In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

A New Ant Colony Algorithm for Multi-Label
Classification with Applications in Bioinformatics

Allen Chan and Alex A. Freitas

Computing Laboratory
University of Kent
Canterbury, CT2 7NZ, UK

achan.83@googlemail.com, A.A.Freitas@kent.ac.uk

ABSTRACT

The conventional classification task of data minican be
called single-label classification, since thereaisingle class
attribute to be predicted. This paper addresses ae m
challenging version of the classification task, wvehéhere are
two or more class attributes to be predicted. Wp@se a new
ant colony algorithm for the multi-label classifican task. The
new algorithm, called MuLAM (Multi-Label Ant-Minerjs a
major extension of Ant-Miner, the first ant coloalgorithm for
discovering classification rules. We report resuwtsnparing
the performance of MuLAM with the performance ofeih
other classification techniques, namely the vemypée majority
classifier, the original Ant-Miner algorithm and ©5 a very
popular rule induction algorithm. The experimentsrev
performed using five bioinformatics datasets, inimy the
prediction of several kinds of protein function.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning —concept learning
induction

General Terms
Algorithms, Performance, Experimentation.

Keywords

Ant Colony Optimization, Data Mining, Bioinformasic

1. INTRODUCTION

This work proposes a new ant colony algorithm taifofor a
kind of classification task in data mining, callealti-label
classification. In essence, this is a more chaltengersion of
the conventional (single-label) classification taak follows. In
conventional classification the goal is to predicsingle class
for an example (a record or case), based on theevabf
predictor attributes describing that example. Bytrast, in
multi-label classification there are two or morasdes to be
predicted for an example. A more detailed discussib the
differences between single-label and multi-labelssification
will be discussed in section 2. For now it shoudrioted that
multi-label classification is an active and inciiegly important
research area, due to the growing interest in detashich
naturally have multiple classes to be predictediiqadarly in
the areas of text mining and bioinformatics [12J]f [3]-

The proposed ant colony algorithm is called MuLAMu(ti-
Label Ant-Miner), and is a major extension of thatMiner

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

GECCO'06 July 8-12, 2004, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

algorithm proposed in [13]. Ant-Miner
conventional, single-label classification task. discovers
classification rules of the form:

IF (conditions) THEN (predicted class)

with the meaning that, if an example satisfiesabeditions in
the rule antecedent, that example is assignedialss predicted
by the rule consequent. In the rules discoverediyMiner,
each consequent contains exactly one predictesd.clas

MuLAM extends this rule representation to allow madhan
one predicted classes in the rule consequent. &{tension in
the kind of knowledge discovered by the algoritrequired a
major re-design of several parts of the Ant-Minkgoathm, as
will be discussed in section 4.

The remainder of this paper is organised as folldection 2
discusses single-label and multi-label classifaratiSection 3
presents a review of the original Ant-Miner alglnit. Section
4 describes the proposed ant colony algorithm fattisrabel
classification. Section 5 reports computational ultss
evaluating the proposed algorithm. Section 6 cafesduthe
paper and suggests future work.

2. SINGLE-LABEL VS.MULTI-LABEL
CLASSIFICATION

Classification is one of the most investigated dmailaing tasks,
with numerous commercial and industrial applicai¢20]. In

essence, the classification task consists of desdoy

knowledge that can be used to predict the clasmafxample
(record) whose class is unknown, based on the sabfe
predictor attributes describing the example. Thasktgenerally
involves splitting a data set into a training sed @ test set. A
classification algorithm is applied to all exampileshe training

set, where the class of each example is availablahé

algorithm. The algorithm analyses the relationdsgpveen the
predictor attributes and the class for all traine@mples, and
discovers a classification model for the data. Thée

discovered model is applied to examples in the sestwhere
the class of each example is unknown to the systeorder to

evaluate the predictive accuracy of the discovenedel. It is

crucial that the training and test sets containoitis sets of
examples, i.e., the test set examples should revesed in the
training set, in order to characterize a truly jotde scenario.
We can then compute a measure of predictive acgumache

test set. More precisely, for each example in &8t set, the
class predicted by the classification model is caraeg with the
actual class of the example, in order to evaludtether or not
the prediction was correct. Then the standarchdigfin of the

predictive accuracy of a classification model isgly the

number of examples in the test set correctly diassby that

model divided by the total number of examples mttst set.

There are two versions of the classification tasicording to
the number of classes to be predicted for each pbeana)

addresses the

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

Single-Label Classification and b) Multi-Label Gli#gation.
Single-label classification refers to the standaesk of
classification, where there is only one class laite (target
attribute) to be predicted.

The basic principles in multi-label classificatiare similar to
those in single-label classification; however, irultinlabel
classification there are two or more class attdbuto be
predicted. As a result, the consequent of a claasifn rule
contains one or more predictions, each predictinolving a
different class attribute.

