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Abstract

This thesis describes the technical concept, design and implementation of a
novel facial composite system which exploits the intrinsic human capacity for
facial recognition and comparison.

Existing commercial systems for the computer generation of facial compos-
ites suffer from some well-documented weaknesses, notably the tendency to
focus exclusively on featural information. The scientific, psychological and op-
erational motivation for a new approach is first outlined and then the basic
design presented. A system based on this novel approach, known as EigenFIT,
is adaptable and exploits the concept of knowledge integration in which global,
featural and semantic information supplied by a witness can all be seamlessly
incorporated into the composite construction process.

The work presented is primarily concerned with the generation and manipu-
lation of plausible face stimuli which are displayed in a manner that is matched
to the needs of witnesses and composite operators. A model of facial appearance
based on statistical learning procedures is outlined. The thesis shows how this
model can be combined with suitable image processing techniques to generate
near photo-realistic composite faces across gender, ethnic origin and age.

Also described is advanced functionality which allows a witness to directly
manipulate individual features, automatically age faces, combine faces and alter
perceived facial attributes in a simple and direct fashion. A novel exploration of
the caricature effect and its potential impact on effective composite production
is also presented. Preliminary results of both laboratory testing and trials of the
prototype system and its experimental, operational use by U.K. police forces is
discussed.

A computer terminal is not some clunky old television with a type-
writer in front of it. It is an interface where the mind and body can
connect with the universe and move bits of it about.

Douglas Noel Adams
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Chapter 1

Introduction to facial

composites

In the event of a crime, police officers often rely to some extent on a witness

to provide a comprehensive account of the incident. In some circumstances,

the witness has to convey a description of the perpetrator based only on a

brief encounter. The pertinent question is how do you accurately convey the

perpetrator’s face when the image only exists as a memory in the witness’ mind?

This corresponds well to the typical circumstances under which a trained

police officer will subsequently work with the victim (or other witness to a

crime) in an attempt to produce a facial likeness or facial composite of the

perpetrator. Unless the witness is a gifted artist it is unlikely that he or she

will be able to provide a reliable sketch of the offender/perpetrator. Typically,

assuming of course that the attacker is unknown to the witness, he or she

will first be asked to provide a detailed verbal description of the attacker and

to recount the incident in as much detail as possible. When the interview is

complete, an attempt is then made to produce a likeness under the guidance

of a specially trained operator. Whilst sketch artists are still used widely in

the U.S., this process will most likely (in the U.K. at least) use some form of

computerized facial composite system. A facial composite system is therefore

a tool designed to allow the expression of the facial appearance retained in the

witness’ memory in some tangible form such as a digital image or computer

print-out. The desired outcome is that the generated composite be of sufficient

accuracy that subsequent display to members of the public will result in direct

recognition and that the details of the suspect will be supplied to the police. In

many cases, a generated composite may not be accurate enough to produce a

definite ’hit’ but will nonetheless provoke members of the public who recognize

basic similarities to provide the names of possible suspects. In most cases, it
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is the combination of the composite with other basic information such as age,

build, domicile and the type of crime that results in the provision of suspect

names.

The process by which a witness and a composite operator arrive at a fi-

nal facial composite is a complex interplay of computer imaging and human

cognitive function and the final result depends on a number of factors. The

overall success of the composite process is, first and foremost, reliant on the

witness’ ability to retain some memory of the face in question. Undoubtedly

some people are better equipped to perform this task than others. Other fac-

tors such as the witness’ state of mind (i.e. they may be in various degrees of

shock as a result of the crime), the period of time over which the crime took

place, the proximity of the perpetrator to the witness during the crime, and the

time elapsed between the crime and the composite construction will also affect

the memory. From a scientific and technological perspective, there are critical

aspects to consider in the design of an effective composite system. It should

provide sufficient flexibility of use and image quality to meet the needs of dif-

ferent witnesses and operators and should be constructed, as much as possible,

to match their normal cognitive processes.

In the absence of any photographic evidence such as CCTV footage, the

witness’ memory of the perpetrator will be the only means for constructing a

resemblance to the face and it is vital to the successful progress of many criminal

investigations that the best possible result be obtained. Although systematic

methods for remembering faces have been outlined by Penry, the inventor of the

PhotoFIT system [71] it is unreasonable and impractical to expect that potential

witnesses and victims will be well trained in these techniques. Rather, the

emphasis must be on the design of composite systems and associated interview

techniques which allow the best evidence to be produced by ordinary members

of the public. A substantial body of psychological research (which is discussed in

more detail in the following sections) suggests that the vast majority of existing

facial composite systems may not operate in a way which allows this.

The key point emerging from this work is the relative weakness of human-

beings at the process of recall and description of faces as contrasted with their

remarkable capacity for face recognition. In simple terms, to first recall and then

accurately describe a face, even that of a family member or a close relative,

is cognitively difficult. The facial composite systems currently favoured by

international police forces rely on a construction process in which individual

facial features (eyes, nose, mouth, eyebrows, etc) are selected one at a time from

a large library and then electronically ’overlaid’ to make the composite image.
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Although substantial improvements have been made over earlier systems such

as IdentiKit I and PhotoFIT, a considerable body of evidence now suggests

that the task of face recognition and synthesis does not lend itself to simple

decomposition into features and is, at least partly, a global process [100, 12, 67]

which relies on the inherent spatial/textural relations between all the features

in the face. Our ability to visualize facial features is highly variable and the

accurate verbal description of faces notoriously difficult (the vocabulary of the

verbal medium is simply not matched to the direct cognitive experience of

seeing and recognising a face). The human face perception mechanism seems

designed primarily to recognise faces and it is accepted that the recollection and

visualization of even familiar faces (let alone unfamiliar faces seen only briefly)

is more difficult. Indeed, previous research has suggested that the need for the

witness to recall and verbally describe the face to the operator could be the

weakest link in the composite construction process [94]. These two basic facts

currently mean that the generation of facial composites using isolated facial

features is time-consuming (sometimes taking many hours) and requires tasks

(recall and verbalization) that the witness may find very difficult.

The work described in this thesis is an attempt to explore and develop

an alternative approach to facial composite production which directly exploits

the human capacity for tasks related to facial recognition. The basis of this ap-

proach consists of two essential parts - i) A generative (and near photo-realistic)

model of human facial appearance which is able to randomly produce plausible

human faces and ii) An interactive evolutionary algorithm in which new groups

of faces are produced as a result of the witness’ responses to previously gen-

erated faces. This thesis also describes techniques which effectively allow the

direct incorporation of specific featural and semantic information provided by

a witness.

Chapter 2 outlines the central mathematical concepts and foundations on

which much of this thesis is based. The essential conceptual and computer

implementation of this approach to composite construction (termed EigenFIT)

is described in Chapter 3. Chapter 4 describes four additional tools that en-

hance the functionality of the composite procedure detailed in the preceding

chapter, by integrating semantic and feature based knowledge with holistic rep-

resentations of the face. A novel technique for fast geometric transformation

(warping), which has important practical implications for a system based on

this approach, is described in Chapter 5. Chapter 6 outlines work on non-linear

caricature transformations, which can be described using the facial appearance

model, and its implications for composite production and beyond. Finally,
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Chapter 7 gives a summary of the work to date, and a discussion outlining

proposed future developments.

In the remainder of this chapter, the focus is on the motivation for this

work. First, an overview of the better known existing commercial composite

systems is offered and then the current developments in the field are reviewed.

1.1 Review of established composite methods

1.1.1 The artist’s sketch

One approach to generating a likeness to a perpetrator is to employ a police

sketch artist. Sketch artists perform the same function as a composite sys-

tem and its operator by translating a witness’ verbal description into a pencil

drawing of the perpetrator’s face. The exact technique varies from artist to

artist. The procedure adopted by American sketch artist Gil Zamora [101] is

given as a specific example. The witness is interviewed, beginning with a few

preliminary questions about the age, race and body build of the suspect. Once

these questions have been answered, more specific enquiries are made about

the face shape, hair and ears. The internal facial features are the last part of

the sketch to be drawn, working around the face and concluding with the eyes.

The witness remains seated during the interview with their eyes closed during

the first five minutes of questioning. This helps them to relax and focus. After

the initial sketch is finished the witness must comment on its accuracy and

make suggestions for improvements. The whole process takes approximately 45

minutes. Since no dataset is required, the range of different faces that can be

produced is limited only by the artist’s knowledge of natural facial variation.

The drawbacks are that the artist needs to be highly skilled in both their draw-

ing ability and interview technique. Artistic ability is not a skill that is easily

acquired, therefore, unlike many other methods used in criminal investigations,

it can not be easily taught. Furthermore, the artist’s sketch is by its very na-

ture a subjective interpretation of the witness’ verbal description, and as such

is liable to inaccuracies unless a strong understanding is established between

the witness and artist.

1.1.2 Identikit

Developed by P.J. Dunleavy and released in 1959, Identikit I was the first

alternative to the sketch artist. Indentikit I was a mechanical system based on

line drawings of individual facial features. The line drawings were printed on

transparencies and overlaid to produce the composite image. Hence a likeness
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Figure 1.1: Likenesses to offenders, produced by sketch artist Gil Zamora.

to a chosen face could be ’composed’ from a selection of constituent features

or parts, leading to the term facial composite. The system contained a limited

library (for example, there were only 130 hairstyles) from which the witness

was required to choose a set of appropriate facial features. The features could

not be resized or moved in relation to each other. Identikit I was superseded

in 1975 by Identikit II which used monochrome photographic features rather

than line drawings. These were the predominant systems of choice in the U.S.,

a similar system called PhotoFIT being more prevalent in the U.K.

Figure 1.2: Identikit composite pack. Facial features were printed on card. The
chosen features were slotted into a frame, forming the composite image.
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1.1.3 PhotoFIT

PhotoFIT is an acronym for Photographic Facial Identification Technique. This

mechanical composite system was invented by Jacques Penry and introduced

to U.K. police forces in April 1970 with the backing of the Home Office. As

the name PhotoFIT suggests, this system used monochrome photographs of

exemplar faces. The photographs were reproduced on card and cut into five

separate pieces relating to specific facial regions. The available regions were

chin, mouth, nose, eyes with eyebrows, and a single card including the forehead,

hair and ears. 550 different features were provided for selection by the witness

with guidance from a trained operator. Sorting through all 550 cards would

be cumbersome, so a book referred to as a visual index was used for selection

purposes. The cards corresponding to the features selected from the visual

index were then arranged in a frame to form the composite face. If required,

additional details such as scars were drawn on transparencies and overlaid on

the composite image. In the UK, the name PhotoFIT became synonymous

with the term facial composite. It is occasionally used today when referring

to composites, despite the fact that the system itself has been superseded by

computer software packages that perform the same task more efficiently. One of

the main benefits of PhotoFIT over other systems was its photographic feature

library. Ironically, this was also one of its disadvantages since the joins between

different face regions remained visible in the final composite. This problem was

not so apparent in the less ambitious systems which used simpler line drawings.

Figure 1.3: Diagram indicating the feature components used in the card based
PhotoFIT system.
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1.1.4 E-FIT (for Windows)

E-FIT (Electronic Facial Identification Technique) [3] is a computer software

package that runs on the Windows operating system. E-FIT is underpinned

by the same feature based methodology as PhotoFIT, but has considerably

more functionality, and also attempts to address some of PhotoFIT’s psycho-

logical deficiencies. Bennett [3] outlines the steps taken to build a more reliable

composite system as requested by the U.K. Home Office and recommended by

the Aberdeen University Psychology Department [29]. Since its inception E-

FIT has become the most advanced commercially available composite software

package to date, and is used by police forces and security services across the

world. Due to the complexity of this package, it is essential that a trained

operator work with the witness. The first and arguably most important step in

creating a composite using the E-FIT system is for the operator to interview

the witness in order to acquire a verbal description of the suspect. According

to Aspley, the manufacturers of E-FIT, an operator who has received compre-

hensive training in cognitive interviewing methods can expect to obtain 40%

more information than normally obtained using standard interview techniques.

An extensive library of facial features (in this context referred to as a database)

is provided comprising exemplar images of hair, eyebrows, eyes, nose, mouth,

ears and face-shape (including chin) regions. Searching the entire database for

suitable features would be prohibitively time consuming, hence the description

is entered into the system by means of a series of radio buttons from which

the system’s ’Intellisearch’ algorithm produces an initial exploratory composite

image. This ’first guess’ likeness functions as a starting point from which the

final composite can be created. The witness instructs the operator to swap or

modify specific features with which he/she is unsatisfied, thereby improving the

likeness to the suspect. In this respect, the facial features are manipulated in

context, i.e. within the face. This is a departure from systems that require the

witness to select features using only a visual index. There are psychological

advantages in favour of modifying the features in-situ. It should be made clear

that the process described here is a pseudo-global technique. The E-FIT sys-

tem, like the mechanical systems that pre-date it, is inherently a feature-based

approach to facial composite production. However, it does have some advan-

tages over other systems. Features can be moved and rescaled (independently

in the horizontal and vertical directions) and blended together to produce al-

most seamless joins between different face regions. It also has a wide range of

beards, moustaches and other facial appendages that can easily be added to

the composite. At present, E-FIT sets the benchmark for composite systems.
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Figure 1.4: Graphical interface for the E-FIT composite system.

1.1.5 Mac-a-Mug

Developed by Shaherazam, this system was introduced to U.S. police forces in

the mid 1980s. The software, as the name indicates, only runs on Macintosh

computers. The graphical user interface is depicted in figure 1.5. The system

is based on the use of sketch-like individual facial features that are overlaid on

top of a template forming a homogeneous composite without feature bound-

aries. Each feature can be independently resized, rotated and translated. This

feature transformation option was a major improvement over previous systems,

allowing a large number of combinations to be created from a small library of

approximately 500 base features and facial appendages.

The first study on the performance of the Mac-a-Mug system was under-

taken by Cutler, Stocklein and Penrod [24]. In this study, an expert operator

created composites of different targets, which were always visible during the

composite process. Participants in the experiment were asked to match the

composites to photographs of the real target faces. An astonishing 49% accu-

racy was recorded in this experiment, implying that the Mac-a-Mug system was

highly successful in creating realistic composite images. Later studies carried

out by Koehn and Fisher [58], in which the target faces were not shown during

the compositing process, indicated that real performance of the system was a

mere 4%. In the same experiment, a trained operator also created composites

from life, increasing the performance of the system to 77%, emphasizing that

the problem with reconstruction lies in the capacity of the witness to remember

a face.



9 1.1 Review of established composite methods

Figure 1.5: Mac-a-Mug GUI.

1.1.6 ComPHOTOfit

ComPHOTOfit is distributed by American based company, Sirchie Inc. [81].

The most recent version contains 1,500 colour images of facial features and

appendages. Features can be positioned, resized, moved, copied and modified

as requested by the witness. Accessories such as glasses, hats, moustaches and

beards can be added and some functionality for introducing aging effects is also

provided. The software is currently used by over one thousand law enforcement

agencies worldwide and is the most widely used composite system in America

at present.

Figure 1.6: Comphototfit graphical user interface.

1.1.7 PROfit

PROfit is a feature based system currently available and marketed by ABM [1].

It replaced ABM’s previous composite software, CD-fit. PROfit contains a com-

prehensive database of 20,000 facial features spanning Afro-Caribbean, Cau-
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casian, Mediterranean, North African, and Far Eastern ethnic groups. Features

can be re-sized, repositioned, lightened or darkened. An internal drawing pack-

age allows modification of existing facial features and the addition of distinctive

marks such as scars. Composites of the same subject, produced by different wit-

nesses, can be morphed together with the aim of producing a more accurate

likeness. 3/4 fits can also be made where the witness only had a partial view of

the offender. The software interfaces with another ABM product called Profile,

which compares the composite image to a database of face images.

Figure 1.7: PROfit is capable of producing 3/4 view composite images.

1.2 The psychology of generating facial composites

1.2.1 Face recognition and retrieval

An essential requirement of any composite system is its ability to represent facial

variation from an appropriate population. For instance, a system that can only

represent white females will be ineffective for creating likenesses to Chinese

males. Composite systems to date have been limited in this respect due to the

extent of their feature libraries/databases. Conversely, a sketch artist is only

restricted by knowledge of different face types and an ability to capture the

essence of these faces in a sketch. Later systems (notably E-FIT) address this

problem by compiling extensive databases of facial features. With databases

increasing in size, the problem of organizing and accessing the components for

building composite faces becomes more complex. Storing, and to some degree

retrieving, images of faces is a task which the human mind performs countless

times each day. It is an essential part of our social interaction required for

everyday life.

Geometric models of how the mind organises face imagery have been pro-
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posed. The generic term for such a model is face-space, first proposed by Valen-

tine [96]. In a face-space model, the face of an individual subject occupies a

particular position within the space, and spatial relationships between subjects

can be used to explain effects including distinctiveness, caricature, inversion

and race. Since the process of generating a composite is effectively an attempt

to retrieve a face from memory, advantages may be gained in developing a com-

posite system that operates in a manner that is harmonious with face-space.

Valentine formalized two abstractions of face-space; norm based coding

(NBC) in which distinctiveness is governed by the distance from a central proto-

type face, and exemplar based coding (EBC) in which the face is judged purely

by its proximity to other faces. Making a distinction between these two rep-

resentations can be problematic. If the exemplars are normally distributed in

face-space, the region of maximum exemplar density will correspond to a central

prototype as described by the NBC model. Both models predict that typical

faces occur in densely populated regions of face-space and distinctive faces are

located in sparsely populated regions of face-space. Valentine and Endo [97]

found EBC to be superior when explaining the effect of race on face processing.

Conversely, the effect of caricature is explained more simply by NBC than EBC.

It appears that these two variations of the face-space model need to be unified

to form a single, succinct, representation that accounts for all aspects of face

recognition and retrieval. The exact nature of the dimensions of face-space are

also a point of debate.

Studies have attempted to determine a relationship between statistical prop-

erties of images and human face processing. Hancock et al [44] performed a

principal components analysis on a set of suitably aligned digital face images

to form a multidimensional space in which each axis corresponds to a spe-

cific global (referring to the whole face, not individual features) face property.

These axes are determined purely on the statistics of a sample of face images

and, as such, are not ordered in terms of perceptual importance. Subsequent

psychological experiments were performed to relate the principal components

to psychological aspects of face perception. The early components were shown

to embody very general information regarding the appearance of faces, the sug-

gestion being that the higher components of the analysis were more important

in determining if a face is memorable. The PCA approach lends some weight

to the validity of NBC since faces perceived as distinctive tended to occur at

greater distances from the mean than common/indistinct faces.
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1.2.2 Local features vs global methods

To date, composite systems have depended on libraries or databases of individ-

ual features from which composites faces can be constructed. The preference of

individual facial features over global (whole face) components is due primarily

to technical issues regarding implementation and possibly due to the path that

the historical development of composite systems has taken. Nevertheless, there

is no a priori reason to suppose that a piecewise arrangement of individual

facial features is the best approach [73]. In fact, there is strong psychological

evidence to suggest that faces are recognised as a whole rather than as a sum

of their constituent parts [79] [12]. The implication is that the configuration of

facial features should be acknowledged as an important factor in any reliable

composite strategy.

Tanaka and Farah [89] performed an experiment in which subjects were

presented with twelve different faces. Subjects were then asked to identify facial

features belonging to the original face stimuli from a scrambled arrangement of

features. The results of the experiment indicated that individual facial features

were 10% more likely to be correctly identified when they are displayed in their

normal configuration within the face. Similar experiments were performed using

images of inanimate objects segmented into regions analogous to features. In

this case, recognition rates were unaffected by viewing the image segments in

isolation. This implies that the configuration of features is important when

recognising faces but plays little or no part in the recognition of other objects,

an effect known as face superiority.

Turner et al [94] performed three studies investigating the effects of local

vs global when using the E-FIT system. The aim was to determine whether

constructing a composite within the context of a whole face would offer any

advantages over constructing a composite on a feature by feature basis. The

first study involved participants creating composite images using ’piecemeal’,

’jigsaw’ and standard E-FIT approaches for selecting features. In the piecemeal

method each of the facial features were selected in isolation with the other

features hidden from view. The jigsaw process required the witness to add one

feature at a time to the composite image in a manner akin to building a jigsaw.

In the standard E-FIT approach, features were manipulated in-situ.

According to the participant’s own subjective evaluation, there was no ap-

preciable difference between the correctness of the composites created by the

piecemeal and jigsaw methods. Conversely, when the composite images were

assessed by independent participants the jigsaw method was judged to be better

than the piecemeal method and the standard E-FIT procedure was considered
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the best method. The results can be interpreted as evidence that working within

the context of a whole face-image can lead to more perceptually accurate com-

posites, although it appears that the witness is unable to provide an objective

measure of the goodness of the three methods.

Previous work by Haig [42] found the hair and head shape to be highly

salient. This finding was corroborated by Young et al [99] who showed that

the external features are more important for recognition than the internal fea-

tures when the face is unfamiliar to the witness. Conversely, when the face is

familiar to the witness, the internal features are more significant. In Turner’s

third experiment feature saliency was investigated, and how the order in which

the features were selected affected the quality of composite images. The rel-

ative feature saliency was assumed to be determined by the order in which

the witness described the components of the target face. For example, if the

witness described the eyes before the mouth then this was interpreted as the

eyes being more salient than the mouth. One group of participants generated

composites starting with the most salient feature (first to be described) and

finishing with the least salient feature (last to be described). Another group

worked in order from the least salient to the most salient. A third group were

allowed to work through the features in any order they desired, as would be the

case in normal E-FIT use. The results of this experiment provided evidence to

suggest that having the witnesses work on the higher saliency features early in

the construction process produced the best quality likenesses.

1.2.3 Verbalization of facial descriptions

Current methodologies for producing composite imagery require the witness to

provide verbal descriptions of the assailant. The formal name for this proce-

dure is the cognitive interview and its purpose is to provide an initial starting

point or ’pre-face’ that can be suitably modified to yield the final composite

image. It has been suggested that the cognitive interview is a limiting factor

in the overall effectiveness of composites [60]. The problem can be considered

as comprising two issues: the witness’ capacity to verbally describe a face and

the ability of an operator to interpret these descriptions reliably. A study by

Christie and Ellis [18] proposed that the difficulty is in translating the verbal

information provided by the witness into an image, and not in the witness’

aptitude for providing an accurate account of facial appearance. To test this

hypothesis, participants were asked to construct a PhotoFIT of a target face

and also provide a verbal description of the same face. Judges were then in-

structed to identify a subject from an array of faces based on the participant’s
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verbal descriptions and composite images. The results of the experiment in-

dicated that the verbal descriptions were significantly more accurate than the

PhotoFIT composites. Therefore the flaw in the composite procedure was not

rooted in the witness’ verbal ability but in some other aspect of the system,

possibly direct interference between the visualized image and the PhotoFIT

composite itself.

A similar experiment was performed by Brace [9] to determine whether

composites generated using E-FIT were also susceptible to the misinterpretation

of the witness’ verbal descriptions. However, the objective of this study was

subtly different from Christie and Ellis [18] with the emphasis on how well

composites of familiar faces are recognised. Generally, it is anticipated that a

composite image will be recognised by someone who is familiar with the suspect,

hence famous target faces were used. Composite images of famous faces were

constructed from a description or directly by the E-FIT operator based on their

own memory of the face(s). E-FIT images that were generated by the operator

alone were significantly more likely to be recognised than composites generated

from information provided by someone else. The results of this study are in

agreement with Christie, confirming that the quality of the composite is limited

by the translation of a verbal description.

1.3 Emerging composite technologies

Brunelli and Mich [13] constructed a developmental system named Spotit!,

which partly addresses the limitations associated with a finite database of can-

didate features. In this approach, a principal components analysis is performed

on each class of facial feature (eyes, noses, mouths etc), thereby extracting the

mathematically salient information and providing a basis from which novel fea-

tures can be constructed. The ’pre-face’ image or starting point in this system

is the mean face into which the facial features are set/blended. The appearance

of each facial feature is controlled by seven sliders, where each slider corre-

sponds to a principal component or mode of variation. The authors claim that

their system provides a ”virtually unlimited set of alternative features”. This

statement is slightly misleading because what the system actually provides is

an infinite (within the limits of computational precision) number of combina-

tions of a finite number of basis images. The range of composites that can

be produced using this technique is limited by the finite size of sample used

in the PCA. However, Brunelli and Mich [13] include a tool that allows the

operator to manually distort the shape of a chosen feature. In this sense there
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is an unlimited set of feature shapes that can be achieved. One of the main

weaknesses would appear to be that the sliders incorporated in the interface

control changes in appearance defined on a mathematical premise, and as such

have no specific perceptual meaning (e.g. ’a turned up nose’). Therefore, any

prospective witness/operator will find it difficult to locate the optimum slider

positions required for a good likeness to the target face.

An ’intelligent’ search procedure is required to overcome the difficulty of se-

lecting the most appropriate features from an almost unlimited sample. Genetic

algorithms (GAs) [49] offer a conceptually pleasing solution to the search prob-

lem and are prevalent in emerging composite systems. Evolutionary techniques

based on Darwinian theory [25] that simulate complex structures, textures, and

motions for use in computer graphics and animation have previously been de-

scribed [80]. More recently they have been used for the purpose of generating

avatar faces. DiPaolo [27] describes such an algorithm, based on an aesthetic

selection process in which faces are represented by genotypes comprising 25

parameters. The first recorded use of a GA for generating facial composite

imagery was Caldwell and Johnston [16]. The GA implementation is initialized

with a population of twenty faces which are constructed from individual facial

features in a style reminiscent of earlier systems. Faces are displayed to the

operator, who is required to assign a fitness score to each face depending on

its similarity to the target. Parent faces are chosen from the initial population

according to their associated fitness score and bred with each other using the

principles of crossover and mutation. This process is described in more detail

in the following chapter.

All of the composite systems described so far rely on databases or libraries of

facial features. In section 1.2, the limitations of the feature based approach were

highlighted [29]. Attempts have been made to incorporate information concern-

ing the configuration of facial features into feature based systems such as E-FIT,

and the effectiveness of these ad-hoc ’pseudo holistic’ approaches have been ex-

amined [95]. However, a more elegant, and possibly more effective approach is

to model facial variation as a whole. Hancock [43] describes a developmental

system that utilizes both global PCA face models and a GA. This design allows

composite images to be created by adjusting global/holistic properties of facial

appearance, in a way that is not too demanding of the witness. Unlike previous

systems this method is truly global, relying on whole face templates (the prin-

cipal components) rather than a database of facial features. In this context the

principal components are often referred to as eigenfaces [82], [93] with the first

few components describing most of the variation exhibited in the human face
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(assuming an appropriate training sample). Hancock used two separate PCA

models, one for face shape and another for pixel intensity values. Using two in-

dependent models overcomes problems associated with head pose and blurring

which would otherwise degrade the composite images. PCA parameter values

are not controlled by sliders as in Brunelli and Mich [13], instead the operator

is presented with a selection of eighteen faces to which fitness ratings must be

assigned on a scale of zero to ten. The genetic algorithm selects faces with a

high rating (fitness proportionate selection) as parents. Parameters defining an

offspring’s appearance were selected at random from the parents (uniform cross-

over) and a mutation applied to some of the parameter values. This procedure

was performed eighteen times to form a new generation of faces. Hancock’s

PCA model was built on a limited sample of twenty female faces. The system

has been subsequently refined by Frowd [35] and is now known as EVO-FIT.

Other systems based on evolutionary/PCA methods have been developed inde-

pendently of Hancock, suggesting that this is a viable approach to producing

composite imagery [83, 36, 92, 77].

1.4 Brief introduction to the EigenFIT system

The subject of this thesis is the technical design and implementation of a facial

composite system for use in criminal investigations, provisionally named Eigen-

FIT. Exploratory studies relating to the work in this thesis have previously been

presented by Solomon et al [83] and by Gibson et al [36]. Unlike traditional

feature based methods, the approach described uses both local and global facial

characteristics and allows a witness to produce plausible, photo-realistic face

images in an intuitive way. EigenFIT offers two modes of operation termed

EasyFIT and ExpertFIT. The simplicity of the EasyFIT mode makes it suit-

able for use by the witness with the minimum amount of assistance from the

expert operator, whereas ExpertFIT comprises a suite of advanced tools aimed

at a trained operator. Conceptually, EigenFIT is constructed from three main

components,

• A generative face model

• A search procedure

• A user interface

The main focus of this thesis is the technical development of the generative

face model and the user interface and how, in conjunction with the search
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algorithm, they fuse to form a complete composite system. Figure 1.8 provides

an overview of the basic components of the system and the necessary interaction

between them required to produce a composite image. A brief literature review

of work relating to the generative face model and search algorithm is provided

below,

Figure 1.8: A schematic diagram representing the interactions between the main
EigenFIT components and the witness.

The generative face model (described in detail in chapters 2 and 3)

incorporates information extracted from a sample of real face images using

principal components analysis (PCA) [54]. The first recorded use of principal

components for modelling facial variation was Sirovich and Kirby [82], who

demonstrated that it could provide a highly efficient representation of a human

face as a linear superposition of global principal components or eigenfaces. This

seminal paper precipitated such a significant amount of research that the PCA

technique is now a standard paradigm in face recognition and both 2-D and

3-D face modelling research. The Sirovich and Kirby method can be used to

encode exact likenesses of the faces contained in the original training example.

However, the capacity of the method for encoding approximate likenesses to

faces that lie outside the original training sample is what makes the eigenface

technique particularly useful in computer vision applications. With the rigid

image registration process that was employed in their original work, a perfect

alignment of facial features was not possible. The misalignment caused ghosting

artefacts that were visible in the approximation images of out-of-sample faces.

To avoid such artefacts, a better correspondence between facial features was

required.
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Craw and Cameron [23] solved the correspondence problem by warping the

face images to a standard shape prior to performing the PCA. A further devel-

opment was provided by Cootes et al [20] et al who utilized this shape normal-

ization technique, forming a combined shape texture representation that can

be applied to the human face. Cootes refers to this procedure as constructing

an appearance model. The use of appearance models in automatic object detec-

tion and recognition has been well documented, especially in the form of active

appearance models [20, 64]. Much less explored is the possibility of using PCA

in facial synthesis, which is the application described in later chapters.

The search procedure employed in the EigenFIT system is an asexual

evolutionary algorithm (EA). Genetic algorithms (GA) can be regarded as a

specific variation on the EA theme. There has been widespread interest in

using genetic and evolutionary algorithms to solve optimization problems. In

many situations the more traditional calculus and enumerative strategies can

be difficult to implement. EAs often offer a simpler solution to optimization

and search problems and in some instances are more likely to find the global

solution. Other applications for these techniques exist. For example, Fogel et

al [31] introduced evolutionary programming for creating artificial intelligence.

Evolutionary algorithms (specifically GAs) were made widely known due to

pivotal work by, Holland [50] and Rechenberg [75] in the 1970’s although their

origins can be traced back to two decades earlier [10, 33, 8]. However, the

full potential of genetic and evolutionary algorithms was not realized until the

1980’s when advances in computer hardware made the proposition of using them

viable. Since then evolutionary algorithms have been used various problems in

the fields of both computer vision [47] and computer graphics [80].

