
h
ase the module name is de
lared withthe asso
iated ex
lusive signature whi
h mediates its use. The name of the moduleand signature are separated by a
olon;� the subsystem within whi
h the module is de
lared;� the �le in whi
h the module is implemented;� a des
ription of the module.In
ommon with FDDs and TDDs, the des
ription do
ument for a module will beupdated to re
ord iterative developments of the module.FAD NotationA module is represented in FAD by a semi-
ir
ular ended re
tangle en
losing the mod-ule's name. Sin
e a module supports en
apsulation whi
h
an be de�ned as in a
apsule,we have
hosen a
apsule-like notation. One
an en
lose any subset of the module's en-tities represented graphi
ally or textually. The module TeamsMod is presented with oneof its fun
tions in Figure 17.5.3.2 SubsystemA subsystem is a
olle
tion of modules and ex
lusive signatures. That is, ea
h moduleis de
lared in a subsystem along with any asso
iated ex
lusive signatures. The rulesregarding module/ex
lusive signature asso
iations are des
ribed in Se
tion 5.4.5. Ea
h

5.3. FAD MACRO UNITS 95subsystem should be developed by a single development unit. Partitioning a proje
t intoa
olle
tion of subsystems supports an in
remental approa
h to software developmentand provides a robust �ling system for system entities. That is, ea
h entity will bede�ned in a named module, whi
h itself is part of a named subsystem.An entity EA of a module A may use an entity EB of module B de
lared inthe same subsystem, if there exists a module use relationship from A to B whi
h ismediated by an ex
lusive signature in whi
h EB is spe
i�ed. If however, modules Aand B are de
lared in the subsystems SA and SB then there must be a subsystemuse relationship from SA to SB whi
h is mediated by an ex
lusive signature in whi
hEB is spe
i�ed. We des
ribe the subsystem/ex
lusive signature asso
iation in Se
tion5.4.6 and the subsystem use relationship in Se
tion 5.4.11. Ex
lusive signatures are animportant developmental aid in that they support the prin
iple of least
ommitment,where one
an delay detailed design until absolutely ne
essary. The rôle of ex
lusivesignatures in development using the FAD methodology is des
ribed in Chapter 7.Subsystems are not assigned a unique
onstru
t by any fun
tional programminglanguages. However, they
an be realised through the modular system of ea
h language.For example, in SML a stru
ture (whi
h is a
olle
tion of de
larations)
an in
lude otherstru
tures. Similarly one
an use Haskell's module import me
hanism to mimi
 theassignment of several modules to a single module, whi
h then
ontrols a

ess to all themodules through a single interfa
e. Thus a subsystem-based design
an be supportedby modern fun
tional languages.The details of ea
h subsystem are des
ribed in a Subsystem Des
ription Do
ument(SSDD) as illustrated by the SSDD for the subsystem FootballSS, the subsystem whi
hwill deliver the problem domain fun
tionality for the football system. That is, it willdeliver through a
olle
tion of modules, the essential types spe
i�
 to the football system,teams, results and so on, and the fun
tions whi
h implement the fun
tionality requiredof any football league. This SSDD is presented in Figure 18.In ea
h SSDD, the proje
t within whi
h the subsystem is de
lared is presented tothe right of the header. The list in the body of the do
ument presents:� the subsystem's unique name whi
h begins with an upper-
ase letter and mustnot
lash with any module or existing subsystem name;

96 CHAPTER 5. FAD MODELLING LANGUAGE
Subsystem Des
ription Do
ument FootballName: FootballSSVersion: 19990821:0Module(s): TeamsMod : TEAMSSIGPlayersMod : PLAYERSSIGResultsMod : RESULTSMODSIG1LeagueTableMod : LTSIGTeamModResultModPlayerModEx
lusive Sigs: RESULTSSIG2, TEAMSIGPLAYERSIG, RESULTSIGSubsystems Used: GeneralSS : GENERALSIGDeveloped by:Des
ription:This subsystem hosts the modules whi
h are essential to thepro
essing of football results. That is, the modules host thefootball related types and fun
tions. The subsystem alsoin
ludes the ex
lusive signatures whi
h provide the interfa
esto its modules.Figure 18: Subsystem Des
ription Do
ument for the Subsystem FootballSS

5.3. FAD MACRO UNITS 97� the version of the subsystem;� the modules de
lared in the subsystem. Those modules that are asso
iated withthe subsystem via a partition relationship (des
ribed in Se
tion 5.4.14) are pre-sented with the ex
lusive signature whi
h mediates the relationship. The ex
lusivesignature makes expli
it the module's entities that
an be used by a
lient fromanother subsystem. That is, these are the only entities that
an be spe
i�ed inany ex
lusive signature asso
iated with the subsystem. Modules whi
h are onlyused by other modules of the subsystem are presented without an a

ompanyingsignature;� the other ex
lusive signatures de
lared in the subsystem. These signatures areused to mediate intera
tion between the modules of the subsystem;� the subsystem(s) used by the subsystem and the asso
iated ex
lusive signatureswhi
h mediate a

ess to their entities;� a referen
e to the programming unit whi
h is responsible for the development ofthe subsystem;� a des
ription of the subsystem.The subsystem FootballSS hosts seven modules, and is dependent on a single sub-system GeneralSS that provides types and fun
tions that are of general use, su
h asthose typi
ally de
lared in a language's standard environment.FAD NotationA subsystem is represented in FAD by a semi-ellipse en
losing the subsystem's name.This notation was
hosen sin
e a proje
t is represented as an ellipse, and a subsystem isa part of a proje
t. The modules de
lared in the subsystem
an be presented textuallybelow a horizontal line whi
h delimits them from the subsystem's name. Alternativelyone
an present hosted modules through the partition relationship des
ribed in Se
tion5.4.14. We present the graphi
al notation for a subsystem in Figure 19.

98 CHAPTER 5. FAD MODELLING LANGUAGE
Figure 19: A Basi
 Subsystem5.3.3 Ex
lusive SignaturesThe development of any large system requires the division of work among several devel-opment units. How one divides the work and the information provided to ea
h devel-opment team, is essential to su

essful development. In FAD the unit of subdivision isthe subsystem whi
h was des
ribed in the previous se
tion. The information regardingwhat is required of a subsystem, and how ea
h
an intera
t with other subsystems, isprovided by ex
lusive signatures. They are also used to guide the development of mod-ules. That is, during software development ex
lusive signatures play an essential rôlein spe
ifying system requirements, and later in designing an implementable solution.Full details of the methodology and the te
hniques that develop ex
lusive signatures aregiven in Chapter 7.An ex
lusive signature spe
i�es a
olle
tion of mi
ro units. These units are the onlyunits visible to a
lient de
lared in another ma
ro unit. A module or subsystem
anonly be used via an asso
iated ex
lusive signature whi
h de
lares the entities that areavailable for use. That is, an ex
lusive signature mediates a

ess to an asso
iated item.Module use and subsystem use are des
ribed in Se
tions 5.4.10 and 5.4.11 respe
tively.Ea
h signature entity is a

ompanied by its type spe
i�
ation. An ex
lusive sig-nature
an be asso
iated with any module or subsystem whi
h provides a binding forall of the signature's entities. This does not imply that the bindings are hosted bythe asso
iated ma
ro unit, but that the unit is visible from the asso
iated ma
ro unit.Visibility of one mi
ro unit from another is de�ned in Se
tion 5.4.1. Module and sub-system asso
iations with ex
lusive signatures are des
ribed in Se
tions 5.4.5 and 5.4.6respe
tively.Standard ML signatures, Miranda abstra
t type signatures, Clean de�nition modulesand Haskell module export and import lists are thus supported through FAD's ex
lusive

5.3. FAD MACRO UNITS 99signatures. Some re
ent resear
h has fo
used on using parameterised signatures tosupport a type-theoreti
 framework for modular programming [69℄. FAD however hasa
lear distin
tion between the semanti
s of a (parameterised) permissive signature andthat of a (non-parameterised) ex
lusive signature. A permissive signature presents theminimal fun
tionality supported by its asso
iated type(s), where an ex
lusive signaturemediates a

ess to the entities of an asso
iated item. That is, a permissive signaturespe
i�es at least this where an ex
lusive signature spe
i�es only this.The implementation details regarding signature de
laration and appli
ation arelanguage-spe
i�
 and are not a design issue. FAD provides a
lear des
ription of adesign de
ision without imposing a parti
ular implementation approa
h. The FAD de-s
ription may present more information than that provided by an implementation lan-guage. Haskell, for example, presents (in a module's export or import list) the names ofa

essible entities without any type information (although this may be added to Haskell2). In
ontrast, ML signatures and Clean de�nition modules provide type informationalongside the entity names.The details of ea
h ex
lusive signature are presented in an Ex
lusive Signature De-s
ription Do
ument (ESDD) as illustrated by the ESDD for TEAMSSIG, an interfa
e tothe module in whi
h the type teams and asso
iated types and fun
tions are de�ned.This is presented in Figure 20.The proje
t within whi
h the signature is de�ned is presented to the right of theheader. The list in the body of the do
ument presents:� the unique name of the signature written in upper-
ase letters. The name mustnot
lash with any (permissive or ex
lusive) existing signature name;� the version of the signature;� the subsystem in whi
h the signature is de
lared. If the signature is asso
iatedwith a subsystem then this will appear blank sin
e it is de
lared in the proje
tand not any of its subsystems;� the types spe
i�ed in the signature. If the type's
onstru
tor signature is notspe
i�ed in the signature then the type is used as an abstra
t type. Se
tion 6.4provides full details of FAD's support for abstra
t types;

100 CHAPTER 5. FAD MODELLING LANGUAGE

Ex
lusive Signature Des
ription Do
ument FootballName: TEAMSSIGVersion: 19990827:0Subsystem: FootballSSType(s): teamsPermissive sig(s):Fun
tion(s): addResultsToTeams:results -> teams -> teamsInherited Sig(s):Des
ription:This signature provides an interfa
e to the module TeamsModwhen used by its subsystem.Figure 20: Ex
lusive Signature Des
ription Do
ument for TEAMSSIG

5.3. FAD MACRO UNITS 101

Figure 21: The Ex
lusive Signature TEAMSSIG� the permissive signatures spe
i�ed in the signature. Any
onstru
tor signatureswill appear here;� the fun
tions spe
i�ed in the signature with their type spe
i�
ations;� the signatures inherited by this signature. Signature inheritan
e is des
ribed inSe
tion 5.4.7;� a des
ription of the signature.FAD NotationAn ex
lusive signature has the same graphi
al notation as its permissive
ounterpartalthough its name will always appear by itself. The notation was
hosen sin
e anex
lusive signature a
ts as an an interfa
e to an asso
iated ma
ro unit and the notationmimi
s su
h a barrier to entry. This is illustrated with the ex
lusive signature TEAMSSIGpresented in Figure 21.5.3.4 Proje
tA system is developed as a proje
t. A proje
t is typi
ally partitioned into severalsubsystems. Thus one de
lares subsystems and their asso
iated ex
lusive signatures ina proje
t. A proje
t in no sense owns its subsystems. That is, any
olle
tion of thesubsystems
an be used in the development of another proje
t. The only
onstraints onthe use of a subsystem's entities are those imposed by an asso
iated ex
lusive signature.

102 CHAPTER 5. FAD MODELLING LANGUAGE
Proje
t Des
ription Do
umentName: FootballSubsystem(s): FootballSS : FOOTBALLSIGUISS : UISIGFileSS : FILESIGParseSS : PARSESIGGeneralSS : GENERALSIGEx
lusive Sigs:Proje
ts Used:Development Units:Des
ription:A proje
t whi
h implements an automated football resultspro
essing system.Figure 22: Proje
t Des
ription Do
ument for the Proje
t FootballThe details of ea
h proje
t are des
ribed in a Proje
t Des
ription Do
ument (PDD)as illustrated by the PDD for Football, the football system proje
t. This PDD ispresented in Figure 22.A PDD presents:� the unique name of the proje
t whi
h begins with an upper-
ase letter and mustnot
lash with any names of modules, subsystems or existing proje
ts;� the subsystems de
lared in the proje
t. These are presented with the asso
iatedex
lusive signature whi
h mediates use of the subsystem's entities. That is, anyother signature asso
iated with a subsystem must provide a subset of the spe
i�-
ations de
lared in this signature;� the other ex
lusive signatures de
lared in the proje
t. These are used to mediateintera
tion between entities of the proje
t's subsystems;

5.3. FAD MACRO UNITS 103

Figure 23: The Proje
t Football� the other proje
ts used by the proje
t;� the development units assigned to the proje
t, and the subsystem(s) for whi
hthey are responsible;� a brief des
ription of the proje
t.FAD NotationA proje
t is represented in FAD by an ellipse en
losing the proje
t's name. An ellipsewas
hosen sin
e it is ni
ely represents the global nature of a proje
t. Below a delimitinghorizontal line one
an present the names of the proje
t's subsystems. Alternativelythese
an be linked to the proje
t using the partition relationship des
ribed in Se
tion5.4.14. The graphi
al representation of the proje
t Football is illustrated in Figure 23.5.3.5 FileEa
h proje
t will be implemented as a
olle
tion of �les. These may in
lude standardenvironment �le(s), library �les, data �les and �les in whi
h the proje
t's modulesare de
lared. That is, a �le is a
omponent of the system that delivers a part of animplemented proje
t. Where the subsystem and module ar
hite
ture provides a logi
almodel of a system, the
olle
tion of �les and their
ollaborations des
ribe a physi
al modelof the software whi
h implements the system. Sin
e �les are units of implementation,their ar
hite
ture is determined late in any development pro
ess.Every module will be de�ned in a single �le but a �le
ould in
lude the de�nition ofseveral modules. A subsystem will normally be de�ned through several �les, but every�le will be asso
iated with a single subsystem. Every ex
lusive signature will be de�nedin a single �le although on
e again several
ould be de�ned in the same �le.

104 CHAPTER 5. FAD MODELLING LANGUAGE
File Des
ription Do
ument FootballName: Teams.hsSubsystem: FootballSSModule(s): TeamsModEx
lusive sig(s): TEAMSSIGData hosted:Files used:Des
ription:The implementation of the football teams module.Figure 24: File Des
ription Do
ument for the File Teams.hsThe details of ea
h �le are des
ribed in a File Des
ription Do
ument (FIDD) asillustrated in Figure 24 by the FIDD for teams.hs.In ea
h FIDD the proje
t being implemented is presented to the right of the header.The list in the body of the do
ument presents:� the �le's unique name whi
h will be written in a manner
onsistent with theimplementation language;� the subsystem supported by the �le;� the module(s) implemented in the �le;� the ex
lusive signatures implemented in the �le;� the data hosted by the �le. For example, the
urrent re
ord of the football teams;� the �les used in the implementation of the �le. The �le use relationship is des
ribedin Se
tion 5.4.13;� a des
ription of the �le.Ea
h modern fun
tional programming language adopts its own
onventions regardingthe assignment of modules to �les. In Haskell ea
h module must be de
lared in a separate

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 105
Figure 25: The File Teams.hs�le typi
ally of the same name. The module de�nitions are normally a

ompanied by anexport list of entities available to potential
lients. SML imposes no su
h restri
tion, andthus multiple modules
an be de
lared in a single �le. Clean requires two �les for anymodule whi
h
ontains entities available to other modules, one to host the de�nitionsand the other to de
lare the entities that are for export. In ea
h
ase the �le namemust mat
h the module name with the �le extension signalling its use. That is, animplementation module �le has the extension i
l as opposed to d
l for a de�nitionmodule �le. Miranda has no language notation for a module, providing its support formodular programming dire
tly through its �les. A more detailed des
ription of modularsupport in modern fun
tional languages is presented in Chapter 3.FAD NotationA �le is represented in FAD as a bla
kened re
tangle with a white border. This lookssimilar to a �ling
abinet with the names representing ea
h drawer. The �le name iswritten in the re
tangle, whi
h
an also in
lude the name(s) of the module(s) de
laredin the �le. This is illustrated in Figure 25.This
on
ludes the des
ription of FAD's mi
ro and ma
ro units. How they
ollabo-rate is des
ribed in the following se
tion.5.4 FAD Relationships and Asso
iationsVarious relationships and asso
iations between the modelling language's units are sup-ported by FAD. These in
lude instantiation of a permissive signature by a type, mod-ule/ex
lusive signature asso
iation and several `use relationships'. In this se
tion wewill des
ribe the syntax and semanti
s of ea
h relationship. We will illustrate ea
h withan example from the
ase study.

106 CHAPTER 5. FAD MODELLING LANGUAGE5.4.1 Argument of a Fun
tionSin
e all data
ow is expli
it in a pure fun
tional program, and most modern fun
tionallanguages are strongly typed, the argument and result type(s) of a fun
tion play animportant role both in guiding development of software and in re
ording the
hara
ter-isti
s of a program. Although a fun
tional programmer is not required to spe
ify thetypes of fun
tions, as is the
ase in stati
ally-typed OO languages, as a developmenttool it is extremely bene�
ial and is therefore en
ouraged by FAD. The relationshipbetween a fun
tion and its argument (and result types) is a use relationship sin
e thefun
tion uses values of the argument type(s) to
reate values of the result type.All argument types must be visible from their asso
iated fun
tion. The visiblityrules are the same for all mi
ro units. That is, mi
ro unit B is visible from mi
ro unitA if and only if pre
isely one of the following is true:� A and B are hosted by the same module;� B is hosted by a module BMod in the same subsystem as the module AModwhi
h hosts A. There is either a module use relationship from AMod to BModwith B spe
i�ed in the mediating ex
lusive signature, or there is a path fromAMod to BMod via one or more intermediate modules where ea
h module userelationship linking the modules is mediated by an ex
lusive signature that spe
-i�es B;� B is hosted by a module BMod hosted by a subsystem BS whi
h is used by thesubsystem whi
h hosts the module in whi
h A is de
lared. B must be spe
i�ed inthe ex
lusive signature whi
h mediates use of the subsystem, and in the ex
lusivesignature whi
h mediates the partition relationship between the subsystem BSand BMod or a module whi
h is linked to BMod via a path as des
ribed inthe
ase above. This is illustrated in Figure 91 where to aid readibility we havelimited the spe
i�
ations presented in the ex
lusive signatures to those requiredfor the example.The module use relationship, subsystem use relationship, partition relationship,module/ex
lusive signature asso
iation and subsystem/ex
lusive signature asso
iationare des
ribed in Se
tions 5.4.10, 5.4.11, 5.4.14, 5.4.5 and 5.4.6 respe
tively.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 107Polymorphi
 fun
tions are restri
ted in their appli
ation to types that are visible.Constrained polymorphi
 fun
tions are dependent on the permissive signature whi
hde
lares the
onstraint. They are restri
ted in their appli
ation to types that are visibleand instantiate the permissive signature as des
ribed in Se
tion 5.4.4. This implies thatsoftware must be designed in su
h a way that a fun
tion has a

ess, maybe only in anabstra
t sense, to its argument type(s).Higher-order fun
tions with fun
tional arguments imply a dependen
y between thehigher-order fun
tion and any a
tual fun
tional argument. This is des
ribed in Se
tion6.9.FAD NotationA fun
tion argument type is represented in FAD through the juxtaposition of the typeto the right of the fun
tion as illustrated in Figure 26. The type boxes are externalto the fun
tion box sin
e it:
onforms to the juxtaposition-based syntax between afun
tion and its arguments found in most fun
tional languages; it avoids potentiallymessy nested notation for the representation of permissive signature/type asso
iationsas des
ribed in Se
tion 5.4.4; and, it simpli�es the representation of fun
tions withfun
tional arguments.To support modular development, one
an annotate the type notation to indi
atewhether the fun
tion and type are de
lared in the same subsystem or if they are de
laredin the same module. The default notation represents an intra-module relationship.That is the fun
tion and type are de
lared in the same modules. An inter-subsystemrelationship is indi
ated by a broken verti
al line in the type box at the fun
tion end ofthe link. An intra-subsytem, inter-module relationship is indi
ated by a solid verti
alline in the type box at the fun
tion end of the link.The fun
tion
he
kResult whi
h
he
ks the a

eptability of a result against existingresults and the
olle
tion of football teams, is de
lared in the module ResultMod of thesubsystem FootballSS. It takes three arguments. The �rst is of type result whi
his de
lared in the same module. The se
ond and third of types results and teamsare de
lared in the modules ResultsMod and TeamsMod of the same subsystem. Theresult type bool is a general-purpose type that is de
lared in a module of the subsystemGeneralSS.

108 CHAPTER 5. FAD MODELLING LANGUAGE
Figure 26: A Fun
tion and its Type with Modular Annotations5.4.2 Result of a Fun
tionA fun
tion is dependent both on its argument type(s) and result type. Therefore, thevisibility rules des
ribed in the previous se
tion equally apply to a fun
tion and its resulttype. Hen
e a fun
tion has a use relationship with its result type and the same designimpli
ations apply as those stated in Se
tion 5.4.1.FAD NotationA result type is represented in FAD through juxtaposing the type box to the left ofits fun
tion box. That is, a type to the left of a fun
tion box is the result type of thefun
tion. The reasons for this notation are as des
ribed for an argument type.A fun
tion/result type asso
iation is also illustrated in Figure 26.5.4.3 Curried Fun
tionsAll modern fun
tional languages a�ord the developer a
hoi
e of designs for multipleargument fun
tions. The �rst form, whi
h is also
ommon to non-fun
tional languages,is to present the arguments in a tuple. The se
ond form delivers the arguments one ata time and is known as the
urried form. The bene�ts of
urrying were des
ribed inSe
tion 3.1.4.FAD NotationCurried fun
tions are represented through juxtaposing the �rst type box to the right ofthe fun
tion box, and then ea
h further type box to the right of the previous type box.In Figure 27 we present FAD notation for the
urried fun
tion addResultToPlayerswhi
h in Haskell has the following spe
i�
ation.addResultToPlayers :: Result -> Players -> Players

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 109
Figure 27: The Curried Fun
tion addResultToPlayers
Figure 28: Partial Appli
ation of the Fun
tion sele
tNew fun
tions
an be stati
ally or dynami
ally
reated through the partial appli
a-tion of the fun
tion to an in
omplete set of argument values. FAD represents partialappli
ation by repla
ing a type with a value of a type as illustrated in Figure 28 wherethe fun
tion sele
t is applied to a fun
tional value sele
tNameAndData. sele
t is ahigher-order fun
tion whi
h retrieves data from a
olle
tion of values by applying its�rst argument to ea
h element in its se
ond argument.5.4.4 Type/Permissive Signature Asso
iationA permissive signature provides the minimum fun
tionality supported by any asso
i-ated type. There are two forms of asso
iation that FAD supports. The �rst is thatbetween type variables and a permissive signature whi
h we
all the type/permissivesignature
ontra
t asso
iation. A permissive signature restri
ts the type whi
h
an bebound to the type variable(s) to those that provide bindings for ea
h of the signature'soperations. These types are linked to the permissive signature through the se
ond formof asso
iation that we
all the type/permissive signature instantiation asso
iation. Thetype
onstru
tors of any type(s) that instantiate a permissive signature must have thesame kind as the signature's parameter(s). Type instantiation of a signature impliesthat bindings exist for the operations of the signature de�ned over the type.FAD NotationThe asso
iation between a permissive signature and a type (or type variable) is rep-resented through juxtaposing the two. Juxtaposition was
hosen sin
e a permissive

110 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 29: Type Dependen
y Diagram for the Type teams with Signature Instantiationsignature is adding an extra layer of information to a type. This is illustrate in Fig-ure 29 where we present part of the type dependen
y diagram for the type teams. Wewill return to this diagram to illustrate other relationships but for now we fo
us onthe instantiation of the permissive signature ORD by the type date, and the permissivesignature CONTAINER by the type
olle
tion a. In both
ases one
ould representthe instantiation simply through the signature notation with the entry EQ date andCONTAINER
olle
tion respe
tively. Here one simply presents the type
onstru
torname (without any parameters) after the permissive signature name.When more than one signature is instantiated by a type this
an be representedeither by juxtaposing the signatures, or juxtaposing ea
h signature with the type. Inaddition one
an represent multiple instantiations of a single signature by juxtaposingthe signature with ea
h type as in Figure 30.Thus the types int, bool,
har, and float all instantiate the signature EQ.Instantiation of a multiple parameter permissive signature is represented by en
losingthe instantiating types inside a type box juxtaposed with the signature. We illustratethis in Figure 30 with a FAD representation of an example similar to one des
ribed in[102℄. In [102℄ the example refers to a multiple parameter type
lass Colle
tion withtwo parameters of kind * -> * and *. The se
ond parameter enables
onstraints to beapplied to the type variable whi
h represents the elements of a
olle
tion type. We have
alled the permissive signature SET.One
an in
lude type/permissive signature asso
iations in the des
ription of a fun
-tion. The methodology en
ourages su
h asso
iations in a fun
tion des
ription sin
e they

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 111

Figure 30: Type Instantiation of a Signature
Figure 31: Type Constru
tor/Signature Asso
iationprovide information regarding the potential for higher-order and
onstrained polymor-phi
 fun
tions. They also provide a key for storing a fun
tion in the data di
tionary.FAD's te
hniques for developing higher-order, and overloaded or polymorphi
 fun
tionsis des
ribed in Se
tions 7.3.3 and 7.3.2. The data di
tionary is presented in Chapter 8.We illustrate with an example from the
ase study. The fun
tion sele
t was �rstdes
ribed in Se
tion 5.4.3 to illustrate partial appli
ation. The des
ription of the fun
-tion in Figure 31 has been updated with the asso
iation of the permissive signature MAPwith the type
olle
tion a, whi
h is used by the type teams to
onstru
t values ofthe type. This indi
ates that the fun
tion sele
t requires `mapping' behaviour overits se
ond argument. That is, it needs to apply a fun
tion to ea
h of the elements ina
olle
tion. The type des
ription of the type
olle
tion a will need to be updateda

ordingly unless the instantiation has already been de
lared.Fun
tion overloading is not supported by all modern fun
tional programming lan-guages. Miranda only provides overloading for the built-in
omparison operators andthe fun
tion show whi
h
onverts a value to its printable form as a string. SML allows

112 CHAPTER 5. FAD MODELLING LANGUAGEfun
tion identi�er reuse through module name quali�
ation but not fun
tion overload-ing. Haskell and Clean both provide �rst and higher-order overloading through type and
onstru
tor
lasses [66℄. The
lass presents the signature supported by any instantiatingtype. A
lass
an therefore implement a permissive signature.Although support for fun
tion overloading is not provided by all fun
tional lan-guages, the design bene�ts of making expli
it the behaviour required by a type, orthe behaviour de�ned over a type is invaluable during development. Permissive signa-tures and their asso
iations
an be modelled either dire
tly or indire
tly in any modernfun
tional language.5.4.5 Module/Ex
lusive Signature Asso
iationIn Se
tion 5.3.1 we presented a brief overview of the support within fun
tional program-ming for modular programming. When designing a system it is important to be ableto separate the implementation of a module's entities from its interfa
e to the outsideworld so that the e�e
t of any implementation
hanges are lo
alised. FAD supports thisapproa
h both notationally and in its methodology des
ribed in the following
hapter.FAD provides modules in whi
h mi
ro units are de�ned, and ex
lusive signaturesthat spe
ify an interfa
e to a module. A module/ex
lusive signature asso
iation spe
i�esthe entities of a module whi
h are available to a
lient module whi
h is linked to themodule via a module use relationship. Ea
h entity spe
i�ed in the signature is eitherde
lared in the asso
iated module, or in a module whi
h is
onne
ted to the asso
iatedmodule by a path of module use relationships and is spe
i�ed in ea
h mediating ex
lusivesignature. Thus one
an asso
iate an ex
lusive signature with any module whi
h
anprovide a binding for ea
h entity spe
i�ed in the signature, where the binding may beprovided by entities de
lared in the module, de
lared in modules (and spe
i�ed in theasso
iated ex
lusive signature) used by the module, or de
lared in a module used bya used module (and spe
i�ed in the asso
iated ex
lusive signatures) and so on. Themodule use relationship is des
ribed in Se
tion 5.4.10.Ea
h module will be asso
iated with at least one ex
lusive signature, but
ouldbe asso
iated with several signatures. Ea
h signature will present an interfa
e to themodule for a parti
ular
lient. For example, module A may require a

ess to the typesde
lared in module B and require knowledge of how they are
onstru
ted. Module C

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 113

Figure 32: Module/Ex
lusive Signature Asso
iation for the Module ResModsimply requires a

ess to the types of moduleB and some operations over the types. Theex
lusive signature asso
iated with module B and used by module A will in
lude thetypes of B and their asso
iated
onstru
tor signature, often referred to as a transparentsignature. In
ontrast, the signature used by module C in
ludes the types without their
onstru
tor signatures (abstra
t data types) and the required operations. Multipleinterfa
es to a single module are supported by most modern fun
tional languages.FAD NotationA module/ex
lusive signature asso
iation is represented through juxtaposing an ex-
lusive signature with a module. We
hose this notation sin
e an ex
lusive signatureprovides an interfa
e to the ma
ro unit to whi
h it is juxtaposed. In Figure 32 ea
hentity of the signature RESULTSIG is de
lared in the module ResultMod. Entities notspe
i�ed in the signature may also be de
lared in the module. They are not howevervisible to external
lients.Hen
e FAD supports and en
ourages the separation of a module de�nition fromits interfa
e, and en
ourages the expli
it statement of the fun
tionality availed by amodule through its asso
iated signature(s). This allows the developer to des
ribe the
ollaboration between modules at the interfa
e level before fo
using on the internalimplementation details of ea
h module.