There has been relatively little work in the aréalti-label
classification, by comparison with the vast amoofhtvork in
standard single-label classification. In additionpst of the
works in multi-label classification have been apglito text
classification [10], [12], [17]. An exception isatwork of [3],
which has been applied to the area of bioinformatic

Traditional classification algorithms are unablectipe with a
multi-label dataset, since those algorithms predlisingle class
attribute. A simple workaround is to split the dmig dataset
into near identical datasets, where each contdingredictor

attributes and their values for each example, laghedataset
produced in this way contains only one of the chtssbutes to
be predicted. This results in requiring the clasaifon

algorithm to be trained on nearly the same datasdtiple

times. More precisely, the algorithm has to be amte for

predicting each of the class attributes. This isa@ery good
solution to the problem of multi-label classifiaati[3], [18],

for two main reasons. First, we would discoverteo$eules for

predicting each class attribute, but each of tlsschttributes
would be treated individually, ignoring possiblermetations
between class attributes. Intuitively, an algorittivat discovers
rules predicting more than one class attribute aapture some
correlations between class attributes and discasmpler rule
set (with a smaller number of rules) than an atbori that

discovers only rules predicting a single classhatte. Second,
the approach of running the classification algonitonce for
each class attribute has the drawback of being atatipnally

expensive.

One other approach that can be used to solve the-lahel
classification problem consists of converting tixésing class
attributes into a single class attribute, wherehezadue of this
new class attribute represents a combination of dlass
attributes that were initially present in the dagt. Using a
simple example to illustrate this, consider a dsgwith three
class attributes to be predicted, where each @tsbute can
have the value of eitheyes or no. Table 1 illustrates the
possible combinations of class values in this ddtas

Table 1 shows that it is possible to convert malviel problems
into a single-label problem. But it is also evidehat, by
carrying out such a conversion, the number of \sabfdhe new
single-class attribute will increase exponentialiith the
number of original class attributes. Hence, it Ilmees
increasingly more difficult to predict a class waluas the
number of examples associated with any given vafuke new
single class attribute decreases considerably, ciegluthe
amount of information to effectively predict eadass value.

In order to avoid these disadvantages associated thie
conversion of a multi-label problem into one or maingle-
label problems, this paper directly addresses théti-tabel
classification task. That is, we propose a new intatitel
classification algorithm (described in section 4jatt was
designed so that different class attributes campdentially

predicted using the same rule antecedent, whiclvshsmme
correlations between the class attributes to beiqtesl.

Table 1. Transforming a multi-label problem into a single-

label problem

Class Class Class Single class

Attr. 1 Attr. 2 Attr. 3 Attribute
Yes Yes Yes YYY
Yes Yes No YYN
Yes No Yes YNY
Yes No No YNN
No Yes Yes NYY
No Yes No NYN
No No Yes NNY
No No No NNN

3. AN OVERVIEW OF ANT-MINER

At first glance, ants are seen as small uninteiligedividuals,
but on closer inspection, as a collective grougwarm) they
appear to be highly organised and yet require persision at
all [1], [2]. The “intelligent” foraging behaviowf ant colonies
has been studied in detail, as discussed in [3],d@d these
studies have led to the development of the ACO @alony
Optimisation) meta-heuristic, on which the Ant-Mine
algorithm is based. Hence, before we review Antéviret us
first briefly review this meta-heuristic.

The ACO meta-heuristic, as proposed by [6], is radlynused
to solve discrete optimization problems. In essemeEh ant
corresponds to a candidate solution to the targilem. The
search space is conceptually represented as a,gvapmre
nodes correspond to parts of a candidate solutimh edlges
correspond to movements performed by ants in ttercke
space. Hence, the path followed by an ant in thaiply
corresponds to the process of incrementally coctitig a
candidate solution. In other words, when an atbfed an edge
leading to a given nodg the part of the candidate solution
represented in nodes added to the current candidate solution.
Each ant keeps following a path in the graph inemally
constructing a candidate solution, until a compksa&ution is
constructed.

This process is performed by a population of am@ts ént
colony) for a number of iterations. During the donstion of a
candidate solution, an ant usually has to choosgesa two or
more paths, i.e., it has to choose which edge litfallow (or
which node it will visit) next. This choice depends two
factors, namely:

* The value of a problem-dependent heuristic function
associated with each edge or node of the graph
representing the search space.

* The amount of pheromone associated with each edge o
node.

When an ant follows a path in the graph, it upd#ttesamount
of pheromone along that path. More precisely, tmount of
pheromone deposited on the path followed by an iant
proportional to the quality of the candidate santrepresented
by that path. It is this pheromone updating medranthat
implements the concept of stigmergy [9], where amislify the
environment (amount of pheromone on edges or notigse
graph) as an indirect means of communication, whilbbws
them to cooperate to find good solutions to thgeaproblem.

3.1 Ant-Miner

Ant-Miner was initially developed by Parpinelli antdis
colleagues [13], [14]. It was the first ACO algbrit for
discovering classification rules and it has beeawshto be

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

competitive against the CN2 [4] and C4.5 [16] aitdons for
classification. Ant-Miner generates solutions ire tform of
classification rules. Conventional classificatiates are in the
form of IF <antecedent> THEN <consequentxwhere the
antecedentontains an arbitrary number @rms from zero to
potentially the number of predictor attributes lire tdata being
mined. However, in practice one expects a ruledotan a
number of terms much smaller than the total numbker
predictor attributes, since many attributes carrimevant to
predict the class of a given set of examples. Amdviuses a
propositional logic representation, where eaetm takes the
form of a triplet <attribute, operator, valuey where the
attribute is one of the predictor attributes in the date,whlue
is one of the values that thatribute can take on, and the
operatoris a relational operator. This relational operatould
in principle be =%, <, <, >, or>, but the original version of
Ant-Miner has the limitation that it can only presediscrete
values — a common limitation in ACO algorithms. &sesult,
Ant-Miner only uses the “=" operator. So each taakes on
the triplet <attribute=value>. Also, each rule cannot contain
the same attribute twice, e.gssex=m> AND <sex=f>
otherwise the rule would contain a contradictiod aa it would
never be satisfied by any example.

