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Abstract Holonomic function theory has been success-
fully implemented in a series of recent papers to efficiently
calculate the normalizing constant and perform likelihood
estimation for the Fisher—Bingham distributions. A key
ingredient for establishing the standard holonomic gradient
algorithms is the calculation of the Pfaffian equations. So
far, these papers either calculate these symbolically or apply
certain methods to simplify this process. Here we show the
explicit form of the Pfaffian equations using the expressions
from Laplace inversion methods. This improves on the imple-
mentation of the holonomic algorithms for these problems
and enables their adjustments for the degenerate cases. As
a result, an exact and more dimensionally efficient ODE is
implemented for likelihood inference.

Keywords Bingham distributions - Fisher—Bingham
distributions - Directional statistics - Holonomic functions
1 Introduction

The Fisher—Bingham distribution is defined as the condi-
tional distribution of a general multivariate normal distribu-
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tion on a unit sphere. In particular, for a p-dimensional mul-
tivariate normal distribution with parameters p and X, the
corresponding density function with respect to dgp-1(x), the
uniform measure in the p — 1- dimensional sphere S” =1 s

1 _alxTle Ty
fx) =y o N\ © X Rdgp-1(x)
(52 ﬂ)
SIS s D
O(e_( ) 22 ( #)l(xszl)
where
2_1 xT 71x -
C(T’E_l”“> = / T el (x)
Sr-1

is the normalizing constant. Since multiplication by any
orthogonal transformation induces isometry in S?~!,

>t A7t

where A = diag(82, 82, ..., Sf,) and the orthogonal matrix
O € O(p) are obtained from the singular value decompo-
sition of ¥ = OT A0. Similarly, we can also choose the
particular O such that entries of A~10 u are non-negative.
Hence, without loss of generality, we can assume that the
covariance parameter is diagonal, and therefore, a more effi-
cient parametrization of dimension 2p can be used for the
normalizing constant

C@,y) = / ezl!}:l(—9ixi2+1/ixz‘)dslkl(x)
Sp-1
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with @ = (61,6,,...,0,) = diag(AT_l), ie. 6 = 2}7 and

Yy = v, ¥p) = A~1Op. Note the slight incon-
sistency in notation as we write C(diag(8), y) = C(, p).
The special case of y = 0 corresponds to the Bingham
distributions studied separately in Wood (1993); Kume and
Wood (2007); Sei and Kume (2015). Despite the fact that
these distributions are part of the exponential family (see
e.g. Mardia and Jupp 2000), maximum likelihood estimation
ultimately involves numerical routines for approximating the
normalizing constant term C (@, y). The method of Kume and
Wood (2005) relies on the saddlepoint approximation which
is known to be not only very close to the exact value with lit-
tle computational cost but also numerically stable. However,
recently there has been a renewed interest in this problem
with the implementation of the holonomic gradient method
(HGM), which in theory is exact since the problem of calcu-
lating C is mathematically characterized via a solution of an
ODE (see e.g. Nakayama et al. 2011; Hashiguchi et al. 2013;
Sei et al. 2013; Koyama 2011; Koyama and Takemura 2016;
Koyama et al. 2014 and Koyama et al. 2012).

In particular, the HGM approach generates exact solu-
tions if the corresponding ODE is numerically stable and
the dimensionality of the parameters is not extremely large.
Please note that, in the relevant literature, numerically unsta-
ble ODE’s are called stiff (see eg 10.6 in Zarowsky 2004).
Koyama et al. (2014) focus on the numerical efficiency of
HGM implementation by expressing the corresponding Pfaf-
fian equations (see Sect. 4) in terms of some elementary
matrices R; and Q;. Note that HGM is applicable not only
to C but also any holonomic function. See Chapter 6 of Hibi
(2013) for more details.

The contribution in this paper is threefold. Firstly, by
expanding the Laplace transform in Eq. (1) in partial frac-
tions, we obtain the Pfaffian equations explicitly in terms of
only two vector parameters @ and y, each of length p. This
makes the differential structure of these functions more trans-
parent and the implementation of the holonomic algorithm
more dimensionally and computationally efficient, since at
most 2 p parameters are needed for the normalizing constant
and there is no need to use symbolic algebra packages for
generating the Pfaffians explicitly.

