
Printezis, Tony and Jones, Richard E. (2002) GCspy: An Adaptable Heap
Visualisation Framework. In: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
ACM Press, New York, USA, pp. 343-358. ISBN 1-58113-471-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13700/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/582419.582451

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13700/
https://doi.org/10.1145/582419.582451
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

GCspy: An Adaptable Heap Visualisation Framework

Tony Printezis
Dept of Computing Science

University of Glasgow
Glasgow, G12 8RZ

Scotland

tony@dcs.gla.ac.uk

Richard Jones
Computing Laboratory

University of Kent at Canterbury
Canterbury, CT2 7NF

U.K.

r.e.jones@ukc.ac.uk

ABSTRACT
GCspy is an architectural framework for the collection, transmis-
sion, storage and replay of memory management behaviour. It
makes new contributions to the understanding of the dynamic mem-
ory behaviour of programming languages (and especially object-
oriented languages that make heavy demands on the performance
of memory managers). GCspy’s architecture allows easy incor-
poration into any memory management system: it is not limited
to garbage-collected languages. It requires only small changes to
the system in which it is incorporated but provides a simple to use
yet powerful data-gathering API. GCspy scales to allow very large
heaps to be visualised effectively and efficiently. It allows already-
running, local or remote systems to be visualised and those systems
to run at full speed outside the points at which data is gathered.
GCspy’s visualisation tool presents this information in a number of
novel ways.

Deep understanding of program behaviour is essential to the de-
sign of the next generation of garbage collectors and explicit al-
locators. Until now, no satisfactory tools have been available to
assist the implementer in gaining an understanding of heap be-
haviour. GCspy has been demonstrated to be a practical solution
to this dilemma. It has been used to analyse production Java vir-
tual machines running applications of realistic sizes. Its use has re-
vealed important insights into the interaction between application
program and JVM and has led to the development of better garbage
collectors.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection); C.4 [Performance of Systems]: Mea-
surement techniques; D.2.3 [Software Engineering]: Testing and
Debugging; H.5.2 [Information Interfaces and Presentation]:
User Interfaces.

General Terms
Algorithms, Measurement, Performance, Languages, Human Fac-
tors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

Keywords
Language implementation, Memory management, Garbage collec-
tion, Visualisation of objects, Java.

1. INTRODUCTION
Object-oriented programs consume prodigious volumes of mem-
ory. Dynamic memory management is thus a critical component of
programming language implementations, whether the language is
supported by garbage collection [20] or new/delete-style explicit
deallocation [47]. Today’s memory managers are sophisticated, of-
ten highly-configurable tools whose design has been guided by un-
derstanding of patterns of memory usage, object lifetime and refer-
ence in typical programs [41, 9, 14].

However, memory managers are often unstable in the sense that
small changes in object lifetime, allocation pattern or heap size
may cause large changes in performance; this is particularly true
of garbage-collected programs. Although it is clearly essential for
memory manager implementers to have a clear understanding of
object demographics [42] and the effects of design decisions, such
insight is difficult to achieve; up to now, neither tools nor general
techniques have been available to assist in this task. Consequently,
a typical development methodology has been to add code to the
memory manager to take snapshots of the heap or to provide sum-
mative statistics of garbage collection runs. Detailed profiling in-
curs a substantial runtime penalty, so reporting is usually removed
from production code although it is often only in deployment en-
vironments that memory managers are fully stressed; but it is pre-
cisely here that analysis is particularly needed. Worse, summative
statistics may provide only data too generic to guide design or im-
plementation, yet detailed snapshots generate intractable volumes
of data.

1.1 Challenges for Visualisation
There are many challenges in providing visualisation of memory
management systems. First, the impact on the host runtime system
must be minimised. Clearly, heap measurements must not perturb
the allocation behaviour of the memory manager. But the runtime
cost of acquiring data should also be minimised and, in particu-
lar, the cost to the running program when data is not being gath-
ered should be negligible. Second, large volumes of data must be
captured and stored or transmitted, with regard for both space and
bandwidth. Third, the visualisation system should be independent
of the target runtime system or memory manager; solutions that re-
quire the user interface to have intimate knowledge of the system
being examined are typically hard to extend or maintain. Fourth,
portability is desirable; it should be possible not only to construct
the visualisation user interface in any language of choice and on
any platform (regardless of the platform and implementation lan-

guage of the target), but also, and at any time, to connect to, and
disconnect from, a target running on the local or a remote host. Fi-
nally, the user interface of the visualiser must be useful and flexible:
it must provide the memory management developer with the infor-
mation needed in a coherent, tractable and comprehensible form.

1.2 The GCspy Framework
GCspy is the first solution, to the best of our knowledge, that meets
all of these challenges. First, it provides an architectural frame-
work for the collection, transmission, storage and replay of memory
management behaviour. Second, it provides a novel, informative
and easy to use visualisation tool. The framework is easily incor-
porated into any existing memory manager. The visualiser can be
attached to and detached from a running system at any time to pro-
vide on-line analysis. It can provide both a sequence of snapshots
of the live heap and graphs that show how the heap evolves over
time. Alternatively, GCspy can be used to store and replay traces,
with facilities for fast-forwarding, single-stepping and so on.

Outside periods in which data is being gathered, GCspy imposes
negligible runtime cost; the cost of data gathering depends on the
implementation, but is of no worse magnitude than the cost of the
sweep phase of a mark-sweep garbage collector [20]. Its design
scales to very large heaps — GCspy is designed for, and has been
used to visualise large-scale systems. In a ‘stop and collect’ world,
the cost of gathering data depends in general on the size of the heap,
although some useful information may be acquired in constant time
from the memory manager (for example, heap occupancy in a com-
pacting collector as, in this case, all used space is contiguous). The
cost of storing, transmitting and visualising this data in the GCspy
framework is independent of heap size; instead it depends on the
visualisation granularity employed.

The framework is reusable and portable. It does not depend on
intimate knowledge of the target system and the visualiser can be
constructed in any language and run on almost any system; the only
constraint is that both target and visualiser systems should support
TCP/IP sockets. Although our visualiser implementation is written
in Java, we have developed target-sides in both C and Java under
several flavours of Unix. Finally, GCspy provides a flexible user
interface. Currently, it offers two different ways of viewing infor-
mation, but more are planned.

1.3 GCspy Users
GCspy was designed to assist memory management implementers
to develop, debug and profile their system (whether garbage col-
lected or explicitly managed). It has been used to analyse a vari-
ety of different memory managers, mostly for object-oriented lan-
guages, and has revealed unexpected insights into the interaction
between application and JVM.

Memory managers are increasingly complex modules, offering
large sets of command-line options (often mutually dependent),
many of which have substantial effects on overall performance.
Tuning such systems can be a black art. GCspy provides a valu-
able tool to application developers facing this task, as it lets the
developer to see the direct consequence of option settings rather
than merely indirect effects, such as changes in overall execution
time.

We have also found GCspy useful as educators: its ability to
connect to and disconnect from running systems, as well as its re-
play facilities, support student understanding of modern memory
management systems.

1.4 GCspy in Practice
We have incorporated GCspy into three very different JVMs —

Sun’s RJVM1 [46], Sun’s HotSpot [40] and IBM’s Jikes RVM (pre-
viously known as Jalapeño) [1, 2] — and into the Boehm-Demers-
Weiser conservative garbage collector for C and C++ [5] in the
context of the Dylan language [32]. Using GCspy, we have visu-
alised nine different collectors, as well as other components of the
systems (for example, the free-lists of in-place deallocating collec-
tors). Further implementations are underway (or planned) for GHC
Haskell [26], the Eclipse Constraint Logic Programming system
[45] and the dlmalloc dynamic memory allocator [23, 24].

GCspy visualisation has provided a number of new insights into
the interaction between JVM and application program. Analysis of
the distribution of free space in an in-place deallocating collector
allowed us to compare alternative allocation policies and choose
those which caused the least fragmentation [19]. Visualisation of
the Train collector [17] gave several new and important insights
into its behaviour. It showed the presence in several applications
of a few very long trains (previously, trains were always assumed
to be short [31]), it facilitated the tuning of the remembered set
implementation (again by evaluating alternative techniques) and it
demonstrated the importance of handling highly-referenced objects
specially. A more detailed description of the analysis of the Train
collector using GCspy can be found elsewhere [28].

1.5 Paper Overview
In Section 2 we describe related work. Sections 3, 4 and 5 ex-
plain the model that makes the visualisation of large-scale sys-
tems tractable, including the abstractions that make GCspy easily
portable, the architecture of our system and the implementation of
GCspy servers respectively. Section 6 briefly illustrates the GCspy
user interface, including the facilities that provide graphical repre-
sentations of heap activity over time. Section 7 offers case studies
of GCspy in practice and highlights the new insights that GCspy
has revealed. We conclude in Section 8 and suggest directions for
future work.

More information on GCspy, including colour versions of the
screenshots that appear in this paper and various history graphs,
which we recommend viewing, can be found at the following URL:

http://www.dcs.gla.ac.uk/�tony/gcspy.www/

2. RELATED WORK
Tools to support runtime object analysis can be divided into two
categories according to whether they support application or system
profiling and debugging. In addition, there is an abundance of static
tools to support design and programming, such as modelling tools
[15], class browsers [22], refactoring tools [12] and so on (we do
not consider these further here). Of the runtime tools, by far the
most common are those that focus on the needs of the application
programmer [11, 18, 33, 37, 6]. The only tool of which we are
aware that directly attends to the needs of the systems implementer
is the Java HotSpot Serviceability Agent [30], a tool for examining
and debugging the HotSpot JVM that is also capable of performing
post-mortem analysis. Nevertheless, all tools that interact with the
runtime system face similar issues: minimisation of disruption to
the target system, capture, transmission and storage of information,
and ease of maintenance.