TrainingSet = {all training examples};
DiscoveredRuleList = []; /* rule list is
initialized with an empty list */
WHI LE (TrainingSet > MaxUncoveredExamples)
t=1; /* antindex */
j = 1; I* convergence test index */

Initialize all trails with the same amount of
pheromone;

REPEAT

Ant , starts with an empty rule and
incrementally constructs a classification

rule R by adding one term at a time to the
current rule;

PruneruleR ;

Update the pheromone of all trails by

increasing pheromone in the trail followed

by Ant (proportional to the quality of R t)
and decreasing pheromone in the other trails

(simulating pheromone evaporation);

IF(R isequaltoR
convergence test */

« — 1) /* update

THENj=j+1;
ELSEj=1;
END | F
t=t+1;
UNTIL (i = No_of_ants) OR

(> No_rules_converg)

Choose the best rule R
constructed by all the ants;

Add rule R e to DiscoveredRuleList;
TrainingSet = TrainingSet - {set of examples
correctly covered by R best };

END WHI LE

pest @mong all rules R t

Pseudocode 1. High-level description of Ant-Miner [13]

a single-label classification task and so the cguest of the
rules generated by the original Ant-Miner will caint only one
class attribute value.

Let us now briefly review the main aspects of thie discovery
process performed by Ant-Miner, as described by@seode 1
[13]. For more details about the algorithm thederas referred
to that reference.

Ant-Miner uses a sequential covering approachgoalier a list
of classification rules, by discovering one ruledime until all
or almost all the examples in the training setcaneered by the
discovered rules. When the algorithm first statte,training set
holds all the original training examples and thecdiered rule
list is empty. Every iteration of the WHILE loogustrated in
Pseudocode 1 creates a population of ants,
corresponding to one iteration of the REPEAT-UNTdop.

Each ant constructs one rule. At the end of the MEHbop, the
best rule from the set of constructed rules is ddtte the
discovered rule list. Examples correctly coveredthiyg rule —
i.e. examples satisfying the rule antecedent anthahe class
predicted by the rule — are removed from the trajréet before
the next iteration of the WHILE loop. This rule disery
process is repeated until the number of uncovexadples in
the training set is less than a user-specified stuoiel

(MaxUncoveredExamples

Every iteration of the REPEAT-UNTIL loop consistk three

stages: rule construction, rule pruning, and pheren

updating. In the rule construction stage, every, Atdrts off
with an empty rule with no term in its antecedemg adds one
term at until one of two criteria is met:

« Any term added to the current rulg Rould make the rule
cover a number of examples less than a user specifi
threshold MinExamplesPerRu)e

« All attributes have been used by the current artf, Arich
means there are no more terms which can be addibe to
rule antecedent. As mentioned earlier, no rule aarain
any attribute twice, e.gessex=m> AND <sex=f>.

The current partial rule being constructed by A@presents the
path being taken by that ant, and every term addethe
current partial rule constitutes the direction ofzhthe path is
being extended. The next term to be added to thrermupartial
rule is selected using the same kind of rouletteeeirh
mechanism often used in evolutionary algorithms\i#jere the
probability of a term being selected is given bg product of
the value of a problem-dependent heuristic functowl the
amount of pheromone associated with the term.

After the rule construction stage, every ruletfikn undergoes
rule pruning, where the aim is to remove all irvelet terms and
also to improve the predictive power of the curmei¢ R. This
process is necessary as some of the terms add#w tnile
antecedent may have been unduly selected by thmlpitistic
roulette wheel mechanism, and/or due to a localrista
function that only considers one attribute at aetiwhich has
the drawback of ignoring interactions between lattes.

Rule pruning consists of iteratively removing oamt at a time
from the rule while this improves the quality o&ttule. During
this stage, the consequent of the rule can chasmgeeanajority
class covered by the pruned rule can be differetibat of the
original rule. This process repeats until therensy one term
left in the rule, or any term to be removed next mot improve
the quality of the rule.

After the rule pruning stage, pheromone levelseffiath taken

Theconsequemontains the class attribute value to be pl’ediCted by the current ant are increased. More precisbel'arnount of

by the rule. Ant-Miner however was designed inligidb solve

pheromone associated with each term in the antatedehe

each ant

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

just-pruned is increased in proportion to the dydpredictive
accuracy) of the rule. The other terms — i.e. #rens that are
not present in the rule antecedent — have theirophene
reduced, to simulate pheromone evaporation inanel. This is
implemented by a simple normalization procedureteraf
increasing the pheromone of the terms used in tie the
pheromone of each term (either used or not in the) ris
divided by the total sum of pheromones for all ter®ince the
terms not used in the rule did not have their pimere levels
increased, their pheromone levels will be effedyiveduced,
by comparison with the terms used in the rule.