Mathematical details relating to the generative face model and evolutionary

search procedure developed for this thesis are covered in detail in the following

chapter.



Chapter 2

Mathematical foundations

The facial composite system described in this thesis is significantly different in

design and operation from the previously described composite systems. The

aim of this chapter is to provide the theoretical background that underpins

the algorithms employed in the system. The chapter begins with an historical

introduction to principal components analysis (PCA), and the procedure for

deriving principal components from sample data. Application of the PCA tech-

nique to image data is then discussed, and the necessary preprocessing required

to extract shape and texture information from the image data is presented.

The construction of a combined PCA shape-texture model (appearance model),

from which new examples of a constrained object class can be synthesised, is

described and accompanied by an illustrative example. Using the appearance

model, any object within the modelled object class can be approximated by a

vector of numbers, known in this context as parameters. The facial composite

system described in Chapters 3 and 4 employs an evolutionary algorithm (EA)

to determine the appearance model parameters from which a target face can

be synthesized. In this chapter, an overview of evolutionary algorithms is pro-

vided, outlining the differences between four of the most widely used algorithms

and the necessary details required for the implementation of an EA.

2.1 Introduction to principal components analysis

(PCA)

In 1901, Karl Pearson gave a geometric account of the statistical technique that

is known today as principal components analysis. Pearson’s initial ideas [70]

were developed further by Hotelling, who provided an explanation of the same

technique in terms of a variance maximizing transformation. In his 1933 pa-

19
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per ”Analysis of a Complex of Statistical Variables with Principal Compo-

nents” [51], Hotelling describes the method of principal components and how it

relates to factor analysis which was already established at this time. Although

there are similarities between the two techniques he preferred to use the word

’component’ instead of ’factor’ (a term favoured by psychologists) to avoid con-

fusion with the mathematical meaning of the word. It was at this time that the

phrase ’principal components’ was first introduced. Hotelling derived his prin-

cipal components from population statistics, using Lagrange multipliers and

differentiation to solve a variance maximizing, optimization problem. Principal

components analysis is sometimes referred to as the Hotelling transform. The

term Karhunen-Loeve transform [32] has also been used in the context of prin-

cipal components, although some variations on the Karhunen-Loeve expansion

method, presented in the pattern recognition literature, differ from PCA (see

Webb [98]). A similar derivation to Hotelling’s method is presented below.

2.1.1 Derivation of PCA for sample data

Let x be a random vector of m random variables {X1, X2, . . . , Xm} and

x1,x2, . . . ,xn be n observations of x. If the projection of the kth observa-

tion onto the unit vector u is defined as zk = uTxk, then the sample variance

of all such projections for the n observations can be written as,

var [z] =
1

n − 1

∑

i

(zi − z̄)2 =
1

n − 1

∑

i



uTxi −
1

n

∑

j

uTxj





2

(2.1)

where z̄ = 1
n

∑

j zj . The second term in parentheses on the r.h.s of equation

2.1 expands and simplifies as follows,

1

n

∑

j

uTxj =
1

n

[

uTx1 + uTx2 + uTx3 . . .uTxn

]

(2.2)

=
1

n
uT [x1 + x2 + x3 . . .xn] = uT 1

n

n
∑

i=1

xi = uT x̄

substituting uT x̄ for 1
n

∑

j uTxj into the r.h.s of 2.1 and simplifying gives,

1

n − 1

∑

i

(

uT (xi − x̄)
)2

=
1

n − 1

n
∑

i=1

uT (xi − x̄) (xi − x̄)T u (2.3)
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since uT (xi − x̄) is a scalar value equal to (xi − x̄)T u. For convenience, the

above can be expressed in matrix form. We begin by expanding the summation,

1

n − 1

[

uT (x1 − x̄) (x1 − x̄)T u + uT (x2 − x̄) (x2 − x̄)T u + . . . (2.4)

+uT (x1 − x̄) (xn − x̄)T u
]

=
1

n − 1
uT

[

(x1 − x̄) (x1 − x̄)T + (x2 − x̄) (x2 − x̄)T + . . .

+ (x1 − x̄) (xn − x̄)T
]

u

=
1

n − 1
uT







↑ ↑

(x1 − x̄) . . . (xn − x̄)

↓ ↓















← (x1 − x̄)T →
...

← (xn − x̄)T →









u

=
1

n − 1
uTXXTu = uTSu with S =

1

n − 1
XXT

Thus in the equation above the columns of the matrix X are the n observa-

tion vectors, in mean deviation form (xi − x̄). The aim here is to find the unit

vector1 u that maximizes the quadratic form uTSu, subject to the constraint

that uTu = 1. This is equivalent to determining the vector u that maximizes

var [z]. If these conditions are met, then u is referred to as the first principal

component of the observation matrix X and is denoted by u1. The standard

approach to solving an optimization problem of this kind is to use Lagrange’s

method of undetermined multipliers. The cost function is defined as,

Q = uT
1 Su1 − λ1

(

uT
1 u1 − 1

)

(2.5)

Differentiating Q w.r.t. u1 gives,

Su1 − λ1u1 = (S − λ1Im)u1 = 0 (2.6)

Multiplying equation 2.6 by uT
1 and applying the constraint uT

1 u1 = 1,

uT
1 Su1 = uT

1 λ1u1 = λ1u
T
1 u1 = λ1 (2.7)

Equation 2.6 represents an eigenvalue problem. Since the aim is to seek

1choosing u to be a unit vector simplifies the analysis but it is not an essential requirement
for calculating the PCs. The only requirement is that u1 not be the null vector.
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the vector u1 that maximizes the variance of uT
1 Su1, λ1 must be the largest

eigenvalue of S and u1 the corresponding eigenvector2 The second principal

component, u2, is derived in a similar way with the additional constraint that

uT
2 u1 = 0 which means that the first and second components are orthogonal

and statistically uncorrelated.

Hence a new Lagrange cost function can be formed as follows,

Q = uT
2 Su2 − λ2

(

uT
2 u2 − 1

)

− φuT
2 u1 (2.8)

Differentiating Q w.r.t u2 gives

2Su2 − 2λ2u2 − φu1 = 0 (2.9)

multiplying this equation by uT
1

uT
1 Su2 − λ2u

T
1 u2 −

φ

2
uT

1 u1 = 0 (2.10)

also, using equation 2.7 and the fact that S is a symmetric matrix requires

that,

uT
1 Su2 = [Su1]

T u2 = [λ1u1]
T u2 = λ1u

T
1 u2 = 0 (2.11)

Therefore φ must be equal to zero since uT
1 u1 = 1 and both uT

1 Su2 and

uT
1 u2 are equal to zero. Hence equation 2.10 reduces to (S − λ2Ip)u2 = 0

with λ2 being the second largest eigenvalue of S, and u2 the second principal

component of the dataset {xk}. In general, up to n principal components can

be obtained by iterating this process with the condition that uT
i uj = δij , where

δij is kronecker’s delta.

2.1.2 The singular value decomposition (SVD) and PCA

Although the calculation of principal components theoretically reduces to the

solution of a standard eigenvector problem, the singular value decomposition

(SVD) has become the mathematical tool of choice for principal components in

2It is worth noting that some texts (Jolliffe for instance). refer to the kth principal compo-
nent as the derived variable uT

k x, and identify the elements of uk as the loadings or coefficients.
Here, as in [61] the eigenvector uk will be named as the kth principal component.
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practical applications. Let X be a p×n matrix of observations in mean deviation

form as described in section 2.1. The SVD of X can always be written as a

decomposition of the form,

X = UΛ
1

2 VT (2.12)

The columns {ui} of the matrix U form an orthonormal basis3 for the

column space of X, whereas the orthonormal columns of V span the row space

of X. The vectors {ui} are known as the left singular vectors of X. The non

zero elements on the diagonal of matrix Λ
1

2 contain the corresponding singular

values arranged in order of decreasing magnitude from top left to bottom right.

As shown in the previous section, in principal components analysis the ob-

jective is to find the eigenvectors and eigenvalues of the covariance matrix

S = 1
n−1XXT . Multiplying equation 2.12 by XT from the right, and using

the fact that U and V are orthogonal matrices,

XXT =
(

UΛ
1

2 VT
) (

UΛ
1

2 VT
)T

=
(

UΛ
1

2 VT
) (

VΛ
1

2 UT
)

= UΛUT (2.13)

Thus, calculation of the eigenvectors, {ui},of S through equation 2.13 yields

the principal components as the columns of the orthogonal matrix U and the

corresponding eigenvalues on the diagonal of matrix Λ,

Λ =













λ1

λ2

. . .

λm













(2.14)

In certain cases, however, X may contain many more rows than columns

(p >> n). This is often the case when the observations are digital images

and p is typically 40K or more. Calculation of the decomposition of S then

becomes a prohibitive computational task. Fortunately the complexity of this

computation can be reduced by performing a SVD on 1
n−1X

TX instead of

decomposing 1
n−1XXT . By the same reasoning as above, multiplying equation

2.12 from the left by XT gives,

3strictly speaking, a basis (whether for row or column space) is constructed from the first
r columns corresponding to the number of non-zero singular values
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XTX =
(

UΛ
1

2 VT
)T (

UΛ
1

2 VT
)

=
(

VΛ
1

2 UT
) (

UΛ
1

2 VT
)

= VΛVT (2.15)

From equation 2.12 it can be seen that the orthonormal principal compo-

nents, {uk}, that form the columns of the p×p matrix, U, can then be obtained

from the dimensionally smaller, n × n matrix V by rearranging equation 2.12

as follows,

U = XVΛ−
1

2

(2.16)

Hence, when there are more variables than observations the principal com-

ponents are determined by performing an SVD on XTX to obtain V and then

using equation 2.16.

Care must be taken when inverting Λ
1

2 since some of the singular values

are likely to approach zero which can lead to problems when this matrix is

inverted. The way to avoid this problem is to identify the elements of Λ
1

2 that

are vanishingly small and set the corresponding elements in Λ−
1

2 equal to zero.

Alternatively, the dimensions of the matrices can be reduced with similar effect

(see section 2.1.3).

PCA can be thought of as a procedure that rotates the coordinate frame in

which the original data points are plotted (illustrated in figure 2.1). If the vector

xk contains the coordinates of the kth data point in the original coordinate fame,

then the let the vector zk define the same point in the rotated frame in terms

of a set of newly defined variables {Zi}. In the rotated frame of reference, the

spread of data points along the direction of the new variables is maximal.

The vectors, z1, z2, . . . , zn, can be obtained easily by multiplying equa-

tion 2.12 from the left by UT (see equation 2.18).

Z = UTX = Λ
1

2 VT (2.17)

Z =







↑ ↑ ↑

z1 z2 . . . zn

↓ ↓ ↓







The matrix product UTX represents the projection of the original data set

(in mean deviation form) onto the orthonormal principal components.
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Figure 2.1: A geometrical interpretation of PCA. The principal components
{ui} define directions along which the spread of original data points is max-
imized. {Xi} are the original variables and {Zi} is a new set of variables as
defined by the principal components. If x1 represents a data point in terms of
the original variables, then the same point is represented by a new vector z1 in
terms of the new variables.
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2.1.3 Compact data encoding using PCA

The PCA technique is particularly useful when attempting to construct a com-

pact model of an pattern class (e.g. faces), in which the objects are represented

by high dimensional, highly correlated, feature vectors. The primary aim of

PCA is to achieve a reduction in the dimensionality of the data. If the vectors

{xi} are, to some extent, correlated with each other then some of the princi-

pal components will make a negligible contribution to the model and can be

discarded. Formal methods exist for determining how many PCs to retain.

However a rule of thumb that works well in most cases is to retain components

that together describe a chosen percentage, T , of the variation present in the

original data set, say 80% (see figure 2.3). Conveniently, the SVD returns the

principal components in order of decreasing significance, allowing a threshold

T to be set on the cumulative variance. The objective is to replace the total

number of components, m, with a much smaller subset of t components.

T = 100

∑t
k=1 λk

∑m
j=1 λj

(2.18)

The original observation vectors can be reconstructed as follows,

x = x̄ +
m

∑

i=1

uizi (2.19)

where zi determines the influence of the ith principal component on the

reconstructed observation. If all m principal components are used, equation 2.19

gives a perfect reconstruction of the original observation vector. However, if t <

m principal components are used, an approximate reconstruction is obtained

as illustrated in figure 2.2 and described by the following equation,

x̂ = x̄ +
t

∑

i=1

uizi (2.20)

In practice there are often many more variables than observations (typically

the case for image data). In such cases, the observation vectors lie in a n-

dimensional subspace of Rm and the last m−n components will not contribute

to the reconstruction. Instances in which m > n demand that t ≤ n.

Subsequent sections in this chapter illustrate how the statistical method of
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Figure 2.2: In the simple 2D example presented here, the original data (grey
markers) has been approximated by a single new variable, Z1 as defined by the
first principal component u1. For each observation, the error due to approxi-
mation is given by the perpendicular distance to the Z1 axis.

Figure 2.3: A plot of the variances associated with a typical principal compo-
nents analysis. The cumulative variance plot indicates that 80% of the infor-
mation contained in the original data set can be represented by the first seven
PCs alone.
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principal components analysis can be used to form compact representations of

image data.

2.2 Modelling shape

Consider n objects from the same pattern class, contained in one or more digital

images. Two properties that characterize objects are their shape and texture.

In this section, a method for extracting the shape property from digital images,

and a method for modelling shape variations of a specific pattern class, are

described. If a sufficient number of representative sample objects are available,

it is possible construct a model from which an approximation to any object

from the population of all such objects can be synthesised.

The term shape is usually used to refer to an arrangement of points or lines

that define the perimeter of an object. In this thesis, the word ’shape’ will

refer to a property of a configuration of points that is independent of scaling,

rotation and translation. When a comparison is made between two or more

shapes it will therefore be assumed that they have been subjected to a suitable

alignment procedure that places them in the same frame of reference. To avoid

confusion the term point set will be used in this section when referring to an

unaligned shape.

The autumn leaves shown in figure 2.4 will be used as an example of objects

belonging to the same pattern class. This pattern class will be used to illustrate

how compact representations of shape, texture and appearance can be obtained

using principal components analysis. Also, new examples of objects will be

synthesized from a learned statistical model of this class of objects.

2.2.1 Landmarking: Obtaining shape from images

A landmark is a coordinate pair (or tuple for a 3d data set) which defines a

specific position on an object or an image of an object. Collectively, a set

of landmark points may be used to define the object’s shape. When sets of

landmarks are placed on two or more objects a correspondence is sought such

that the order of labelling remains the same in each case. For instance, in the

specific example provided in this section a suitable choice for the first landmark

is the point at which the stem joins the leaf. Hence the first landmark would

be placed at this point for each and every leaf in the sample. For each object

the corresponding landmark data is stored in a 2m element vector as,
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Figure 2.4: A sample of autumn leaves from a single species of tree. The
leaves belong to a distinct pattern class. The intra-class variation in shape
and colouration will used as an illustrative example of how to construct an
appearance model.
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x = [x1 x2 . . . xm y1 y2 . . . ym]T (2.21)

Stegmann [85] (see also Dryden [28]) classifies landmarks into one of three

categories according to the method by which they are placed on the object:

1. An anatomical landmark is a point assigned by an expert that corresponds

between organisms in some biologically meaningful way. A suitable can-

didate for an anatomical landmark is a highly salient point that can be

reliably located on all of the sample objects. These tend to occur on edges

of the object, especially where there is a local maxima in the curvature of

object’s surface. Regions of distinctive colouration may also be candidates

for anatomical landmarks.

2. Mathematical landmarks are points located on an object according to

some mathematical or geometrical property. Various algorithms have

previously been described for calculating positions of mathematical land-

marks [57, 22].

3. Pseudo-landmarks are constructed points on an organism, located either

around the outline or in between anatomical or mathematical landmarks.

The positioning of such landmarks is dictated by the locations of the

anatomical or mathematical landmarks.

In the autumn leaf example, 23 landmark points were used to represent the

shape of each sample leaf, as illustrated in figure 2.5. The chosen positions of

landmark points delineate the perimeter of the leaf and its basic vein structure.

Figure 2.5: Landmark points used to delineate leaf-shape (blue circular mark-
ers). The magenta line segments are for the purpose of illustration, and as such
do not contribute to the shape model.
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2.2.2 Point set alignment

Translation, scaling and rotational effects are rarely of interest in morpholog-

ical studies of an object class. Hence it is common practice to remove these

unwanted factors by aligning point sets prior to constructing a shape model.

One commonly used approach is to seek the shape transformations that opti-

mally superimpose one shape upon another.

The Procrustes distance P 2
d is a shape metric, providing a quantatitive mea-

sure of difference between two optimally aligned point sets x1 and x2. P 2
d can

be considered to be the square root of the sum of squared differences between

the positions of the landmarks in x1 and x2.

P 2
d =

m
∑

j=1

[

(x1j − x2j)
2 + (y1j − y2j)

2
]

(2.22)

The alignment procedure, or Procrustes superposition as it is known in

this context, is achieved by applying similarity transformations to one point

set to align it with the reference point set. The alignment procedure can be

summarized as follows,

1. Compute the centroid of each point set.

2. Translate both point sets to the x, y origin by subtracting their respective

centroids.

3. Re-scale each point set to have equal size.

4. Rotate one point set to align with the other.

The centroid of a point set is a two element vector containing the mean x-y

values of the landmark positions,

[x̄, ȳ] =





1

m

m
∑

j=1

xj ,
1

m

m
∑

j=1

yi



 (2.23)

In order to scale both shapes to a common size, a size metric S(x) such as

the Frobenius norm is required,

S (x) =

√

√

√

√

m
∑

j=1

[

(xj − x̄)2 + (yi − ȳ)2
]

(2.24)
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SVD can be used to determine the rotation matrix for aligning the point

sets (see Bookstein [7]),

UΛVT = XT
1 X2 (2.25)

where

X1 =













x1,1 y1,1

x1,2 y1,2

...
...

x1,n y1,n













, X2 =













x2,1 y2,1

x2,2 y2,2

...
...

x2,n y2,n













The matrix R that rotates the first point set to the reference point set is

equal to the product of the matrix containing the orthonormal right singular

vectors V and the transpose of the matrix containing the left singular vectors

U.

R = VUT (2.26)

An alternative method [21] is to translate both point sets to the same posi-

tion, scale them to have equal size and to determine a and b that minimize E

as follows,

E = |X1R − X2| , R =

[

a −b

b a

]

(2.27)

The key steps in the Procrustes alignment procedure are illustrated in fig-

ure 2.6.

An iterative procedure can be followed that determines the mean of the n

sample shapes and aligns all training samples in the process.

1. Choose any point set as the first estimate of the mean shape.

2. Align all the remaining point sets to the mean shape using Procrustes

alignment.

3. Re-calculate the estimate of the mean from the aligned shapes

4. If the mean estimate has changed return to step 2.
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Figure 2.6: Procrustes alignment procedure. In this example, the shape of a
sample leaf (blue and green) is aligned to a reference shape (red)

The mean shape is calculated using the Procrustes mean equation 2.28 which

has the smallest summed squared Procrustes distance to all the configurations

of a sample.

x̄ =
1

n

n
∑

i=1

xi (2.28)

The process has converged when no further changes to the mean occur. This

is often achieved in as few as two iterations. A Procrustes scatter formed by the

alignment of all sample shapes to the Procrustes mean is shown in figure 2.7.

Figure 2.7: A Procrustes scatter depicting the sample leaf shapes (blue points),
aligned to the Procrustes mean shape (red line).

2.2.3 Compact Shape Representation

Once the n sample shapes have been brought into the same frame of reference,

using the alignment procedure described in the previous section, a compact
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representation can be obtained using PCA. The computational procedure for

performing a PCA on the shape data is described by the following steps.

1. Subtract the mean shape from each of the n sample shapes. Let the ith

sample shape in mean deviation form be denoted by dxi

dxi = xi − x̄ (2.29)

2. Insert the sample shapes in mean deviation form into the columns of the

observation matrix X.

X =







↑ ↑ ↑

dx1 dx2 . . . dxn

↓ ↓ ↓






(2.30)

3. Form the 2m × 2m sample covariance matrix Ss that describes the posi-

tional relationships between landmarks,

Ss =
1

n − 1

n
∑

i=1

dxidx
T
i =

1

n − 1
XXT (2.31)

where n is the number of sample objects.

4. If n > 2m determine the eigenvectors and eigenvalues of Ss, thereby

obtaining the shape principal components directly.

Ssp
i
s = λi

sp
i
s (2.32)

where the superscript i signifies the ith principal component and
{

pi
s

}

are

orthonormal satisfying,

(

pj
s

)T
pk

s = δjk (2.33)

(here the more intuitive symbol p is used to denote a principal component,

whereas in the previous section in PCs were derived, u was used). For all

pi
s, equation 2.32 can be written in matrix form as,
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SsPs = PsΛs (2.34)

with

Ps =







↑ ↑ ↑

p1
s p2

s . . . p2m
s

↓ ↓ ↓







Thus Ps is the matrix that diagonalizes the shape sample covariance ma-

trix.

5. For the autumn leaves example, 23 landmarks were used (m = 23) to

delineate the shapes of 19 leaves (n = 19). Hence n < 2m and the shape

covariance matrix given by equation 2.50 is positive semi-definite which

means that it cannot be diagonalized (see Strang [87]). In this case the n

eigenvectors
{

vi
s

}

of the positive definite matrix 1
n−1X

TX are determined,

and the principal components obtained by,

pi
s = Xvi

s

(

λi
s

)−
1

2 (2.35)

(see equations 2.15 and 2.16 from the previous section). In matrix form

this is expressed as,

Ps = XVsΛ
−

1

2
s (2.36)

Each shape principal component records a unique and global shape defor-

mation from the mean shape. Cootes et al [21] refer to these deformations as

modes of variation. Visualizing these modes is helpful for interpreting the main

ways in which the shape of objects from a specific class vary. The ith mode can

be visualized by adding a proportion of pi
s to the mean shape in increments of

0.5σ to achieve deformations xmi from the mean shape.

xmi = x̄ + αpi
s (2.37)
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In figure 2.8, the first three modes of variation (xm1,xm2,xm3) correspond-

ing to the first, second and third principal components are displayed, where α

lies in the range −1σ ≤ α ≤ +1σ. It is assumed that the principal components

have been arranged in order of decreasing variance such that λ1
s > λ2

s > λ3
s, as

is normal.
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(a) First mode of shape variation
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(b) Second mode of shape variation
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(c) Third mode of shape variation
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(d) Fourth mode of shape variation

Figure 2.8: First four modes of shape variation. The first two modes indicate
variation in the basic form, whereas the third and fourth modes predominantly
display left/right asymmetry.

Projecting one of the original sample shapes dx (in mean deviation form)

onto each principal component, results in a non-lossy encoding, bs, of that

shape.
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bs =
2m
∑

j=1

(

pj
s

)T
dx or bi

s = PT
s dx (2.38)

Since the principal components are ordered by significance, an approximate

and compact representation of x can be obtained by using the first ts compo-

nents only,

b̂s =

ts
∑

j=1

(

pj
s

)T
(x − x̄) (2.39)

where b̂s is a ts element vector and typically ts << 2m. An approximation,

x̂, to the original sample shape can be reconstructed from b̂s as follows,

x̂ =

ts
∑

j=1

pj
sb̂

j
s + x̄ (2.40)

In the leaves example, 80% of the shape variance over the original sample

is modelled by the first five principal components (figure 2.9). Therefore a

reasonable value for ts would be ts = 5, allowing any leaf shape to be encoded

by a vector of only five parameters.

2.3 Modelling texture

The previous section described how intra-class shape variation can be modelled

using PCA. In this section, the intra-class texture characteristics are modelled.

Specifically, the texture variation contained within the autumn leaves dataset.

In the computer vision literature, the term texture is used when referring to a

pattern of pixel intensity values. A model of texture variation for the chosen

object class can be constructed by determining a set of principal components,

using a method analogous to one outlined for the shape data. In order to model

the texture independently of the shape, each sample image is first warped to

the mean shape prior to constructing the model. Failure to perform this shape

normalizing step will result in the presence of ghosting artefacts in the texture

principal components.
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Figure 2.9: Variance associated with each shape principal component for the
autumn leaves example (left). Cumulative variance (right) - 80% of the shape
variation associated with the original dataset can be expressed by the first five
principal components.
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2.3.1 Obtaining pixel correspondences

When normalizing the image shape, an image warp is required that maps a set

of control points, {xi}, in image I to another set of control points, {x′

i}, in the

output image, I ′. There are various methods for effecting image warps some of

which are more suited to certain applications than others. Thin plate splines [6]

offer a smooth continuous warp but take a relatively long time to compute. For

applications in which fast rendering is required a piece-wise affine warp is more

appropriate.

Piece-wise affine

As the name suggests the piece-wise affine warp consists of individual local

warps, F1, F2, . . . , Fm−2, that collectively produce a global geometric image

transformation.

Figure 2.10: Original leaf image (left) and shape normalized leaf image (right).
Corresponding Delaunay tessellations displayed on each image.

Local regions of the image can be defined by an irregular triangular tessel-

lation in the image plane. Delaunay triangulation provides a method for the

optimal partitioning of the convex hull of the control points into non-overlapping

triangles. The Delaunay construction ensures that the circumcircle of each tri-

angle does not contain any control points other than its own vertices. The warp

is realized by constructing the corresponding tessellation in the output image

according to the control points {x′

i} and then computing the transformation

between corresponding triangles. If each shape consists of m landmark points,

the number of triangles in the tessellation will be m − 2.

An affine transformation of R2 is a map F : R2 → R2 that preserves lines

and parallelism. Unlike Euclidean transforms, the general affine transforma-

tion does not necessarily preserve length and angle. F can be expressed as

a linear transformation, represented here by the matrix A, and a translation,

represented by the vector t as per equation 2.41
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Figure 2.11: An affine transformation F (x) maps the vertices (x) of a triangle
into the vertices (x′) defining a new triangle. In practice, F (x) is computed
using the control points in x and x′ and then applied to the pixel coordinates
located inside the triangle.

F (x) = Ax + t, x ∈ Rn (2.41)

The translation component of F is not linear, and therefore can not be

incorporated within A. For practical purposes the form of F can be simplified

using homogeneous coordinates in which a point in the set {xi} is represented

by the tuple [xi, yi, 1]T and the corresponding point in {x′

i} is represented by

[x′

i, y
′

i, 1]T . Thus, equation 2.41 can be replaced by,







x′

y′

1






=







a11 a12 a13

a21 a22 a23

0 0 1













x

y

1






(2.42)

The set of all possible affine transformations in homogeneous format rep-

resents a group, G and therefore satisfies the following axioms [2] expressed in

matrix notation, where A,B and C are 3 × 3 matrices representing transfor-

mations.

1. Closure: AB ∈ G

2. Associativity : (AB)C = A (BC) , ∀ A,B,C ∈ G

3. Identity : There exists an identity matrix I ∈ G, such that IA = AI =

A, ∀ A ∈ G

4. Inverse: Each matrix A ∈ G has an inverse matrix A−1 ∈ G, such that

A−1A = AA−1 = I
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These axioms state that two or more affine transformations can be multiplied

together to form a compound transformation that is also affine, and that any

transformation that belongs to a group can be inverted. Special transformations

within the affine group are translation (only in the homogeneous form), T,

rotation, R and scaling, S (equation 2.43). In computer graphics applications

it is often convenient to compose an affine transformation from these basic

transformations.

{T (tx, ty) ,R,S (sx, sy) |sx, sy 6= 0} (2.43)

An affine transformation can be found that can transform a triangle into

any other specified triangle. This follows logically from equation 2.42 by in-

serting two more position vectors in homogeneous form. In equation 2.45, the

vertices [x1 y1 1]T , [x2 y2 1]T , [x3 y3 1]T of the source triangle are mapped to

the vertices [x′

1 y′1 1]T , [x′

2 y′2 1]T , [x′

3 y′3 1]T defining the destination triangle.







x′

1 x′

2 x′

3

y′1 y′2 y′3
1 1 1






=







a11 a12 a13

a21 a22 a23

0 0 1













x1 x2 x3

y1 y2 y3

1 1 1






(2.44)

Multiplying out the left hand side of equation 2.45 yields six equations in

six unknowns. The coefficients a11, a12, a13, a21, a22, a23 can be determined by

matrix inversion as follows,







a11 a12 a13

a21 a22 a23

0 0 1






=







x′

1 x′

2 x′

3

y′1 y′2 y′3
1 1 1













x1 x2 x3

y1 y2 y3

1 1 1







−1

(2.45)

The left hand side of equation 2.45 provides the local transformation matrix

which can be applied simultaneously to the interior coordinates of the source

triangle and its vertices, thus achieving the local warp. Repeating the process

for all triangles within the complex hull of the shape produces the warped

output image.

Pixel Interpolation

The pixel mapping operations associated with image warping are often thought

of, and implemented as, mappings from locations in the source image to lo-
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cations in the output image. The problem with this forward mapping is that

some of the pixel values in the output image are likely to remain undefined due

to the fact that a one-to-one mapping between source pixels and output pixels

does not exist. This issue is compounded by rounding errors in the computation

of the destination coordinates. The combined effect results in ”holes” in the

output image where some pixels are not assigned a value. For this reason, it is

often more convenient to compute the reverse-warp, whereby pixel coordinates

are mapped from the output image into the source image. In matrix form, the

reverse-warp can be expressed as the inverse of the matrix defined in equation

2.45. The reverse-warp method guarantees that the value of each and every

pixel in the output image is defined. It does not however, guarantee that coor-

dinates from the source are mapped to integer positions in the output image. In

general, mapped coordinates will have non-integer values relating to a position

in between pixels in the source image. In this case, an interpolation method is

required to determine the value of the corresponding pixel in the output image.

The simplest method is to round the mapped coordinates to integer values, a

process known as nearest neighbour interpolation or point sampling. Bilinear

interpolation and cubic interpolation offer more accurate results but take longer

to compute than the nearest neighbour method. Once a corresponding pixel (or

a weighted sum of pixels in the bilinear and cubic case) has been established

it’s value is sampled and assigned to its correct position in the output image.

Compact Texture Representation

Once the warping procedure has been applied to each of the n training images,

the texture vectors {gi} can be formed. For each shape normalized image, the

pixel values are extracted in a column-wise fashion from the complex hull of the

mean object shape as illustrated in figure 2.12. For RGB images, this process

is repeated three times for each of the three colour planes and concatenated

to produce the 3m element texture vector, where m is the number of pixels

represented4.

g = [R1 R2 . . . Rm G1 G2 . . . Gm B1 B2 . . . Bm] (2.46)

Intensity values are often normalized at this stage to reduce the effects of

varying illumination conditions. Covariances in the sample textures can be

captured using a PCA model. The equations defining the texture follow the

4Note that here m is used to denote the number of pixels, whereas in the previous section
it represented the number of landmarks. In both cases it is related to the number of variables
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Figure 2.12: Pixels are extracted column-wise from the shape normalized image,
thereby forming an observation vector.

same form as those described in section 2.2.3 with suitably amended notation.