Unlike GCspy, most other runtime analysis tools of which we are
aware (such as the Modula-3 and SELF heap visualisers [7, 43]) are
programming-language specific, hard-coded for the layout of that
particular heap and offer only a fixed set of facilities. Halstead’s

1Sun Microsystems Laboratories’ Virtual Machine for Research, previ-
ously known as ExactVM, EVM or Java 2 SDK (1.2.1 05) Production Re-
lease for Solaris.

parallel program visualisation tool [13] is a notable exception. On
the other hand, language dependence does allow the visualiser to
make the connection between source code and runtime represen-
tation of objects. Indeed, this is precisely the motivation for the
wide range of commercial tools currently offered [11, 18, 33, 37,
6]. These tools support source code debugging by allowing the
programmer to discover the cause of object retention (‘space leaks’
[21]), either by drilling down to discover where an object was allo-
cated or by navigating a graph to uncover references to incorrectly
retained objects. Although some of these tools provide details on
the number and volume of live and allocated objects, the generality
of the statistics offered does little to assist the systems programmer
to explore heap structure or object age, and the tools cannot report
on memory manager-specific auxiliary data structures such as card
tables, remembered sets and so on [16].

The GCspy visualiser is intended to be connected to a running
system to provide a live view of its heap and auxiliary data struc-
tures. Alternatively, it can be used to capture and replay a trace.
Other tools, such as Jinsight [18], JProbe [33], OptimizeIt [6] or
HAT [37] provide only a snapshot of the object graph in the heap
in some form or other and some means of browsing this snapshot.
For example, HAT reads a JVMPI hprof dump [39] in order to pro-
vide a clickable, text-based representation of the object graph. The
volume of data acquired by heap snapshots is huge: Java hprof
snapshots may be three times as large as the system profiled [37].
TracingVM2 [48, 49] generates traces typically reaching several
gigabytes. In contrast, GCspy can visualise systems dynamically,
providing its user with better responsiveness, and its traces are far
more compact (at the cost of lacking the degree of detail provided
by TracingVM).

To be effective, tools must offer the user some means to han-
dle such complexity. For the most part, existing tool mechanisms
are rudimentary: for example, HAT/hprof lists objects by class,
e.g. “407 instances of class [LJava.lang.String;” [37,
39]. Notable exceptions are IBM’s Jinsight [11] for Java and the
Haskell heap visualisation tool [29]. Jinsight clusters object in-
stances by ‘reference patterns’ in the object graph. Like GCspy, it
provides filters to eliminate ‘uninteresting’ events [10]. The Haskell
visualiser allows memory costs to be attributed to particular pro-
gram points or ‘cost centres’ (these are expressions as Haskell is a
pure functional language); it has been used to improve space be-
haviour (a notoriously difficult issue for lazy functional programs)
substantially.

It is common for tools to use architectures similar to GCspy: a
small in-process component communicating across a socket to an
out-of-process user interface [10, 30, 38]. However, as far as we
are aware, only GCspy, ‘drive-by analysis’ [10], the HotSpot Ser-
viceability Agent [30] and gdb [34] allow attachment to, and de-
tachment from, a running system. Like GCspy, the Java Platform
Debbugger Architecture (JPDA) [38] uses a stateless, packet-based
wire protocol, JDWP [36]. Chilimbi, Jones and Zorn discuss alter-
native approaches such as MetaTF, XML, or ASN.1 encodings [8];
Halstead’s SDF [13] adopts a similar approach to that of MetaTF,
whereas GCspy uses a custom binary communication protocol. In
contrast, Ngo and Barton debug by ‘remote reflection’ [25]. The
benefit of their approach is that no effort is required in the sys-

2TracingVM is a modified JVM that stores to a file very detailed traces
of application-level events, labelled by thread, such as allocations, object
reads, object writes and so on. A simulator can reproduce the operation
of the application by replaying such a trace. TracingVM treats objects as
logical units and its traces are independent of the address each object had
been given by the memory system. This allows the simulator to evaluate
different collection strategies easily.

tem being debugged — remote reflection relies on the host oper-
ating system for access to the JVM’s address space — but reflec-
tive approaches rely on the debugger or profiler having an intimate
knowledge of the target. The GCspy visualiser, on the other hand,
requires a communication thread within the target runtime system.

Many profilers and debuggers impact the host system, either by
adding substantial complexity to its implementation or by adding
runtime overhead. For example, TracingVM [49] currently runs in
interpreter mode only and its execution is typically one to two or-
ders of magnitude slower than state-of-the-art JVMs. It is important
to minimise perturbation of the target system and certainly to avoid
distorting the data being measured; for example, the heap visualiser
for the SELF interactive programming environment [43] imposes an
impressively small penalty of only 1% on the system’s performance
[50]. For this reason, JVMPI implementations are required to be
pure native. GCspy demands no such restriction, though some care
must be taken in some environments to avoid memory allocation in
the heap that is being visualised. There is no technical reason why
GCspy could not use an enhanced version of the Java Platform De-
bugger Architecture’s JVMPI and JDWP protocols. However, we
chose not to do so because the bulk of the JVMPI/JDWP protocols
are irrelevant to GCspy (and vice-versa) and because GCspy is in-
tended to be platform independent: it is applicability is wider than
Java VMs.

3. ABSTRACTIONS
A key goal of any visualisation system is to provide effective rep-
resentations of very large volumes of information; to this, GCspy
adds the goal that this should be done in a portable way and made
target-independent. The key design issues are: tractable represen-
tation of the large volumes of information present in system snap-
shots; identification of suitable abstractions of both the components
of the profiled systems and their attributes; and independence of the
system to be visualised. In this section, we explain the abstractions
used by the GCspy visualisation model and define our terminology.

3.1 Spaces
The GCspy framework operates over a set of abstractions to which
a target system can be mapped. This framework has been demon-
strated to be sufficiently general to provide visualisation of a wide
variety of memory management systems.

The Heap is the set of data to be visualised. It may
comprise more than one component. No further con-
straints are placed on a heap. Typically, a visualiser
will simultaneously present all components of the heap
that are being visualised. Typically, a visualiser will
display a representation of all components of the heap
simultaneously.

The state of the heap changes as the program executes. Period-
ically, the GCspy framework captures the state of the heap and
transmits it to the visualiser.

Events are points in the program’s execution at which
the state of the target may be collected and sent to the
visualiser.

Event examples might include the beginning and end of a garbage
collection phase, heap expansion or even a regular ‘clock’ event.
Identification of these events is the responsibility of the runtime
system implementer. They should be sufficiently frequent to en-
sure a steady stream of transmissions to the visualiser, but not so
frequent as to overwhelm the execution of the application.

In order to attain independence of its target, the GCspy visu-
aliser relies on bootstrap information from the visualised system
that describes how the latter should be presented. The GCspy user
interface uses this bootstrap data to configure itself before it starts
receiving the visualisation data. Bootstrapping describes the target
system in terms of spaces and streams.

A Space is a named abstraction of a component of
the system to be visualised. A space may represent
a memory area, a free-list, a remembered-set and so
on. A target system may comprise one or more spaces,
according to its complexity. The framework only re-
quires a partitioning of each space into a sequence of
blocks (see below): no further restrictions are placed
on the structure of the space.

3.2 Blocks
In order to visualise large volumes of information, the visualiser
must determine its ‘focal length’: what visualisation granularity
should be adopted. If the visualisation is done at the object-level,
the resulting images will contain very detailed and accurate repre-
sentations of the heap. In addition, this level of detail allows data to
be processed to gather further useful statistics (object reachability,
object size distribution, class popularity and so on). This is the ap-
proach that necessarily must be taken by profilers whose intent is to
assist the debugging of application programs, for example to chase
down the causes of memory leaks. However, this approach does
not scale as heap sizes and object numbers increase to gigabytes
and tens of millions respectively — the time to collect, send and
then process the data becomes prohibitively high for a dynamic en-
vironment with on-line visualisation and the data volumes become
inconveniently large3 unless action is taken to filter out data [10].
Furthermore, the available screen size limits the amount of data that
can be shown at any time. Zooming facilities can improve this, but
might impose a further penalty on the visualiser operation.

Alternatively, the resolution of the visualiser can be reduced by
subdividing the heap: this is the approach that GCspy takes.

Each space is divided into a sequence of Blocks (for
the purpose of visualisation only and not to be con-
fused with memory manager notions): the set of not
necessarily equally-sized partitions of the heap. For
a heap region, the sequence of blocks is typically an
address-ordered representation of the space, but this is
not a requirement. The target system must send the se-
quence of blocks in the same order for each space and
each event in the visualisation of a space.

Blocks are a target-side notion; their visualiser-side
equivalent is the Tile, a small area of screen estate (for
example, a rectangle) that can be rendered according
to one or more of the attributes of the block that the
tile represents (see Figure 4, for example).