The REPEAT-UNTIL loop is repeated till at least oofethe

following terminating criteria is met:

« The number of constructed rules is equal or greitn
the number of ants specified by the user.

- The rule constructed by Aris exactly the same as the rule
constructed by the previolso_rules_converg- 1 rules,
whereNo_rules_convergs a user-defined parameter.

4. THE PROPOSED MULTI-LABEL ANT-
MINER

This section will describe the complete Multi-Lal#eit-Miner
(MuLAM) algorithm. Firstly, a high-level pseudocodss
presented in Pseudocode 2, outlining the main fomak
behaviour of MULAM.

At the start of the algorithm, MuLAM assigns all adable

training examples to the training set and it itigies the
discovered rule list with an empty list. In MuLAMach ant
does not produce a single rule like in the origiAat-Miner.

Rather, each ant discovers a candidate rule set verga
significant change. The reason for this is dueddrassing the
multi-label classification task, where there areltiple class
attributes to be predicted. Each ant discovergastione rule
and at most a number of rules equal to the numbalass
attributes, i.e. a different rule for each clasé¢opredicted. An
ant will discover a single rule only in the caseewhthat rule is
considered good enough to predict all class atedbu-
according to a criterion to be defined later.

At the end of each outer WHILE loop iteration, exdes that
have all their class attributes correctly covergdaby of the
rules in the just discovered rule set are remowvednfthe
current training set. Hence, the training set gadlgueduces in
size. This brings us to the condition of this WHIld&p, which
is executed as long as the number of examplesirethe

training set is greater than a user-defined pammet
MaxUncovExamples (maximum number of uncovered
examples).

At the start of each iteration of the outer WHIL&op, the
algorithm carries out pre-processing calculatiomsciv will be
needed to calculate the probability of selectingelan to be
added to a rule later. There are two kinds of datmn that are
performed here, in the order they appear in Pseut#o2. First,
the algorithm calculates and stores the informatiain [16]
associated with each term. Note that the value d@ére’s
information gain does not change throughout theafien of
this outer WHILE loop. Secondly, a pheromone maisx
created for each class attribute. This is a geisatain of the
original Ant-Miner where there is a single pheromanatrix
because there is a single class attribute. Eagiiiegbheromone
matrices contains one cell for each term, reprasgnthe
amount of pheromone associated with that term. Each
pheromone matrix is initialized by assigning an antoof
pheromone deposited directly proportional to thevymusly
computed information gain of each term.

After the initialization of the pheromone matricéss algorithm
starts a REPEAT loop. Each iteration of this lo@presponds
to a single ant constructing a candidate rule. dtwestructed
rule can potentially be decomposed into a set kfsriater in
the algorithm, as will be explained later. The REBFHoop
stops when the ant with indéxeaches a user-defined value, the
parameterMaxNoAnts which is the maximum number of ants
to be used for discovering a rule set in the curitemation of
the outer WHILE loop.

Every ant in MuLAM starts off with an empty partialle, i.e. a
rule with no term in its antecedent. In additiohe trule set
constructed by this ant, denotB&, is also initialized with the
empty set. Next the WHILE statement inside this REP loop

decides if the current ant should proceed to sele¢erm to be
added to the partial rule, based on two conditibntfy of which

must be satisfied. The first condition makes shat the ant can
only select a new term to add to the partial riithere are still
unused attributes from the set of predictor attébun the data.
This condition is also used in Ant-Miner. The set@ondition

ensures that there is still one or more classdshémnot been
predicted up to this point of the WHILE loop. Tliigndition is

used in MuLAM, but not in Ant-Miner. It representmn

adaptation of MuLAM to the multi-label classificati task.

When both conditions evaluate true, the algoritimoceeds to
the inside of this WHILE loop, where a new ternsédected.

Each ant selects a term to potentially add to tireeat partial

rule using a roulette wheel selection techniquécayoais to the
roulette wheel selection method popularly usedvioligionary

algorithms [7]. Each term occupies a slot of theletie wheel
with size proportional to the probability of seiegt that

particular term. The probability of selecting anyem term is

given by the product of the amount of pheromonea@ated

with that term and the value of a heuristic meagor¢hat term.

Once a term has been selected, this term is ordgdatb the
current partial rule as long as it satisfies thedition of the IF

statement; that is, as long as the inclusion oftiected term in
the partial rule does not make the antecedent cwemmber of
examples smaller than the parametdmExamplesPerRule
(Minimum Number of Examples per Rule).

Once a term has been successfully added to theeaigiet of
the current partial rule, the algorithm then triges make a
prediction for each and every class attribute m tifaining set
that has not been predicted up to this point oierithm.

Before the algorithm makes a prediction for thisrent partial
rule, it initialises the rule consequent with thapty set. This
rule consequent holds all class attribute values &éne being
predicted by the rule. The ant enters the FOR lodpere it
processes each class attribute separately. Soveny elass
attribute, the algorithm then decides under a repee-pruning
criteria whether the current class attribute shdwddadded to
the rule consequent as a prediction.