1. Subtract the mean texture, ḡ, from each of the n sample textures,

ḡ =
1

n

n
∑

i=1

gi (2.47)

and let the ith sample texture in standard deviation form be denoted by

dgi

dgi = gi − ḡ (2.48)

2. Insert the sample textures in mean deviation form into the columns of

matrix G.

G =







↑ ↑ ↑

dg1 dg2 . . . dgn

↓ ↓ ↓






(2.49)

3. Digital images typically contain 104 < m < 107 pixels, therefore, in most

cases there are many more variables (RGB triplets) than observations

(sample textures). Consequently, there will be at most n principal com-

ponents. The 3m × 3m covariance matrix Sg = 1
nGGT that describes

the intensity relationships between pixels is positive semi-definite and can
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not be diagonalized. In such cases the positive definite matrix S̃g is con-

structed instead of Sg,

S̃g =
1

n − 1
GTG (2.50)

4. Determine the eigenvectors
{

vi
g

}

and eigenvalues
{

λi
g

}

of S̃g,

S̃gv
i
g = λi

gv
i
g where

(

vj
g

)T
vk

g = δjk (2.51)

For all vi
g, equation 2.51 can be written in matrix form as,

S̃gVg = VgΛg (2.52)

with

Vg =







↑ ↑ ↑

v1
g v2

g . . . vn
g

↓ ↓ ↓







5. The SVD (see equation 2.16) provides a relationship between vi
g and pi

g

that allows the orthonormal principal components to be recovered.

Pg = GVgΛ
−

1

2
g (2.53)

and

Pg =







↑ ↑ ↑

p1
g p2

g . . . pn
g

↓ ↓ ↓






(2.54)

Each texture principal component records a unique and global deviation

from the mean texture. The ith mode can be visualized by adding a proportion
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of pi
g to the mean texture in increments of 0.5σ to achieve variations in colouring

and shading gmi with respect to the mean.

gmi = ḡ + αpi
g (2.55)

In figure 2.13, the first three modes of variation (gm1,gm2,gm3) correspond-

ing to the first second and third principal components are displayed, where α

lies in the range −1σ ≤ α ≤ +1σ. It is assumed that the principal components

have been arranged in order of decreasing variance such that λ1
g > λ2

g > λ3
g, as

is normal.

Projecting one of the original sample textures onto each principal component

results in a vector of parameters bg.

bg =
3m
∑

j=1

(

pj
g

)T
dg or bg = PT

g dg (2.56)

Since the principal components are ordered by significance, an approximate

and compact encoding, bg, of dg can be obtained by using the first tg compo-

nents only,

b̂g =

tg
∑

j=1

(

pj
g

)T
(g − ḡ) (2.57)

where b̂g is a tg element vector and typically tg << 2m. An approximation,

ĝ, to the original sample texture can be reconstructed from b̂g as follows,

ĝ =

tg
∑

j=1

pj
g b̂

j
g + ḡ (2.58)

In the leaves example, 80% of the texture variance over the original sample

is modelled by the first ten principal components (figure 2.14). Therefore a

reasonable value for tg would be tg = 10, allowing any leaf texture to be encoded

by a vector of only ten parameters.
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(a) First mode of texture variation

(b) Second mode of texture variation

(c) Third mode of texture variation

(d) Fourth mode of texture variation

Figure 2.13: First four modes of texture variation. The first two modes pre-
dominantly indicate solid colour variation, whereas the third and fourth modes
display mottling and surface shading.
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Figure 2.14: Variance associated with each texture principal component for the
autumn leaves example (left). Cumulative variance (right) - 80% of the texture
variation associated with the original dataset can be expressed by the first ten
principal components.

2.4 Appearance model

Although the separate shape and texture models are sufficient for producing new

instances of shapes and textures [43], a more compact model can be obtained

by combining both shape and texture aspects in a single shape-texture repre-

sentation. The combined model is often referred to as an appearance model [20]

(this term is adopted here) though Baker et al use a slightly different termi-

nology [64]. The appearance model captures correlations that exist between

shape and texture. Its construction can be justified on the basis of two points.

Firstly, it prevents implausible shape-texture combinations occuring when new

instances are generated. Secondly, it allows a more compact representation

of the pattern class. An appearance model is constructed using an additional

PCA, in which the concatenated shape parameters (bs) and texture parameters

(bt) are treated as observations.

2.4.1 Combining shape and texture

A method for constructing compact shape-texture or appearance representation

can be summarized in the following steps.

1. Determine a scalar weighting value, w that scales the shape parameters

such that equal significance is assigned to shape and texture (A typical
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value for w can be inferred by comparing figure 2.9 and figure 2.14),

w =





∑tg
i=1

(

λi
g

) 1

2

∑ts
i=1 (λi

s)
1

2



 (2.59)

Other methods for determining w may be adopted in cases where the

shape is considered to be of greater or lesser importance than the texture.

2. For each object/observation form a concatenated vector of weighted shape

parameters and texture parameters,

b =

[

wbs

bg

]

=

[

wPT
s (x − x̄)

PT
g (g − ḡ)

]

(2.60)

Each of the n vectors in the set {bi} can be considered as an observation

in a further PCA. b will already be in mean deviation form, a direct result

of shape and texture observation being in mean deviation form.

3. Insert the n observations into a matrix, B,

B =







↑ ↑ ↑

b1 b2 . . . bn

↓ ↓ ↓






(2.61)

4. Form the covariance matrix that describes how shape and texture param-

eters vary with respect to each other,

Sa =
1

n − 1
BBT (2.62)

5. For the leaves example there are more variables than observations and Sa

will have at most n non-zero eigenvalues. The principal components are

once again obtained using the relationship between the left singular vec-

tors of B and the right singular vectors of B, described by equations 2.15

& 2.16 in section 2.1.
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Q = BVaΛ
−

1

2
a (2.63)

and

Q =







↑ ↑ ↑

q1 q2 . . . qn

↓ ↓ ↓






(2.64)

where q is a principal component of appearance, matrix Λa is a diagonal

matrix containing the variances associated with the n components and V

is a matrix containing the right singular vectors of B

The principal components of appearance offer a compact shape-texture rep-

resentation in terms of a newly derived vector of parameters, c.

c = QTb (2.65)

Each element of c is an appearance parameter that embodies a global shape-

texture characteristic of the pattern class. The first four modes of appearance

variation for the autumn leaves pattern class are illustrated in figure 2.15.

The PCs {qi} are arranged in order of decreasing significance, hence an

approximation to b can be obtained by forming a linear combination of the first

ta principal components. Figure 2.16 indicates that the first six components are

sufficient for retaining 80% of the variance from the shape and texture models.

Since ta < (ts + tg), the appearance model is a more compact representation

than is afforded by the separate shape and texture PCA encodings.

From c an approximate object image can be reconstructed using the steps

outlined below,

1. Form an approximation to b using the first ta appearance principal com-

ponents,

b̂ =

ta
∑

i=1

qici (2.66)

where qi is the ith column of the matrix Q in equation 2.64
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(a) First mode of appearance variation

(b) Second mode of appearance variation

(c) Third mode of appearance variation

(d) Fourth mode of appearance variation

Figure 2.15: First four modes of appearance variation. The first three modes in-
dicate strong variations in colour and form. The fourth mode displays mottling
and surface shading and asymmetry in shape.
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Figure 2.16: Variance associated with each Appearance principal component for
the autumn leaves example (left). Cumulative variance (right) - 80% of the
appearance variation associated with the original dataset can be expressed by
the first six principal components.

2. Decouple the shape and texture parameters from b

b =

[

wb̂s

b̂g

]

(2.67)

3. Reconstruct the approximate shape vector x̂,

x̂ =

ts
∑

i=1

pi
sb̂

i
s + x̄ (2.68)

where pi
s is a column vector containing the ith shape principal component

and b̂i
s is a scalar representing the ith shape parameter.

4. Reconstruct the approximate texture vector ĝ,

ĝ =

tg
∑

i=1

pi
g b̂

i
g + ḡ (2.69)

5. The pixel intensities in the texture vector, ĝ, are inserted into a 2D ar-
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ray, by reversing the procedure outlined in figure 2.12. Thus, a shape-

normalized texture-map is formed.

6. Warp the shape normalized texture from the mean object shape to the

approximated shape x̂ , thereby producing the final leaf image.

If the maximum number of PCs are used for shape texture and appearance in

the reconstruction process then a perfect reconstruction of an in-sample object

image can be achieved.

2.4.2 Generating new plausible examples

The appearance model can be used to synthesize new plausible examples from

the chosen pattern class. For each new example, this is achieved by selecting

an appropriate vector of model parameters, c, from which the an image can

be reconstructed. Appropriate parameter values are determined by fitting a

statistical model p (c) to the data points corresponding to the original training

sample. For the leaf example the probability density function, p (c), is approx-

imately a standard multivariate normal distribution (see figure 2.17),

p (c) = N (c; 0, Λ) = (2π)−
n
2 |Λ|−

1

2 exp

{

−
1

2
cT Λ−1c

}

(2.70)

where Λ is a diagonal matrix of variances, in which the element λk = Λk,k

is equal to the variance of the kth parameter variable. For random instances

of new objects, parameters can be obtained using a pseudo random number

generator (examples provided in figure 2.18).

Once the appropriate parameter values have been selected, the correspond-

ing object image can be reconstructed in the usual manner according to equa-

tions 2.67-2.69 (see also figure 2.17).

2.5 Introduction to evolutionary algorithms

The facial composite system described in this thesis constructs a likeness to

a target face by employing an evolutionary algorithm to optimize a set of ap-

pearance model parameters. This section provides the necessary background

material on evolutionary optimization procedures.

Evolutionary algorithm is a generic term referring to an optimization pro-

cedure that mimics biological evolution. Any population-based optimization

algorithm that uses mechanisms such as reproduction, mutation, recombination
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(a) Data points follow a multivariate normal distribution. The
grey ellipse signifies two standard deviations from the mean ob-
ject. process

(b) A schematic diagram
indicating the steps re-
quired to reconstruct an
image, I, from its appear-
ance model representation
c. The shape model pa-
rameters bs and texture
model parameters bt are
recovered from c which
can be used to obtain
shape x and texture vec-
tors g respectively. The
elements of g are inserted
into a 2d array, thus form-
ing the shape normalized
texture, which is warped
to the shape defined by x

thereby producing the re-
constructed image.

Figure 2.17: New examples of faces can be synthesized by selecting parameters
{ci} from a multivariate normal distribution and performing the image recon-
struction procedure outlined by sub-figure (b). Sub-figure (a) indicates the
process of generating model parameters, corresponding to new plausible faces,
from the distribution defined by the original training data.
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Figure 2.18: New examples synthesized from the autumn leaves appearance
model.

(see genetic operators), natural selection can be categorized as an evolutionary

algorithm. Candidate solutions to the optimization problem play the role of

individuals in a population, and a fitness function determines the environment

inhabited by the candidate solutions. Evolution of the population then takes

place ayfter the repeated application of the evolutionary operators. The exact

sequence of operators varies between the different forms of EA. Some of the

more notable forms are genetic algorithms, evolutionary strategies, evolutionary

programming and genetic programming.

2.5.1 Classification of evolutionary algorithms

Genetic algorithms

Genetic algorithms (GA) are one class of evolutionary algorithms that use tech-

niques inspired by evolutionary biology such as inheritance, mutation, natural

selection, and crossover (also known as recombination). GAs are used to de-

termine approximate solutions to optimization and search problems and are

particularly useful when classical optimization methods cannot be applied.

The standard GA operates on a population of bit-strings, although real

numbers (Gray-code) can be accommodated by some variants of GA. Each

bit-string represents a coded candidate solution, and is commonly known as a

genotype. A decoded candidate solution is referred to as a phenotype, the real

world object corresponding to the genetic material contained in the genotype.

A single candidate solution is also known as an individual. The evolution starts

from a population of completely random individuals and proceeds in steps or

generations. In each generation, the individuals are assigned a fitness score as

defined by a fitness function or objective function. Individuals are selected for

breeding on a stochastic basis in relation to their fitness score. The offspring
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of the breeding process are inserted into a new generation, and the process

continues until a satisfactory solution has been achieved.

Evolutionary strategies

Evolution strategies (ES) primarily use real-vector coding, and not binary cod-

ing, as is commonly used in GAs. As with evolutionary algorithms in general,

the evolutionary operators of mutation, crossover, and environmental selection

are used.

The first ES variants, developed in Germany by Rechenberg [75] and Schwe-

fel [78] for engineering optimization problems, used one parent rather than an

initial population of individuals. From this parent, λ offspring were constructed

and all 1+λ solutions placed in competition. This process is normally denoted

by (1 + λ)−ES where λ ≥ 1 and ES indicates that the optimization process is

an evolutionary strategy. Contemporary versions usually employ a population

(µ+, λ)−ES. In general, (µ, λ)−ES selection outperforms (µ + λ)−ES selec-

tion, since it allows for temporal deterioration of the population’s best solution,

and therefore may overcome local optima.

In an ES, mutation is performed by adding a gaussian distributed random

value simultaneously to each decision variable (in the context of the appear-

ance model, a decision variable is an encoding of an appearance parameter). A

strategy parameter is assigned to each decision variable that controls the mu-

tation strength (ie. the standard deviation of this distribution). The strategy

parameters are adaptive and, in general, change at each generation. Usually, in

an ES both decision variables and strategy parameters are optimized.

Evolutionary programming

Evolutionary programming (EP) is similar to ES, although it was developed

separately by Fogel [31] for use in artificial intelligence.

There is no precise definition of EP, and it is sometimes difficult to differen-

tiate between EP and ES, although in a standard implementation mutation is

the only evolutionary operator employed in EP. The basic EP-cycle is similar to

a strictly mutation-based (µ + µ)−ES, though a stochastic selection scheme is

used instead of deterministic selection. The mutation strength is also adapted

differently. Contrary to ES, the mutation strength is a function of the parents

fitness and each parent produces one offspring.
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Genetic programming

The aim of genetic programming (GP) is not to optimize a vector of variables,

but rather to determine a computer program that performs a predefined task in

an optimal way. In the GP context, a population comprises computer programs,

each of which is constructed from sets of functions and terminals. Functions may

be arithmetic, mathematical, boolean, loop operators, domain-specific functions

etc. The set of terminals consists of variables and constants. The fitness of each

program is assigned according to its average performance based on a set of test

problems. As with GAs, GP employs a crossover operator that interchanges

segments of code to produce offspring. GP is computationally expensive, and

its use has only recently become practical with advances in computer hardware

technology. Quantum computing, electronic design, game playing, sorting and

searching are some of the areas to which GP has been applied.

2.5.2 Encoding methods

The set of all possible solutions to an optimization problem defines a solution

space, which is specific to the problem. An accurate representation of the

solution space is a necessary requirement for building a robust evolutionary

algorithm. The solution space is characterised by the encoding method used.

Many different encodings have been proposed, some of which are better suited

to certain problems than others. In this section, a brief introduction to the

most widely used encoding schemes is presented.

Binary code

Binary encoding was introduced by Holland [50], and is the encoding method of

choice for GAs, in which each solution is encoded as a unique string of 0s and

1s. Let B(x, l) represent a function that encodes the real value x into its binary

representation of length l. For example, if x = 1 then B(x, 4) = 0001. The

parameter l determines the accuracy of the encoding. A large value of l will

enable accurate encoding, but will also reduce the algorithm’s performance. In

practice, a compromise is sought between speed of convergence and accuracy.

Integer numbers can be easily encoded in binary form without loss of ac-

curacy. Real numbers can also be encoded, albeit with limited accuracy. For

example, let x be a real valued variable defined over the range,

−1 ≤ x ≤ 2 x ∈ R
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An acceptable coding precision must be decided upon, in this case one deci-

mal place will be considered sufficient. Hence the domain of x will be segmented

into 30 intervals of 0.1. To encode to this level of precision, five bits are required

(since
∑4

i=0 = 31). Let D be a decoding function that maps binary numbers

to real numbers.

D (00000) = −1 (lower bound Imin)

D (11111) = 2 (upper bound Imin)

All other bit-strings (b4 b3 b2 b1 b0) are mapped to a value contained in the

interval [Imin, Imax]. First, the strings are converted from base 2 to base 10,

x′ =
4

∑

i=0

bi2
i

Then the decoded real number is given by,

x = Imin +
Imax − Imin

25 − 1
x′

Discrete codings such as these can lead to problems. For instance, the above

coding scheme maps both binary strings, 10000 and 01111 to x = .5.

Gray code

A limitation of the binary encoding method is that swapping the value of a

single decision variable from 1 to 0, or vice-versa, may cause a large change

in the decoded variable. The binary representations for the integer number 7

and 8 is, B(7, 4) = 0111 and B(8, 4) = 1000 respectively. Thus, for consecutive

integer numbers, we need to flip all of the binary elements. This is not consistent

with the idea that small changes to the genotype should result in small changes

in the phenotype. Gray code is an encoding method based on 1s and 0s that

overcomes this problem. This encoding procedure bears the name of Frank

Gray, who patented the use of this coding for shaft encoders in 1953 [39]. The

main characteristic of a Gray code is that adjacent integer numbers differ only

by one bit. A comparison between the binary and Gray code representations

of integers 0 − 15 is provided in table 2.1
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Integer Binary Code Gray Code Integer Binary Code Gray Code

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

Table 2.1: Comparison between binary and Gray code representations of integer
values.

Real value coding

Real valued representations have become widely used in evolutionary optimiza-

tion problems. As the name suggests, in this encoding method each decision

variable is represented by a real value. This method is not susceptible to the

same coding errors as binary coding. A detailed comparison between binary

and real encoding can be found in Janikow [53]. For some applications it is

advantageous to transform (e.g. logarithmic mapping) the real variables before

encoding them.

2.5.3 Evolutionary operators

By definition, all evolutionary algorithms employ evolutionary operators. These

are summarized as follows,

Natural selection

After deciding the encoding method, the second decision to make is how to per-

form the selection. Factors to take into consideration are how many individuals

from the population will be selected for reproduction, how many offspring each

individual will produce and how these offspring will be fed into the algorithm.

Some of the most frequently used selection rules are outlined below.

Fitness-proportional selection

This is the selection method used by Holland in his original genetic algorithm

[50]. In this selection method, the probability for an individual to be selected

for reproduction is proportional to its fitness. The probability is calculated by

dividing the fitness of the individual by the total fitness of the population. There

are many different ways of implementing fitness-proportionatal selection. A
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widely used method is called ”Roulette Wheel” selection. This process simulates

the spinning of a roulette wheel and the random selection of one of its slots,

where each slot corresponds to the fitness of an individual in the population.

The greater the member’s fitness, the greater the slot size and the probability

of the member being selected.

Elitism

An elitist model is any selection method in which the best solution so far is

copied into the next generation. Hence the fittest solution is always retained by

the algorithm. Elitism was originally proposed by DeJong [56] and variations

on the elitist model are employed in many applications. Care must be taken

when implementing an elitism selection method to avoid premature convergence

of the population, resulting in the search becoming trapped in a local optimum.

Rank selection

In rank-based fitness assignment, the individuals comprising the population are

sorted according to the values returned by an objective function. The fitness

assigned to each individual depends only on its position in the rank [49] and

not on the actual value returned by the objective function. Unlike fitness-

proportionate selection, rank selection is robust to premature convergence.

Tournament selection

In tournament selection a random sub-sample of individuals from the population

is chosen. The fittest individual from the sub-sample is selected for breeding.

This procedure is repeated until the required number of parents have been

selected. Each selected parent has an equal chance of contributing genetic

material to the offspring comprising the next generation. The parameter for

tournament selection is the subsample size, or tournament size as it is know

in this context, and can range from 2 to the number of individuals in the

population.

2.5.4 Crossover

Crossover, also known as recombination, is the main evolutionary operator used

in genetic algorithms (see Holland [50]). The basic idea behind this operator is

the combination of well defined small pieces of genetic code, also called building

blocks. Crossover combines building blocks extracted from fit individuals, with



60 2.5 Introduction to evolutionary algorithms

the aim of constructing offspring that exhibit a greater fitness than their par-

ents. There are many different ways in which recombination can be achieved.

The most important methods are single point crossover, multiple point crossover

and uniform crossover. Each of these three methods is described below.

Single point crossover

This crossover method, selects at random an identical position within the ge-

netic string of each parent, which signifies a cutting point in the genotype.

Each cut yields two building blocks per parent. The building blocks from the

parents are then interchanged to produce the offspring. Single point crossover

is illustrated in figure 2.19

Figure 2.19: Single Point Crossover

Multi-point crossover

For multi-point crossover [84], m > 1 crossover positions are chosen at random

and sorted in ascending order. Then, the building blocks between successive

crossover points are exchanged between the two parents to produce two new

offspring. The building block between the first variable and the first crossover

point is not exchanged between individuals. Figure 2.20 illustrates this process.

Multi-point crossover encourages the exploration of the search space, rather

than favouring the convergence to highly fit individuals early in the search,

thus making the search more robust than single point crossover.

Uniform crossover

Uniform crossover [88] differs from the single-point and multi-point crossover

schemes. Each offspring is created by copying individual decision variables from

one parent to the other as defined by a crossover mask. The crossover mask
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Figure 2.20: Multi-point crossover with number of crossover points m = 2.

itself consists of a string containing the same number of bits as the parent

bit-strings. A new mask of randomly selected bit values is created for every

crossover process. A one in the mask indicates that the corresponding bit in

the first parent is to be interchanged with the bit located at the same position in

the second parent. It is possible to assign different probabilities of occurence to

zeros and ones in the crossover mask, thereby influencing the disruptive effect

of uniform crossover.

Figure 2.21: Uniform crossover, in which individual bits are interchanged be-
tween parents to yield new offspring.

2.5.5 Mutation

Although crossover is the main evolutionary operator employed in genetic al-

gorithms, it plays little or no role in evolution strategies and evolutionary pro-

gramming in which mutation is the dominant operator. The main difference

between mutation and crossover is that while crossover cannot create new in-

formation, mutation can. The affect of the mutation operator is most easily
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illustrated by example. Consider two parents, x1 and x2, encoded as binary

bit-strings, 0101 and 0010 respectively. By inspection of the bit strings, it is

clear that the crossover operator can not alter the value of the first bit which

will always remain equal to 0. This can result in the exclusion of potentially

optimal solutions. The mutation operator overcomes this problem by introduc-

ing a probability that the value of the first bit, or indeed any other bit, will flip

from 0 to 1 or vise-versa.

Figure 2.22: Genetic mutation.

In general, the mutation operator will randomly sample positions within the

genetic string and flip the values of the bits at the sampled positions. All the

bits have an equal probability of being selected for mutation.

Figure 2.23 gives a graphical representation of a simple evolutionary algo-

rithm, indicating the order in which the evolutionary operators are applied. For

this illustrative example a genetic algorithm was chosen because it employs all

of the main evolutionary operators.

2.5.6 Parameter tuning

Fine tuning the parameters that control the evolutionary algorithms, such as

probability of mutation, number of crossover points, probability or rate for

crossover operation and population size, can have a significant effect on the

performance of the algorithm. Finding the best values for a given problem is

difficult because these parameters are not independent from each other.

Early studies attempted to determine the parameters that resulted in a

universally optimal algorithm. Dejong [56] performed an analytical study of

the parameters relating to genetic algorithms and found that a population size

of around 50 to 100 with a 60% chance of a single point crossover occuring, and

a low probability of mutation of 0.001 per bit provided the best combination of

parameters.
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Figure 2.23: A schematic diagram illustrating the order in which operators are
applied in a typical genetic algorithm. Black indicates the fittest individual and
white, the least fit individual.

Grefenstette [41] introduced the idea of using a genetic algorithm to deter-

mine the parameter values of a second genetic algorithm. Grefenstette found

that for the same problem studied by Dejong and that led to Dejong’s estimated

values, a population size of 30, with a crossover rate of 0.95, and a mutation

rate of 0.01 with an elitist selection would outperform Dejong’s algorithm.

Later studies indicated that the optimal parameters were problem specific,

with the optimal parameters being dictated by the specific task. Moreover, the

possibility of using different values within the same problem was investigated.

This lead to the implementation of dynamic parameters and self-adapting pa-

rameters that changed depending on the current state of the evolutionary algo-

rithm [26].

2.6 Summary

This chapter provided the mathematical background relevant to the facial com-

posite system described in this thesis.

An historical and mathematical account of the statistical method of princi-

pal components analysis was followed by the mathematical procedure for con-

structing an appearance model (AM). The AM enabled objects belonging to
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chosen pattern class to be represented by a compact vector of parameters. By

modelling the distribution of these parameters, it was shown that new examples

of objects could be synthesized. In the following chapter the AM is revisited,

where the details specific to modelling the human face are explained. This

model of facial appearance, provides a mechanism for synthesizing new exam-

ples of faces, and is therefore an essential component in the facial composite

system.

The problem of constructing a likeness to a suspect’s face can be expressed

as an optimization problem in which an appropriate set of appearance model

parameters is sought. The objective function for this problem is unknown and

an optimal set of parameters must be determined according to the witness’ as-

sessment of facial likeness. Evolutionary algorithms (EA) provide a flexible tool

for optimization problems, to which there is no analytical solution. The concept

of evolutionary search procedures was also introduced. The basic evolutionary

operators; mutation crossover and selection were outlined and different meth-

ods for encoding parameters were discussed. The following chapter includes the

design of an EA for the specific task of obtaining a facial likeness.



Chapter 3

EigenFIT - design and core

implementation

In this chapter, the core technical design and implementation of a novel pro-

cedure for generating facial composites is described. Computer software based

on this procedure has been developed, which will be referred to hereafter as

EigenFIT (Eigen Facial Identification Technique). The chapter begins with

the motivation for developing the EigenFIT composite system, followed by an

outline of the system’s functionality and how it may be used to generate a com-

posite image. Subsequent sections describe the system’s construction, starting

with the data capture process required for building the generative appearance

model. This is followed by an account of the appearance model construction and

an evolutionary search algorithm designed to enable an operator to achieve con-

vergence to a target face. A general automated method for applying hairstyles

to the generated faces is presented. This is followed by a preliminary study into

a potentially superior method for applying hairstyles. The last section outlines

a technique for overriding the evolutionary process in which the witness is able

to lock the shape of individual facial features. A step by step example illustrat-

ing the production of a facial composite using the EigenFIT system is provided

in Appendix D.

3.1 Motivation

Commercially available composite systems to date have relied on assembling

individual facial parts in order to compose a target face. This approach to

constructing facial composites conflicts with a significant body of psychological

literature which has shown that we are better at recognising faces as a whole

rather than as a sum of their individual parts or features [95, 89, 73]. Our in-

65



66 3.2 System overview - EasyFIT mode

ability to recognise faces on a feature-by-feature basis is due to the importance

of the relative positions of the individual features within the face. Many of the

established systems also rely strongly on a preliminary cognitive interview in

which the witness is required to provide a verbal description of the face. Recall-

ing descriptions of faces from memory and assigning semantic labels to these

descriptions is a difficult task. Conversely, a much easier task is to recognise

the identity of a subject when presented with an image of their face. Taking

the psychological issues into consideration, it is reasonable to assume that a

composite system that incorporates whole face stimuli and does not entail a

lengthy verbalization processes, may yield superior results.

3.2 System overview - EasyFIT mode

The EigenFIT system has been carefully designed in an attempt to address the

problems associated with current commercial systems. The basic elements in

this process can be described in general terms as follows,

• Initially, a witness is presented with an array of randomly generated faces

to which he or she must respond.

• The witness is required to make a subjective judgement of facial likeness

each image in the array with respect to the suspect. There are in principle

a number of different ways in which this can be implemented (e.g. ranking

or assigning full scale ratings). However, in the preferred method, the

witness is required to select a single face from the sample as the best

likeness to the target face. Faces that do not resemble the suspect in any

way can be removed, thereby allowing the witness to concentrate on the

remaining faces in the array.

• Based on the selected face at this step, a new array of faces is produced

and displayed to the witness.

• The witness responds to the new faces in the same manner as the previous

array of images. This process is iterated until a satisfactory likeness to

the target is produced.

Implementation of a composite system based on this protocol requires a method

for creating plausible faces and the means to propagate facial characteristics

through successive iterations. These requirements are met by the three main

elements comprising the EigenFIT system. These are,
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1. A generative face model that is capable of producing photo-realistic whole

face stimuli.

2. A procedure for evolving a facial likeness.

3. A graphical user interface that allows the operator to interact with the

system in an intuitive manner.

The generative model used in this work was based upon an appearance model

(AM), a technique that has received a lot of interest within the computer vision

community since its inception [20]. An AM of the human face was constructed

and the natural variation exhibited by a sample of real faces was modelled by

estimating the underlying probability density function relating to the associated

appearance model parameters. This enabled new plausible examples of whole

faces to be synthesized (see section 3.4.5), thereby overcoming the problems

inherent in the feature based approach to composite construction.

A likeness to a suspect’s face can be achieved by determining an appropriate

set of appearance model parameter values. These optimal parameters can not

be obtained analytically, dictating an alternative iterative optimization method.

In this work an interactive evolutionary algorithm was employed to determine

the optimal appearance model parameters, and hence a likeness to the suspect’s

face.

The evolutionary algorithm was driven by the witness’ response to con-

secutive arrays of facial stimuli via an intuitive graphical user interface. The

interface was designed to utilize the mind’s capacity for recognising faces and

to negate the problems associated with verbalizing facial appearance and the

misinterpretation of verbal descriptions. Figure 3.1 shows how the main com-

ponents of the system and the witness interact in the composite construction

process.

To accelerate the composite process, an initial starting point for the evo-

lutionary algorithm was obtained by establishing the sex and ethnicity of the

suspect via graphical cues. Thus, in the EigenFIT system the emphasis has

shifted from the cognitive interview towards a graphical interviewing procedure

that does not require the witness to verbalize facial descriptions recalled from

memory.

EigenFIT has been developed using the MATLAB programming language.

Due to MATLAB’s limitation in speed and graphics handling, a commercial

beta version was later coded in C++ using Borland Builder. EigenFIT has been

successfully tested on Windows XP and Windows 2000 operating systems. It
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runs satisfactorily on any computer (Pentium II 400MHz or better) with only

modest processing capacity.

APPEARANCE MODEL
(AM)

EVOLUTIONARY ALGORITHM
(EA)

FACE SYNTHESIS PARAMETER OPTIMIZATION

GRAPHICAL USER INTERFACE

HAIRSTYLELOCK FEATURE

WITNESS AND/OR OPERATOR

EIGENFIT - EASFIT MODE

Figure 3.1: EigenFIT (EasyFIT): A conceptual diagram indicating the interac-
tion between the three main components; the appearance model, evolutionary
algorithm and graphical user interface. Additionally, functionality is provided
by a hairstyle tool and a lock feature tool that enables the operator to intervene
in the global evolutionary process.