Thus, object-specific information is coalesced and it suffices to col-
lect, send (and possibly store) only aggregate information about
each block. Although this decreases the detail of the visualisation,
the data volumes sent to and processed by the visualiser (and the
user) are more manageable. This approach may still require iter-
ation over each object in the heap in order to gather data, but the
transmission and processing costs in the visualiser are bound by
the number of blocks rather than the number of objects in the heap.

3Producing a high-detail memory operation trace from an undisclosed sys-
tem has been recently reported to have generated a 150GB trace file.

. . . 32103210
Block State Stream Values

Time

Young GC Start

n−1n−1 . . .

Young GC End

Young GC Start

Figure 1: A stream for a single attribute of a single space, high-
lighting the state of the blocks of this space at a particular event.

Disturbances caused by gathering data can also be bound by col-
lecting it concurrently (see Section 5.4). Furthermore, visualisa-
tion granularity (i.e. block size) can be adjusted to obtain the best
trade-off between visualisation detail and limitations of screen size.
We demonstrate in Section 7 that this approach scales to very large
heaps.

3.3 Streams
Each block of a space will typically have several attributes, such
as the amount of used space (however the user wishes to define
this term), the number of objects it contains, the length of a free-
list, or whatever. The framework models the attributes of a space
by GCspy streams. At each event in a program’s execution, the
target system transmits the state of each stream of each space to the
visualiser. More precisely,

Each Stream of a space has a name, a type, a range of
permissible values and certain descriptive textual in-
formation; its current state is described by a sequence
of integer values, one for each block of the space. GC-
spy requires that each block of a space has the same
set of attributes, although different spaces may have
different ones.

Figure 1 represents the gathering of data over time from a single
stream. The stream represents the values of a single attribute of a
single space of n blocks. As time elapses, the values of the blocks’
attributes will change, possibly continuously. However, the target
system will typically gather data only at discrete event points in
its execution: three of these points are highlighted in the figure.
At these events, a sequence of values representing the current state
of this attribute for each block of the space is transmitted to the
visualiser.

3.4 Summary Information
Ideally, the visualiser should decide upon its representation of data
solely from the data streams it receives. However, this information
is not always sufficient. For example, it is often useful to provide
summary information, i.e. a value that summarises an entire stream
at a particular event, such as the total number of objects in the space
or the total length of all free-lists. These summaries represent a
numerical overview of the current state of each space. A subtle
point is that the summary information may not always be accurately
derivable from the stream data supplied to the visualiser. Consider a
stream that represents the number of objects per block. If an object

spans two blocks, it may be counted in both of them. Any attempt
within the visualiser to calculate the total number of objects risks
double-counting. Because of this, the GCspy framework assumes
that summary information is gathered by the server and transmitted
separately.

3.5 Control Information
It is often desirable to describe the structure of a space further. This
may be for presentational or for efficiency reasons. For example,
a space may contain a number of application-specific, dynamically
moving, internal boundaries (such as boundaries between gener-
ations in certain styles of generational collector [3]). Addition-
ally, it may be desirable to distinguish blocks that are unused. For
these reasons, a generic and extensible mechanism was introduced
to provide such control information to the visualiser. The visu-
aliser will typically use such information to add visual enhance-
ments to the rendered space images in order to improve the ap-
pearance (and hence effectiveness) of the visualisations. Such en-
hancements include marking tiles as unused (to show heap areas
that contain reserved but uncommitted address space, or the unused
semi-space of a two-space collector), drawing separators between
tiles (to specify dynamically-moving boundaries in the space), and
so on. Each space provides this information through an additional
control stream.

3.6 Bootstrapping
Visualisation of any system will be in terms of the abstractions de-
scribed so far. The system’s implementer must decide how many
spaces are required and how many streams each space will have.
This information forms part of the bootstrap information sent to
the visualiser. This data names the target, describes each space
and identifies the set of possible events. Each space is specified in
terms of its name, size (in number of blocks — this can be modi-
fied dynamically) and its streams. Each stream is specified by its
name, the type and range of its data values and certain other infor-
mation relating to its presentation, particularly to how its textual
form should be shown (for example, textual information such as
units of measurement to improve readability). After the visualiser
has been configured, it suffices for the memory manager to send
sequences of values, specifying only the space and stream to which
they correspond.

3.7 Summary of the Model
To summarise, the requirements of a system for it to be suitable for
visualisation by GCspy are that:

(a) the system comprises one or more components;
(b) each component is represented by one or more spaces;
(c) there is a finite partition of each space into blocks;
(d) all blocks of the same space have the same set of attributes;

and
(e) each attribute of each block can be represented by an integer

within a fixed range.

Table 1 shows simplified examples of how different garbage col-
lectors may be mapped to the GCspy abstractions.

4. GCspy ARCHITECTURE
It is essential that the coupling between the GCspy framework and
the target system be minimal. In particular, GCspy can make no as-
sumption about the implementation language of the target system.
For this reason, solutions based on reflection [25] are ruled out,
despite their desirable properties of minimal interference with the
running system. Likewise, the target system side of GCspy should

Collector Spaces Streams

Simple semi-space The whole heap Used space
collector Objects

. . .

Simple mark-sweep The whole heap Used space
collector Objects

Objects marked
. . .

Free lists Length
Size
. . .

Generational collector Young generation Used space
Objects
. . .

Old generation Used space
Objects
Objects marked
Promoted objects
Card table state
. . .

Train collector Young generation Used space
(mature object space) Objects

. . .
Trains Length

Remset info
. . .

Cars Used space
Objects
Type
Train ID
. . .

Physical regions Used space
Type
Train ID
. . .

Table 1: Examples of how different garbage collectors might be
mapped to the GCspy abstractions.

have no knowledge of the use to which attribute data is to be put:
for example, it should be immaterial whether the output is to be
consumed by a visualiser (or other process) or be saved to disk, on
the same host or a remote one.

4.1 Client-Server Model
For this reason, a client-server model was adopted for GCspy. The
target system that is being visualised acts as the server (i.e. a GC-
spy server needs to be incorporated into it) to which the client
(the visualiser or the trace storing tool) connects. The communi-
cation between the client and the server is performed over stan-
dard TCP/IP sockets. Sockets were chosen over extending exist-
ing mechanisms (such as JDWP [36]) because they are reasonably
generic, portable and not tied to a particular language, runtime sys-
tem, operating system or machine architecture. Even though the
client-server approach considerably complicated the design and im-
plementation of GCspy, it has several important advantages.

First, the visualiser and the target system are launched as two
separate processes. This minimises the additional code to be in-
corporated into the server process and the runtime interference by
the visualiser into the server. Although the GCspy server includes
a thread to handle communication between the target system and

Driver
M−CS−S

Driver

1
Renderer

Space

0
Renderer

Space

Comms

Server Interpreter

Space 1

Comms

Client Interpreter

Visualiser Frame
Java Application

Socket

 Java VM

Cards
Stream 0

Space 0

Server Client

Used
Roots

Objects
Control

Marked

Event Filters Event Filters

Stream 1 Stream 1

Control
Stream 0

Stream 2

Data Collection Init

Generic GCspy Framework

GC/VM−Dependent GCspy Customisations

Virtual Machine

Running Application

M−C GCS−S GC

Figure 2: The GCspy client-server architecture showing a Java VM managed by a generational collector. The younger generation uses a
semi-space copying collector (S-S GC) and the older a mark-compact collector (M-C GC).

the visualiser, its impact in terms of thread scheduling is small (es-
pecially if a second CPU is available for this purpose). For the
most part, transmissions to the client only take place at ‘safe points’
(for example, at the start or at the end of a garbage collection run)
to send visualisation data gathered by the memory manager. At
these points, threads other than memory manager threads are typ-
ically stopped. For example, transmission points in RJVM (see
Section 5.6) correspond to the stop-the-world phases of one of its
collectors: all data collection and transmission takes place while all
mutator threads have been stopped. Figure 1 showed the operation
of such a mechanism. Apart from increasing the stop-the-world
pause time, a transmission does not affect any running application
threads (scheduling, priorities and so forth). Second, by making
the visualiser a separate process, it can be launched on a different
machine to further reduce the impact on the application. However,
the GCspy framework does not restrict transmission to safe points.
We describe in Section 5.4 how a concurrent collector might be vi-
sualised with only weak synchronisation with the JVM. As a result,
the visualisation framework is as non-intrusive as possible and has
the potential to produce results that are not skewed by the presence
of the visualiser.

A client-server architecture also allows the visualiser to be con-
nected to the target system only when it is necessary, leaving it
undisturbed otherwise. This has important benefits. The user can
launch their application as usual and only connect the visualiser to
it when a problem occurs in order to attempt to discover its cause,
or connect to it intermittently to monitor its behaviour over time.
Thus, GCspy can be deployed outside the laboratory to diagnose
those performance problems that commonly manifest themselves
only under real loads. For example, a JVM vendor providing sup-
port to a highly-valued client may visualise an application running
remotely on the client’s machine.

Finally, a further advantage of this approach is that the visualiser

and the target system do not have to be written in the same lan-
guage. This improves the portability of the framework and allows
it to be easily incorporated into a variety of systems. Only the
server-side code needs to be ported to a particular system, whereas
the visualising client is generic and can be used unchanged in any
situation. On the server side, the harder undertaking of writing
the server code itself needs to be done only once for a particular
JVM or other target system. Writing data gathering code for each
garbage collection algorithm within a memory manager, for exam-
ple, is almost trivial (see Appendix C.2).