114 CHAPTER 5. FAD MODELLING LANGUAGE5.4.6 Subsystem/Ex
lusive Signature Asso
iationIn Se
tion 5.3.2 we des
ribed subsystems and how they
an be used during the develop-ment of a system. Subsystems provide a me
hanism for managing large proje
ts throughhosting a
olle
tion of modules with some
ommon purpose. The subsystem/ex
lusivesignature asso
iation mirrors the module/ex
lusive signature asso
iation des
ribed inSe
tion 5.4.5.Every entity spe
i�ed in an ex
lusive signature asso
iated with a subsystem mustalso be spe
i�ed in the ex
lusive signature whi
h mediates use of a
ontained module'sentities through a partition relationship, or in an ex
lusive signature whi
h mediatesuse of another subsystem via a subsystem use relationship. We des
ribe the subsystemuse relationship in Se
tion 5.4.11 and the subsystem/module partition relationship inSe
tion 5.4.14.During development the design of module interfa
es is guided by the usage require-ments of their host subsystem and not vi
e versa. That is, subsystem use drives thedevelopment of its modules and asso
iated signatures. Full details of this pro
ess arepresented in the following
hapter.FAD NotationThe subsystem/ex
lusive signature asso
iation in
ommon with the module/ex
lusivesignature asso
iation is represented in FAD by the juxtaposition of an ex
lusive signa-ture with a subsystem. This notation was
hosen for the same reasons presented inSe
tion 5.4.5. This is illustrated in Figure 33 where the user interfa
e subsystem UISSis asso
iated with the ex
lusive signature UISIG whi
h is presented in an elided form.The signature de
lares a
olle
tion of I/O fun
tions available for use. We des
ribein Se
tion 7.2.1 some issues regarding the representation of impure a
tions within thepurity of FAD.5.4.7 Signature Inheritan
e RelationshipA signature
an adopt the entities spe
i�ed in another signature, through the transitivesignature inheritan
e relationship. The only me
hanism for respe
ifying an entity in anew signature is through inheriting its spe
i�
ation from an existing signature.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 115

Figure 33: Subsystem/Ex
lusive Signature Asso
iation for the Subsystem UISSA signature
an only inherit from one or more signatures of the same form. Thatis an ex
lusive signature
an only inherit from other ex
lusive signatures. Permissivesignatures are restri
ted to inheritan
e of other permissive signatures where they havemat
hing parameter kinds. A signature
an only inherit from a signature that is visible.That is, if one wants a signature to inherit from another signature then they must eitherbe de
lared in the same ma
ro unit (the only possibility for ex
lusive signatures sin
ethey do not appear in other interfa
es), or are de
lared in the appropriate interfa
e(s).Sin
e a permissive signature may be instantiated by several unrelated types they shouldbe as visible as possible. For example, in the
ase study all permissive signatures arede
lared in the subsystem GeneralSS and spe
i�ed in the mediating ex
lusive signatureGENERALSIG. This subsystem is used by all other subsystems of the proje
t.In fun
tional languages that support type and
onstru
tor
lasses, inheritan
e isa
ommon me
hanism for
onstru
ting new
lasses. For example, in Haskell 98 [100℄several of the built-in
lasses su
h as Eq and Ord are related through inheritan
e.FAD NotationThe signature inheritan
e relationship is represented by an arrow between two signa-tures, pointing towards the bequeathing signature and from the inheriting signature.Parameter names should be supplied when needed for
lari�
ation. For example, if a

116 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 34: Signature Inheritan
e Relationship between EQ and ORDmultiple parameter signature inherits from a single parameter signature, one should usea
onsistent name for the related parameters in the two signatures.The graphi
al notation is the reverse of that adopted in the Haskell 98 Report [100℄.We argue that this is a more natural representation sin
e the dire
tion of the arrowre
e
ts the fa
t that an inherited signature is implied by an inheriting signature. Thatis, if a type instantiates a signature A whi
h inherits from signature B then it alsoinstantiates signature B. A similar argument
an be made for modules or subsystemsand their asso
iated signatures.Extensible algebrai
 types have re
ently been mooted as a means of supportingsubtyping within fun
tional languages [107℄. FAD supports them through the signa-ture inheritan
e relationship between
onstru
tor signatures. As yet modern fun
tionallanguages do not support extensible algebrai
 types.We illustrate signature inheritan
e in Figure 34, where the permissive signatureORD inherits from the permissive signature EQ. The new operations spe
i�ed in ORD arepresented below its name.In the following se
tion we des
ribe the various use relationships between units ofthe same form.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 1175.4.8 Type Use RelationshipA type
an be de�ned in terms of one or more existing types. FAD's non-transitive typeuse relationship de
lares a unidire
tional dependen
y from the using type to the usedtype(s). The using type
ould be an alias for the used type or
ould be a
omposite typewhose values are
onstru
ted using values of the used type(s). For design purposes it isimportant to make expli
it these dependen
ies sin
e they will in
uen
e the ar
hite
tureof the system. A type may only use a type that is visible.A type is visible from another type if one of the
ases for visibility presented inSe
tion 5.4.1 is true. The relationship is non-transitive sin
e the type t1
ould be visiblefrom the type t2 whi
h is visible from the type t3. However the type t1 may not bevisible from t3. In a modular design in whi
h a minimum of
oupling between modulesis pra
tised, one would expe
t and en
ourage these patterns of design. A
onstrainedparameterised type requires an asso
iation between a type variable and at least onepermissive signature. The permissive signature(s) must be visible from the type, whi
hwill always be the
ase if one pra
tises a design approa
h where all permissive signaturesare visible from all entities.FAD NotationThe type use relationship is represented by a link from the user type to the used type oran asso
iated permissive signature. The link is
onne
ted to the using type by a �lled-in re
tangle. This notation was
hosen be
ause we required a simple (and reusable)notation that made
lear the dire
tion of usage. We use this same notation for alluse relationships between units of the same form. In support of modular developmentthe use relationships may re
e
t whether the entities at ea
h end are de
lared in thesame subsystem and also if they are de
lared in the same module. A broken line linkindi
ates an inter-subsystem relationship; a thin line link indi
ates an intra-subsystembut inter-module relationship and a thi
k line link an intra-module relationship. Thethin line link is used by default and will be updated if ne
essary.A sum type
an be modelled by annotating the use relationship with
omma delim-ited natural numbers, to indi
ate whi
h types and type
onstru
tors are used by ea
helement of the sum. We need an annotation that supports more than one number sin
e

118 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 35: Type Dependen
y Diagram for the Type teamssome types will be used in more than one element of the sum.We illustrate the type use relationship in Figure 35 with a type dependen
y diagramfor the type teams. Type dependen
y diagrams present a data-
entri
 view of a systemor part of a system. The type teams uses three types, date, team, and
olle
tion a inthe
onstru
tion of its values. The types teams and team are both de
lared in modulesof the subsystem FootballSS. The types date and
olle
tion a are de�ned in thesubsystem GeneralSS. The type team uses the types tName, perfData and teamInfowhi
h are all de
lared in the module TeamMod.5.4.9 Fun
tion Use RelationshipFun
tional programmers are en
ouraged to design programs that are both `modular-in-the-large' and `modular-in-the-small'. FAD's ma
ro units and ma
ro unit relationshipssupport the �rst form of modularity. The fun
tion use relationship supports the latterthrough the development of designs built on small fun
tions with a
lear single purpose.FAD's non-transitive fun
tion use relationship de
lares a unidire
tional dependen
yfrom a using fun
tion to a non-argument used fun
tion. The same visibility rules applyfor used fun
tions as for used types.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 119

Figure 36: Fun
tion Dependen
y Diagram for the Fun
tion updPlayersPerfFAD NotationThe fun
tions used in the body of a fun
tion are linked to the using fun
tion throughthe same uses notation as for type use. This is illustrated in Figure 36 with the fun
tiondependen
y diagram for the fun
tion updPlayersPerf.The I/O fun
tion updPlayersPerf uses the �le I/O fun
tions readPlayersFile,readResFile, and writePlayersFile. It also uses the fun
tion addResultsToPlayerswhi
h in turn uses the fun
tions filterByDate and addResultsToPlayers.One
an annotate fun
tion use relationships to indi
ate sequentiality of used fun
tionappli
ation and
onditional behaviour. One
an also use annotation to indi
ate nestedsequentiality. We �rst des
ribe non-nested sequential annotation. Ea
h use relationshiplink is annotated with a natural number that indi
ates the order of appli
ation of thefun
tions. A fun
tion with a link indexed with a natural number n will be applied inadvan
e of all fun
tions with a link whose index is greater than n and after any withan index less than n. Sin
e fun
tions
an exhibit both sequential and non-sequentialbehaviour, those fun
tions with identi
al indexes require no mutually sequential appli-
ation. If the use relationship links have no annotations then one
an assume that no

120 CHAPTER 5. FAD MODELLING LANGUAGEsequentiality of appli
ation of the fun
tions is required.Nested sequential behaviour is represented through quali�ed indexes. That is, theindex is written by post�xing the index of the link to the using fun
tion, with a fullstop followed by a natural number index. This indexing
an be repeated to any level ofdependen
y, although we would en
ourage models whi
h have several levels of depen-den
y to be represented using a
olle
tion of diagrams as is
ommon when using data
ow diagrams. That is, ea
h fun
tion with signi�
ant dependen
y requirements shouldbe des
ribed in a separate diagram.Fun
tions with
onditional behaviour will require sequential behaviour for the de-termination of whi
h
ase is true, and the evaluation of the asso
iated expression. Theimplementation of the
onditional fun
tion
ould be as a
olle
tion of guards or as a
onditional expression. These details are left to the software implementers and mayre
e
t the idiosyn
rasies of a parti
ular implementation language.A
onditional fun
tion is best represented using a separate diagram for ea
h
ase.A
ondition
an be represented as a fun
tion that returns a Boolean value. Su

ess
anbe represented by the value True in the result re
tangle and failure by the value False.A fun
tion with more than two
ases will have more than one
ondition fun
tion. Weillustrate in Figures 37(a) and 37(b) the FAD diagrams that model the fun
tion
ondFun.If the predi
ate fun
tion predFun, when applied to the inputted integer returns True,
ondFun uses the fun
tion fun1. Otherwise it uses the fun
tion fun2.
ondFun :: Int -> Int
ondFun i| predFun i = fun1 i| otherwise = fun2 iThus one
an use annotations to aid the reading of multiple diagrams that representthe model of a fun
tion with
onditional behaviour. In Figure 37(a) we represent the
ase where the �rst
ondition is satis�ed. The annotations are simply those for sequen-tiality. Figure 37(b) models failure of the �rst
ondition and su

ess of the se
ond. Theannotation to the fun
tion fun2 is extended with the letter a to indi
ate that this is analternative to the model in Figure 37(a).

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 121

Figure 37: Conditional Fun
tion DiagramsOne
an add
omments to any FAD diagram through en
losing the
ommentary in a
ir
le and atta
hing it to the relevant item through a broken line as illustrated in Figure36.5.4.10 Module Use RelationshipHosting fun
tions and types in modules aids the management of software developmentand if pra
tised e�e
tively will minimise the s
ope of any
hanges to the software.One should develop
ohesive modules whi
h have a minimal but expli
it
oupling withother modules. We des
ribe in the following
hapter how FAD's methodology both aidsand en
ourages the development of modular designs where information hiding is thedominant
riterion. In this se
tion we des
ribe how entities de
lared in one module
anuse entities de
lared in another module of the same subsystem. The following se
tiondes
ribes a similar relationship between subsystems.FAD supports inter-module development through its module use relationship. Thisis a non-transitive, unidire
tional relationship between two modules mediated by anex
lusive signature asso
iated with the used module. Entities in one module may makeuse of entities de
lared in another module of the same subsystem if and only if thereis a module use relationship from the
lient module to the used module. The entitiesavailable for use are those spe
i�ed in the asso
iated ex
lusive signature.Module use is only supported between modules of the same subsystem. Entities

122 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 38: A Module Diagramde
lared in modules of di�erent subsystems of a proje
t require a subsystem use re-lationship from the
lient subsystem to the used subsystem. This is des
ribed in thefollowing se
tion.FAD NotationFAD uses the same graphi
al notation for module use as for type and fun
tion useex
ept one only uses the inter-subsystem and intra-subsystem versions of the notation.That is, a module use relationship is a re
tangle-ended link between the
lient moduleand the used module, although it must be linked to an ex
lusive signature asso
iatedwith the used module.We illustrate module use in the module diagram presented in Figure 38. The moduleResultsMod hosts the type results, whi
h is a
olle
tion of values of type result. Thatis, results uses result. The type result is hosted by the module ResultMod and isspe
i�ed in the asso
iated ex
lusive signature RESULTSIG.5.4.11 Subsystem Use RelationshipFAD not only provides modules to support the management of the software developmentpro
ess but also subsystems that host a
olle
tion of modules. One
an make the samearguments for a sensible subsystem ar
hite
ture as stated for the module ar
hite
ture inthe previous se
tion. FAD supports inter-subsystem development through its subsystemuse relationship, a non-transitive, unidire
tional link between two subsystems.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 123

Figure 39: A Subsystem DiagramA subsystem use relationship indi
ates that the entities of the
lient subsystem maybe able to use entities de
lared in the used subsystem. A subsystem may only be usedvia an asso
iated ex
lusive signature that spe
i�es entities that are available for use.The subsystem use relationship supports the dependen
y of a mi
ro unit de
lared ina module of one subsystem on a mi
ro unit de
lared in a module of another subsystem.Intra-subsystem dependen
y is supported by the module use relationship des
ribed inthe previous se
tion. That is, if a fun
tion de
lared in a module of one subsystem needsa

ess to a fun
tion de
lared in a module of another subsystem then this is modelled inFAD through a subsystem use relationship between the relevant subsystems.
FAD NotationThe notation used in FAD is the same as the default use relationship notation for thetype use, fun
tion use, and module use relationships. We illustrate in Figure 39 with asubsystem diagram from the
ase study.The subsystem UISS that hosts the modules whi
h implement user interfa
e typesand fun
tions, is linked to the subsystem FileSS in whi
h the �le-handling fun
tionalityis supported. Various text-based I/O fun
tions de
lared in modules of UISS depend onfun
tions that write to �les or read from �les. These are de
lared in modules of thesubsystem FileSS.

124 CHAPTER 5. FAD MODELLING LANGUAGE5.4.12 Proje
t Use RelationshipA proje
t
an make use of another proje
t through FAD's non-transitive, unidire
tionalproje
t use relationship. Alternatively a proje
t
an use individual subsystems of an-other proje
t, or develop new subsystems from the modules de
lared in another proje
t.That is, although a proje
t is partitioned into subsystems that themselves are furtherpartitioned into modules, the ar
hite
ture is proje
t-spe
i�
. A new proje
t
an reusean existing proje
t with its de
lared ar
hite
ture, or one or more of an existing proje
t'ssubsystems with their de
lared ar
hite
ture, or one or more modules developed for anexisting proje
t. In summary, subsystems are independent of the proje
t for whi
h theywere originally developed. Modules are also independent of the subsystems for whi
hthey were originally developed. They
an therefore be re
on�gured to support a newproje
t, or be used
olle
tively as a
omponent of a larger proje
t.FAD NotationThe notation for the proje
t use relationship between two proje
ts is identi
al to thatfor the subsystem use relationship, ex
ept there is no asso
iated ex
lusive signature.5.4.13 File Use RelationshipIn Se
tion 5.3.5 we des
ribed how software is implemented as a
olle
tion of �les. The�le ar
hite
ture will depend both on the software design and the idiosyn
rasies of animplementation language. For example, Clean requires ea
h module to be de
laredin a separate implementation �le with a single asso
iated de�nition �le that de
laresthe interfa
e to the implemented module. Thus a module/signature asso
iation will bedelivered as two �les linked by a use relationship. FAD's non-transitive, unidire
tional�le use relationship, de
lares a dependen
y between two �les. That is, the
lient �lehosts entities that are dependent on entities hosted by the used �le. A

ess rights aredetermined at the logi
al level, subsystems, modules and so on and not at the physi
allevel. Therefore, a

essibility will be dependent on the logi
al ar
hite
ture of the system.A system's �le ar
hite
ture is presented in a
olle
tion of �le diagrams whi
h are simply�les linked by �le use relationships.

5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 125FAD NotationThe �le use relationship has the same notation as the default notation for all other FADuse relationships. Of
ourse there are no ex
lusive signatures mediating a

ess.5.4.14 Partition RelationshipA FAD proje
t is partitioned into one or more subsystems whi
h are themselves parti-tioned into one or more modules. Ea
h module hosts one or more mi
ro units. Theserelationships are modelled in FAD as the transitive partition relationships. Thus apartition relationship links either a proje
t with a subsystem or a subsystem with amodule.FAD NotationA partition relationship is a �lled semi-
ir
le ended link from the partitioned ma
rounit to a partition element. This notation was also
hosen for its simpli
ity. Thesemi-
ir
le end emphasises that it is a whole/part relationship, where a semi-
ir
leis a part of a
ir
le. This relationship is illustrated in Figure 40 where the proje
tFootball's partition in
ludes the subsystem FootballSS that itself in
ludes the moduleResultsMod. If the partition element is asso
iated with an ex
lusive signature thissignature spe
i�es the element's entities that
an be in
luded in an asso
iated signatureof the partitioned unit. This only applies to the subsystem/module partition.5.4.15 Containment RelationshipA �le
ontains one or more logi
al units. This implies that the unit is de�ned in the �le.Of
ourse, more than one �le
ould implement the same unit and possibly in di�erentlanguages. A �le is linked to a
ontained unit through the
ontainment relationship.FAD NotationA
ontainment relationship is a �lled triangle ended link from a �le to a unit de�nedin the �le. This notation was
hosen for its simpli
ity. The triangle end was
hosen todis
riminate this relationship from the various use relationships and partition relation-ships. This relationship is illustrated in Figure 40 where the module ResultsMod and

126 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 40: FAD's Partition and Containment Relationshipsits asso
iated signature are implemented in the �le Results.hs.5.4.16 FAD CommentsOne
an add
omments to FAD diagrams. These
an be atta
hed to any FAD unit orrelationship. They are used to add detail to a parti
ular unit or relationship.FAD NotationFAD
omments are presented inside a
ir
le that is atta
hed to the item for whi
h the
omment is made via a broken line. This notation was
hosen sin
e it looks like a`
allout', whi
h is often used to relate text to an item on a pi
ture or a slide. This isillustrated in Figure 41.5.5 SummaryThis
hapter provided a des
ription of the elements, syntax and semanti
s of the mod-elling language of FAD. There are three mi
ro units, types, fun
tions and permissivesignatures and �ve ma
ro units, proje
ts, subsystems, modules, ex
lusive signatures and�les. Various asso
iations and relationships are supported between items of the sameunit, and between items of di�erent units.

5.5. SUMMARY 127

Figure 41: FAD CommentThe modelling language supports a range of diagrams that provide various views ofa system. A fun
tion dependen
y diagram is a
olle
tion of fun
tions linked by fun
tionuse relationships. They model the fun
tional requirements of a system and
an in
ludemodular ar
hite
ture information. A type dependen
y diagram is a
olle
tion of typesand type use relationships. They present a stati
 view of a system, and
an also in
ludemodular ar
hite
ture information. Proje
t, subsystem and module diagrams model thevarious levels of a system ar
hite
ture. A �le diagram des
ribes the physi
al ar
hite
tureof an implemented system.In the following
hapter we illustrate how
ommon designs used in fun
tional pro-gramming
an be modelled using this modelling language. In Chapter 7 we des
ribe themethodology of FAD. It uses the elements presented in this
hapter to develop modelsof a system.

128 CHAPTER 5. FAD MODELLING LANGUAGE

Chapter 6
FAD Fun
tional Designs
In Chapter 3 we des
ribed the main features of the fun
tional programming paradigmand how they in
uen
e software development within the paradigm. Various designsare
ommonly used su
h as higher-order fun
tions and algebrai
 types. In the previous
hapter we des
ribed the modelling language of FAD. In this
hapter we des
ribe themodelling of
ommon fun
tional programming designs in FAD's modelling language.Sin
e the language has been developed spe
i�
ally to model fun
tional programs, thedesigns should be natural to model. In pra
ti
e however, one should not be looking tomodel parti
ular designs but to model a problem, whi
h
an be iteratively developed toa model of an implementable design. Ea
h design will be illustrated by an example anda

ompanied by a graphi
al representation of the FAD model.6.1 Tuple TypesTuple types are
omposite types with a spe
ial syntax in all modern fun
tional lan-guages, a parenthesis en
losed,
omma-delimited
olle
tion of types. Values of the typeare similarly represented with values repla
ing the types. Elements of a tuple value
anbe sele
ted through pattern mat
hing.FAD ModelFAD represents a tuple type as a type that uses the tuple
omponent types, and is asso-
iated with a
onstru
tor signature that spe
i�es the relevant tuple-forming
onstru
tor.We illustrate in Figure 42 with the model of the following pair type:129

130 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 42: A FAD tuple type modelThe pairtype pairType = (type1, type2)6.2 Re
ordsA re
ord is similar to a tuple with the additional property of element sele
tion through a�eld name. That is, a re
ord is a tuple with named �elds. For example, the re
ord aRe
(written in Hugs98 running in Hugs mode) has two �elds, a of type Int and
ontainingthe number 3, and b of type Bool and
ontaining the Boolean value False.aRe
 = (a = 3::Int, b = False)Ea
h re
ord is a

ompanied by a set of sele
tor fun
tions - one for ea
h �eld of there
ord. For example, the value held in �eld a
an be inspe
ted as follows:#a aRe
Most modern fun
tional languages support re
ords. Hugs supports a
exible system ofextensible re
ords or \Trex" [68℄, the name re
e
ting the in
remental building of there
ords. Clean and SML also support re
ords but both are more restri
tive in their usethan Hugs. For example, in both these languages fun
tions
an only be de�ned over
omplete re
ords.

6.3. ALGEBRAIC TYPES 131

Figure 43: A FAD re
ord type modelFAD ModelA re
ord is presented in FAD in a similar way to a tuple. The
onstru
tor signatureasso
iated with the type also in
ludes the sele
tion fun
tions. The
onstru
tor signature
ould be
reated through inheriting a tuple
onstru
tor signature, whi
h reinfor
es thefa
t that a re
ord is a tuple with some extra fun
tionality. A
onstru
tor will be appliedto named parameter types, and the signature will be extended with the relevant sele
torfun
tions. We illustrate this with the FAD representation of someRe
, the type of thevalue aRe
, in Figure 43.Extensible re
ords
an thus be naturally represented through a type asso
iated witha permissive signature, with extensions de
lared through signature inheritan
e.6.3 Algebrai
 TypesAlgebrai
 or
on
rete types are either built in to the implementation language, su
h asthe Booleans, or are de
lared by the user. Ea
h new algebrai
 type is de
lared using atype
onstru
tor su
h as the Haskell type
onstru
tor Maybe. Its values are
onstru
tedthrough one or more value
onstru
tors whi
h are de
lared with the type
onstru
tor.Algebrai
 types were fully des
ribed in Se
tion 3.1.5.

132 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 44: A FAD Algebrai
 TypeAny algebrai
 type with at least one non-zero arity value
onstru
tor uses at leastone type. That is, some values of the type are
reated by applying one of its value
onstru
tors to a value or values of parti
ular types. The sum type AlgType1 usesvalues of type Int or Char, and the parameterised type AlgType2 t uses values of anytype t. data AlgType1 = Con1 Int | Con2 Chardata AlgType2 t = Con tSee Se
tion 3.1.5 for a more detailed des
ription of algebrai
 types.FAD ModelAn algebrai
 type instantiates a permissive signature that spe
i�es the
onstru
tors ofthe values of the type. FAD represents the types algType1 and algType2 as presentedin Figures 44(a) and 44(b). The names of value
onstru
tors begin with an upper-
aseletter. A sum type is indi
ated by annotating the use relationship links as des
ribed inSe
tion 5.4.8.

6.4. ABSTRACT TYPE 1336.4 Abstra
t TypeAn abstra
t type in
ontrast to a
on
rete type hides information regarding the
on-stru
tion of values of the type. An abstra
t type fo
uses attention on what one
an dowith values of the type in ignoran
e of its implementation details. Abstra
t types arethe fun
tional programmers' me
hanism for modular development based on en
apsu-lation and abstra
tion. They a
hieve en
apsulation through preventing a

ess to theirimplementation, and abstra
tion by providing an expli
it interfa
e.Abstra
t data types are therefore integral to the development of a modular systembased on information hiding. The methodology en
ourages designs built on abstra
ttypes as will be
ome
lear in the following
hapter.FAD ModelFAD supports type abstra
tion through its modules and ex
lusive signatures. Everytype is de
lared in a module. Abstra
tion is a
hieved through asso
iating with themodule an ex
lusive signature that spe
i�es the type but not its
onstru
tor signature.Hen
e, within the module the type is
on
rete but when used via the ex
lusive signaturedes
ribed above, the type is abstra
t. That is, an entity de
lared in the same modulehas a

ess to the type's implementation. Any entity de
lared in another module whoseuse relationship is mediated by an ex
lusive signature that enfor
es abstra
tion, doesnot have a

ess to the type's implementation.We illustrate in Figure 45 with a model of the following
ode. The module imple-mentation has been elided for spa
e reasons.module TreeMod(Tree, treeFun1, treeFun2) wheredata Tree a = Nil | Node a (Tree a) (Tree a)treeFun1 :: Tree a -> a...treeFun2 :: Tree a -> Int...

134 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 45: A FAD Abstra
t Data Type Model6.5 Polymorphi
 Fun
tionsPolymorphi
 fun
tions provide a signi�
ant reuse me
hanism for fun
tional program-mers. Parametri
 polymorphi
 fun
tions
an be applied to values of many types. Thetype of any polymorphi
 fun
tion in
ludes at least one (un
onstrained) type variable ofkind *, whi
h
an be instantiated by any type. That is, a polymorphi
 fun
tion doesnot require any spe
i�

hara
teristi
s of the types that instantiate at least one of thetype variables of kind * in its type.
FAD ModelOne represents a polymorphi
 fun
tion in FAD as a fun
tion whose type in
ludes atleast one type variable of kind * that is not asso
iated with any permissive signature.Any fun
tion des
ription that does not in
lude any asso
iations with permissive sig-natures, or only asso
iations with permissive signatures without parameters of kind *,
ould possibly be implemented as a polymorphi
 fun
tion. Full details of the develop-ment of polymorphi
 fun
tions are des
ribed in Se
tion 7.3.2. The polymorphi
 identityfun
tion id is presented in Figure 46.

6.6. TYPE CLASSES, INSTANTIATIONS AND OVERLOADED FUNCTIONS 135
Figure 46: Polymorphi
 Fun
tion Model6.6 Type Classes, Instantiations and Overloaded Fun
-tionsWe stated in Se
tion 5.2.3 that a permissive signature asso
iated with a type presentsa
ontra
t of use for values of that type. That is, the signature is not a
ting as aninterfa
e, in the sense of
ontrolling a

ess to entities of an asso
iated item, but simplyas a guarantor that
ertain fun
tions are de�ned over the type. That is the minimumfun
tionality supported over the type is that de
lared by the permissive signaturesinstantiated by the type.FAD ModelSin
e type
lasses (and
onstru
tor
lasses) provide a guarantor servi
e for a set ofoverloaded fun
tions they are presented as permissive signatures in FAD. Type
lassinstantiation is simply type/permissive signature instantiation in FAD, and
lass de
la-ration with a non-empty
ontext is supported by permissive signature inheritan
e. Weillustrate both of these situations in Figure 47, in whi
h the following
ode is graphi
allyrepresented.
lass SomeClass a wherefun1 :: a -> ainstan
e SomeClass SomeType wherefun1 = id
lass SomeClass a => AnotherClass a wherefun2 :: a -> aNon-empty
ontexts
an also appear in instan
e de�nitions and fun
tion de�nitions.A fun
tion with a non-empty
ontext is an overloaded fun
tion. Ea
h element in the
ontext is represented in FAD as a type/permissive signature
ontra
t asso
iation. This

136 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 47: Class Instantiation and Class De
laration

Figure 48: Class Instantiation and Fun
tion De�nition with Non-Empty Contextis illustrated in Figures 48(a) and 48(b) where the following instan
e de
laration andfun
tion de
laration are modelled respe
tively.instan
e Eq a => Eq (Set a) where...dfs :: Tree t => t -> [t℄6.7 Multi-Parameter ClassesWhere single parameter
lasses are supported by Haskell 98, Gofer and Clean, multi-parameter
lasses have not been in
luded in Haskell 98, and are only supported by

6.7. MULTI-PARAMETER CLASSES 137Gofer (and extensions of Hugs 98 and the Glasgow Haskell
ompiler). They are howeverrapidly gathering support in the fun
tional programming
ommunity and have beenproposed by Peyton Jones [98℄ for in
lusion in the next standard Haskell release. Theproposal uses the detailed arguments provided in [102℄. We therefore believe that FADshould support multi-parameter
lasses.FAD ModelsThe paper [102℄ outlines three types of support provided by multi-parameter type
lasses:� overloading with
oupled parameters� overloading with
onstrained parameters and,� type relationswhi
h we will represent using FAD notation.Overloading with
oupled parameters is the natural generalization of the single pa-rameter overloading supported by type
lasses. There are many situations where a tupleof types (with ea
h type possibly exhibiting
ertain behaviours) exhibit a parti
ular setof behaviours, and multi-parameter type
lasses naturally support su
h a situation. Wepresent an example from Jones' paper [66℄, illustrated by the FAD representation inFigure 49.data State s a = ST (s -> (a,s))
lass Monad m => StateMonad m s whereupdate :: (s -> s) -> m sinstan
e StateMonad (State s) s whereupdate f = ST (\s -> (s, f s))Single parameter type
lasses in whi
h the parameter is of kind * -> * or anynon * kind, impose no
onstraints on the type variable(s) asso
iated with any instan-tiating type
onstru
tor. For example, if one wants a set type to instantiate a
lasswhi
h in
ludes a fun
tion for
ombining two items of the instantiating type, then oneneeds to restri
t the set element types to `equality types' or those that instantiate an

138 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 49: Overloading with Coupled Parametersequality
lass. This requires a

ess to the parameter of the type
onstru
tor, whi
h isa
hieved through multi-parameter type
lasses. This is an example of overloading with
onstrained parameters.Overloading with
onstrained parameters allows the user
ontrol over the type vari-able in a
onstru
tor
lass, in
ontrast to the single parameter
ase where the typevariable is universally quanti�ed. Hen
e one is allowed to a
hieve a higher level of ab-stra
tion by
reating a type
lass of generi
 behaviours, and then support spe
ializationwithin the
ontext of the instan
e de�nition.On
e again we provide implementation
ode and the
orresponding FAD notationin Figure 50.
lass Multi m a whereitem :: m a
ombine :: m a -> m a -> m ainstan
e Class1 a => Multi TypeCon a whereitem = ...
ombine = ...Type relations allow the user to spe
ify a set of behavioural relationships betweentwo types that are looser than those des
ribed in the previous two examples. Liang,Hudak, and Jones [76℄ present the following example of a
lass de�ning an isomorphism

6.8. ML STRUCTURES, SIGNATURES AND FUNCTORS 139

Figure 50: Overloading with Constrained Parameters
Figure 51: Type Relationsbetween types.
lass Iso a b whereiso :: a -> bosi :: b -> aThe FAD representation of this
lass is presented in Figure 51.6.8 ML Stru
tures, Signatures and Fun
torsAn ML stru
ture is a
olle
tion of de
larations that
an in
lude types, fun
tions, val-ues, other stru
tures, and signatures. Ea
h stru
ture
an be named and has a defaultprin
ipal signature that is the
olle
tion of type spe
i�
ations of the stru
ture's enti-ties. However, one
an override this signature through expli
itly assigning a de
laredsignature to a stru
ture. That is, ML supports independent modules (stru
tures) and

140 CHAPTER 6. FAD FUNCTIONAL DESIGNSsignatures. Thus several new stru
tures
an be de
lared by asso
iating a single stru
turewith di�erent signaturesAs with all fun
tional languages, modules are not �rst
lass and hen
e
annot bepassed as arguments to fun
tions, returned as results from fun
tions or appear in datastru
tures. However, SML supports parameterised modules or fun
tors whi
h provide ame
hanism for
reating new stru
tures from existing ones in an eÆ
ient and reusablemanner. That is, a fun
tor takes zero or more stru
tures as parameters and returnsa stru
ture as a result. Fun
tors with zero arguments are used simply to present a
onsistent approa
h to stru
ture development. Where a fun
tion is
onstrained by itstype spe
i�
ation, a fun
tor is
onstrained by the stated signatures of the parametersand returned value.A stru
ture's signature
an be either transparent or opaque, the latter making thetype's de
lared in the stru
ture abstra
t. Another level of abstra
tion
ontrol is allowed,where the user expli
itly de
lares parti
ular types in the stru
ture abstra
t. See [88℄ forfull details on SML's modular support.FAD ModelIn FAD we represent a stru
ture as a module and an SML signature as an ex
lusive sig-nature. An opaque SML signature is represented by an ex
lusive signature in whi
h anytype is spe
i�ed without its
onstru
tor signature. That is, abstra
tion is representedas des
ribed in Se
tion 6.4.We illustrate these ideas by presenting in Figure 52 the graphi
al representations ofthe following ML stru
tures based on those de�ned in Paulson's ML for the WorkingProgrammer [96℄. We present the stru
tures and signatures in elided form for spa
ereasons. stru
ture Queue1 =stru
ttype 'a t = 'a list;ex
eption E;val empty = [℄;fun enq(q,x) = q � [x℄;

6.8. ML STRUCTURES, SIGNATURES AND FUNCTORS 141

Figure 52: Stru
tures and Signaturesfun null(x::q) = false| null _ = true;end;signature QUEUE2 =sigtype 'a tex
eption Eval null : 'a t -> boolend;stru
ture Queue2 : QUEUE2 = Queue1;stru
ture Queue3 :> QUEUE2 = Queue1;When de
laring a fun
tor, it is good pra
ti
e to make expli
it the signature thatea
h parameter stru
ture is required to support, and the signature of the returnedstru
ture. One
annot model fun
tors dire
tly in FAD but one
an model the resultof their appli
ation. A fun
tor when applied to its argument stru
ture(s), whi
h ea
hsupport an expli
it interfa
e, returns a stru
ture that uses the argument stru
tures and

142 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Figure 53: Fun
tor Appli
ation Modelitself supports an expli
it interfa
e. A fun
tor appli
ation
an be modelled using FAD'smodules, ex
lusive signatures and the module use relationship.For example, the stru
ture NewQueue is the result of the appli
ation of the fun
torLimitedQueue to the existing stru
ture OldQueue, and this relationship is representedin FAD as in Figure 53.fun
tor LimitedQueue (Queue: QUEUE) : QUEUE2 =stru
tstru
ture Item = Queue;...end;stru
ture OldQueue : QUEUEstru
t ...end;stru
ture NewQueue = LimitedQueue (OldQueue);One
an signal the potential for the implementation of a fun
tor by adding a
om-ment to the diagram that states that the pattern of module development is likely to berepeated.

6.9. HIGHER-ORDER FUNCTIONS 143
Figure 54: Higher-Order Fun
tion Model6.9 Higher-Order Fun
tionsA fun
tion whi
h either takes a fun
tion as an argument or returns one as a result, isknown as a higher-order fun
tion. Thus, by de�nition all
urried fun
tions are higher-order. These are supported in FAD as des
ribed in Se
tion 5.4.3.FAD ModelFun
tions whi
h take fun
tions as arguments are modelled as fun
tions, with the fun
-tional type en
losed in a type re
tangle. This is illustrated in Figure 54(a) with theHaskell fun
tion map. In Figure 54(b) we represent the partial appli
ation of map tothe fun
tion double whi
h doubles a number. The permissive signature asso
iated withthe se
ond argument type, indi
ates that the fun
tion
an only be applied to lists oftypes that support the various arithmeti
 operators (plus some other fun
tions). Thesignature only needs to be asso
iated on
e when there is repeated use of a parameteror type name. Figure 54(a) de
lares that map is de�ned over all list types and thus
anbe applied to values of a subset of these types as required by the asso
iated permissivesignature in Figure 54(b).6.10 Existential TypesExistential types (or existentially quanti�ed type variables) are a me
hanism for allowingvalues of di�ering types in a single data stru
ture. That is, one
an
reate heterogeneousdata stru
tures. This is in
ontrast to universally quanti�ed polymorphi
 types in whi
hea
h value of the type must itself be monomorphi
. That is, one
an only
onstru
thomogeneous data stru
tures.However, the use of existential types is restri
ted. When a
onstru
tor with an

144 CHAPTER 6. FAD FUNCTIONAL DESIGNSexistentially quanti�ed type is used in pattern mat
hing, the a
tual type of the quanti�edvariable is not allowed to es
ape outside the expression tied to the pattern mat
hing.Existential types
an therefore only be used in fun
tions where one does not try toa

ess an element of the data stru
ture for external use. For example, a length fun
tionthat simply takes a list of items and returns the number of items,
ould be applied toan existentially quanti�ed list type. However, a fun
tion that returns the nth elementof a list
ould not be applied to values of an existentially quanti�ed list type, sin
e thea
tual type of ea
h element is unknown.Existential types are
urrently supported by a minority of modern fun
tional lan-guages or implementations of languages. These in
lude Clean and Hugs 98.La�ufer [74℄ argues that
ombining type
lasses and existential types in a singlelanguage delivers signi�
ant expressive power. Existential types provide a me
hanismfor de
laring �rst-
lass abstra
t data types, and an asso
iated type
lass de
lares thetype's interfa
e. We present below an example based on one from [74℄, whi
h was writtenusing the Chalmers Haskell B. interpreter, HBI [7℄.data KEY = (KeyClass ?a) => MakeKey ?aSin
e all type variables that are free and have a name that starts with `?' in a typede�nition are
onsidered to be existentially quanti�ed, the above de
lares a data typewith an existentially quanti�ed variable that is
onstrained by the type
lass KeyClass.Thus, the type
lass KeyClass de
lares the interfa
e to the �rst-
lass abstra
t type KEY.FAD ModelFAD models existential types using types and the type use relationship. One
an viewan existential type as a non-parameterised type with parameterised value
onstru
torsthat uses unknown (but possibly
onstrained) types to
onstru
t its values. The FADrepresentation is presented in Figure 55.The type key uses the values of unknown types signalled by the type variable a,whi
h is
onstrained by the asso
iated permissive signature KEYCLASS. It is therefore
lear from the model that we have a non-parameterised type using an unknown type inthe
onstru
tion of its values. Thus the type must be an existential type.

6.11. SUMMARY 145

Figure 55: Existential Type Model6.11 SummaryThis
hapter has presented a non-exhaustive sele
tion of fun
tional programming de-signs. We have illustrated how they
an be naturally modelled using the modellinglanguage of FAD. In pra
ti
e it is important for the model of the problem to guidedesign and not vi
e versa. In the following
hapter we des
ribe the methodology, howit supports the development of an analyti
al model of a problem, and the iterativedevelopment of an implementable design.

