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Abstract

Timed automata provide useful state machine based rep-
resentations for the validation and verification of real-
time control systems. This paper introduces an algorith-
mic methodology to translate the state space visualization
of a centralized real-time control system to a decentralized
one. Given a set of timed automata representing a central-
ized real-time control system, the algorithm partitions them
into a collection of interacting submachines. Importantly,
this methodology allows for model-checking of the derived
decentralized system against the same set of verifications
as that specified for the centralized system. The complex-
ity analysis of the algorithm is presented as a function of
the number of tasks and nodes comprising the decentralized
system.

1. Introduction

Current trends in the development of microprocessor
hardware, a need for lesser maintenance overheads, bet-
ter scalability, and robustness are driving modern real-time
control systems from centralized to decentralized architec-
tures. Such a decentralized architecture consists of a set of
loosely coupled nodes, which communicate with each other
by means of a broadcast bus. Different approaches for de-
centralization of a centralized real-time control system have
been discussed in literature [4, 6, 8, 10]. An important re-
quirement on the process of decentralization is that the de-
centralized system should satisfy the same verification cri-
teria as the centralized system. This ensures that the decen-
tralized system provides the same functionality from the de-
signer’s perspective. The correctness of the system can be
verified by specifying the reachability, safety and liveness
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properties [2] that should always hold if the system has to
meet its specifications.

Timed automata provide a useful state machine based
representation for the validation and verification of a real-
time system. The verification tools like UPPAAL [2, 3]
accept such timed automata as input and perform model-
checking based on a given set of verifiable properties speci-
fied by the real-time system requirements. In this paper, we
detail an algorithmic methodology to perform such a verifi-
ably correct decentralization of a centralized real-time con-
trol system. The centralized real-time control system, con-
sisting of interdependent tasks, is modeled using timed au-
tomata and the decentralization is achieved by distributing
the states of the timed automata over the processing nodes
comprising the decentralized system. To our knowledge,
this methodology is novel in its presentation of a consis-
tent procedure for moving from centralized to decentralized
real-time control and we expect that it will serve as a com-
ponent in the process of modeling large-scale distributed
real-time systems.

The rest of the paper is organized as follows. Section 2
describes the representation of a centralized real-time con-
trol system as a collection of timed automata. Section 3
describes the state space partition model of a decentral-
ized real-time control system. Section 4 derives complexity
measures for the algorithm. The paper concludes with Sec-
tion 5.

2. Timed automata model of a centralized real-
time control system

A centralized real-time control system consists of a set
of interdependent tasks that execute concurrently, under
deadline constraints, managed by a central scheduler. Each
task consists of a collection of modules, which execute in
a particular sequence and represent the elementary com-
puting functions performed within the task. The flow of
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control in such a system can be suitably represented by a
task dependency graph, which is a directed acyclic graph
� � �����. The vertices � of the graph represent the mod-
ules ��� � � � � �� �� comprising the tasks, where � is
the total number of modules. The edges � represent execu-
tion dependencies between these modules. Figure 1, depicts
a task dependency graph for two tasks ��� � 	 � �� �� each
consisting of a set of modules. The task �� is comprised
of five modules ���������������� and the task ��
is comprised of three modules ����������. For every
task ��, there is an associated deadline 
� that specifies the
time starting from the release time of the task within which
all the modules in �� must complete their executions. The
edges of the graph represent the following possible types of
dependencies between the modules:

Order dependencies are identified by solid edges, and in-
dicate that the execution of a module depends on the
completion of, or on the data from, one or more mod-
ules. In Figure 1, the module �� is order dependent
on the module ��.

Temporal dependencies are identified by dashed edges,
and indicate that a module must finish its execution
within a certain time from the completion of another
module. In Figure 1, the modules �� and �� have a
temporal dependency � � �, specifying that �� must
complete within four time units of the completion of
��.

Control dependencies are identified by dotted edges that
denote mutually exclusive execution paths. The mod-
ules in an execution path can depend on other mod-
ules, except those in another mutually exclusive ex-
ecution path. During runtime one of these execution
paths is chosen, taking care of the dependencies along
that path. In Figure 1, after �� completes its execu-
tion either the path with the module �� or the path
with the module �� is chosen. The module�� is trig-
gered after the completion of �� or ��, depending on
the execution path chosen during runtime.