3.3 Design of graphical user interface - EasyFIT

The interface design was motivated by a need for cognitive simplicity, employing

an intuitive graphical approach to facial composite construction. The key idea

underpinning this approach is that the witness is guided through the process of

generating a facial composite with the aid of graphical cues that do not rely on

explicit verbalization. The interface operates in two modes; expertFIT, which

is outlined in chapter 4 and easyFIT which is described in this chapter. The

EasyFIT mode embodies the core implementation of EigenFIT. In this form,

computer generated virtual faces are presented to the witness in a three by

three configuration. A summary of the layout and functionality of the EasyFIT
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Figure 3.2: Flow diagram indicating the procedure for generating a composite
image using the EigenFIT software in EasyFIT mode.
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interface, shown in figure 3.3, is provided below,

• Backdrop for generation: Area of interface in which the computer

generated face stimuli are displayed. The witness is required to select one

of nine faces (the faces are collectively known as a generation) that are

displayed on the backdrop. The selection process invokes a new generation

of faces. Repetition of the selection process for subsequent generations

allows a likeness to the target face to be evolved.

• Remove face: This icon allows the witness to hide faces that are sig-

nificantly different from the target, thus allowing them to concentrate on

the remaining visible faces. Toggling the icon switches the face between

its visible and hidden state.

• Hair tool: Displays the hair selection tool, allowing the witness to choose

an appropriate hairstyle. The hairstyles are displayed in order of prefer-

ence according to a semantic filter. This approach to selecting a hairstyle

is similar to the method used in commercially available systems such as

E-FIT [3].

• Iconic face: The iconic face comprises feature buttons corresponding to

the eyes, eyebrows, mouth, nose and face shape. Once a feature button

has been selected it turns blue to indicate that it has been locked. In sub-

sequent generations the shape of the selected feature remains unchanged

until the feature button is deselected. More than one feature button may

be selected at once. The iconic face is an essential component of the lock

feature tool (described in the later part of this chapter) and the feature

manipulation tool (covered in Chapter 4).

• Finish and export: Ends the composite process with the option to

export the image to a graphics package for post processing. The optional

post processing step allows distinctive markings such as scars and tattoos

to be drawn onto the composite image.

• ’Generate More’ button: Produces a new generation with more facial

variation than the previous generation. Repeatedly selecting the ’Gener-

ate More’ button increases the amount of facial variation further.

• ’Undo’ button: Ignores the last face, selected by the operator, thereby

returning to the previous generation.
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Figure 3.3: Screen dump of the EigenFIT graphical user interface - EasyFIT
mode.
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3.4 Generative model of facial appearance

Active appearance models have previously been used for computer pattern

recognition applications [21, 64] in which a face patch is synthesized and mor-

phed to match a target face using an automated iterative fitting algorithm.

Conversely, in facial composite applications, the fitting procedure is guided

by the witness’ response to face stimuli. Hence, we are only concerned with

the capability of the model for synthesizing new examples of face images. Ac-

cordingly, the word ’active’ has been dropped and the term appearance model

is used when referring to the PCA based method for synthesizing new exam-

ples of faces. In Chapter 2, the mathematical procedure for constructing an

appearance model was described in detail. In this section, the specific steps

required to construct an appearance model of the human face are presented.

By modelling the probability density function of model parameters, the AM

can be used to synthesize new examples of faces.

3.4.1 Facial demographics

The objective of the appearance model is to model the full range of natural

variation that occurs in both face shape and face texture. In order to achieve

this aim, a comprehensive sample of training images is required. A sample

of 823 face images was used to construct the AM. The demographics of this

sample are provided in the bar charts of figure 3.4.1. White males, black males

and Indian males were adequately sampled whereas Chinese males were not

(see figure 3.4.1a). The number of samples of White females was sufficient for

representing facial variation within the White female population. Other female

ethnic groups were not well represented (see figure 3.4.1b).

3.4.2 Image capture protocol

Subjects were required to sit in a chair and face directly towards a six mega pixel

digital camera. Special care was taken to normalize the pose. Where necessary

a subject was asked to rotate their head slightly, so that their face was ’square

on’ to the camera lens. Variations in head pose result in shape modes which

exhibit undesirable rotations. These can be difficult to remove from the shape

model [48]. The camera was mounted on a tripod and positioned at a distance

of 1.5 metres from the subject, with the subject’s face occupying as much of the

image as was feasible. Variability in the height of subjects was accommodated

by using the vertical adjustment on the tripod. Images were captured in a

laboratory without windows, preventing variations in lighting conditions due to
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Figure 3.4: Demographics of AM training data comprising 823 sample faces.
For clarity, the demographics of the male sample has been plotted separately
from the demographics of the females.
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daylight entering the room. Subjects were illuminated by a single fluorescent

strip light and the camera flash. A table of camera settings is provided in

appendix A.

3.4.3 Shape delineation tool

Although automated methods have been developed for positioning landmarks

[19, 57], manually placed landmarks can, in many cases, offer a higher degree of

accuracy. However, there is a considerable labour burden associated with the

task of manually placing landmark points. The shape model used in this work

demands that 190 landmark points be placed on each of 823 sample images. To

make this process less tedious software was written to simplify this task, allow-

ing the shape of image objects to delineated easily and relatively quickly. This

shape delineation tool included a simple user interface that could be operated

by an untrained user (see figure 3.5).

The shape delineation tool (or landmarking tool), based on a least squares

polynomial fitting procedure, was coded. One or more polynomial line seg-

ment(s) were used to represent the boundary of each facial feature. The shape

of each polynomial line segment was determined by a set of control points {x, y}.

The aim is to obtain the n degree polynomial in x that best fits y in the least

squares sense. This provides a smooth curve, ŷ (x), that can be manipulated

by hand to follow the contour of a given feature. The problem can be written

in terms of the Vandermonde’s matrix, V, as,

Vp ∼= y = ŷ (3.1)

or in tableau form as,
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(3.2)

The elements of V are powers of x
(j−1)
i and the coefficients that form p are

to be determined by least squares methods. Vector y contains the y coordinates

of the control points. The properties of each curve segment were set according to

an empirical measure of their suitability to a specified feature. Some features
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Feature Orientation Order of No of Save intersecting
polynomial interpolated points interpolated points

Upper edge of left eyebrow horizontal 4 8 yes
Lower edge of left eyebrow horizontal 4 8 no

Upper edge of right eyebrow horizontal 4 8 yes
Lower edge of right eyebrow horizontal 4 8 no

Upper edge of left eye horizontal 4 8 yes
Lower edge of left eye horizontal 4 8 no

Upper edge of right eye horizontal 4 8 yes
Lower edge of right eye horizontal 4 8 no

Left upper edge of top lip horizontal 4 8 yes
Right upper edge of top lip horizontal 4 8 yes

Lower edge of top lip horizontal 6 8 no
Upper edge of bottom lip horizontal 6 8 no
Lower edge of bottom lip horizontal 4 8 no

Chin horizontal 4 24 yes
Left side of face vertical 4 16 no

Forehead horizontal 5 24 yes
Right side of face vertical 4 16 no
Left side of nose vertical 5 8 no

Right side of nose vertical 5 8 no
Base of nose horizontal 2 8 no

There is no curve associated none 4 8 no
with this point

Table 3.1: The shape delineation tool allowed landmarks to be placed relatively
quickly and easily. This was achieved by manipulating a set of polynomial curve
sections to fit the boundaries of the main facial features and the perimeter of
the head. The properties of these polynomial curve sections are presented in
this table. Where a base landmark controls more than one curve (for instance,
at the corner of the mouth), care must be taken not to duplicate landmarks
(see last column in the above table).

exhibit more curvature than others, and therefore must be modelled using a

higher order of polynomial. Predominantly horizontal features, such as the

mouth, are best delineated using a function of the form y (x) whereas for vertical

features the role of x, y coordinates should be interchanged. This was easily

achieved by setting the elements of V to y
(j−1)
i and making the x coordinate

the response variable in the least squares problem.

The two end points of each line segment are classified as anatomical land-

marks because they were positioned at salient points on the feature boundary

(e.g. at each corner of the eye). Pseudo landmarks for each feature were ob-

tained by sampling the coordinates of equidistant points points along the inter-

polated curve. The number of landmarks and polynomial order for a given curve

section were determined by its typical length and intricacy of shape. Table 3.1

lists the properties of the curve sections used.

Figure 3.5 depicts the interface of the shape delineation tool, which has
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been annotated to provide an overview of its functionality. Control points can

be positioned by using the left mouse button to ’click and drag’. A detailed

explanation of how to use this interface is provided in appendix B.

A sequence of images illustrating the typical steps required to landmark the

mouth region is given in figure 3.6. The initial positions of the landmarks, for

the whole face configuration, are set by placing three points; two points at the

outer corners of the eyes and a point at the base of the nose. A transformation

of the mean point configuration (representing the mean face shape) based on

the position of these three points is used to obtain an approximate position for

the whole point configuration. The curve sections can then be fitted to their

corresponding features by manipulating the control points (represented by dots

in the figure). In some instances, the landmarking procedure can be aided by

initially translating a whole feature shape using the lock control as shown in

figure 3.6 a-b.

3.4.4 Appearance model construction

The method for constructing an appearance model was described in detail in

Chapter 2. Here, the specific details concerning the construction of an appear-

ance model of the human face using the shape and texture data are presented.

Point model

A point model was chosen that delineated the main facial features and the

perimeter of the face. Accordingly, the face morphology was represented using

190 landmark points as illustrated in figure 3.7.

Each of the 823 training faces were landmarked according to the specified

point model, thus 823 point sets were obtained. The point sets were aligned

using the Procrustes method (see section 2.2.2), allowing variations in face

shape to be analysed independently of scale, position and rotation.

A compact shape representation was obtained by performing a principal

components analysis on the face shapes according to the procedure described

in Chapter 2, by equations 2.29-2.36. The shape of any out-of-sample face can

be approximated by a linear combination of the shape principal components as,

x̂ = x̄ +

ts
∑

j

pj
sb̂

j
s (3.3)

where x̄ is the mean face shape, pj
s is the jth principal component and b̂j

s



77 3.4 Generative model of facial appearance

Figure 3.5: User interface for shape delineation tool. The anatomical land-
marks are labelled with magenta circles. The polynomial curve segments and
their associated control points are plotted in blue, except for the curve that is
currently being manipulated, which is plotted in red. Note: The contrast of the
input image in has been reduced to make the landmarks more visible.
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(a) Initial position (b) Step 1: Translated mouth
shape

(c) Step 2: Correct positioning
of base landmarks

(d) Step 3: Lower edge of bot-
tom lip correctly shaped and po-
sitioned

(e) Step 4: Correctly land-
marked mouth

Figure 3.6: Typical steps taken to correctly landmark the mouth region of a
sample face. The above images were extracted from the shape delineation tool
interface and enlarged to illustrate the process more clearly. The left mouse
button was used to ’click and drag’ the control points such that the curve
sections were located on the boundary of the feature.

is a shape parameter that dictates the influence of the jth component on the

generated face shape x̂.

Table 3.2 illustrates the first three modes of shape variation with respect to

the mean face shape. The first mode appears to capture variation in forehead

height, and to a lesser extent, chin length. However, care must be taken when

interpreting the variation represented by this mode, since what appears to be

variability in the forehead height is partially attributable to disparities in hair-

line position. This is undesirable because the aim is to model the facial features

and the perimeter of the head, which is unrelated to the hairline. A solution

is to weight [55] the relevant landmark points so that they are less significant
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Figure 3.7: Face shape point model. Magenta circular markers represent
anatomical landmarks. Blue markers represent interpolated landmarks which
follow the feature boundaries.

in the construction of the shape model than the landmarks pertaining to the

facial features and remainder of the head shape. The second and third modes

are more indicative of true face shape variation.

Texture model

A texture model was constructed that described the variations in pixel values

over the sample images (see Chapter 2, section 2.3). Initially, each of the 823

training face images were warped to the mean face shape, such that a corre-

spondence between ’like’ pixels was obtained (i.e. an exact non-rigid alignment

was obtained such that each facial feature was positioned at the same image

coordinates in every one of the warped sample images). The pixel intensity val-

ues were extracted column-wise from these shape normalized images, to form

823 texture vectors.

A compact texture representation was obtained by performing a principal

components analysis on the texture vectors as described in Chapter 2, by equa-

tions 2.47-2.54. The texture of any out-of-sample face can be approximated by

a linear combination of the texture principal components,

ĝ = ḡ +

tg
∑

j

pj
g b̂

j
g (3.4)

where ḡ is the mean face texture, pj
g is the jth principal component and b̂j

g

is a texture parameter that dictates the influence of the jth component on the
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generated face texture ĝ.

The shape principal components can easily be calculated using vector and

matrix operations. Conversely, the texture principal components can not be cal-

culated in this way. The dimensionality of the texture data (typically 104 −107

elements per vector) prevents all of the sample textures being loaded into mem-

ory at any instance. Instead, the n1 texture principal components,
{

pj
g

}

, must

be constructed iteratively using a nested for loop, as shown in algorithm 1.

Algorithm 1 Computationally viable method for generating principal compo-
nents from image data

pj
g = 0 {initialize principal component as a 3m by 1 null vector}

for i = 1 to n do
load dgi {load first observation}
pj

g = dgiv
j
g(i) + pj

g {add contribution from the ith observation}
end for

pj
g = pj

gλ
−

1

2

j (n − 1)−
1

2 {normalize principal component}

write pj
g to file

Table 3.3 illustrates the first three modes of texture variation with respect

to the mean face texture. The first mode predominantly captures variation

in skin pigmentation associated with ethnicity. The second and third modes

appear to represent aspects of texture variation due to race and gender.

Combined appearance model

An appearance model was constructed that simultaneously captured both shape

and texture aspects of human faces using the procedure previously described

in Chapter 2, by equations 2.59-2.64. A compact vector representation, c =

[ci, c2, . . . , cn]T , of the appearance of an out-of-sample face can be expressed in

terms of its shape and texture as follows,

c = QT

[

wbs

bg

]

≡ QT

[

wPT
s dx

PT
g dg

]

(3.5)

where the columns of Q, Ps and Pg are the appearance, shape and texture

principal components respectively. dg is the face texture vector in mean devia-

tion form and dx is the face shape vector in mean deviation form. The vectors

1The dimensionality of the data usually dictates that there will be at most n principal com-
ponents with corresponding eigenvalues that are non-zero, where n is the number of sampled
faces.
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Modes of shape variation
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Table 3.2: Shape modes capturing the natural shape variation in the dataset.
The jth mode is illustrated by adding a proportion of the jth shape principal

component to the mean face shape -
(

x̄ − pj
s3

√

λj

)

< x <
(

x̄ + pj
s3

√

λj

)

, where λj is the variance associated with the jth mode of variation.
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Modes of texture variation
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Table 3.3: Texture modes capturing the natural colour variation in the dataset.
The jth mode is illustrated by adding a proportion of the jth texture principal

component to the mean face texture -
(

ḡ − pj
g3

√

λj

)

< g <
(

ḡ + pj
g3

√

λj

)

, where λj is the variance associated with the jth mode of variation.
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bs and bg are the shape and texture parameter vectors respectively and w is a

scalar that determines the relative significance of shape and texture.

Conversely, new plausible examples of faces can be synthesized by sampling

the parameters {ci} from a multivariate distribution and then manipulating

equation 3.5 to obtain the corresponding face shape and face texture.

The first three modes of appearance variation are illustrated in table 3.4.

These modes correspond to the most dominant of the ta axes defining a param-

eter space. The first mode indicates a change in race. It exhibits masculine

attributes due to the Black, Indian and White male demographic groups repre-

sented in the training sample. Only White females are adequately represented

in the training sample (see section 3.4.1), hence there is no equivalent mode for

female faces. The second and third modes represent variation in sex, race and

overall face shape.

3.4.5 Generating new examples of faces

The provision for synthesizing new examples of faces is an essential component

in the EigenFIT system. To generate plausible faces, the probability density

function (PDF) of appearance parameter values must be estimated. Knowing

this PDF is important for two reasons. Firstly, it allows new random faces

to be synthesized, thereby forming a starting point for the evolutionary search

procedure. Secondly, it enables random plausible variations of a chosen face to

be produced; the process on which the evolutionary search procedure is based.

Consider the n training samples. These can be represented collectively as

a point cloud in the parameter space, in which each sample is defined by a

unique point. The point cloud is modelled using a single multivariate normal

(abbreviated to SMN elsewhere in this thesis) probability density function,

N (c;0, Λ) = (2π)−
n
2 |Λ|−

1

2 exp

{

−
1

2

(

cT Λ−1c
)

}

(3.6)

where c is a vector of appearance model parameters, [c1 c2 . . . cn]T , Λ is a

diagonal matrix containing the variances associated with each mode of appear-

ance and 0 is the mean vector indicating that the distribution of parameter

values is centred about the origin of the parameter space. An approximate

likeness to a chosen face that is not represented in the training sample, can

be synthesized by selecting the appropriate set of parameters {ci} (the subject

of section 3.6) and following the process for generating an image from model

appearance parameters (mathematical details were presented at the end of sec-
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Modes of appearance variation
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Table 3.4: Appearance modes representing the natural shape, skin pigmen-
tation and shading variation in the dataset. The jth mode is illustrated by
adding a proportion of the jth appearance principal component to the mean
face appearance -

(

c̄ − qj3
√

λj

)

< cj <
(

c̄ + qj3
√

λj

)
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tion 2.4.1 in Chapter 2). Examples of random faces can be synthesized by

sampling for parameters {ci} from N (c;0, Λ). Computationally, this is easily

achieved by scaling standard normal variables [z1 z2 . . . zn]T obtained from a

pseudo-random number generator (PRNG),

c = Λ
1

2 z or
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(3.7)

where λ
1

2

1 , λ
1

2

2 , λ
1

2

3 etc are the standard deviations associated with the 1st, 2nd

and 3rd parameters. The SMN distribution, N (c;0, Λ), describes a model that

embodies all of the training faces and is therefore independent of their associ-

ated demographic classification.

Demographic sub-sample models

Although the SMN model generally produces plausible faces, instances of un-

realistic faces may also occur. For example, faces that simultaneously exhibit

both male and female characteristics. Furthermore, the SMN model is of lim-

ited use for facial composite applications because it not does easily allow prior

demographic knowledge to be incorporated in the initial population (see section

3.6). A superior approach is to model the individual demographic groups as

separate multivariate normal distributions, (e.g. NBM (c; µBM , ΣBM ) for black

males), within the parameter space as depicted in figure 3.8.

Hence, faces that exhibit characteristics associated with a chosen demo-

graphic group can be generated using the appropriate sub-sample model. The

evolutionary search procedure requires an initial pseudo-random population of

faces which must be drawn from a chosen sub-sample model. Let z be a vector

of independent random variables sampled from a multivariate standard normal

distribution. A vector of transformed variables was sought such that,

c = Az + µ (3.8)

where µ is a translation vector, representing the mean face of the demo-

graphic sub-sample and A is a matrix to be determined. The requirement that

A be of full row rank implies that the dimension of c can be no greater than
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Figure 3.8: Figure indicating the distributions for black males (BM), Indian
males (IM), white males (WM) and white females (WF) over the first three
dimensions of the parameter space. Ellipses represent 2σ contour lines of the
sub-sample models.
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the dimension of z and that none of the variables within Az is expressible as a

linear combination of the others. The covariance matrix of c is defined as,

Σc =
〈

[c − 〈c〉] [c − 〈c〉]T
〉

Σc =
〈

[Az + µ − (A 〈z〉 + µ)] [Az + µ − (A 〈z〉 + µ)]T
〉

Σc =
〈

[A (z − 〈z〉)] [A (z − 〈z〉)]T
〉

Σc = A
〈

[(z − 〈z〉)] [(z − 〈z〉)]T
〉

AT

Σc = AΣzA
T

(3.9)

Σz is diagonal for independent variables and equal to the identity matrix

when {zi} are standard normal variables. Hence equation 3.9 simplifies as

follows,

Σc = AΣzA
T = AAT (3.10)

for

zi ∼ N (0, 1)

The density function of c is found via the change-of-variable technique. This

involves expressing z in terms of the inverse function z (c) = A−1 (c − µ). Using

equation 3.10 the Jacobian of the transformation can be written as,

∥

∥

∥

∥

∂z

∂c

∥

∥

∥

∥

=
∣

∣A−1
∣

∣ = |Σc|
−

1

2 (3.11)

Therefore, the resulting probability density function of the multivariate nor-

mal distribution of the transformed variables is,

N (c; µ,Σc) = (2π)−
n
2 |Σ|−

1

2 exp

{

−
1

2
(c − µ)T Σ−1

c (c − µ)

}

(3.12)

To transform the standard normal variables, and hence synthesize examples

of faces from the chosen sub-sample model, the matrix A must be determined

via a decomposition of the covariance matrix Σc (Σc is positive definite and

symmetric). A is not unique and various decompositions can be found that

satisfy Σc = AAT . A standard approach is to use a Cholesky decomposi-

tion in which the covariance matrix is decomposed into the product of a lower

triangular matrix L and its transpose,
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Σ = LLT (3.13)

substituting L for A in equation 3.8 gives,

c = Lz + µ (3.14)

where L can be constructed from the chosen demographic with L = LBM

etc (in which the subscript refers to the demographic group). Equation 3.14 can

be used to generate faces with the desired demographic properties by following

the reconstruction process described in Chapter 2, by equations 2.66-2.69. Ex-

amples of faces synthesized from different demographic sub-sample models are

presented in figure 3.9.

3.5 Evolving faces using an evolutionary algorithm

The appearance model described in section 3.4 provides the means for synthe-

sizing plausible face stimuli (face images). An adequate approximation to any

face can be obtained from an appropriate selection of 60 independent appear-

ance model parameters, contained in the vector c. In principle, the parameter

values could be determined using many different approaches. For instance, a

naive approach would be to construct a user interface in which each parameter

value is controlled by a slider, and the resulting composite face displayed to the

witness. Another approach would be to implement a purely random search of

the parameter space in which a large number of candidate faces are synthesized

from which the best likeness to the target face is selected. Although, in theory,

both of these methods are capable of achieving a likeness, neither method takes

into account ’ease of use’ or the time required to achieve a likeness. This sec-

tion describes an efficient stochastic search procedure that enables the witness

to determine an optimal vector of appearance parameters from which a likeness

to the target face can be constructed. A more detailed account of the procedure

described here is provided by Pallares-Bejarano [69].

It is crucial to recognize that the optimum search procedure for this task

must be an algorithm that is a suitable compromise between human usability

and speed of convergence (i.e. the required number of faces seen and rated by

the user before a satisfactory composite is achieved). Evolutionary algorithms

can be easily adapted to accommodate different types of input from a user,
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(a) random sample of faces synthesized using the sub-sample model representing black males

(b) random sample of faces synthesized using the sub-sample model representing Indian males

(c) random sample of faces synthesized using the sub-sample model representing white males

(d) random sample of faces synthesized using the sub-sample model representing white females

Figure 3.9: Random faces synthesized from the appearance model parameters
obtained using PRNG from separate multivariate normal distributions.
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and hence are well suited to optimization problems of this type. Accordingly,

three evolutionary approaches to conducting the parameter search have been

explored, each of which required a different input from the user. The algorithm

that offered the best compromise between speed of convergence and usability

was employed in the EigenFIT facial composite system.

3.5.1 Fitness function and convergence criteria

In an evolutionary algorithm, a scalar valued fitness function, f (c) quantifies

the ’goodness’ of a candidate solution, c, to the optimization problem of inter-

est. Each candidate solution is also referred to as a genotype (analogous to a

chromosome of biological genetic code) which maps to a phenotype embodying

the physical characteristics dictated by the chromosome.

In the context of facial composite applications, a genotype is a vector of ap-

pearance model parameters and a phenotype is a face image constructed from

the genotype. In the process of evolving a face, the witness is required to assign

fitness scores to phenotypes. Hence, the mathematical form of the fitness func-

tion f (c) is unknown and exists only in the subconscious mind of the witness.

The fitness function will differ according to the specific target face of interest

and is also dependent on the witness’ memory of the suspect. Furthermore,

perceptual measures of similarity between faces differ slightly between individ-

uals. Each witness will thus encode a face differently. For these reasons no

analytical solution to f (c) exists and a stochastic search procedure is required.

Virtual witness

The behavior of evolutionary algorithms can be strongly affected by a number

of parameters such as probability of crossover and mutation, selection method

and genotype length. For the application considered in this thesis, the most

reliable method for establishing the best algorithm is to perform extensive trials

involving human participants, performing the role of real witnesses. However,

evaluations involving human participants are both time-consuming and costly.

Hence the three evolutionary algorithms studied were evaluated using a virtual

witness program in which the computer simulated the role of the human wit-

ness. The important difference between a virtual witness evaluation/trial and a

human operator, is the use of a quantifiable distance metric between solutions.

For a virtual trial each fitness score was assigned according the distance between

the parameter vectors of candidate solution, c and the parameters cs belonging

to a target face. The distance metric used was the Mahalanobis distance.
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f (c) =

√

(c − cs)Σc (c − cs)
T (3.15)

For each algorithm, an evaluation was conducted by selecting at random a

target genotype and an initial population of random genotypes that constitute

a starting point for the EA. For humans, the process of assigning fitness scores,

pertaining to similarity between faces, is ambiguous resulting in inconsistent

ratings. The virtual witness has been designed to simulate this ambiguity by

adding a random perturbation, α to the fitness score (where α is in the order of

a few percent of f (c), see Pallares-Bejarano for details). Hence, equation 3.15

f̂ (c) =

√

(c − cs) Σc (c − cs)
T + α (3.16)

The aim of facial composite systems in general is to generate a likeness that

is sufficient for recognition rather recovering the exact parameter values of the

target. Hence, the evolutionary algorithm was judged to have converged when

the Mahalanobis distance to the exact parameters values satisfied,

f̂ (c) ≤ 3 (3.17)

3.5.2 Determining an appropriate algorithm

Initially, three different algorithms were designed. A quantitative measure of

their respective performances was determined using the virtual witness, and

a qualitative measure of their performances according to a human user was

obtained. A brief description of these algorithms is provided below and their

key properties are summarised in table 3.5.

Full scale rating algorithm (FSR)

In this approach an elitist genetic algorithm was employed, applying the oper-

ations of selection, crossover and mutation to the elite individual of the pop-

ulation (the stallion) and one other individual chosen according to the fitness

proportional rating principle. At each iteration, the offspring produced were

rated on a simple numerical scale of 0-10 by the user and virtual witness for

their perceived similarity to the target face. To encourage consistency and

avoid fitness scaling problems which might induce premature convergence to

an incorrect solution, the current stallion (the best likeness generated so far)
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FSR FTL SMM

mutation yes yes yes
crossover yes no no

selection method elitist elitist elitist
mutation rate static static dynamic
population size 10-20 (static) 2 (static) 9 (static)
coding method 5 bit binary real (double point) real (double point)

Table 3.5: A Summary of the properties of the three exploratory evolutionary
algorithms.

and its assigned score was made visible at all times to the user. The process of

assigning numerical ratings to the faces in each generation, and replacing the

stallion as appropriate, was continued until the convergence criteria had been

satisfied (equation 3.17).

Follow the leader algorithm (FTL)

This strategy was the easiest algorithm for the human operator to use. At

each step of the iterative process, a single new face was displayed alongside

the current best likeness (the stallion) and the user was simply asked to select

the fittest of the two faces. In this non-elitist strategy the current stallion was

either retained or replaced by the other individual and used as the stallion in a

new generation. The second individual in the new generation was obtained by

breeding the stallion with a new individual. In this EA the recent evolutionary

history was a factor in determining future offspring. For instance, the recent

evolutionary history may suggest that the process is following a well defined

direction (as opposed to a totally random path) through the search space. If so,

a preference was made for this direction at subsequent iterations, accelerating

the search process along a more efficient path through the appearance space

and reducing the number of iterations required for convergence.

Select Multiply and Mutate Algorithm (SMM)

In a similar fashion to the FSR algorithm, this algorithm also employed an

elitist strategy. However, in this case, an array of faces (typically nine faces

per an array) were presented at each iteration, from which the user was re-

quired to select the best likeness to the target face. The selected face was then

cloned (multiplied) a number of times and all but one was randomly mutated

to produce a new generation that included the stallion. The SMM process was

repeated for each of the following generations until a likeness was achieved.
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3.5.3 Refined select multiply and mutate algorithm (SMM)

The exploratory study indicated that the SMM algorithm offered a better com-

promise between numerical speed-of-convergence and cognitive simplicity than

the FSR and FTL algorithms. Further modifications to the SMM algorithm

were made, thereby improving its performance. A dynamic mutation rate was

introduced that provided a faster and more robust convergence to the target.

If t denotes the number of generations that have occured since the start of

the evolutionary process, then let p (t) be the probability that an appearance

parameter/decision variable of genotype in the current generation will mutate.

The relationship between t and p (t) for 60 appearance model parameters was

determined by simulating the composite construction process many times using

the virtual witness as a fitness scoring mechanism. Equation 3.18 provided a

high mutation rate at the early stages of the evolutionary process, allowing the

whole search space to be investigated.

p (t) = 0.100 + 0.417t−0.558 (3.18)

As the number of generations increased the probability of mutation de-

creased allowing a local optimum in the search space, and hence a likeness to a

target face, to be determined more easily. The basic SMM algorithm is depicted

in the flow chart in figure 3.12.

3.6 SMM composite construction method

In section 3.2 the key steps for the operation of a general composite system

based on a whole face, evolutionary approach were presented. Here a more

detailed description is provided that is specific to the SMM algorithm outlined

in the previous section. To avoid confusion the term decision variable is used

when referring to an element of the genotype, and the term appearance model

parameter is used in the context of the mapped variables from which faces are

rendered.

1. The process is initialized by using a PRNG to obtain nine vectors each

containing 60 double precision random numbers (decision variables) drawn

from a standard normal distribution (see figure 3.11a)

c̃ = N (0, I) (3.19)
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Each of the nine vectors constitutes a single genotype, representing an en-

coded face. A decoded face image is termed a phenotype (see figure 3.10

for an example of phenotype and its corresponding genotype). Collec-

tively, the nine genotypes are referred to as the initial population. The

purpose of the initial population is to seed the evolutionary algorithm,

thereby providing a starting point from which a likeness to a target face

can be evolved.

2. A transformation is applied to each genotype vector. The transformation

maps the standard, normal decision variables to appearance model pa-

rameters that follow the multivariate normal distribution relating to the

chosen demographic group (see section 3.4.5)

c̃ → c = N (c̄, Σc) (3.20)

3. From each of the appearance parameter vectors, a face image is con-

structed as described in section 2.4.1 by equations 2.66-2.69. Figure 3.11b

illustrates nine phenotype faces images, rendered for display.

4. From the array of nine faces, the witness is required to select the single

face that most closely resembles the suspect (see figure 3.11b). The se-

lected face is the fittest phenotype, also referred to here as the stallion.