146 CHAPTER 6. FAD FUNCTIONAL DESIGNS

Chapter 7
FAD Methodology
In Chapter 5 we presented the units and relationships of the modelling language of FAD.We also provided a syntax and semanti
s for the models built using these elements. InChapter 6 we showed how
ommon designs used in fun
tional programming
an benaturally modelled in the language. In this
hapter we present the te
hniques of FADand des
ribe how they �t into an overall methodology. We will use the football resultspro
essing
ase study des
ribed in Se
tion 5.1, to illustrate elements of the methodology.Ea
h te
hnique will be des
ribed by explaining its a
tivities and deliverables. Whereappropriate we will
larify how it supports software development within the paradigmas des
ribed in Chapter 3, and how it
ontrasts with obje
t-oriented development asoutlined in Chapter 2.FAD is best used within a pro
ess that supports all phases of system development,whi
h are des
ribed in detail elsewhere [83, 12℄. FAD is a software analysis and designmethodology and therefore does not deliver any te
hniques for analysing and designinga system's hardware needs. It provides te
hniques for analysing the software-spe
i�
goals pro
ured through requirements analysis, and te
hniques for developing a designsuitable for implementation in a modern fun
tional language.FAD
an be used in the development of any software that
ould be implementedin a fun
tional language. That is, its appli
ation domain is the same as that for anyfun
tional language. This is in
ontrast to, for example, the Spe
i�
ation and Des
rip-tion Language (SDL) [9, 19℄, whi
h is best applied to real-time systems, and Ja
kson'sstru
tured programming method (JSP), whi
h is appropriate for serial �le pro
essing147

148 CHAPTER 7. FAD METHODOLOGYor information pro
essing, but inappropriate for systems with no dominant informationstru
ture [61, 22℄.We des
ribed in Chapters 5 and 6 how the modelling language supports inter aliafun
tions (�rst-order and higher-order), abstra
t datatypes, parametri
 polymorphism,type
lasses (in
luding single and multi-parameter), SML stru
tures and fun
tors, andmodules. In this
hapter we will des
ribe how the methodology fa
ilitates the dis
overy,use and reuse of the building blo
ks and glue of the fun
tional programming paradigm.The te
hniques are des
ribed within a methodology sin
e we are not simply present-ing a
olle
tion of te
hniques to be applied in an ad-ho
 manner. Rather we have spe
-i�ed a modelling language through whi
h models are des
ribed, and present guidan
eon the appli
ation of the te
hniques and how their input requirements and deliverablesare related. This will be emphasised in this
hapter as the des
ription of ea
h te
hniquewill in
lude details of both required inputs and deliverables.7.1 FAD's Phases and High-Level Pro
ess ModelsThe methodology is divided into two main phases, analysis and design. However, thisneither implies a stri
t division between the two phases, nor a linear appli
ation of thete
hniques within the phases. We believe that FAD is best applied within an iterativeand in
remental development approa
h. Thus, for example, one
ould develop on thebasis of a subset of fun
tional requirements and then iteratively develop as additionalrequirements are introdu
ed. Sin
e FAD will use the same models, notation and dia-grams to support all parts of development through analysis and design, the developer isfree to de
ide on the
hronology of the appli
ation of the methodology's te
hniques. Amethodology with phase-linked models penalises the user for ba
ktra
king, sin
e latermodels that require signi�
ant e�ort in
onstru
tion will require re
onstru
tion. Whenone has models and notation that are appli
able throughout development, although any
hange still requires work on the part of the developer, this work tends to fo
us on themodi�
ation of existing models and other supporting do
umentation.Most stru
tured methods have phase-linked models and have histori
ally been usedwithin a waterfall development pro
ess, whi
h was �rst des
ribed by Roy
e [118℄. Thispro
ess is inherently linear in nature and has been
riti
ised for:

7.1. FAD'S PHASES AND HIGH-LEVEL PROCESS MODELS 149� not adequately addressing
hanges;� assuming a relatively uniform and orderly sequen
e of development steps; and,� not providing for su
h methods as rapid prototyping. [58℄These short
omings have been addressed both by Boehm's Spiral Model [13℄, whi
hexpli
itly addresses the use of prototyping and other risk-resolution te
hniques, and theiterative and in
remental pro
ess typi
ally en
ouraged when using OOADMs. Here oneseparates the system into subsystems that
an be delivered in
rementally, and en
ouragean iterative approa
h to the development of a system's entities. Prototyping is alsoen
ouraged within an iterative approa
h to software development. The debate heretends to fo
us on the
hoi
e between same-language prototyping and di�erent-languageprototyping [114℄.The reason for using the
lassi�
ation into the two phases of analysis and design,aside from simplifying exposition, is twofold. Firstly, although the methodology shouldnot be applied in a stri
tly linear fashion, there is a general linear movement throughthe methodology whi
h is highlighted by making these subdivisions. That is, initialte
hniques are largely analyti
al in nature with design issues gradually taking pre
eden
eas development pro
eeds. Se
ondly, some of the te
hniques, su
h as s
enario analysis,span more than one phase and
annot be optimally des
ribed without referen
e to theiruse in ea
h phase. S
enario analysis, to be des
ribed in Se
tion 7.2.2, is a te
hnique ofFAD that is initially used to investigate the major uses of the system, but will later beused in the design of fun
tions. That is, some te
hniques have phase-linked rôles.The appli
ation of FAD is linear in another sense. The early stages of analysis willtake non paradigm-spe
i�
 requirements and des
ribe them using the paradigm-spe
i�

onstru
ts, fun
tions and types. As the system is developed, the ties to the paradigmwill be
ome stronger, resulting in a model whi
h is best implemented in a fun
tionallanguage. When the implementation language is known, one
an (iteratively) developdesigns that re
e
t the
hara
teristi
s of the implementation language. This is
learlya sensible approa
h, given that the early analysis part of any methodology needs tomodel the problem free of any implementation language
onstraints, whereas the latterdesign stages should be seeking an eÆ
ient, e�e
tive and maintainable solution. Allthese issues should be
ome
learer as the methodology is des
ribed.

150 CHAPTER 7. FAD METHODOLOGYPhase Task Te
hniquesAnalysis Des
ribe major uses as a
olle
tion Fun
tional Requirements Analysisof fun
tions.Investigate ea
h `use fun
tion' and S
enario Analysisdes
ribe type and fun
tion Type Dependen
y Analysisdependen
ies, and new `usefun
tions'.Develop initial subsystem Subsystem Ar
hite
ture Analysisar
hite
ture and assign types and Type/Fun
tion Host Analysisfun
tions to subsystems.Further analyse fun
tions/types S
enario Analysiswith inter-unit relationships. Type Dependen
y AnalysisDevelop ex
lusive signatures. Ex
lusive Signature AnalysisDevelop initial prototype.Investigate subsystem `use S
enario Analysisfun
tions'. Type Dependen
y AnalysisDevelop module ar
hite
ture for Module Ar
hite
ture Analysisea
h subsystem and assign types Type/Fun
tion Host Analysisand fun
tions.Develop ex
lusive signatures. Ex
lusive Signature AnalysisTable 1: FAD Methodology { Analysis Phase
We will therefore present the methodology within two main se
tions titled Analysisand Design. In des
ribing ea
h te
hnique, we will present the possible do
umentarydeliverables, leaving it to the developer to de
ide what is a
tually appropriate for agiven proje
t.The methodology will be des
ribed as a
olle
tion of tasks within ea
h phase usinga linear presentational style. Ea
h task is exe
uted either through a single te
hnique orseveral te
hniques. Sin
e several of the te
hniques span more than a single task, ea
hnew te
hnique will be de�ned where it is �rst introdu
ed. However, we also des
ribethe appli
ation of ea
h te
hnique as it is used. FAD's analysis phase is summarized inTable 1, where we present the tasks of the phase and the te
hniques used to exe
uteea
h task.

7.2. ANALYSIS 1517.2 AnalysisAnalysis fo
uses on modelling system requirements using the units and relationships ofthe modelling language. One should be fo
using on what is required rather than howit will be delivered. However, in any paradigm-related ADM one is unable to totallyseparate the what from the how. For example, obje
t-oriented methodologies des
ribeuser requirements in terms of the obje
ts whi
h host the methods whose
ollaborationimplements ea
h requirement. Fun
tion or a
tion-oriented stru
tured methodologiesdes
ribe user requirements through data
ow diagrams and thus in terms of independentdata and pro
esses [37, 152℄. Data-oriented stru
tured methods model user requirementsthrough their e�e
ts on the data of the system [73, 23℄. In all
ases, one is for
ed intomaking paradigm-related design de
isions.FAD supports software development within the fun
tional programming paradigmand thus user requirements will be des
ribed in terms of fun
tions where data
owis made expli
it. The initial emphasis during analysis is on the modelling of user re-quirements. Issues of implementation eÆ
ien
y, reusability and maintainability are ofin
reasing importan
e as development pro
eeds.FAD, in
ommon with several use-
ase dependent OO methodologies [63, 64℄, is auser-driven methodology in that users' fun
tional requirements dominate initial devel-opment. Users
ould be humans, hardware devi
es or another system. Initial te
hniques
larify the major uses that the system needs to support, and then investigate ea
h inturn. FAD en
ourages an iterative approa
h to development. One therefore may fo-
us initially on a subset of the major user requirements, develop the system to satisfythese requirements, and then return to add extra fun
tionality to the system. The te
h-nique that analyses the system's requirements and returns a list of the users' fun
tionalrequirements is fun
tional requirements analysis.7.2.1 Fun
tional Requirements AnalysisThis te
hnique takes as input the system's requirements and returns the major fun
-tional requirements of the system users. These are modelled as fun
tions. A detaileddis
ussion of requirements engineering is beyond the s
ope of this thesis but is
om-prehensively des
ribed elsewhere [129℄. Ea
h fun
tion is de
lared in a FDD with its

152 CHAPTER 7. FAD METHODOLOGY

Figure 56: User Requirements Fun
tionsargument and results types re
orded. This immediately emphasizes the expli
it natureof data
ow within the paradigm. Figure 56 presents the fun
tions that des
ribe theuser's - in this
ase a data entry
lerk - fun
tional requirements for the football resultspro
essing system.To simplify exposition, ea
h fun
tion is spe
i�ed as a text-based I/O fun
tion. Weare not, however, enfor
ing a parti
ular user interfa
e on the system. The modularapproa
h to development, en
ouraged by FAD and supported by modern fun
tionallanguages, will enable an alternative (possibly GUI) interfa
e to be introdu
ed if re-quired. The important issue here is
larifying the user's requirements.Pure fun
tional languages have developed various me
hanisms for dealing with theimpurity of I/O su
h as
ontinuation passing, stream pro
essing and most re
entlymonadi
 I/O [53, 103℄. The monadi
 approa
h is popular sin
e it presents a pattern of
omputation that is not restri
ted to I/O alone and be
ause[By using monads℄ we have the intuitive sequential nature of imperativeinput/output and the un
luttered
ode style that results from using globalvariables, but have neither the referential opa
ity
onveyed by both thesethings in an imperative language, nor the ex
essive heavy framework andla
k of expressive expression forms whi
h su
h languages have.[52℄However, sin
e FAD is not tied to a spe
i�
 implementation language, one is free to

7.2. ANALYSIS 153des
ribe I/O fun
tions in one's own terms, as long as it is supported by
lear, unam-biguous do
umentation. We have
hosen here a notation that is similar to that usedin the monadi
 I/O of Haskell [103℄ but is not meant to signal any parti
ular approa
hto I/O implementation. An I/O fun
tion has an argument type named IO (written inupper
ase to indi
ate that this is not a typi
al type) and a return type that dependson the fun
tion's
hara
teristi
s. For the above fun
tions, the return type is (), whi
his the type with a single value of the same name. This type spe
i�es a fun
tion thatdoes some I/O and returns the value (). I/O fun
tions that return a value of someother type, su
h as a string, are similarly spe
i�ed with a return type string. Of
ourse, if one wants to develop a system in whi
h I/O is delivered monadi
ally one
anmake this expli
it by asso
iating the permissive signature MONAD with the IO type. Thishowever is a design de
ision whi
h is typi
ally applied later in development, possiblywhen one is tailoring a design to a parti
ular implementation language. We des
ribethe development of permissive signatures in Se
tion 7.3.1.The six fun
tions that des
ribe the user's fun
tional requirements are:� inpRes whi
h implements the result input fun
tionality;� produ
eLT whi
h manages the produ
tion of a league table;� transfer whi
h implements the transfer of a player between two football
lubs;� produ
eS
oringTable whi
h implements the produ
tion of a s
oring table;� updPlayersPerfwhi
h updates a player's performan
e data given re
ent mat
hes;and,� updTeamsPerf whi
h updates the performan
e data of teams involved in re
entmat
hes.Ea
h fun
tion will be do
umented in a fun
tion des
ription do
ument (FDD). Ini-tially there will be little do
umentation beyond the fun
tion's name, argument andresult types. However, the FDD is an appropriate host for a textual des
ription of thefun
tion's purpose. This is illustrated in Figure 57 with the initial FDD for the I/Ofun
tion for produ
ing a league table, produ
eLT.Interested parties are informed of the initial
olle
tion of `major use fun
tions' inorder to
on�rm that the
olle
tion is
omplete and
orre
t. Upon
on�rmation, a

154 CHAPTER 7. FAD METHODOLOGY

Fun
tion Des
ription Do
ument FootballName: produ
eLTVersion: 19990620:0Module:Arity: 1Type Spe
i�
ation: IO -> ()Contra
t Asso
ia-tion:Instantiations:Fun
tions Used:Des
ription:The user requests the produ
tion of the
urrent league table. Thetable is generated from the existing team data that is storedon �le. Ea
h football team hosts information regarding itsperforman
es, whi
h is sele
ted and used to generate a leaguetable entry. This entry in
ludes the points a
hieved by the team.The
omplete league table is
reated from the league tableentries for ea
h team where the position in the table is �rstdetermined by the number of points, followed by goal di�eren
e,goals s
ored, and �nally alphabeti
ally. Ea
h league table isstored in a �le with previous league tables.Figure 57: Initial Fun
tion Des
ription Do
ument for produ
eLT

7.2. ANALYSIS 155de
ision needs to be made regarding how one pro
eeds. One
an either adopt a `bigbang' approa
h and investigate all of the fun
tions, or fo
us on a subset and returnto others later during development. The `big bang' approa
h is appropriate if one isdealing with a system with relatively few user requirements. However, if there are asigni�
ant number then one should adopt an iterative approa
h to development.Two te
hniques are used to analyse the fun
tions: s
enario analysis, whi
h inves-tigates fun
tions and, type dependen
y analysis, whi
h investigates types. They arepra
tised in parallel sin
e ea
h fun
tion is spe
i�ed in terms of its type.7.2.2 S
enario AnalysisFun
tional programs are built from fun
tions. Thus any model of a system's fun
tion-ality must be built using fun
tions. S
enario analysis, a te
hnique whi
h is pra
tisedat various stages of development, investigates a system's fun
tions and des
ribes themin terms of other fun
tions. Initially one uses the te
hnique to model the major userrequirements of the system.S
enario analysis investigates the behavioural
hara
teristi
s of a fun
tion and de-s
ribes them in a set of models that are graphi
ally presented in fun
tion dependen
ydiagrams. Ea
h diagram des
ribes a fun
tion in terms of one or more fun
tions to whi
hit is linked via a fun
tion use relationship. A single fun
tion will be des
ribed throughseveral fun
tion dependen
y diagrams if the fun
tion has
onditional behaviour. Thefun
tional programming paradigm provides substantial support for fun
tion develop-ment and reuse and en
ourages the development of simple fun
tions that are then usedto develop more
omplex fun
tions.When applying s
enario analysis, one should adopt a modular approa
h where ea
hbehavioural requirement of an analysed fun
tion is delivered by fun
tions upon whi
hit depends. The dependen
y is not an implementation dependen
y but a behaviouraldependen
y. That is, a fun
tion depends on the behaviour implemented by the fun
tionsit uses. By adopting a modular approa
h, any implementation
hanges remain lo
al andthus small s
ale. This in
reases the potential for reuse of existing fun
tions, whi
h issupported by FAD as des
ribed in Chapter 8.The approa
h here is similar to that of use
ase analysis as introdu
ed by Ja
obsonin his Obje
tory method [64℄. Although use
ase analysis is a popular
omponent of

156 CHAPTER 7. FAD METHODOLOGYvarious OOADMs - it has re
ently been adopted for use within the Uni�ed SoftwareDevelopment Pro
ess using UML as the modelling language [63, 127℄ - its prime fo
usis modelling user intera
tions with a system whi
h are, of
ourse, fun
tional in na-ture. Thus one
an argue that it sits more naturally within a fun
tional developmentmethodology. Using an OO methodology one is required to deliver the results of use
ase analysis in a manner
onsistent with the paradigm. Thus every fun
tion or methodis required to be the responsibility of a
lass, whi
h for
es early de
isions regarding theassigning of methods to
lasses. We will not present a des
ription of use
ase analysishere but instead will des
ribe s
enario analysis and support its des
ription with ex-amples from the development of the football system. Use
ase analysis is des
ribed inSe
tion 2.3.S
enario analysis takes as input the des
ription of a parti
ular user requirement su
has that presented in an initial FDD. However, further information may be required,whi
h
ould be delivered verbally, graphi
ally or in some textual representation su
has informal English, pseudo
ode or a formal language. Ea
h analysis returns one ormore dependen
y diagrams and a

ompanying supporting do
umentation in the formof des
ription do
uments for the entities in the diagram(s).To illustrate s
enario analysis we present an analysis of the fun
tion produ
eLT,whi
h is informally des
ribed as below.The user requests the produ
tion of the
urrent league table. The table isgenerated from the existing team data that is stored on �le. Ea
h footballteam hosts information regarding its performan
es, whi
h is sele
ted andused to generate a league table entry. This entry in
ludes the points a
hievedby the team. The
omplete league table is
reated from the league tableentries for ea
h team where the position in the table is �rst determined bythe number of points, followed by goal di�eren
e, goals s
ored and �nallyalphabeti
ally. The latest league table is then appended to the �le whi
hhosts the previous league tables.One possible model of the fun
tion produ
eLT uses three fun
tions: readTeamsFile,whi
h retrieves the latest team data from a �le; generateLT, whi
h takes the
olle
tionof teams and returns a league table; and, appendLTToFile, whi
h appends the latest

7.2. ANALYSIS 157

Figure 58: Initial Fun
tion Dependen
y Diagram for produ
eLTleague table to the �le that re
ords the history of league tables. Ea
h fun
tion is spe
i�edin terms of its type and it is in
umbent on the developer to
larify the des
ription ofea
h type that is used. The type file used by readTeamsFile and appendLTToFile
ould simply be a type of �lepaths or
ould be a re
ord like the Haskell library typeHandle, whi
h in
ludes properties that state whether a �le
an a

ept input and/oroutput, or whether bu�ering is enabled or disabled and in what form [101℄.As indi
ated previously ea
h type used by a fun
tion will be investigated usingtype dependen
y analysis, whi
h we des
ribe in Se
tion 7.2.3. Ea
h type dependen
yanalysis delivers a model that is represented in a type dependen
y diagram, a graphi
alrepresentation of a type and its dependen
ies.The initial fun
tion dependen
y diagram for produ
eLT is presented in Figure 58.The fun
tion generateLT takes an argument of type teams for whi
h a type dependen
ydiagram is presented in Figure 59. It is
lear from the type dependen
y diagram (andasso
iated do
umentation) that the type teams provides the required input for thefun
tion. The FDD for the fun
tion produ
eLT will be updated as a result of thes
enario analysis, and FDDs and TDDs will be initiated for the new fun
tions andtypes.The se
ond illustrative analysis is applied to a fun
tion that exhibits
onditionalbehaviour. inpRes is the I/O fun
tion that supports the user's requirement to input anew football result. An informal des
ription of the fun
tion's behavioural requirementsis presented below.

158 CHAPTER 7. FAD METHODOLOGY

Figure 59: Initial Type Dependen
y Diagram for the Type teamsUpon initiation by the user, a result is read in as a string that is then parsed.If the parse is su

essful the parsed result is
onverted into a result value. Ifthe parse fails, then the user is informed of this failure and the intera
tionis terminated. The
urrent
olle
tion of results are read from �le as is the
urrent
olle
tion of teams. The (su

essfully parsed) result is then
he
kedfor the existen
e of the teams and non-existen
e of the result, and if OK onepro
eeds by reading the
urrent
olle
tion of results from �le. If the resultfails the
he
k the user is requested to edit the result, whi
h then initiatesthe pro
ess again. An OK result is added to the
urrent
olle
tion of resultsthat are then written to the results �le.This s
enario is modelled in three fun
tion dependen
y diagrams presented in Figures60, 61, and 62. Figure 60 presents the dependen
ies where both the parse and the result
he
k were su

essful. That is, the result is inputted as a string using readInp. Thestring is parsed using parseRes whi
h returns a su

essful parse of type parsedRes.A result is
reated using
reateRes. The results history and
urrent teams data areretrieved from �le and the inputted result is tested for a

eptability by resultChe
k. Asu

essful
he
k is followed by the inputted result being added to the
urrent
olle
tion

7.2. ANALYSIS 159

Figure 60: Dependen
y Diagram for the Su

essful Case of inpResusing inputResult and the new
olle
tion of results is returned and written to �leusing writeResFile.In Figure 61 we present the dependen
y diagram whi
h represents the
ase whenthe parse fails and results in the fun
tion failedResParse being
alled. A failedresultChe
k where there is an error in the inputted result is des
ribed in Figure 62.In this diagram we have left out the fun
tions pre
eding the result
he
k sin
e these arerepresented in Figure 60. We have also used a
omment to indi
ate a looping design.The fun
tions that model a s
enario analysis are dependent on the types that theyuse. It is therefore important that these types are analysed in parallel using the te
h-nique type dependen
y analysis, whi
h is des
ribed in the following se
tion.7.2.3 Type Dependen
y AnalysisA type dependen
y analysis takes a type des
ription and returns a model of the typebeing analysed. A type is des
ribed in terms of the types it uses in the
onstru
tion of

160 CHAPTER 7. FAD METHODOLOGY

Figure 61: Dependen
y Diagram for the Failed Parse inpRes

Figure 62: Dependen
y Diagram for the Failed Result Che
k Case of inpRes

7.2. ANALYSIS 161

Figure 63: Type Dependen
y Diagram for the Type teamits values. As development pro
eeds, the model may also in
lude details that re
e
t thesystem's modular ar
hite
ture and behavioural requirements of the types signalled byasso
iated permissive signatures.We illustrate the te
hnique with the analysis of the type team. An informal de-s
ription is presented below and its type dependen
y diagram is presented in Figure63. A value of the type team represents a football team. Ea
h team has aunique name and a re
ord of the team's season's performan
es. In addition,standard team details su
h as the manager and average home attendan
esare re
orded. Ea
h team value also has an asso
iated date that re
ords thelast date of data entry (assuming at most one entry per day).Thus the type
an be
onstru
ted using four other types tName, date, perfData andteamInfo, whi
h represent football team names, dates, team's performan
e data andthe non-performan
e data of football teams. In
ommon with fun
tion development,where possible a type should be built from existing types re
e
ting the signi�
ant typedevelopment support a�orded the fun
tional programmer. This approa
h maximizesthe potential for reuse of existing types whose storage and dis
overy we des
ribe inChapter 8. The information presented in Figure 63 is re
orded in the TDD of Figure64. Type dependen
y analysis, in
ommon with s
enario analysis, spans more than onephase and one task of FAD. Initially it is used to des
ribe the types used by the fun
tionsreturned by s
enario analysis in order to
on�rm that all the required information is

162 CHAPTER 7. FAD METHODOLOGY

Type Des
ription Do
ument FootballName: teamVersion: 19990619:0Kind: *Module:Types Used: date, tName, perfData, teamInfoParameters:Permissive sigs.:Des
ription:A value of the type team represents a football team. Ea
h team hasa unique name and a re
ord of the team's season's performan
es.In addition, standard team details su
h as the manager and averagehome attendan
es are re
orded. Ea
h team value also has anasso
iated date that re
ords the last date of data entry (assumingat most one entry per day).Figure 64: Type Des
ription Do
ument for the Type team

7.2. ANALYSIS 163supplied by values of the type. Later it will be used within the design phase as inputinto the design and implementation of types.There is a similarity between the use in various stru
tured methods of data
ow di-agrams (DFDs) and entity-relationship diagrams (ERDs) [26℄ or logi
al data stru
turediagrams [41℄, and the use here of fun
tion dependen
y and type dependen
y diagrams.Whereas data
ow diagrams fo
us on the manipulation of data by various pro
esses,ERDs, or data stru
ture diagrams, des
ribe details not supported by DFDs su
h as thestru
ture of major data entities and their interdependen
ies [37℄. They tend to be usedin systems that are reliant on major data or �le stru
tures su
h as database systems.Fun
tional programming's relian
e on fun
tions with no side e�e
ts and therefore ex-pli
it data
ow, requires that signi�
ant attention is always paid to the types of thefun
tions that deliver the required fun
tionality of the system.The
olle
tion of models generated through s
enario analysis and type dependen
yanalysis provide inputs for subsystem ar
hite
ture analysis, whi
h delivers a subsystemar
hite
ture for the system. If one is building the system initially on the basis of asubset of the users' fun
tional requirements then one is building an ar
hite
ture thatwill need to support future iterations of development.7.2.4 Subsystem Ar
hite
ture AnalysisS
enario analyses and type dependen
y analyses
ould be applied ad in�nitum or at leastuntil every fun
tion is des
ribed in terms of a
olle
tion of simple, atomi
 fun
tions andevery type des
ribed similarly. In a large proje
t this pro
ess
an soon be
ome unwieldyand thus one needs guidan
e regarding termination of the pro
ess. A division of thesystem into manageable units that
an be developed independently provides both astru
ture for future development and guidan
e regarding the termination of the initialset of s
enario and type dependen
y analyses.Subsystem ar
hite
ture analysis takes the deliverables of the previously applied anal-yses, and returns a proje
t partitioned into several subsystems. The partitioning
ri-terion is information hiding [95℄ through en
apsulation and abstra
tion. That is, ea
hsubsystem hides the details of its design from its
lients, who simply require knowl-edge of the entities available for use. One
an therefore develop systems in
rementallyand use the
omponents beyond the immediate appli
ation for whi
h they are being

164 CHAPTER 7. FAD METHODOLOGYdeveloped.Su
h a system will have
ohesive units that are loosely
oupled. That is, by groupingrelated abstra
tions within a subsystem (or module), and by minimising the dependen-
ies between them, one builds a system through independent and fo
used
omponents.In addition, information hiding is invaluable as a development tool sin
e it appliesthe prin
iple of least
ommitment to program design [1℄. That is, one
an delay designde
isions in the knowledge that it neither delays nor harms the development pro
ess.Ea
h subsystem's development will be assigned to a development team. The informationrequired of any other subsystem is presented in an asso
iated ex
lusive signature thata
ts both as a mediator of usage and a spe
i�
ation for development.We will illustrate this te
hnique with an analysis of the
ase study. The proje
t
anbe partitioned into �ve subsystems that deliver:� the intera
tion with the user, UISS;� the parsing fun
tionality required to deal with the various entered data, ParseSS;� the �le handling requirements whi
h have been alluded to in the des
ription ofvarious fun
tions, FileSS;� the football-related fun
tionality, whi
h is unique to the
ase study problem,FootballSS; and,� some general entities whi
h are either typi
ally supported by the standard envi-ronment of an implementation language or need to be a

essible to all entities ofthe system, GeneralSS.Ea
h of the subsystems are likely to support fun
tionality that is non-problem spe-
i�
. For example, ParseSS is a subsystem that supports parsing fun
tionality. Fun
-tions of the subsystem will support the parsing of values of various types (not just thestring type) and for a range of grammars. Any required fun
tions will be spe
i�ed inan asso
iated ex
lusive signature that hides implementation details. That is, the im-plementation of the parsing fun
tions (possibly via parser
ombinators or even monadi
parser
ombinators) is left to the
ode writers and is likely to be dependent on the imple-mentation language. This model is graphi
ally represented in the subsystem dependen
y

7.2. ANALYSIS 165

Figure 65: Subsystem Diagram for the Proje
t Footballdiagram of Figure 65. Ea
h subsystem is asso
iated with an ex
lusive signature thatare
urrently va
uous.FAD does not provide a standard blueprint for ar
hite
tural design as does, for ex-ample, Coad and Yourdon's method [29℄, or metri
s for
omparing one design againstanother. However, it en
ourages modularity through information hiding, whi
h if pra
-tised, will result in sensible, reusable designs. Thus if a fun
tion is de
lared in subsystemS and its argument and result types are de
lared in subsystem T this suggests poor de-sign with a high degree of
oupling between the two subsystems. The models developedthrough the appli
ation of FAD will provide an early indi
ation of (potentially) poordesigns.Type/fun
tion host analysis takes the
urrent sets of types and fun
tions and assignsea
h one to a subsystem of the proje
t. One
an then analyse their various dependen
iesthat will be des
ribed either as an intra-subsystem dependen
y or an inter-subsystemdependen
y. One wants a design where the former is more frequently in eviden
e thanthe later.7.2.5 Type/Fun
tion Host AnalysisType/fun
tion host analysis takes the types and fun
tions des
ribed through earlieranalyses and assigns ea
h to one of the subsystems. That is, ea
h entity is the re-sponsibility of the development unit that develops the host subsystem. Type/fun
tion

166 CHAPTER 7. FAD METHODOLOGYhost analysis is also applied later in development when a subsystem's entities are as-signed to modules of the subsystem. The analysis returns updated fun
tion and typemodels whose use relationships re
e
t the assignment of entities to subsystems. WithOO development data and the methods that a
t on the data are the responsibility ofa single obje
t. Through this me
hanism one a
hieves data prote
tion and lo
alisationof
ontrol. In fun
tional programming the motivation for assigning entities to modulesor subsystems is to manage development and to support the reusability of
omponentsof a system. Modules and subsystems host a
olle
tion of entities but do not provide asingle unit whi
h
an be the argument of a fun
tion or returned by a fun
tion.Ea
h subsystem will be do
umented in a series of subsystem des
ription do
uments.A re
ord of the assignment will be written in new versions of the des
ription do
umentsof the assigned entities. Every mi
ro unit will eventually be assigned to a module of thesubsystem and the des
ription do
uments will be updated to re
e
t this assignment.After presenting an illustrative example from the
ase study, we des
ribe how the de-liverables of this analysis signal where it is ne
essary to apply further s
enario and typedependen
y analyses in advan
e of the development of ea
h subsystem.We illustrate this te
hnique with the analysis of the type dependen
y diagrams forthe fun
tion inpRes presented in Figures 60, 61 and 62. The results are presented inTables 2 and 3 where ea
h entity is presented with its host subsystem and some brief
ommentary.The information in Tables 2 and 3 is
aptured in updated dependen
y diagrams. Theuse relationships now re
e
t whether the related units are of the same subsystem or ofdi�erent subsystems. Inter-subsystem use relationships between two fun
tions or twotypes are represented by a broken line link. See Se
tions 5.4.1 and 5.4.8 for a des
riptionof the various use relationships. These updated diagrams (presented in Figures 66, 67and 68) give a
lear view of the impa
t of modular de
omposition on the system.Ea
h subsystem will be developed to satisfy the requirements spe
i�ed in any asso-
iated ex
lusive signatures, and in the knowledge that other subsystems will provide thetypes and fun
tions spe
i�ed in the ex
lusive signatures through whi
h they are used. Itis therefore essential that inter-subsystem dependen
ies are made expli
it at this stage.These will provide input into the development of ex
lusive signatures that we des
ribein Se
tion 7.2.6.