The pre-pruning criteria used in MuLAM is based@mamer’s
V coefficient [11]. This criterion consists of apig pre-
pruning when the value of Cramer’s V coefficientgieater
than a certain threshold calculated based on tte daing the
method described in [18]. If this criterion is séigd, then the
current class attribute is predicted by the ruleisTmeans the
algorithm adds to the rule consequent a tefFV;>, where
G is the currentifth) class attribute an¥; is the value ofC;
having the largest frequency among all examplesmr/by the
rule. This class attribut€; is then marked as predicted for this
ant. After the FOR loop, if the rule consequentds empty, i.e.
it contains one or more class attribute-value pdlrsn the ant
creates a complete rule using the current rulecadent and

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

predicting all class attributes held in rule conssg. This rule
is added to the current ant’s rule &%, and the WHILE loop

repeats for any class attribute that still existbe predicted.

TrainingSet = {set of all training examples}
DiscoveredRuleList = {}

WHI LE (TrainingSet > MaxUncovExamples)

t=1; /*antindex*/

Calculate information gain of each term considering
examples;

For each class attribute C

REPEAT
Ant starts with an empty partial rule R t

Current ruleset RS t={}h

WHI LE ((there is at least 1 unused attribute) AND (there
attribute)) Ant
with a probability proportional to the produc

| F (after adding the chosen term to the partial rule
MinExamplesPerRule) THEN
Add the chosen term to the current partial

RuleCons = O;

FOR EACH (Class attribute C i)
| F (partial Rule R ¢ predicts class attribute C

RuleCons = RuleCons

Mark class attribute C i as predicted;
END I F

END FOR EACH

| F(RuleCons # [0) THEN
Create complete rule CR

RS t=RS{UCRy;
END | F

ELSE
Quit this WHILE loop;
END | F- THEN- ELSE
END WHI LE

| F (there are still unpredicted class attributes)
Create one complete rule predicting each of t

FOR EACH (class attribute C

Create a temporary rule i IF(ante) THENC ;;

Use original Ant-Miner pruning technique to

the consequent to be modified during prunin

will potentially produce a new ante i only;
END FOR

END I F

FOR EACH (rule in RS t)
Update pheromone matrix for each predicted cl
of terms in rule antecedent and reducing pher
not used in the rule. Pheromone increasing is
class attribute C i only;

t=t+1;
END FOR

UNTIL (t = MaxNoAnts)
Choose best set of rules RS
the rule quality measure;

Add RS

TrainingSet = TrainingSet — {set of examples wher
predicted by RS best };

END WHI LE

pest t0 DiscoveredRuleList;

¢ chooses, out of the unused terms, a term to be add
t of a heuristic function and the pheromone;

i (with rule format IF term 1 e

i predicted by this rule)

pest @mong those generated by all Ants in current popul

all class attributes based on current training

i, initialize all cells of the pheromone matrix

is at least 1 unpredicted class
ed to current partial rule R

R the rule will still cover more than

rue R ;

i with high confidence) THEN

O (predicted class for class attribute C i);

AND ... term , THEN RuleCons);

THEN
hose class attributes;

prune this temporary rule. Instead of allowing
g, the current consequent is kept fixed, which

ass attribute C i in the rule, increasing pheromone
omone (evaporation via normalisation) of terms
based on quality of partial rule predicting

ation by using

e all the class attributes have been correctly

Pseudocode 2. A high-level description pseudocode of Multi-Label Ant-Miner (MuLAM)

current ant should add the newly selected termtgorule

As previously explained, inside the second WHILEppthe
antecedent. If this condition fails, then the aiion will not

condition in the first IF statement determines wieetthe

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

run the rest of the procedures within this secordIME loop.
Instead it exits the WHILE loop prematurely, andgeeds to
the IF statement right after this WHILE loop. Thisstatement
tests if there are still unpredicted class attebueft for this ant
to predict. If so, we need a method to completéliptiag these
class attributes. This is where the IF statemetgstaover and
builds one rule using original Ant-Miner's rule geation
procedure, whereby the rule antecedent is constiunt adding
one term at a time to the rule antecedent untilatthdition of a
term causes the antecedent to cover less than defired
number of examples (similar to thelinExamplesPerRule
parameter in MuLAM). The rationale for this steghat for the
class attributes that are not predicted up tophist, it is better
to build a new rule predicting the classes not isted by the
current rule than to attempt to correct the curratg, which is
badly predicting these classes. This is becauseuhent ant
has already found a good rule predicting a subkeil aclass
attributes, and by attempting to correct this tol@redict those
currently unpredicted classes, the result would tenbe a bad
rule predicting the majority of the classes. Orfee @antecedent
of a rule is finished, in Ant-Miner the majority lua of the
class attribute is predicted. The majority claskieas simply
the class value with the largest frequency in tteo§ examples
covered by the rule. In this IF statement, MuLAMngeates
each rule in a similar way as to Ant-Miner. Thefeliénce is
that, instead of predicting just one class as in-Mmer,
MuLAM will predict the majority value of each clasgtribute
that has not been predicted up to this point, ating one
complete rule for those class attributes.