It is the only face in the current generation from which genetic code is

propagated into the next generation.

5. The genotype corresponding to the stallion is duplicated or cloned nine

times (figure 3.11c), thereby, copying the genetic code of the selected face

into a new generation of nine faces.

6. Eight of the cloned genotypes are mutated to produce variations on the

selected stallion image. The remaining clone is left unaltered and is po-

sitioned randomly in the new array of nine faces. From these genotypes

nine new phenotypes are constructed. Thus a new generation of faces is

produced.

7. Steps are repeated until an acceptable likeness to the suspect’s face is

achieved.

In figure 3.12, the key steps in the SMM algorithm are outlined.
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Figure 3.10: Phenotype face image and corresponding genotype.

3.7 Applying a hairstyle to a composite image

Many researchers use the term ’face recognition’ in a very loose sense, referring

not only to the face but also the hair and shoulders. However, automated face

recognition systems that incorporate extraneous information such as hairstyles

may be fundamentally flawed. Liao et al [63] performed experiments which in-

dicated that the non-face regions of the head image, such as hair, dominated the

face recognition process. A similar effect is observed when humans attempt to

recognise faces, especially if the subject is unfamiliar to the observer. Given the

importance of hair in recognition tasks, care must be taken to provide adequate

means for applying hairstyles in any practicable facial composite system.

Unlike the face region, hair cannot be modeled using a PCA. The inherent

randomness of hair, and lack of identifiable features, make it impossible to iden-

tify correspondences between different hairstyles. A better method for reliably

capturing the shape and textural properties of hair is to simply duplicate the

hairstyles of the subjects that constitute the training set. These hairstyles can

then be placed over the composite face to achieve the desired result. Using the

hair of the training subjects is guaranteed to give photo-realistic hairstyles that

can be chosen independently of the face. The difficulty arises when attempting

to blend a chosen hairstyle to the target face. Variations in hair length result

in different regions of the face being obscured depending on the selected style.

Hence, the position of the join between hairstyle and face is seldom in the same

place from hairstyle to hairstyle. Disparities in skin pigmentation between the

donor and target faces can also prove problematic when attempting to construct

a seamless join. These issues make the task of applying a hairstyle to the com-

posite face one of the most complex issues concerning composite construction

using the PCA method. A simple blending procedure for applying hairstyle(s)
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(a) Initial population: Genotypes gen-

erated using PRNG

(b) Initial population: Phenotypes syn-

thesized from the genotypes - fittest phe-

notype (as selected by the witness) circled

in red.

(c) Cloning (Multiply): Genotype cor-

responding to fittest phenotype cloned nine

times.

(d) Mutation: Random mutations on

eight of the nine clones. The stallion re-

mains unaltered, although its position in

the new generation is randomized.

(e) New generation: Based on mutated

genetic material from selected face.

Figure 3.11: Schematic representation of processes that result in a generation of phenotype face
images. The procedure is initialized by forming nine strings of random numbers (genotypes) using a
pseudo-random number generator (PRNG). For each of the nine genotypes a corresponding phenotype
face image is constructed. The witness is required to select (a subjective selection) the phenotype image
that exhibits the closest likeness to the suspect. The genotype of the selected face is used as the genetic
basis for a new generation of faces.
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Figure 3.12: SMM Algorithm flowchart indicating the steps required for pro-
ducing a composite using the evolutionary approach.

to a face images is described in the next section followed by a preliminary

investigation into a more sophisticated multi-resolution approach.

3.7.1 Blending procedure

A method for applying a hairstyle to a face was employed in which the face

textures and face shapes were blended, providing a computationally efficient

and aesthetically pleasing solution to the problem. Hairstyles were taken from

subjects comprising the training set. Thus the hairstyles were captured under

the same environmental conditions as the face data, eliminating any potential

issues due to inconsistent lighting. The term donor will be used when referring

to a subject who provides the hairstyle and the word target2 will be used to

describe the face to which hair must be added. The key steps of the approach

taken are outlined in the tree diagram presented in figure 3.13 and a description

of the process is provided in algorithm 2.

Algorithm 2 Hairstyle mapping method

1. Perform a rigid shape alignment of the 2 (m + k) × 1 donor shape vector

sd with the 2m × 1 target shape vector st. Note that sd contains k more

2Note that the word target is also used when referring to the face for which a likeness is
required
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coordinate pairs than st due to the additional landmarks required to de-

lineate the perimeter of the hairstyle. The alignment transformation is

calculated on the 2m face coordinates only but is applied to all 2 (m + k)

elements of the vector sd.

2. Pad st with zeros corresponding to hair landmarks in st such that the

donor and target shape vectors contain the same number of elements.

st →
[st

0

]

(3.21)

3. Spline donor and target shapes,

s′t =
[st

0

]

◦ ms + sd ◦ [1 − ms] (3.22)

where ◦ represents a point-wise multiplication and ms is a 2 (m + k) × 1

weighting vector with values in the range [0, 1] such that,

ms (i) =











0 if i ∈ Lhair and i /∈ Lface

0 < ms(i) < 1 if i ∈ Lface ∩ Lhair

1 if i ∈ Lface and i /∈ Lhair

(3.23)

With Lhair denoting the set of indices representing hair landmarks and

Lface the set of indices representing hair landmarks. The symbol ’◦’ rep-

resents a point-wise multiplication and 1 is a 2 (m + k) element column

vector containing ones.

4. Define a mask image IM such that all pixels whose coordinates lie within

the convex hull of
{

st (i)′ : i ∈ Lface

}

are set to one, and all other pixels

are equal to zero. Soften the transition between light and dark pixel values

by applying a 15 × 15 averaging filter to IM ,

I ′M (x, y) =

k/2
∑

i=−k/2

k/2
∑

i=−k/2

IM (x + i, y + j) h (i + k/2, j + k/2) (3.24)

where k = 15 and h is the convolution kernel. For convenience, the filtered

mask image IM will also be represented by the matrix IM . Elements of IM
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that lie in the range (0, 1) form a feathered edge around the face region,

which is refered to by Burt and Adelson [15] as the transition zone.

5. Let Id and It be the matrix representations of the donor and target

textures respectively. To blend these images successfully a correspon-

dence is needed between both images. This is achieved by warping to the

splined/blended face shape, s′t. Let I′d represent the warped donor image

and I′t represent the warped target image.

6. At this stage some form of photometric correction may be required so

that the skin pigmentation of I′t matches the skin pigmentation of I′d in

the transition zone. Treating each colour plane separately, the parame-

ters s (sample standard deviation of pixel values) and p̄ (sample mean of

pixel values) of the Gaussian pdf of pixel intensities {pi} contained within

face region is calculated. The photometric correction is implemented by

transforming the pdf of the donor such that it has the same parameters

as the target,

pd (i)′ = (pd − p̄d)
st

sd
+ p̄t (3.25)

7. The mask image IM defines a weighted combination (I′splined) of the

warped target and donor images,

I′splined = I′t ◦ IM + I′d ◦ [1m,n − IM ] (3.26)

3.7.2 Towards an improved blending procedure

The method outlined in section 3.7.1 for applying a hairstyle to a target face

results in a join between image patches which is to some degree visible in the

composite image. In most instances, the visibility of the join is reduced by

photometric correction and the use of a smoothing transition zone. For exam-

ples in which the join remains prominent, a more sophisticated approach to the

blending problem is required. One approach that has the potential to overcome

the blending issue is to use a multi-resolution spline to join the image patches.

Multi-resolution splines as described by Burt and Adelson [15] have previously

been used for image mosaic applications. The following section explores the
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Figure 3.13: Steps required for applying a hairstyle to a composite face. The
process involves: 1) Blending the donor shape sd and the target face shape
st. 2) Warping the both the donor and target textures to blended face shape,
sblen, thereby achieving pixel-wise correspondences. 3) Forming a weighted
combination (a spline) of the warped images (I′d and I′t) according to the pixel
intensity values contained in the mask image, IM , to form the output image,
Iblend.
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practicality of using a multi-resolution spline for mapping hairstyles. A brief

mathematical explanation of the technique is given (for a full explanation the

reader should refer to [15]). The results of some simple blending examples are

provided and the suitability of the spline method for composites is discussed.

Acceptable results are obtained using the method outlined in section 3.7.1

when the transition zone is similar in size to the wavelengths present in the

images. In practice, this criteria is seldom met since, in general, images contain

a range of spatial frequencies. If the transition zone over which the mask image

IM changes from 0 to 1 is small compared to the image structures contained in I′t

and I′d, the boundary may still appear as a step in image intensity. Conversely,

if the transition zone is large compared to the image structures, structures from

both images may appear superimposed within the transition zone, producing

undesirable double exposure type artefacts. A multiresolution spline provides a

solution to the transition zone/wavelength mismatch problem by decomposing

both I′t and I′d into bandpass images. Each pair of bandpass images can then

be combined using a weighting image in which the transition zone is matched

to the size of the image structures present. Algorithm 3 provides an overview

of the procedure for blending the textures using a multi-resolution spline.

Algorithm 3 Multi-resolution method for image splines

1. Gaussian pyramid construction: Apply a Gaussian low pass [5x5]

filter to the warped target image I′t, forming a smoothed version of the

image. Sample every other pixel from the smoothed image, thereby re-

ducing its area to a 1/4 of its original size. The filtering procedure and

sampling procedure are collectively known as a REDUCE operation - see

equation 3.27. Label the image that results from applying the reduce pro-

cedure to I′t as G1. Now perform a reduce operation on G1, obtaining a

new image G2 which is a 1/4 the size of G1 and 1/16 the size of I′t. By suc-

cessive repetitions of the REDUCE process, a set of images that decrease

both in size and in high frequency content is formed {G0, G1, . . . , GN}

(where G0 ≡ It). Stacking this set of images in order of decreasing size

yields a tapering data structure known as a Gaussian pyramid.

Gl (i, j) =
∑

5
∑

m,n=1

w (m, n)Gl−1 (2i + m, 2j + n) (3.27)

where w (m, n) is the generating kernel and l indicates the level in the

pyramid structure. In the same manner, Gaussian pyramids are con-
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Figure 3.14: The multiresolution spline forms a weighted blend of images that
preserves high spatial frequencies in the transition zone. Donor and target
images are decomposed into bandpass pyramid structures {Ldl} and {Ltl} re-
spectively). {Lsl} represents the Laplacian pyramid that is constructed by the
weighted combination of {Ldl}) and {Ltl}, as specified by the Gaussian pyramid
{Gml}.
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structed for the image mask IM and warped donor image I′d. Forming

a Gaussian pyramid is equivalent to, but computationally more efficient

than, generating a stack of images which are identical in size but smoothed

with increasing large filter kernels.

2. Laplacian pyramid construction: For the donor and target Gaus-

sian pyramids only, calculate the difference between consecutive images

in the in the pyramid, thereby forming a pyramid of bandpass images

{L0, L2, . . . , LN} as illustrated in figure 3.14. The difference between two

appropriate Gaussian filters approximates a Laplacian filter. Because

these arrays differ in sample density, it is necessary to interpolate new

samples between those of a given array (image) before it is subtracted

from the next lowest array. Interpolation can be achieved by reversing

the REDUCE process. Burt and Adelson refer to this as an EXPAND

operation.

Ll = Gl − EXPAND (Gl+1) (3.28)

The process of expanding Gl k times is written as,

Gl,k (i, j) = 4
∑

2
∑

n,m=−2

w (m, n)Gl,k−1

(

2i + m

2
,
2j + n

2

)

(3.29)

Only terms for which (i − m) /2 and (j − n) /2 are integers are included

in this sum.

3. Image spline and pyramid expansion: Let Lsl and Gsl denote the

splined lth level bandpass detail image and low pass approximation im-

age respectively. Starting at the top of the Laplacian pyramids, spline

the lth level bandpass image Ldl with corresponding image Ltl using the

weighting mask Gml to form a blended bandpass image Lsl (see equation

3.30).

Lsl (i, j) = Gml (i, j)Ltl (i, j) + (1 − Gml (i, j))Ldl (i, j) (3.30)

Use the expand operation to resize the splined image, making it the same

size as the lth+1 level images. Spline the lth+1 level images and add them
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to Lsl. Repeat this process, working down the pyramid structure, even-

tually resulting in the output image I ′s. The whole recursive procedure

can be expressed as nested expand operations,

Gs0 = Ls0 + EXPAND (Ls1+ (3.31)

EXPAND (. . . LsN−1 + EXPAND (GsN )))

Because there is no higher level array to subtract from GsN , we define

LsN = GsN .

To determine the suitability of the multi-resolution spline for applying

hairstyles in the EigenFIT composite system it was compared to the simpler

blending method described in section 3.7.1. Using the input images in table 3.6,

the following four scenarios were considered,

1. A weighted sum of the donor image (a) and target image (b) was formed

using the pixel weights in mask image (d) - note that in this case a low

pass filter was first applied to image (d) to create a transition zone in

which pixel intensities varied in the range (0, 1).

2. The multi-resolution spline method was used to map the donor hairstyle

in image (a) to the target face in the continuous image, (b).

3. The multi-resolution spline method was used to map the donor hairstyle

in image (a) to the target face patch in image (c).

4. In the final experiment the face patch (c) was combined with the donor

image (a) using a simple weighted sum.

The output images for each scenario are displayed in table 3.7. For the

case in which two continuous images were to be blended the multi-resolution

spline provided superior results. However, when a hairstyle was applied to

a face patch (as is necessary for the EigenFIT system), the multi-resolution

method failed to produce a satisfactory blend. The reason for this failure is

due to the discontinuity in image intensity in the target image, making the

multi-resolution spline method presented in this section unsuitable for the task

of applying hairstyles in the EigenFIT composite system.
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Input images

a) Donor b) Target c) Target patch d) Mask

Table 3.6: Input images for different hair mapping scenarios.

Blended output images

1) Simple blend 2) Multi-resolution 3) Multi-resolution 4) Simple blend

spline spline using target patch

using target patch

Table 3.7: Donor hairstyle mapped to target face for the four different scenarios.

3.8 Overriding the evolutionary process

During the process of generating a facial composite, situations may arise in

which it is advantageous to intervene in the evolutionary procedure. One such

situation occurs when the evolutionary procedure has produced a face in which

one or more features exhibit a good likeness to the target face, but the remaining

features do not. The problem is that features in the composite face which are

highly similar to the target may be degraded during subsequent generations at

the expense of improving the ’whole face’ likeness. This issue has been addressed

by providing a feature locking tool that allows the shape of individual facial

features of the stallion (best likeness so far) face to be fixed and propagated

through future generations.
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3.8.1 Locking facial features

Feature locking implementation

The EigenFIT interface has been designed to allow the operator to lock a facial

feature by selecting the corresponding region of the schematic face image (see

figure 3.3). Once the feature has been locked, it appears highlighted in the

schematic image to inform the user that no further shape deformation of the

selected feature will occur during subsequent generations. In terms of our facial

composite system, we can imagine taking a snap shot of the stallion at certain

instances in time and retaining the shape of one or more chosen features. Fu-

ture generations can only introduce shape changes in the features that remain

unlocked. The process is expressed in equation 3.32 by a vector addition com-

prising the current stallion shape st and a snap shot of a previous stallion st0 ,

captured at time t0. Here, we have used the term time to refer to a particular

generation number, with t > t0.

s′t = st [I − Wf ] + st0Wf (3.32)

Where I is the identity matrix and Wf is a diagonal matrix with elements

equal to one or zero. Wf is referred to as the feature selector since it effectively

extracts all of the coordinates from st0 corresponding to the fixed feature.

Locking multiple features

We can extend equation 3.32 to include multiple features, locked at different

instances (generations).

s′t = st [I − Wf1 − Wf2 . . . − Wfn] + st1Wf1 + st2Wf2 . . . + stkWfn (3.33)

Wf1,Wf2 . . . and Wfn are the feature selectors for the 1st, 2nd and nth

features respectively (ie nose, mouth... etc). st1 , st1 and stk are snap shots of

the stallion taken at times t1, t2 and tk. Hence one or more features may be

locked at once. If the user wishes to evolve a single feature in isolation, all other

features can be locked.

Unlocking facial features

When a chosen feature is unlocked we need to re-introduce shape variation so

that the feature may evolve as it did prior to locking. This could be achieved

by simply reverting to the current stallion such that s′ = st. However, this
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would cause an abrupt change in shape of the unlocked facial feature which is

both counter intuitive and visually displeasing. Instead we require a continuous

shape transition by gradually re-introducing variation into the unlocked feature.

To accomplish this smooth transition we establish a decay function, α (t) and

modify 3.32 as follows,

s′ = st [I − α (t)Wf ] + st0α (t)Wf (3.34)

A linear decay function was defined; α = −0.1t in the range 0 < t ≤ 10 that

gives an aesthetically pleasing transition between the fixed feature and stallion.

An exponential decay may be preferable when a smoother decay is required.

For a fixed feature α remains constant (α = 1) and once α has decayed to zero

it remains at that value until the feature is fixed again. Equation 3.34 has a

nice limiting behaviour. When a feature is unlocked the shape offset ebbs away

over time and facial shape as seen by the user (s′t) reverts to the underlying

stallion (st).

(a) (b) (c)

(d) (e) (f)

Figure 3.15: In images a-f the mouth shape and the perimeter of face are locked,
random shape variations evident in other features.
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(a) t0 (b) t1 (c) t2

(d) t3 (e) t4 (f) t5

Figure 3.16: Mouth shape and perimeter of face unlocked. The flexibility of the
previously locked features increases with t. When t >> t0 the affect of locking
a feature decays to zero and the usual evolutionary shape variations resume.
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3.9 Summary

In Chapter 3, aspects relating to the construction of EigenFIT in its most

basic mode of operation have been described. The chapter began by presenting

the argument for a facial composite system that operates in the manner of

EigenFIT, which was followed by a brief overview of the system itself. Later

sections described the individual components of the system in detail. The first

of these components was the user interface which was designed to be cognitively

simple to use, thereby allowing the witness to take a more active role in the

composite process than has previously been possible.

The specifics of an appearance model of the human face were described, from

which new plausible examples of whole-face images could be generated. As well

as a basic overview of the appearance model (described in detail in Chapter 2),

this section included the acquisition of face data and the probability density

function models that allowed plausible new examples to be synthesized.

A likeness to a suspect’s face can be generated from an appropriate set of

appearance model parameters. The parameter values were determined iter-

atively using an interactive evolutionary algorithm. Various algorithms were

tested and the most promising one (the SMM algorithm) was developed further

for inclusion in EigenFIT. The chosen algorithm, and the steps required in its

development were described in section 3.5

The ability to apply a hairstyle of choice to a composite image is an essential

part of any composite system. Section 3.7 described a simple blending method

by which a hairstyle is applied to a composite image within the EigenFIT sys-

tem. In the subsequent section, a potentially superior method for applying a

hairstyle based on a multi-resolution spline was investigated. A preliminary ex-

periment, comparing the two methods, demonstrated that the multi-resolution

spline was unsuitable for this specific application.

The last section of this chapter described a tool that offered the functionality

for locking the shape of one or more selected facial features. This was achieved

by adding an appropriate offset vector to the shape of the current stallion. If

one of the locked features was subsequently deselected, the corresponding offset

vector was allowed to decay to the null vector over a number of generations,

and the system would return to its global, evolutionary mode of operation.

Hence the lock-feature tool implementation was complementary to the standard

evolutionary process.

The core implementation of the EigenFIT system described in Chapter 3

offers a simple and intuitive method for constructing facial composites that may

be used directly by the witness under the supervision of a trained operator.
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Chapter 4 describes a number of additional tools that offer greater control over

the composite process than is afforded by the evolutionary procedure alone.



Chapter 4

EigenFIT - advanced

functionality

In the previous chapter, the elements of the EigenFIT system necessary for a

predominately evolutionary mode of operation were presented. In that mode of

operation, provisionally named EasyFIT, the witness is simply required to make

decisions in response to the facial stimuli, displayed on a computer monitor. A

method for the limited intervention in the evolutionary procedure via the lock

feature tool was also described in Chapter 3. The conceptual simplicity of the

EasyFIT method is a major strength. However, the changes introduced into

the composite in this way are fundamentally random in nature, and additional

functionality for allowing a witness/operator to alter the appearance determin-

istically is desirable. A step by step example illustrating the production of a

facial composite using the EigenFIT system is provided in Appendix D.

Although strong evidence has been provided to support the notion that ob-

servers achieve face recognition tasks through configurational cues, it is nonethe-

less common for a witness to remember particular, distinctive features and to

offer general, semantic descriptors of the face. In this chapter, we explore means

for exploiting this kind of witness information. Integrating featural and seman-

tic information, with the standard holistic-evolutionary mode of operation, thus

aims to provide maximum flexibility to the witness and operator.

4.1 System overview - ExpertFIT mode

Additional functionality is provided through a parallel mode of operation

termed ExpertFIT. The ExpertFIT mode provides a number of tools which

incorporate the following,

111
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• Blending: Augmenting ’fit’ characteristics from two or more faces in a

generation into single, averaged face image (4.3).

• Facial attribute manipulation: Learned models of facial attributes en-

able facial traits to be enhanced or reduced. The age attribute is consid-

ered here, although the technique is equally applicable to other attributes

such as masculinity and ethnicity (4.4).

• Local feature manipulation: The seamless alteration of individual

features by translating and scaling the defining feature coordinates and

warping the overall texture to the new shape (section 4.5).

• Applying fine details to a composite: The functionality for applying

fine details such as wrinkles to a composite face1 (4.6).

Allowing the composite image to be altered in these ways poses an interest-

ing problem with regard to the underlying, numerical representation of the face.

Essentially, this relates to the fact that some of the manipulations described

above can result in a facial appearance which lies outside the space spanned

by the global appearance model. The manner in which this is handled, is an

important consideration and an approach to this problem is discussed in detail

in section 4.5.1.

4.2 Design of graphical user interface - ExpertFIT

The ExpertFIT mode embodies the same ’simple to use’ design principle as

EasyFIT mode. ExpertFIT mode is accessed via a drop down menu on the

EigenFIT menu bar. All of the EasyFIT functionality is provided, plus some

additional tools that are intended to be used by a trained operator. Once the

expert mode has been selected, icons located at the top right hand corner of

the interface, which were previously greyed out, become active (see figure 4.1

for details).

Below is a brief description of the screen layout for each of the expert tools,

• Blend: Vertical sliders allow the operator to form a weighted sum of

the faces in the current generation. The blended face appears in the

bottom right hand corner. Selecting this image with the mouse replaces

the current stallion with the blended image and causes EigenFIT to revert

to the main screen.

1Note: that although a proof of concept version of this tool has been developed, it remains
to be incorporated into the EigenFIT software package
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Figure 4.1: The additional functionality provided by the ExpertFIT is made
accessible by selecting ’ExpertFIT’ from the ’options’ menu which enables the
icons located in the top right hand corner of the main screen. Selecting an
advanced functionality tool changes the screen layout to an appropriate con-
figuration for the chosen tool. EigenFIT reverts to the main screen once the
modifications to the stallion (current best likeness) have been approved by the
witness.



114 4.3 Blend tool

• Facial attribute manipulation: A side by side configuration with the

current stallion positioned on the left and a duplicate of the current stal-

lion on the right. Controls in the right hand frame allow the operator

to make the duplicate face appear older or younger as appropriate. The

side by side layout makes it easy for the witness to observe changes with

respect to the current stallion.

• Local feature manipulation: A side by side configuration with the cur-

rent stallion positioned on the left and a duplicate of the current stallion

on the right. Position and scaling controls on in the right hand frame

allow the operator to modify the shape of one or more features within the

duplicate image. The currently selected feature is highlighted in blue on

an iconic face, located above the move-scale controls.

• Applying fine details to a composite (Proposed interface): The

tool invokes a familiar three by three layout of face stimuli. The nine

faces are all duplicates of the current stallion, with a different pattern of

fine detail applied to each. More examples are displayed using a scroll bar

(same arrangement as the hairstyle tool) and the prominence of the fine

facial details can be increased or decreased using a slider.

4.3 Blend tool

The simplicity of the specifically designed EA excludes the option for carrying

over facial characteristics from more than one phenotype to the next set of nine

faces. The motivation behind the blending procedure is to propagate facial

characteristics from more than one face into the following generation. This

is achieved by forming a weighted combination of the genotypes (appearance

model parameter vectors {ci}) comprising the current generation,

cs →
9

∑

i=1

αici with
9

∑

i=1

αi = 1 (4.1)

Faces for which α = 0 do not contribute to the blended face. If the blended

face is considered to bear a better likeness to the target than the current stallion,

the current stallion is replaced by the blended face. The updated stallion is

reconstructed from the appearance model parameter vector cs in the usual

way. A schematic overview of the blending process is provided in figure 4.2.
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Figure 4.2: A schematic diagram representing the blend process. In this 2d
simplification, a linear combination of three faces from the current generation
has been formed. The stallion parameter vector cs is replaced by the linear
combination, α1c1 + α2c2 + α3c3 where αi dictates the influence of the ith

phenotype on the blend. The usual reconstruction process leads to the blended
image. All vectors in this diagram are drawn with respect to the sub-sample
mean, denoted by the circular marker.
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4.4 Facial attribute manipulation

Comparative semantic labels are often used to describe facial appearance. For

instance, a witness may describe a perpetrator as more masculine or older with

respect to the composite image. Although the perception of facial attributes

is subjective, a consensus can often be found. For example, if a large number

of participants are asked to assign a score estimating the age of a thirty year

old subject, the mean value is likely to be approximately thirty years, although

individual scores may vary above and below the average. Traditional methods

for producing composite imagery are incapable of accommodating such seman-

tic descriptions. Conversely, the controlled manipulation of facial attributes

is relatively easy to implement in the EigenFIT framework by identifying di-

rections in the parameter space that relate to a trend in a specific attribute.

This section outlines a simple procedure for defining a direction through the

appearance model parameter space, corresponding to maximum variation in a

specified facial attribute. A method for modifying the strength of a chosen

attribute within a given face is also described. A similar approach to modifying

facial appearance has previously been described by Burt [14] and Benson [5], in

which shape and texture were treated separately. An appearance model offers

a more elegant solution in which facial appearance can be modified by perturb-

ing a single vector of parameters that simultaneously control both shape and

texture.

4.4.1 Training process

To manipulate a chosen facial attribute, a prior training procedure is required

in which a relationship is sought between the attribute of interest and each

appearance parameter. For attributes in which a dichotomy exists, such as the

sex attribute, the simplest approach is to separate the training examples into

two classes Ca and Cb (e.g. males and females). Prototypes (constructed from

class means) can then be formed by determining the mean vector of appearance

model parameters for each class, c̄a and c̄b.

c̄a =

na
∑

i=1

cai and c̄b =

nb
∑

k=1

cbk (4.2)

where na and nb are the numbers of sample faces that constitute Ca and Cb

respectively. Having formed two prototypes, a direction in appearance space is

calculated as the difference vector between them,
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∆c = c̄b − c̄a (4.3)

We refer to the vector of appearance model parameters ∆c as the attribute

vector. In the interest of typographic clarity, the notation cattr will be used

instead of ∆c, where the subscript attr refers to the attribute of interest and

can be assigned as is appropriate. For attributes that vary continuously (albeit

on a discrete scale - e.g. age) with respect to variations in appearance model

parameter values, an alternative approach is required. One such approach is to

perform a multiple regression analysis, relating the attribute to the parameter

values using a regression equation. Regression methods are closely related to the

techniques and procedures employed in classification problems. Ramanathan

and Chellappa [74] use probabilistic eigenspaces and a Bayesian classifier to

determine the age difference indicated by two images of the same subject’s

face, where the time interval between the first and second image was in the

range 1-9 years. Support vector machines (SVMs) have become prevalent in

face classification problems in recent years and their use in recognition [46]

and sex classification [65] problems have been studied. Details of alternative

approaches to manipulating age (a subtly different problem to classification) can

be found in Hill [66], Lanitis [59] and [52]. However, a simpler approach that

produces visually acceptable results is to arrange the attribute values (scores)

in ascending order and perform a median cut, thereby forcing a dichotomy. In

this case, each sample face decomposed into its appearance model parameters

and assigned to either class Ca or class Cb as follows,

ci ∈

{

Ca if si < MEDIAN ({s})

Cb if si > MEDIAN ({s})
(4.4)

Prototypes can be constructed from Ca and Cb as before and the attribute

vector is defined as per equation 4.3. The process is represented schematically

for the aging attribute in the left hand side of figure 4.42. Aging attribute

vectors were calculated for each of the adequately sampled demographic groups

in section 3.4.1. Time-lines for all of the demographic groups represented in

EigenFIT are illustrated in figure 4.3. Each time-line is an extrapolation of an

attribute vector beyond the young and old prototypes for a specific demographic

group. Faces were reconstructed at equidistant points on the time-line. The

2The aging attribute is currently the only attribute manipulation tool in the EigenFIT
system although other attributes may be incorporated into future versions
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time-lines are useful for validating the simple straight line approach over an

extended age range. In figure 4.3, typical aging traits can be observed. In

the time-lines for the male demographic groups, the jaw shape becomes more

pronounced as the age increases and the skin tone becomes darker on the chin

and above the top lip indicating stronger facial hair growth. In the White

Female example, the skin is notably less taut with age, characterised by folds

between the base of the nose and corners of the mouth. These changes in facial

appearance are indicative of the effects of aging [90, 30].

4.4.2 Modifying an attribute of a composite face

A face is aged or rejuvenated by adding or subtracting a scalar multiple of the

aging attribute vector to the appearance model parameters representing the

composite face, and then reconstructing the image. In EigenFIT the attribute

manipulation is always performed on the current stallion, with corresponding

parameter vector cs. The aging/rejuvenation process can be represented using

vector notation as,

cs → cs + αcage (4.5)

If the scalar α is positive the stallion will be aged. Conversely, if α is

assigned a negative value the stallion be rejuvenated. Here, as elsewhere in this

thesis, the → symbol indicates that a process has been executed that updates

the current stallion. The process is illustrated schematically in figure 4.4 in

which the relevant parameters vectors are added to achieve the desired effect.