7.2. ANALYSIS 167
Fun
tion Subsystem CommentinpRes UISS An I/O fun
tion.readInp UISS An I/O fun
tion.parseRes ParseSS A parsing fun
tion.
he
kParse ParseSS A fun
tion that
he
ks whether a parse issu

essful.
reateRes FootballSS A fun
tion that
onstru
ts a value oftype result.resultChe
k UISS I/O fun
tion.
he
kResult FootballSS A fun
tion that tests a value of type result.readResFile FileSS File-handling fun
tion. Uses and requires`readability' of type results.inputResult FootballSS A fun
tion that implements a behaviourover the type results.writeResFile FileSS File-handling fun
tion. Uses and requires`writability' of type results.failedResParse UISS An I/O fun
tion.editResult UISS An I/O fun
tion.Table 2: Fun
tion Host Analysis for the Fun
tion inpRes

Type Subsystem CommentIO UISS I/O type.() GeneralSS Basi
 type.string GeneralSS Basi
 type.parsedRes ParseSS Parsing type.result FootballSS Football type.bool GeneralSS Basi
 type.file FileSS File-handling type.results FootballSS Football type.Table 3: Type Host Analysis for the Fun
tion inpRes

168 CHAPTER 7. FAD METHODOLOGY

Figure 66: Updated Su

essful Dependen
y Diagram for inpRes

Figure 67: Updated Failed Parse Dependen
y Diagram for inpRes

7.2. ANALYSIS 169

Figure 68: Updated Failed Result Dependen
y Diagram for inpResAny inter-subsystem, fun
tion/type use relationship indi
ates that the fun
tionshould be subje
ted to further analysis sin
e the fun
tion may use other fun
tions whi
hexist in the used subsystem. For example, if the type is abstra
t various `get' and `set'fun
tions may need to be provided. Any other fun
tions should be brie
y analysed to
on�rm that all used fun
tions and types will exist in the same subsystem or in theuniversally a

essible subsystem GeneralSS.We illustrate with some examples from the
ase study. The fun
tion
reateRes,whi
h takes the parsed result of type parsedRes and returns a value of type result,is assigned to the subsystem FootballSS. The fun
tion uses the type parsedRes ofthe subsystem ParseSS. Assuming that the type parsedRes is abstra
t relative to thefun
tion, it will need to be a

ompanied by fun
tions that return the team name, goalss
ored and other information required to
onstru
t a value of type result.The se
ond example is an analysis of the related FileSS fun
tions readResFileand writeResFile. They both use the type results from the subsystem FootballSS.Their respe
tive behaviours in
lude the
onversion from (and respe
tively to) a print-able string representation of a value of type results, to (and respe
tively from)its a
tual value. They therefore depend on fun
tions that implement this behaviour,whi
h we
all readResults and writeResults. Both fun
tions are assigned to the

170 CHAPTER 7. FAD METHODOLOGY

Figure 69: Read and Write Dependen
iessubsystem FootballSS sin
e they implement behavioural requirements of the typeresults. Alternatively we
ould de
lare that the type results must instantiate re-spe
tively the permissive signatures READ and SHOW in the de
larations of readResFileand writeResFile. READ in
ludes a spe
i�
ation of a simple read fun
tion and SHOWprovides a simple write fun
tion. Either approa
h des
ribes the same model. The analy-sis and use of permissive signatures is des
ribed in Se
tion 7.3.1 within the design phaseof the methodology. The dependen
ies des
ribed above are presented in Figures 69(a)and 69(b).The fun
tionality delivered by a subsystem and required of other subsystems by
lients is
urrently hidden within fun
tion and type models that are best used to ex-press parti
ular fun
tionality and type stru
ture respe
tively. For an a

urate view ofsubsystem fun
tionality and intera
tion one needs to add interfa
e details to the subsys-tem model. This is a
hieved through subsystem ex
lusive signature analysis the resultsof whi
h are represented in updated subsystem dependen
y diagrams.7.2.6 Subsystem Ex
lusive Signature AnalysisADMs provide me
hanisms for the division of a system into manageable
omponentsthat
an be developed independently. They also provide the me
hanisms for gluing the

7.2. ANALYSIS 171
omponents together to deliver a single system. The glue provided by FAD are sub-system (and module) use relationships. A use relationship links a
lient subsystem toanother subsystem that provides servi
es that are spe
i�ed in an asso
iated ex
lusivesignature. That is, the intera
tion between entities of di�erent subsystems is marshalledthrough a
olle
tion of interfa
es emphasising the information hiding approa
h to mod-ular development.Subsystem ex
lusive signature analysis takes the various fun
tion and type modelsand �lters out those entities that are used via an inter-subsystem relationship. Theseentities should be spe
i�ed in the ex
lusive signature that is asso
iated with their sub-system and mediates a

ess to entities of the
lient subsystem. Thus ex
lusive signatureanalysis returns ex
lusive signatures that provide a spe
i�
ation for the developmentof their asso
iated subsystem. They also make expli
it the entities of subsystems thatare a

essible to
lients. Ex
lusive signature analysis returns a subsystem model thatin
ludes interfa
e details. If one is looking to build a prototype of a system this modelprovides mu
h of the ne
essary information.At this stage we require enough information about ea
h subsystem in order to pro-
eed with the independent development of the subsystems. A single ex
lusive signaturewill provide the ne
essary information even though it will not truly re
e
t the depen-den
ies between various subsystems. Signatures that provide the interfa
e informationfor a spe
i�

lient,
lient-spe
i�
 signatures will be designed later in development whenan a

urate des
ription of the system design is required. With an iterative approa
h todevelopment ex
lusive signatures are likely to be updated to re
e
t the addition of newuser requirements to the system. We des
ribe the te
hnique that returns
lient-spe
i�
signatures in Se
tion 7.3.5. The updated subsystem ar
hite
ture for the
ase study ispresented in the subsystem dependen
y diagram of Figure 70.The signature FOOTBALLSIG mediates the use of entities de
lared in the subsystemFootballSS by entities of the subsystem UISS. In
luded in the signature are spe
i�
a-tions of:�
reateRes and inputResult, whi
h are used by the fun
tion inpRes; and,�
he
kResult, whi
h is used by resultChe
k.In addition, the subsystem FileSS uses the subsystem FootballSS through the same

172 CHAPTER 7. FAD METHODOLOGY

Figure 70: Updated Subsystem Dependen
y Diagramsignature. Thus there are also spe
i�
ations of:� the type results, whi
h is used by writeResFile and readResFile;� the fun
tion readResults , whi
h is used by readResFile;� the fun
tion writeResults , whi
h is used by writeResFile;� the type teams , whi
h is used by readTeamsFile;� the fun
tion readTeams , whi
h is used by readTeamsFile;� the type leagueTable , whi
h is used by appendLTToFile;� the fun
tion writeLeagueTable , whi
h is used by appendLTToFile.Therefore the signature FOOTBALLSIG
urrently mediates a

ess to its asso
iatedsubsystem for more than one
lient subsystem. However, it is
lear that ea
h requiresa

ess to a di�erent
olle
tion of entities, whi
h will eventually be re
e
ted in separateex
lusive signatures.

7.2. ANALYSIS 173Sin
e we en
ourage an approa
h built on information hiding if a type is spe
i�edin an ex
lusive signature it should not be a

ompanied by its
onstru
tor signature.Se
tion 6.4 des
ribes how one
an model abstra
t data types in FAD. The spe
i�
ationof a type in an ex
lusive signature implies that entities of a
lient subsystem
an bede
lared over the type, but the absen
e of a
onstru
tor signature signals that theyhave no knowledge of the
onstru
tion of the type. Any intra-subsystem relationshipdoes not require an entry in an ex
lusive signature but may later be
ategorised as aninter-module relationship and be spe
i�ed in an ex
lusive signature that mediates a

essto a module. We des
ribe type/fun
tion host analysis at the module level in Se
tion7.2.7.Ea
h subsystem's subsystem des
ription do
ument (SSDD) will be updated to re
ordthe
olle
tion of subsystems upon whi
h it is dependent. Ea
h subsystem is re
ordedwith its asso
iated ex
lusive signature. This is illustrated with the SSDD for UISSpresented in Figure 71. The
urrent version of FOOTBALLSIG is de
lared in an ex
lusivesignature des
ription do
ument, whi
h we present in Figure 72.The development of ex
lusive signatures for ea
h subsystem fa
ilitates the assigningof subsystem development responsibilities to development units. Ea
h unit will beresponsible for one or more subsystems, but no two units have responsibility for thesame subsystem. These assignments are re
orded in new versions of the subsystemdes
ription do
uments.Development of a Subsystem's `used fun
tions'The development of ea
h subsystem is the responsibility of a designated developmentteam, whi
h is re
orded in the relevant subsystem des
ription do
ument. The develop-ment of a subsystem mirrors that of the whole system and should pro
eed in ignoran
eof the development of other subsystems, but in the knowledge of the interfa
e presentedby other used subsystems. One should begin by applying s
enario analyses to the fun
-tions used by external users. The users in this
ase will typi
ally be fun
tions of othersubsystems. Types used by the fun
tions may need to be analysed simultaneously.We illustrate this appli
ation of s
enario analysis and type dependen
y analysis usingthe fun
tion generateLT of the subsystem FootballSS, whi
h is used by the fun
tionprodu
eLT of the subsystem UISS as represented in the fun
tion dependen
y diagram of

174 CHAPTER 7. FAD METHODOLOGY

Subsystem Des
ription Do
ument FootballName: UISSVersion: 19990721:1Module(s):Ex
lusive Sigs:Subsystems Used: GeneralSS : GENERALSIG(with signature) FootballSS : FOOTBALLSIGParseSS : PARSESIGFileSS : FILESIGDeveloped by:Des
ription:This subsystem hosts the fun
tions that implement the users'requirements. It also in
ludes general purpose text-based I/Ofun
tions and may in future in
lude entities that supportother user interfa
es.Figure 71: Subsystem Des
ription Do
ument for the Subsystem UISS

7.2. ANALYSIS 175

Ex
lusive Signature Des
ription Do
ument FootballName: FOOTBALLSIGVersion: 19990820:0Subsystem:Type(s): results, teams, leagueTablePermissive sig(s):Fun
tion(s):
reateRes: parsedRes -> resultinputResult:result -> results -> results
he
kResult: result -> boolreadResults: string -> resultswriteResults: results -> stringreadTeams: string -> teamswriteLeagueTable: leagueTable -> stringInherited Sig(s):Des
ription:Interfa
e to the subsystem FootballSS used by entities of thesubsystems UISS and FileSS.Figure 72: Ex
lusive Signature Des
ription Do
ument for the Signature FOOTBALLSIG

176 CHAPTER 7. FAD METHODOLOGYFigure 58. generateLT takes a value of type teams and returns a leagueTable value.The type teams is informally des
ribed as follows.A
olle
tion of football teams with an asso
iated date that represents thelast date of entry of information. Given the number of teams there is norequirement that they are stored in any parti
ular order. Although supportmust be given for the retrieval, entry and updating of data there are noeÆ
ien
y requirements.The updated type dependen
y diagram for the type teams is presented in Figure 73.The diagram now re
e
ts the assignment of entities to the subsystems of the system.The type is dependent on two types that will be de
lared in the utilities subsystemGeneralSS. The type
olle
tion a whi
h may be an alias for a list type or some other
ontainer type, and the type date. The type is also dependent on the type team, whi
his de
lared in the same subsystem. The behavioural requirements of the type
ould beaddressed at this stage but, re
e
ting the linear nature of the presentation, will be leftto Se
tion 7.3.1 when we dis
uss the development of permissive signatures.The requirements of the fun
tion generateLT are presented below.The fun
tion is responsible for generating a league table from
urrent teamdata. A league table entry must be generated for ea
h team. The entry willin
lude the team's name, its performan
e data home and away, and its totalpoints. The team entries will be ordered �rst by total points, then by goaldi�eren
e, goals s
ored and �nally alphabeti
ally.Adopting a modular approa
h, the fun
tion generateLT
an be des
ribed in terms oftwo other fun
tions: a fun
tion that sele
ts the required information from every team,sele
tNamesAndData, and another whi
h generates a league table from this information,
reateLT. We des
ribe the model of this s
enario analysis in the fun
tion dependen
ydiagram presented in Figure 74.In
ommon with the approa
h adopted earlier in Se
tion 7.2.4 ea
h subsystem willbe developed as a
olle
tion of modules. Development of an initial module ar
hite
tureboth supports the prin
iple of least
ommitment and furthers the development of asystem based on information hiding.

7.2. ANALYSIS 177

Figure 73: Updated Type Dependen
y Diagram for the Type teams

Figure 74: Fun
tion Dependen
y Diagram for generateLT

178 CHAPTER 7. FAD METHODOLOGY7.2.7 Module Ar
hite
ture AnalysisThe guiding prin
iples of modularity applied at the system level are equally appli
ableat the subsystem level. That is, one should seek to develop independent
ohesive unitsthat are loosely
oupled with other units. Module ar
hite
ture analysis takes the de-s
ription of a subsystem, its asso
iated ex
lusive signatures and the results of s
enarioand type dependen
y analyses applied to `use fun
tions', and returns a model of themodule ar
hite
ture of the subsystem. The model is des
ribed through a
olle
tion ofmodules that are linked through module use relationships via their asso
iated ex
lusivesignatures.The model will satisfy the modular development
riterion through lo
alizing `in-timate' knowledge requirements within ea
h module. That is, if an entity requiresknowledge of another entity's implementation then they are
andidates for housing inthe same module. If, however, the relationship is one where an entity only requiresknowledge of the existen
e of another entity (and possibly some asso
iated operations)then they
an probably be de
lared in separate modules. For example, the standardlibraries for Haskell 98 [101℄ are a
olle
tion of modules where a type is typi
ally de-
lared with a
olle
tion of fun
tions that support behaviour over the type, and requireintimate knowledge of the
onstru
tion of the type.Information hiding
an be a
hieved by
reating a module for ea
h type spe
i�ed inan ex
lusive signature asso
iated with the subsystem. One then assigns the type andfun
tions that implement behaviour over the type to the same module. A module mayalso in
lude other types that are used by the signature type but are only of lo
al use.For example, the type perfData that represents the performan
e data of a football teamwill be de
lared in the same module as the type team. The initial module ar
hite
turefor the subsystem FootballSS has seven modules:� TeamsMod, whi
h hosts the type teams that represents a
olle
tion of footballteams;� TeamMod, the module housing the type team, whi
h represents an individual foot-ball team. A football team has an unique name, performan
e information, andother team-spe
i�
 data;� ResultsMod, whi
h hosts the type results that represents a
olle
tion of football

7.2. ANALYSIS 179Fun
tion Module CommentgenerateLT LeagueTableMod The fun
tion that generatesa league table.sele
tNamesAndData TeamsMod Sele
tion fun
tion for teams.sele
tNameAndData TeamMod Sele
tion fun
tion for team.sele
tData TeamMod Sele
tion fun
tion for team.sele
tTName TeamMod Sele
tion fun
tion for team.
reateLT LeagueTableMod The fun
tion that
reatesa league table.teamEntry TeamMod Sele
tion fun
tion for team.Table 4: Fun
tion Host Analysis Related to the Fun
tion generateLTresults;� ResultMod, the module housing the type result that represents a single footballresult;� PlayersMod, whi
h hosts the type that represents a
olle
tion of players, players;� PlayerMod, the module housing the type player that represents a football player;and,� LeagueTableMod, whi
h hosts the type of league tables, leagueTable.On
e a set of modules have been de
lared one applies type/fun
tion host analysis tothe mi
ro unit entities of the subsystem. In this in
arnation of the te
hnique entities arebeing assigned to modules rather than subsystems. We present in Tables 4 and 5 theresult of type/fun
tion host analysis applied to the entities in the fun
tion dependen
ydiagram of Figure 74.The fun
tion generateLT
ould be either assigned to the module TeamsMod or themodule LeagueTableMod sin
e it uses types de
lared in these modules. The fun
-tion
reates values of the type leagueTable and thus should be de
lared with thetype. The fun
tion requires a

ess to the implementation of the type leagueTable,where in
ontrast it has deferred su
h requirements of the type teams to the fun
tionsele
tNamesAndData. Hen
e the fun
tion was assigned to the module LeagueTableMod.

180 CHAPTER 7. FAD METHODOLOGYType Module Commentteams TeamsMod Host for type teams.team TeamMod Host for type team.leagueTable LeagueTableMod Host for type leagueTable.namesAndData TeamsMod Type
onstru
ted from
omponents of teams.nameAndData TeamMod Type
onstru
ted from
omponents of team.perfData TeamMod Type used to
onstru
t values of team.tName TeamMod Type used to
onstru
t values of team.teamLTEntry TeamMod Values generated from values of team.Table 5: Type Host Analysis Related to the Fun
tion generateLTThe type team has been assigned to a separate module from the type teams sin
ethe module TeamsMod should support the behaviour required of the type teams and notthat of the type team. Any fun
tions over the type teams that use fun
tions over thetype team should not require a

ess to their implementation. The type team and itsasso
iated fun
tions
an therefore implement their behaviour using any design withouta�e
ting the dependen
ies. The reusability of
omponents is signi�
antly enhan
edthrough this type of modular approa
h.On
e all entities have been assigned to a module one
an update the various depen-den
y diagrams to re
e
t the module ar
hite
ture. The subsystem ar
hite
ture resultedin the use relationships being
ategorised either as inter-subsystem or intra-subsystem.Now we further
ategorise the intra-subsystem relationships into either an inter-modulerelationship or an intra-module relationship. This is illustrated in Figure 75 where wepresent the updated fun
tion dependen
y diagram for the fun
tion generateLT.The module TeamMod hosts the fun
tion sele
tNameAndData and the two fun
tionsupon whi
h it depends as indi
ated by the thi
k use relationships
onne
ting the fun
-tions. However,
reateLT is de
lared in the module LeagueTableMod and the fun
tionit uses teamEntry is de
lared in TeamMod. The fun
tion generateLT of the moduleleagueTableMod uses the argument type teams of a di�erent module teamsMod, whi
his indi
ated by the verti
al line on the fun
tion side of the type box.Any fun
tions that use a type through an inter-module relationship should be fur-ther investigated using s
enario analysis. Abstra
tion will probably result in any su
hfun
tion depending on other fun
tions de
lared in the type's module.

7.2. ANALYSIS 181

Figure 75: Updated Fun
tion Dependen
y Diagram for generateLTEntities assigned to module M
an use entities of module N of the same subsystemif and only if there is a module use relationship from M to N and the required entitiesare spe
i�ed in the asso
iated ex
lusive signature. We des
ribe the development of aninitial set of ex
lusive signatures in the following se
tion. Upon
ompletion one has aset of models that
ould be used to support the prototyping of a subsystem.7.2.8 Module Ex
lusive Signature AnalysisModule ex
lusive signature analysis takes the results of the analyses des
ribed in theprevious se
tion, and the signatures asso
iated with the host subsystem, and develops a
olle
tion of ex
lusive signatures through whi
h a subsystem's modules are used. Everyentity de
lared in an ex
lusive signature asso
iated with the host subsystem must alsobe de
lared in at least one signature asso
iated with a module of the subsystem. Forexample, the fun
tion generateLT of the subsystem FootballSS is used by the fun
tionprodu
eLT of the subsystem UISS. It is therefore de
lared in the ex
lusive signatureFOOTBALLSIG asso
iated with the subsystem FootballSS. The fun
tion generateLThas been assigned to the module LeagueTableMod and therefore must be de
lared in

182 CHAPTER 7. FAD METHODOLOGY
Entity Type Spe
i�
ation Signature
reateRes parsedRes -> result RESULTSIGinputResult result -> results -> results RESULTSSIG
he
kResult result -> bool RESULTSIGreadResults string -> results RESULTSSIGwriteResults results -> string RESULTSSIGreadTeams string -> teams TEAMSSIGwriteLeagueTable leagueTable -> string LTSIGresults RESULTSSIGteams TEAMSSIGleagueTable LTSIGgenerateLT teams -> leagueTable LTSIGsele
tNamesAndTeams teams -> namesAndData TEAMSSIGsele
tNameAndData team -> nameAndData TEAMSIGteamEntry nameAndData -> teamLTEntry TEAMSIGTable 6: Entity Signature Spe
i�
ationsthe ex
lusive signature that links the partition relationship to the module. If one wasimplementing the system in Haskell this signature would typi
ally be the export listprovided by the module. All other signatures will be implemented as import lists whenthe module is used.Any entity used by an entity de
lared in another module of the subsystem must bespe
i�ed in the ex
lusive signature that mediates a

ess for the relevant
lient module.Initially ea
h module will be asso
iated with a single ex
lusive signature and the
lient-spe
i�
 signatures will be developed during the design phase of the methodology. Thisis des
ribed in Se
tion 7.3.5.We will illustrate module ex
lusive signature analysis through analysis of the sub-system ex
lusive signature FOOTBALLSIG - des
ribed in Figure 72 - and the results ofthe fun
tion/type host analysis applied to generateLT. Table 6 presents the results,where ea
h fun
tion is re
orded with its type spe
i�
ation and the signature in whi
hit is spe
i�ed. The module with whi
h ea
h signature is asso
iated should be obviousfrom the signature's name.The signature RESULTSSIG is re
orded in the des
ription do
ument of Figure 76. The

7.2. ANALYSIS 183
Ex
lusive Signature Des
ription Do
ument FootballName: RESULTSSIGVersion: 19990823:0Subsystem: FootballSSType(s): resultsPermissive sig(s):Fun
tion(s): inputResult:result -> results -> resultsreadResults: string -> resultswriteResults: results -> stringInherited Sig(s):Des
ription:Interfa
e to the module ResultsMod.Figure 76: Ex
lusive Signature Des
ription Do
ument for the Signature RESULTSSIG

module ar
hite
ture for the subsystem FootballSS is presented in a module dependen
ydiagram in Figure 77. This is based on the analyses des
ribed thus far but will beiteratively developed as a result of further analyses.The analysis phase is
omplete for the system (at least for this iteration) on
e a mod-ule ar
hite
ture has been developed for ea
h subsystem. With an in
remental approa
hto development ea
h subsystem
an be developed at its own pa
e as long as milestonesfor the whole proje
t are met. The design phase takes the deliverables of analysis anddevelops implementable designs of the ma
ro and mi
ro units. This will in
lude furtherinvestigation of fun
tions so that an eÆ
ient fun
tional design
an be modelled whi
huses, for example, polymorphism, overloading and higher-order fun
tions. This involvestaking advantage of existing entities re
orded in the data di
tionary. We des
ribe FAD'sdata di
tionary in Chapter 8. The following se
tion des
ribes the tasks and te
hniquesof the design phase.

184 CHAPTER 7. FAD METHODOLOGY

Figure 77: Module Ar
hite
ture for FootballSS7.3 DesignDesign fo
uses on the delivery of a solution-domain fo
used model of the system. Thatis, where analysis is tied to the problem-domain albeit des
ribed in terms of the requiredparadigm, design aims to produ
e a model whi
h
an be implemented in as an eÆ
ientand e�e
tive manner as possible. However, it is
lear that the importan
e of modularity,both in ma
ro unit and mi
ro unit development, has had a design impa
t within theanalysis phase of development.During the design phase, one takes the deliverables of the analysis phase and, usingthe various me
hanisms provided by the paradigm, designs the various mi
ro and ma
rounits su
h that an eÆ
ient implementable design is returned. The transition from alargely analyti
al model to an implementable design is supported by the
onsistentparadigm-fo
us of the methodology and the fa
t that the diagrams and many of thete
hniques used during analysis are the same as those used during design. This alsoaids any iterative steps between phases or tasks within the phases. One
an of
oursetake the transition one step further and develop a model that re
e
ts the idiosyn
rasiesof a parti
ular implementation language.During analysis OOADMs en
ourage the developer to build models of the system

7.3. DESIGN 185
Phase Task Te
hniquesDesign Design fun
tions for S
enario Analysispurpose and reuse. Permissive Signature AnalysisPolymorphism/Overloading DesignHigher-Order DesignType design. Type Dependen
y AnalysisPermissive Signature AnalysisDesign permissive and Ex
lusive Signature Designex
lusive signatures. Permissive Signature DesignTable 7: FAD Methodology { Design Phasebased on intera
ting obje
ts. The design phase tends to fo
us on developing the in-ternals of obje
ts, introdu
ing new
lasses that provide a
ontroller rôle or some otherimplementation-spe
i�
 rôle, and redrafting the inheritan
e hierar
hy for eÆ
ien
y rea-sons. For example, abstra
t
lasses are introdu
ed to a
t as interfa
es to several sub-
lasses and generalization/spe
ialization relationships are introdu
ed where appropriate.One
an also take advantage of the growing
olle
tion of reusable design patterns [49℄.That is, one is looking to
onvert an analyti
al model that is drafted in terms of unitsof the OO paradigm into one that takes full advantage of the glue available to the OOdeveloper.With FAD one wants to take advantage of fun
tional glue, whi
h in
lude parametri
polymorphism and higher-order fun
tions and the me
hanisms available for the devel-opment of data types. An important part of design is the reuse of existing entities.We des
ribe FAD's data di
tionary and its support for reuse in Chapter 8. The de-liverables of this phase aid the storage of entities in the data di
tionary in a mannerthat improves the
han
es of reuse, and the dis
overy of potentially polymorphi
, over-loaded, or higher-order fun
tions. This is simply a
hieved through adding to the keyinformation that des
ribes a fun
tion or type. The tasks and te
hniques of the phaseare presented in a linear format as summarized in Table 7.Ar
hite
ture design is not in
luded in Table 7. This is be
ause the results of typeand fun
tion designs will determine both the module ar
hite
ture of subsystems and

186 CHAPTER 7. FAD METHODOLOGYthe subsystem ar
hite
ture of the proje
t. For example, if a type is implemented usinga tree type, then use relationships between the relevant ma
ro units will be de
laredand ex
lusive signatures introdu
ed where ne
essary.The initial fo
us of the design phase is fun
tion design. This task takes the
urrentdes
ription of a fun
tion or
olle
tion of fun
tions and further analyses them in terms oftheir behavioural requirements. The potential for polymorphism, overloading and therepla
ement of a
olle
tion of �rst-order fun
tions with a single higher-order fun
tionare all reviewed.Fun
tions are the building blo
ks of fun
tional software as des
ribed in Chapter 3.If the software implementers are provided with inadequate information upon whi
h toimplement the required fun
tions then the software is likely to be inadequate itself.One
annot guarantee
orre
tness through a FAD model, sin
e the modelling languageof FAD is not a formal spe
i�
ation language like Z [39℄ or VDM [151℄. However, there isno reason why one
an't support development within FAD with formal models written ina formal language. One
an add formality to UML models through the obje
t
onstraintlanguage (OCL) [145℄.S
enario analyses applied during the analysis phase deliver a
olle
tion of modelsthat des
ribe (to a
ertain level) the analysed fun
tions. The analyses are applied untila set of ex
lusive signatures
an be developed whi
h re
e
t those entities of a ma
rounit whi
h are used by
lients. Thus fun
tions that depend on other entities de
laredin the same module may not yet have been analysed. We en
ourage further analyses tobe applied to su
h fun
tions. For example, the fun
tion teamEntry that is used by thefun
tion
reateLT as illustrated in Figure 75, takes the name and performan
e data ofea
h team and returns a league table entry. It uses two other fun
tions de
lared in itsmodule TeamsMod that generate the total points for a team and its goal di�eren
e. Thefun
tion dependen
y diagram is presented in Figure 78.A te
hnique whi
h provides further fun
tion development (and type development)information is permissive signature analysis.7.3.1 Permissive Signature AnalysisThe modelling language of FAD in
ludes two types of signatures that were des
ribed inSe
tions 5.2.3 and 5.3.3. An ex
lusive signature presents to a
lient ma
ro unit, exa
tly

7.3. DESIGN 187

Figure 78: Fun
tion Dependen
y Diagram for the Fun
tion teamEntrythose entities that
an be used from its asso
iated ma
ro unit. A permissive signaturespe
i�es some behaviour that is implemented over its asso
iated type(s). That is, wherean ex
lusive signature signals only this, a permissive signature indi
ates at least this. Apermissive signature therefore makes behaviour expli
it and spe
i�es the entities thatsupport the behaviour. Ea
h permissive signature
an be reused through asso
iationwith another type whose type
onstru
tor is of the same kind. One
an also
reate newsignatures through inheriting the spe
i�
ations of an existing signature as des
ribed inSe
tion 5.4.7.Permissive signature analysis takes a fun
tion and determines whether it requiresits types to support any parti
ular behaviour. The behaviour may be required over atype used by one of its types. If required, then one
an either use an existing permissivesignature that spe
i�es su
h fun
tionality or de
lare a new one. Existing permissivesignatures are re
orded in FAD's data di
tionary and we will des
ribe how they are
ategorised and the support for reuse in Chapter 8. The signature is then asso
iatedwith the appropriate type in the fun
tion spe
i�
ation. The type is said to instantiatethe permissive signature and this will be re
orded in the type des
ription do
ument.We present an example from the
ase study using the fun
tion sele
tNamesAndDataof the module TeamsMod. The fun
tion is used by the league table generating fun
tiongenerateLT as modelled in Figure 75. The fun
tion is des
ribed in the FDD in Figure79. From the textual des
ription of the fun
tion one
an build an abstra
t model of thefun
tion's behaviour. The fun
tion applies a data extra
ting fun
tion to ea
h item of

188 CHAPTER 7. FAD METHODOLOGY
Fun
tion Des
ription Do
ument FootballName: sele
tNamesAndDataVersion: 19990810:1Module: TeamsModArity: 1Contra
t Asso
ia-tion:Instantiations:Type Spe
i�
ation: teams -> namesAndDataFun
tions Used: sele
tNameAndDataDes
ription:This fun
tion takes the
olle
tion of teams and returns the nameand performan
e data of ea
h team. Ea
h team is sele
ted andits name and performan
e data is retrieved.Figure 79: Fun
tion Des
ription Do
ument for sele
tNamesAndDataits
olle
tion-type argument. The fun
tion therefore requires the
olle
tion type usedby the type teams to support the appli
ation of a fun
tion to ea
h of its items. This
anbe modelled by asso
iating the type
olle
tion a with the permissive signature MAPwhi
h spe
i�es mapping fun
tionality. The signature spe
i�es the higher-order fun
tionmap. We present the des
ription do
ument for MAP in Figure 80 and the updated fun
tionspe
i�
ation for the fun
tion sele
tNamesAndData in Figure 81.The fun
tion dependen
y diagram in Figure 81 provides the developer with a rangeof information that in
ludes:� an abstra
tion of the fun
tion's main behaviour. This abstra
tion is reusablebeyond its
urrent appli
ation;� the fun
tions used to deliver the required fun
tionality;� the potential for the implementation of an overloaded fun
tion in a language whi
hsupports overloading. Se
tion 7.3.2 des
ribes how FAD supports the design ofpolymorphi
 and overloaded fun
tions. If the implementation language does not

7.3. DESIGN 189
Permissive Signature Des
ription Do
ument FootballName: MAPVersion: 19990824:0Module:Parameter(s)(kind): m : * -> *Entities: map :(with type spe
s.) (a -> b) -> m a -> m bInherited Signature(s):Des
ription:This signature spe
i�es mapping behaviour.Figure 80: Permissive Signature Des
ription Do
ument for MAP

Figure 81: Updated Model for the Fun
tion sele
tNamesAndData

190 CHAPTER 7. FAD METHODOLOGY

Figure 82: Updated Fun
tion Models for readResFile and writeResFilesupport overloading then either unique or quali�ed names will be required for thefun
tions that mat
h those spe
i�ed in a permissive signature;� some guidan
e on the development of the type
olle
tion a whi
h we expandon in Se
tion 7.3.4.For the se
ond example we return to the fun
tions readResFile and writeResFilethat were �rst des
ribed in Se
tion 7.2.5. They used the fun
tions readResults andwriteResults to implement the required `readability' and `writability' fun
tionalityover the type results. Permissive signatures provide an alternative means of des
rib-ing the required fun
tionality, with the bene�t that the signature is reusable and
anbe asso
iated with more than one type. We therefore introdu
e two permissive signa-tures READ and WRITE that in
lude the spe
i�
ations read : string -> a and write: a -> string respe
tively. We present the updated spe
i�
ations for the fun
tionsreadResFile and writeResFile in Figure 82.Permissive signature analysis returns models of fun
tions that in
lude des
riptionsof behavioural abstra
tions. In the following se
tion we des
ribe how these models playan important rôle in the dis
overy of potentially polymorphi
 or overloaded fun
tions.7.3.2 Polymorphism/Overloading DesignParametri
 polymorphism and
onstrained polymorphism (overloading) provide me
h-anisms for reuse in fun
tional languages. Where parametri
 polymorphism supportsthe use of the same
ode over multiple types,
onstrained polymorphism supports thereusability of a name but not ne
essarily
ode. A des
ription of polymorphism withinthe fun
tional programming paradigm and how it
ompares to that of OO is provided

7.3. DESIGN 191in Chapter 3.A polymorphi
 fun
tion
an repla
e several monomorphi
 fun
tions whose behaviouris exa
tly the same. For example, monomorphi
 identity fun
tions over ea
h type
an berepla
ed by a single polymorphi
 fun
tion. Fun
tions that return the length of a list ofsome monomorphi
 type
an be repla
ed by a single polymorphi
 fun
tion that returnsthe length of any list. In both of these
ases the set of monomorphi
 fun
tions exhibitexa
tly the same behaviour, and are not reliant on any fun
tionality being supportedby their types.In
ontrast
onstrained polymorphi
 fun
tions do require some spe
i�ed fun
tionalityto be supported either by their types, or some type(s) used by one or more of theirtypes. Jones [66℄ motivates the argument in favour of type
lasses through examples offun
tions that sum two values of the same type and test the equality of two values ofthe same type. Monomorphism is too restri
tive in both
ases sin
e in most fun
tionallanguages there are several numeri
 types and even more types whose values
an betested for equality. However, a polymorphi
 fun
tion is inappropriate in both
asessin
e there are non-numeri
 types that don't support, for example, arithmeti
 operatorsand some non-equality types su
h as the fun
tional types.The developer therefore needs support, both in the dis
overy of potentially (
on-strained) polymorphi
 fun
tions and in the reuse of su
h existing fun
tions. We leavethe des
ription of the latter pro
ess to Chapter 8. Permissive signatures, or the la
k of,provide signi�
ant support in the development of (
onstrained) polymorphi
 fun
tions.We suggest that the following guidelines should be followed.� If a fun
tion is spe
i�ed with types with no asso
iated permissive signatures thenthe fun
tion
ould have a polymorphi
 type. This is be
ause the fun
tion's typeshave no expli
it required fun
tionality, whi
h suggests that the type's values donot in
uen
e the behaviour of the fun
tion. The identity fun
tion is an exampleof this type of a fun
tion;� If a fun
tion's types have asso
iated permissive signatures whose parameters areall of non-* kind then it
ould have a polymorphi
 type. The values of the typesused to
onstru
t an argument value are not required to support any parti
ularfun
tionality. The length fun
tion is an example of this type of fun
tion;

192 CHAPTER 7. FAD METHODOLOGY
Permissive Signature Des
ription Do
ument FootballName: CONTAINERVersion: 19990826:0Module:Parameter(s):
 : * -> *Entities: add : a ->
 a ->
 a(with type spe
s.) remove : int ->
 a ->
 afind :(a -> bool) -> [a℄ -> maybe aInherited Signature(s):Des
ription:This signature spe
i�es
ommon fun
tionality over
ontainertypes.Figure 83: Permissive Signature Des
ription Do
ument for CONTAINER� If the fun
tion is spe
i�ed with at least one permissive signature then it
ouldbe de
lared as an overloaded fun
tion. Clearly this will require implementationlanguage support for overloading. There is
learly an overlap with the above
aseillustrated by the length fun
tion that
ould be de
lared as an overloaded fun
tion.Another example is the fun
tion that sums two numeri
 values.We will illustrate appli
ation of these guidelines with some examples from the
asestudy. The I/O fun
tion inpRes uses the fun
tion inputResult to input a new resultinto the
urrent
olle
tion of results (see Figure 60). Permissive signature analysis hasresulted in the de
laration of a new permissive signature with a parameter of kind *-> *, CONTAINER, whi
h supports typi
al fun
tionality of a
ontainer type su
h as theaddition of a new item and the removal of an existing item. The signature is des
ribedin the permissive signature des
ription do
ument presented in Figure 83.Three fun
tions are spe
i�ed that implement the addition of an item, the removalof an item in a spe
i�ed position, and �nding a value whi
h satis�es a parti
ular pred-i
ate. We have not in
luded a fun
tion whi
h removes all items mat
hing an inputtedvalue sin
e this would require equality fun
tionality of the items' type. The fun
tion

7.3. DESIGN 193
Figure 84: Potential Polymorphi
 or Overloaded Fun
tioninputResult is modelled as in Figure 84. The type
olle
tion a is used to
onstru
tvalues of type results, whi
h is fully des
ribed in Se
tion 7.3.4.The behaviour of inputResult does not require any behaviour over the type resultthat supplies the items
ontained in the
olle
tion. Thus the fun
tion
ould be de�ned as(or use) a polymorphi
 fun
tion over the type
olle
tion a or an overloaded fun
tionover any type that instantiates the permissive signature CONTAINER.As a se
ond example we return to the fun
tions readResFile and writeResFilethat are used by the fun
tion inpRes to read results from a �le and write results toa �le. The fun
tions, whi
h are modelled in Figures 82(a) and 82(b), require the typeresults to support the behaviour spe
i�ed by the asso
iated permissive signatures READand WRITE. These signatures spe
ify fun
tions for reading and writing behaviour. Sin
eREAD and WRITE have parameters of kind * the fun
tions
ould not be polymorphi
 but
ould possibly be implemented as overloaded fun
tions.A polymorphi
 fun
tion whose type in
ludes un
onstrained type variables must beuniversally a

essible and thus de
lared in a module in the subsystem GeneralSS. Poly-morphi
 fun
tions that are de�ned over
onstru
ted types should be assigned to thesame module as the type. For example, fun
tions that are de
lared over any list shouldbe assigned to the module that hosts the list type. Overloaded fun
tions that are spe
-i�ed in a permissive signature will be de
lared in the module that hosts the type thatis asso
iated with the signature. Other
onstrained polymorphi
 fun
tions are de
laredin a module in the subsystem GeneralSS.In the following se
tion we des
ribe how permissive signatures
an signal the poten-tial for development of higher-order fun
tions.