If a rule has been generated as a result of thetdEement
mentioned above, this rule will undergo pruninghas rule can
potentially be very large with respect to the numtfeterms in
the rule antecedent as mentioned in [13]. The pgitéchnique
used in MULAM is an iterative procedure partly inted from
original Ant-Miner, whereby in each iteration therrh whose
removal best improves the rule quality is prunetl and this
process repeats till the rule quality can no lorggimproved.
In Ant-Miner, the class value predicted by the rudan
potentially change. With Ant-Miner, as there wasals only a
single class attribute to be considered, this watsanproblem.
However, with MuLAM, if we allowed the procedure &ter
the predicted class values for several class ate#) this
process would become very computationally expenghfeer
all, every time a term is evaluated for its removhé training
set would need to be scanned for the possibilitghef class
attributes’ values changing and, if we consideriécassible
combinations of class attributes’ values, there lddne a large
number of combinations of values of unpredicteds<sla
attributes to be considered. In particular, thisnhar would
seriously reduce the scalability of the algorithonproblems
with many class attributes. Hence, in MuLAM, to &vthis
problem, all the predicted class attribute values the
consequent of the rule being pruned remain the shmineg the
pruning procedure.

Once the current ant has finished generating onaare rules
to predict all class attributes, pheromone traiéstaen updated
simulating real world ants where they lay pheromasethey
travel along their selected paths, as explainedieean the

description of Ant-Miner (Section 3.1).

Pheromone updating is carried out for each rul¢herset of
rules constructed by the current ant. For each, rtie
pheromone matrix associated with each class attripredicted
by the rule is updated, by increasing the amourgharomone
of all matrix cells referring to the terms occuginn the
antecedent of the rule. The REPEAT-UNTIL loop terates

when the number of ants reaches a user-definednptea
MaxNoAnts(maximum number of ants). When this terminating
condition is met, from the set of rule sets discedeby all the
ants, the best rule set is chosen. Each of the iol¢hat best
rule set is then added to tbéscoveredRuleListwhich holds all
the rules that will be used to classify the tesad@o determine
which rule set is the best out of all the rule sstsstructed by
all ants during the entire REPEAT loop, each rude tgs its
quality computed as the average of the quality oreasf all
rules in that set. (The formula for computing aerglality is a
natural extension of the formula used in Ant-Mineiz. the
product Sensitivity (Se¥ Specificity (Sp) [13]. The extension
is that, instead of computing this product for agi class
attribute, in MuLAM the rule quality is the arithine average
of this product over all class attributes predichsdthe rule.)
The rule set with the best quality is chosen taabded to the
DiscoveredRuleListThis rule set is then used to mark the
training examples it correctly covers, i.e. exaraphatching
both the antecedent and the consequent of one obilés in the
discovered rule set. Since there are multiple csgutes in
the training set, one discovered rule may only igteal subset
of class attributes, and so effectively MuLAM doest
physically remove the examples from the training kestead it
uses a virtual flagging system whereby for eackschttribute
predicted by a rule, the examples that match bb#h rule
antecedent and the predicted class value are flaggebe
considered out of the training set when later ftera of the
algorithm try to predict this class attribute. Tlgtany future
calculations regarding the number of examples (afetring to
this class attribute) will not include these cowdeexamples.
Once a reduced training set is produced, the a\i¢h_E loop
will continue to run provided that the number ofaewples
which are not covered by the rules discovered sasfgreater
than the previously-mentioned paramé#ierxUncovExamples

5. COMPUTATIONAL RESULTS

This section will briefly explain the data sets dise the
experiments and then present the obtained results.

5.1 Biological Data Sets

The data sets used in our experiments originata femiprot
[19], which is one of the largest bioinformaticstatmses
holding information on sequenced proteins and thaictions.
Each record of the Uniprot database essentiallytagosm
information about a protein. We obtained, from UWaip 5
datasets, each with two class attributes to beigiegt] as
shown in Table 2. In order to create the prediattiibutes for
these datasets, out of the many fields describimgogein in
Uniprot, we used a field which has a set of refeesnto
PROSITE patterns [15]. In other words, each préteiacord
contains a reference to each PROSITE pattern (endioal
motif) present in that protein. Prosite is actuallyseparate
database which stores sequenced protein familiéslamains.
Hence, our datasets were created by using crasenees from
Uniprot to the PROSITE database for each of thaeprs
included in our datasets. Each PROSITE patternsés ias a
binary attribute. In other words, in each datasath example
(protein) is described by a set of binary attrisugmch attribute
taking the value “yes” or “no”, indicating whether not the
corresponding PROSITE pattern is present in thatepr.
Therefore, the discovered rules take, for instatiee following
form: “IF (prX = ye9 AND (prY = no) ... THEN (@anti-
oncogene= ye9 AND (apoptosis= no)”, whereprX andprY are
certain PROSITE patterns, whilahti-oncogeneand apoptosis
are class attributes of dataset 1 in Table 2. Tassattributes
and the number of attributes and examples for eathset is
summarised in Table 2.

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

Table 2. Summary of five data sets used in experiment

Data . No. of No. of
set Class Attributes Attributes Examples

1 Anti-oncogene 153 540
Apoptosis

2 Cell-cycle 156 1343
Cell-division

3 DNA-repair 102 1872
DNA-damage

4 DNA-repair 101 1826
SOS-response

5 DNA-damage 34 622
SOS-response

5.2 Results

We applied Multi-Label Ant-Miner (MuLAM) to each dhe

data sets listed in Table 2, and compared thes#tgesith the

results of three other classification techniquesstFas a very
simple baseline, we used the trivial majority difestechnique
to classify the examples in the test set. Thisriegle simply
assigns, to every test example (unseen duringriggirthe class
with the largest frequency in the set of trainingaraples.
Second, we used the original Ant-Miner algorithniird, we

used Clementine’'s implementation of the populadustrial-

strength C5.0 algorithm. Since Ant-Miner and C5.@ single-
label algorithms, they were run twice for each setaThese
two runs used the same set of predictor attribldeseach run
aimed at discovering rules predicting the valueaaddifferent

class attribute. This approach has the disadvasidigeussed in
section 2, but it is a fair way of comparing MuLAMith the

above techniques. The comparison with original Mirter is

important since MuLAM is a major extension of Anisdr,

and the comparison with C5.0 is important becabse is a
very popular classification-rule discovery algomith