4.2 Storing / Replaying Traces
It is desirable to be able to store GCspy transmissions in order to
replay them and analyse them at a later time. This is useful for
demonstrations, for sharing of information with remotely-located
colleagues and where it is undesirable to allow a remote system
to connect to the server. An example of the last scenario is that
companies are not always willing to release their software to re-
searchers on confidentiality grounds. Our hope is that they will be
able to release the trace files instead to improve the community’s
understanding of how realistic applications behave.

GCspy’s client-server architecture facilitates storage and replay.
A special-purpose client connects to a server and simply stores in
a trace file the attribute data the server sends. Similarly, a special-
purpose server reads this trace file and transmits the stored data to
a connected visualiser. Both these utilities are written in Java, are
general-purpose and use Java’s gzip API to compress traces. The
trace-storing client configures itself according to the bootstrap in-
formation sent from the server and writes this information to the
trace file, so that the trace-replaying server can adapt itself for each
such trace. The visualiser cannot distinguish whether it is con-
nected to a GCspy-enhanced target system or the trace-replaying
server. Because of its coarse-grain visualisation and because it

needs to store only data streams and summaries, rather than the
events of the collection itself, the trace files collected by GCspy are
compact and compress well (see Table 3).

4.3 Wire Protocol
Communication between client and server is through a custom bi-
nary protocol. GCspy’s target- and visualiser-independence require-
ments preclude use of language-specific protocols such as JDWP
[36]. For performance reasons, we chose not to use a text-based
protocol (such as XML or MetaTF [8]). The GCspy protocol does
maintain some state between the client and the server (the state of
the event filters, the configuration of each space and so on).

5. SERVER IMPLEMENTATION
It is vital that GCspy intrusion into the target system being visu-
alised be kept to a minimum, both in terms of any code that must
be added and in terms of runtime costs. GCspy code added to the
system should be small. Systems that embed the visualiser in the
target system would be hard to maintain and might intrude sub-
stantially on the performance of the visualised system as the user
explored the data in the user interface. As far as possible, our goal
is to allow the target to run at full speed without perturbation, ex-
cept when it is required to gather data, for example immediately
before or after a garbage collection. In this section, we explain the
server-side model and the work required of the memory manager
implementer in order to incorporate GCspy into their system.

Each component of the target system to be visualised is mod-
elled by the GCspy framework as a space (see Section 3). Fig-
ure 2 shows the GCspy framework incorporated into a JVM that
has a generational memory system with its young generation man-
aged by a semi-space collector and its old generation managed by
a mark-compact collector [20]. In the figure, two spaces have been
created, one for the semi-space collector, the other for the mark-
compact collector. The semi-space collector has two streams (used
space per block and number of references from roots to each block)
and the mark-compact collector three (number of objects, card ta-
ble state and marked objects per block).

5.1 Drivers and Interpreters
Communication between the collector and the GCspy infrastruc-
ture is performed through a driver. The role of the driver is to map
information collected by the memory manager to the streams sup-
ported by the driver’s space. The driver is also responsible for col-
lecting summary and control stream information (see Sections 3.4
and 3.5). As each driver receives sufficient information to gener-
ate stream data, it is easily extended to generate the summaries as
well. As it understands the structure of its space, it can also provide
the necessary control information. Clearly, drivers are collector-
and server-specific: whenever the implementer wishes to visualise
a new component of the memory manager (such as a new imple-
mentation of the remembered sets of a generational collector), a
new driver must be written (see Section 5.5). However, the client-
side counterparts — the space and space-renderer modules — are
generic and not tied to any specific system or driver, as they operate
over the stream abstractions.

The server and client interpreters are generic modules, responsi-
ble for serialising and transmitting data over the socket and for re-
ceiving, deserialising and interpreting (hence their name) incoming
transmissions. The server-side interpreter is a library that exposes
an API to the driver programmer. For the most part, the GCspy
interpreter is portable between servers (an exception is the inter-
preter for Jikes RVM which is written in Java and so must take care
to avoid allocation in the Java heap). Communication between the

client and the server is asymmetric. The server mostly ‘pushes’ data
to the client when appropriate: initially, the bootstrap configuration
information and, subsequently, stream contents. Communications
from the client back to the server are mainly user-initiated and in-
frequent, such as disconnect, control flow commands (play, move
forward to the next event and pause) and event filter modification
(see Section 5.3).

To transmit the state of the heap, the server interpreter serialises
each data and control stream to GCspy’s custom binary format and
sends it to the client. There, the client interpreter is responsible for
extracting the values and installing them in the appropriate stream
of the appropriate space (essentially acting as a multiplexer). Fi-
nally, once the data of all available streams have been transmitted,
the server sends a final message to notify the client that it can re-
draw the on-screen representation of the space.

The benefit of this architecture is that it allows the GCspy frame-
work to be ported easily to any system. Such a port involves writ-
ing appropriate (collector-specific) drivers, usually deduced easily
from existing ones, and adding a small amount of platform-specific
code to the server to communicate with the drivers and to initialise
the server. Only the server needs to be adapted to a particular sys-
tem — the client can be used unchanged. The code required is
small: Section 5.5 describes an example implementation.

Currently, two implementations of the GCspy server code exist.
One is written in C, because a large number of runtime systems
are implemented in or can interface with C. The other is written in
Java. The latter acts as the reference implementation, is used for
the trace-replaying tool and can also be incorporated in JVMs that
are written in Java (for example, Jikes RVM [2]). The visualiser is
entirely written in Java using Swing; the Java client infrastructure
is also used for the trace-storing tool.

5.2 Control Flow
Transmissions are sent from the server to the client when a spe-
cific event is reached. To prevent overwhelming the visualiser (and
hence the user), the GCspy framework provides facilities to pause
and resume the execution of the application. Whenever the user
presses the pause button (see Figures 4 and 6), the client sends a
pause request to the GCspy server to cause it to pause itself after
the next transmission and to stay paused until it has received a re-
sume request. This ensures that, when the system has been paused,
all transmissions have completed and the data that has reached the
visualiser is consistent. Disconnecting happens in a similar fash-
ion. Again, it is the responsibility of the implementer of the target
system, if they want to take advantage of the pause facility, to en-
sure that no other threads are operating when the GCspy server
pauses. In some systems this is easy to achieve; for example, stop-
the-world collectors typically halt all mutator threads so GCspy op-
erations can be piggy-backed on that.

5.3 Event Filters
Events deemed uninteresting by the user can be filtered. Filtering
is implemented by the server (i.e. the server does not transmit these
events, as opposed to the client not accepting them). Data gathering
for skipped events should be omitted in order to avoid affecting the
performance of the running system at uninteresting event points.
Four event filters are associated with each event.

� Enable / Disable filters allow the user to enable or disable
transmissions at specific events. For example, a user might
only be interested in old generation collection events and not
young generation ones. Disabled events do not cause trans-
missions to the visualiser and memory managers should not
even collect data for them.

. . .3210. . .3210
Stream ValuesBlock State

Clock Tick

Clock Tick

Clock Tick

n−1

Time

n−1

Figure 3: Capturing data from the stream for a single attribute of a
single space asynchronously.

� Delay forces the server to delay for a given period after trans-
missions of specific events, allowing the user to ‘slow down
the film’. We choose to delay at the server side to ensure that
client and server are always synchronised.

� Pause forces the server to pause after transmission of specific
events, saving the user from having to pause the application
manually every time such an event is reached (cf. debugger
break points).

� Period allows a regular sampling of events; it causes trans-
missions of specific events to happen once every n events.
This is useful if certain events are too frequent and allows
the user to reduce their transmission rate.

5.4 Data Collection
The GCspy framework does not define a data collection method.
This is the responsibility of the target system implementer. In prac-
tice, there are several ways to implement data collection within a
garbage collector. Three techniques are enumerated below.

The first way is to piggy-back data collection on garbage collec-
tor operations. This ensures that the driver’s stream data always
contains an up-to-date snapshot of the state of the corresponding
space. Here, the collector is extended with code that updates stream
data as it operates. This incremental way of collecting data is pos-
sibly the fastest. However, it has two disadvantages. First, data-
collecting code must be planted throughout the collector, making
the maintenance of both more difficult. Second, and more impor-
tantly, data collection cannot be turned off when it is not required
(for example, when the visualiser is not connected or an event is
disabled or skipped) without imposing a performance penalty, as
the test whether to gather data or not must be repeated at each data
acquisition point (for example, whenever a mark-sweep collector
marks an object).

Alternatively, data may be gathered by performing separate and
complete sweeps over each component. When an event is reached,
stream data is typically recreated from scratch before being trans-
mitted. Although the performance penalty of such sweeps is high,
checking whether data should be gathered or not involves just a sin-
gle test per event. The cost of this test is negligible, allowing the
runtime system to execute at practically full speed when the visu-
aliser is not connected or when no events are enabled. Additionally,
all the extra code in the collector is concentrated in just one place
and does not interfere with the bulk of the collector code. Ports of
GCspy to RJVM, HotSpot and Jikes RVM adopted this approach.

The third technique is to collect stream data and transmit it to

the visualiser concurrently, without requiring the mutator threads
to be halted at all. This will have very little impact on the per-
formance of the target system, especially on multi-CPU machines.
Concurrent collectors also benefit as it will not affect their max-
imum pause time, even when the visualiser is connected. Again,
the extra code in the collector is also localised, typically in a sep-
arate thread, with a regular ‘clock’ event providing the points of
transmission (see Figure 3). Unfortunately, this approach cannot
guarantee that the data sent to the visualiser will be consistent, as
it is gathered concurrently with the mutator’s operation (compare
Figures 1 and 3). However, any single discrepancy caused by this
(such as a large free chunk considered to be allocated because it
has been temporarily removed from the free-lists to satisfy a small
allocation request) will most likely affect a single transmission and
not subsequent ones. Users can still obtain useful visualisations
of a system, but they must be aware that inconsistencies might be
apparent.