194 CHAPTER 7. FAD METHODOLOGY
Figure 85: The Higher-Order Fun
tion sele
t7.3.3 Higher-Order Fun
tion DesignFAD supports the modelling of multiple argument fun
tions in their
urried and un-
urried form. With the
urried form, new fun
tions
an be
reated through the partialappli
ation of the fun
tions to an in
omplete set of arguments. In the following
hapterwe des
ribe how entities are stored in the data di
tionary and how this supports thepotential for fun
tion
reation through partial appli
ation.In this se
tion we des
ribe how FAD supports the development of fun
tions withfun
tional arguments. Higher-order fun
tions
apture a
ommon pattern of
omputa-tion a
ross several fun
tions. Thus one is able to repla
e several �rst-order fun
tionswith a single higher-order fun
tion. In ea
h
ase the fun
tion is applied to a fun
-tional argument whi
h was previously used in the body of the �rst-order fun
tion.Permissive signatures
an be used to highlight
ommon patterns of
omputation. Forexample, the fun
tion sele
tNamesAndData des
ribed in Figure 81, applies the fun
-tion sele
tNameAndData to ea
h value of type team in a
olle
tion of teams. Thepattern of
omputation is made expli
it by the asso
iation of the permissive signatureMAP with the unary type
onstru
tor
olle
tion used by the type team. We
ould re-pla
e sele
tNamesAndData with a higher-order fun
tion sele
t that takes a fun
tional�rst argument as des
ribed in Figure 85. The model of the fun
tion generateLT thatpreviously used sele
tNamesAndData requires updating as illustrated by the fun
tiondependen
y diagram of Figure 86.Of
ourse not all higher-order fun
tions are so easily dis
overed. Two fun
tions mayuse a fun
tion of the type t1 -> t2 but without any expli
it behavioural requirementbeyond the appli
ation of the used fun
tion to an argument. If the fun
tions havesimilar models then they may exhibit
ommon abstra
tions. That is, if their fun
tiondependen
y diagrams present
ommon patterns then there is the possibility of a
ommonabstra
tion. Common model patterns
ould indi
ate
ommon abstra
tions, whi
h may

7.3. DESIGN 195

Figure 86: Updated Version of the Fun
tion generateLTresult in some eÆ
ien
y in design. Although not
urrently a part of FAD, one
ouldlook to re
ord parti
ular model patterns to support reuse of design and the dis
overyof
ommon abstra
tions. Design patterns are an interesting area of future resear
hwithin the fun
tional programming
ommunity. They are already pra
tised within OOdevelopment [113, 47, 49, 27, 18℄.In
on
lusion, FAD provides signi�
ant support for fun
tion development. Thisin
ludes modelling a fun
tion as a
olle
tion of fun
tions upon whi
h it depends andproviding support through permissive signatures for the development of polymorphi
,overloaded, and higher-order fun
tions. In Chapter 8 we des
ribe FAD's data di
tionaryand its support for reusing existing fun
tions and developing fun
tions in parallel. Thenext se
tion des
ribes the task of type design.7.3.4 Type DesignDuring the analysis phase, s
enario analyses and type dependen
y analyses are pra
tisedin parallel in order to provide the information ne
essary to e�e
tively spe
ify a fun
tion.

196 CHAPTER 7. FAD METHODOLOGYIn
ommon with fun
tions, types are investigated until every use relationship is an intra-module one. Some types might therefore require further type dependen
y analysis inadvan
e of implementation.Ea
h non-basi
 type should be modelled in a type dependen
y diagram. In addi-tion, permissive signature analysis makes expli
it the behaviour that must be de�nableover a type. For example, the signatures MAP and FOLD indi
ate parti
ular patterns of
omputation over any instantiating type, and EQ and ORD signal an equality type andordered type respe
tively. Thus far permissive signatures have been asso
iated withtypes in response to a behavioural requirement of a fun
tion. During type design one
an take ea
h type and determine whether any further permissive signatures should beasso
iated with the type or any types upon whi
h it is dependent. Types
an then bedeveloped that either use existing types whi
h instantiate the permissive signatures orrequire the de
laration of new signature instantiations.We illustrate the results of further analysis with a detailed model of the typeresults. Its type dependen
y diagram is presented in Figure 87.Thus the type resultsmust be de
lared using a type that instantiates the permissivesignature CONTAINER, and the date type. For example, using Haskell notation, one
ouldimplement the type as a produ
t type as follows:data Results = Rs Date [Result℄where the type
olle
tion a has been implemented as a list. The list type has therequired CONTAINER fun
tionality. We des
ribe in the following
hapter how one
anmat
h a type in development against an existing type.Type designs may have an impa
t on the subsystem ar
hite
ture, and module ar-
hite
ture of subsystems. For example, ResultsMod will now use ListMod, the modulethat hosts the list types and their asso
iated operations. Module ar
hite
ture design istherefore intimately linked to the design of types.A value of the type result has four
omponents: a date value, homeTeam andawayTeam values (whi
h are implemented identi
ally), and an attendan
e value. On
ethe design of a type is
on�rmed a
onstru
tor signature
an be de
lared and asso
iatedwith the type. Here is a possible implementation for result.data Result = R Date (HomeTeam,AwayTeam,Attendan
e)

7.3. DESIGN 197

Figure 87: A Model of the Type results

198 CHAPTER 7. FAD METHODOLOGYSin
e the types results and result are de
lared in separate modules and the typeresult is abstra
t, one
ould
hange this implementation with any
hanges restri
tedto the module ResultMod whi
h houses the type result. The date type
an be imple-mented as any appropriate type that instantiates the permissive signature ORD, whi
hspe
i�es an ordering fun
tionality over its instantiating types. Sin
e the signature ORDinherits the signature EQ, any instantiating type must also have equality fun
tionality.Details regarding permissive signature design are des
ribed in Se
tion 7.3.6.7.3.5 Ex
lusive Signature DesignEx
lusive signature design takes the
urrent set of ex
lusive signatures (whi
h are typi-
ally one-one mapped with a subsystem or module) and designs a set of signatures thatstate the exa
t interfa
e presented to ea
h
lient of a module or subsystem. Duringthe analysis phase ex
lusive signatures provide a spe
i�
ation for ma
ro unit develop-ers and a guide to the fun
tions (and their types) available for use from other ma
rounits. Subsystem ex
lusive signatures provide input into the development of ex
lusivesignatures asso
iated with their modules. One now needs to provide a truer re
e
tionof the intera
tion between ma
ro units. That is, the signature asso
iated with a unitmay be rede
lared as a
olle
tion of signatures ea
h mediating a

ess to the unit for adi�erent
lient.For example, the module ar
hite
ture for FootballSS presented in Figure 77 is up-dated to that presented in Figure 88. The only
hange is that the signature RESULTSSIGhas now been redesigned as three signatures that provide the exa
t interfa
e requiredby the
lient. Details of two of the signatures are presented in Figure 89.7.3.6 Permissive Signature DesignEvery permissive signature is re
orded in a des
ription do
ument. In Chapter 8 wedes
ribe the approa
h to storing permissive signatures on the basis of the number andkind of their parameters.Permissive signatures are used to de
lare a behavioural requirement over a type.To avoid potential
onfusion a permissive signature should spe
ify only that whi
his required. That is, if a fun
tion requires mapping behaviour over a type then theasso
iated permissive signature should spe
ify only that behaviour. Through signature

7.3. DESIGN 199

Figure 88: Updated Ex
lusive Signature Design for Modules of FootballSS

Figure 89: Ex
lusive Signatures Asso
iated with the Module ResultsMod

200 CHAPTER 7. FAD METHODOLOGYinheritan
e one
an develop signatures that spe
ify a range of behaviour. However, oneshould not develop a signature through inheritan
e unless the resulting
olle
tion ofbehaviour is a
tually required. That is, one should err on the side of
aution, and nottie signatures unne
essarily to an inheritan
e hierar
hy.For example, the signature ORD that spe
i�es fun
tions that implement ordering overa type, is an extension of one that supports equality, EQ. Thus one
an de
lare ORD byinheriting the spe
i�
ations of EQ and adding other required spe
i�
ations.7.4 SummaryIn this
hapter we have presented the methodology of FAD by des
ribing its tasks andthe te
hniques used to implement a task. The te
hniques deliver models des
ribedin terms of the modelling language of FAD. The methodology is neither intended toreinvent good pra
ti
e in fun
tional programming nor prevent bad pra
ti
e, as was themotivation for the introdu
tion of stru
tured programming and its asso
iated analysisand design methodologies. Rather FAD should support software development in thefun
tional programming paradigm by plugging the hole due to the la
k of paradigm-spe
i�
 methodologies. FAD's modelling language and te
hniques support good pra
ti
erather than en
ouraging a new approa
h to building systems within the paradigm.The �nal element of the methodology is its data di
tionary. The following
hapterpresents an overview of FAD's data di
tionary, how it supports the reuse of existingentities, and the design of entities in development.

Chapter 8
Data Di
tionary
One of the bene�ts of using an ADM as a tool in software development outlined inSe
tion 4.2.4, is that it provides signi�
ant support for do
umenting development. Thishas several uses of whi
h we highlight two of the most signi�
ant. Firstly, it providesa re
ord of development for future referen
e either during maintenan
e or as an inputinto the development of a new system. Se
ondly, it
an provide ex
ellent support duringdevelopment espe
ially in relation to dis
overing
ommon abstra
tions and reusableentities. Of
ourse implementation
ode provides its own form of do
umentation, butthis is only available when the
ode is written. Unsurprisingly it presents a pi
ture ofthe idiosyn
rasies of a parti
ular language rather than a
lear statement of a system'sdesign and fun
tionality.With large proje
ts developed by multiple units there is a danger of substantialdupli
ation of e�ort. An ADM with a supporting CASE tool
an redu
e this risk boththrough re
ording entities and designs in an eÆ
ient manner, and providing me
hanismsfor reuse and the dis
overy of
ommon abstra
tions in existing entities and entities indevelopment.In Se
tion 8.2 we des
ribe FAD's data di
tionary. We des
ribe how ea
h type of unitis stored and how this supports the requirements stated above. In the following se
tionwe review related work on mat
hing entities in development to existing entities.201

202 CHAPTER 8. DATA DICTIONARY8.1 Related WorkMost of the resear
h within the fun
tional programming
ommunity on supporting reusehas fo
used on mat
hing fun
tions in development to those de�ned in a library. Themat
hing key in most
ases is the fun
tion's type signature. Therefore, the mat
hing
riterion is synta
ti
 and not semanti
.Run
iman and Toyn [122℄ des
ribe an approa
h where the fun
tion in developmentmay not have an expli
it type signature. They present te
hniques for developing a keytype for the new fun
tion, whi
h
an be
ompared against the types of existing fun
tions.One major limiting fa
tor of their approa
h is that it enfor
es an ordering on the ar-guments. That is, although the types a -> b -> [b℄ and Int -> Char -> [Char℄mat
h, the type Char -> Int -> [Char℄ will not mat
h the latter type. Severalreusable fun
tions will be missed due to this
onstraint.Rittri [117℄ removed the restri
tion on the order of a fun
tion's arguments anddeveloped a pro
ess where one
ould mat
h a query type against an isomorphi
 type,where the isomorphisms are the ones that hold in all
artesian
losed
ategories. Rittrienfor
es the expli
it de
laration of a query type but only allows exa
t mat
hes up toisomorphism. Thus, for example, a monomorphi
 type will not mat
h a polymorphi
type. On
e again potential mat
hes may be missed due to this
onstraint.Zaremski and Wing developed two approa
hes to mat
hing modules as well as fun
-tions. They have a synta
ti
 approa
h
alled Signature mat
hing [154℄ whi
h mat
heson types, and a semanti
 approa
h
alled Spe
i�
ation mat
hing [155℄, whi
h mat
hesformal spe
i�
ations of the behavioural
hara
teristi
s of fun
tions and modules. Sin
eformal methods are beyond the s
ope of FAD, we will only review signature mat
hing.Zaremski and Wing de�ne a
olle
tion of basi
 mat
hes of fun
tion signatures that
an be
ombined to produ
e other mat
hes. Modules are mat
hed on the basis of theirsignatures using these basi
 mat
hes. The basi
 mat
hes are:exa
t mat
h: two signatures are equal up to variable names and user-de�ned typenames;generalised mat
h: the query type exa
t mat
hes an instan
e of the library
ompo-nent type;

8.1. RELATED WORK 203spe
ialized mat
h: the library
omponent type is an exa
t mat
h of an instan
e ofthe query type;unify mat
h: the two types have
ommon instan
es that mat
h exa
tly;un
urry: the un
urried versions of the two types are exa
t mat
hes;reorder mat
h: a reordering of the library
omponent type is an exa
t mat
h for thequery type.A signature mat
her has been implemented in SML and integrated into the author'slo
al SML programming environment. However, the onus is on the user to determine theappropriate mat
hes to apply. This is not a trivial task sin
e some relaxed (non-exa
t)mat
hes may result in far too many fun
tions and an exa
t mat
h in too few. Thereare no metri
s whi
h measure the most eÆ
ient route to a su

essful mat
h.Park and Ramjisingh [94℄ take a signi�
antly di�erent approa
h to those des
ribedabove. They argue that an eÆ
iently organised
omponent library would maximisethe potential for reuse. They des
ribe an approa
h to the storage of fun
tions wherefun
tions are grouped through their arity. Intra-group fun
tions are linked through type-substitution and inter-group fun
tions are linked through argument-substitution. Thatis, two fun
tions f1 and f2 of the same group are linked if the type of f1 is more generalthan the type of f2. Alternatively one
an say that the type of f2 is an instan
e of thetype of f1. The type of f2
an therefore be
reated through substituting one or moretypes for type variables in the type of f1.Two fun
tions f3 and f4 of di�erent groups are linked if the one of lower arity hasa type that is an instan
e of the type of the fun
tion of higher arity with one or morearguments removed. That is, the type is an appli
ative type instan
e of the higher aritytype. A query type
an therefore be mat
hed against the same type, a more generaltype, a more spe
i�
 type, or a type with more arguments, whi
h
an be made aninstan
e of the query type on
e some arguments are removed. However, mat
hing is
onstrained by the order of the arguments.An and Park [4℄ have taken grouping a step further and removed the emphasis onthe order of arguments. Thus fun
tions are assigned to fun
tion groups based on theirarity, and within ea
h fun
tion group is a
olle
tion of extended set types. For example,

204 CHAPTER 8. DATA DICTIONARYthe extended set type {int,
har} -> bool in
ludes the types int ->
har -> bool,
har -> int -> bool, (int,
har) -> bool, and (
har,int) -> bool. That is, ea
hextended set type is a
olle
tion of isomorphi
 types as des
ribed by Rittri [116℄. A nodeis
reated for ea
h set type. Intra-group links are now between two nodes within thesame group and inter-group links between two nodes in di�erent groups. The linksare de�ned as in Park and Ramjisingh [94℄. Hen
e one bene�ts both from having astru
tured repository of
omponents and a

ess to isomorphi
 fun
tions within a node.Although this se
tion is titled Related Work the work on mat
hing
omponents hasfo
used on mat
hing entities - typi
ally fun
tions - in development with fun
tions de�nedin libraries. The mat
hing requirements for a methodology are more varied. Mat
hingwith existing entities is still required, but so are mat
hing entities being developed withsimilar behavioural requirements and mat
hing non-fun
tion entities su
h as types andsignatures.In the following se
tion we des
ribe FAD's data di
tionary and how it provides aneÆ
iently organised approa
h to entity storage and satis�es the above requirements.
8.2 FAD Data Di
tionaryFAD's data di
tionary is a medium for the storage of the
olle
tion of des
ription do
u-ments for all the de
lared mi
ro and ma
ro entities. We des
ribe in the following se
tionsthe
riteria for pla
ement of ea
h form of entity. Those entities that are not des
ribedin a se
tion are simply stored alphabeti
ally. Ea
h system entity will be des
ribed byone or more des
ription do
uments that provide an histori
al re
ord of development ofthe entity. The information re
orded will in
lude des
riptions of any
hanges and thereasons for the
hanges. We des
ribe in the following se
tions the storage of the set ofdes
ription do
uments for ea
h entity, but will use the latest version to determine itsstorage situation. That is, as entities are developed they may be repositioned withinthe data di
tionary. For example, a type may be asso
iated with a permissive signa-ture when previously it had no su
h asso
iation. This will
hange where it is stored asdes
ribed in Se
tion 8.2.2.

8.2. FAD DATA DICTIONARY 2058.2.1 Fun
tionsEa
h fun
tion is re
orded in a series of fun
tion des
ription do
uments. The des
riptionin
ludes: the fun
tion's arity, type spe
i�
ation and asso
iations between argumentand result types and permissive signatures. These are the important entries whendetermining the storage lo
ation of the fun
tion and links between fun
tions.Fun
tions are stored using the following
riteria, whi
h are applied in the enumeratedorder.1. Fun
tion arity.2. Asso
iated permissive signature kind.3. Alphabeti
al.Fun
tions are initially grouped by their arity. That is, we have adopted Park andRamjisingh's approa
h of grouping all fun
tions with a single argument together, allfun
tions with two arguments together and so on.We then assign the fun
tions in ea
h group to a subgroup of fun
tions whose typesinstantiate a permissive signature of a spe
i�ed kind. A permissive signature's kindis re
orded in its des
ription do
ument. All fun
tions whi
h require a type/signatureasso
iation of kind * are grouped together. Fun
tions whi
h require the instantiation ofa permissive signature of kind * -> * but not any of kind * are grouped together andso on. Finally, any fun
tions whi
h do not require the instantiation of any signatureare grouped together. Within ea
h of the subgroups the fun
tions are stored alphabeti-
ally. For example, the fun
tion inputResult (see Figure 84) will be grouped with thefun
tions of arity 2, with a permissive signature of kind * -> *. Thus if one wants todevelop a fun
tion that takes two arguments and has mapping behaviour, one
an lookin this group.In
ontrast to the mat
hing of fun
tions with impli
itly or expli
itly de
lared types,during development a fun
tion may use types that simply have a name and some as-so
iation with permissive signatures. This approa
h to organising fun
tions will pla
ethese fun
tions with other fun
tions with similar behavioural requirements.Fun
tions with the same arity and permissive signature asso
iations will therefore

206 CHAPTER 8. DATA DICTIONARYbe stored in the same group. This enhan
es the
han
es of dis
overing potential poly-morphi
 fun
tions and overloaded fun
tions. It also redu
es the likelihood of identi
alde�nitions being bound to two di�erent fun
tions of the same type. In addition, if onewants a fun
tion of arity n with a behavioural requirement spe
i�ed by a permissivesignature of kind * -> *, then one may �nd a fun
tion in the subgroup of arity n+1and permissive signature asso
iation of the same kind that
ould
reate the fun
tionthrough partial appli
ation.Finally, if one wants a fun
tion over a type t then one
an initially sear
h in thefun
tion's arity/permissive signature subgroup, and if unsu

essful,
an then review themodule that hosts the type. Sin
e systems are built on information hiding, fun
tionsthat implement behaviour over the type should be de
lared in the module that hoststhe type.8.2.2 TypesA type is re
orded in a series of type des
ription do
uments. The des
ription in
ludesthe kind of the type's
onstru
tor and any permissive signature asso
iations. The typesare
ategorised using the following
riteria applied in the enumerated order.1. Type
onstru
tor kind.2. Permissive signature instantiation.3. Alphabeti
al.A type is initially assigned to a group on the basis of the kind of its
onstru
tor. Thusall types with nullary type
onstru
tors will be grouped together, as will all types withunary type
onstru
tors. Within ea
h of these groups the types are multiply assignedto the subgroup of types that instantiate a spe
i�ed permissive signature. However, ifa type instantiates several signatures whi
h are related through inheritan
e, then it isonly assigned to the signature whi
h permits the most behaviour. Within ea
h of thesegroups the types are stored alphabeti
ally.Thus if one wants to �nd a type that instanitates the permissive signature ORD oneonly has one pla
e to look. This redu
es the
han
es of repetition of type de�nition andin
reases the likelihood of reuse.

8.3. SUMMARY 2078.2.3 Permissive SignaturesA permissive signature is re
orded in a series of permissive signature des
ription do
-uments. The des
ription in
ludes a listing of parameters and their kind. Permissivesignatures are
ategorised using the following
riteria applied in the order enumerated.1. Number of parameters.2. Kind of parameters.3. Alphabeti
al.Ea
h permissive signature is assigned to a group on the basis of their number ofparameters. The signatures NUM, ORD, FOLD, and MAP ea
h have one parameter and willtherefore be grouped together. Within ea
h group, signatures with a parameter of kind* are assigned to a subgroup. The remaining signatures with a parameter of kind * ->* are assigned to another subgroup and so on. Within ea
h subgroup the signaturesare stored alphabeti
ally. Thus NUM and ORD are assigned to the same group, as are MAPand FOLD.If one is developing a signature with a single parameter of kind * -> * then one
an look in the appropriate group and determine if an a

eptable one exists, or if one
ould be
reated that extends an existing one through inheritan
e. Alternatively, thenew signature
ould be extended to
reate an existing signature.8.3 SummaryWe have outlined in this
hapter how the FAD data di
tionary provides an organisedrepository for de�ned elements and elements in development. The
riteria for storingea
h element were des
ribed. Organised storage in
reases the likelihood of reuse andthe dis
overy of
ommon abstra
tions.

208 CHAPTER 8. DATA DICTIONARY

Chapter 9
Summary
In this thesis, we have presented arguments in favour of an analysis and design methodol-ogy whi
h supports software development within the fun
tional programming paradigm.We presented eviden
e of signi�
ant support for obje
t-oriented development and thegeneral bene�ts of in
luding a methodology within the pro
ess of software development.Popular methodologies, su
h as the Boo
h Method and SSADM, are underpinnedby a graphi
al modelling language whi
h delivers abstra
t models of software designs.They are not however visual programming languages sin
e they deal with abstra
tionsrather than implementation details. We believe that a methodology whose languagehas elements in harmony with the fun
tional programming paradigm and whose te
h-niques en
ourage and support the development of fun
tional designs is required. We
annot prove, in any formal and rigorous sense, that applying the methodology a
tuallyimproves the eÆ
ien
y with whi
h one develops software, or the e�e
tiveness of theimplemented solution. However, we
an o�er software developers a pa
kaged approa
hto development where the media used allow fo
us on the essential
omplexity of soft-ware development, whilst avoiding the a

idental
omplexity inevitable when swit
hingparadigms.In the appendix to this thesis we applied FAD to the development of a
onsisten
y
he
ker for a CASE tool. Its support for the building blo
ks and glue of the fun
tionalparadigm enfor
ed an approa
h that was
onsistent with the paradigm from the initialstages through to design. We list below the spe
i�
 su

esses of the appli
ation followedby the modi�
ations/additions that we believe will enhan
e the modelling language and209

210 CHAPTER 9. SUMMARYmethodology.We
laim the following su

esses:� the notation was easy to use, unambiguous and presented the models in a
learand readable manner. Other notations have embedded a fun
tion's arguments andreturn values within the fun
tion notation. We believe presenting types externalto their asso
iated fun
tion - as �rst des
ribed in Se
tion 5.2.2 - provides severalbene�ts. These in
lude:{ a fun
tion's type spe
i�
ation is
lear;{ it emphasises the importan
e of types during development; and,{ it allows behavioural requirements to be asso
iated with the types in a
learand expli
it form.� the multiple views of a system supported by FAD deliver
lear, fo
used modelsun
luttered by unne
essary information;� the adoption of a single set of diagrams naturally supported the iterative develop-ment of models throughout development. Models tend to require updating ratherthan repla
ement;� permissive signatures (see Se
tion 5.2.3) are an important element of the modellinglanguage. They allow behavioural requirements to be added to type informationin a form that is independent of any type and thus reusable a
ross types of theappropriate kind. They
an be naturally implemented as types
lasses in imple-mentation languages that o�er su
h support as des
ribed in Se
tion 6.6;� independent ma
ro unit and interfa
e model elements. This proved invaluableduring development where one wants to be able to spe
ify an interfa
e to a modulethat is appropriate for a parti
ular relationship. For example, in the appendix wehave developed three ex
lusive signatures that provide interfa
es to the moduleStateMod. Ea
h satis�es a parti
ular abstra
tion requirement. Full details of thisexample are provided in Se
tion A.6;� an initially type-
entri
 approa
h to module development and intera
tion supportsthe dis
overy of the fun
tions that exist over a type. In some
ases one may have a

9.1. SUMMARY OF CONTRIBUTIONS 211
hoi
e of modules whi
h
ould host a fun
tion, but it will still minimize the sear
hspa
e;� delaying the implementation details of a type in favour of spe
ifying the be-havioural requirements and types used, en
ourages an approa
h to developmentin whi
h one is not tied prematurely to a parti
ular set of implementations. Thatis, we have adopted the prin
iple of least
ommitment, whi
h requires as mu
habstra
tion as possible in order to minimize the s
ope of future implementa-tion de
isions. This was illustrated, for example, in the development of the type
omponents (see Se
tion A.6.4) and the various substate types.We also believe that in light of our experien
es with the
ase study there are areasof the modelling language and methodology that
ould bene�t from modi�
ation andextension. We list these below:� there is a need for a `shorthand' notation for an interfa
e that spe
i�es everythingin its asso
iated module or all but a few of the hosted units. This also applieswhere an interfa
e spe
i�es everything hosted by a module used by its asso
iatedmodule;� a review of `
ase' notation. That is, where a fun
tion has input-spe
i�
 behaviourwe
urrently present ea
h alternative in a separate diagram although typi
allyin the same model. This
an result in a lot of
omponent repetition and is thussomewhat ineÆ
ient. Other modelling languages have adopted an approa
h whereone presents the various
ases on a single diagram, whi
h although more eÆ
ient,
an result in a less readable model;� the
ase study did not address any of what Peyton Jones has des
ribed as theawkward squad [99℄. FAD
urrently supports development using pure fun
tionalprogramming languages. It will require extension to support the various means ofintera
ting with the external world.9.1 Summary of ContributionsThe major
ontribution of this thesis is a methodology for developing fun
tional soft-ware. Although popular within other paradigms this development medium has been

212 CHAPTER 9. SUMMARYhitherto absent from the fun
tional programming paradigm.We
laim the following parti
ular
ontributions:1. A modelling language for building abstra
t models of fun
tional designs. Thesyntax and semanti
s of the language were des
ribed informally as is
ommonwith modelling languages.2. A
olle
tion of integrated te
hniques whi
h takes the deliverables of requirementsengineering and return software design that is best implemented in a fun
tionallanguage.3. A set of do
umentation whi
h provide a medium for re
ording system entities andpresenting a history of design de
isions. Ea
h do
ument in
ludes entries whi
hguide the storage of the do
ument in the data di
tionary. The data di
tionaryis an organised repository for storing entities. It supports the reuse of existingentities and the dis
overy of
ommon abstra
tions between entities.4. A
ase study that provides eviden
e of the suitability of FAD in a fun
tionalsoftware development pro
ess.9.2 Future Resear
hThere are several areas of future resear
h that would be of
lear bene�t in the appli
ationof FAD.There is a need for a CASE tool that supports the appli
ation of FAD. A methodol-ogy without a CASE tool is like a programming language without a
ompiler. Develop-ers are attra
ted to methodologies through their CASE tools, and thus, future resear
hmust fo
us on the development of a CASE tool for FAD. FAD provides no guidelines for
onsisten
y-
he
king and version
ontrol. This is not unique to FAD sin
e it is un
om-mon for a methodology to provide (non-generi
) details on how
onsisten
y-
he
king orversion
ontrol
an be pra
tised. One
an of
ourse use the do
umented material tomanually
he
k for
onsisten
y of design, and manage version
ontrol, but this
ouldsoon be
ome unwieldy. CASE tools typi
ally provide support for
onsisten
y
he
kingmodels developed using their asso
iated methodology. Thus any CASE tool would need

9.2. FUTURE RESEARCH 213to support
onsisten
y-
he
king. The
ase study presented in the appendix
ould beused as part of this resear
h.Design patterns are in
reasingly popular within the OO
ommunity. The s
ope andusefulness of su
h patterns with fun
tional designs is an interesting area of resear
h. Afun
tional modelling language
ould be used to des
ribe reusable abstra
t designs andpossibly to un
over
ommon abstra
tions in existing designs.