4.5 Local feature manipulation

Although one of main strengths of the PCA model is its capability for generating

global face images, with facial features displayed in the context of the whole

face, there are instances when this holistic approach can be a disadvantage. One

important example in which the global manipulation method proves inadequate

is when the witness has remembered something distinctive about a particular

facial feature and wishes to make a change to a localized region of the composite

image. Localized modifications of this nature can not be accommodated by

the appearance model because in the global PCA framework, alterations to

individual features are always accompanied by uncontrollable changes to the

face as a whole.
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(a) Aging time-line for Black male demographic group

(b) Aging time-line for Indian male demographic group

(c) Aging time-line for White male demographic group

(d) Aging time-line for White female demographic group

Figure 4.3: Aging time-lines for each of the main demographic subsamples. In
each case the time-line sequences were produce by adding a proportion (de-
fined by α) of the aging attribute vector to the young face prototype c̄young.
For the White demographic groups α was set to each of the following val-
ues [−1 − .5 0 .5 1 1.5 2]. The spread of ages in the Black and Indian de-
mographic groups was smaller, therefore α was varied in larger increments
[−2 − 1 0 1 2 3 4] to achieve a similar degree of aging/rejuvenation. White
circular markers represent the prototype images through which the time-line
passes
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Figure 4.4: A schematic diagram representing the attribute manipulation pro-
cedure. In this 2D simplification, the vector of aging parameters cage is con-
structed by determining the difference vector between young-face c̄young and
old-face c̄old prototypes. The affect of adding and subtracting a scalar multiple
of cage to the stallion cs is illustrated by the diagram on the right hand side
of the figure. All vectors in this diagram are drawn with respect to the global
mean, denoted by the circular marker.
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One method for overcoming this limitation is to build independent local

PCA models for each of the main facial features [13, 92]. The idea is straightfor-

ward in principle. The original training faces are separated into predetermined

facial regions, from which localized appearance models can be constructed us-

ing the same basic methodology as is used to build global models (previously

described in chapters 2 and 3). Facial features generated in this manner are

guaranteed to be plausible in appearance, assuming that the correct restrictions

are placed on the choice of parameter values. The main issue regarding the use

of models based on separate face regions is how to embed the features into the

composite image. Unlike the whole face approach, local models do not offer

any obvious means for providing credible configurations of features. Forming a

seamless join between the separate regions can also prove problematic when us-

ing localized texture models. An alternative method was employed in EigenFIT

that permited the operator to manipulate the aspect ratio, position and overall

size of the individual facial features. The procedure involved shape modifica-

tions only, thereby avoiding any potential problems associated with blending

texture patches. This straightforward method provided a powerful tool for

making adjustments to the ongoing composite image that was not too onerous

for the witness. Statements regarding the width, height and position of facial

features are easily interpreted and do not require any complex vocabulary that

could be misconstrued. As with any user-defined change in facial appearance,

the operator themselves may also place implicit constraints on the deformation.

Humans are experts in recognising real faces and, as such, are likely to provide a

reliable judgement on the plausibility of computer generated faces. With these

constraints in place, face shapes that are modified using this local feature tool

retain a realistic appearance despite the fact that, in general, they lie outside

the span of the shape principal components. This implies that the local feature

tool provides a means for introducing new plausible shape variation that is not

afforded by the PCA model itself.

4.5.1 Global and local representations of face shape

The construction of the statistical appearance model described in chapter 2

results in a face being represented by a vector c = [c1 c2 . . . cn] of global

appearance parameters. These parameters are global in the sense that altering

a single parameter alters both shape and texture of the entire facial appearance.

Distinct parameter vectors bs for the shape and bt for the texture can be

obtained directly via the following equations (explained in full in chapter 2),
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bs = QscW
−1 (4.6)

bt = Qtc (4.7)

In turn, the actual global shape vector x of the face and the shape-

normalized texture-map g of the face can be generated as,

x = x̄ + Psbs (4.8)

g = ḡ + Ptbs (4.9)

Consider now some arbitrary change introduced into the coordinates of x

by a local manipulation of a feature shape3 such as the nose or mouth so that,

x → x′ = x + ∆x (4.10)

To represent this vector in the global shape space, spanned by the principal

components, we must project the vector onto the shape principal components

contained in the columns of matrix Ps,

b′

s = PT
s

(

x′ − x̄
)

The localized manipulation of coordinates can result in a new shape vector,

which does not lie within the span of the shape space and a new shape vector b′

s

will not, in general, enable exact reconstruction of the shape vector x′ according

to equation 4.8 (see also figure 4.5). Rather we have,

x′ = x̄ + Psb
′

s + ~εs (4.11)

where ~εs defines a component of the modified shape that cannot be con-

structed using a linear combination of the shape principal components Ps, since

it is orthogonal to the vector space spanned by the columns of Ps.

It is clear that to maintain an accurate parametric representation of the gen-

erated composite, it is necessary to keep a record of both the global appearance

3An identical argument can be applied to deterministic changes in the global texture vector,
where g → g′ = g + ∆g.



123 4.5 Local feature manipulation

(a) Standard image recon-
struction process

(b) Image reconstruction
process with deterministic

shape modification

Figure 4.5: A schematic diagram illustrating the image (I) reconstruction pro-
cess starting with a vector of appearance model parameters c. In the first level
of reconstruction, a shape parameter vector, bs, and texture parameter vector,
bt, are obtained as shown in equation 4.7. From bs and bt a face shape vec-
tor x and texture vector g are reconstructed (see equations 4.9 & 4.8). In the
standard reconstruction process, g is re-shaped into a shape normalized texture-
map, which is then warped to face shape x, thereby forming the reconstructed
face image I. In figure (b) a deterministic shape modification is indicated by
x + ~εs where the ~εs component lies outside of the vector space spanned by the
columns of Ps.
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vector c and the component of the shape deformation that is perpendicular to

shape principal components, ~εs. The dimensionality of ~εS is high compared to

the very compact representation provided by the appearance vector (or indeed

its associated associated shape and texture parameters).

One approach to the book-keeping of composite production is to incorporate

any local deterministic changes introduced by the operator and witness through

repeated projection of the shape and texture vectors onto their respective prin-

cipal components. Thus, obtaining the nearest global representation, and the

component ~εs. In this work, a simpler but equally effective approach was taken

which is summarized as follows,

1. Allow the core evolutionary procedure to continue as in the standard mode

of operation, resulting in instances of whole face variations on the current

stallion.

2. Any deterministic changes to the shape and texture introduced by the

witness are recorded and treated independently of the global model as

offset vectors. In effect, the net deviation of the shape and texture from

that predicted by the global model is updated on each occasion that de-

terministic changes are made.

Let x be the face shape of the stallion phenotype in the current generation

and let x′ be an instantaneous face shape resulting from a local deterministic

manipulation. The face shape that is displayed by the witness via the user

interface is,

xscreen = x + ∆x, with ∆x = x′ − x (4.12)

The major advantage of this approach is that it removes the computational

overhead which is associated with recalculation of the global model and sim-

plifies the implementation. In this case the ∆x will, in general, lie outside the

span of the column space of Ps but unlike ~εs will not be orthogonal to the

column space of Ps.

4.5.2 Defining facial regions

Localized shape deformations are achieved by warping the displayed face image

from its current shape to a new, modified, face shape as defined by the operator.

For the tool described here, a set of landmark points was used to define the

shape and position of the facial features. In this section, x will be used to denote



125 4.5 Local feature manipulation

the 2N element column vector of control points representing the undeformed,

reference face shape 4 and x′ to indicate the face shape after deformation or

at any instant during a succession of shape manipulations. The shape vectors

can be written as the concatenation of two vectors, xh and xv, containing the x

and y coordinates respectively. Subscript labels h and v signify horizontal and

vertical deformation directions.

x =

[

xh

xv

]

, x′ =

[

x′

h

x′

v

]

(4.13)

In order to deform features independently from the face shape as a whole,

the appropriate coordinates in xh and xv had to be identified. Since only one

feature may be modified at any instant, a method was required that accessed the

relevant coordinates only, and left the remaining coordinates unaltered. This

could be achieved by forming separate coordinate vectors for each of the facial

features. However, a more elegant approach was taken that simplified the code

and allowed the translation and scaling equations to be expressed in a general

vector form. If L = {1, 2, 3, . . . , N} represents the set of all indices into the N

element x and y coordinate vectors, then let Lf be a subset (Lf ⊂ L) of these

indices corresponding to feature f . For each facial feature a N element binary

column vector, b5, was formed such that i ∈ Lf → bi = 1 and i /∈ Lf → bi = 0.

Hence, entries in vector b that are equal to 1 indicate landmarks that are

repositioned during a local feature manipulation process and entries in b that

are equal to 0 represent landmarks which remain fixed in the user-defined shape

change.

4.5.3 Translating facial features

Spatial relationships between the facial features have been shown to play an

important part in recognition [100]. The local feature tool provides the means

for displacing the centroid of a selected feature. An interface was constructed

that enabled the operator to translate the x, y coordinates of a localized region

of the face by positioning two sliders corresponding to horizontal and vertical

positioning. Eight features were accommodated; nose, left eyebrow, right eye-

brow, left eye, right eye, mouth, face and hair. Some features were coupled so as

to preserve the vertical symmetry. The left and right eyes were coupled so that

4In this example x resembles the point model described in chapter 3, with additional
landmarks that delineate the hair

5Elsewhere in this thesis b with subscript has also been used to represent the a parameter
vector in the shape and texture models previously described.
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their respective shape centroids mutually converged, or diverged, depending on

the direction of the horizontal slider movement. The left and right eyebrows

were also coupled, maintaining symmetry about the vertical axis that dissects

the face into its left hand and right hand sides. Different features could be

selected from a list box within the interface. The choice of feature determined

the b vector (b vectors for coupled features) that occured in the translation

equation. Algorithm 2 provides an overview of the process. It is important to

note that when producing facial modifications using sliders, the slider travel

has to effect a change with respect to the original image, otherwise the position

of the slider is meaningless and the resulting deformations are hard to control.

The implication for translating features is that each time a slider is adjusted,

its position causes an absolute change in the transition of a feature with respect

to it’s original centroid and not with respect to its instantaneous centroid as

determined by the previous slider adjustment.

Algorithm 2 Algorithm for translating facial features

if feature is coupled then
n=2

else
n=1

end if
for i = 1 to n do

if horizontal slider adjusted then
· calculate translation scalar, T , according to slider position
· multiply translation scalar by (−1)i+1

· update x-coordinates
else if vertical slider adjusted then
· calculate translation scalar, T , according to slider position
· update y-coordinates

end if
end for

The first if statement in algorithm 2determined whether the selected feature

was coupled with another feature (eg. eyes). If a coupled feature was selected,

two passes were made through the for loop. When an adjustment was made

to the slider for vertical translation, both of the coupled features moved in

unison, either in an upwards or downwards direction. In the first pass through

the for loop, the coordinates corresponding to the right feature, specified by

b1, were updated by computing the translation scalar, T , and adding it to the

y coordinates of the feature. Similarly, in the second pass the y coordinates,

specified by b2, for the left feature were adjusted by the same amount. For

uncoupled features the required translation was computed in a single pass (n =
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1) through the for loop.

Horizontal translation was achieved using an almost identical procedure to

the method used for vertical displacement. The one difference was the rela-

tive displacement of the coupled features. For the case in which a horizontal

translation was required, coupled features were moved simultaneously towards

each other or apart, depending on the direction of the slider movement. The

first pass through the for loop caused the right facial feature to be translated

in same direction as the slider movement. Conversely, in the second pass, the

polarity of the translation scalar was reversed (T → −T ) causing the left fea-

ture to move in the opposite direction to the right feature. The polarity change

was obtained using the multiplier, (−1)i+1, where i is the loop counter. For an

uncoupled feature only one pass was made through the for loop with the term

(−1)i+1 remaining positive. Equation 4.14 shows how the translation scalar,

T , is determined. A horizontal translation of a selected facial feature is repre-

sented in equation 4.15 where T determines the magnitude of displacement and

the vector bf determines which feature is displaced. A similar equation can be

written for vertical translation with the (−1)i+1 multiplier removed.

T = −
1

bT
f bf

bT
f x′

h +
1

bT
f bf

bT
f xh + (−1)m+1 (dh − 1) sx (4.14)

x′

h → x′

h + Tbf (4.15)

The first term in equation 4.14 is the centroid of the current feature (x-

coordinates only). Similarly, the second term is the centroid relating to the

original position of the selected feature prior to deformation. In this formula-

tion, coordinates corresponding to the selected feature (f) are ’picked out’ by

the vector bf . Elements of xh relating to unselected facial features are weighted

by 0 and therefore have no effect on the centroid of the selected feature, as re-

quired. The inner product bT
f bf is simply the number of landmark points Nf

contained in the facial feature of interest. A third term defines the magnitude

and polarity of the translation as determined by the slider position represented

by the scalar variable dh. sh is the sample standard deviation of xh and is

used here to map the slider value to a translation that is proportionate to the

size of the face shape. (−1)i+1 changes the polarity of the translation and only

applies to the displacement of coupled features in the horizontal direction. Fi-

nally, the translation scalar is added to the elements of x′

h that relate to the

selected feature using the binary column vector bf to form a vector of updated

coordinates. The action of each term in the right hand side of equation 4.14
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can be summarized as follows,

• term 1: Subtract the centroid of the instantaneous (modified) feature

shape, thereby translating to the origin.

• term 2: Add reference feature centroid (translate to the reference posi-

tion)

• term 3: Make a translation from the reference position to a new instan-

taneous position according to the instantaneous slider position.

4.5.4 Scaling facial features

The second available deformation type in the local feature tool allowed the op-

erator to change the size of a chosen feature or alter its aspect ratio by applying

a different scaling to the horizontal and vertical coordinate vectors, xh and xv.

Coupled features were scaled using consecutive passes through a for loop, via a

method comparable with the procedure used when translating coupled features.

Unlike the translation method, the code for producing horizontal scaling and

the code for vertical scaling were identical in every respect. An overview of the

algorithm is provided for completeness (algorithm 3).

Algorithm 3 Algorithm for scaling facial features

if feature is coupled then
n=2

else
n=1

end if
for i = 1 to n do

if horizontal slider adjusted then
· duplicate original x-coordinates
· translate duplicated coordinates to the origin
· scale duplicated coordinates according to slider movement
· translate back
· update feature x-coordinates

else if vertical slider adjusted then
· duplicate original y-coordinates
· translate duplicated coordinates to the origin
· scale duplicated coordinates according to slider movement
· translate back
· update feature y-coordinates

end if
end for
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Figure 4.6: A flow chart depicting the decision processes involved in translating
facial features using the local feature tool.



130 4.5 Local feature manipulation

(a) Original face shape
x before local feature
manipulation

(b) Vertical transla-
tion of nose, x′

1

(c) Vertical translation
of nose followed by Hor-
izontal of eyes, x′

2

(d) Original face image (e) Rendered image re-
sulting from nose transla-
tion

(f) Rendered image re-
sulting from nose and eye
translations

Figure 4.7: Local feature manipulation: Translation of facial features using
sliders. Sub-figures (d-f) show the original image and images resulting from
local feature modifications. Sub-figures (a-c) show the face shape deformations
which result in images (d-e). In images (a-c), polynomial curves have been
fitted to the landmark points, thereby providing a clear representation of the
face shape in each case.
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A vector equation describing the scaling process can be written as per equa-

tion 4.16. This expression is more complicated than the equation for the trans-

lation case and requires some explanation.

x′

h new =

(

xh −
1

N
1N1T

Nxh

)

◦ dhbf +

(

1

bT
i bf

bfb
T
f x′

h

)

+ x′

h ◦ (¬bf ) (4.16)

The first term on the right hand side of equation 4.16. 1
N 1N1T

Nxh calculates

the horizontal centroid of the selected feature and replicates this value in every

entry of an N element column vector. It is then subtracted from the vector con-

taining the x-coordinates of the original shape vector, xh, translating the whole

face shape to the origin. A binary column vector bf is multiplied by a scalar

representing the slider movement dh. Unlike in the translation equations, here

the slider value maps directly to a fractional scaling value, thereby scaling the

coordinates corresponding to the selected feature. The quantity 1
bT

f
bf

bfb
T
f x′

h

performs a similar function to 1
N 1N1T

Nxh. 1
bT

f
bf

is a normalization factor with

bT
f bf equal to the number of coordinates in the selected feature. bfb

T
f is a

binary matrix, that is multiplied by the current x-coordinate vector to form a

new N element vector in which the non-zero elements are equal to the horizon-

tal centroid of the selected feature. The last term on the r.h.s. of equation 4.16

retains the current coordinate values for the features that remain unaltered by

the scaling transformation. The symbol ¬ is used to represent logical negation,

thereby setting all zero elements of bf to unity and vice versa.

The role of each term on the right hand side of equation 4.16 can be sum-

marized as follows,

• term 1: The bracketed part of the first term translates a copy of the whole

undeformed/reference face shape to the origin of the horizontal axis. The

point-wise multiplying factor dhbf performs a horizontal scaling of the

selected feature and sets the horizontal landmarks corresponding to the

undeformed features to zero.

• term 2: A horizontal translation of the selected feature to its instan-

taneous position (different to position of reference face shape centroid if

prior shape translations have been applied).

• term 3: Resets the unmodified feature landmarks to their instantaneous

positions such that they remain unaltered during the current scaling ma-

nipulation.
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(a) Original face
shape x before local
feature manipulation

(b) Horizontal widen-
ing and of the mouth
and vertical narrowing
of the lips x′

1

(c) Vertical widening
of the eyebrows, x′

2

(d) Original face image (e) Rendered image re-
sulting from horizontal
and vertical scaling of the
mouth

(f) Rendered image re-
sulting from scaled mouth
and eyebrow shapes

Figure 4.8: Local feature manipulation: Scaling of facial features using sliders.
Sub-figures (d-f) show the original image and images resulting from local feature
modifications. Sub-figures (a-c) show the face shape deformations which result
in images (d-e). In images (a-c), polynomial curves have been fitted to the
landmark points, thereby providing a clear representation of the face shape in
each case.
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Once the face shape has been modified to the witness’ satisfaction the cor-

responding phenotype image is updated by warping it to the new face shape

using a piece-wise affine warp.

4.6 Applying fine details to a composite

In general, given an appropriate training sample, the AM is capable of capturing

most of the natural variation in facial appearance. However, the fine structures

such as wrinkles and freckles that often occur in real faces are under represented

in face images synthesized from the AM. This shortfall is particularly apparent

when generating faces of old subjects since fine facial detail becomes more

prevalent with an increase in age. The problem is intrinsic to the process by

which new examples of faces are synthesized, whereby a new example of a face

is constructed by a weighted average of existing face images. Inevitably this

averaging procedure results in a certain degree of smoothing in the synthesized

face. Fine details that exhibit low spatial correlation between observations

(sample faces) tend to be ’averaged out’ by this process. Although wrinkles

are often more common in specific regions of the face (for example ’crow’s

feet’ appear at the outer corners of the eyes), their prominence, exact position,

and frequency of occurrence vary from subject to subject. Landmarking these

delicate features is not practicable, therefore a different approach is required.

The issue of enhancing fine detail in averaged face images has been investi-

gated in previous work. In Tiddeman [91] a prototype face, formed by averaging

a sample of face images, was decomposed using a wavelet analysis and the high

order details boosted to compensate for the inherent loss of high spatial fre-

quency information. From a theoretical point of view, this approach may be

flawed because it does not take into account the poor spatial correlation of fine

facial details between sample faces. In fact, if the spatial correlation is assumed

to be negligible, and the prototype face image constructed from an infinite sam-

ple of images, the fine details will sum to a flat field. It is obvious that boosting

this flat field will not enhance wrinkles and other fine structures.

4.6.1 Extracting wrinkle-maps from sample images

In the remainder of this section, an ad-hoc method for applying fine facial detail

to a target face is discussed. The idea is to extract the fine facial details from

a sample face A with the intention of applying these details directly to a target

face B. Let IA be the image corresponding to subject A and let IAd be a

detail-image containing the high spatial frequencies from IA. If A is an elderly
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subject, then image IAd will be likely to contain facial wrinkles associated with

the aging process, therefore the term wrinkle-map will be used when referring

to IAd. Wrinkle-maps can be obtained by passing image IA through a high pass

filter, or equivalently by subtracting a smoothed version of the image from itself

as follows,

IAd (x, y) = IA (x, y) − ĪA (x, y) (4.17)

where ĪA (x, y) is a blurred version of IA. The procedure is illustrated

schematically in in figure 4.9.

Figure 4.9: Wrinkle-map IAd extracted from a sample face A using image sub-
traction 4.17. In this example, IAd was created by using an 8×8 averaging filter
to form a smoothed image ĪA, which was then subtracted from the 340×267×3
original IA.

4.6.2 Applying details to a target face

Once extracted from a subject (for example subject A in figure 4.9), a wrinkle-

map can be applied to a target face, thereby increasing its fine detail content.

This technique is particularly useful for increasing the apparent age of a subject.

The method can be considered as a hybrid form of the standard high-boost

filtering method commonly used in digital image processing (see Gonzalez [38]),

IBhb = (A − 1) ĪB + IBd, A ≥ 1 (4.18)

I ′Bhb = (A − 1) ĪB + IAd, A ≥ 1 (4.19)

In the normal implementation of high-boost filtering, a detail image is con-

structed as defined by equation 4.17 and added to a fraction of the original

image (equation 4.18). This procedure makes the fine details more prominent

in the high-boost image IBhb. As the value of the scalar A increases beyond

1, the contribution of the detail image becomes less important. In practice
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A ≈ 2, and the filter kernel used to form ĪA in equation 4.17 should be small

enough that only fine details are copied to subject B. If these precautions are

not adhered to the identity of subject B may be altered when the wrinkle-map

is applied. Equation 4.19 is a modified version of the standard high-boost pro-

cedure, whereby the detail image is not formed from the original image, but

from a different image instead. The hybrid high-boost image that results, I ′Bhb,

comprises the low-medium spatial frequencies of image IB and the high spatial

frequencies belonging to image IA. A schematic overview of this hybrid high-

boost method is provided in figure 4.10. Superposition of fine details from both

subjects can produce undesirable ghosting artefacts in the hybrid high-boost

image I ′Bhb (i.e. plausible results are not obtained if more than one wrinkle-map

is used in the hybrid high-boost image). Passing a low-pass filter over image IA

prior to adding the detail image overcomes this problem. The effect of varying

the size of the spatial filter used in the construction of IAd is illustrated in figure

4.12.

Figure 4.10: Application of a wrinkle map obtained from subject A to a target
face B

4.6.3 Application to facial composites

A deterministic method for applying fine facial details in the EigenFIT system

is desirable for two reasons,

1. Wrinkles can be added ’at will’ to a composite image to increase its ap-

parent age.

2. Fine facial details are poorly represented by the appearance model causing

new instances of faces to appear artificially smooth.
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(a) Target face image IB (b) Target face image with wrinkle-map
from subject B

Figure 4.11: A comparison between a veridical target face image IB and the
same face image with a wrinkle-map applied to it. Both images have been
warped to the veridical face shape. Wrinkles are visible around the eyes of image
in sub-figure (b) and the whole face exhibits a freckled complexion. Conversely
the image in sub-figure (a) is relatively smooth in comparison.
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(a) Filter size = 4 × 4 (b) Filter size = 8 × 8 (c) Filter size = 12 × 12

Figure 4.12: The effect of varying the size of the averaging filter on the images
obtained from the hybrid high-boost method for applying wrinkle-maps. The
identity of the target face is retained even for the 12 × 12 filter image which
contains a relatively large proportion of facial detail from another subject. A
different wrinkle-map to the one shown in figure 4.11 has been used in this
example, to show the generality of the procedure.

Fine facial details are not modelled sufficiently by the AM because, un-

like the main facial features in shape normalized images, a spatial correlation

does not exist for these image structures over the sample of training images.

Hence, the fine details tend to occur in the later principal components which

are discarded according to,

tm = 100

∑m
k=1 λk

∑p
j=1 λj

where tm is the percentage of natural facial variation retained in the AM

and m is the cut off point whereby the (m + 1)th − pth principal components

are removed from the model. Using the assumption that fine facial details are

not present in images synthesized from the AM, a wrinkle-map can be added

to a composite face without the preliminary smoothing procedure previously

described.

The witness’ recollection of fine facial structure is likely to be quantita-

tive rather than relating to a specific spatial arrangement of fine details. For

example, typical semantic descriptions may be ”the perpetrator had a spotty

complexion”, ”the face was slightly wrinkled” or ”the face was very wrinkled”.

Consequently, only a limited number of wrinkle-maps will be required in the
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composite system. For ease of implementation the prominence of the wrinkle-

maps will be controlled by varying the relative proportions of ĪB and IAd by

adjusting the value of A in equation 4.19, as illustrated in figure 4.13, rather

than adjusting the filter size as previously shown in figure 4.12. The wrinkle-

maps can then be pre-calculated, and loaded into memory as required.

Although the wrinkle-maps are obtained from the same training examples

used to build the appearance model, this does not imply that a perfect PCA

representation is possible. The process of mixing spatial frequency content

produces a texture map that does not lie in the span of the texture Pg. To

illustrate this point let the texture-map of the current stallion phenotype be

represented in vector notation as g and the wrinkle-map by ∆g. The process

of updating the stallion can then be expressed by,

gscreen = g + ∆g (4.20)

where the component ∆g lies outside the span of, but is not orthogonal to,

Ps. Hence, the wrinkle-map is treated as an offset vector and g is generated by

the standard evolutionary process as described in chapter 3 which is unaffected

by the deterministic process of applying a wrinkle-map. An example of com-

bining the wrinkle-map and attribute manipulation procedures is presented in

Appendix D.

(a) A = 2, filter size = 8 × 8 (b) A = 2.5, filter size = 8 × 8

Figure 4.13: In the interest of ease of implementation, the prominence of each
wrinkle map is determined by the relative proportions of target face and wrinkle-
map. The relative proportions can easily be controlled by varying the scalar A
in the hybrid high-boost equation 4.19
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4.7 Summary

A suite of advanced tools has been designed and smoothly integrated with the

core EigenFIT implementation. The blend tool allowed the witness to blend two

or more faces in the current generation, permitting facial characteristics from

multiple faces to be propagated into the next generation. Incorporation of the

blended face into the standard evolutionary process was achieved by forming a

weighted average of genotypes (in this context, transformed appearance model

parameter vectors), which replaced the genotype corresponding to the current

stallion.

A simple, general, method for affecting facial attributes was outlined. Im-

plementation of this method for the specific case or aging/rejuvenation was

discussed in detail, in which the genotype relating to the current stallion was

perturbed by the addition of an appropriately scaled attribute vector.

Deterministic face-shape deformations were made possible with a local fea-

ture manipulation tool, with which the relative position and aspect ratio of a

selected facial region could be adjusted as required. In general, the exact en-

coding of a shape manipulation attained in this manner is not possible using

the appearance model framework. Hence, local shape alterations were stored

in an offset vector, allowing the underlying standard evolutionary process to

continue in the usual way. Prior to display, the offset vector was recombined

with the underlying face shape in a layer of computation that exists between

the appearance model and user interface components of the EigenFIT system.

The concept of wrinkle-maps was introduced as a deterministic method

for applying fine facial details to a facial composite. Since such changes to a

composite image can not be accommodated by the appearance model alone, the

selected wrinkle-map was stored as an offset in vector form. In a computational

step that preceded screen-display, the offset was added to the texture-map,

generated by the underlying evolutionary process.



Chapter 5

Efficient model-based warping

method

One of the primary aims of the work described thus far is to provide a mecha-

nism for producing facial composite images quickly. Long time delays between

the synthesis of successive generations of faces must be avoided since this is

both distracting for the witness and considerably lengthens the overall com-

posite process. When synthesizing a new example of a face, a bottleneck is

encountered, due to the necessary image warping stage. In Chapter 2, sec-

tion 2.3.1 an image warping procedure was described that utilized a piece-wise

affine transformation, reverse pixel mapping and nearest neighbour interpola-

tion. However, the limits on natural face shape variation and the procedure

for synthesizing a face from an appearance model suggest an approach to this

constrained image warping problem that is computationally more efficient. In

this chapter, a novel method for image warping is described in which an image

warp is effected by the superposition of a set of pre-defined forward mappings

referred to in this work as displacement fields.

5.1 Introduction

Image warping is a geometric transformation that maps all pixel positions in

one image plane to positions in a second plane. Various methods for achieving

image warps have been previously described (see Glasbey and Mardia [37]).

The choice of warping method is dictated by a compromise between a smooth

geometric distortion, accuracy of control point (shape) alignment and speed of

execution.

The piecewise affine method is generally accepted to be the fastest general

warping method. It has been used in deformable template methods for real time

140
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pattern recognition problems [21]. It entails segmenting the source image and

destination image into corresponding triangular regions. For each triangular

region an affine transformation must be determined which is then applied to

every pixel location, and requires the application of a matrix multiplication for

each and every pixel location. The piece-wise nature of this method can lead

to visible facets in the destination image.

An approach that produces a continuous warp is Bookstein’s thin-plate

spline (TPS) method [6]. This is essentially based on the concept of a sur-

face which is warped to assume a different form. It is a global (as distinct

from piecewise) transformation which maps source landmarks to destination

landmarks but in such a way as to minimize the overall bending energy of the

surface. In this way, the TPS produces very smooth warps and avoids a prob-

lem which can occur with the piece-wise approach in which adjacent triangular

regions do not blend naturally. In general, perfect registration of control points

is not achieved using this method. The TPS method is typically more compu-

tationally demanding than the piecewise affine method and therefore is not a

compelling choice for real-time applications such as the one described in this

thesis.

Although a reverse mapping from the destination image to the source im-

age is often preferred, sometimes it is difficult or even impossible to obtain.

This problem arises when complex surfaces are modelled using 3-D computer

graphics. If the reverse mapping is impractical to compute, forward mapping

techniques must be employed. Texture splatting is one such method [45] that

can be applied to both 3-D computer graphics problems and 2-D image warp-

ing problems. Splatting performs two roles; it carries over pixel values from the

source to the destination image and it interpolates between mapped pixels in

the destination image. This is achieved by carrying over small patches of colour

rather than individual pixels (i.e. not a one to one pixel mapping). Various

patch shapes have been used, most notably ellipses [40, 102] although methods

based on lines, triangles and rectangles have also been implemented.

In the remainder of this chapter, an efficient model-based warping method

is described that utilizes the constraints imposed by the appearance model and

the limits of natural face shape variation. These constraints can be summarized

as follows,

1. Source images are all in shape-normalized form such that a correspondence

exists between the kth pixel in every base image.

2. The areas of the convex hulls of the face shapes do not vary very much
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(a) source (b) destination

Figure 5.1: Affine image warp from source image (a) to destination image (b)

due to the fact that scaling variations are filtered out in the alignment

procedure and large deformations from the mean shape are not present

in the face pattern class.

3. The shape variation can be expressed adequately as a finite, linear com-

bination of modes representing deviations from the mean shape.

In the following section, the procedure for constructing a displacement field

is described and illustrated with the aid of a simple example. In section 5.4

an image warp is effected by the superposition of two displacement fields. The

efficiency of the displacement field method is measured against the standard

piece-wise affine/reverse mapping method and a two pass splatting method

based on a naive implementation of Heckbert’s [45] method. Finally the dis-

placement field method is applied to the specific problem of warping faces in

which each displacement field corresponds to a PCA mode of shape variation.

5.2 Forward mapping vs reverse mapping

When referring to geometric transformations, the spatial locations in the orig-

inal image (prior to the warp) as described as the source coordinates (x, y)

whereas the locations in the resultant image (after the warp) are described as

the destination coordinates (x′, y′). Image warping is thus a geometric opera-

tion that defines a coordinate mapping from the source image to the destination

image and assigns the intensity values from corresponding locations accordingly.

