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Abstract

In the last decade, affordable digital camera technology has become
widely available, resulting in the proliferation of digital images. The
creation, modification and distribution of certain photographic mate-
rials is controlled by law in the UK and in many other countries. For
example, the production and possession of pornographic images of un-
der 18s is prohibited in the UK by the Protection of Children Act 1978.
It is similarly an offense to produce, modify and distribute any image
that would be considered useful to a person committing, or preparing
to commit, an act of terrorism under the Counter-Terrorism Act 2008.
Digital image forensics is the science of determining the source of dig-
ital images and detecting the presence of image tampering (e.g. photo
forgery). The majority of research in this area has been conducted in
the last decade by a small number of experts in the field of digital im-
age processing. An understanding of these methods requires in-depth
knowledge of image processing algorithms which most researchers and
educators in the broader field of computer forensics do not possess. In
this paper we describe our Digital Image Analysis for Evidence (DI-
AnE) toolbox, written in the MATLAB programming language. Our
approach is to utilise the inherent imperfections in image sensors that
have previously been shown to produce consistent and unique noise
patterns. The toolbox contains code libraries for generating device
‘fingerprints’ that enable evidential images to be matched to their
source cameras and graphical plots to facilitate easy understanding
of the resulting correlation data. We believe DIAnE to be the only
available MATLAB toolbox that performs this role.



1 Introduction

With the enormous variety of camera enabled devices such as video cameras,
iPods, phones that are now available, digital images are being captured,
stored and transferred across platforms with comparative ease. As a result,
forensic examiners are more likely to be asked to provide evidence pertaining
to the authenticity and integrity of digital images in a court of law. However,
digital image forensics is still a relatively new and rapidly changing field of
research and the number of available software implementations of digital
forensic techniques is limited. One notable exception is steganalysis; the
detection of covertly embedded data (especially in digital images). A good
overview of this subject and relevant software is provided by Provos and
Honeyman [14]

In this paper we use the term camera verification when referring to the
process of matching an evidential image to its source camera and the term
forgery detection to mean detecting regions of an image that have been al-
tered with the intent to deceive. Many of the methods proposed offer ‘weak’
verification in the sense that they are able to determine the make and pos-
sibly the model of a source camera from the content of an image file. One
approach is to look for image artefacts that result from demosaicing the sen-
sor output to obtain red, green and blue values for each pixel [1]. A variation
on this method is described by Celiktutan et al. [2] who record correlations
that occur between adjacent bit planes of an image that result from demo-
saicing. Proprietary demosaicing algorithms may be common to a number
of different camera models produced by a single manufacturer which limits
the effectiveness of the technique, as can the presence of JPEG compression
artefacts. Choi et al. [3] utilise camera lens aberrations to determine the
camera model. Aberrations may be chromatic and caused by inconsistent
focusing of different wavelengths, or radial in which case the sharpness of the
image is a function of the distance from the centre of the lens. Kharrazi et
al. [7] were among the first to suggest a feature extraction based method for
verification. The features used belonged to three categories; wavelet domain
statistics, image quality metrics and colour features.

An alternative and appealing method for camera verification is the use of
image sensor noise. Unlike the methods described above, sensor noise can be
used to differentiate between cameras of identical make and model. Kuro-
sawa [8] used sensor imperfections to determine a ‘fingerprint’ for identifying
a source video camera from video film. Fridrich et al. [11] used the incon-
sistencies with which individual photo-sites in a camera sensor record light
intensity. This property is referred to as Photo-Response Non-Uniformity
(PRNU) and is the main contributing factor in sensor pattern noise. A



wavelet denoising filter [13] was used to extract the pattern noise from im-
ages. Li [10] performed additional image processing on wavelet coefficients
to suppress image content that was contaminating the fingerprints. In their
later work, Fridrich et al. derived the Maximum Likelihood (ML) estimate
of a camera’s PRNU from an imaging model that includes multiplicative and
additive noise terms.

The techniques described so far are all based on properties of the pixel
values. The content of file headers can also contain useful information for
identifying the source of an image. Every JPEG file contains a set of instruc-
tions for decompression. Farid [4] used JPEG Discrete Quantisation Tables
(DQT) for this purpose. Combining DQTs with additional header content
was shown to provide greatly improved discrimination between different cam-
era models. Using file header content has the advantage of being robust to
benign image processing operations.