Secondly, by imposing some constraints on 6; and y;, our
approach is easily applied to many important sub-classes
within the Fisher-Bingham family (such as the Bingham,
Watson and Kent distributions). In fact, the general methodol-
ogy of HGM algorithms does not automatically apply to these
situations because the Pfaffian equations become degener-
ate. In particular, the corresponding ODE is stiff if some
eigenvalues of A coalesce. Therefore, special attention for
cases with various multiplicities in parameters is practically
useful in the model selection process. Our explicit Pfaffian
expressions, however, require minimal adjustments for these
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degenerate cases. The special case of Bingham distribution
appearing when all y;’s are zero is considered separately by
Sei and Kume (2015). However, in this paper our approach
is more general and accommodates all possible variations in
the parameter space. Therefore, we can easily perform model
selection within the Fisher—Bingham family based on the
standard likelihood ratio tests. If we only need to evaluate the
normalizing constant and the first-order derivatives at these
degenerate points, the HGM with respect to the radius param-
eter can be applied as Koyama et al. (2014) and Koyama
and Takemura (2016) suggested. However, if we also have
to evaluate higher-order derivatives (e.g. standard errors for
MLE) or apply the ODE along any general curve and not just
as radial rescaling of parameters, the Pfaffian system in our
paper is necessary.

Finally, while many papers focus on the normalizing con-
stant, there has not been much interest in the estimation of
the orthogonal component O from the real data. For p = 3,
this problem is tackled in Kent (1982) where a closed form
solution is shown for a very useful family of spherical dis-
tributions. However, for general p such a solution is not
available. We combine the holonomic gradient method for
the normalizing constant with that of a particular solution on
orthogonal matrices O so that a maximum likelihood esti-
mator is evaluated. This method is shown to work well in
both simulated and real data examples, but special care is
needed in the general setting for the Fisher-Bingham distri-
butions due to multimodality of the likelihood function for
these members of the curved exponential family.

The paper is organized as follows. We start with gen-
eral remarks about the Fisher—-Bingham normalizing constant
where we provide a simple univariate integral representation.
We then give a brief introduction to the holonomic gradient
method which characterizes the the evaluation of C(6, y) as
a solution of an ordinary differential system of equations.
The explicit expressions for the Pfaffian equations needed
for such ODE in the case of the Fisher—Bingham integral
are given in the next section where degenerate cases with
multiplicities on the parameters are specifically addressed.
We then focus on the implementation of the proposed MLE
approach for both degenerate and non-degenerate cases of
Fisher-Bingham distributions so that some log-likelihood
ratio test can be used for choosing the appropriate model.

2 Laplace inversion representation
2.1 General case

Based on the key result in Proposition 1 from Kume and
Wood (2005), one can easily derive that

d P Vi2
C@,y) = 27 P/? Hgi—l/zeZizl W £.(1)
i=1
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where f,(1) is the density at point 1 of r = Y7, y2,
while y; are independent normal random variables as y; ~
N(ZL(;i,ZLQi) with 6; = 2‘? and y; = 4 > 0. Since the
random variable r takes ﬁon-negative Vélues, the Laplace
transform of its density is the same as its moment generating
function (with a sign switch in its argument) which in our
parametrization is:

2 2
P Vi Vi

e—i=1 O+ ~dg;
P NTF1/6;

Applying the inverse Laplace transform

L(t) =

P L_ﬁ
i=1 4@;+1) ~ 36;
e 1 1 ¢

1
— | =————=e€'dr,
27i) 17, JT+1/6;

iR-‘rt()

)= - / L(ye'dr =
2mi

iR-i—to

for any —#9 < min(@), implies

CO,y) = [eXZin O g e (x) = /A(y, 0)e'dr
-1

Sr iR+1g

ey

where
L
2gP/2 P AT

Ay, 0) = .
KSR § W

Equation (1) establishes the general Fisher-Bingham
normalizing constant in terms of an univariate complex inte-
gration. In particular, it is easily seen from (1) and the
definition of A(y, @) that for any ¢ € R

C(o’ )’) = C(av |}’|) and C(o —C, )’) = C(gs }’)ec (2)

where |p| is the vector of absolute values of y. Therefore,
without loss of generality we can assume that both vector
parameters # and y have non-negative entries.