5.5 Building and Incorporating Drivers
One of the benefits of the GCspy framework is the ease with which
it can be incorporated into an existing memory manager. In this sec-
tion, we outline how a simple driver can be added to a semi-space
collector. Pseudo-code for this example is given in Appendix C.
First, at boot time, the JVM must initialise the server interpreter
(see Section 5.1) and register the required set of events with it. This
infrastructure will be shared by all drivers. As each specific collec-
tor is initialised, it must create and initialise its own driver.

The driver code has the following responsibilities. On creation,
it creates and initialises its space (or spaces, in the case of a com-
plex component), registers that space with the server interpreter,
creates and initialises the space’s streams and registers them with
the space. To support data gathering, the driver typically provides
a method that initialises the data of all the streams to default val-
ues4 and methods to update the stream data according to the state
of the collector (a method that specifies the location of an object, a
method that specifies the state of a card, and so on).

Suppose that the collector is required to gather data and transmit
it before and after each collection. First, it must check whether
the server should transmit (i.e. a client is connected) and whether
the event is active (i.e. it has not been disabled and it is not being
skipped). If this is the case, the collector calls on the driver to
initialise its streams (as the stream data is typically recreated for
every transmission) and then iterates over the heap, communicating
to the driver the location of objects, state of the cards and so forth.
Finally, the collector notifies the driver that data gathering has been
completed so that the driver can transmit the streams to the client.

In the next two sections, we describe the incorporation of GCspy
into two different JVMs and attempt to estimate the effort required
to add new streams to existing drivers, to write new drivers or to
port GCspy to a new system. We provide GCspy performance re-
sults for one of these JVMs in a third section.

5.6 Example Implementation I: RJVM
RJVM was the first system in which GCspy was incorporated (and
acted as the main test case during GCspy development). It has a
two-generation memory system in which each generation can be
managed by one of several garbage collectors. This is facilitated
by RJVM’s GC Interface [46], which abstracts the memory man-
agement system from the rest of the JVM. In order to be able to
visualise different configurations of the memory system with GC-
spy, six different drivers were developed.

4Some drivers may not need to re-initialise streams, for example if they are
accumulating values over the course of a program’s execution.

Configuration 213 javac reptile
sec. rel. sec. rel.

i No GCspy 29.07 1.00 26.90 1.00
ii GCspy, uninitialised 29.15 1.00 27.00 1.00

iii no connection 29.12 1.00 27.13 1.01
iv connection, no events 29.15 1.00 27.13 1.01
v connection, level 1 53.22 1.83 75.07 2.79

vi connection, level 2 55.61 1.91 76.27 2.84
vii connection, level 3 95.60 3.29 179.62 6.68

viii connection, level 4 283.48 9.75 554.45 20.61

Level Description

1 Collect only data that can be acquired in constant time
(such as the space used by a compacting collector).

2 As level 1, but also iterate over small data structures
(such as the card table).

3 As level 2, but also iterate over objects in the heap (for
instance, to count the objects).

4 As level 3, but also iterate over reference fields in ob-
jects (for instance, to gather statistics on direction of
pointers).

Table 2: Impact of GCspy on total execution time for 213 javac and reptile benchmarks. Both absolute time and time relative to that
without GCspy are shown. Fixed heap sizes of 18Mb for 213 javac and 55Mb for reptile were used.

(1) A semi-space driver for the two-space copying collector that
is the default configuration for the young generation (see Fig-
ures 4 and 6). It manages one space with two streams.

(2) A mark-compact driver for the sliding-compacting collector
(the default configuration for the old generation), which man-
ages one space with five streams.

(3) A driver for a simple, non-moving, mark-sweep collector,
offered as an alternative for RJVM’s old generation (see Fig-
ures 4 and 6). It manages one space with seven streams.

(4) A driver for the generational, mostly-concurrent, incremen-
tal collector [27], offered as an alternative for RJVM’s old
generation. It manages one space with eight streams.

(5) A driver for the Train collector [17], offered as an alternative
for RJVM’s old generation, which manages three spaces with
a total of forty streams. Its operation is described in more
detail elsewhere [28].

(6) A driver for visualising the operation of non-moving col-
lectors’ free-lists, used with drivers 3 and 4 (see Figures 4
and 6). It manages one space with two streams.

The events that are defined depend on the collector configuration
used. For the two stop-the-world configurations (for instance, driver
1 for the young generation and drivers 2 or 3 for the old gen-
eration), there are five events: Young generation collection start,
Young generation collection end, Old generation collection start,
Marking phase end and Sweeping (or compacting) phase end. The
two young generation collection events and four further events are
used by driver 4 (for the mostly-concurrent collector) to match the
phases of that particular collector: Root checkpoint start, Root
checkpoint end, Remark phase start and Remark phase end [27].
Similarly, in the case of driver 5 (for the Train collector), in addi-
tion to the two young generation collection events, there are two
more: Train collection start and Train collection end.

The architecture of GCspy made the introduction of different
events for different collectors straightforward. In our experience
and assuming that the programmer is very familiar with the driver
and the framework, it takes about thirty minutes to introduce a sin-
gle new stream to an existing driver, including incorporating the
data-gathering code. Deriving the first version of driver 4 from
driver 3, and writing driver 6 from scratch, took just under two
hours each (including incorporation into RJVM).

5.7 Example Implementation II: HotSpot
GCspy has also been ported to Sun Microsystems’ HotSpot JVM
(the version used is close to the 1.4 public release). HotSpot also
uses a generational framework and the port involved three drivers:

one for the young generation, managed by a semi-space collector,
one for the old generation, managed by a mark-compact collector,
and one for the permanent space (this is used for classes, methods,
etc.), also managed by a mark-compact collector. The drivers have
six, thirteen and ten streams respectively and were adopted from
drivers 1 and 2 of RJVM. A young generation collection causes
two events and an old generation collection three (as for the RJVM
implementation). The port took about a week, but most of this
time was spent on understanding HotSpot’s generational frame-
work, rather than incorporating GCspy.

5.8 Performance
We now provide results for GCspy performance. In all cases, the
figures are for the version of Sun’s HotSpot JVM described above.
All benchmarks were run under Solaris 7 on a Sun Ultra80 work-
station with 4�450Mhz UltraSparc II CPUs and 2GB of memory.

As it is important that the server experiences no GCspy-imposed
performance penalty when the visualiser is not connected, data col-
lection in the HotSpot JVM was done by complete heap sweeps
(as described in Section 5.4). The benchmarks used to measure
performance were 213 javac from the widely used SPECjvm98
suite [35] and reptile, the kernel of an Escher drawing package
translated from Haskell into Java bytecodes [44]. Table 2 gives
performance results for several configurations. In the table, row (i)
shows results for the control set, that is, the HotSpot JVM without
GCspy compiled in; row (ii) had GCspy compiled into the JVM but
it was not initialised, its communication thread was not launched
and no data collection was performed. In the remaining rows, GC-
spy was compiled in and booted. Clients connected to the server
in rows (iv)–(viii) but not in row (iii). In row (iv), all events were
disabled so only bootstrap data was transmitted. The last four rows
show the effects of increasingly expensive data collection levels
(these are described in Table 2).

These timing results confirm our claims that the incorporation of
GCspy does not impose a noticeable performance penalty unless
GCspy is initialised and gathering data. If the thread is started but
no transmission occurs, the overhead is minimal or non-existent
(we do not have a satisfactory explanation for the difference be-
tween 213 javac and reptile in this case). When the visualiser
is connected, for light data gathering the JVM slows down by a
factor of two to three, and for heavy data gathering by over an or-
der of magnitude, which was expected. The GCspy overhead is
greater for reptile than for 213 javac because the former allo-
cates mainly very small objects; hence iterating over each megabyte
of heap for reptile is more costly than for to 213 javac, which
has fewer and larger objects. The user can improve performance, if

Traces Events Collections Heap Sizes (Mb) Tiles Trace Size
young old young old perm (8Kb blocks) (Kb)

202 jess 304 146 4 2.1 2.2 2.0 805 189.23
205 raytrace 161 76 3 2.1 4.7 1.5 1068 333.17
209 db 89 37 5 2.1 13.2 1.5 2148 198.74
213 javac 241 101 13 2.1 13.3 2.0 2230 973.65
228 jack 204 87 10 2.1 1.4 1.8 672 143.00

Table 3: GCspy trace file sizes for SPECjvm98 benchmarks using level 3 (see Table 2) data gathering. Heap sizes refer to the young
generation, old generation and permanent space; tile numbers and trace sizes include all three spaces.

they wish, by using event filtering (see Section 5.3). Running the
visualiser locally or remotely does not seem to have a large impact
on performance.

If desired, GCspy can store rather than display event transmis-
sions. Table 3 shows the size of the trace files obtained from the
SPECjvm98 test suite. The heap sizes reported are the maximum
size each space of the heap reached while running each benchmark.
The visualisation granularity was set to 8Kb (i.e. each tile repre-
sented an 8Kb memory block).