214 CHAPTER 9. SUMMARY

Appendix A
Analysis and Design of aConsisten
y Che
ker
In this appendix we present a signi�
ant example of the appli
ation of FAD. FAD isbest applied through a CASE tool that will support inter alia the re
ording of units indevelopment and the
he
king of the
onsisten
y of the various models that togetherdes
ribe a design. It is the CASE tool's
onsisten
y
he
ker that is the fo
us of thisappli
ation. It will be developed as one of the subsystems of the CASE tool proje
t.In the following se
tion we provide a des
ription of a
onsisten
y
he
ker that in-
ludes a de�nition of an in
onsisten
y, and in Se
tion A.2 there is a detailed overviewof the requirements of the
onsisten
y
he
ker. Se
tions A.3 and A.4 present a repre-sentative sele
tion of s
enario and type dependen
y analyses that span the major issuesregarding the development of the fun
tionality of the
onsisten
y
he
ker. In Se
tionA.5 we analyse the module ar
hite
ture of the subsystem where the modules, ex
lusivesignatures and module use relationships required by the
onsisten
y
he
ker are devel-oped. Design issues are dis
ussed and illustrated in Se
tion A.6, and a summary of thedevelopment and a brief overview of work to be done are given in Se
tion A.7.FAD, in
ommon with most ADMs, provides multiple views of a system in develop-ment. This is one of the major bene�ts of their appli
ation. However, multiple views
an lead to in
onsisten
ies between the views, and these in
onsisten
ies may be verydiÆ
ult to dis
over if the system is of a non-trivial kind. Thus most CASE tools providea means of resolving su
h problems in the form of a
onsisten
y
he
ker.215

216 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERA.1 Consisten
y Che
kerA
onsisten
y
he
ker is a signi�
ant part of a CASE tool. Although a modellinglanguage supports the delivery of a design for a system one
annot assume that thedesign is
onsistent. That is, one
annot assume that the design is implementable.This is parti
ularly true when designing a large system that may be represented in aseries of models. This is pre
isely the
ase when using FAD where one is en
ouraged todevelop models that provide various views of the system in development. A visual s
anof su
h models is unlikely to dis
over potential in
onsisten
ies either within a model orbetween models. A
onsisten
y
he
ker is the tool that enables a methodi
al approa
hto the dis
overy of design in
onsisten
ies. In addition, the in
remental and iterativeapproa
h to development en
ouraged by FAD,
an only be pra
tised e�e
tively if onehas a me
hanism for
ontrolling the introdu
tion of new elements, and the repla
ementof existing elements in an updated design.Here we are using the term model as an identi�ed
olle
tion of elements of themodelling language. An element is any mi
ro unit, ma
ro unit or relationship of FAD.Thus, for example, a model
ould be a module dependen
y diagram or a fun
tiondependen
y diagram, a mixture of both, or simply a
olle
tion of unrelated elements.Sin
e one is building a system with the intention of future implementation, it is ne
essaryto build one that
an be implemented. An in
onsisten
y is something that
annot beimplemented. We illustrate an in
onsistent design with an example. In Model 1, thefun
tion aFun uses the fun
tion bFun. In Model 2, aFun is hosted by module AModand bFun is hosted by module BMod. In Model 3, BMod uses AMod via the ex
lusivesignature ASIG but there is no module use relationship in the other dire
tion. Figures90(a), 90(b), and 90(
) present a graphi
al representation of these three models.An in
onsisten
y exists between the dependen
e of aFun on bFun and the la
k of amodule use relationship from AMod to BMod. Thus any implementation of this designwould in
lude an error due to the la
k of visibility of bFun from aFun. For example,in Hugs 98, if the module AMod is de
lared in the �le AMod.hs and BMod is de
lared inBMod.hs then the following error o

urs:ERROR "AMod.hs": Undefined variable "bFun"

A.2. REQUIREMENTS ANALYSIS 217

Figure 90: An Example of In
onsisten
yA
onsisten
y
he
ker should report the above in
onsisten
y thus allowing the de-velopers to resolve the problem pre-implementation. However, a
onsisten
y
he
kerneither provides solutions to any problems nor reports on poor or ineÆ
ient design. Itmay highlight potential areas of
on
ern but its primary rôle is to determine whether adesign based on the models of development is
onsistent and thus implementable. Thisis analogous to the program error-spotting rôle played by a
ompiler.In the following se
tion we present the requirements of a
onsisten
y
he
ker. Thesewill provide the basis for the development of the
he
ker.A.2 Requirements AnalysisWe present in this se
tion a list of identi�ed requirements ea
h a

ompanied by some
ommentary. Ea
h requirement is a
onsisten
y
he
k. However they
an be further
ategorised as either pass/fail
he
ks or warning
he
ks. A pass/fail
he
k must bepassed. The failure of su
h a
he
k signals an in
onsisten
y. A warning
he
k dis
oversan aspe
t of a design whi
h may result in an in
onsisten
y, but either be
ause of thelimitations of a
onsisten
y
he
ker or the variability in implementation languages, one
annot guarantee that it is an in
onsisten
y.Many of the pass/fail
he
ks rely on one unit being visible from another. This is anon-symmetri
al relationship that we de�ne as follows:A mi
ro unit B is visible from the mi
ro unit A if pre
isely one of the

218 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERfollowing is true:� either A or B is not asso
iated with a host module. During the earlystages of development mi
ro units may be introdu
ed without a hostmodule. The default is that su
h units are visible from any other unitand vi
e versa. This is to avoid unwanted
onsisten
y
he
king failuredue to an in
omplete design;� A and B are hosted by the same module;� B is hosted by a module BMod in the same subsystem as the moduleAMod that hosts A. There is either a module use relationship fromAMod toBMod withB spe
i�ed in the mediating ex
lusive signature,or there is a path from AMod to BMod via one or more intermediatemodules where ea
h module use relationship linking the modules ismediated by an ex
lusive signature that spe
i�es B;� B is hosted by a module BMod hosted by a subsystem BS that isused by the subsystem that hosts the module in whi
h A is de
lared.B must be spe
i�ed in the ex
lusive signature that mediates use of thesubsystem, and in the ex
lusive signature that mediates the partitionrelationship between the subsystem BS and BMod, or a module thatis linked to BMod via a path as des
ribed in the
ase above. This isillustrated in Figure 91, where to aid readability, we have limited thespe
i�
ations presented in the ex
lusive signatures to those required forthe example.A module M is visible from a module N if pre
isely one of the followingholds:� either M or N is not hosted by a subsystem for the same reasons givenabove; or� modules M and N are hosted by the same subsystem.The pass/fail
he
ks are:Model Consisten
y: a model must be
onsistent relative to existing models. The

A.2. REQUIREMENTS ANALYSIS 219

Figure 91: Illustration of visible from Relationship
onsisten
y of a model will depend on the
onsisten
y of its elements. This is fullydes
ribed in Se
tion A.3.1.Fun
tion Argument and Result Types: the types whi
h provide the argument orresult values of a fun
tion must be visible from the fun
tion.Fun
tion Use: all fun
tions used by a fun
tion must be visible from the fun
tion.Type Use: all types used by a type must be visible from the type.Module Use: a module may only use a module whi
h is either hosted in the samesubsystem or if either is unassigned to a subsystem. That is, moduleM may onlyuse module N if N is visible from M. A module is hosted in a unique subsystemfor a given proje
t. It may be assigned to another subsystem in a di�erent proje
t.Ex
lusive Signature Mediation 1: a module/ex
lusive signature asso
iation mustbe
onsistent. This is true if pre
isely one of the following holds for ea
h mi
rounit spe
i�ed in the ex
lusive signature:� it is hosted by the asso
iated module;

220 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER� it is spe
i�ed in an ex
lusive signature that mediates a

ess to a module usedby the asso
iated module and this module/ex
lusive signature asso
iation is
onsistent.Ex
lusive Signature Mediation 2: a subsystem/ex
lusive signature asso
iationmust be
onsistent. This is true if pre
isely one of the following holds for ea
hmi
ro unit spe
i�ed in the ex
lusive signature:� it is hosted by a module M hosted by the subsystem and is spe
i�ed in theex
lusive signature that mediates the partition relationship with M;� it is hosted by a module whi
h itself is hosted by a subsystem used by the sub-system, and is spe
i�ed in the mediating ex
lusive signature and the previousrule holds for the used subsystem.Permissive Signature Instantiation: a type/permissive signature asso
iation mustbe
onsistent. This holds if:� the permissive signature is visible from the type(s);� for ea
h parameter of the permissive signature there is an asso
iated typewhose type
onstru
tor is of the same kind. Se
tion 5.4.4 provides details ofthe instantiation of a permissive signature by one or more types;� for ea
h mi
ro unit spe
i�ed in the signature a mi
ro unit exists of the typerequired by the signature.Constrained Polymorphism: a fun
tion that in
ludes a type/permissive signatureasso
iation must be
onsistent. This holds if:� the fun
tion argument types and result type are visible from the fun
tion;� the permissive signature instantiations exist and are
onsistent. That is, theinstantiation must have been previously de
lared;� the type(s) asso
iated with ea
h permissive signature are visible from therelevant argument or result type. That is, the type with whi
h the permissivesignature is asso
iated must either be the type to whi
h it is (graphi
ally)juxtaposed or a type used by this type. We present an illustrative example

A.2. REQUIREMENTS ANALYSIS 221in Figure 92 where the permissive signature EQ is instantiated by the typeaType that is used by the type bType. This is a
onsistent design.Permissive Signature Inheritan
e: a permissive signature inheritan
e relationshipmust be
onsistent. This holds if:� the inheriting signature has a parameter (or parameters) of the same kind asthe parameter(s) of the inherited signature.Uniqueness: this in
ludes:� uniqueness of type
onstru
tor names. Ea
h type must have a unique name,whi
h will be the type
onstru
tor name if it takes no arguments, or the type
onstru
tor name plus asso
iated parameters (type variables or types) fornon-nullary
onstru
tors. A type
onstru
tor name must begin with a lower
ase letter;� uniqueness of permissive signature and ex
lusive signature names. Thesenames must use only upper
ase letters;� uniqueness of module and subsystem names. These names must begin withan upper
ase letter;� ea
h mi
ro unit hosted by a single module;� ea
h module hosted by a single subsystem;� a mi
ro unit spe
i�ed in at most one permissive signature up to inheritan
e;� ea
h ma
ro unit use relationship must be unique. For example, if AMod usesBMod then there must be a unique ex
lusive signature whi
h mediates thisusage.but does not in
lude:� uniqueness of fun
tion names. Sin
e polymorphism -
onstrained and un-
onstrained - is en
ouraged by the methodology, the reuse of fun
tion namesmust be allowed. However, they should only be reused where there is po-tential for one of the forms of polymorphism. That is, if two fun
tions ofdi�erent arity share the same name then this is an in
onsisten
y. This is

222 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 92: Constrained Polymorphism Examplebe
ause
urrent fun
tional languages do not support this form of fun
tionname overloading. Sin
e a
onsisten
y
he
ker is not a type
he
ker one
an-not perform the mat
hing algorithms required to
on�rm the mat
hing oftypes. Thus one
an
he
k for arity mat
hing but not for type mat
hing.However, one
an report when a fun
tion name has been reused and leave itto the user to de
ide on the appropriate
ourse of a
tion. That is, this
he
kuses a pass/fail
he
k and a warning
he
k. Arity mat
hing is a pass/fail
he
k and fun
tion name reuse is a warning
he
k.New Host Che
ks: these are a
olle
tion of
he
ks that are triggered when mi
rounits of existing models are assigned to a module, or a module of an existingmodel is assigned to a subsystem in the new model. Elements of existing modelsneed to be re
he
ked sin
e previously
onsistent designs may now be in
onsistent.For example, a type use relationship may now be in
onsistent if the related typesare hosted in di�erent non-related modules.Update Che
ks: these are
he
ks that are triggered when a model has been updatedand may
ause a previously
onsistent design to be
ome in
onsistent.The following
he
ks are warning
he
ks or use warning
he
ks.Abstra
tion: if there is an abstra
tion barrier between a fun
tion and ea
h of its types,and the fun
tion only uses fun
tions that are not operations of the abstra
t type(s),then the user should be warned of the potential for the breakage of abstra
tion.Although this is not an in
onsisten
y sin
e it is perfe
tly valid for an abstra
t type

A.2. REQUIREMENTS ANALYSIS 223to be an argument of a fun
tion that is not an operation of the type, and thus
an be implemented in most fun
tional languages, there is the potential for theabstra
tion barrier to be broken in the implementation of the fun
tion. The usershould be advised of this type of design so that a de
ision
an be made regardingthe appropriate a
tion.We present an illustrative example in Figure 93. The fun
tion aFun uses theargument types aType and bType that are abstra
t relative to the fun
tion, sin
ethey are hosted in used modules and are spe
i�ed in the mediating ex
lusivesignatures ASIG and BSIG without their
onstru
tor signatures. aFun uses thefun
tions usedFun1 and usedFun2, neither of whi
h is hosted with either of thetypes. Thus abstra
tion is potentially violated. See Se
tion 6.4 for full details ofFAD's support for abstra
t types.Argument and Return Values: a fun
tion
an be applied (partially or not) to valuesof the appropriate type and/or return a value of the appropriate type. Sin
e a
onsisten
y
he
ker is not a type
he
ker one
annot
on�rm that a value mat
hesthe required type. However, if a type has known values one
an do a mat
hing onvalues. Also, if the type is a fun
tional type one
an
he
k the arity of the fun
tionvalue against that of the fun
tional type. Thus one
an provide information forthe user regarding the appropriateness of the value(s) used. The user re
eives awarning if any of the following situations o

urs:� a value is not a known value of the spe
i�ed type;� a fun
tion value's arity does not mat
h that of the spe
i�ed type.Re
ursive Dependen
ies: any re
ursive dependen
ies are reported. This requiresthe investigation of ea
h set of use relationships. For example, if a moduleM usesa module N, whi
h itself uses moduleM, this is reported sin
e the design may benon-implementable in some languages, and furthermore, it may indi
ate a poormodule ar
hite
ture design.Ea
h of the requirements listed above
an be des
ribed as a fun
tion. For example,we have the fun
tion fun
tionUseChe
k that
he
ks for the
onsisten
y of a fun
tion userelationship against the existing set of elements. These fun
tions provide the foundation

224 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 93: Abstra
tion Exampleupon whi
h a system will be analysed. Ea
h fun
tion will be analysed in regard to bothits type and behavioural requirements. The aggregation of these analyses should bethe main fun
tions and types required to implement the system. fun
tionUseChe
k isanalysed in Se
tion A.4.1.We pro
eed in the following se
tion with a sele
tion of analyses of the fun
tions thatdeliver the requirements outlined in this se
tion.A.3 S
enario and Type Dependen
y AnalysesWhen applying the s
enario analyses one has to appre
iate the inter-dependen
y be-tween types and fun
tions. How one develops types will have a dire
t impa
t on fun
tiondevelopment and vi
e versa. We will therefore present a mixture of s
enario and typedependen
y analyses that will highlight the interplay between these te
hniques. The�rst s
enario that we will investigate is that of
he
king the
onsisten
y of a model sin
ethe other requirements are subordinate to this one.We have previously outlined how a system developed using FAD
an be des
ribedby a
olle
tion of models. We will take a model-based and in
remental approa
h to
onsisten
y
he
king. That is, rather than trying to
ompare a
olle
tion of models,as ea
h model is submitted it is
he
ked against existing models that have satis�ed the
onsisten
y
he
ker. Model submission is the pro
ess of adding the model to the
urrent
olle
tion of system models. The aggregation of the elements of the existing models is

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 225used as the basis for the determination of the
onsisten
y of the submitted model. Thisalso applies to the
he
king of a model whi
h is an update of an existing model.We will adopt an approa
h in whi
h we present an informal des
ription of an analysisfollowed by a des
ription of the development of a FAD model. The informal des
riptionwill typi
ally provide a signi�
ant input into the des
ription presented in the Des
riptionDo
uments for the units being analysed.A.3.1 Consisten
y of a ModelInformal Des
riptionThe
onsisten
y of a model is tested relative to the aggregate of existing models. Thatis, one does not pra
ti
e pairwise
omparisons between the new model and ea
h of theexisting models but instead
ompares the design des
ribed by the new model againstthat des
ribed
olle
tively by the existing models. We
all this information the state ofthe system. A model is
onsistent if and only if ea
h of its elements is
onsistent when
he
ked against the state. It is therefore in
onsistent if any of its elements introdu
ean in
onsisten
y. The onus is therefore on the new (or updated) model to be
onsistentrelative to the existing design and not on the existing design to
hange in order toa

ommodate the new model. However, in
onsisten
ies
an be introdu
ed into the statedue to new hosting relationships or a model being updated.The
onsisten
y of an element of a model will also depend on those elements of themodel whi
h have already been
he
ked. That is, one needs to update the informationagainst whi
h the model is being
he
ked as the
he
k is being pro
essed. For example,if a model introdu
es a new type dependen
y diagram with some new types, then thetypes will be
he
ked �rst. If these
he
ks su

eed then the types are added to the stateagainst whi
h the type use relationships are
he
ked.The manner in whi
h a
he
k pro
eeds depends on whether a model is new or anupdate of an existing model. If new, then one
he
ks the model against the existingstate. If an update, then the state requires some modi�
ation before
he
king. Thatis, sin
e the model is repla
ing an existing model, some of the elements of the existingversion may no longer be part of the state. This depends on whether they are part ofany other existing model or are reused in the updated version of the model. If either or

226 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 94: modelChe
k fun
tion and the type stateboth of these situations hold then they remain, and if not then they should be removed.FAD Des
riptionThe fun
tion modelChe
k, whi
h
he
ks the
onsisten
y of a model, takes two argu-ments of type model and state. The type model has as values the FAD models, andstate in
ludes the aggregation of existing elements. modelChe
k returns a value of typestate sin
e it not only
he
ks for
onsisten
y but updates the state for future
he
ks.The type state uses the type passOrFail whose values re
e
t whether the
he
k hasbeen su

essful or not, and provides supporting information. The FAD graphi
al repre-sentation of modelChe
k is presented in Figure 94(a) and a preliminary design for thetype state is presented in Figure 94(b).The fun
tion needs to determine whether the model is new or an update. Refer-ring now to Figure 95, the type model must be an equality type whose equality isdetermined through its identi�er. It therefore uses the type modelID that uniquelyidenti�es ea
h model and is also an equality type. Using the fun
tion isIn, one maytest whether the model is new, and if so, one pro
eeds with the
he
k of a new modelusing newModelChe
k. Sin
e one is
he
king for the existen
e of a model, the fun
tionmodelChe
k needs a

ess to existing models either within the type state or as a sepa-rate type. We have de
ided to in
lude this within the type state sin
e this informationwill need to be updated upon the su

essful
ompletion of the
he
k.If the model fails the new test - if isIn returns True - whi
h implies that the model

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 227is an update of an existing model, then the state value requires modi�
ation usingthe fun
tion modifyState, and the fun
tion oldModelChe
k is applied to the statevalue that is returned. These two alternatives are given in Figure 95 and a Fun
tionDes
ription Do
ument for modelChe
k is provided in Figure 96.newModelChe
k and oldModelChe
k have similar behavioural requirements. Theyboth s
an the elements of the model value being
he
ked and will terminate the
he
k ifany element
he
k fails, and will update the state value as ea
h
he
k su

eeds. Thusone must be able to apply a
onsisten
y
he
k to any element value. That is, a fun
tionelementChe
k must exist over the element type and also over any type used by thistype that represents the di�erent units and relationships of FAD. These types, su
h asfun
tion and typeUseRel will be used either dire
tly by the type element or via typesused by this type. Details of the design of the type element are left to later in thedevelopment pro
ess and analyses of newModelChe
k and oldModelChe
k are presentedin Se
tions A.3.3 and A.3.4.At this point it is worth analysing the types state and modelA.3.2 The Types state and modelInformal Des
riptionThe type state plays a
entral rôle in the design of the
onsisten
y
he
ker. It a
ts asa repository for the elements of existing models, a re
order of the identities of existingmodels and an indi
ator of the su

ess or failure of the most re
ent
he
k with additionalinformation for the user. It is the state value that will provide the information againstwhi
h a model is
he
ked for
onsisten
y, and the information that determines if a modelis new or is repla
ing an existing model. It is important therefore that one
an add,remove and �nd elements, and similarly add, remove and �nd model identi�ers.If one is updating an existing model then the state requires modi�
ation in advan
eof the
onsisten
y
he
k. However, if the
he
k fails one wants to be able to return thestate to its pre-modi�
ation form. This implies a design where one has three substates:� one that re
ords the aggregation of elements of existing models;� one that re
ords the elements of the model being
he
ked that have passed their
he
k. These elements are used together with those of the �rst substate in the

228 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 95: Conditional Behaviour of modelChe
k and Design of model

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 229
Fun
tion Des
ription Do
ument CASEName: modelChe
kVersion: 20000710:0Module:Arity: 2Type Spe
i�
ation: state -> model -> stateContra
t Asso
ia-tion:Instantiations:Fun
tions Used: isIn : modelIDs -> modelID -> boolnewModelChe
k : state -> model -> statemodifyState : state -> model -> stateoldModelChe
k : state -> model -> stateDes
ription:The
onsisten
y of a model is tested relative to the aggregate of existing models.That is, one does not pra
ti
e pairwise
omparisons between the new model andea
h of the existing models but instead
ompares the design des
ribed by thenew model against that des
ribed
olle
tively by the existing models. We
allthis information the state of the system. A model is
onsistent if and only ifea
h of its elements is
onsistent. It is therefore in
onsistent if any of itselements introdu
e an in
onsisten
y. In addition, the
onsisten
yof an element in a model will also depend on those elements of themodel whi
h have already been
he
ked. That is, one needs to updatethe information against whi
h the model is being
he
ked as the
he
kis being pro
essed.The manner in whi
h a
he
k pro
eeds depends on whether a model isnew or an update of an existing model. If new, then one
he
ks the modelagainst the existing state. If an update, then the state requires somemodi�
ation before
he
king. That is, sin
e the model is repla
ing an existingmodel, the elements of the existing version may no longer be part of thestate. This depends on whether they are part of any other existing model orare reused in the updated version of the model. If either or both of thesesituations hold then they remain, and if not then they should be removed.Figure 96: Fun
tion Des
ription Do
ument for the Fun
tion modelChe
k

230 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER
he
king of future elements of the model. If the model
he
k terminates su

ess-fully then these elements are added to those of the �rst substate. If the
he
k isunsu

essful then the �rst substate is left un
hanged; and,� one that re
ords the elements that are (temporarily) removed from the �rst sub-state when the state is modi�ed in advan
e of
he
king a model that is an updateof an existing model. These are the elements that only exist in the previous ver-sion of the model. If the model
he
k terminates su

essfully then these elementsare dis
arded sin
e they no longer exist in the design of the system. If the model
he
k is unsu

essful then these elements are returned to the �rst substate sin
ethe previous version of the model remains in existen
e. Full details of the be-havioural requirements when updating a model are presented in the analysis inSe
tion A.3.4.A model is an identi�ed
olle
tion of elements. Ea
h element
an appear in one ormore models and must be
he
kable for
onsisten
y against the state.FAD Des
riptionHere we are referring to the Type Des
ription Do
ument presented in Figure 97 and thetype dependen
y diagram in Figure 98. The type state uses the following �ve types:� modelIDs, whi
h is the type of a
olle
tion of model identi�ers;� subState1, whi
h is the type of existing model elements;� subState2, whi
h is the type of elements that satisfy
he
ks during a model
he
k;� subState3, whi
h is the type of elements that exist only in the previous versionof a model for whi
h an update is being
he
ked; and,� passOrFail, whi
h signals su

ess or failure of a
he
k with supporting informa-tion.subState1, subState2 and subState3 make use of the type elements, whi
h usesvalues of type element. These three types may eventually be repla
ed by a single typethat provides three �elds of the type state. However, by treating them as separate typesone has the
exibility either to implement them di�erently or de
ide to unify them into

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 231
Type Des
ription Do
ument CASEConstru
tor Name: stateVersion: 20000710:0Kind: *Module:Types Used: modelIDs, subState1, subState2subState3, passOrFailParameters:Permissive sigs.:Des
ription:The state value provides the information against whi
h a model is
he
kedfor
onsisten
y and the information whi
h determines if a model is new or isrepla
ing an existing model. It is important therefore that one
an add, removeand �nd elements, and similarly add, remove and �nd model identi�ers.If one is updating an existing model then the state requires modi�
ation inadvan
e of the
onsisten
y
he
k. However, if the
he
k fails one wants to beable to return the state to its pre-modi�
ation form. This implies a designwhere one has three substates:- one whi
h re
ords the aggregation of elements of existing models;- one whi
h re
ords the elements of the model being
he
ked that havepassed their
he
k. These elements are used in together with those ofthe �rst substate in the
he
king of future elements of the model. Ifthe model
he
k terminates su

essfully then these elements are addedto those of the �rst substate. If the
he
k is unsu

essful then the�rst substate is left un
hanged; and,- one whi
h re
ords the elements whi
h are (temporarily) removed fromthe �rst substate when the state is modi�ed in advan
e of
he
king a modelwhi
h is an update of an existing model. These are the elements that onlyexist in the previous version of the model. If the model
he
k terminatessu

essfully then these elements are dis
arded sin
e they no longer existin the design of the system. If the model
he
k is unsu

essful thenthese elements are returned to the �rst substate sin
e the previousversion of the model remains in existen
e.Figure 97: Type Des
ription Do
ument for the Type state

232 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERa single type. One is therefore not for
ed into an early design de
ision. The typeelements and modelIDs must use a
olle
tion type whi
h instantiates the permissivesignature CONTAINER. This signature spe
i�es the fun
tions add, remove, empty andisIn whi
h guarantee:� the ability to add an item to a
olle
tion;� the ability to remove an item from a
olle
tion;� an empty value for the
olle
tion; and,� the testing for the existen
e of an item in the
olle
tion.Both remove and isIn require the item type to be an equality type sin
e in both
ases they depend on the mat
hing of an item with one in the
olle
tion.We now refer to Figure 99 and to the Permissive Signature Des
ription Do
umentpresented in Figure 100. Sin
e ea
h element value needs to be
he
ked for
onsisten
yand the state value re
e
ts the
umulative result of the appli
ation of the
he
ks, the
olle
tion type used by elements must also support the folding of a fun
tion into the
olle
tion of values. This is guaranteed by the permissive signature FOLD, whi
h weasso
iate with the
olle
tion type. In addition, ea
h element type must instantiate thepermissive signature CHECKABLE that spe
i�es the fun
tion elementChe
k.The type model uses two types:� the equality type modelID whose value uniquely identi�es a model; and,� elements whi
h is the type of the elements of the model.We will
ontinue in the next se
tion with an analysis of
he
king the
onsisten
y ofa new model.A.3.3 Che
king a New ModelInformal Des
riptionA new model is
he
ked against the existing set of models by
he
king ea
h element ofthe model. As ea
h element passes a
he
k it is added to the state against whi
h future
he
ks are applied. If any element
he
k fails then the model
he
k fails and the details

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 233

Figure 98: The Types state and model

234 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 99: The Permissive Signatures FOLD, EQ, CHECKABLE and CONTAINERPermissive Signature Des
ription Do
ument CASEName: CHECKABLEVersion: 20000712:0Module:Parameter(s):
 : *Operations: elementChe
k : state ->
 -> state(with type spe
s.)Inherited Signa-ture(s):Des
ription:This signature spe
i�es the fun
tion elementChe
k that delivers
onsisten
y
he
king over an instantiating type.Figure 100: Permissive Signature Des
ription Do
ument for CHECKABLE

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 235of the failure are added to the state. Conversely if all element
he
ks su

eed then themodel
he
k su

eeds. However, the user may still be informed of potential re
ursionor breaking of abstra
tion by in
luding this information in the state.The ordering of the
he
king of elements is important. The general approa
h is thatan element should be
he
ked before used. Thus, for example, a type should be
he
kedbefore one
he
ks its use by a fun
tion or another type, and a permissive signatureshould be
he
ked before
he
ks are applied to its instantiation by a type. We de�ne apartially ordered set (S;�), where S is the set of
onsisten
y
he
ks, and for two
he
ksx and y, x � y is de�ned as x must be applied in advan
e of y. We present a graphi
alrepresentation of (S;�) in Figure 101. Ea
h
he
k is presented on a node, and for anytwo
he
ks where x is the immediate prede
essor of y, the node x appears above thenode y and they are
onne
ted by a link. For any two
he
ks s and t where s � t, sappears above t and there is a path - or sequen
e of nodes
onne
ted by links - from sto t.A total ordering whi
h satis�es the partial order is presented in the following enu-merated list. In ea
h
ase we qualify the position of a
he
k in the list by stating those
he
ks that are immediate su

essor
he
ks.1. Uniqueness of type
onstru
tors. Types are fundamental to the developmentof FAD models and are used in the development of all other mi
ro units. The only
he
k that is required on a type is that it does not reuse a type
onstru
tor name.That is, one wants to prevent the use of the same
onstru
tor with di�erent kinds.Thus if the type
onstru
tor aType is
urrently used with kind * and then is reusedwith kind * -> * then this se
ond o

urren
e is an in
onsisten
y. Multiple useof a type
onstru
tor name with the same kind refers to the same type. Hen
e ifone has multiple type dependen
y diagrams for a single type the
onjun
tion ofdiagrams must be used. This
he
k must be applied in advan
e of:� uniqueness of mi
ro unit host
he
ks sin
e the type's existen
e must be
he
ked before it is assigned to a module;� uniqueness of permissive signature spe
i�
ations some of whi
h may use ex-isting types; and,� uniqueness of ex
lusive signature names and mi
ro unit existen
e
he
ks of

236 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 101: Partial Order for Consisten
y Che
ks

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 237whi
h one or more may be a type.2. Uniqueness of fun
tion names. Fun
tions are also fundamental to the devel-opment of FAD models. As stated in the requirements analysis this
he
k usesa pass/fail
he
k of the arity of fun
tions that share a name, and if this
he
kis passed, a warning
he
k is applied to indi
ate that the name is being shared.In
ommon with types, multiple use of a fun
tion name (and asso
iated types)results in the fun
tion adopting the aggregate of the information. This
he
k mustbe applied in advan
e of the same
he
ks as
he
k 1 and for equivalent reasons.3. Uniqueness of module and subsystem names. This is simply to prevent onename being used for a module and a subsystem. Modules whi
h share the samename are assumed to be identi
al and therefore host the aggregate of elementshosted by ea
h. The same rule applies for subsystems. These must be
he
ked inadvan
e of these ma
ro units being used in hosting relationships. That is, theymust be applied in advan
e of uniqueness of mi
ro unit host
he
ks and uniquenessof module host
he
ks.4. Uniqueness of mi
ro unit host. Every mi
ro unit must be hosted by at mostone module. These
he
ks must be applied in advan
e of module use
he
ks whi
hdepend on the assignment of mi
ro units to host modules.5. Uniqueness of module host. Every module must be hosted by at most onesubsystem. These
he
ks must be applied in advan
e of module use
he
ks sin
e amodule may only use another module that is either hosted by the same subsystemor if either is unhosted.6. Uniqueness of ex
lusive signature names and unit existen
e. Ea
h ex
lu-sive signature spe
i�es a parti
ular set of mi
ro units. Ea
h of these units mustexist in the state before being spe
i�ed in an ex
lusive signature. Ex
lusive signa-tures whose spe
i�
ations do not mat
h must have di�erent names. These
he
ksmust be applied in advan
e of module use
he
ks in whi
h ex
lusive signatureshave a mediating rôle.7. Permissive signature inheritan
e. One way of
reating new permissive signa-tures is by inheriting from and possibly adding to existing signatures. The
he
ks

238 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERare based on mat
hing the kinds of the parameters of the inheriting and inheritedsignatures. That is, for ea
h parameter of the inherited signature(s) there mustbe a parameter of the same kind in the inheriting signature. These
he
ks mustbe applied in advan
e of uniqueness of permissive signature spe
i�
ation
he
ksthat may depend on the inheritan
e asso
iation between permissive signatures.8. Uniqueness of permissive signature spe
i�
ations. This in
ludes
he
kingthat any spe
i�
ation appears in at most one permissive signature up to inheri-tan
e. Permissive signatures whose spe
i�
ations do not mat
h must have di�erentnames. In addition, one
he
ks that any type used in a spe
i�
ation exists in thestate. These must be
he
ked in advan
e of the use of a permissive signature in atype/permissive signature instantiation.9. Module use. These
he
ks need to be applied in a parti
ular order. The mod-ule use relationships in a module dependen
y diagram should be
he
ked in thefollowing order where we are assuming no re
ursion in the diagram:(a) those at the base of the diagram should be
he
ked �rst. That is, those forwhi
h any item spe
i�ed in the ex
lusive signature must be hosted by theasso
iated module should be
he
ked �rst;(b) those in the next layer up should be
he
ked next;(
)
ontinue until one rea
hes the relationship(s) at the top of the diagram whi
hshould be
he
ked last.Where one has re
ursive dependen
ies the use relationships involved in the re-
ursion are
he
ked in any order within the appropriate position in the aboveordering.Module use
he
ks in
lude:� uniqueness of module use relationship
he
ks; and,� the ex
lusive signature mediation 1
he
ks des
ribed in Se
tion A.2.They must be applied in advan
e of partition
he
ks whose su

ess may dependon the relationship between modules in a subsystem.

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 23910. Partition. Any partition relationship between a subsystem and a module mustbe unique. That is, there must be a unique ex
lusive signature that mediatesthe relationship. In addition, the ex
lusive signature mediation 1
he
ks must beapplied to the ex
lusive signatures and their asso
iated modules. Partition
he
ksmust be applied in advan
e of subsystem use
he
ks that may rely on the partitionrelationships between server subsystems and their modules.11. Subsystem use. These
he
ks use two
he
ks:� uniqueness of the use relationship between any two subsystems. That is,mediation must be through a unique ex
lusive signature; and,� ex
lusive signature mediation 2
he
ks, whi
h were des
ribed in Se
tion A.2.These
he
ks must be applied in an order that takes into a

ount the subsysteminterdependen
ies. They must be applied in advan
e of new host
he
ks, sin
e afun
tion and one or more of its types may be hosted in modules that are hostedby di�erent subsystems.12. New host. The introdu
tion of hosts for mi
ro units or modules that have beende
lared in existing models may a�e
t the
onsisten
y of elements that have pre-viously passed a
he
k. For example, a fun
tion use relationship or type userelationship may now be in
onsistent due to
hanges of the modules whi
h hostthe related fun
tions. We therefore need to
he
k all elements whi
h are a�e
tedby the new host relationships. These
he
ks must be applied in advan
e of fun
-tion argument and result type
he
ks whose su

ess may depend on the hostingrelationships of types that appear in existing models.13. Fun
tion argument and result type
he
ks. The argument and result typesof a fun
tion must be visible from the fun
tion. These
he
ks must be applied inadvan
e of:� argument and result value
he
ks sin
e a fun
tion
an only use values on
ethe visibility of a type has been
he
ked; and,� permissive signature instantiation
he
ks that require the existen
e of thespe
i�ed fun
tions.

240 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER14. Permissive signature instantiation. These were des
ribed in Se
tion A.2 andmust be
ompleted in advan
e of type use
he
ks that may require used type(s)to instantiate one or more permissive signatures.15. Type use. These were des
ribed in Se
tion A.2 and must be applied in advan
eof:�
onstrained polymorphism
he
ks that may require type/permissive signatureinstantiation
he
ks between a permissive signature and a type used by anargument or result type; and,� re
ursion
he
ks over types that depend dire
tly on the type use relationships.16. Constrained polymorphism. These were des
ribed in Se
tion A.2 and mustbe applied in advan
e of fun
tion use
he
ks. A fun
tion may use a fun
tion thatrequires a type/permissive signature instantiation.17. Argument and result values. These
he
ks were des
ribed in Se
tion A.2. Afun
tion whi
h is either (partially) applied to its arguments or has a given returnvalue needs to be
he
ked in advan
e of the use of the fun
tion in a fun
tion userelationship.18. Fun
tion use. These were des
ribed in Se
tion A.2 and must be applied inadvan
e of abstra
tion and re
ursion
he
ks sin
e they both dire
tly depend onthe set of fun
tion use relationships.19. Abstra
tion. These
he
ks were des
ribed in Se
tion A.2. These warning
he
kshave no
he
ks whi
h are dependent on their out
ome.20. Re
ursion. These
he
ks were des
ribed in Se
tion A.2. These warning
he
kshave no
he
ks whi
h are dependent on their out
ome.Module use (9) and subsystem use (11)
he
ks aside, there is no required orderingof
he
ks of the same sort.

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 241

Figure 102: Analysis of type elementFAD Des
riptionWe now refer to Figure 103. newModelChe
k uses two fun
tions
he
kElements andupdateState.
he
kElements takes arguments of type state and elements and re-turns a value of type state. The elements value
omes from the model value to whi
hnewModelChe
k is applied.
he
kElements's se
ond argument of type elements usesa
olle
tion type that is asso
iated with the permissive signature FOLD sin
e the fun
-tion elementChe
k is folded over the elements. The permissive signature CHECKABLEguarantees the existen
e of the elementChe
k fun
tion.The type element is a union of types that represent mi
ro units, mi
roUnit, ma
rounits, ma
roUnit, and relationships relationship. Ea
h of these types also instantiatethe permissive signature CHECKABLE and are themselves unions of types, whi
h we willreturn to later in the analysis. We present the
urrent design of the type element inFigure 102.The fun
tion
he
kElements uses two fun
tions. applyOrdering a
ts as a
ontrollerof the appli
ation of the element
onsisten
y
he
ks. That is, it
he
ks for the existen
eof di�erent types of elements and applies the relevant elementChe
k to them usingthe total order des
ribed earlier in this se
tion. applyOrdering takes three arguments

242 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERof type state, elements and the fun
tional type state -> element -> state. Thefun
tion is partially applied to the value elementChe
k. warningChe
ks uses the fun
-tions re
ursionChe
k and abstra
tionChe
k, whi
h are non-element spe
i�
 warning
he
ks. That is, they are not dire
tly bound to a parti
ular element, and their ap-pli
ation does not a�e
t the various substate values. warningChe
ks takes a singleargument of type state and returns a value of the same type. re
ursionChe
k andabstra
tionChe
k have the same type as warningChe
ks.The fun
tion applyOrdering uses two fun
tions. orderModuleUseChe
ks managesthe appli
ation of the fun
tion moduleUseChe
k and orderSubsystemUseChe
ks pro-vides a similar servi
e for the fun
tion subsystemUseChe
k. That is, they make surethat these parti
ular
he
ks are applied in the appropriate order. Ea
h fun
tion takesthe
olle
tion of the relevant use
he
ks as one of the arguments, and requires the userelationship type to instantiate the permissive signature ORD that guarantees an orderingof values of the instantiating type.Upon
ompletion of the
he
ks the state will require updating. This is implementedby the fun
tion updateState that manages the state at the termination of a su

essfulor failed
he
k. It simply takes the
urrent state value as its argument, sin
e it in
ludesall the information required, and returns the updated state value. If the model
he
kwas su

essful then the subState1 value should be updated to re
e
t the `addition' ofthe elements of the subState3 value. Addition
ould mean either the introdu
tion ofnew elements or the
on�rmation of the use of existing elements in the new model. Inaddition, the type passOrFalse's value will indi
ate su

ess and in
lude a message thatre
e
ts this out
ome.If the
he
k of the model failed then the empty value of the type subState3 isreturned, and the passOrFail value signals failure with a message whi
h des
ribes thedetails of the failure.Ea
h type that represents a mi
ro unit, ma
ro unit or relationship - su
h as the typefun
tion - uses the type modelIDs to re
ord the models in whi
h an element appears.The fun
tion add de�ned over the type elements uses the fun
tion add de�ned over thetype modelIDs to deliver the required fun
tionality. Both of these fun
tions use the addfun
tions guaranteed by the instantiation of the permissive signature CONTAINER by the
olle
tion types used by the types elements and modelIDs. In Se
tion A.6 we des
ribe

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 243the design of the permissive signature CONTAINERPLUS that inherits the fun
tionalityspe
i�ed in CONTAINER but enables behaviour that is dependent on the
ontained item'stype.In the following se
tion we present the s
enario analysis when a model is an updateof an existing model.A.3.4 Che
king an UpdateInformal Des
riptionChe
king an update of an existing model requires modi�
ation of the state in advan
eof any
onsisten
y
he
k. This is be
ause the state, among other things, is meant torepresent the
urrent set of elements against whi
h the
he
k of the model is being ap-plied. Those elements that exist only in the previous version of the model being updatedshould not in
uen
e the
he
ker. Thus the modi�
ation of the state involves removingthose elements that appear only in the previous version of the model. Obviously if theyappear in other models or are repeated in the updated version then they should remainas data in the
onsisten
y
he
k.On
e the state has been modi�ed one
an pro
eed with the
onsisten
y
he
ks. Theymust now in
lude not only the
he
king of elements in the model but also
he
king forany in
onsisten
ies that may have arisen due to the
hanges. That is, some elementsin the state will need to be re
he
ked. The model is
he
ked in advan
e of the mod-i�ed state. This is be
ause, if one adopts the opposite approa
h, one may un
overin
onsisten
ies that are due to the non-existen
e of elements de
lared in the model.For example, an existing type use relationship may be made in
onsistent due to theremoval of a module use relationship. However, the updated version of the model mayin
lude a new module ar
hite
ture that satis�es the visibility requirements of the typeuse relationship.If the model is
he
ked su

essfully then one
an
he
k for in
onsisten
ies in thestate. That is, have any in
onsisten
ies arisen due to the removal of elements from thestate? We use the partial order presented in Figure 101 to determine whi
h elementsmay a�e
t the
onsisten
y of existing elements if they are removed from the state. Wepresent ea
h element with the elements they may a�e
t.