2.2 Degenerate cases

Constraints on the parameter values  and y could lead
to degeneracy in the corresponding ODE. For statistical
inference however, some model constraints in the Fisher—
Bingham distributions are necessary for practical use. Such
models induce constraints on @ and y for the corresponding
normalizing constants as follows (c.f. Mardia and Jupp 2000,
Table 9.2):

— Bingham distribution is generated if y is set to zero.

— Fisher-Watson if 6 = 03 = --- =0, and y3 = 4 =
=y, =0

— Kent distributions if y» = y3 = --- = y, = 0 and
Zf:] 0; = po

— von Mises—Fisherif ) =6, =--- =0,

— Bingham-Mardiait 6, =63 =--- =60, and y» = y3 =

- Watsonif 6 =603 = --- =0,andy; = yp = --- =
Yp = 0

Note that property (2) implies that 6; can be assumed
strictly positive. Alternatively, this property implies that we
can also fix one entry 6; to a fixed value and hence reduce
the dimension by one, but we will not concern ourselves
here with that. Of the models mentioned above, degeneracy
appears in the corresponding ODE if one or two of the fol-
lowing scenarios occur:

(a) some entries in @ coincide.
(b) some entries in y are zero.

In order to accommodate scenario (a), let us assume that
we have [ distinct values such that each 6; has multiplicity n;,
i.e.ny+n2+...4n; = p.Letusindex the corresponding n;
entriesof y as yy i, . . ., ¥n;,i. From the integral representation

of
i 2
27 P/2 ! ezz&e:,-ﬁ'i .
C@,y) = - / —e'dr,
( )’) 2 o o (91 +t)ni/2
1IR+19 "

itis clear that its value depends on only the summation terms
> 2 and not on the particular values y2;. This implies
that for scenario (b), we can work with > ' | yfi = yl.2
and perform the required differentiation only with respect to

this particular y; ; = y; =,/ Zf’zl yrzl., while the other yrzl.

remain zero. As a result,

l L
PG

2 P/2 ,
oy =" /H—(9i+t)ni/2edt,

3

iR+1q =

and without loss of generality, we can focus on evaluating (3)
with [ distinct 6;, while (1) is derived from above if n; = 1
for all i. In the remainder of the paper, we will focus on
evaluating C(@, y) as in (3) where @ has [ distinct values.

3 Holonomic gradient method

In this section, we briefly review the framework of the
holonomic gradient methods. See Nakayama et al. (2011),
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Hashiguchi et al. (2013), Sei et al. (2013), Koyama (2011),
Koyama et al. (2014) and Koyama et al. (2012) for details
and further information.

Let ® be an open subset of the d-dimensional Euclidean
space. Denote the partial derivative d/dc«; by 9;. A function
c(a) of @ € O is called holonomic if there exists a finite-
dimensional (say r-dimensional) column vector g = g(a)
consisting of (possibly c(a) and higher-order) partial deriva-
tives of c(«) such that g satisfies

0igla) =Pi(v)g(a), i=1,...,d, “)

where P; (o) is a r x r-matrix of rational functions of «. For
example, the trigonometric function c(«) = sin« is holo-
nomic since it satisfies

(5)- ()
dc —10/\oc)’
where 0 = 0/da, d = 1 and r = 2. It is known that the
normalizing constants of the von Mises—Fisher, Bingham and
Fisher—Bingham distributions are holonomic.

The Eq. (4) is called the Pfaffian equation of g. This
equation essentially states that higher- order derivatives of
g(a) are linear combinations of its entries while involving

the Pfaffian matrices as rescaling constants. For example, the
second-order derivative is

0;0;g =0;(P;g)=(0;Pj)g+ P;(0;g)
=(@;Pj))g+P;Pig
=(Pj+ P;Pi)g.

Assume that a numerical value of the vector g(a(?)) at
some point &) € @ is given. The holonomic gradient algo-
rithm evaluates g (1) at any other point (1. Here the term
gradient refers to the gradient of g(a).