6. THE USER INTERFACE
The GCspy visualiser runs in a separate process from the target be-
ing observed, communicating via a standard TCP/IP socket. The
visualiser is entirely generic and relies on bootstrap information
from the server for initialisation. This bootstrap information pro-
vides the name of the server to which the visualiser is connected
(Figure 4, area ➑), the names and sizes of each space (Figure 4, ar-
eas ➊), the names of the events defined on JVM (Figure 4, area ➌)
and so on. The state of the server can either be displayed one event
at a time (Figures 4 and 6) or as a history — an evolution of the
state over time (Figure 7). We discuss each view below.

6.1 The Main Window
Figures 4 and 6 illustrate the main window of the GCspy user in-
terface when connected to the JVM described in Section 5.6. The
window is split into several areas, each of which is numbered in
Figure 4. These are described below.

➊ Spaces. Most of the GCspy main window is taken up by the
areas where spaces are rendered. There is one such area per
space. Even though all spaces are visualised at all times, the
one selected by the user to be active is denoted by a dark
frame around it. The active space controls areas ➍, ➎ and ➏.
In Figures 4 and 6, each tile in each space corresponds to
a 128Kb block in the heap. Notice the effects of the con-
trol stream in the Young Generation space: unused tiles (cor-
responding to the unused semi-space) appear pale grey and
a separator identifies the boundary between the two semi-
spaces.

➋ Space Tool Bars. Each space has a separate tool bar from
where windows associated with it can be launched. One such
window is the legend window (in Figures 4 and 6) which
shows the representation of a low, a mid-way and a high
value. Notice that care is taken to represent zero values dif-
ferently (a light frame rather than a solid tile) from very
small values — it is useful to distinguish these. Unused tiles
are also explicitly identified. The summary window (Fig-
ures 5(a) and (b)) contains the summary information for the
entire space.

➌ Current Event. This displays the name of the event that
caused the transmission currently being visualised.

➍ Tile Information. When a tile of the active space is selected
by the user (denoted by a white frame around it), this area
displays the values for that tile in all available streams (essen-
tially the attributes of the corresponding block). The presen-
tation information associated with each stream, described in
Section 3.1, allows the visualiser to provide a more appropri-
ate representation of its values, for example, as a percentage
for the used space attribute, as an enumeration for the card
state attribute and so forth. Note that permanent informa-
tion that does not change from transmission to transmission
(namely the address range of the block represented by the
tile and its size) is transmitted to the visualiser just once, at
connection-time.

➎ View Chooser. This menu allows the user to choose which
stream will be used to visualise the active space. In Figure 4
for example, the used space attribute has been selected. Cur-
rently, there is a one-to-one correspondence between streams
and views.

➏ Magnification. This shows a subsequence of the tiles of the
active space, centered on the active tile and rendered with
smaller tiles, and a further subsequence, again centered on
the active tile and rendered with larger tiles. The intention
is to reveal artefacts over a series of tiles that might not be
apparent in the main space area due to line breaks. In future
work, we plan to experiment with combining attributes in a
single tile and suggest that the larger tile size may add clarity.

➐ Menu Bar. The menu bar allows windows relevant to all
spaces to be launched, such as the event counter window,
listing the number of occurrences of each event defined by
the server (see Figure 5(d)), and the event filters window,
controlling event filtering (see Figure 5(c)).

➑ Main Footer. This is split into three areas. The left area
includes the control flow buttons: (from left to right) pause,
resume and step one (the latter is only activated when the vi-
sualiser is paused; it moves the execution to, and pauses it at,
the next event). The middle area indicates the server to which
the visualiser is connected and its state (i.e. paused or about
to pause). Finally, the right-hand area allows disconnection
from the server and reconnection to a new one.

6.2 History Graphs
The GCspy visualisations described so far, and illustrated in Fig-
ures 4 and 6, reveal the state of a system at a single point in time.
The evolution of a system over time is also of great interest, but
this is hard to observe from a succession of snapshots. To pro-
vide a concise view of the history of an attribute of a single space,
GCspy can present its evolution as a graph (see Figure 7). Such
history graphs are two-dimensional grids of very small tiles (large
tiles would generate prohibitively large images) in which each row
corresponds to a single GCspy event transmitted. Whenever a new
event transmission reaches the visualiser, a new row is added to the

2

2

1

2

5

6

1

7

4

8

13

Figure 4: The GCspy user interface main window showing the Used Space view of the Old Generation space of RJVM for the reptile
benchmark. The Mark Sweep space is active, a tile on it is selected, and its legend window is also included on the left.

(a) Summary window for Free List space. (b) Summary window for Mark Sweep space.

(c) Event filters window. (d) Event counters window.

Figure 5: GCspy auxiliary windows for RJVM.

Figure 6: The GCspy user interface main window showing the Promotion view of the Old Generation space of RJVM for the reptile
benchmark. The Free List space is active, a tile on it is selected, and its legend window is also included on the left.

Address

T
im

e

(a) Used Space history graph.

Address

T
im

e

(b) Promotion history graph.

Figure 7: History graphs showing the Used Space and Promotion streams of the Mark Sweep space of RJVM for the reptile benchmark.
The black triangle markers denote the point at which the main window snapshots of Figures 4 and 6 were taken.

bottom of the grid (essentially, the y-axis of the graph represents
time, starting from zero at the top).

The information provided by GCspy’s set of abstractions (de-
scribed in Section 3) is sufficient for the client to generate history
graphs, ensuring consistency between the graphs and the visualisa-
tions in the main window without imposing a further burden on the
server implementer. History graphs can be customised in several
ways (size of the tiles, colour options, vertical separators that group
tiles together, horizontal separators that correspond to events in the
server and so on). For example, in Figure 7 the vertical separa-
tors indicate 10Mb heap increments and the horizontal lines corre-
spond to old generation collections (the garbage collection number
also appears on the graph for easier identification). The visualisa-
tion model is an extension to the basic model employed by GCspy,
making it easy for the user to understand one having seen the other.
We describe how main window and history graph views have been
used in practice in the next section.

7. GCspy IN PRACTICE
GCspy has been used to study the behaviour of production JVMs
where it has met our claims for scalability by visualising heaps of
up to 1Gb (using 128Kb blocks and 8,192 tiles). These case studies
have improved researchers’ and developers’ understanding of their
collectors and have revealed a number of new insights.

A number of applications were used to explore the visualisation
in both case studies. They were:

� reptile (see Section 5.8).
� GCOld, which creates and manipulates a large tree structure

to evaluate the performance of incremental garbage collec-
tors [27].

� paraffins, which calculates the paraffin molecules that may
be constructed from a given number of carbon atoms. This is
a good stress-test for the Train collector because components
are constructed through combinations of existing ones, hence
some objects (such as that representing CH3) are very heavily
referenced.

The first system studied was RJVM (see Section 5.6). The RJVM
generational collector was configured to use two generations, the
younger managed by a semi-space copying collector and the older
by an in-place de-allocating mark-sweep collector [20].

Figures 4 and 6 show the Used Space and Promotion views of the
reptile benchmark. Looking at the Old Generation space, greater
space usage within a block and greater amount of promotion to
a block are both indicated by a brighter (lighter in monochrome)
shading. We can see from the Used Space view that blocks at the
start and the end of the old generation are heavily used, presumably
because those at the start are long-lived objects and those at the end
have been comparatively recently promoted and so have not yet
been collected. This conjecture is confirmed by the history graph
of this space, Figure 7(a), which shows vertical bands of long-lived
objects at the left of the graph and a band of objects at the extreme
right at the time of the main window snapshots. Observe that these
objects are reclaimed by the second old generation (the horizontal
white line, labelled ‘2’ in the figure).

There are two points of interest in Figure 6. First, looking at
the Free List space, we can see that there are four very popular
size classes (and seven unused classes). Furthermore, popular size
classes are equally spaced. The reason for this is as follows. The
reptile application allocates 24-byte objects heavily (the first pop-
ular size class). If contiguous objects are freed, their space is coa-
lesced, leading to long free-lists for common multiples of 24 bytes.
Second, promotion to the old generation is concentrated on a few

blocks, as the free chunks were added to the free-lists in address or-
der, hence all the free chunks in one block will be used up, before
the allocator considers free chunks in another block. Figure 7(b)
sheds further insight into the behaviour of the old generation al-
locator. Until old generation collection 1, promotion allocation is
done from a single large free chunk that initially spans the entire
generation. The diagonal line sloping down indicates which parts
of that large free chunk are used. After collection 2, we can observe
distinct lines sloping from the upper right (the end of the old gen-
eration) down to the lower left (the start of the generation). By this
time the heap is fragmented by this application. Free-lists in the old
generation maintain the free chunks, which are obtained by sweep-
ing the space from left to right, in a LIFO manner. Thus, the first
chunk to be selected for allocation is the rightmost available one of
the best matching free-list (predominantly the 24-byte list). Once
this list is empty, the allocator splits chunks from larger sized lists,
causing the diagonal lines in the history graph to be repeated. We
can also observe the effect of this allocation policy on used space
in Figure 7(a) as bands sloping down to the left.

The second case study [28] is of the RJVM Train collector, no-
torious for the subtleties of its operation and for being difficult to
tune. That it was possible to incorporate GCspy into such a com-
plex collector reinforces our claims for the generality and adapt-
ability of the framework. A number of applications, known to be
problematic for the Train, were studied and several new insights
emerged.