There are, however, two ways of considering this process - if we take each co-

ordinate location in the source and calculate its corresponding location in the
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destination image, we are considering a forward mapping from source to destina-

tion. Conversely, we may consider a reverse mapping of destination-to-source,

in which we successively consider each spatial location in the warped (destina-

tion) image and calculate its corresponding location in the source (see figure

5.2).

(a) Forward map: The transformation T

maps the point (x, y) in the source image to
the point T (x, y) in the destination image.

(b) Reverse map: The inverse transfor-
mation T−1 maps the point (u, v) in the
destination to the point T−1 (u, v) in the
source image.

Figure 5.2: Grid nodes represent integer pixel coordinates. In general, the
transformed coordinate pairs T (x, y) and T−1 (x, y) are not integer values.

Forward mapping in which pixels are carried over from source to destination

has several problems associated with it. In particular, depending on the specific

transformation defined, pixels in the source may be mapped to positions beyond

the boundary of the destination image. Also, some pixels in the destination

may be assigned more than one value whereas others may not have any value

assigned to them. The unassigned pixels are particularly problematic because

they appear as holes in the destination image that are aesthetically unpleasing.

In practice, a pixel filling algorithm is often used instead [17]. Unlike the carry

over approach, a pixel filling algorithm determines the reverse mapping from

destination to source. Using this method, every pixel in the destination is

mapped to a single position with rational coordinates within the source. In

general, the mapping will send each pixel to a position that lies between the

centroids of four surrounding source pixels. The corresponding point in the

destination image is generally assigned a value according to an interpolation

rule. The fastest interpolation method is to assign the value of the closest pixel.

This is known as nearest neighbour interpolation or zero order interpolation.

Bilinear interpolation yields more accurate results but requires a hyperbolic

paraboloid to be fitted to the four closest pixels, a calculation that requires

more computational time than the nearest neighbour scheme.

Consider figure 5.3. Here the interior pixel coordinates belonging to the

triangle in the source image (a) are forward mapped resulting in destination
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Figure 5.3: For the reverse mapping method, every pixel in the destination
image is assigned a single intensity value. The forward mapping method does
not guarantee that every pixel in the destination image is assigned a single
value. This may result in holes in the destination image. In the figure above
(a) is a source image, (b) a destination image formed using the forward mapping
method and (c) a destination image formed using the reverse mapping method.

image (b). Artefacts appear when the transformation causes an expansion in

the vertical direction, horizontal direction, or both directions simultaneously.

5.3 Displacement field construction

In a general image warping problem, a transformation is sought that attempts

to map one set of control points (shape) to another,

T (x̄) = x (5.1)

In contrast, the displacement field method proposed here makes use of condi-

tion 1, namely that the base shape (normally related to the source image), x̄

is known1 and is constant for every possible image warp and that the desti-

nation shape x represents a statistically likely deformation of x̄ that can also

be established prior to performing the warp (condition 3). This means that

the transformation can be pre-determined and hence removed from the real-

time computation required by the warp. More importantly, the computation

required to apply this transformation to each and every pixel coordinate pair

can also be calculated off-line. The procedure for constructing a displacement

field is outlined by the steps below and illustrated by the simple example pro-

vided in figures 5.4(a)-5.5. Here, a piece-wise affine transform has been used to

1Conversely, if the destination shape was constant a more desirable reverse mapping would
be possible but unfortunately this is not the case in the application considered in this work.
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determine the displacement field, although other warping methods are equally

applicable.

Off-line computation

1. Consider the regularly spaced grid illustrated in figure 5.4(a). Let each

node in the grid represent a pixel location within a M × N digital im-

age, Is, and let X̄ and Ȳ be 2D arrays containing the x and y pixel

coordinates respectively. A convenient representation is provided, using

complex notation,

Z̄ = X̄ + Ȳi (5.2)

2. Define x̄ = [x̄1 x̄2 . . . x̄n ȳ1 ȳ2 . . . ȳn]T as a base shape, such that it

occupies the entire area of image Is.

3. Let x define a new shape representing a (constrained) deviation from the

base shape such that x1 = x̄ + ∆x1.

4. Compute the Delaunay triangulation of the convex hull defined by x̄

thereby forming a mesh. Use the same order of triangulation to segment

x into corresponding triangular regions (see figure 5.4(b)).

5. Let v̄ ⊂ x̄ be a vector containing the coordinates of the vertices of a

single triangle in the mesh defined by x̄. Let v ⊂ x be vector of vertex

coordinates in the corresponding triangle of the mesh defined by x. Using

equation 2.45 from Chapter 2, section 2.3 determine the transformation T

that maps the coordinates in v̄ to the coordinates in v (see figure 5.4(b))

such that,

T (v̄) = v1 (5.3)

6. Apply the transformation T to all pixel coordinate pairs, {z̄i} (where

z = x+yi), located within the triangle specified by the vertices v̄, thereby

mapping them to new locations, {zi}, within the triangle defined by v.

7. Compute the displacement vector ∆z = z− z̄ of every pixel in the source

image resulting from transformation T .

8. For every pixel, separate ∆z̄ into x and y components. Insert the x

component into the real part of a complex 2D array, RE [∆Z], at location
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z̄. Similarly insert the y component into the imaginary part, IM [∆Z], at

location z̄.

9. Repeat steps 5-8 for all corresponding triangles in the meshes defined by

the shapes x̄ and x and in doing so construct the displacement field ∆Z

(see figure 5.5).

10. Write displacement field ∆Z to file so that it may be loaded into memory

when required.

Using the same procedure, displacement fields representing other distinct

deformations of the base shape can also be determined, forming the set {Zi}.

The procedure demands that every synthesized image has the same dimensions

as the displacement fields.

5.4 Superposition of displacement fields

The previous section described the off-line process for constructing a displace-

ment field. This section explains how an image warp can be effected by a linear

combination of t distinct, pre-determined, displacement fields. The objective

is to allow the t warps defined by the pre-computed displacement fields to be

accomplished with minimal computational expense and to allow intermediate

warps to be determined by weighting and adding the displacement fields as

required. Hence a wide range intermediate warps can be generated from a

relatively small number (condition 2) of predetermined warps as described by

the steps below and illustrated in figures 5.6(a)-5.6(c). As with any forward

mapping method, holes are liable to appear in the destination image due to

undefined pixel values. However, because intra class variations in faces shape

are small the occurrence of these artefacts is limited and they can be removed

using a standard, order-statistic filtering method [38].

Real-time computation

1. Initialize destination image Id = 0M×N , where 0M×N is a 2D array in

which each element is set to zero.

2. Load displacement fields {∆Zi} into memory.

3. Add the required linear combination (superposition) of displacement

fields, {∆Zi}, to the grid of regularly spaced pixel coordinates, Z̄, thereby
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determining a forward mapping of pixel coordinates.

Z = Z̄ +
t

∑

i

∆Zibi (5.4)

where bi is a scalar value that determines the contribution of the ith

displacement field to the forward mapping.

4. In general, the coordinate pair represented by the complex number z will

consist of non-integer values. Hence, for every z determine the nearest

integer pixel coordinates (nearest neighbour interpolation). Fill in pixel

values in the destination image according to the following relationship,

Id (z) = Is (z̄) (5.5)

Note that the coordinate pairs {zi} are obtained via a column-wise linear

index into Z,

z(r+M [c−1]) = RE [Z (r, c)] , IM [Z (r, c)] (5.6)

5. The removal of the holes from the image is achieved in 2 steps. Firstly,

the entire image is filtered using a median filter. This fills the holes but

induces a modest loss of resolution throughout the image that may be

perceived as blurring. To mitigate this effect, the forward mapping of

values from source to destination is repeated thereby replacing all the

filtered values by the original values (back fill), except at the locations of

the holes, as desired.

5.5 Comparison with other image warping methods

In the previous section, a simple example was used to illustrate the warping

of a digital image by the superposition of two displacement fields. To test the

performance of this method, the same image warp was performed using a piece-

wise affine method (with reverse mapping and nearest neighbour interpolation)

and a two pass pixel splatting method, adapted from Heckbert’s [45] original

method (see Appendix E). All three methods were coded in MATLAB. The

superposition method was found to be faster than the reverse mapping and

considerably faster than the splatting algorithm (see table 5.5).
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(a) The initial pixel positions are located on a regular grid of which the x − y coordinates
can be represented by two 2D arrays, X̄ and Ȳ or alternatively by a single complex array,
Z̄ = X̄ + Ȳi.

(b) For each pair of corresponding triangular regions a
transformation T is defined that maps the vertices of
the source triangle v̄ to the vertices of the destination
triangle v. The interior pixel coordinates are located at
the nodes of the grid in the above image.

Figure 5.4: The displacement field method requires that the dimensions of the
source and destination images are the same and that their meshes (shown above)
cover the entire image plane. Blue has been usedd to denote a source/base shape
and red has been used to denote a destination shape.
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Figure 5.5: Individual displacement vectors {∆zi} (∆z = ∆x+∆yi) are located
at positions {z̄i} and indicated by small black arrows of varying length. An
M×N complex array containing all such vectors, is referred to as a displacement
field and denoted by ∆Z. Images of the RE [Z] = X and IM [Z] = Y arrays
are illustrated above, where intensity of each pixel indicates its displacement
from the regular grid defined by Z̄. White pixels indicate a large downward
displacement or displacement to the right for IM [Z] and RE [Z] respectively.
Black pixels indicate a large upward displacement or displacement to the left
for IM [Z] and RE [Z] respectively.
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(a)

Source image (I
s
) Destination image (I

d
)

(b)

superposition + filter superposition + filter + backfill

(c)

Figure 5.6: Forward pixel mapping by a superposition of two displacement fields
∆Z1b

1
s +∆Z2b

2
s where b1

s = b2
s = 1. Each pixel intensity value in the destination

image is assigned by interpolating the mapped coordinate pair to the nearest
integer values (nearest neighbour interpolation) and copying the intensity value
from the corresponding pixel in the source image. Note that
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reverse mapping splatting

superposition + filter superposition + filter + backfill

Figure 5.7: Visual comparison of the three different warping methods. Holes are
visible in the image created by the superposition method, although these can
be removed by applying an appropriate image filter to the destination image
and then filling in the known pixels determined by the forward warp.
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Even with the additional hole removal procedure, the superposition method

was still quicker than the reverse mapping method. A measure of the accuracy

of each warp was obtained by determining the rms pixel error, taking the reverse

mapping warp as the bench mark. The accuracy results are provided in table

5.5. Although the rms errors for the splatting method and the superposition +

hole removal method are very similar, the destination image corresponding to

the latter method generated a more visually pleasing result. On close inspection

of figure 5.7, small artefacts can be seen on the boundaries between white

and black polygon regions in the ’superposition + filter + backfill’ image. In

the equivalent ’splatting’ image, noise appears as black specks in a somewhat

random pattern.

Quantitative comparison of warping methods relating to figure 5.7

Warp method reverse superposition superposition splatting
mapping method + filter method

+ back fill

Computation 1.192 0.43 0.43+0.08+0.07 185.6970
time(s)

rms pixel 0 0.181 0.092 0.091
value error

Image: 340 × 267, 8bit RGB

Hardware: fujitsu-siemens, lifebook s,

Pentium M 1400MHz processor with 776,688 KB RAM

Software: MATLAB 6.5 on Windows 2000

Table 5.1: Comparison of coordinate mapping methods. The superposition
method was fastest despite the additional processing required to remove holes
in the destination image.

5.6 Model based displacement field method

The efficiency of the displacement field method for image warping has been

demonstrated using a naive example. Here the method is extended to incorpo-

rate the modes of natural shape variation determined by a PCA model of the

human face. We begin by reviewing the method described in Chapter 2/3 for

generating a new instance of a pattern from the modelled pattern class.

1. In the application described in this thesis an evolutionary algorithm is

used to generate new sets of appearance model vectors (in our implemen-

tation a set comprises nine such vectors) [c1, c2, . . . , cn].
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2. Each appearance model vector c is then decoupled into its associated

shape parameter vector bs and texture parameter vector bg.

3. The shape coordinates x of each face in the new generation are calculated

as a linear sum of the shape principal components.

x = Psbs + x̄ (5.7)

4. The shape-normalised texture of each face in the new generation is calcu-

lated as a linear sum of the texture principal components.

g = Pgbg + ḡ (5.8)

5. Finally, the shape-normalized texture of each face in the new generation

is geometrically transformed (i.e. warped) to correspond to the required

face shape coordinates and then displayed.

Id

(

T−1 (u, v)
)

= Is (u, v) (5.9)

This step causes a computational bottle-neck in the process of generating

a new example of a pattern/face.

Chapter 3 demonstrated that any face shape can be approximated using a

linear combination of a relatively small number (ts) of shape principal compo-

nents. Therefore, it is reasonable to assume that a finite set of t ≤ ts image

warps can also be defined that allow a face image to be warped quickly from

its shape normalized form to any plausible face shape. Accordingly a set of dis-

placement fields have been defined in which each displacement field corresponds

to an eigen-mode of shape variation. A superposition of these model-based dis-

placement fields can be used to replace steps 3 and 5 in the face generation

process described above, thereby reducing the size of bottle-neck by calculating

the image warp implicitly.

5.6.1 Construction of model-based displacement fields

The procedure outline in section 5.3 was used to construct t displacement fields

that enabled any face shape to be approximated via an efficient warping method.

Here the base shape x̄ is the mean face shape (plus image corner landmarks),
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and the destination shape xi is defined by a one standard deviation perturbation

from the mean according to the mapping,

x̄ 7→ pi
s

(

λi
)

1

2 + x̄ (5.10)

where pi
s is the ith shape principal component. If Is is a M × N source image

containing a shape normalized face, then a piece-wise affine mapping of its

pixel coordinates governed by equation 5.10 can be used to construct the ith

displacement field ∆Zi. Hence the displacement field ∆Zi is the image warp

analogue of the shape principal component pi
s.

5.6.2 Superposition of model-based displacement fields

Using the procedure described in section 5.4 a superposition of displacement

fields is obtained as follows,

Z = Z̄ +
∑

i

∆Zib
i
s (5.11)

where Z defines a forward mapping of pixel coordinates, Z̄ represents a grid

of regularly spaced pixel coordinates and bi
s is a model parameter dictating

the influence of the ith displacement field on the image warp. By comparing

equation 5.11 with the equation below,

x = x̄ +
∑

i

pi
sb

i
s (5.12)

it can be seen that ∆Zi is analogous to pi
s and (bi

s) are in fact the PCA shape

model parameters in both cases.

The displacement fields corresponding to the first four eigen-modes of shape

variation are illustrated in figure 5.8. Once the superposition has been formed

the pixel intensity values in the destination image can be assigned according

to,

Id (z) = Is (z̄) (5.13)

To avoid holes appearing the resulting destination image, Id, was enhanced

using a 3× 3 median filter. Figure 5.9 shows typical results obtained using the

model-based displacement fields method.
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5.6.3 Application to facial composites

An example of a face image that has been warped using a superposition of 30

displacement fields corresponding to the first 30 PCA modes of shape variation

is shown in figure 5.9. Using more displacement fields increases the computa-

tion time, due to the time taken to load the displacement fields, one by one,

from the hard disk into RAM. This bottleneck can be avoided by pre-loading

the displacement fields, or loading them in blocks of ten or more. The number

of displacement fields that can be held in memory will depend on the image size

and the capacity of RAM. The computational burden of loading the displace-

ment fields is less apparent when more than one image is generated because

the displacement fields are only loaded once for the set and not once for each

face image. For example, in the facial composite application described in this

thesis, faces are generated in sets of nine. Hence the computational cost per

image of loading the data is only 1/9th of that for a single face.
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(d) Fourth mode of shape variation.

Figure 5.8: The real (∆X) and imaginary (∆Y) components of the model-based
displacement fields corresponding to the first four modes of shape variation.
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Figure 5.9: A visual comparison between the reverse mapping method and the
superposition of displacement fields (implicit forward mapping) method. In
these examples 30 204×160 displacement fields were used corresponding to the
first 30 modes of shape variation.
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Figure 5.10: Time required to warp a single image using 30 eigen-modes as a
function of image size.
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Figure 5.11: The relationship between number of fields and time to compute
mapping

5.6.4 Scalability

The problem size increases approximately as the square of a scaling factor with

respect to a 340×267×3 RGB image (see figure 5.10). When a face is warped us-

ing a linear combination of thirty displacement fields, the superposition method

is significantly faster. The plots shown in figure 5.10 do not take into account

the time required to load the displacement fields into memory. The assump-

tion has been made that there is sufficient physical memory available such that

all the required displacement fields can be loaded prior to warping. This is a

reasonable assumption to make for the size of images required in the composite

application. The time required to compute a forward mapping using the su-

perposition method is linearly dependent on the number of displacement fields

used. Figure 5.11 shows the experimentally obtained relationship between the

number of displacement fields used (340 × 267 × 3) and the time taken.
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5.7 Summary

A model-based warping procedure has been described and implemented and

compared to the standard (reverse mapped) piece-wise affine method described

in Chapter 2. Under certain conditions in which the warp corresponds to mod-

est deviations from the mean shape and can be adequately approximated by

a superposition of eigenmodes, the model-based procedure has a superior per-

formance. The method employs a set of pre-defined pixel displacement fields,

a superposition of which yields a 2D coordinate map enabling pixel values in

the destination image to be assigned. In this work, the displacement fields were

constructed using the piece-wise affine method but the approach could easily

be extended to other generating transforms such as thin-plate splines thereby

providing smoother image warps at no additional computational cost.

As expected, the relative efficiency of the displacement field method was

shown to decrease linearly with the number of eigen-modes (displacement fields)

used. For the specific application to facial composites in this thesis, a relatively

large number of shape eigenmodes has been considered. Using 30 eigenmodes

to approximate the shape still resulted in an overall increase in computational

speed of a factor of 3 without significantly compromising image quality. For

other applications, to which this technique is equally applicable in principle,

the gain may be much greater and the results presented herein suggest that

an application requiring only 10 eigenmodes to represent the warp could be

achieved a factor of 8 times more quickly.



Chapter 6

Appearance models and facial

caricatures

Although producing caricatures is artistically a somewhat subjective process, a

previous attempt has been made to determine a mathematical formula which

mimics the effect. This mathematical formula, which will be referred to in

this work as the uniform caricature method, is described in this chapter and

implemented using the appearance model framework. Although the uniform

approach would seem to provide a satisfactory technique for generating cari-

catures, no prior work exists in which it has been proven to be the definitive

method. The main objective of this chapter is to investigate the new concept of

non-linear caricatures and how the established uniform method for caricature

is in fact, only a special case of a more general paradigm. Examples of photo-

graphic quality caricatures are presented, that were generated by perturbing the

appearance model parameters, corresponding to a veridical face image, accord-

ing to different transformation functions. The results of a simple experiment

are presented which suggest that non-linear transformations such as those we

propose can accurately capture key aspects of the caricature effect.

6.1 Introduction

The primary purpose of the facial composite process is to generate an image

which has the maximum probability of triggering recognition by one or more

witnesses. It is important to differentiate this from the closely related (but

nonetheless distinct) goal of achieving the most ”realistic” rendition of the sub-

ject. Thus, if it were possible to produce an image which did not correspond

exactly to how the suspect appears in reality but evoked recognition more easily

or effectively than the veridical image, we should prefer the former. In this con-

159
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text, the caricature effect, in which prominent characteristics of an individual

face are exaggerated (often grossly) is of considerable interest. The carica-

ture effect is a remarkable phenomenon because, despite huge distortions in the

appearance of the subject, human-beings are still able to effectively recognise

the individual portrayed and, indeed, some psychological studies have even sug-

gested [76, 86] that caricatures are more effectively recognized than the veridical

images from which they were generated.

The scientific basis for the caricature effect is still far from being fully under-

stood. Traditionally, caricature has been the domain of the artist who produces

them primarily for comic or satirical effect. In qualitative terms, the artist iden-

tifies facial features or characteristics which deviate significantly from the norm

or average and systematically exaggerates those deviations. However, the pre-

cise manner and degree of exaggeration shows considerable variation between

individual artists and the process is to some degree specific to both the subject

and the artist. A skilfully drawn caricature may even capture characteristics of

the subject’s personality - this is especially true when the caricature is satirical

in nature.

6.2 Motivation

These observations suggest that caricatures may in some sense capture the es-

sential aspect of identity and even enhance it. If this hypothesis has some basis

in fact and a means to automatically manipulate facial images to produce car-

icature effects can be established, it is possible that a composite system which

allows the caricature effect to be produced may be faster and more effective.

Psychological tests by Frowd et al [34], investigating the possible benefits to

facial composite production, would seem to suggest that the caricature effect

is beneficial to the composite process under certain conditions. Since the in-

teresting concept of caricatured composites is new, its effectiveness remains

unproven in real composite situations. Therefore, the work presented in this

chapter is somewhat speculative in relation to the composite system described

in Chapter 3 and Chapter 4. The aim here is to provide the groundwork for a

caricaturing tool that may be prove useful in the future.

6.3 Current approach to caricature

Brennan [11] is generally attributed with the first automatic caricature gen-

erator. This worked on line drawings, constructed from connected point con-

figurations, outlining the shape of the main facial features. The generation of
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near photo-realistic caricatures was first developed by Benson and Perrett [4]

and subsequent authors have followed their basic approach [14, 72]. Benson

and Perrett [4] considered the shape and texture characteristics of the images

separately. O’Toole et al [68] applied the standard caricaturing algorithm used

by Benson and Perrett to 3D representations of the human face. Their results

suggested that the caricaturing procedure may also increase the perceived age of

the face. In order to understand clearly the standard method for computer gen-

eration of caricatures and its relation to that proposed herein, we will describe

their approach in detail.

1. Facial landmarks corresponding to key points are identified on each image

in a sample of face images. The corresponding set of (scaled and aligned)

Cartesian coordinates {xi, yi} for each image constitutes a shape vector

for the given face, which we denote by X. The mean shape vector over

the sample, X̄ is calculated.

2. Each image is warped to the mean shape vector of the entire sample

by standard Delaunay triangulation methods. We refer to such warped

images as the shape-normalized texture patterns, in which the colour

values are stored as the elements of a vector T. The average of the shape-

normalized texture patterns is termed the facial prototype, T̄.

3. To generate a caricature of any face with texture T and shape X, we (1)

calculate the texture difference vector ∆T = T − T̄ between the shape-

normalized texture pattern and the texture of the facial prototype, (2)

calculate the shape difference vector ∆X = X − X̄ between the shape

vector of the face and the mean shape vector corresponding to the facial

prototype, (3) add some linear multiple of the texture and shape difference

vectors, T′ → T+a∆T and X′ → X+ b∆X, where a and b are the boost

parameters, and (4) finally, warp the texture map T′ to the required shape

X′, thereby forming the caricatured face image.

The procedure is represented diagrammatically in figure 6.1 in which the differ-

ence between a veridical point relating to a subject, and the prototype (typically

relating to the sample mean face) is exaggerated by a small collinear perturba-

tion. Note that the prototype does not necessarily lie at the origin, although

in our own work, we have constructed a vector space in which the mean face

prototype does lie at the origin. A key point to note about this method is its

linear (in fact, uniform) treatment of all local deviations from the prototype.

Thus, in Benson and Perrett’s [4] approach, all differences in local pixel values
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Figure 6.1: Schematic depicting the uniform (linear) caricature approach (as
per Benson & Perrett, 1991). The difference vector between the veridical (repre-
senting the original image of the subject) and the prototype is simply extended
collinearly. The diagram can be interpreted as a small perturbation in the shape
of the veridical face or a small perturbation int the texture of the veridical face.

between the veridical and the prototype are multiplied by an identical factor (a

for the texture and b for the shape). This model for caricaturing thus effectively

gives all directions equal importance. In anticipation of alternative methods,

we term the currently accepted model for caricature the uniform method. In

the next section, we will present other methods of caricature (within which the

uniform method is simply a special case), suggesting that other mathemati-

cal forms may be appropriate in creating caricatures that maintain and even

enhance recognition capacity.

6.4 Caricatures in appearance space

All information regarding facial appearance can expressed in a vector of appear-

ance parameters c = [c1, c2, . . . , cn]T . Recall that in Chapter 3, an appearance

model of the human face was described in which the appearance parameters

were distributed as independent normal variations1. It follows that the likeli-

hood of a given face occurring in the population can be measured simply as the

scaled distance from the origin. Specifically, the log of the probability density

for an appearance vector c is given by − log p = L, where

1In this chapter it is assumed that p can be modelled as a single multivariate normal
distribution. Although p can be accurately modelled using a mixture of multivariate normal
distributions (see Chapter 3), the simplicity of the single multivariate distribution is preferred
in this chapter
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L =
N

∑

i=1

c2
i

σ2
i

(6.1)

p is the normal density function and σ2
i is the variance associated with the

ith axis in the appearance parameter space. Thus, uniform caricaturing moves

a face to a region in appearance space where faces are statistically less likely to

occur (i.e., of lower exemplar density), but crucially, the shift is precisely along

that original direction that minimizes the exemplar density. Over a suitable

sample of faces, a prototype appearance vector c̄ is easily calculated, and a

uniform caricature c′ is created by the simple transformation

c′ = c + γI (c − c̄) (6.2)

where

c̄ =
n

∑

i=1

ci (6.3)

γ is a scalar boost parameter and I denotes the identity matrix. The recon-

struction of the caricatured face from the appearance vector is then obtained

by applying equations 2.66-2.69 from Chapter 2 to c′, and warping to the re-

quired shape. If different boosts γS , γT are required for the shape and texture

components, this is easily achieved through the decoupled shape and texture

appearance parameters bS and bT , which are calculable from c.

b′

S = bS + γSI
(

bS − b̄S

)

(6.4)

b′

T = bT + γT I
(

bT − b̄T

)

(6.5)

For any given face, it is a simple matter to assess the number of standard

deviations by which each appearance parameter deviates from the prototype

c̄. It would seem plausible that those global facial components which deviate

drastically from the mean are those largely responsible for encapsulating the

distinctive qualities of the individual face. Preferentially boosting these com-

ponents might be expected to achieve a subtly different kind of caricature that

enhances identity-related components (see figure 6.2). This is the key idea and

suggests that, in the more general case, the boost factors γS and γT (simply



164 6.4 Caricatures in appearance space

scalars in uniform caricature) become diagonal transforming matrices. Thus, a

more general from of caricature transform is proposed by rewriting equation 6.2

as,

c′S = c + Γ∆c (6.6)

where (∆c = c − c̄S). Γ is a diagonal matrix that weights each individual

element of the difference vector, ∆c, according to a function, γ of parameter

magnitude measured in units of standard deviation. Using the symbol t to

represent the number of normalized standard deviations by which the model

parameter deviates from the mean value, a suitable choice of function γ {t} is

required which will determine the boost factors along the diagonal of the trans-

formation matrix Γ,

Transform Matrix:

Γ =



















γ (t1) 0 . . . 0 0

0 γ (t2) 0
...

. . .
...

0 γ (tn) 0

0 0 . . . 0 γ (tn−1)



















(6.7)

where the number of standard deviations by which the kth appearance pa-

rameter deviates from the mean value is denoted by tk. For possible functional

mappings were chosen on an empirical bases. These are defined below and also

illustrated in figure 6.3.

Uniform Function:

γ (t) = C −∞ < t < ∞ (6.8)

Step Function

γ (t) = C |t| ≥ tMIN

γ (t) = 0 |t| < tMIN

C > 1

(6.9)

Quadratic Function

γ (t) = at2 + bt −∞ < t < ∞ (6.10)
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Stretch-Shrink

γ (t) = C |t| ≥ tMIN

γ (t) = B |t| < tMIN

C > 1, B < 1

(6.11)

Clearly, equations 6.8-6.11 give enhanced weighting to appearance com-

ponents that deviate significantly from the norm and give rise to non-linear

caricature effects. The relative enhancement that is provided can be controlled

by the precise choice of constants a, b, B, and C. Nonlinear caricatures are

amenable to a very simple geometric interpretation. Consider that the differ-

ence vector, ∆c, between the veridical appearance and the norm (which lies at

the origin in our model): The caricature is created by applying the transforma-

tion matrix, Γ, to the ∆c and adding this product to vector c. The addition

of Γ∆c for the generalized non-linear case has the effect of altering the length

and direction of the veridical, whereas the uniform caricature effects only a

lengthening of c. In order to make a comparison between the proposed meth-

ods for caricature, the vector Γ∆c was scaled to have the same Mahalanobis

distance measure in each case (i.e., uniform, step, quadratic, and stretch-shrink

methods). The Mahalanobis distance is defined by (Γ∆c − c̄)T S−1 (Γ∆c − c̄),

where c̄ is the mean or prototypical face and S−1 is the inverse of the covariance

matrix constructed from the c vectors corresponding to the sampled faces. The

Mahalanobis distance measure was used because it takes in account the relative

importance of each axis (characterized by its associated variance). We are free

to make relatively large displacements from the veridical along the most signif-

icant axes and retain plausibility. Conversely, only small displacements along

the least significant axes are allowed, preventing highly implausible caricatures

from occuring.

6.5 Generation of non-linear caricatures

As a basic test of the methodology and also to visually explore the nature of

both conventional (uniform) and non-linear caricatures, an appearance model

was generated according to the procedure previously outlined in this thesis on

a sample of 71 faces, using 134 landmark points per face (see figure 6.4). The

sample contained a number of famous faces, 4 of which were caricatured accord-

ing to the procedures defined in section 6.4 by equations 6.8-6.11. Appearance

model caricatures using the uniform and non-linear methods are illustrated in

figure 6.5 for Jackie Chan, Marylin Monroe, George W. Bush, and Mel Gibson,
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Figure 6.2: Schematic depicting the idea behind nonlinear caricature. The
basic hypothesis is that when the extension along the axes in appearance
space is large, these directions should be preferentially weighted. In the three-
dimensional representation of face space above, the uniform caricature is defined
by A’. The nonlinear caricature B results because each appearance parameter
receives a different weighting as a function of the number of standard deviations
from its mean.

respectively. The non-linear caricatures have been boosted by the same magni-

tude (Mahalanobis distance) as the uniform caricatures. Figure 6.5 is certainly

suggestive of the fact that an effective caricature can be achieved via nonlin-

ear mappings. The differences in the caricatures produced by the uniform,

quadratic, and step functions are subtle but apparent upon careful inspection.

Although some images depict a rather strong degree of caricaturing, the major-

ity of transforms maintain a connection with the basic identity of the subject.

The possibility that caricaturing using these methods may enhance identity is

suggested; in particular, the step function weighting produces caricatures that

are clearly different from the veridical, still appear to maintain basic identity,

but do not introduce the rather comic effect characteristic of the uniform trans-

form. Caricatures generated by the stretch-shrink function retain some aspects

of the identity of the original face but clearly produce significantly different

results from the other methods.