Let a(t), T € [0, 1], be a smooth curve in & such that
a(0) = a«© and @(1) = a'V. Denote g(r) = g(a(r)).
Then, it is easily shown that g(7) is the solution of the ODE

£ 80 =K@z 5)
where
K(r) = Xd) 9O p @) 20) = g@®)

dt

i=1

In particular, g(1) = gaM).

A natural choice of a(7) is the segment a(t) = (1 —
D)o@ + ra) connecting «® and oV with the constant
derivative vector d”g# = agl) — ocgo). The holonomic gra-
dient algorithm is described as follows:
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Input a0, g(a(o)), aD and a sufficiently small number
5> 0.

Output g(aV).

Algorithm

1. Solve the ODE (5) over T € [0, 1] numerically by
a Runge—Kutta method so that the solution is attained
within a required accuracy.

2. Return g(1).

Note that the standard numerical routines for solving (5) are
highly accurate and available in most computer packages.
More specifically, the rk function in the deSolve package of
R provides the required solution for a given accuracy.

As shown later in Sect. 5, the holonomic gradient method
is used for maximum likelihood estimation via some gradient
descent scheme, where the orthogonal matrix O can some-
how be treated independently from the normalizing constant.
As a result, we only need the Pfaffian equations for diago-
nal covariance matrices when the corresponding ODE has
dimension 21.

4 Explicit Pfaffians and HGM for Fisher Bingham

The parameters of Sect. 2.2 for the most general Fisher—
Bingham case are &« = (0, ), i.e. dim(®) = 2/ where [ is
the number of distinct values of 6;. Using properties (2), we
can assume here that 6; and y; are allowed to vary freely as
positive values, while the smallest entry of € can be fixed to
0. As a direct consequence of differentiating (1) and the fact
that 7 x? =1,

1

O, y)
; 0 —C(0, ). (©6)

This equation implies that partial derivatives % are suf-

ficient for evaluating C (@, y) where the vector gl has length
r = 2l and is defined as

aC@,y) 9C@,y)aC@O,y) 9C@O,y)
g@,y)= 59 59 5
1 i Y1 oy

)

where the first-order partial derivatives above are easily seen
from (1) or (3), to depend on y and € as

aC(0,y) _ yl.z

— nj .
o f (2(9,- T Al t)2> Ay, )edi
iR+t0
®)
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and for y; # 0
ac®.y) /
o —2(0 T )A(y 0)e'dz. ©)
iR+

In this case, the corresponding ODE as in (5) is seeking the
solution of some vector curve g(a) of dimension 2/ and the
required normalizing constant is simply minus the sum of
the components of this vector as in (6). The left side of the
Pfaffian equations (4) is clearly % and g—i, which are actu-

vatives -C@.)
ally the second-order derivatives 30,07,

. In other words,
the Pfaffian equations (4) are stating identities such that these
second-order derivatives of C(6, y) are linearly dependent on
the first-order ones and Pfaffian entries. Therefore, in order
to establish explicitly the Pfaffian equations for g we need to
consider such particular relationships between the first- and
second- order derivatives of C(, y). They are stated in the

following theorem:

Theorem 1 If69; # 0; and y; # 0 # y;, the Pfaffian equa-
tions (4) for the general Fisher—Bingham distribution are
generated by

2 T

n_o Y 3C0.y)
200;—0) T 40,—6;)> 06
v 9C®,y)
azc(o’ }’) _ 2(91 ) + 4(9i—9£‘)2 agj (10)
00;00; - n;yi YiY; 3C0.y)
40;-607 T 40,—0,7 i
niyj V,‘z Vi —aca(o ’_Y)
4(6,—0;)2 4(0,-—@)3 Vi
T /09C@O.y)
5 2(0 9) 30,
0-C(0, }’) v} o |
39 Ay 2(9 9) 4(9, —6;)? Vi
C@#.y)
4(9 9 )2 oy
aC(0,y)
°CO.y) _ o= 91 i 1
3),3 aC(0.y) (12)
i9Yj =] %,
I
?CO.y) _ )3 9’C@.y) C(®.y) 13)
8)4391 itj=1 aeja)/i 3]/,'
I
’Co.y) _ Z 9°C(6,y) 9C@,y) (14)
9% - 96,00, 36;
0’CO.y) _ _acw, y) ni—103C@,y) 15)
yi 06; Vi Vi
where azgj(g;:') nd Bag(aey) in (13) and (14) can be given in

terms of first-order dertvatlves using (11) and (10).

