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1. INTRODUCTION
Garbage collection (GC) is a technique for automatically re-
claiming unused blocks of application memory, thereby re-
lieving the application programmer of this often error-prone
task. GC has long been effectively employed in functional
and object-oriented languages like ML, Smalltalk and SELF,
but it is with the wide-spread adoptance of Java as a plat-
form for large server applications that the performance of
GC has become increasingly critical.

2. MOTIVATION
Synchronisation, both at the language and virtual machine
level, is a key aspect of GC performance in Java. In the lat-
ter case, synchronisation is necessary between mutator (ap-
plication) and garbage collector threads. Performing a col-
lection typically requires that all mutator threads be stopped
in a consistent state, i.e. that the location of all references
be guaranteed, thus enabling the collector to accurately dis-
cover and safely manipulate them. The process of stopping
threads consistently can be especially costly where thou-
sands of threads are involved.

Table 1 demonstrates the cost for the Sun Labs Virtual
Machine for Research (ResearchVM) [1] running the
VolanoMark™ [2] benchmark, a client-server chat applica-
tion that uses thousands of threads. An increasing num-
ber of threads were used for each run of the VolanoMark™
client, and the suspension and GC times were recorded. The
columns show number of threads, average and total thread-
suspension time, average and total GC time, total runtime,
and thread-suspension as a percentage of GC and total run-
time. Clearly, thread-suspension is expensive, comprising
eight percent of the client’s time for just 1024 threads.

3. THREAD-LOCAL OBJECTS
Collecting without stopping all threads, avoiding the costly
suspension process, would require a mechanism to track
changes to references by the mutator and also the possible
movement of objects by the collector. Such mechanisms are
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Suspend GC Run Suspend %
Thrds avg total avg total total GC Run

1024 6 1351 30 7389 15384 18.28 8.78
2048 13 4198 57 17992 35596 23.33 11.79
4096 30 12200 136 56124 81746 21.74 14.92

Table 1: Thread-suspension and GC time vs. total
runtime for the VolanoMark client (times in mil-
liseconds)

Global Total % Local
Thrds objs MB objs MB objs MB

1024 761669 36 1460156 80 48 55
2048 1627826 77 3062130 164 47 54
4096 3669666 168 6623630 345 45 52

Table 2: Percentage of objects that remain local
throughout their entire life in the VolanoMark client

complex, and can themselves be costly, thereby minimising
any advantage gained.

A possible solution is to segregate objects by thread, i.e.
have multiple heap regions, one per thread, that contain
objects reachable only by that thread. Such objects, and
the regions in which they exist, may be manipulated inde-
pendently of all other threads, and therefore without any
synchronisation. Consequently, the collector is able collect
a single region at a time, and has only to stop the thread
that triggered the collection.

This is only practical if objects can be segregated by
thread. Specifically, objects can be segregated if they are
determined to be thread-local, or reachable from within only
a single thread. Clearly, a considerable number of objects
must be thread-local for there to be some benefit.

Using a modified write barrier and a mechanism for mark-
ing objects as either thread-local or global, the VolanoMark™
benchmark was used to count the number of thread-local ob-
jects. Table 2 demonstrates that for this particular bench-
mark a significant proportion of objects are thread-local.
The intuition is that this will be similar for other large,
intensively-threaded server applications.

4. TECHNIQUES FOR DISCOVERY

4.1 Dynamic Write Barrier
One mechanism for determining thread-local objects is to
use a dynamic write barrier. Initially, all objects are al-



located locally in per-thread regions that can be collected
independently of other threads. Objects may be marked ex-
plicitly as local, either by using a bit in their header or a
separate, global bitmap, or may be implicitly local by virtue
of their location.

When a local reference is written into a global object (be
it a static variable or an already global object), the write is
trapped and the local reference and its transitive closure are
marked as global. This marking may either take the form of
setting a bit (in the object’s header or in the bitmap) or of
copying the object out of the per-thread region and into a
global heap region. The former has the advantage of being
fast, but risks fragmentation by leaving global objects in lo-
cal regions [3]. The latter, conversely, involves a potentially
costly copy operation, but maintains the strict partition be-
tween local and global objects and preserves object locality.

4.2 Escape Analysis
An alternative to the dynamic write barrier is static Escape
Analysis (EA). This is a technique for the automatic dis-
covery of escaping objects in an application. Typically of
interest are stack-escaping objects, i.e. those reachable from
without their creating method, and thread-escaping objects,
i.e. those reachable from without their creating thread.

The latter are of particular interest as those objects will
escape their thread and should be allocated in the global
heap region. All other objects can safely be allocated in
per-thread regions, and no write barrier is required to trap
stores of locals into globals.

5. IMPLEMENTATION
This work uses escape analysis to remove thread synchroni-
sation in a production Java Virtual Machine (ResearchVM)
rather than a static compiler [4]. In particular, it addresses
the problem of partial knowledge and dynamic loading of
classes.

5.1 The Heap
The heap is divided into multiple regions or heaplets, each
of which is initially small (so as not to unnecessarily waste
space on threads that do little or no allocation) and dy-
namically resizable (heaplets may contract after collection,
thereby returning unused space to the global allocator).
Heaplets are generational, but this is not a requirement of
the system.

A single global heaplet holds all global (thread-escaping)
objects and is collected in the traditional manner by sus-
pending all threads. The local heaplet of each thread con-
tains local objects and may be collected independently, con-
currently with the mutator, and also in parallel, thus pro-
viding greater freedom in choice of collection triggers and
policies.

5.2 The Analysis
A modified Steensgard [4] analysis is employed. It is com-
positional, flow-insensitive, context-sensitive and requires no
iteration to a fixed-point, making it suitable for use in a run-
time system. Analysis is performed in a background thread
on a snapshot of the world, i.e. only those classes loaded
by that point of execution. This limits the size of the call-
graph to be analysed and greatly simplifies the resolution of
dynamic types.

Once all thread-local objects have been identified, their
corresponding allocation sites (in JIT’ed code) are patched.
The standard allocator routine is simply replaced with
a thread-local version that allocates into a thread-local
heaplet.

5.3 Dynamic Class Loading
Snapshot analysis is vulnerable to dynamic class loading.
Classes loaded after the snapshot may extend those already
analysed and possibly break the analysis: objects that were
once thread-local may now be thread-escaping. A solution
is to treat these classes conservatively. They, and those they
extend, are marked as ambiguous types. Objects of ambigu-
ous type are analysed as normal, and may be identified as
being thread-local, but at patch-time their allocation sites
are are handled specially: instead of being truly thread-local
they are marked as optimistically local (OL).

Objects allocated from these OL sites begin their lives in
per-thread OL heaplets. These are essentially local heaplets,
and are collected as such provided the analysis is unbro-
ken. Class loading must determine if it will break the anal-
ysis and, if so, where. It suffices to determine only which
threads are affected. The OL heaplets of such threads are
now treated as global. The intuition is that such occurrences
will be infrequent.

6. WORK IN PROGRESS
At the time of writing, the analysis has been constructed and
the collector has been built. Implementation of the analysis
into ResearchVM is underway. Experiments are planned
for generational organisation (e.g. whether heaplets should
contain generations; whether the global heaplet should be
the old generation) and thread grouping (e.g. threads that
share a common set of local objects should cooperate when
collecting).
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