244 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 103: newModelChe
k Fun
tion

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 245Fun
tion: the removal of a fun
tion may a�e
t:� the instantiation of a permissive signature sin
e one has to
he
k for theexisten
e of a fun
tion of the required type; and,� the unit existen
e
he
ks for an ex
lusive signature sin
e again one
he
ks forthe existen
e of the units spe
i�ed in the signature.Type: the removal of a type may a�e
t:� the spe
i�
ation of a permissive signature that may in
lude one or more unitswhose types in
lude the removed type; and,� the unit existen
e
he
ks for an ex
lusive signature sin
e one
he
ks for theexisten
e of the units spe
i�ed in the signature.Permissive Signature: the removal of a permissive signature will have no e�e
t. Ifit doesn't exist in any models then it is not being used either in asso
iation with atype or in the
onstru
tion of a new signature through the inheritan
e relationship.Module: the removal of a module will have no detrimental e�e
t on the
onsisten
yof existing elements sin
e any units that were previously assigned to the modulewill now be visible from any
lient unit;Subsystem: the same result as for modules.Module Use Relationship: the removal of a module use relationship may result inpreviously visible units be
oming invisible to their
lients. This may a�e
t the
onsisten
y of type use, fun
tion use, fun
tion argument and result type relation-ships and other module use relationships.Partition Relationship: the removal of a partition relationship may result in previ-ously visible units be
oming invisible to their
lients. This may a�e
t the
onsis-ten
y of type use, fun
tion use, fun
tion argument and result type relationships.Subsystem Use Relationship: the removal of a subsystem use relationship mayresult in previously visible units be
oming invisible to their
lients. This maya�e
t the
onsisten
y of type use, fun
tion use, fun
tion argument and result typerelationships and other subsystem use relationships;

246 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKEREx
lusive Signature Spe
i�
ation: the removal of a mi
ro unit from an ex
lusivesignature may also a�e
t any relationship that depends on the visibility of thatunit.Type/Permissive Signature Instantiation: the removal of a type/permissive sig-nature instantiation may a�e
t the
onsisten
y of fun
tions with types asso
iatedto permissive signatures. That is, a
onstrained polymorphism
he
k depends onthe existen
e of the required type/permissive signature instantiations.Type Use Relationship: the removal of a type use relationship may a�e
t the
on-sisten
y of fun
tions with types asso
iated to permissive signatures. That is, a
onstrained polymorphism
he
k may depend on a type use relationship betweenan argument or result type and the type that instantiates the permissive signature.Those elements that exist in the previous version of the model but are absent fromthe new version therefore provide a guide for the
he
ks that are required on the re-maining state. One should not simply re
he
k all elements of the types indi
ated above,but rather those elements that have an asso
iation with the removed element. Forexample, if a type use relationship is removed, then one has knowledge of the
lientand server types and this should guide the
onstrained polymorphism
he
ks that needre-appli
ation.FAD Des
riptionWe now refer to the update of the fun
tion dependen
y diagram for modelChe
k pre-sented in Figure 104. The original diagram was presented in Figure 95. The fun
tionmodifyState modi�es the state. modifyState uses singleUse, whi
h takes argumentsof type state and model and returns a value of type elements, whi
h represents those el-ements that only appear in the previous version of the model being updated. singleUsemakes use of the modelIDs value that is used by the types that represent ea
h form ofFAD element. For example, the mi
ro unit types type, fun
tion and permSig ea
huse the type modelIDs. This design is presented in the model in Figure 108 at the endof this se
tion, and singleUse is further analysed in Se
tion A.5.4.Ea
h element returned by singleUse is removed from the subState1 value usingremove and added to the subState3 value using add. The subState3 value is initially

A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 247

Figure 104: Update of modelChe
k Fun
tionempty. If the model
he
k fails then one
an re
reate the version of the state prior to
he
king by returning the empty subState3 value and adding the previous subState3value to subState1. The fun
tions add and remove are guaranteed by the permissivesignature CONTAINER instantiated by the
olle
tion type used by the type elements. Ifan element appears in other models it remains in the subState1 value but the modelIDvalue of the model being
he
ked is removed from its modelIDs value.The modi�ed state provides the �rst argument for the fun
tion oldModelChe
k.This fun
tion uses three fun
tions that are applied in the order of the following list:� the fun
tion reuse is
alled and returns those elements that are used in both theprevious version and updated version of the model. These elements do not needto be re
he
ked;� the fun
tion
he
kElements is applied to the
urrent state value, and thoseelements of the model not returned by reuse. That is, those elements that are

248 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERnew to the model; and,� if the previous
he
k terminates su

essfully then the state is
he
ked for in
onsis-ten
ies using the fun
tion
he
kExistingElements that takes a single argumentof type state. This fun
tion manages the
onsisten
y
he
ks applied to elementsthat existed prior to the
he
k of the
urrent model. For example, any type userelationship whose host modules are no longer asso
iated through a module userelationship needs to be re
he
ked for
onsisten
y. The removal of the relationshipdoes not by default imply an in
onsisten
y sin
e another module use route may ex-ist. Thus
he
kExistingElements uses the subState3 value to determine those
he
ks that are required of the elements of the subState1 value. The fun
tionuses the elementChe
k fun
tion to apply the relevant
he
ks.We have
on
entrated thus far on the
he
king of models. In the following se
tionwe present some illustrative examples of analyses of element
he
k fun
tions upon whi
hthe model
he
ks largely depend.A.4 A Sele
tion of Element Che
k AnalysesIn this se
tion we present a representative sample of analyses of element
he
k fun
tions.Those sele
ted highlight both the similarities in their behavioural requirements and
overthe intera
tion between units of the same sort and those of di�erent sorts. We thereforepresent a mi
ro unit use
he
k, a ma
ro unit use
he
k and a non-use
he
k, whi
h isan example of what is required when
he
king the intera
tion between units of di�erentsorts. The �rst analysis that we present is that of the fun
tion whi
h
he
ks fun
tionuse relationships.A.4.1 Analysis of fun
tionUseChe
kInformal Des
riptionIf the element - a fun
tionUseRel value - is present in the state then there is no needto further
he
k its
onsisten
y sin
e its presen
e implies that it has previously satis�eda
he
k. However, one needs to update the element entry in the state to in
lude itsappearan
e in the model being
he
ked. This is true of all element
he
ks. Thus the

A.4. A SELECTION OF ELEMENT CHECK ANALYSES 249�rst requirement of any
he
k is to determine whether the element is present in thestate. If the fun
tion use relationship does not exist then the use of one fun
tion byanother fun
tion is
onsistent if and only if the used fun
tion is visible from the usingfun
tion.
FAD Des
riptionWe now refer to Figure 105. The fun
tion fun
tionUseChe
k takes two arguments oftype state and fun
tionUseRel (the type of fun
tion use relationships) and returns avalue of type state that will re
e
t the out
ome of the
he
k. fun
tionUseRel �rsttests for the existen
e of the relationship using the fun
tion inState. inState takestwo arguments of type state and fun
tionUseRel (whi
h is required to instantiate thepermissive signature EQ) and returns a Boolean value that indi
ates whether the itemexists in the state or not. The permissive signature instantiation is required sin
e onewants to mat
h the relationship against one in the state.If the relationship exists in the state then the
he
k is terminated, and the statevalue is updated to re
ord su

ess and the fa
t that the element appears in the model.If it does not exist, fun
tionUseChe
k uses the fun
tion visibleFrom to test whetherthe used fun
tion is visible from the using fun
tion. The fun
tion visibleFrom takesan argument of type state and two of type fun
tion and returns a bool value. Itrequires the state argument sin
e the various hosting and use relationships are storedin the state.If the appli
ation of the fun
tion visibleFrom returns True then one adds thefun
tion use relationship to the state using addToState. This fun
tion uses the addfun
tion where the �rst argument is of type elements (whose value
omes from thesubState1 value). If the visibility
he
k fails then fun
tionUseChe
k
alls the fun
tionreportFailure that returns the state, where the value of type passOrFail in
ludes amessage indi
ating the failure.

250 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 105: Analysis of fun
tionUseChe
k

A.4. A SELECTION OF ELEMENT CHECK ANALYSES 251A.4.2 Analysis of moduleUseChe
kInformal Des
riptionA module use
he
k begins in the same manner as the previous
he
k. That is, onetests for the existen
e of the relationship in the state. If it exists then one terminatesthe
he
k su

essfully. The module use relationship of the model is the same as one inthe state if the
lient and server modules are the same in ea
h
ase, and the ex
lusivesignature that mediates the relationship mat
hes. If it does not exist then one has totest for the uniqueness of the relationship between the stated modules. That is, anytwo modules M and N should have at most one module use relationship where M isthe
lient. This means that the use of module N by module M should be mediatedby a unique ex
lusive signature. If the test fails then the
he
k is terminated and theuser informed of the problem. If the test su

eeds one
he
ks that the server module isvisible from the
lient module.On
e again if this test fails the
he
k is terminated and the user informed of thefailure. If the
he
k su

eeds, the asso
iation between the mediating ex
lusive signatureand the server module needs to be
he
ked. If this
he
k su

eeds then the whole
he
kis su

essful and the state
an be modi�ed to re
e
t this.FAD Des
riptionWe refer now to the fun
tion dependen
y diagram of Figure 106 and the fun
tion de-s
ription do
ument in Figure 107. The fun
tion moduleUseChe
k takes two argumentsof type state and moduleUseRel (the type of module use relationships) and returns avalue of type state. It uses the fun
tions:� inState that takes the same argument types as moduleUseChe
k but returns avalue of type bool, whi
h re
e
ts whether the element exists in the state or not;� unique that tests for the uniqueness of the relationship and has the same type asinState. In an optimised implementation one may merge inState and uniqueinto a single fun
tion that returns a pair of Boolean values;� visibleFrom that takes an argument of type state and two of type module andreturns a value of type bool; and,

252 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 106: Analysis of moduleUseChe
k� mediationChe
k that
he
ks the asso
iation between the ex
lusive signature andmodule. It takes three arguments of type state, ex
lSig and module respe
tively.The state value
ontains the existing elements whi
h may be
alled upon to
on�rm the
onsisten
y of the asso
iation between the ex
lusive signature andthe module. This fun
tion implements the ex
lusive signature mediation 1
he
kdes
ribed in Se
tion A.2.If inState returns True then the
he
k terminates su

essfully. In the
ase thatinState returns False, if any of the other fun
tions returns False then the
he
kterminates unsu

essfully.A.4.3 Analysis of typePermSigChe
kInformal Des
riptionThe asso
iation between a permissive signature and one or more types (the numberdepends on the number of parameters of the permissive signature) initially pro
eeds ina similar fashion to the previous
he
ks. That is, one
he
ks for the existen
e of therelationship in the state. If it exists the
he
k terminates su

essfully. If it doesn't thenone needs to
he
k that the permissive signature is visible from the type(s). A sensible

A.4. A SELECTION OF ELEMENT CHECK ANALYSES 253
Fun
tion Des
ription Do
ument CASEName: moduleUseChe
kVersion: 20000712:0Module:Arity: 2Type Spe
i�
ation: state -> moduleUseRel -> stateContra
t Asso
ia-tion:Instantiations: EQ moduleUseRelFun
tions Used: inState : state -> moduleUseRel -> boolunique : state -> moduleUseRel -> boolvisibleFrom : state -> module -> module -> boolmediationChe
k : state -> ex
lSig -> module-> boolDes
ription:If any element exists in the state then there is no need to further
he
k its
onsisten
y sin
e its existen
e implies that it has previously satis�ed a
he
k.This is true of all element
he
ks. Thus the �rst requirement of any
he
k isto determine whether the element exists in the state.The module use relationship of the model mat
hes one in the state if the
lientand server modules mat
h in ea
h
ase, and the ex
lusive signature whi
hmediates the relationship mat
hes. If it does not exist then one has to test forthe uniqueness of the relationship between the stated modules. That is, anytwo modules M and N should have at most one module use relationship whereM is the
lient. This means that the use of module N by module M should bemediated by an unique ex
lusive signature. If the test fails then the
he
k isterminated and the user informed of the problem. If the test su

eeds one
he
ks that the server module is visible from the
lient module.On
e again if this test fails the
he
k is terminated and the user informed of thefailure. If the
he
k su

eeds the asso
iation between the mediating ex
lusivesignature and the server module needs to be
he
ked. If this
he
k su

eeds thethe whole
he
k is su

essful and the state
an be modi�ed to re
e
t this.Figure 107: Fun
tion Des
ription Do
ument for the Fun
tion moduleUseChe
k

254 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERdesign is one where all permissive signatures are visible from all types. Thus if this
he
k fails this should provide a warning signal regarding the design.Upon su

essful
ompletion of the visibility
he
k one
he
ks that the permissivesignature and type(s) have mat
hing kinds. That is, the kind required by ea
h parameterof the permissive signature is mat
hed by the kind of the type
onstru
tors of theinstantiating types. If this
he
k su

eeds then one needs to
he
k for the existen
e ofthe units spe
i�ed in the permissive signature.FAD Des
riptionThe fun
tion typePermSigChe
k takes two arguments of type typePermSigRel (thetype of type/permissive signature relationships) and state and returns a value of typestate. It uses the fun
tions:� inState that takes the same argument types as typePermSigChe
k but returnsa value of type bool;� visibleFrom that takes three arguments of type state, permSig and type andreturns a value of type bool. This is the third o

asion that we have used afun
tion
alled visibleFrom and in ea
h
ase with a di�erent type. In Se
tionA.6 we use this as an illustrative
ase of fun
tion development guided by namereuse;� kindChe
k that takes two arguments of type permSig and type and returns abool; and,� allInState that takes the same arguments as visibleFrom and returns a bool.It uses the fun
tions inState to determine whether ea
h spe
i�ed unit of therequired type exists in the state. In Se
tion A.6 we take the various inStatefun
tions and design a single fun
tion in their pla
e;The types permSig of permissive signatures and type of types must both use thetype kind, the set of kind values. We present the design of the type mi
roUnit inFigure 108 and the type des
ription do
ument for the type permSig in Figure 109.That
ompletes our sele
tion of element
he
ks. In the following se
tion we des
ribethe development of an initial module ar
hite
ture for the subsystem.

A.4. A SELECTION OF ELEMENT CHECK ANALYSES 255

Figure 108: mi
roUnit Type Design
Type Des
ription Do
ument CASEConstru
tor Name: permSigVersion: 20000713:0Kind: *Module:Types Used: kind, modelIDsParameters:Permissive sigs.: CHECKABLEDes
ription:The type permSig is the type of permissive signatures. Ea
h signature has akind and a re
ord of the models in whi
h it is used. As with all elements apermissive signature must support
onsisten
y
he
king.Figure 109: Type Des
ription Do
ument for the Type permSig

256 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERA.5 Module Ar
hite
tureIn this se
tion we introdu
e a module ar
hite
ture into the system. This involves thede
laration of modules, the assigning of mi
ro units to host modules, and the introdu
-tion of module use relationships between modules and partition relationships betweenthe subsystem and some of its modules. These relationships require the development ofex
lusive signatures to mediate a

ess to hosted units.The guiding prin
iple here is to host a type with the fun
tions that deliver therequired behaviour over the type, and to put an abstra
tion barrier around the type.That is, ea
h type should be hosted in its own module with the operations over the type.When it is spe
i�ed in an ex
lusive signature it should be spe
i�ed, if possible, withoutits
onstru
tor signature. The
ost of this approa
h is that one may require get and setfun
tions to support a

ess to the type by
lients that are external to the abstra
tionbarrier. Although this is a sensible way initially to develop a module ar
hite
ture (andmoreover one that will enable the lo
alization of future
hanges), it is unlikely that itwill result in a design devoid of imperfe
tions. There are o

asions where one may needto introdu
e modules that do not host any types but:� manage the intera
tion between two or more types hosted elsewhere;� present a
olle
tion of polymorphi
 fun
tions that are linked by the behaviour thatthey implement;� present a
olle
tion of
onstrained polymorphi
 fun
tions that are linked by thepermissive signature(s) that need to be instantiated; or� simply avoid overburdening a module with an ex
essive number of units su
h thatit be
omes diÆ
ult to manage.The initial fo
i of attention are therefore the types. On
e de
isions have been maderegarding the required modules for hosting the types one assigns the remaining mi
rounits to the appropriate modules. S
enario and type dependen
y analyses are thenapplied where extra information is required due to the design of the module ar
hite
ture.In the following se
tion we develop an initial module ar
hite
ture for the subsystemusingmodule ar
hite
ture analysis. On
e again we will �rst present a textual des
riptionof the analysis followed by a des
ription of the development of FAD models.

A.5. MODULE ARCHITECTURE 257A.5.1 Module Ar
hite
ture AnalysisInformal Des
riptionEa
h of the types whi
h are exported from Consisten
yChe
kerSS is assigned to itsown module. One then assigns those fun
tions that implement the behaviour requiredover a type to the same module as the type. If a fun
tion implements behaviour overmore than one type, one assigns it to a module that hosts one of the types, developsthe module ar
hite
ture with the required module dependen
ies, and then analyses thedesign of the ar
hite
ture. For example, one may require mutual dependen
y betweenmodules or one may dis
over that a
olle
tion of fun
tions are best hosted by a modulethat delivers a parti
ular fun
tionality that may be reusable over more than one typeor
olle
tion of types. That is, at this stage of development one is trying to minimizethe number of modules and to emphasize the need to lo
alize fun
tions and their types.The subsystem supports the
onsisten
y
he
ker of the CASE tool and exports model
he
king fun
tionality as well as the types dire
tly asso
iated with model
he
king. Thedetails of the implementation of model
he
king are of no interest to
lients withinthe system. That is they will be presented with a minimal interfa
e to the types andfun
tion(s) asso
iated with model
he
king. This enables both in
remental developmentof parts of the system, and minimal disruption due to maintenan
e or extension of thesystem.FAD Des
riptionWe now refer to Figure 110. The subsystem Consisten
yChe
kerSS is asso
iated withthe ex
lusive signature CCSIG that mediates a

ess to the subsystem. The fun
tionmodelChe
k, whi
h implements the
onsisten
y
he
king of a model, and the typesstate and model are spe
i�ed in the signature. Thus the types state and modelare our initial fo
i. They ea
h need to be assigned to a module to whi
h a

ess is
ontrolled by an ex
lusive signature. Ea
h ex
lusive signature will initially spe
ify thetype(s) they are hosting with any required fun
tionality added during development.The modules are StateMod and ModelMod respe
tively. Ea
h of these modules will beasso
iated to Consisten
yChe
kerSS through a partition relationship that is mediatedby an ex
lusive signature. Other modules of the subsystem have no partition relationship

258 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERwith the subsystem and are not spe
i�ed in the mediating ex
lusive signatures, sin
etheir units should remain invisible to any
lients of the subsystem.We now pro
eed with type and fun
tion host analysis applied to the types used bystate and model, and the fun
tions used by modelChe
k. With referen
e to Figures 98and 110, the �ve types used by the type state are assigned to di�erent modules:� subState1 is hosted by SubState1Mod;� subState2 is hosted by SubState2Mod;� subState3 is hosted by SubState3Mod;� modelIDs is hosted by ModelIDsMod; and,� passOrFail is hosted by PassOrFailMod.Similarly we assign the two types used by the type model to two separate modules:� elements is hosted by ElementsMod; and� modelID is hosted by ModelIDMod.Immediately one
an sket
h an initial module ar
hite
ture that satis�es the visibilityrequirements of the types state and model. For example, the module StateMod usesthe modules that host the types used in its
onstru
tion. That is, SubState1Mod,SubState2Mod, SubState3Mod, ModelIDsMod and PassOrFailMod. Both ModelMod andModelIDsMod use ModelIDMod, and ElementsMod is used by ModelMod, SubState1Mod,SubState2Mod and SubState3Mod.We now pro
eed with fun
tion host analysis in whi
h we assign fun
tions to theirrelevant host module.A.5.2 Fun
tion Host AnalysisInformal Des
riptionEa
h of the fun
tions that appears in fun
tion dependen
y diagrams is assigned to ahost module. We use the modules des
ribed in the previous se
tion as the hosts. If noneof these modules is appropriate then either a new module is introdu
ed or the fun
tionshould be the responsibility of a di�erent subsystem.

A.5. MODULE ARCHITECTURE 259

Figure 110: Initial Design of Subsystem Consisten
yChe
kerSS

260 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 111: Update of Module Ar
hite
tureFAD Des
riptionWe present a summary of the out
omes in Tables 8 and 9. Ea
h fun
tion is listed along-side its host module with some
ommentary supporting the assignment. This
ommen-tary in
ludes any module use relationships that are required. In Figure 111 we presentthe new relationships between the modules StateMod and ModelMod, whi
h also uses theresults of the ex
lusive signature development des
ribed in Se
tion A.5.3. The re
ursivedependen
y between the modules (and the modules StateMod and ElementsMod) will behighlighted by the warning
he
k on re
ursion and suggests a poor module ar
hite
turedesign. In this instan
e the re
ursive dependen
y is present in a single model. How-ever, the dependen
ies
ould have been des
ribed in two di�erent models, and wherethere are intermediate modules, several models may require investigation to unearth there
ursion. An alternative design that avoids re
ursion is presented in Se
tion A.6.Initially ex
lusive signatures only spe
ify the types that they host, but on
e fun
tionsare assigned to modules their asso
iated signatures must be
hanged in order to avoid

A.5. MODULE ARCHITECTURE 261

Fun
tion Module CommentmodelChe
k ModelMod This fun
tion takes two arguments of typesstate and model. However, it is the modeltype whose behaviour it implements. Themodule StateMod must be used byModelMod.isIn No Assignment This fun
tion is spe
i�ed in the permissivesignature CONTAINER and will be hostedwith whi
hever
olle
tion type is used bymodelIDs. This module will be hosted bythe subsystem that delivers the generalbasi
 types and permissive signaturessin
e it is not spe
i�
 to
onsisten
y
he
king.newModelChe
k ModelMod This fun
tion delivers fun
tionality overthe type model.modifyState StateMod This fun
tion requires a

ess to the
onstru
tion of the type state and deliversfun
tionality over the type. The moduleStateMod uses the module ModelMod.oldModelChe
k ModelMod This fun
tion delivers fun
tionality overthe type model.Table 8: Fun
tion Host Analysis

262 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER
Fun
tion Module CommentupdateState StateMod This fun
tion requires a

ess to the
onstru
tion of the type state andimplements fun
tionality over the type.
he
kElements ElementsMod This fun
tion implements a behaviouralrequirement of the elements type.The module ElementsMod uses themodule StateMod.applyOrdering ElementsMod This fun
tion requires a

ess to the
onstru
tion of the type elementsand implements fun
tionality over thetype. The module ElementsMod usesthe module ElementMod.reuse ModelMod This fun
tion tests for the reuse ofelements in the update version ofa model.singleUse ModelMod This fun
tion requires a

ess to the
onstru
tion of the type model andimplements fun
tionality over the type.warningChe
k StateMod This fun
tion implements fun
tionalityover the type state.abstra
tionChe
k StateMod This fun
tion implements fun
tionalityover the type state.re
ursionChe
k StateMod This fun
tion implements fun
tionalityover the type state.Table 9: Fun
tion Host Analysis (
ontinued)

A.5. MODULE ARCHITECTURE 263in
onsisten
y. It is the user who has to ensure this. This pro
ess is des
ribed in thefollowing se
tion.A.5.3 Ex
lusive Signature AnalysisThe development of a system based on abstra
tion and en
apsulation requires a modulear
hite
ture in whi
h ex
lusive signatures mediate a

ess to the units hosted by ea
hmodule. Initially we asso
iate a single ex
lusive signature with ea
h module. Thissimpli�es the initial development of use relationships by providing the developer witha single interfa
e to any ma
ro unit. In addition, it emphasises the importan
e ofen
apsulation early in development by making expli
it all that an external
lient mayknow. Later in development, multiple ex
lusive signatures for a single module aredesigned that deliver the required mediation for a parti
ular relationship and thus makeexpli
it exa
tly what an external
lient needs to know. That is, a partition relationshipbetween subsystem S and module M is likely to require a di�erent ex
lusive signatureto that whi
h mediates the use relationship from module N to module M.Units are spe
i�ed in an ex
lusive signature if they are either used in a use relation-ship, or are permissive signatures asso
iated with one or more types. Thus one s
ansthe type dependen
y and fun
tion dependen
y diagrams for those units whi
h shouldbe spe
i�ed in an ex
lusive signature. Constru
tor signatures will not initially appearin any ex
lusive signatures.We will illustrate this analysis with the development of the ex
lusive signatureMODELSIG that mediates a

ess to the module ModelMod.Informal Des
riptionMODELSIG initially spe
i�ed the type model. However, it hosts some fun
tions that needto be visible to
lients that are external to the module. The obvious example is thefun
tion that implements model
he
king, whi
h must be visible to
lients outside ofthis subsystem. Thus it must be spe
i�ed in the ex
lusive signature that mediates thepartition relationship between the subsystem and the module.In light of the host assignments des
ribed in Tables 8 and 9, the use relationshipbetween modifyState and singleUse requires singleUse to be spe
i�ed in the ex
lusivesignature that mediates a

ess to ModelMod. In Se
tion A.6 we illustrate ex
lusive

264 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERsignature design with those that mediate a

ess to the module StateMod.All other fun
tions of the module are used only by fun
tions of the same moduleand therefore are not spe
i�ed in the ex
lusive signature.FAD Des
riptionWe refer now to Figure 111. Only three units need to be spe
i�ed in MODELSIG:� the type model that is used, for example, by the fun
tion modifyState whi
h ishosted by the module StateMod;� the fun
tion modelChe
k that implements the externally visible fun
tionality sup-ported by the module ModelMod; and,� the fun
tion singleUse that is used by the fun
tion modifyState that is hostedby the module StateMod.The fun
tions newModelChe
k, oldModelChe
k and reuse are used by fun
tions ofthe same module and do not have any
lients from other modules or subsystems. Theydo not therefore need to be visible from external
lients and hen
e are not spe
i�ed inthe ex
lusive signature. The module ModelMod is used by the module StateMod sin
ethe fun
tion singleUse must be visible from the fun
tion modifyState. This resultsin an update of the module ar
hite
ture.The introdu
tion of abstra
tion barriers in
urs a
ost on the developer. One has tointrodu
e operations whi
h repla
e dire
t a

ess to the
onstru
tion of a type. Furtheranalyses should be applied to dis
over su
h requirements. We present su
h an analysisin the following subse
tion.A.5.4 S
enario Analysis of the Fun
tion singleUseIn this se
tion we provide an analysis of the fun
tion singleUse that is in
uen
ed bythe
urrent module ar
hite
ture.Informal Des
riptionsingleUse returns the elements of a model that only appear in the previous version ofthe model. Thus one needs a

ess to the elements in the state and those in the
urrent

A.5. MODULE ARCHITECTURE 265version of the model. Ea
h state element whose model identi�ers in
lude the
urrentmodel identi�er are
he
ked against the elements of the model. Any whi
h are notmembers of the model's elements are returned by the fun
tion.FAD Des
riptionWe refer here to the fun
tion dependen
y diagram in Figure 112 and to the Fun
tionDes
ription Do
ument in Figure 113. singleUse requires a

ess to the elements of themodel and of the state. Sin
e singleUse is hosted by the same module as the typeModel it doesn't need to
all any get fun
tions on the type. Thus the elements of themodel
an be a

essed dire
tly, but those of the state require the fun
tion getSubState1to be
alled with a state argument. This returns the subState1 value, whi
h providesthe argument for getElements. The fun
tions getSubState1 and getElements arerequired sin
e the types state and subState1 are abstra
t relative to the fun
tionsingleUse.The fun
tion sele
tInModel returns those elements in the state whi
h appear inthe previous version of the model. It takes an argument of type elements and anotherof type modelID, and returns those elements for whi
h the model identi�er is in
ludedin the modelIDs value. sele
tInModel uses the fun
tion getModelIDs, whi
h takes anargument of type element that is abstra
t relative to the fun
tion sele
tInModel thatis hosted with the type elements. getModelIDs returns the identi�ers of the modelsin whi
h an element appears. The modelID argument of sele
tInModel is a

esseddire
tly.The
olle
tion type used by elements needs to support �ltering behaviour to imple-ment sele
tInModel. This is guaranteed by the asso
iation with the permissive signa-ture FILTER
 whi
h spe
i�es the fun
tion filter : (a -> bool) ->
 a ->
 a.The elements returned by sele
tInModel are ea
h tested for membership of the newversion of the model using the fun
tion setDiff. This fun
tion takes two argumentsof type elements and returns those elements from the �rst argument that are not inthe se
ond. That is, it returns those elements whi
h are not in the new version of themodel. setDiff uses the fun
tion isIn that is guaranteed by the permissive signatureCONTAINER asso
iated with the
olle
tion type used by the type
ontainers.This
ompletes our sele
tion of analyses. In the following se
tion of this appendix

266 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 112: Fun
tion Dependen
y Diagram for singleUsewe give some illustrative examples of design phase development.A.6 Design of Consisten
yChe
kerSSDesign fo
uses on the delivery of a solution-domain fo
used model of the system. Thatis, where analysis is tied to the problem-domain albeit des
ribed in terms of the requiredparadigm, design aims to produ
e a system whi
h
an be implemented in as an eÆ
ientand e�e
tive manner as possible. However, the two phases are not mutually ex
lusiveand, for example, modularity, both in ma
ro unit and mi
ro unit development, has hada design impa
t within the analysis phase of development.During the design phase, one takes the deliverables of the analysis phase and, usingthe various me
hanisms provided by the paradigm, designs the various mi
ro and ma
rounits su
h that an eÆ
ient implementable design is returned. The transition from alargely analyti
al model to an implementable design is supported by the
onsistentparadigm-fo
us of the methodology and the fa
t that the diagrams, and many of thete
hniques used during analysis, are the same as those used during design.Thus upon
ompletion of this phase one wants:

A.6. DESIGN OF CONSISTENCYCHECKERSS 267

Fun
tion Des
ription Do
ument CASEName: singleUseVersion: 20000720:0Module: ModelModArity: 2Type Spe
i�
ation: state -> model -> elementsContra
t Asso
ia-tion:Instantiations:Fun
tions Used: getElements : subState1-> elementsgetSubState1 : state -> subState1sele
tInModel : elements -> model-> elementssetDiff : elements -> elementsDes
ription:singleUse returns the elements of a model that only appear in theprevious version of the model. Thus one needs a

ess to the elementsin the state and those in the
urrent version of the model. Ea
h stateelement whose model identi�ers in
lude the
urrent model identi�er,are
he
ked against the elements of the model. Any that are notmembers of the model's elements are returned by the fun
tion.Figure 113: Fun
tion Des
ription Do
ument for the Fun
tion singleUse

268 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER� a module ar
hite
ture built on reusable units with minimal interfa
es to otherunits;� ex
lusive signatures that are designed to mediate a spe
i�
 relationship;� permissive signatures whi
h are developed to guarantee a parti
ular behaviourand support reuse; and,� to make use of fun
tional programming's glue su
h as parametri
 polymorphismand higher-order fun
tions.We present in the following subse
tions some illustrative examples of element design.We begin by updating the module ar
hite
ture of Consisten
yChe
kerSS. In Se
tionA.6.2 we present the (related) design of ex
lusive signatures that mediate a

ess tothe module StateMod. In Se
tion A.6.3 we des
ribe the development of the permis-sive signature CONTAINERPLUS, and in Se
tion A.6.4 the (related) design of the typeelements. In Se
tion A.6.5 we des
ribe the development of the fun
tions visibleFrom,visibleFromModule and inState, and �nish with a brief summary of the the remainingwork to be done.A.6.1 Module Ar
hite
ture DesignInformal Des
riptionThe
urrent module ar
hite
ture in
ludes a mutual dependen
y between the modulesModelMod and StateMod. This is be
ause they ea
h host the type for whi
h they arenamed, and ea
h host fun
tions that use the type hosted by the other module. Thevarious get and set fun
tions must remain in the same module as the type to whi
h theyapply be
ause they require dire
t a

ess to the
onstru
tion of the type.However, one may require modules that host fun
tions separately from the typesover whi
h they are de�ned. This is either be
ause the fun
tion does not sit naturallywith a parti
ular type, or be
ause one requires a module to deliver a parti
ular setof behavioural requirements rather than to host a type and its related fun
tions. Forexample, the Haskell 98 libraries [101℄ List and Monad are in turn, a module that hostsfun
tions over a type hosted by another module, and a module whose fun
tions arede�ned over a
olle
tion of types related by the fun
tionality they support.