The proofs of these identities which are in “Appendix” rely
on results from partial fractions.

Note also that as the Pfaffian matrices are defined in terms
of the pairwise differences 6; — 0, one can easily see that
the ODE solution for C(#, y) satisfies properties (2).

As a corollary to the theorem, the differential equation
for the well-known von Mises—Fisher distribution is derived
from (6) and (15) as:

9%C0,y1) | p—109C0, 1)
R AL "0, m) =0.
7 14 g
where [ = 1, ny = p and @ = 0. The expression

yl%_lC (0, y1) satisfies equation 9.6.1 in Abramowitz and
Stegun (1972) for the modified Bessel functions and is con-
sistent with the known expression for these cases (see 9.3.4
in Mardia and Jupp 2000).

Two types of Pfaffians

The Pfaffian matrices will be of two types: P; and P;; for
i = 1,2,...,1 since the vector g in (7) with parameters
o = (0, y) implies g; = acsg.,y) and g;,; = 80;?/7"). Each
P; or P;; will be of dimension 2/ x 2! , with all but two rows
having at most 4 nonzero entries. The explicit expressions
are found in “Appendix”

For a curve ¢ with constant derivative, the matrix func-
tion K of (5) will be a linear combination of the 2/ Pfaffian
matrices.

This implies that for situations where some ¢; and 6; coa-
lesce, the matrix K will have intolerably large entries due
to the presence of @—ay 9), for r = 1, 2,3 in the Pfaffian
matrices. In these cases, stiffness in the corresponding ODE
could appear. These situations are generally addressed by
reparametrizing or changing the integrating curve

a(t) along which K remains manageable. For example,
the choose of integrating path along some radial direction as
suggested in Koyama et al. (2014) and Koyama and Take-
mura (2016) seems to work well. The default setting in our
implementation is based on the same path so that

Ny

0i(t) =16; 7i(r) =

starting from a small 7o so that g(a(tp)) is accurately
evaluated as a starting point for the ODE. For example,
using the curve above for a choice of close entries for
0 = (1,2.9999, 3,3.0001) and y = (1, 1, 1, 1) the method
works well by providing within 0.53 seconds a value for
C(#,y) = 2.9753553. Note that the saddlepoint approxima-
tion provides the value 2.942742 in 0.001 seconds. This is not
surprising since, while SPA is very fast, the proposed method
relies on a potentially computationally expensive step of eval-
uating the starting value of g at a sufficiently small 7 so that
to guarantee the required accuracy at the target value 7 = 1.
In general, our method could require a careful choice of both
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the starting values and the integration path so that the ODE
is does not have numerical problems. However, our imple-
mentation with the radial curve described as not failed in the
examples that we have considered.

One can easily see that the Pfaffian values do not become
degenerate even if all y; become zero (except cases when
n; > 1); therefore, a possible starting value for carrying out
the numerical evaluation for general C(8, y) or g (8, y) could
be the corresponding derivatives of the Bingham normalizing
constantat g(#, y = 0) (evaluated as in Sei and Kume 2015),
and then stemming from this point in R?, a second integra-
tion curve can be defined ending at the required g(@, p).
In cases of n; > 1, we can use the power series derived
by Kume and Walker (2009) and Koyama et al. (2014) as a
starting value of g(0, y).

5 MLE optimization using the gradient approach

If the observed data are collected in a matrix X =
Yo i

(x1, x2, .. ==L

., Xp) of dimension p x n, such that A = m
and B = #, the corresponding likelihood function is

Al Al
= —nlogC (T y) — ntr (AOTTO - OByT>

—n <logC(0, ) + 1 (AO " diag(0)0 + OByT)>

with 27 = 074710, C(E, 27 ) = C(AL  y), y =
A~'Op and ATfl = diag(#), while without loss of generality
one can replace O with — O as this does not affect 0T A~10
but switches the sign of OBy '.