� Long-lived data frequently clusters to form a few, very large
trains. Commonly, in both reptile and GCOld, objects were
copied to cars at the end of the same train. As that train be-
came older, GCspy showed that objects continued to be clus-
tered in it. History graphs obtained from GCOld showed this
pattern particularly clearly. Over time, a single data structure
caused an increasingly larger number of objects to be clus-
tered with it, and that train took longer and longer to collect.
These patterns are repeated in other applications and show
that collection policies dependent on an assumption of short
trains [31] are not well-founded.

� Remembered set maintenance in the Train collector may be
costly. Visualisation offered an opportunity to compare tech-
niques for tuning remembered sets. One technique to reduce
costs is to isolate heavily referenced (‘popular’) objects in a
car of their own. GCspy visualisation of popular objects has
confirmed that they are comparatively rare but nevertheless
important to handle specially. A technique to increase the
capacity of remembered sets is to ‘coarsen’ them by mak-
ing each entry represent a larger region of memory. Again,
GCspy history graphs (obtained from the paraffins bench-
mark) confirmed that isolating popular objects and coars-
ening remembered sets distributed entries between remem-
bered sets more evenly (and so helped smooth garbage col-
lection pause times).

History graphs have been particularly instructive but useful infor-
mation has also been obtained from the GCspy main window.

� Visualisation of the free-lists of the non-relocating collectors
of RJVM revealed that every second list was empty. This
was caused by the free-lists’ assumption of 4-byte object
alignment although RJVM had been subsequently modified
to align objects at 8-byte boundaries. The presence of empty
lists imposed a (small) performance overhead.

� A particular application was observed to be causing very
slow young generation collections (sometimes over 300ms).

Visualisation of its card table with GCspy immediately re-
vealed the cause: up to 40,000 cards were being dirtied be-
tween each young generation collection, causing the card-
scanning code to be a major bottleneck. It turned out that this
particular application was a pathological case for card-based
generational collectors due to the large number of reference
fields being frequently updated.

8. CONCLUSIONS AND FUTURE WORK
This paper has described GCspy, an adaptable heap visualisation
framework. The major contributions of this work are that, unlike
previous heap visualisation systems, GCspy is not committed to a
particular memory manager, it is capable of visualising very large
systems and it can attach to and detach from running applications.
GCspy is sufficiently generic to be incorporated into different sys-
tems with relative ease. This is achieved by its two main abstrac-
tions, spaces and streams, in terms of which data can be visualised
in a generic manner, and by its client-server architecture: a visual-
ising client connecting to a server embedded in the target system.
Only the server-side code needs to be customised for a particu-
lar system; this is done through a well-defined driver abstraction.
The visualiser remains unchanged but is configured dynamically at
connection-time for the particular server to which it has been con-
nected.

The record of heap activity can be stored in a trace file, replayed
or shared. Such trace files are very compact when compared to
alternative solutions. As well as a sequence of snapshots, GCspy
generates history graphs of the behaviour of a particular aspect of
a system over a period of time. GCspy can be used for program
analysis by runtime system implementers or even by sophisticated
application developers. It has proved useful in practice, revealing
new insights into the behaviour of several collectors and their inter-
action with particular applications.

Our claims of generality and ease-of-adoption are demonstrated
by the incorporation of GCspy into three very different Java vir-
tual machines, using servers written in C and Java, and the vi-
sualisation with appropriate drivers of nine collectors, as well as
other components of these systems (such as free-lists). Currently,
other ports are complete (the Boehm-Demers-Weiser conservative
garbage collector) or underway (the GHC Haskell compiler, the
Eclipse Constraint Logic system and the widely-used dlmalloc
dynamic memory allocator).

In future work, we will concentrate on adding new facilities to
the framework. Currently, GCspy visualises data slices orthogo-
nally (i.e. one attribute stream at a time); we intend to explore how
to combine streams to show several attributes at once. Further av-
enues for exploration include rewinding and looping capabilities
(useful when trying to discover a problem), tile re-ordering (to al-
low different logical orderings for the data as alternatives to the
usual physical ordering), two-dimensional organisation of a space
(in order, for example, to visualise the remembered sets of the Train
and Beltway [4] algorithms), and pluggable space renderers that
can show alternative views of the data (such as histograms instead
of tiles). Additionally, further ways will be sought to improve
server performance. These include performing data collection at
the server side more incrementally, while still ensuring that the
presence of GCspy remains non-disruptive when the visualiser is
not connected, and transmitting deltas instead of complete sets of
the attribute data in order to decrease the network traffic between
the client and the server. Finally, standard tools to perform analysis
over the GCspy trace files might also be desirable.

APPENDIX

A. ACKNOWLEDGEMENTS
This work was supported by the EPSRC with grants GR/R57140
and GR/R42252. Tony Printezis is funded through Sun Microsys-
tems’ External Research Program. We are grateful to Sun Mi-
crosystems for making the source code of their HotSpot JVM prod-
uct available to us and to IBM for making the Jikes RVM sys-
tem widely-available under open source. Any opinions, findings,
conclusions, or recommendations expressed in this material are
the authors’ and do not necessarily reflect those of the sponsors.
The authors are grateful to the following people for their contribu-
tions to this work. Discussions with Kenneth Russell greatly in-
fluenced the GCspy architecture, especially its client-server model.
Paul Dempster did the port to the Boehm-Demers-Weiser collec-
tor. Huw Evans, Alex Garthwaite, Peter Linington, Andy King
and Gareth P. McSorley provided useful feedback on drafts of this
paper. Andy also provided statistics for earlier versions of this pa-
per. We would also like to thank the anonymous referees for their
constructive comments. Finally, Richard Jones is grateful to the
University of Glasgow for hosting his visits.

B. REFERENCES

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine. IBM
System Journal, 39(1), February 2000.

[2] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,
J. J. Barton, S. F. Hummel, J. C. Shepherd, and M. Mergen.
Implementing Jalapeño in Java. In Proceedings of OOPSLA’99,
pages 314–324, Denver, Colorado, USA, November 1999.

[3] A. W. Appel. Simple Generational Garbage Collection and Stack
Allocation. Software — Practice and Experience, 19(2):171–183,
March 1988.

[4] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: Getting around garbage collection gridlock. In Proceedings
of SIGPLAN 2002 Conference on Programming Languages Design
and Implementation, pages 153–164, Berlin, June 2002.

[5] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative
Environment. Software — Practice and Experience, pages 807–820,
September 1988.

[6] Borland Inc. The OptimizeIt tool.
http://www.optimizeit.com [November 12, 2001].

[7] L. Cardelli, J. Donahue, L. Glassman, M. J. Jordan, B. Kalsow, and
G. Nelson. Modula-3 report. Technical Report 52, Systems Research
Center, Digital Equipment Corporation, Palo Alto, CA, September
1989. Revised.

[8] T. Chilimbi, R. E. Jones, and B. Zorn. Designing a Trace Format for
Heap Allocation Events. In T. Hosking, editor, Proceedings of the
2000 International Symposium on Memory Management, pages
35–49, Minneapolis, MN, USA, October 2000. ACM Press.

[9] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. In R. E. Jones, editor,
ISMM98 Proceedings of the First International Symposium on
Memory Management, pages 37–48, Vancouver, October 1998.

[10] W. De Pauw, N. Mitchell, M. Robillard, G. Sevitski, and
H. Srinivasan. Drive-by Analysis of Running Programs. In
Proceedings of the Workshop on Software Visualization,
International Conference on Software Engineering, Toronto, Canada,
May 2001.

[11] W. De Pauw and G. Sevitski. Visualizing Reference Patterns for
Solving Memory Leaks in Java. Concurrency — Practice and
Experience, 12:1431–1454, 2000.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[13] R. H. Halstead. Self-describing files + smart modules = parallel
program visualisation. In Theory and Practice of Parallel
Programming, number 907 in Lecture Notes in Computer Science,
pages 253–283. Springer-Verlag, 1994.

[14] T. Harris. Dynamic adaptive pre-tenuring. In T. Hosking, editor,
ISMM 2000 Proceedings of the Second International Symposium on
Memory Management, Minneapolis, MN, October 2000.

[15] W. Harrison, H. Ossher, and P. Tarr. Software engineering tools and
environments: A roadmap. In Future of Software Engineering,
ICSE 2000, pages 263–277, Limerick, Eire, 2000.

[16] A. L. Hosking, J. E. B. Moss, and D. Stefanovic. A Comparative
Performance Evaluation of Write Barrier Implementations. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 92–109,
Vancouver, Canada, October 1992.

[17] R. L. Hudson and J. E. B. Moss. Incremental Garbage Collection of
Mature Objects. In Y. Bekkers and J. Cohen, editors, Proceedings of
the First International Workshop on Memory Management, volume
637 of Lecture Notes in Computer Science, pages 388–403, St Malo,
France, September 1992. Springer-Verlag.

[18] IBM Research. The Jinsight project.
//http://www.research.ibm.com/jinsight/ [November 12, 2001].

[19] M. S. Johnstone and P. R. Wilson. The Memory Fragmentation
Problem: Solved? In Proceedings of the First International
Symposium on Memory Management, volume 34(3) of ACM
SIGPLAN Notices, pages 26–36, Vancouver, Canada, October 1998.
ACM Press.

[20] R. E. Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons, Ltd, 1996. With a chapter
on Distributed Garbage Collection by R. Lins.