Since many of the techniques for verification rely on detecting noise or
regular patterns that extend across a whole image, the absence of such fea-
tures in a localised image region would suggest that an alteration has been
made. An image forgery is created in one or more different ways; image
content could be copied from one region and moved to another to conceal
and object, a person or object from one image might be copied and pasted
into another or artistic enhancements/alterations such as localised warping
or airbrushing may take place. A method for detecting forged regions based
on inconsistencies in an image’s pattern noise has been reported [12]. Simi-
larly inconsistencies in chromatic aberration effects may be a sign of image
tampering [6]. Other methods include tracing light from a source to objects
within a scene to determine contradictions in reflected light, and detecting
when an image file’s original DQT has been overwritten by DQT that is char-
acteristic of photo-editing software. An analysis of the relative advantages
of the methods described in this section is provided by Van Lanh et al. [9].

In this paper we introduce a toolbox for camera verification and im-
age forgery detection based on sensor pattern noise. The following section
describes in brief the source and characteristics of image sensor noise. Sec-
tion 2 describes the functionality of DIAnE from a users perspective with
reference to the graphical user interface. Researchers who are interested in
using the toolbox for benchmarking their own algorithms will find the list of
our MATLAB files in Section 3 useful. We validate our toolbox in Section 4
and conclude with a summary and discussion of our work.



1.1 Sensor Pattern Noise

Inside every digital camera and mobile phone is an image sensor which cap-
tures the light intensity of a scene as presented to it by its user. This sensor,
commonly formed from either CCD or CMOS technology, comprises an array
of light sensitive photosites that each produce a digital signal which is propor-
tional to the number of photons incident upon its surface. The digital signal
is passed to an on-board digital image processor in which several operations
can take place including white balance adjustment and image compression.
The digital image is then written to internal memory or removable media
such as Secure Digital (SD) card.

There are a number of potential noise sources within the imaging pipeline
of a digital camera. Shot noise is a random noise component that occurs in
different pixel locations in each image that is captured. Conversely pattern
noise is random only in the sense that there is no spatial structure to its dis-
tribution over a single image. It is found consistently in same pixel locations
in every image that is captured (by a single camera). Pattern noise consists
of fixed pattern noise (caused by dark currents) which is additive and can
be observed when no light enters the camera and a multiplicative compo-
nent, PRNU noise, that dominates when the sensor is illuminated. Since
the pattern noise is consistent between images it can be extracted by apply-
ing a filter to a sample of images from the same camera to suppress scene
content. Averaging the resulting noise residuals removes shot noise and re-
maining traces of image objects. The distilled pattern noise which is mostly
attributable to PRNU can used as a fingerprint that uniquely identifies the
camera from which it originated.

2 Using DIAnE Version 1

DIAnE vl is a MATLAB toolbox that is freely available under the terms
of the GNU General Public License. It was developed to illustrate the use
of sensor pattern noise in digital image forensic applications. A graphical
user interface has been included to enhance the educational benefits of the
toolbox, making it easily accessible to teachers and students with minimal
previous experience of the MATLAB environment. DIAnE was written using
MATLAB Version 7.10.0.499 (release 2010a) on a Windows platform. The
MATLAB Image Processing and Wavelet Toolboxes must be installed as our
code depends on them. In the remainder of this paper we use the term
fingerprint when referring to average noise residual extracted from a sample
of training images using the wavelet denoising filter described by Mihcak.



PRNU pattern will mean the noise residual extracted from a single evidential
(out-of-sample) image using the same denoising filter. In this section we
provide an overview of DIAnE from a user’s perspective.

2.1 Property Viewer

For a selected evidential image, the property viewer displays Exchangeable
image file format (Exif) data. The toolbox saves PRNU patterns with the
file extension .evi and camera fingerprints with a .fpt file extension. Both file
types contain MATLAB structures for the properties of PRNU patterns and
fingerprints respectively. These properties are also accessible in the viewer.

2.2 Building a Camera Fingerprint

DIAnE contains fingerprints for 15 cameras in its standard database. Addi-
tional fingerprints may created as described in this section. When building a
new fingerprint for a camera, sample images are selected using a standard di-
alog box. A minimum of 50 sample images are usually required to produce a
fingerprint and the advantage of using more than 300 images is negligible (see
Section 4). Fingerprints are constructed from 512x512 pixel blocks cropped
from the top left hand corner of each sample image. There is some evidence
to suggest that a more reliable fingerprint can be obtained by using a central
image block. We believe this is attributable to image saturation, and hence
the loss of pattern noise, in sample images that contain sky. For camera
verification we use the PRNU pattern extracted from the green colour plane
only. There are twice as many photosites in the sensor that record green
light as there are for either red or blue light. For a specific camera the fin-
gerprint is calculated as the mean noise residual over a sample of images.
We found that the maximum likelihood estimate [5] produced only a small
improvement in the fingerprint and this step is not included in our code.