The whole execution system represented above, consist-
ing of the modules and the associated control flow, can be
conveniently modeled by a set of timed automata. The the-
oretical basis for such automata has been previously devel-
oped [1] and extended [3] as a suitable means of modeling
real-time systems. We base our construction and semantics
of timed automata on that defined and used in UPPAAL [2],
in which a timed automaton is a 6-tuple

�
����� ��
��� �

�

where

� � is a set of locations,

� �� � � is the initial location,

��

��

��

�� ��

��

��
��

��
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���� �� ���� ��

� � �

Figure 1. A simple task dependency graph

� � is a set of clocks,

� 
 is a set of actions, and

� � � � � 
 � ���� � �� � � is a set of transitions.
An edge ��� �� Æ� �� ��� in � represents a transition from
a location � to a location �� with an action �. The set
� � � is the clocks to be reset with this transition, and
Æ is a clock constraint.

� � � �� ���� is a function that maps the locations to
the clock invariants.

Based on this definition, we construct a timed automaton
(TA) denoted by 	�, for each task �� in a real-time system
by introducing the following abstractions:

� In a centralized real-time control system, a scheduler
allocates resources and schedules the modules at times
based on a scheduling mechanism. In our model, we
assume a timed automaton representation of the sched-
uler is available and the automaton generates ���	��
and ��
� synchronization actions [2] that are sent to
the timed automata representing all tasks.

� A module �� in the task �� corresponds to a location
�� in 	� . Further, when module �� is executing 	�

is at ��.

� 	� is initially at the location ��

�
, which is defined to be

the idle location. Further, whenever no module from
�� is executing,	� returns to ��

�
.

� When module �� begins its execution, 	� receives
the ���	�	 synchronization action from the scheduler,
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which also sets the variable ����� to the value �. This
variable ensures that only the transition to location ��

is enabled. On reception of this action,�� moves from
��

�
to ��, if for every module ��� that �� depends

on, the variable ��� has been set. The variable ��� is
set by the scheduler when the module ��� finishes its
execution.

� When the module �� finishes its execution, �� re-
ceives the �	�� synchronization action from the sched-
uler, which also sets the variable ����� to the value �.
On reception of this action,�� moves from �� back to
��

�
, and sets the variable �� to indicate the completion

of ��.

� In order to time the execution of the complete task,
a clock 
� is associated with each ��. When the first
module in �� begins its execution, 
� is reset. When
the last module in �� completes, 
� is checked against
the deadline ��.

� For the next run of ��, all the associated �� variables
are reset to their initial values.

Figure 2 and Figure 3, show the TAs constructed using the
above abstractions for the tasks �� and �� in Figure 1 re-
spectively.
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Figure 2. Timed automaton �� for Task 1

To further elucidate the model described above, we con-
sider the TA �� for Task ��, in Figure 3. The automaton
has three locations ��, �� and �� representing the modules
��, �� and �� respectively. Initially the automaton is in
the idle state ��

�
. When the ��
�	� synchronization action

indicating the start of execution of �� is received, the au-
tomaton moves from��

�
to �� after resetting the clock timer
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Figure 3. Timed automaton �� for Task 2


�. On the completion of �� the �	�� synchronization ac-
tion is received, which triggers the automaton to move back
to ��

�
after setting �� and resetting the clock 
� to track the

fulfilment of the temporal dependency�. Similarly, the ex-
ecution of modules�� and �� result in transitions to states
�� and ��, respectively. During the transition from �� to
��

�
, both clocks 
� and 
� are verified to be within their cor-

responding limits.
The above timed automata model is capable of model-

ing all the three execution dependencies between the tasks
of a real-time control system. The order dependencies are
modeled by setting and checking for the variables �� . The
control dependencies are modeled by the fact that, based on
the ����� variable set by the scheduler one of the mutually
exclusive execution paths is chosen for execution. Finally,
the temporal dependencies are modeled using the mecha-
nism of resetting clocks and associating appropriate clock
constraints with the transitions.

3. State space partition model of a decentral-
ized real-time control system

The global state of a centralized real-time system devel-
oped so far changes when at least one of the tasks changes
its state. Thus the global state of the system can be viewed
as a composition of the states of the individual tasks. Con-
sequently, the problem of decentralizing this state over a
collection of interconnected processing nodes can be han-
dled on an individual task basis, adhering to the following
sequence of steps:

1. The set of concurrent tasks composing the real-time
system is identified.
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2. The timed automaton for every identified task is de-
rived, as detailed in Section 2.

3. An allocation plan, which maps each module of each
task to a node is obtained. This can be viewed as a
combinatorial problem that involves deriving a suitable
scheduling and allocation of the modules to the pro-
cessing nodes, while at the same time satisfying the
real-time deadline constraints. The work in [8] treats
this problem as one of linear optimization, and given
a task dependency graph similar to that in Figure 1,
generates an optimal allocation plan and a schedule
for each node, taking into consideration the comple-
tion deadlines, dependencies between modules, and al-
lowed system utilization limits. Such a plan can also
be determined by alternate methods [4, 6, 10].