A.6. DESIGN OF CONSISTENCYCHECKERSS 269Here we introdu
e the module Che
kMod that hosts the fun
tions that implement
he
king fun
tionality but does not host any types. This module hosts the fun
tionsthat implement the
he
king fun
tionality required over the types state and model.That is, the module manages the intera
tion between these types and therefore usesthe modules that host the types. In addition, it provides a single entry route into themodule ar
hite
ture for external
lients and a single fo
us for
he
king behaviour.The modules ElementsMod and StateMod also exhibit a mutual dependen
y. On
eagain one
an reassign the fun
tions that implement the
he
king behaviour over thesetypes to a module that uses the above modules. As with Che
kMod this module managesthe intera
tion between the types hosted by these modules.FAD Des
riptionWe refer now to Figure 114 and to the Module Des
ription Do
ument in Figure 115.The module Che
kMod provides both a single entry point into the module ar
hite
ture,and
olle
ts together the main fun
tions that implement the model
he
king fun
tion-ality required by the
onsisten
y
he
ker. The ex
lusive signatures asso
iated with themodules StateMod and ModelMod now in
lude several get and set fun
tions that are usedby the fun
tions hosted by Che
kMod.The module StateMod is asso
iated with two ex
lusive signatures:� STATESIG1, whi
h mediates a

ess to
lients in the module Che
kMod; and,� STATESIG2, whi
h mediates a

ess to
lients in the module ModelMod.Thus updateState, whi
h is used by newModelChe
k, is spe
i�ed in STATESIG1 but notin STATESIG2. The fun
tion reuse is now spe
i�ed in the ex
lusive signature MODELSIGsin
e its
lient fun
tion oldModelChe
k is now hosted in a di�erent module.We present a similar design in Figure 116. The module ElementsChe
kMod im-plements the element
he
king behaviour that uses the types state and elements.Here we have developed a third ex
lusive signature to mediate a

ess to the moduleStateMod that spe
i�es the fun
tion warningChe
ks, whi
h is used by the fun
tion
he
kElements. The fun
tions re
ursionChe
k and abstra
tionChe
k only have alo
al
lient, warningChe
ks, and thus are not spe
i�ed in the signature. The ex
lu-sive signature ELEMENTSSIG1 also spe
i�es the fun
tion elementChe
k that is used by

270 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERelementsChe
k but is hosted by a module used by ElementsMod.More details regarding ex
lusive signature design are provided in the following se
-tion.A.6.2 Ex
lusive Signature DesignInformal Des
riptionSTATESIG was developed to present a single signature to mediate a

ess to StateModwhether as part of a partition relationship or a module use relationship. However, whenimplementing the system one needs more a

urate information regarding the visibilityrequirements of
lients of a module's units. This was illustrated in Se
tion A.6.1 wherethree uses of the module StateMod were mediated by three di�erent ex
lusive signatures.In Chapter 2 we quoted Pooley and Stevens [109℄ de�nitions for abstra
tion anden
apsulation:Abstra
tion is when a
lient of a module doesn't need to know more thanis in the interfa
e. En
apsulation is when a
lient of a module isn't able toknow more than is in the interfa
e.We believe that an ex
lusive signature's rôle during analysis is to deliver en
apsu-lation: this is all that a
lient is allowed to know. Then during design its rôle be
omesthe delivery of abstra
tion: this is what a
lient needs to know. Thus the ex
lusivesignatures delivered in the design phase should spe
ify a subset (upto
hanges enfor
eddue to a redesign of the module ar
hite
ture) of the units spe
i�ed during analysis. Oneis spe
ialising the interfa
e to a module for a parti
ular purpose.Thus one needs to analyse the requirements of a parti
ular use relationship or par-tition relationship and spe
ify only those units in the mediating ex
lusive signature.FAD Des
riptionWe refer again to Figures 114 and 116. The ex
lusive signatures spe
ify that whi
h isrequired for a parti
ular relationship and no more. For example, STATESIG3 spe
i�esthose units required by
lients hosted by ElementsChe
kMod. The ex
lusive signatureELEMENTSSIG1 spe
i�es elementChe
k sin
e it is used by the fun
tion
he
kElementswithout requiring a use relationship from ElementsChe
kMod to ElementMod.

A.6. DESIGN OF CONSISTENCYCHECKERSS 271

Figure 114: Module Ar
hite
ture Design

272 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Module Des
ription Do
ument CASEName: Che
kModVersion: 20000722:0Type(s):Permissive sig(s):Fun
tion(s): modelChe
k: state -> model -> statenewModelChe
k: state -> model -> stateoldModelChe
k: state -> model -> statemodifyState: state -> model -> stateModules used: StateMod : STATESIG1ModelMod : MODELSIGSubsystem: Consisten
yChe
kerSSFile:Des
ription:The module Che
kMod hosts the fun
tions that implement model
he
kingfun
tionality but does not host any types. This module therefore uses themodules whi
h host the types state and model, but provides a single entryroute into the module ar
hite
ture for external
lients.Figure 115: Module Des
ription Do
ument for the Module Che
kMod

A.6. DESIGN OF CONSISTENCYCHECKERSS 273

Figure 116: Another Module Ar
hite
ture Design

274 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERIn the following se
tion we des
ribe the development of the permissive signatureCONTAINERPLUS.A.6.3 Design of the Permissive Signature CONTAINERPLUSInformal Des
riptionThe permissive signature CONTAINER spe
i�es the behavioural requirements of a stan-dard
olle
tion type. However, it does not support any behavioural requirements of theitems being
olle
ted. The permissive signature CONTAINERPLUS inherits the spe
i�
a-tions of CONTAINER but adds the
exibility required over the
ontained items.That is, when an element is `added to' or `removed from' a
olle
tion of elements onedoesn't simply update the
olle
tion with one more or one less element. When `adding'an element one needs to test whether the element already exists in the
olle
tion. If itdoes then one re
ords that the element is used in a new model. That is, one updatesits model identi�ers entry. If it doesn't exist in the
olle
tion then it is added to the
olle
tion.The behaviour when `removing' an element depends on whether the element nolonger appears in any models. If this is the
ase then it is removed from the
olle
tion.Otherwise it remains and its model identi�ers entry is updated to re
ord its removalfrom a model.FAD Des
riptionWe refer now to Figure 117. CONTAINERPLUS inherits from CONTAINER and spe
i�es thefun
tions addPlus and removePlus. CONTAINERPLUS has two parameters of kind * ->*and * respe
tively. addPlus and removePlus have the same type as remove (addPlusrequires the item type to be an equality type) but now support behaviour spe
i�
 tothe instantiating element type as well as the instantiating
olle
tion type.The type elements has to be updated as des
ribed in the following se
tion, andfun
tions over the type that used the fun
tions add and remove will now use addPlusand removePlus.

A.6. DESIGN OF CONSISTENCYCHECKERSS 275

Figure 117: Design of CONTAINERPLUSA.6.4 Design of the Type elementsInformal Des
riptionThe
urrent design of the type elements states that it uses the types element anda
olle
tion type that must instantiate the permissive signatures CONTAINER, FOLDand FILTER. The new design in
ludes the instantiation of the permissive signatureCONTAINERPLUS by the
olle
tion type and the type element. We have de
ided toimplement the
olle
tion type as a list, [a℄, sin
e it delivers all of the required be-haviour and there are no stated requirements regarding the eÆ
ien
y of �nding, addingand retrieving elements that would require a type su
h as a balan
ed tree.However, the type element, the types mi
roUnit, relationship and ma
roUnit,and all the types of the various sorts of mi
ro units, ma
ro units and relationships shouldbe ordered types. This is be
ause it will ease the dis
overy of existing elements both forretrieval and reuse purposes. Thus ea
h type will instantiate the permissive signatureORD. This signature inherits the spe
i�
ations of the permissive signature EQ and hen
ethe types remain equality types as previously de
lared.

276 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 118: Design of the type elementsFAD Des
riptionWe refer now to Figure 118 that presents an update of the model of the type elements,whi
h in
ludes the various permissive signature instantiations des
ribed above.In the �nal subse
tion we des
ribe fun
tion development.A.6.5 Fun
tion DesignInformal Des
riptionThe following visibleFrom and inState fun
tions are used in the development of theCASE system. visibleFrom : state -> fun
tion -> fun
tion -> boolvisibleFrom : state -> module -> module -> boolvisibleFrom : state -> permSig -> type -> boolinState : state -> fun
tionUseRel -> boolinState : state -> moduleUseRel -> boolinState : state -> typePermSigRel -> bool

A.7. SUMMARY 277Further s
enario analyses have required visibleFrom fun
tions where the se
ond andthird argument types are: type and type; type and fun
tion and so on. That is, thereare several visibleFrom fun
tions de�ned over two types used by the type mi
roUnit.Ea
h of these fun
tions will be implemented identi
ally sin
e they all implement thevisibility test over two mi
ro units as des
ribed in Se
tion A.2. They
an therefore berepla
ed by the fun
tionvisibleFrom : state -> mi
roUnit -> mi
roUnit -> boolThe visibility relationship between modules is di�erent than that between mi
rounits and thus requires a di�erent fun
tion. This fun
tion now requires a di�erentname. We
all it visibleFromModule.The various inState fun
tions
an similarly be repla
ed by a single fun
tion whosese
ond argument is of type element.The
he
ks of the mi
ro unit use relationships - su
h as fun
tionUseChe
k des
ribedin Se
tion A.4.1 - have the following operational behaviour:1.
he
k if the element is present in the state using inState; and, if not2.
he
k that the server unit is visible from the
lient unit using visibleFrom; and,if it is3. add the element to the state using the fun
tion addToState.We therefore repla
e them by a single fun
tion mi
roUnitUseChe
kwhose se
ond ar-gument
an be a value of type fun
tionUseRel, typeUseRel, or fun
tionTypeUseRel.FAD Des
riptionVarious models will need to be updated to in
lude the above
hanges. In the last se
tionof the appendix we summarize the development of the subsystem and des
ribe work tobe done.A.7 SummaryIn this appendix we have presented the appli
ation of FAD to the development of a
onsisten
y
he
ker for a CASE tool. The notation, te
hniques and methodologi
alapproa
h have been thoroughly tested.

278 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERRequirements analysis produ
ed a
olle
tion of
onsisten
y
he
ks many of whi
hprovide a servi
e to the main
he
king of a model. Through s
enario analyses andtype dependen
y analyses we established the main set of types, their requirementsand intera
tions, and the operational requirements of the fun
tions that implement the
onsisten
y
he
ks.A module ar
hite
ture was then introdu
ed to support the development of a systembased on en
apsulation and abstra
tion. Initially we adopted a type-
entri
 approa
hto module assignment that was later reviewed in light of mutual dependen
ies and theneed for a more e�e
tive and eÆ
ient design. Ex
lusive signatures that mediate a

essto the modules were developed in tandem, and it is these that enfor
e the requiredabstra
tion barriers to external
lients.Developing the system to an implementation would involve:� tailoring the design to a parti
ular implementation language;� implementing se
tions of the design and updating them based on the results ofthe implementation. Sin
e the development models and their asso
iated do
u-mentation provide a re
ord of development, they should be updated in light ofimplementation experien
e;� modi�
ations due to the requirements of other subsystems. The
onsisten
y
he
ker has been developed in isolation of the other parts of the CASE tool.Although the methodology supports an in
remental approa
h to development, itis most unlikely that the various subsystems will simply glue together as a systemfree of imperfe
tions. However, one would hope that any modi�
ations are of arelatively minor nature and have a lo
alised rather than widespread e�e
t.

Bibliography
[1℄ H. Abelson and G.J. Sussman. Stru
ture and Interpretation of Computer Pro-grams. The MIT Press, 1985.[2℄ A. Aho, R. Sethi, and J. Ullman. Compilers { Prin
iples, Te
hniques and Tools.Addison-Wesley, 1986.[3℄ S. Alpert. Primitive types
onsidered harmful. Java Report, 3(11), November1998.[4℄ N. An and Y. Park. A Stru
tured Approa
h to Retrieving Fun
tions by Types.In Pro
. of the 1998 International Conferen
e on Fun
tional Programming. ACMPress, 1998. Poster presented at poster session.[5℄ A. Appel and T. Jim. Shrinking lambda expressions in linear time. Journal ofFun
tional Programming, September 1997.[6℄ J. Armstrong. The development of Erlang. In International Conferen
e on Fun
-tional Programming. ACM SIGPLAN Noti
es, August 1997.[7℄ L. Augustsson. Haskell B. interpreter, 1997. At ftp://ftp.
s.
halmers.se/pub/haskell/
halmers/.[8℄ K. Be
k and W. Cunningham. A Laboratory for Tea
hing Obje
t-Oriented think-ing. Pro
eedings of OOPSLA { Conferen
e on Obje
t-Oriented Programming Sys-tems, Languages and Appli
ations, 24(10):1{6, 1989.[9℄ F. Belina, D. Hogrefe, and A Sarma. SDL with Appli
ations from Proto
ol Spe
i-�
ation. Prenti
e-Hall, 1991. 279

280 BIBLIOGRAPHY[10℄ Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version).Te
hni
al report, State University of New York at Stony Brook, Computer S
ien
eDepartment, 1995.[11℄ R. Bird and P. Wadler. Introdu
tion to Fun
tional Programming. Prenti
e-Hall,1988.[12℄ N.D. Birrell and M.A. Ould. A Pra
ti
al Handbook for Software Development.Cambridge University Press, 1985.[13℄ B.W. Boehm. A spiral model of software development and enhan
ement. IEEEComputer, 21(5):61{72, 1986.[14℄ G. Boo
h. Software Engineering with Ada. Benjamin/Cummings, 1987.[15℄ G. Boo
h. Obje
t-Oriented Analysis and Design with appli
ations. Ben-jamin/Cummings, 1994.[16℄ G. Boo
h, J. Rumbaugh, and I. Ja
obson. The Uni�ed Modeling Language UserGuide. Addison-Wesley, 1999.[17℄ Obje
t pas
al language guide., 1995.[18℄ J. Bos
h. Design patterns as language
onstru
ts. The Journal of Obje
t-OrientedProgramming., 11(2), May 1998.[19℄ R. Braek. Engineering real time systems : an obje
t-oriented methodology usingSDL. Prenti
e-Hall, 1993.[20℄ F. Brooks. Con
eptual essen
e of software engineering or there is no silver bullet.IEEE Computer, O
tober 1987.[21℄ T. Budd. An Introdu
tion to Obje
t-Oriented Programming. Addison-Wesley, 2ndedition, 1997.[22℄ R. Burgess. Designing
odasyl database progams using JSP. Information andSoftware Te
hnology, 29(3), April 1987.[23℄ J. Cameron. JSP & JSD: The Ja
kson Approa
h to Software Development. IEEEComputer So
iety Press, 1989.

BIBLIOGRAPHY 281[24℄ L. Cardelli. Two-dimensional syntax for fun
tional languages. In Pro
. IntegratedIntera
tive Computing Systems, pages 107{119, 1983.[25℄ L. Cardelli and P. Wegner. On understanding types, data abstra
tion, and poly-morphism. ACM Computing Surveys, 17(4), 1985.[26℄ P. Chen. The entity-relationship model - toward a uni�ed view of data. ACMTrans. Database Syst., 1:9{36, 1976.[27℄ P. Coad. Obje
t-oriented patterns. Communi
ations of the ACM, 35(9), Septem-ber 1992.[28℄ P. Coad and E. Yourdon. Obje
t-Oriented Analysis. Prenti
e Hall, 2nd edition,1991.[29℄ P. Coad and E. Yourdon. Obje
t-Oriented Design. Prenti
e Hall, 1991.[30℄ D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gil
hrist, F. Hayes, and P. Jere-maes. Obje
t-Oriented Development: The Fusion Method. Prenti
e-Hall, 1994.[31℄ The new
ollins
ompa
t english di
tionary., 1984.[32℄ Obje
t-oriented analysis and design methods: a
omparative review., 1995. At:http://wwwis.
s.utwente.nl:8080/dmrg/OODOC/oodo
/oo.html.[33℄ Rational Software Corporation. Getting Started with Rational Rose., 1995.[34℄ Rational Software Corporation. Rational Rose/C++., 1995.[35℄ O. Dahl, E. Dijkstra, and Hoare C. Stru
tured Programming. A
ademi
 Press,1972.[36℄ H. Deitel and P. Deitel. Java How to Program. Prenti
e Hall, 2nd edition, 1998.[37℄ T. DeMar
o. Stru
tured Analysis and System Spe
i�
ation. Prenti
e-Hall, 1979.[38℄ E. Dijkstra. Goto statement
onsidered harmful. Communi
ations of the ACM,11(3):147{8, Mar
h 1986.[39℄ A. Diller. Z: An Introdu
tion to Formal Methods. Wiley, 2nd edition, 1994.

282 BIBLIOGRAPHY[40℄ Domini
 Duggan and Frederi
k Bent. Explaining type inferen
e. S
ien
e of Com-puter Programming, 27:37{83, 1996.[41℄ M Eva. SSADM Version 4: A User's Guide. M
Graw-Hill, 2nd edition, 1994.[42℄ S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. H/Dire
t: A Binary For-eign Language Interfa
e for Haskell. In Pro
. 3rd International Conferen
e onFun
tional Programming., pages 153{162. ACM Press, 1998.[43℄ K. Fisher and J. Mit
hell. Notes on typed obje
t-oriented programming. In Pro
.Theoreti
al Aspe
ts of Computer Software, pages 844{885. Springer LNCS 789,1994.[44℄ D. Flanagan. JavaS
ript: The De�nitive Guide. O'Reilly, 2nd edition, 1997.[45℄ A
ow graph applet., 1997. At: www.
ogs.susx.a
.uk/users/alanje/premon/ndemo.html.[46℄ K. Fowler, M. with S
ott. UML Distilled: Applying the Standard Obje
t ModelingLanguage. Addison-Wesley, 1997.[47℄ M. Fowler. Analysis Patterns: Reusable Obje
t Models. Addison-Wesley, 1997.[48℄ FranTk, 1999. At: http://www.haskell.org/FranTk/.[49℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1995.[50℄ A. Gill and S. Marlow. Happy: the parser generator for Haskell., 1995.[51℄ A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.Addison-Wesley, 1983.[52℄ H. Goodman. Animating Z spe
i�
ations in Haskell using a monad. Te
hni
alreport, University of Birmingham, April 1995.[53℄ A.J. Gordon. Fun
tional Programming and Input/Output. British Computer So
i-ety Distinguished Dissertations in Computer S
ien
e. Cambridge University Press,1994.

BIBLIOGRAPHY 283[54℄ D. Harel. Stat
harts: A visual formalism for
omplex systems. S
ien
e of Com-puter Programming, 8, 1987.[55℄ The HBC Compiler., 1999. At: http://www.
s.
halmers.se/~augustss/hb
/hb
.html.[56℄ T. Hopkins and B. Horan. Smalltalk an Introdu
tion to Appli
ation Developmentusing Visualworks. Prenti
e Hall, 1995.[57℄ J. Hughes. Why Fun
tional Programming Matters. In D. A. Turner, editor,Resear
h Topi
s in Fun
tional Programming. Addison-Wesley, 1990.[58℄ W. Humphrey. Managing the Software Pro
ess. Addison-Wesley, 1990.[59℄ G. Hutton. Higher-order fun
tions for parsing. Journal of Fun
tional Program-ming, 2(3):323{343, 1992.[60℄ G. Hutton and E. Meijer. Monadi
 parser
ombinators. Te
hni
al ReportNOTTCS-TR-96-4, University of Nottingham, 1996.[61℄ M. Ja
kson. Prin
iples of Program Design. A
ademi
 Press, 1975.[62℄ M. Ja
kson. System Development. Prenti
e-Hall, 1983.[63℄ I. Ja
obson, G. Boo
h, and J. Rumbaugh. The Uni�ed Software DevelopmentPro
ess. Addison-Wesley, 1999.[64℄ I. Ja
obson, M. Christerson, P. Jonsson, and G. Overgaard. Obje
t-Oriented Soft-ware Engineering: A Use Case Driven Approa
h. Addison-Wesley, 1992.[65℄ M. Jones. The implementation of the Gofer fun
tional programming system.Resear
h Report YALEU/DCS/RR-1030, Yale University, 1994.[66℄ M. Jones. Fun
tional Programming with Overloading and Higher- Order Polymor-phism. In J. Jeuring and E. Meijer, editors, Advan
ed Fun
tional Programming.,number 925 in LNCS. Springer-Verlag, May 1995.[67℄ M. Jones and J. Peterson. Hugs 1.4: The Nottingham and Yale Haskell User'sSystem - User Manual. Resear
h Report NOTTCS-TR-97-1, The University ofNottingham, 1997.

284 BIBLIOGRAPHY[68℄ M. Jones and J. Peterson. Hugs 98: A fun
tional programming system based onHaskell 98, 1999. At http://www.haskell.org/hugs/.[69℄ M P. Jones. Using Parameterised Signatures to Express Modular Stru
ture. InACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,January 1996.[70℄ M. P. Jones and J. C. Peterson. Hugs 1.4. The Nottingham and Yale HaskellUser's System User Manual. Te
hni
al report, The University of Nottingham,April 1997.[71℄ A. Kay. The Early History of Smalltalk. In The Se
ond ACM SIGPLAN History ofProgramming Languages Conferen
e, volume 28(3), pages 69{75. ACM SIGPLANNoti
es, Mar
h 1993.[72℄ B. Kernighan and D. Rit
hie. The C Programming Language. Prenti
e Hall, 2ndedition, 1988.[73℄ M.J. King and J.P. Pardoe. Program Design Using JSP { a Pra
ti
al Introdu
tion.Ma
Millan, 1985.[74℄ K. La�ufer. Type
lasses and existential types. Journal of Fun
tional Programming,May 1996.[75℄ X. Leroy. The Obje
tive Caml system., 1996. At http://pauilla
.inria.fr/o
aml/.[76℄ S. Liang, P. Hudak, and M. Jones. Monad transforners and modular interpreters.In 22nd ACM Symposium on Prin
iples of Programming Languages, ACM, SanFran
is
o, Jan 1995.[77℄ K. Lieberherr and I. Holland. Formulations and bene�ts of the Law of Demeter.ACM SIGPLAN Noti
es, 24(3):67{78, Mar
h 1989.[78℄ K. Lieberherr, I. Holland, and A. Riel. Obje
t-oriented programming: An obje
-tive sense of style. In Pro
eedings of OOPSLA '88 Conferen
e, pages 323{334,September 1988.[79℄ B. Liskov. Data abstra
tion and hierar
hy. SIGPLAN Noti
es, May 1988.

BIBLIOGRAPHY 285[80℄ R. Malan, R. Letsinger, and D. Coleman. Obje
t-Oriented Development at Work:Fusion in the Real World. Prenti
e-Hall, 1996.[81℄ J. Martin. Prin
iples of Obje
t-Oriented Analysis and Design. Prenti
e-Hall, 1993.[82℄ R. Martin. Designing Obje
t-Oriented C++ Appli
ations using the Boo
h Method.Prenti
e-Hall, 1995.[83℄ J. A. M
Dermid. Software Engineer's Referen
e Book. Butterworth-HeinemannLtd, 1991.[84℄ B. Meyer. Obje
t-Oriented Software Constru
tion. Prenti
e-Hall, 2nd edition,1997.[85℄ S. Meyers. E�e
tive C++: 50 Spe
i�
 Ways to Improve Your Programs andDesigns. Addison-Wesley, 1992.[86℄ S. Meyers. More E�e
tive C++: 35 New Ways to Improve Your Programs andDesigns. Addison-Wesley, 1996.[87℄ J. Mi
allef. En
apsulation, reusability and extensibility in obje
t-orientedprogramming languages. Journal of Obje
t-Oriented Programming Languages,1(1):12{35, 1988.[88℄ R. Milner, M. Tofte, R. Harper, and D. Ma
Queen. The De�nition of StandardML - Revised. MIT Press, 1997.[89℄ D. E. Monar
hi and G. I. Puhr. A resear
h typology for obje
t-oriented analysisand design. Communi
ations of the ACM, 35(9), September 1992.[90℄ J. Ni
klis
h and S. Peyton Jones. An Exploration of Modular Programs. In TheGlasgow Workshop on Fun
tional Programming, 1996.[91℄ O'Haskell, 1999. At: http://www.
s.
halmers.se/~nordland/ohaskell/.[92℄ Obje
t faq., 1999. At http://www.
yberdyne-obje
t-sys.
om/oofaq2/.[93℄ W.F. Opdyke. Refa
toring Obje
t-Oriented Frameworks. PhD thesis, Universityof Illinois at Urbana-Champaign, 1992.

286 BIBLIOGRAPHY[94℄ Y. Park and D. Ramjisingh. Stru
turing Software Components based on reusabil-ity. International Journal of Advan
ed Software Te
hnology, pages 271{290, 1995.[95℄ D.L. Parnas. On the
riteria to be used in de
omposing systems into modules.Communi
ations of the ACM., 15(12), 1972.[96℄ L.C. Paulson. ML for the Working Programmer. Cambridge University Press,2nd edition, 1996.[97℄ S. Peyton Jones. The Implementation of Fun
tional Programming Languages.Prenti
e-Hall, 1988.[98℄ S. Peyton Jones. Multi-parameter type
lasses in gh
., 1998. At:http://resear
h.mi
rosoft.
om/Users/simonpj/Haskell/multi-param.html.[99℄ S. Peyton Jones. Ta
kling the Awkward Squad: monadi
 input/output,
on-
urren
y, ex
eptions, and foreign-language
alls in Haskell, August 2000. At:http://resear
h.mi
rosoft.
om/users/simonpj.[100℄ S. Peyton Jones et al. Haskell 98: A Non-stri
t, Purely Fun
tional Language.,February 1999. At http://www.haskell.org/onlinereport/.[101℄ S. Peyton Jones et al. Standard Libraries for the Haskell 98 Programming Lan-guage, February 1999. At http://www.haskell.org/onlinelibrary/.[102℄ S. Peyton Jones, M. Jones, and E. Meijer. Type Classes: an exploration of thedesign spa
e. In Haskell Workshop., Amsterdam, The Netherlands., June 1997.[103℄ S. L. Peyton Jones and P. Wadler. Imperative fun
tional programming. In Sympo-sium on Prin
iples of Programming Languages, Charleston, USA, January 1993.ACM.[104℄ S.L. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glas-gow Haskell
ompiler: a te
hni
al overview. In Pro
. of the UK Joint Frameworkfor Information Te
hnology (JFIT) Te
hni
al Conferen
e., 1993.[105℄ Pizza, 1999. At: http://
m.bell-labs.
om/
m/
s/who/wadler/pizza/.

BIBLIOGRAPHY 287[106℄ R. Plasmeijer and M. van Eekelen. The Con
urrent CLEAN Language Report(version 1.3), 1997.[107℄ E. Poll. Subtyping and inheritan
e for algebrai
 datatypes. Unpublished, 1997.[108℄ E. Poll. Behavioural subtyping for a type-theoreti
 model of obje
ts. In FOOL5:Fifth International Workshop on Foundations of Obje
t-Oriented Languages, Jan-uary 1998.[109℄ R. Pooley and P. Stevens. Using UML: Software Engineering with Obje
ts andComponents. Addison-Wesley, 1999.[110℄ Prograph CPX. 200 Barrington Street, Suite 401, Halifax, Nova S
otia, Canada.[111℄ C. Reade. Elements of Fun
tional Programming. Addison Wesley, 1989.[112℄ H.J. Reekie. Realtime Signal Pro
essing: Data
ow, Visual, and Fun
tional Pro-gramming. PhD thesis, University of Te
hnology at Sydney, September 1995.[113℄ D. Riehle and H. Z�ullighoven. Understanding and using patterns in softwaredevelopment. Theory and Pra
ti
e of Obje
t Systems., 2(1):3{13, 1996.[114℄ A. Riel. Obje
t-Oriented Design Heuristi
s. Addison-Wesley, 1996.[115℄ R. Rist and R. Terwilliger. Obje
t-Oriented Programming in Ei�el. Prenti
e Hall,1995.[116℄ M. Rittri. Retrieving library identi�ers via equational mat
hing of types. In M. E.Sti
kel, editor, 10th Int. Conf. on Automated Dedu
tion, volume 449 of Le
tureNotes in Arti�
ial Intelligen
e. Springer-Verlag, 1990.[117℄ M. Rittri. Using Types as Sear
h Keys in Fun
tion Libraries. Journal of Fun
-tional Programming, 1(1):71{90, 1991.[118℄ W.W. Roy
e. Managing the development of large software systems:
on
epts andte
hniques. In Pro
. IEEE WESTCON, pages 1{9, 1970.[119℄ J. Rumbaugh. Relational database design using an obje
t-oriented methodology.Communi
ations of the ACM, 31(4):415, April 1988.

288 BIBLIOGRAPHY[120℄ J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Obje
t-Oriented Modeling and Design. Prenti
e-Hall, 1991.[121℄ C. Run
iman and N. Rojemo. New dimensions in heap pro�ling. Journal ofFun
tional Programming, July 1996.[122℄ C. Run
iman and I. Toyn. Retrieving re-usable software
omponents by poly-morphi
 type. In Pro
. 4th International Conferen
e on Fun
tional ProgrammingLanguages and Computer Ar
hite
ture., pages 166{173. ACM Press, 1989.[123℄ C. Run
iman and D. Wakeling. Appli
ations of Fun
tional Programming. UCLPress Ltd, 1995.[124℄ D. Sanella. Formal program development in Extended ML for the working pro-grammer. In Pro
. 3rd BCS/FACS Workshop on Re�nement., pages 99{130.Springer Workshops in Computing, 1991.[125℄ J. Sargeant, C. Kirkham, and S Hooton. UFO1.0 Referen
e Manual., 1996. Athttp://www.
s.man.a
.uk/ar
h/people/j-sargeant/man/man.html.[126℄ S. S
hlaer and S. Mellor. Obje
t-Oriented Systems Analysis : Modeling the Worldin Data. Yourdon Press, 1989.[127℄ G. S
hneider and J. Winters. Applying Use Cases: A Pra
ti
al Guide. Addison-Wesley, 1998.[128℄ S. Smesters, E. N�o
ker, J. van Groningen, and R. Plasmeijer. Generating EÆ
ientCode for Lazy Fun
tional Languages. In Pro
. 5th ACM Conferen
e on Fun
tionalProgramming Languages and Computer Ar
hite
ture., pages 592{617. ACM Press,1991.[129℄ I. Sommerville and P. Sawyer. Requirements Engineering. Wiley, 1997.[130℄ N. Stern and R. Stern. Stru
tured COBOL Programming. Wiley, 6th edition,1991.[131℄ C. Stra
hey. Fundamental
on
epts in programming languages. In InternationalSummer S
hool in Computer Programming, August 1986.

BIBLIOGRAPHY 289[132℄ B. Stroustrup. What is `obje
t-oriented programming?'. IEEE Software, 5(3):10{20, May 1988.[133℄ B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1994.[134℄ A. Sut
li�e. Ja
kson System Development. Prenti
e-Hall, 1988.[135℄ T
lHaskell - user manual., 1999. At: http://www.d
s.gla.a
.uk/ meurig/T
lHaskell/ ~usermanual.html.[136℄ A. Tolma
h and A. Appel. A Debugger for Standard ML. Journal of Fun
tionalProgramming, 5(2):155{200, 1995.[137℄ J. Marshall Unger. The Fifth Generation Falla
y. Oxford University Press, 1987.[138℄ P. Wadler. Comprehending monads. In Conferen
e on Lisp and Fun
tional Pro-gramming, ACM, Ni
e, Fran
e, June 1990.[139℄ P. Wadler. How to de
lare an imperative. In John Lloyd, editor, InternationalLogi
 Programming Symposium. MIT Press, De
ember 1995.[140℄ P. Wadler. Monads for Fun
tional Programming. In J. Jeuring and E. Meijer, edi-tors, Advan
ed Fun
tional Programming, number 925 in LNCS, B�astard, Sweden,May 1995. Springer.[141℄ P. Wadler. Fun
tional Programming: An angry half-dozen. ACM SIGPLANNoti
es., February 1998.[142℄ P. Wadler. Why no one uses fun
tional languages. ACM SIGPLAN Noti
es.,1999.[143℄ K. Wald�en and J-M. Nerson. Seamless Obje
t-Oriented Software Ar
hite
ture -Analysis and Design of Reliable Systems. Prenti
e Hall, 1994.[144℄ M. Walla
e and C. Run
iman. Haskell and XML:
ombinators for generi
 do
u-ment pro
essing. Te
hni
al report, University of York, 1999.[145℄ J. Warmer and A. Kleppe. The Obje
t Constraint Language : Pre
ise ModelingWith UML. Addison-Wesley, 1999.

290 BIBLIOGRAPHY[146℄ R. Wiener and G. Ford. Modula-2 : A Software Development Approa
h. Wiley,1985.[147℄ R. Wieringa. A survey of stru
tured and obje
t-oriented software spe
i�
ationmethods and te
hniques. ACM Computing Surveys, 30(4), November 1998.[148℄ R. Winder and G. Roberts. Developing Java Software. Wiley, 1998.[149℄ R.J. Wirfs-Bro
k, B. Wilkerson, and L. Wiener. Designing Obje
t-Oriented Soft-ware. Prenti
e-Hall, 1990.[150℄ N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.[151℄ W. Woodman and B. Heal. Introdu
tion to VDM. M
Graw-Hill, 1993.[152℄ E. Yourdon. Modern Stru
tured Analysis. Yourdon Press, 1989.[153℄ E. Yourdon and L. Constantine. Stru
tured Design. Yourdon Press, 1979.[154℄ A. Zaremski and J. Wing. Signature Mat
hing: a Tool for Using Software Li-braries. ACM Trans
ations on Software Engineering., April 1995.[155℄ A. Zaremski and J. Wing. Spe
i�
ation Mat
hing of Software Components. Re-sear
h Report CS-95-127, Carnegie Mellon University, 1997.