6.6 Preliminary experiment on nonlinear caricatures

Effective caricatures were achieved by skilled artists long before the mechanism

of caricature was subjected to scientific study. Moreover, caricatures of the

same subject by different artists often exhibit great variety, suggesting that
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Figure 6.3: Empirically selected weighting functions for the generation of non-
linear caricatures.

there is some not inconsiderable flexibility in the caricature method. Given

the largely nonlinear behavior of nature, such a nonlinear cognitive model is at

least plausible. Whether some nonlinear mapping of the appearance parameter

deviations from the prototype better models the cognitive process of recogni-

tion and can thereby produce a better-recognized/more-distinctive caricature

than the uniform model must clearly be the subject of carefully conducted ex-

periments. Such detailed experiments lie outside the immediate scope of this

work.

A preliminary experiment in which these issues were explored was con-

ducted. Motivated by the results shown in figure 6.5, our line of inquiry involved

the notion that effective caricatures must generally satisfy two basic criteria.

They must maintain identity (i.e., be recognizable as the subjects they are in-

tended to depict), and they must, in the broadest sense, have a comic/humorous

appearance. Thirty randomly selected participants were asked to view four dif-

ferent caricatures (the uniform, step, quadratic, and shrink-stretch mechanisms)

of four famous persons (Jackie Chan, Marilyn Monroe, George W. Bush, and

Mel Gibson). The images displayed to the participants were the four rightmost

columns of figure 6.5. The true, veridical, images of the subjects in the leftmost

column were not displayed. Prior to showing the caricatures, the participants

were asked, ”Do you know what the subject (e.g., Chan/Monroe/Bush/Gibson)

looks like?” For each subject, they were then asked,

1. ”Which of the four caricatures do you find most humorous/comic in ap-
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Figure 6.4: Landmark points used to describe face shape.

pearance?”

2. ”Which of the four corresponds most closely to how you think the subject

really looks?”

In those cases in which the participant did not know what the subject looked

like, the second question was not asked. The results of this experiment are dis-

played in table 6.1 and summarized graphically in figure 6.6. These results sug-

gests that the uniform caricature transform best captures the comic/humorous

aspect, whereas the step transform produces a caricature that maintains the

closest connection with the real appearance of the subject. The significance of

these results was assessed using a χ2 test. Two null hypotheses were examined.

1. The uniform caricature mechanism is no more humorous than the others:

The calculated χ2 value was 53.8 with 1 degree of freedom, yielding a

probability of much less than 1/1, 000 that our experimental data would

be obtained if the null hypothesis were true.

2. The step caricature mechanism is no more effective at capturing realistic

appearance than the others: The calculated χ2 value was 109.0 with 1

degree of freedom, yielding a probability of much less than 1/1, 000 that

our experimental data would be obtained if the null hypothesis were true.

In both cases, the results provide a highly significant confidence level. Since

the distance from the veridical is the same for each type of caricature, it would

seem that use of the step transform, in which only the dominant spectral com-

ponents are boosted, does indeed maintain a better connection with the real
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Subject Aspect Uniform Step Quadratic StretchShrink

Chan Humorous/comic 3 1 9 16
Similarity to real 2 21 0 1

Monroe Humorous/comic 19 4 5 2
Similarity to real 2 11 9 7

Bush Humorous/comic 21 1 3 4
Similarity to real 1 22 2 5

Gibson Humorous/comic 21 4 3 2
Similarity to real 1 16 10 1

Total Humorous/comic 64 10 20 24
Similarity to real 6 70 21 40

Table 6.1: Results of an experiment in which participants were asked to compare
the caricatures presented in figure 6.5 on the basis of identity and comic effect

.

appearance of the subject and may be more closely associated with identity.

The subtly different question of which caricature is best recognized could be

examined more precisely by conducting a careful experiment in which the best

recognition may be determined by speed of response to the stimulus [62] or by

some other approach. One significance of such an experiment lies in the follow-

ing argument. If the nonlinear caricatures are best recognized, this will indicate

that movement toward a region of minimum exemplar density is not the full

explanation for why caricatures are effective. This follows from the fact that

the distribution of parameters in appearance space is governed by a multivari-

ate normal distribution. Thus, the nonlinear caricature (which adds a vector in

a different direction from the direction defined by the veridical image and the

prototype) is necessarily in a region of higher exemplar density (closer to the

origin) than the uniform caricature is. Conversely, if uniform caricatures are

best recognized, we obtain an interesting and remarkable result-namely, that

the simplest of all the linear models is, in fact, the best one.

6.7 Summary

This chapter described how a veridical (original subject image) face is cari-

catured by making small adjustments to its corresponding appearance model

parameters. The work was motivated by previous psychological literature, in-

dicating that a caricature of a subject is more readily recognizable than the

veridical image itself. The significance of these studies in relation to facial

composites is clear - namely that caricatured composite images may represent

an effective tool for use in criminal investigations. Previous methods for auto-
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Figure 6.5: Examples of non-linear and uniform caricatures (Chan, Monroe,
Bush, and Gibson). The non-linear caricatures depicted in this figure have
been boosted to the same extent as the uniform caricatures (see the Generation
of non-linear caricatures section). For the top row of images, the parameters
for each of the four models are as follows: uniform caricature, λS = 1 and
λT = 0.3; quadratic caricature, b = 0, λS = a = 0.3, and λT = 0.3λS ; step
caricature, tMIN = 1.7sd, λS = 1.5, and λT = 0.3λS ; stretch-shrink caricature,
tMIN = 2.0sd, λS = 1, λT = 0.3λS , and BS = −1 and BT = 0.3BS .
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(a) (b)

Figure 6.6: Performance of different methods for caricature summed over the
four famous test faces. The established, uniform caricature method provided
the most humorous image, whereas the step caricature method was judged to
give a greater similarity to the subject

mated caricaturing have all followed the same basic mathematical formula (the

uniform caricature method). In this chapter, alternative, non-linear methods

were investigated. A preliminary experiment was conducted in which the stan-

dard uniform method was compared to other empirical methods for generating

caricatures. The results of this experiment suggested that the uniform method

may not be optimal with respect to identity.



Chapter 7

Summary and conclusion

It is clear from psychological studies that established feature based methods

for generating facial composites are limited and incomplete. In this thesis the

technical design and implementation of a composite system was presented that

is capable of generating inherently global or whole face stimuli. Unlike current

commercially available composite software, the system described here appeals

to our recognition ability rather than the inferior process of recalling facial

descriptions. Particular attention has been given to the integration of the se-

mantic, global and feature based knowledge of facial appearance provided by

the witness. A brief summary of the material presented follows.

7.1 Summary of thesis

The thesis began with an account of the established methods/systems for pro-

ducing composite imagery. The functionality of these systems was described

and a summary of the psychological literature validating their use was pre-

sented. With the exception of the artist’s sketch, all these methods were/are

feature based, forcing a facial likeness to be constructed by the selection of

appropriate features from a card based catalogue or computer database. New

methodologies for constructing facial composites were discussed with the em-

phasis on principal components analysis (PCA) and evolutionary approaches.

The background literature outlining the use of PCA in facial modelling and the

development of evolutionary algorithms was also provided.

Although a limited number of publications examining the cognitive advan-

tages of whole-face evolutionary approaches exist, only Gibson et al [36] have

previously published work giving a detailed account of the technical design and

implementation of such a system. To aid the reader with an interest in facial

composites but who is unfamiliar with PCA and evolutionary computation,
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the mathematical details of these techniques have been provided in the second

chapter of the thesis. The chapter began with an historical introduction to the

statistical technique of PCA followed by the procedure for deriving principal

components from a data sample. An illustrative example of how PCA can be

applied to shape and image data to yield a compact representation was pro-

vided. In the final section of Chapter 2, variations of the evolutionary algorithm

theme were discussed.

The main aim of the thesis was to design a facial composite system that

does not rely on a piece-wise ensemble of independent facial features, but in-

stead appeals to our ability for recognising faces as a global (whole face) enti-

ties. Chapter 3 contained work relating to the core design and implementation

of such a system which was refered to throughout as EigenFIT. The chapter

began by making clear the motivation for the development of the EigenFIT

facial composite system. Sections containing an overview of the system and

its graphical user interface provide the reader with an understanding of how

the system functioned in its most basic mode of operation. The construction

of the appearance model (AM) from which novel face stimuli were synthesised

was covered in section 3.4. In the section that followed, a purposely designed

evolutionary algorithm (EA) was described which aided in the determination

of the AM model parameters, that yielded a good likeness to the target face.

Optimization of the EA using a virtual witness, enabled the model parameters,

and hence the composite image, to be obtained quickly. An essential part of

any composite system is the provision for applying a hairstyle. Since hair can

not be effectively modelled in an appearance model, an alternative approach

was required which was the subject of section 3.7. The final section in Chap-

ter 3 explained a method for allowing the shape of one or more facial features

to be fixed at a chosen stage in the previously described, global, evolutionary

procedure.

The core implementation of the evolutionary whole-face approach (described

in detail in Chapter 3) was carefully designed with ease-of-operation being one of

the main objectives. Although the benefits of evolutionary composite methods

have been documented, a purely evolutionary approach does not allow deter-

ministic changes to be made to the composite image, which are a necessary

component for any practicable system. Chapter 4 detailed methods for mod-

ifying the composite image which enhanced the standard global evolutionary

approach. The aim of the work presented in Chapter 4 was to integrate semantic

and feature-based knowledge of facial appearance with the global representation

afforded by the appearance model. These complementary tools include,
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• Blend tool: Augmented ’fit’ characteristics from two or more faces in a

generation into a single, averaged face image (see Chapter 4, section 4.3).

• Facial attribute manipulation tool: A general theoretical framework

for attribute enhancement was presented and implemented for the specific

case of age (see chapter 4, section 4.4).

• Local feature manipulation tool: Individual features were translated

and scaled as instructed by the witness (see Chapter 4, section 4.5).

• Application of fine details to a composite: The functionality for

applying fine details such as wrinkles to a composite face was developed.

(see Chapter 4, section 4.6).

A limitation of an early proof-of-concept implementation of EigenFIT was

the significant time lapse, experienced between generations. The delay was a

due to the computational demands of the image warping procedure that is a

necessary requirement for synthesising each of the nine faces in a new genera-

tion. A method for warping face images was suggested in Chapter 5 that may

be more efficient than the commonly used reverse mapping procedure. The

aim was to apply a limited number of modes of shape variation directly to the

pixel coordinates, thereby avoiding the computational overheads normally as-

sociated with image warping. The chapter began with the motivation for an

efficient warping method, followed by an overview of existing pixel mapping

strategies. A novel forward mapping method was presented, based on the addi-

tion or superposition of pixel displacement fields. This approach was coded and

compared to the standard reverse mapping procedure and a forward mapping

technique referred to in the computer graphics literature as splatting.

Previous work has outlined a method for computer generated caricatures

in which the difference between a subject’s face and the mean (prototype) face

was exaggerated by a scalar factor. However, there is no reason to suggest

that this linear scaling is the only viable method for producing caricatures.

In the final chapter of the thesis, the concept of non-linear facial caricatures

was investigated using the AM framework. The chapter began with a qualita-

tive overview of previous work in the area of automated caricature generators.

The next section provided a discussion on the significance of the caricature ef-

fect on distinctiveness and identity, and the implications for facial composite

synthesis. The mathematical construction for the previously established lin-

ear caricature were given, followed by the mathematical construction of novel,

non-linear methods. A preliminary experiment was performed, which suggested
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that the standard linear approach to caricature may not be the best model for

retaining identity.

7.2 Discussion

Technical viability

The technical viability of the EigenFIT facial composite system was estab-

lished conclusively. Plausible, virtual faces could be synthesized using a pseudo-

random sampling of appearance model parameter vectors. The parameter space

relating to the AM offered sufficient facial variation, whilst being compact

enough to allow a fast convergence to a target face. It was shown that fast

convergence to a facial likeness was obtainable using a purposely designed evo-

lutionary algorithm. Although the AM described was intrinsically global, de-

terministic changes to the shape of specific individual facial features were also

shown to be possible. Common semantic descriptions such as ”his face looked

older” were relatively easy to implement and control in the appearance model

framework, which is not the case in the commercial feature based systems.

(a) Criminal investigation
by Dover Police Station.
Image generated according
to witness’ instructions, 28th

September 2005.

(b) TV presenter Bill
Turnbull. Image gener-
ated for BBC Breakfast
TV, broadcast on 10th

February 2006.

(c) Unnamed composite
produced by pupils from
Hilden Grange School during
a ”Scene of Crime Day” at
the University of Kent on
16th March 2006.

Figure 7.1: Facial composite images generated using EigenFIT.

Psychological validation

An independent psychological evaluation of an early version of the EigenFIT

system was performed by Pike and Brace (unpublished). Their report included

a national survey of 75 composite operators who were adept in the use of either
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E-FIT or PROfit, the two leading commercial systems in the U.K.. Participants

were asked to reflect upon their experiences regarding both the verbal descrip-

tion that witnesses provide just before composite construction commences, and

the type of requests for changes to the composite that witnesses make during

composite construction. A final section asked for views on new systems such

as EigenFIT in which the witness is required to pick out face(s) from an array

of images. A summary and discussion of Pike and Brace’s survey is provided

here.

The first section of the survey addressed the verbal interview that precedes

established composite methods. Around 57% of operators reported that the wit-

ness found it fairly difficult to convey a verbal description of the perpetrator and

21% said that it was a very or extremely difficult task. Verbal descriptions were

often ’holistic/global’, pertaining to the face as a whole rather than detailed

descriptions of individual features. 80% of operators reported that witnesses

included information about age, approximately 50% said they included infor-

mation about character and distinctiveness and just over 40% terms relating

to gender and ethnicity. Only 25% reported that witnesses mentioned infor-

mation regarding facial expression. Operators also reported that the witness’

descriptions often decribed skin types such as freckled, smooth or wrinkled etc.

The second section of the report asked participants/operators to comment on

the sorts of instructions provided by the witness during the construction of the

composite. These instructions are summarised in table 7.1.

Facial characteristics Extremely/very useful

Gender 44%
Age 92%

Ethnicity 55%
Character 55%
Expression 76%

Distinctiveness 56%
Attractiveness 41%

Skin type 72%
Skin texture 80%

Skin blemishes 80%
Male characteristics 46%

Female characteristics 55%

Table 7.1: Usefulness of witness’ comments during the composite construction
procedure.

The final section of the survey asked operators to provide their views on

the value of a composite system that presented the witness with arrays of face
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stimuli. Nearly 50% stated that the witness would probably or definitely be

able to make comparative judgements such as ”the eyes were bigger than the

first face in the array”. When asked if a witness would be able to interact

directly with a composte system like EigenFIT, 40% felt that this would not

be possible and 17% felt that the witness would. 32% were undecided whether

such a system could be operated by the witness alone. When asked if the

witness would require guidance form a trained operator when using an array

based system 56% replied definitely and 21% replied probably. Operators stated

that their presence would be required during the construction process due to

the witness’ need for emotional support or the witness’ lack of familiarity with

using computers.

Experiments to determine the psychological viability of array based systems

were also performed by Pike et al. Unlike the survey, that focussed on the

experiences of trained composite operators, the experiments were conducted

with the witness in mind. Details of the experimental procedure and the results

can be found in the report. The findings of these experiments are summarized

here. The issues investigated were,

• whether witnesses are able to interact with arrays of faces.

• are they able to pick out the best match for the suspect?

• do they ever want to use any alternative selection methods?

• do they ever want to interact with the system by other means, such as by

manipulating individual features?

• does the presentation of arrays overshadow memory for the suspect?

The results demonstrated that a witness would be able to interact with an

array based system, although in many instances additional verbal descriptions

were provided by the witness. The witnesses expressed a wish to interact with

the system deterministically, in parallel with the simple evolutionary interface.

Selecting multiple faces in a generations and elimination of the worst, was found

to be desirable. No evidence was establish which suggested that viewing 30-60

arrays of faces had a detrimental effect on memory for the target face. Con-

clusions drawn from these experiments were pivotal in subsequent refinements

of the EigenFIT system, that complemented the purely global evolutionary

approach.
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Home Office trial

To date, EigenFIT has been used in two criminal investigations. In one of these

cases, the witness judged the composite image produced using EigenFIT to be

a better likeness to the target face than an image she had previously generated

using a commercially available composite system. Based upon the acknowledged

potential of the system, the Home Office has provided funding for a U.K. trial

in Derbyshire and Leicestershire police forces which is due to commence in

July 2006. The aim of the trial is to test the system outside the laboratory

environment, gaining feedback on usability and accuracy. Currently, the use

of composite systems is restricted to serious crimes. However, of particular

interest in the trial is the possible use of this system for volume crime. This

may feasible because EigenFIT is easier to use and can generate a composite

image more quickly than established methods.

7.3 Future development

The basic technical and psychological viability of the composite method de-

scribed in this thesis has been proven. Suggested areas for future work to

enhance the composite procedure described are:

• An improved method for the application of hairstyles, in which a seamless

join can be achieved between the hairstyle and composite face.

• Independent manipulation of ear shape (in the current version of Eigen-

FIT the ears are treated as part of the hairstyle).

• A refinement of the point model, allowing the shape of chin to be modelled

more accurately.

• The incorporation of more facial attributes, including masculinity.

• An automated or advanced semi-automated method for landmarking

training examples (currently a very time consuming task).

• The development of a 3D version of the composite system that may aid

the recognition process thereby producing more composite images.

From a theoretical perspective, the method for encoding faces, achieved

in this work by PCA, deserves further investigation. The PCA method for

encoding was chosen because it enables a face to be represented compactly by

a vector of parameters, that is of much smaller dimension than the original
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data. This representation of the face is optimal in the least squares sense, in

terms of the pixel values and shape coordinates comprising the sample data.

Although previous studies have shown that PCA models of the face are capable

of explaining some aspects of human face recognition, this does not necessarily

mean that the current PCA representation is optimal in a perceptual sense. A

perceptually optimal representation of the face would require an experiment in

which the response of observers to face stimuli was recorded. The results of

this experiment could be used to perform a transformation on the original pixel

and coordinate data, which would enable a compact representation that more

closely mimics the way in which faces are encoded in the human mind. The

exact nature of a superior encoding method remains unknown, and may involve

PCA or other techniques such as independent component analysis (ICA) or

wavelet analysis.



Appendix A

Camera settings

Canon EOS D60

Max resolution 3072 × 2048
Image ratio w:h 3:2
Effective pixels 6.3 million
Sensor photo detectors 6.3 million
Sensor size 22.7 × 15.1 mm
Sensor type CMOS
Colour filter array RGB
ISO setting 400
Auto Focus enabled
White balance override fixed, daylight
Canon Lens EF 135mm 1:2.8 SOFTFOCUS (set to 0)

Shutter Speed 1
8

th
sec

Lens aperture f/16

Table A.1: Camera settings table, reproduced by kind permission of Matthew
Maylin.
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Appendix B

Landmarking instructions

A description of the steps required for landmarking a face and the functionality

of the landmarking tool are provided as follows:

1. User navigates to a directory of choice via the load file push button, then

selects an image file from a listbox. The chosen image appears in the work

area located on the right hand side of the interface.

2. Initially, the user is required to locate three landmarks; at the outer corner

of the left eye1, at the outer corner of the right eye and the third at the

base of the nose. After the third point has been located the remaining 105

landmarks are automatically placed in their approximate positions. This

is achieved by computing the transformation required to map the three

landmarks, contained in the previously determined mean face shape, to

the initial three landmarks located by the user. The computed transfor-

mation is then applied to mean face shape as a whole, providing an affine

transform that defines the preliminary positions of all the points in the

face shape.

3. The landmark points control a set of spline curves (also plotted) that

delineate the perimeter of the internal facial features and the head itself.

4. Landmarks can subsequently be moved from their approximate positions

to their correct locations using a click and drag technique, whereby the

user selects a landmark point via the left mouse button and drags it to

its correct position, holding the left button down during the procedure.

When the left mouse button is released, the spline curve(s) associated

1The convention used here is that left refers to the left hand side of the displayed face from
the perspective of the user, i.e. not the subject’s left eye
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with the translated point are redrawn, updating the face shape in re-

sponse to the users action (see figure 3.6). Selected or ’active’ landmarks

and their associated spline curves are plotted as red graphics objects,

whereas the inactive landmarks and spline curves are plotted in blue.

When a spline curve becomes active its description, e.g. ’chin’, appears

in a frame labelled instructions on the left hand side of the interface.

This is particularly helpful when adjusting landmarks around the mouth,

where there are many spline curves that could otherwise become confused.

Landmarks that define the end of one spline curve and the beginning of

another connected curve are referred to as base landmarks and are plot-

ted as magenta circles, distinguishing them from the ordinary landmarks

plotted in either red or blue.

5. For landmarking purposes the images are displayed at full resolution

(2048×3072 pixels, 300dpi). Regions of the face can be enlarged using

the zoom mode push button located under the image. When the zoom

mode is set to on, placing the mouse cursor over a region of interest in

the face image and clicking the left mouse button will enlarge that area,

making it easier to place landmarks/spline curves accurately. With the

zoom mode set to on, horizontal and vertical sliders appear at the left

side and bottom edge of the image respectively. These may be used to

pan around the image when in zoom mode. Selecting the zoom mode but-

ton again allows the user to exit zoom mode and return to the standard

landmarking mode.

6. Sets of landmarks corresponding to whole features can be translated using

by selecting the lock pushbutton, located near the bottom left hand corner

of the interface. When this button is selected the click and drag operation

results in a translation of the nearest feature to the cursor position at the

time when the left mouse button is depressed. This option can save time

in situations where the approximate landmark positions, generated by

the affine transformation, are a poor fit to the actual features within the

image itself.

7. Once the user is satisfied that all the spline curves are correctly located,

the face shape can be saved using the save file pushbutton on the left hand

side of the interface. Depressing the save file button starts an interpolation

process whereby pseudo-landmarks are generated that lie at equidistant

positions along a spline curve. Spacing of the pseudo-landmarks for each

curve section is predetermined on an empirical basis according to the



183

likely curvature of the section. For instance, the perimeter of the mouth

exhibits a higher degree of curvature than the boundary of the head, hence

the densities of pseudo-landmarks in curve sections delineating the mouth

are relatively high. Pseudo-landmarks are saved to a MATLAB ’.mat’ file

as are the original landmarks which are required if the saved shape is to

be reloaded for modification in the future.
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Operating instructions

C.1 EigenFIT - EasyFIT operation overview

1. On start-up, a form is displayed into which details that identify the com-

posite are entered. Fields are provided for the witness’ forenames, sur-

name, date of birth and also the operator’s rank and number. This infor-

mation is combined with the current date to generate a unique reference

number that can be used to identify the composite in the future.

2. In keeping with the graphical approach, prototypical faces are used to

initialise the EigenFIT system. This involves the user selecting the ap-

propriate sex and race for the target face. By selecting prototypical faces

the user is effectively seeding the search algorithm. Hence, a suitable

choice of prototypical faces leads to a set of appearance model param-

eters that relate to an approximate ’face type’. This provides a more

informed starting point for the search procedure than the global mean,

which lies at the origin of appearance space.

3. Prior to the evolutionary process, a hairstyle is chosen using the hair

tool. From a perceptual point of view it is sensible to ask the witness

to select an appropriate hairstyle first as the external features are more

salient in unfamiliar faces and there is evidence to suggest that facial fea-

tures should be selected in order of decreasing significance . The user can

scroll through the available hairstyles using a slider, with each increment

in slider position displaying nine more hairstyles in the familiar three ×

three configuration. Hairstyles are mapped onto the mean face so that the

witness may view the hair in its usual with-face context. Since the mean

face is unlikely to be very similar to the target, there may be issues asso-

ciated with this approach concerning visual overshadowing. The effect, if
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it exists, is unlikely to be significant and has not been investigated in this

case. A filter is provided to sort the hairstyles into categories describing

the length and colour. Thus the number of candidate hairstyles that the

witness must examine can be greatly reduced by marking the appropriate

checkboxes provided in the filter.

4. At this stage in the process the setup has been completed and a face may

now be evolved using a simple one touch interface. Nine randomly sam-

pled virtual faces are drawn from a normal distribution that is determined

by the initial choice of prototypes. These faces, collectively known as the

initial population, are presented against a grey backdrop on the left hand

side of the user interface. The witness is required to choose one of the

nine faces on the basis of its similarity to the target face. Virtual faces

that exhibit a particularly poor likeness to the target may be removed

from view using the remove face icon positioned near the lower left hand

corner of the face image. This de-clutters the backdrop, making it easier

for the witness to form an opinion on the suitability of the remaining vis-

ible faces. Once the witness has made a choice, the initial population is

replaced by nine more faces comprising the first generation. The process

of selecting a face and synthesising new faces is repeated until a good

likeness is obtained. An approximate likeness is often obtained in as few

as twenty generations or less.

5. If the witness is especially unhappy with the initial population or sub-

sequent generations, more randomly generated faces can be synthesised

using the Generate More pushbutton located on the right hand side of

the interface. This feature of the interface should be used sparingly and

not as a means for searching the appearance space. It produces images

on a totally random basis, and given the extent of the appearance space,

would offer an inefficient ’brute force’ method for finding a likeness to

the target. If used wisely, it can be a valuable tool for preventing the

search algorithm getting stuck in a local minimum in the later stages of

the evolutionary process.

6. An Undo pushbutton is also provided that can be used if the witness feels

that a poor choice of face has been made, or a face has been selected

unintentionally and another image is preferred. Although both the Undo

and Generate More options allow a user to avoid local minima, Undo does

not introduce new genetic information into the current generation, it is

merely a means of retracing ones steps.
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7. In EasyFIT mode the user has the option to lock the shape of particular

facial feature that exhibits a good likeness to the corresponding feature

in the target face. This achieved by choosing a region of the iconic face

located on the right hand side of the interface and then selecting one of

the nine virtual faces. Placing the cursor over a feature in the iconic face

and using a single click of the left mouse button turns that region from

grey to blue, indicating that the shape of the chosen feature will be fixed

through subsequent generations. Deselecting a region of the iconic face

reintroduces shape variation in the previously locked feature. If required,

more than one feature may be fixed at any given instant. The available

choice of features that can be locked are the eyebrows (left/right pair),

eyes (left/right pair), nose, mouth and face shape or any combination of

these.

8. Once an acceptable likeness has been obtained using the tools provided,

the current stallion image (best likeness) can be saved both as graphics

file and as an EigenFIT composite file. The graphics file is intended to be

reproduced for use in a criminal investigation. The EigenFIT composite

file may be reloaded for modification by the witness in the future. The

icon for saving the composite is labelled finish and is located at the top

right hand corner of the interface. This icon also allows the composite

image to be exported to a graphics package for a post processing. This

enables the operator to draw on tattoos or embellish the composite image

in other ways under instruction by the witness.



Appendix D

Examples generated for

television appearances

D.1 Aging example

An aging example using attribute manipulation and a wrinkle-map, provided

for the Beyond International Ltd production company (used in a programme

shown on Australian television).
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Figure D.1: Hayden Turner, ”Beyond Tomorrow” presenter (Beyond Interna-
tional Ltd)



189 D.1 Aging example

Figure D.2: Hayden Turner, ”Beyond Tomorrow” presenter (Beyond Interna-
tional Ltd) aged
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Figure D.3: Hayden Turner aged and wrinkle-map overlaid. Image produced
for Beyond International Ltd’s ”Beyond tomorrow” programme
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D.2 EigenFIT composite example

An example of a composite sequence leading to a likeness of BBC TV presenter

Bill Turnbull (used on national breakfast television). For brevity some of the

steps in the sequence have been removed.

(a) Second generation. (b) Fifth generation.

(c) Fifth generation + blend tool. (d) Eighth generation.

(e) Ninth generation. (f) Tenth generation.

Figure D.4: Example composite sequence (part I).
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(a) Eleventh generation + local feature ma-
nipulation.

(b) Thirteenth generation.

(c) Thirteenth generation + aging attribute
manipulation.

(d) Final composite image including graphics
package enhancement.

Figure D.5: Example composite sequence (part II).



Appendix E

Two pass splatting algorithm

implementation

A texture mapping (forward pixel mapping) method for achieving image warps

was previously proposed by Heckbert [45]. A naive two pass splatting algorithm

based on Heckbert’s original approach is described here.

E.1 Overview of basic approach

To prevent holes occuring in the destination image a one to one mapping from

source to destination was avoided. Instead line segments were inserted into

the destination image using the two pass splatting method. This approach

shares similarities to the splatting techniques previously described [45, 40, 102]

for projecting textures belonging to 3D objects into the plane of a monitor.

Defining u, v as the interior coordinates of the source triangle and x, y as the

forward mapped interior coordinates in the destination triangle, a method for

assigning pixel intensity values in the destination image is outlined in algorithm

figure 4. In the first pass of this two pass algorithm, vertical line segments were

’splatted’ into the destination image. At each iteration of the loop, the pixel

value at position u, v in the source image are sampled and mapped to the integer

coordinates in the destination image that lie in the range round(x), y −
sy

2 <

yint ≤ y +
sy

2 . Hence, the columns for which round(x) is defined were filled and

an intermediate destination image (destinationypass) is formed as illustrated in

figure E.1. In the second pass, a horizontal line segment is placed at the location

of each pixel that was defined in the first pass. This horizontal splatting fills the

remaining holes in the destination image (destinationxpass) as shown in figure

E.2
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Algorithm 4 Two pass pixel mapping algorithm

for loop over v do
determine integer pixel coordinates {yint} in the destination image that lie
in the range y −

sy

2 < yint ≤ y +
sy

2
for loop over integer coordinates do

destinationypass (round (x) , yint) = source (u, v)
end for

end for
for loop over yint do

determine integer pixel coordinates {xint} in the destination image that lie
in the range x − sx

2 < xint ≤ x + sx

2
for loop over integer coordinates do

destinationxpass (xint, yint) = destinationypass (round (x) , yint)
end for

end for

source destination

Figure E.1: Scaling transformation with vertical splatting. Pixel intensity val-
ues are spread in the vertical direction, thereby filling holes in the destination
image (compare with figure 5.3(b) in which no splatting was used)
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source destination

Figure E.2: Transformation with vertical and horizontal splatting. Pixel in-
tensity values were initially spread in the vertical direction and then in the
horizontal direction, thereby filling all the holes in the destination image (com-
pare with figure 5.3(b) in which no splatting was used and figure E.1 in which
only vertical splatting was used).

E.1.1 Determining the length of each line segment (splat)

To prevent holes occuring in the destination image the length of the vertical, sy,

and horizontal, sx, line segments must be determined. Here the transformation

is assumed to be piece-wise affine. For each triangular (piece) the correspond-

ing line segment lengths are constant and determined from the transformation

matrix as follows,

M(x, y) =







m11 m12 m13

m21 m22 m23

0 0 1






(E.1)

Defining the horizontal and vertical scaling parameters as sx and sy as

sx = ∂x
∂u and sy = ∂y

∂v respectively, leads to the following equations.

sx =
∂x

∂u
=

∂(m11u + m12v + m13)

∂u
= m11 (E.2)

sy =
∂y

∂v
=

∂(m21u + m22y + m23)

∂v
= m22 (E.3)
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