4. Based on the assignment in Step 3, the TAs of the
tasks are partitioned into several interacting subma-
chines at each processing node. These timed subma-
chines model the original system functionality by com-
municating with each other using broadcast messages
on the bus.

5. The system bus is modeled by a timed automaton. The
automaton models a queued messaging interconnect,
introducing either fixed (e.g. synchronous TDMA) or
variable transmission delays (e.g. CAN) [5] for the
delivery of messages between the nodes.

In our model, the bus automaton � has the following loca-
tions:

1. A ���� location indicating an idle bus, and an empty
message queue.

2. A ���� location indicating an occupied bus, and one
or more messages in the queue.

� transitions from ���� to ���� on receiving the ���� syn-
chronization action, and adds the message to be transmit-
ted to the queue. Whenever at the ���� location, after a
delay time determined by the type of the bus being mod-
eled, � removes a message from the queue depending on
the scheduling mechanism of the bus and delivers it. If the
queue is empty, it moves back to the ���� location. Else, it
delivers the next message to be scheduled on the bus.

State machine decomposition is an approach used in the
field of digital design to minimize the area, delay, or power
required, in sequential logic circuit design [7, 9]. We now
detail an algorithmic approach to efficiently perform such
a state machine decomposition for a given set of TAs pro-
vided as an input. The logic of the algorithm is explained
below.

1. The primary inputs to the algorithm are the TAs repre-
senting the tasks constituting the centralized real-time
control system and an allocation plan. This plan is as-
sumed to be derived as described above in Step 3 of
the decentralization procedure.

2. Let �	�� be the set of modules, and �
�� the set of
nodes. Each node 
� has a scheduler, which gener-
ates ������� and ��
� � synchronization actions, that
are sent to all modules assigned to
� . Since each node
scheduler works in parallel with the other node sched-
ulers, the ��
�
 variable cannot be global to all the
schedulers. Hence, the scheduler of each node 
� has
its own variable ��
�
� to control the submachines
running at that node.

3. The algorithm populates the submachines �	���,
where 	�� represents a portion of the task �� execut-
ing on the node 
� . Each 	�� is initialized with an
idle location ��

�� .

4. The algorithm analyzes the TAs given, and for each
location �� in a TA �� assigned to 
� it creates a cor-
responding location �� in the submachine 	�� .

5. It then examines each transition in ��, and if it finds
an incoming transition from ��

� to �� it creates a cor-
responding transition from ��

�� to �� in 	�� , with the
following expressions [2]:

(a) The ������ synchronization action from the orig-
inal transition in �� is copied as �������. This
ensures the transition to location �� is triggered
only by the scheduler of node 
� .

(b) In the check for the ��
�
 variable the variable
name is changed to ��
�
� .

(c) Clock reset and clock constraint expressions are
copied as is.

(d) For each variable ��� checked for by the transi-
tion in ��, which is set by a transition from a lo-
cation ��� assigned to a node 
���� �� ���, ��� is
replaced with a corresponding variable ��� . Oth-
erwise, ��� is copied as is.

6. If the transition in �� is an outgoing transition from
�� to ��

� , and the variable �� set by this transition is
checked for by another transition to a location ��� as-
signed to a node 
���� �� ���, a committed location [2]
and two transitions are created in	�� , as explained be-
low:

(a) A transition from �� to a committed location is
created, with the following expressions:
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i. The ���� synchronization action from the
original transition in �� is copied as �����,
this ensures the transition to location �� is
triggered only by the scheduler of node �� .

ii. In the check for the����� variable, the vari-
able name is changed to ������ .

iii. Clock reset and clock constraint expressions
are copied as is.

iv. The assignment to set the variable �� is
copied as is.

(b) A transition from the committed location to
��

�� is created. A synchronization action ��	� is
added to the transition, and the variable �
��� is
set to the value �. This action is sent to the bus
automaton �. The bus automaton reacts to the
��	� synchronization action by adding the mes-
sage to be delivered to its queue, and eventually
setting the corresponding variable 
� after a de-
lay determined by the type of the bus being mod-
eled.

7. On the other hand, if the transition in�� is an outgoing
transition from �� to ��

� and the variable �� set by this
transition is not checked for by any other transition, a
transition from �� to the initial location ��

�� is created
with the following expressions:

(a) The ���� synchronization action from the origi-
nal transition in �� is copied as �����.

(b) In the check for the ����� variable, the variable
name is changed to ������ .

(c) Clock reset and clock constraint expressions are
copied as is.

(d) The assignment to set the variable �� is copied as
is.

It is important to note that the algorithm assumes that the
clocks used in the decentralized system are global [2] to
all automata and that the read and write operations to these
clocks can be performed in a synchronous, consistent man-
ner.