Table 3. Number of antsused in Ant-Miner for each dataset

Data Set MuLAM Ant-Miner | Max No of Antsin
(timeinsec) | (timein sec) Ant-Miner
1 228.7 210.4 300
2 627.2 644.7 450
3 308.1 310.0 250
4 266.9 265.0 300
5 67.8 61.2 3000

All experiments with each of the four techniquesu(M\M plus
the other three techniques) were conducted runairigfold

cross validation procedure [20] for each datasédtelVirunning
this procedure, exactly the same folds (partitioofsjhe data
were used by each of the four techniques, in caerake their
comparison as fair as possible.

C5.0 was used with its default parameters in alaskts.
MuLAM was used with the following default parametén all
datasetsMaxUncovExamples 10,MinExamplesPerRule 10,
MaxNoAnts= 100. These values dflaxUncovExamplesand
MinExamplesPerRulare actually the default values of these
parameters in Ant-Miner too. Ant-Miner was used hwits
default values in all datasets, with the exceptibits parameter
MaxNoAnts which was set to a different value for each dstas
in order to perform more controlled experimentsr fbe
following reason. We wanted to compare MuLAM andt-An
Miner by giving each algorithm roughly the same antoof
computational time to solve the target classifatproblem.
Otherwise the better result of an algorithm couddalttributed
just to it spending more time to solve the probleather than
be due to its better effectiveness in discoveriogueate rules.
In order to give MuLAM and Ant-Miner roughly the rea
computational time in a controlled way, we firsh risluLAM
and, for each dataset, we set the paranMteiNoAntsof Ant-
Miner to a value which makes an Ant-Miner run tketabout
the same amount of time as a MuLAM run. The paramet
MaxNoAntswas chosen to be varied in these experiments
because this is the parameter that most influenies
computational time of Ant-Miner. Table 3 shows, feach
dataset, the resultinglaxNoAntsvalue adjusted for Ant-Miner
and the computational time taken for each algorithm
seconds.

The predictive accuracy for each algorithm, for headass
attribute in each dataset, is reported in Tabl@he numbers
after the %" symbol denote standard deviations. In the last
three columns of Table 4, some cells are marke¢)byvhich
means the corresponding accuracy is significantlyse than
MuLAM’s accuracy. (In principle a cell in the lashree
columns could alternatively be marked as (+), whiebuld
mean the corresponding accuracy is significantlftebethan
MuLAM'’s accuracy for the same class attribute, big result
was not observed in Table 4.) A difference in aacyrwas
considered significant if the corresponding staddagviation
intervals do not overlap. The majority classifseaccuracy was

Table 4. Predictive accuracy (%) in thetest set for each algorithm, using 5-fold cross validation

Data Class Majority .
Set Attributes MUuLAM classifier Ant-Miner €50
1 Anti-oncogene 79.5743.56 77.41+0.13 72.56+18.61 7.47+0.51
Apoptosis 85.09+2.571 85.74+0.13 76.25+23.42 885332
2 Cell-cycle 63.27+5.54 53.98+0.03 (- 67.51+7.17 | 3.99+0.0 (9
Cell-division 78.87+1.65 77.29+0.01 71.87+16.09 A7#0.2
3 DNA repair 97.20+3.0| 85.79+0.03 (- 97.688L. 85.65+0.12 (-)
DNA damage 92.09+2.24 78.63+0.01 (1) 93.85+3.24 .5¥80.15 (-)
4 DNA repair 99.21+2.19 87.96+0.0 (- 99.58+0.0 7.75+0.13 (-)
SOS response 82.8245.17 70.87+0.03 () 92.52+6.01] 70.71+0.13 (-)
5 DNA damage 84.7049.19 64.31+0.07 ({) 96.75+4.84| 4.06+£0.0 (-
SOS response 85.02+4.640 85.53+0.02 91.24+14.22 12868.44

significantly lower than MuLAM'’s accuracy in 6 oaf the 10
class attributes in Table 4. In the other 4 classbates the

differences in accuracies obtained by these twnigoes was
not significant. There was no significant differertmetween the

In Proceedings of the Genetic and Evolutionary Qatiajpon Conference (GECCO-2006), pp. 27-34

accuracies obtained by MuLAM and Ant-Miner in arfyttee 10
class attributes. Finally, C5.0's accuracy was ifigantly

lower than MuLAM'’s accuracy in 6 class attributasd there
was no significant difference in the other 4 clatgbutes.