2.3 Camera Verification

The first step in verifying the source camera for an evidential image is to
extract the image’s PRNU pattern from the top left 512x512 image block.
The fingerprint for the suspected source camera is selected from the finger-
print database. DIAnE returns the product moment correlation coefficient
between the fingerprint and the PRNU pattern of the evidential image. If the
evidential image originated has from the suspected source camera, we expect
the correlation to be high. Conversely if the selected device is not the source
of the evidential image the correlation coefficient should be low. We quantify



this statistically by fitting the correlation coefficients for non-matches to a
normal distribution and defining a threshold for correlation which if exceeded
indicates a match. By default this threshold is set for a correlation coefficient
for which the cumulative distribution function is equal to 95% of the area
under the normal curve. This is demonstrated graphically when the stem
marker on plot lies within the dark shaded region of the normal plot as seen
in Figure 1

Multiple evidential images may be compared simultaneously. In this case
there are two options for displaying the data; the normal distribution plot
with multiple image markers or a correlation plot of the nominal data in
which the correlation is plotted against image number.

2.4 Forgery Detection

The objective of forgery detection is to identify region(s) of an evidential
image that have been altered (e.g. pasted from another image). The toolbox
achieves this by utilising the PRNU pattern to identify regions of interest
within the evidential image. As before, we assume that a sample of images
from the source camera is available to build a fingerprint. Here a fingerprint
is required for the whole sensor (i.e. not only the top left hand corner as in
camera verification). Under the assumption that we have no prior knowledge
of the region in which the forgery has taken place, the PRNU pattern must
be determined for the entire evidential image. The PRNU pattern is then
split into 128x128 image blocks each of which is correlated with the corre-
sponding region from the device fingerprint. Our empirical studies suggest
that this block size offers a good compromise between localising the altered
region(s) and having a sufficiently large image area to obtain a reliable cor-
relation coefficient. The significance of the resulting correlation coefficient
is obtained by considering the correlation between the 128x128 fingerprint
block and 15 128x128 PRNU pattern blocks the neighbour the region on
interest and collectively form a larger 512x512 image block. Neighbouring
bocks are assumed to have similar image statistics to the region of interest
(although this assumption does not always hold). Correlation coefficients are
fitted to a normal distribution as before. Here a large correlation coefficient
suggests that forgery has not taken place in the 128x128 region of interest.
A null hypothesis is postulated which states that no forgery has taken place.
By default, the alternative hypothesis (region of interest altered) is accepted
if Pr(r) < 0.05. Alternatively the 0.05 threshold can be adjusted manually
to reduce the False Acceptance Rate (FAR). For visualisation purposes DI-
AnE plots a fine grid with 128 pixel spacing to indicate the image blocks and
a course grid with 512 pixel spacing to indicate a the membership of a block
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Figure 1: Camera verification interface.

to a neighbourhood (Figures 5&Figure 6). Regions of interest (suspected
altered regions) are highlighted with semi-opaque shading. Fingerprints ob-
tained from pattern noise have only modest robustness to re-compression
at lower JPEG quality. This is an unavoidable limitation of the technique
and to reduce the FAR we recommend saving image forgeries at 100% JPEG
quality or in non-lossy format such as png, tiff or bmp.

3 Toolbox contents

DIAnE vl contains the following MATLAB M-files that are available for
use and modification by researchers who wish to compare the pattern noise
fingerprinting technique with their own methods for verification and forgery
detection. The project URL is:
http://www.kent.ac.uk/physical-sciences/research /fig/diane.html

4 Validation of Toolbox

To validate our toolbox we replicated previous studies and compared the
results. The graph in Figure 2 shows the correlation between camera finger-
print and PRNU pattern (both from the same camera) as a function of sample
size. To minimise the influence of scene content, the mean correlation coeffi-
cient was calculated using PRNU patterns extracted from 15 out-of-sample



DIAnE v1 file

Description |

DIAnE_GUILm

Graphical user interface for camera verifica-
tion and forgery detection.

blockCorrelation.m

Split image (or image block) into sub-blocks.
Correlate each block from the evidential im-
age with all blocks in the camera’s fingerprint
on a block by block basis - used in forgery de-
tection.

blockVisualisation.m

Overlay grid and shade modified image re-
gions.