[21] R. E. Jones. Tail recursion without space leaks. Journal of Functional
Programming, 2(1):73–79, January 1992.

[22] G. N. C. Kirby and R. Morrison. OCB: An Object/Class Browser for
Java. In Proceedings of the Second International Workshop on
Persistence and Java (PJW2), pages 89–105, Half Moon Bay, CA,
USA, August 1997.

[23] D. Lea. The GNU C++ library. The C++ Report, 1993.
[24] D. Lea. A memory allocator. The DLmalloc homepage

http://gee.cs.oswego.edu/dl/html/malloc.html [April 4, 2000], 1997.
[25] T. Ngo and J. J. Barton. Debugging by Remote Reflection. In

Proceedings of Euro-Par 2000, Munich, Germany, August 2000.
[26] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L.

Wadler. The Glasgow Haskell compiler: a technical overview. In
Proceedings of Joint Framework for Information Technology
Technical Conference, pages 249–257, Keele, March 1993.

[27] T. Printezis and D. Detlefs. A Generational Mostly-Concurrent
Garbage Collector. In T. Hosking, editor, Proceedings of the 2000
International Symposium on Memory Management, pages 143–154,
Minneapolis, MN, USA, October 2000. ACM Press.

[28] T. Printezis and A. Garthwaite. Visualising the Train Garbage
Collector. In D. Detlefs, editor, Proceedings of the 2002
International Symposium on Memory Managemenr, pages 50–63,
Berlin, Germany, July 2002.

[29] C. Runciman and D. Wakeling. Heap profiling of lazy functional
programs. Journal of Functional Programming, 3(2):217–245, April
1993.

[30] K. Russell and L. Bak. The HotSpot™ Serviceability Agent: An
Out-of-Process High-Level Debugger for a Java™ Virtual Machine.
In Proceedings of the Usenix Java Virtual Machine Research and
Technology Symposium (JVM’01), pages 117–126, Monterey, CA,
USA, April 2001.

[31] J. Seligmann and S. Grarup. Incremental Mature Garbage Collection
using the Train Algorithm. In Proceedings of the 9th European
Conference on Object-Oriented Programming (ECOOP’95), volume
952 of Lecture Notes in Computer Science, pages 235–252.
Springer-Verlag, August 1995.

[32] A. Shalit. The Dylan Reference Manual. Addison-Wesley, 1996.
[33] Sitraka Inc. The JProbe Suite.

http://www.jprobe.com/ [November 12, 2001].
[34] R. M. Stallman. Debugging with GDB: The GNU Source-Level

Debugger for GDB. Free Software Foundation, July 2000.
[35] Standard Performance Evaluation Corporation. SPECjvm98

Documentation, release 1.03 edition, March 1999.
[36] Sun Microsystems Inc. Java™ Debug Wire Protocol (JDWP).

http://java.sun.com/j2se/1.3/docs/guide/jpda/jdwp-spec.html
[November 12, 2001].

[37] Sun Microsystems Inc. Java™ Heap Analysis Tool (HAT).
http://java.sun.com/people/billf/heap/ [November 12, 2001].

[38] Sun Microsystems Inc. Java™ Platform Debugger Architecture
(JPDA).
http://java.sun.com/j2se/1.3/docs/guide/jpda/ [November 12, 2001].

[39] Sun Microsystems Inc. Java™ Virtual Machine Profiling Interface
(JVMPI).
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/ [November 12, 2001].

[40] Sun Microsystems Inc. The Java HotSpot™ Virtual Machine, 2001.
Technical White Paper.

[41] D. M. Ungar. Generation Scavenging: a Non-Disruptive High
Performance Storage Reclamation Algorithm. ACM SIGPLAN
Notices, 19(5):157–167, April 1984.

[42] D. M. Ungar and F. Jackson. Tenuring Policies for Generation-Based
Storage Reclamation. ACM SIGPLAN Notices, 23(11):1–17, 1988.

[43] D. M. Ungar and R. S. Smith. SELF: The Power Of Simplicity. In
Proceedings of OOPSLA’87, pages 227–241, Orlando, FL, USA,
October 1987.

[44] D. Wakeling. Compiling Lazy Functional Programs for the Java
Virtual Machine. Journal of Functional Programming, 9(6):579–603,
November 1999.

[45] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for
constraint logic programming. Technical report, IC-Parc, Imperial
College London, August 1997.

[46] D. White and A. Garthwaite. The GC Interface in the EVM.
Technical Report TR-98-67, Sun Microsystems Laboratories, 1999.

[47] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
Storage Allocation: a Survey and Critical Review. In Proceedings of
the Second International Workshop on Memory Management,
volume 986 of Lecture Notes in Computer Science, Kinross,
Scotland, September 1995. Springer-Verlag.

[48] M. Wolczko. The Tracing JVM.
http://research.sun.com/people/mario/tracing-jvm/
[November 9, 2001].

[49] M. Wolczko. Using a Tracing Java™ Virtual Machine to Gather Data
on the Behaviour if Java Programs, March 1999. SML 98-0154.

[50] M. Wolczko. Personal Communication, October 2001.

C. INCORPORATING A SIMPLE DRIVER
Here we outline the implementation of a driver for a simple semi-
space collector. This pseudocode description follows very closely
our implementation for a collector for Jikes RVM using the UMass
GCTk garbage collector toolkit. Construction of the driver was
straightforward and used less than 300 lines of code, including
comments. The object-oriented features of Java considerably sim-
plified both the construction of the collector and the driver. Note
that, to avoid perturbing the data being measured, it is important
that no allocation be made in the Java heap. We exploited Jikes
RVM’s ability to create objects outside the heap but the details are
beyond the scope of this paper.

C.1 JVM Changes
To add GCspy to an existing collector it is necessary to modify the
collector (i) to initialise the GCspy framework and (ii) communi-
cate its state to GCspy. At boot time, the collector creates a set of
events, the server interpreter and a driver for each space.

void initialiseGCspy() {
/* first, initialise the GCspy server,
* this is shared by all drivers */
String eventNames[] = { "Semispace GC Start",

"Semispace GC End" };
Events events = new Events(eventNames);
gcspyServer_ = new ServerInterpreter(

"Jikes RVM",
events,
1 /* max space number */);

/* then, initialise each driver */
gcspyDriver_ = new GCspyDriverSemispace(

gcspyServer_,
"Semispaces",
heapStart_,
GRANULARITY,
(heapEnd_ - heapStart_)/GRANULARITY);

}

Before and after each collection, the collector must gather and trans-
mit data to the visualiser if connected and the event should be
transmitted. If required to transmit, the driver is asked to clear
the streams before the collector iterates through the heap, passing
data to the driver. Finally, the server is told that data gathering is
complete.

private void gatherGCspyData(
int semispaceEvent,
ADDRESS spaceStart,
ADDRESS spaceEnd) {

/* first, check whether the event should be transmitted,
* i.e. whether the client is connected and the event
* is active (not disabled or skipped) */
if (gcspyServer_.shouldTransmit(semispaceEvent)) {
gcspyDriver_.zero(heapEnd_);
Iterator it = heap_.iterator(spaceStart, spaceEnd);
while (it.hasNext()) {
gcspyDriver_.object(it.next());

}
}
/* if the event is active, this will also perform
* the data transmission --- it also counts the
* number of events reached to keep the event
* counters up to date */
gcspyDriver_.finish(semispaceEvent);

}

C.2 Driver Implementation
On creation, the driver sets up the space and its streams. For sim-
plicity, we omit some of the arguments to the constructors.

public GCspyDriverSemispace(
ServerInterpreter gcspyServer,
String name,
ADDRESS startAddr,
int blocks,
int blockSize) {

startAddr_ = startAddr;
blockSize_ = blockSize;
maxTileNum_ = blocks;

/* first, create a new space */
space_ = new ServerSpace(

"Semispace GC", /* space name */
maxTileNum_, /* number of tiles */
1 /* max stream number */);

/* then, register the space with the GCspy server */
spaceID_ = gcspyServer.addServerSpace(space_);

/* now, create a new stream */
objectsStream_ = new Stream(

"Objects", /* stream name */
maxTileNum_ /* max tile num */);

objects_ = objectsStream_.getData();
objectsSummary_= objectsStream_.getSummary();

/* and register it with the corresponding space */
space_.addStream(objectsStream_);

/* finally, set up the tiles names (this information
* appears on the visualiser when clicking on a tile) */
for (int i = 0; i < maxTileNum_; ++i) {
ADDRESS start = startAddr + (i * blockSize_);
ADDRESS end = start + blockSize_;
if (end > endAddr)
end = endAddr;

space_.setTileName(i, "["+Integer.toHexString(start)+
"-"+Integer.toHexString(end)+")");

}
}

The rest of the driver’s public interface consists of methods to clear
the values set in each of its space’s streams, to map values sup-
plied by the collector to the appropriate block (this is essentially
histogram binning) and to initiate transmission to the visualiser.

public void zero (ADDRESS maxAddr) {
tileNum_ = getTileNum(maxAddr);
/* resize the space if the number of blocks has changed
* (i.e. the collector resized the heap) */
space_.setData(tileNum_);

/* initialise streams to their default values,
* passed to the stream during initialisation,
* and zero the summary information */
space_.resetData();

}

public void object (ADDRESS addr) {
/* count the object in the appropriate data slot... */
++objects_[getIndex(addr)];
/* ...and also in the summary value */
++objectsSummary_[0];

}