Table. 5 Somerulesfound by MUuLAM and Ant-Miner

MuLAM’s Rule:
IF PS00321=0 THEN DNA-repair=1 DNA-damage=0

Ant-Miner’s Rules:
IF PS00321=0 AND PS50162=1 THEN DNA-repair=1
IF PS00321=0 AND PS00618=0 THEN DNA-damage=0

Recall that, unlike Ant-Miner, MuLAM is a multi-lah
classifier and as such it will try to predict onemore class
attributes with the same rule when possible. Tdblshows
examples of rules produced by MuLAM and Ant-Min&he
top section shows a rule discovered by MuLAM ang libe
rule predicts two classes (DNA-repair = 1 and DNekvhge =
0). The bottom section shows two rules discovergdAht-
Miner, one of them predicting only the class DNAgag = 1
and the other one predicting only the class DNA-agen= 0.
Hence, in this example MuLAM found a very genesitnple
rule using a single Prosite patte500321=0) to predict two
classes, whereas Ant-Miner found instead two ma@ecific
rules, each of them using not only the Prosite epatt
PS00321=0 but also another Prosite pattern, each each of thes
more specific rules predicts just one of those dlasses.

6. CONCLUSION AND FUTURE WORK

The results of the experiments showed that, oveké&liLAM
obtained predictive accuracies considerably betiemn the
predictive accuracies obtained by the simple migjalassifier
and by C5.0. This clear superiority over the majociassifier
was expected, given the extreme simplicity of tblassifier,
which actually ignores the values of all prediatiributes. The
superiority over C5.0 was a positive result whiclaswnot
expected, considering that C5.0 is an industryagtie
algorithm resulting from several decades of redearaecision
tree induction, whereas MuLAM is a new algorithrm @e
other hand, there was no significant differencewben
MuLAM’'s accuracy and Ant-Miner's accuracy in the
experiments reported here. In any case, MULAM adtidas the
advantage of discovering some rules that predisinguthe
same rule antecedent) two class attributes, whiqtliogly
shows some correlations between different clasbaties. Ant-
Miner is of course unable to discover such con@fat since it
is a single-label classification algorithm.

Recall that all results reported here used defsardameters for
all algorithms, in order to make the comparison agnthe
algorithms as fair as possible. One direction tdufe work is
to try to optimise the parameters of each algorittimthe
datasets used in the experiments, to maximize ¢heracy of
the discovered rules. Another future work is toedperiments
with more datasets and more class attributes piasela

7. REFERENCES
[1] Bonabeau, E. and Theraulaz, G. Swam Sm&tientific
American, March 2000, pp. 54-56

[2] Bonabeau, E., Dorigo, M. and Theraulaz, G. Swar
Intelligence: from natural to artificial systemsDxford
University Press1999.

[3] Clare, A. and King, R.D. Knowledge discovery nmulti-
label phenotype datd&roc. PKDD-2001, LNAI 2168pp. 42-
53. Springer2001

[4] Clark, P. and Niblett, T. The CN2 induction afghm,
Machine Learning, Vol. 3, pp 261-28389

[5] Deneubourag, J.L., Aron, S., Goss, S. and Rksté.M. The
self-organizing exploratory pattern of the argemtamt,Journal
of Insect Behaviour, 3: 159-16899Q

[6] Dorigo, M., Caro, G.D. and Gambardella, L.M. tAn
Algorithms for Discrete OptimizationArtificial Life, Vol 5,
No.3, pp. 137-1721999.

[7] Freitas, A.A.Data Mining and Knowledge Discovery with
Evolutionary AlgorithmsSpringer2002.

[8] Goss, S., Aron, S., Deneuborg, J.L. and PastéeM. Self-
organized shortcuts in the Argentine ANRturwissenschaften,
76:579-581,1989

[9] Grassé, P.P. La théorie de la stigmergie: iessa
d’interprétation du comportement des termites caongturs,
Insectes Sociaux, 6: 41-81959

[10] Karalic, A. and Pirnat, V. Significance levddased
classification with multiple tree#nformatica, 15(5)1991.

[11] Kendall, M.G. Multivariate Analysis Second Edition
Charles Griffin, High Wycombe, Englanti980.

[12] McCallum, A.K. Multi-Label Text Classificationmwith a
Mixture Model Trained by EMAAAI 99 Workshop on Text
Learning,1999

[13] Parpinelli, R.S., Lopes, H.S. and Freitas, AData Mining
with an Ant Colony Optimization AlgorithmEEE Trans. On
Evolutionary Computation, 6(4), Aug 2002, pp. 332-3

[14] Parpinelli, R.S., Lopes, H.S. and Freitas, A&n Ant
Colony Algorithm for Classification Rule Discovery: Data
Mining: a Heuristic Approachpp. 191-208. Idea Group, 2002.

[15] Prosite http://ca.expasy.org/prositévisited 2005)

[16] Quinlan, J.R.C4.5: Programs for Machine Learning
Morgan Kaufmann1993.

[17] Schapire, R. and Singer, Y. BoosTexter: A bimgsbased
system for text categorizatioklachine Learning, 39(2/3): 135-
168,2000Q

[18] Suzuki, E., Gotoh, M. and Choki, Y. Bloomy D&on
Tree for Multi-objective ClassificationProc. PKDD 2001,
LNAI 2168, pp. 436-442001.

[19] Uniprot databaséattp://www.unirpot.org(visited 2005)

[20] Witten, ILH. and Frank, EData Mining —Practical
Machine Learning Tools and Technigueand Ed. Morgan
Kaufmann, 2005.