createFPT.m

Estimate camera fingerprint from sample of
images known to originate from the source
device.

wavelet Denoising.m

Wavelet denoising filter based on the proce-
dure outlined by Lukac, Goljan and Fridrich
in their paper on forensic camera identifica-
tion. Utilizes Mihcak’s method for wavelet
denoising.

im2blocks.m

Convert image into a cell array where each
cell is an MxN image block of the input im-
age A. Cell indexing uses block matrix con-
vention.

normalPlot.m

Normal plot for camera verification tool.
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Figure 2: Improvement in fingerprint clarity achieved by increasing the number
of sample images used to generate a fingerprint for a Sony Cybershot.

images. In this study the top left hand 512x512 pixel image region was used.
A compromise is sought between clarity of the fingerprint and the number
of sample images used. As expected the clarity of the fingerprint improves
logarithmically with sample size and there is negligible improvement beyond
300 images. In Figure 2 the maximum correlation coefficient achieved after
300 sample images for our Sony Cybershot is approximately 0.15. Lukas
et al. [11] reported a maximum value of 0.09 for an Olympus C765 using
the same number of sample images but in TIFF format rather than JPEG.
Their results were obtained by averaging the results of 20 out-of-sample im-
ages. Reasons for the difference in performance could be due to differences
in scene content between the two image sample groups or different noise
characteristics of the sensors.

Obtaining the image noise residual using the wavelet denoising filter is
computationally intensive with processing time increasing linearly as a func-
tion of image area. This is particularly apparent when generating whole
image fingerprints for forgery detection. For example, it took 140 minutes to
generate a 3888x2592 fingerprint using 100 sample images from the Canon
EOS40D on a desktop PC with a 3.07GHz CPU and 3.24GB of RAM. For-
tunately this calculation can be made off line.

The ability to discriminate between a source camera and other devices
was demonstrated by a simple experiment. Fingerprints were generated for a
Canon 40D Digital SLR, Fuji FinePix BigJob, Apple iPhone 4, Sony Cyber-
shot and a Sony Ericsson phone camera using a sample of 100 natural scene
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Figure 3: Verification of source camera using 50 evidential images from the Canon
EOS 40D.

images in each case. These where correlated with PRNU patterns extracted
from 50 evidential (out-of-sample) images known to have originated from the
Canon 40D. As can be seen from Figure 3, the resulting correlation coeffi-
cients are higher for the source camera than for any other device. These are
similar to previously published results [11]. We found that our toolbox was
also able to verify the correct source when a comparison is made between
two cameras of identical make and model (not shown here).

The plot in Figure 3 indicates a weak correlation of the evidential im-
ages with the Sony Cybershot and a weak negative correlation with the Sony
Ericsson. We attribute this to stripe artefacts in the fingerprint caused by de-
mosaicing and image compression that takes place within the camera. These
artefacts were suppressed by subtracting the pixel row and pixel column
means from the noise residual images as proposed by (Chen, Fridrich, &
Goljan, 2007). Recalculating the correlation coefficients with this modifica-
tion improves the ability to discriminate between the correct source camera
and other cameras as observed by comparing Figure 3 with Figure 4.

Figure 5 shows a forgery in which a subject has been added to the image
scene and Figure 6 shows a duplicate of this image in which the modified
image blocks have been detected and shaded by DIAnE’s forgery detection
tool.
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Figure 4: Data from Figure 3 reprocessed to remove stripe artefacts which results
in better discrimination between the true source and other cameras.

Figure 5: Image forgery.
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Figure 6: Altered region detected by inconsistency in PRNU pattern.

5 Conclusion

We have described a MATLAB toolbox for digital image forensics that utilises
sensor pattern noise. This technique has the advantage of distinguishing be-
tween cameras of identical make and model but is only applicable when a
sample of training images are available that are known to have originated
from the source camera (or equivalently if source camera is available). The
toolbox has been validated by showing the repeatability of results obtained
in previous studies. Using DIAnE we observed that method for forgery de-
tection was prone to high FAR in regions of an evidential image in which the
intensity was low or regains that contained a lot of high spatial frequency con-
tent. Of the cameras we tested, models fitted with CMOS sensors produced
more distinctive fingerprints than cameras fitted with CCD sensors although
this may not be a statistically significant result. It is our intension to ex-
tend the functionality of DIAnE in the future to accommodate a broader
range of techniques that reflect current interests in the rapidly advancing
subject of digital image forensics. We would like to thank the Nuffield Foun-
dation for their support during the very early stages of this work (grant ref:
URB/38565).
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