The state partition algorithm detailed thus is now applied
to partition the TAs in Figures 2 and 3, from our example in
Figure 1. Let us assume that the decentralized system con-
sists of two processing nodes �� and ��, which are con-
nected by a FIFO broadcast bus. We provide the following
inputs to the algorithm:

1. The TAs representing the tasks �� and ��.

2. An allocation plan which maps the modules ��, ��,
��, �� and �� to the node ��, and the modules ��,
�� and �� to the node ��.

The algorithm generates four partitioned submachines���,
���, ��� and ��� as shown in Figures 5, 6, 7, and 8 re-
spectively.

The FIFO bus is modeled by the timed automaton shown
in Figure 4. The automaton maintains a circular buffer of
length ���, with two pointers ����� and ���� which point
to the first and last message in the 	���� respectively. These
pointers are updated whenever a message is added or re-
moved from the 	����, taking care of the boundary condi-
tions of an empty or a full 	����. The clock �� tracks the
fulfilment of the message transmission delay ���.
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Figure 4. Timed automaton for a simple FIFO
broadcast bus
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Figure 5. Submachine ���

The submachines ���, ���, ��� and ���, in combi-
nation with the bus automaton realize an equivalent decen-
tralized model of the centralized real-time control system
shown in Figure 1. The functional equivalence of the au-
tomata representing the centralized system and the subma-
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chines in combination with the bus automaton represent-
ing the decentralized system can be confirmed in UPPAAL,
by verifying that the relevant reachability, safety and live-
ness properties identified for the centralized case continue
to hold for the decentralized case. Thus the decentralized
model provides a verfiably correct decentralization of the
given centralized system.
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Figure 6. Submachine ���
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Figure 7. Submachine ���
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Figure 8. Submachine ���

4. Complexity analysis

We now present a brief analysis of the time and space
complexity of the state partition algorithm presented in Sec-
tion 3. This analysis provides an important insight into the
processing requirements of the algorithm.

In order to calculate the complexity measures of the al-
gorithm, we first define the following execution parameters:

� � is the number of tasks in the real-time system being
modeled.

� � is the number of processing nodes.

� � is the maximum number of elementary modules in a
task.

� � is the maximum number of elementary modules of a
task assigned to a node.

� � is the maximum number of variables of the type ���

associated with the incoming transition to a location.

4.1. Time Complexity

An expression for the time complexity of the algorithm
is derived from the following observations:

� Each location in a TA representing each task is pro-
cessed once. This processing has a complexity of����

�� . For each such location, the incoming and outgoing
transitions associated with it are examined.

– Each variable checked for by the incoming tran-
sition is examined. The complexity of this pro-
cessing is approximately���� .

– For each variable set by the outgoing transition
from the location, the algorithm verifies whether
it is checked for by an incoming transition to a
location on a different node. The complexity of
this processing is ��� � � � �� .

Combining the above, we conclude that the time complexity
of the algorithm is ��� � � � � � �� � �� � ��.

4.2. Space complexity

The approximate space complexity of the state partition
algorithm, calculated by a reasoning similar to that for as-
certaining time complexity, is ��� � � � ��� � � � � � ��, and
stems from the following facts:

� The storage requirement for the TAs grows as ��� � � �

��.
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� The storage requirement for the submachines grows as
��� � � � � � ��.

Combining the two measures, we arrive at the space com-
plexity measure given above.

In practice, an efficient implementation of the algorithm
can mitigate the above complexity estimates, by means of
well-designed data structures that support efficient search
and update operations. Further, in case of a real-time con-
trol system consisting of a large number of concurrent tasks,
both time and space complexity of the model can be signif-
icantly reduced by considering separately the operation of
the system in different functional modes, where a mode is
a clearly distinguishable operational phase of the system.
This is because not all tasks in the system are required in
all of these functional modes, i.e. certain tasks may be ex-
clusive to one mode of operation. This approach would pro-
vide a suitable means for managing the potential state space
explosion problem that could occur when modeling large
real-time control systems.

5. Conclusion

In this paper we have discussed a state space partition
methodology for verifying the decentralization of a central-
ized real-time control system. The timed automata model-
ing a centralized system are partitioned into a collection of
interacting submachines running on the different nodes of a
decentralized system. Further, the process of decentraliza-
tion also models an automaton for the bus and the message
transmission delays therein. The distributed submachines,
along with the bus automaton, provide a verfiably correct
decentralization of the given centralized system. When in-
tegrated into an overall system design, the state partition
algorithm would serve as a base for better visualization of
the dynamics of the decentralized system, and provide for
validation and verification of the decentralized real-time ar-
chitecture, and its reaction to failures, both of the processing
nodes, and of the bus.
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