Therefore, maximizing log 5(2771, >, X) is equiva-
lent to minimizing

logC(#, y) + tr(AO' diag(6)O + OBy ). (16)

Since values of @ can be shifted so that its smallest value
becomes 0 and O can allow for y to have non-negative entries,
we can optimize (16) on § > 0 with min(#d) =0and y > 0
by iteratively updating the parameters which increase the
likelihood value such that:

@ Springer

1. for a fixed O, consider the optimization problem on 6
and y which is performed in 2/ dimensions including the
ODE for the HGM implementation.

2. bykeeping these values @ and y fixed, we can then find the
optimal O by minimizing or decreasing only the quadratic
part of the likelihood 77 (AO " diag(9)O +OBy ").

In order to establish a gradient descent approach for the first
step, we only need the partial derivatives of log L(#, y, O)
as follows:

dlogL(8,y, O) aC(@0,y) . T
= d OAO
20 00 C@,y) el )
(17)
log L(0 aC(0 1
a 0og ( Vs O) _ C( ,}’) —G—BTOT (18)
oy dy C@0.p)
where BCE)%)I) I and 2€0.») 1

Co Gy C@y) e the output of our
holonomic gradient algorithm implementation for the Pfaf-
fian equations shown earlier. In its general form, the second
optimization needs special care as it is a non standard opti-
mization problem in O(p). We show below an adopted
gradient method which addresses this problem and therefore
completes the MLE optimization. In fact, two special cases
that do not require our optimization in O(p) are:

e Bingham distribution, i.e. y = 0, here the orthogonal
component of the SVD decomposition of A is optimal

e Kent distributions for p = 3 where approximate MLE
is used and the problem is conveniently reduced to an
optimization in O(2) after the third column vector of
O is chosen independently such that the 3-dimensional
vector B coincides with a fixed axis (see Kent 1982, Sect.
4).

5.1 Optimization in O
In particular, we need to find the optimal O such that

O = argmin tr(AO " diag(9)O + OBy ")
0cO(p)

In fact, this problem is equivalent to

2

0= argmin
0eO(p)

1
diag(vV6)OA'/? + A~'/’By "dia (-)
g y diag| 7%

This is the weighted Procrustes optimization problem con-
sidered in Chu and Trendafilov (1998). The authors there
adopt an ODE approach to this problem as a simple adaption
of continuous gradient optimization. We show in the fol-
lowing the gradient descent version in discrete time which
can be immediately implemented within a unified MLE
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optimization procedure for the Fisher—Bingham family of
distributions. Note that, provided we allow in the likelihood
optimization the sign of one of the components in p to vary,
the optimal matrix O can be allowed to be a rotation matrix,
i.e. O = e” where v is skew symmetric, i.e. v+v! =0.

Proposition 1 A necessary condition for O to be an optimal
orthogonal matrix is that

A = diag(9)OAO " — OAO "diag(9) + yB' O

is symmetric.
Proof (see “Appendix”). O

In our case however, we can implement the gradient approach
in the orthogonal group by taking as a possible new update
for O some rotation along the curve

Oc” where 9=A4— A" (19)

Clearly, this curve reduces to a single point only if .4 is sym-
metric, i.e. O is a critical point. We can use this fact as a
stopping criterion in our gradient optimization. We proceed
in a similar way to obtain the second derivative, and it can be
shown that a necessary condition that a particular critical O
is a local minimum is

r(A + 20A0 'diag(0)) (v>) " +21r(AO " v diag(0)v0) >0
Vo=—v'
5.2 Algorithm for finding the MLE

We now have all the ingredients to establish our gradient
approach for the MLE of the Fisher—Bingham distributions.

Algorithm

For a given initial set of estimates 6, y and O, we perform
the updates as follows:

dlogL(,y,0)
=P s

=0
1 + 4

where is as in (17) and 8y is a real number
such that log L(é, y,0) >1logL(,y,0).
dlogL(8,y,0)
—= s,

dy

dlog L(6,y,0)
a0

where 2102L©0.y.0) La(;f’y‘o)

is asin (18) and §, is a real number
such that log L@, 7,0) > log L@, y, 0).
3. 6 = eﬁtOO

where v is calculated as in (19) and 7 is chosen such that
logL(#,7,0) >1logL(,7y,0).

4. We stop when the derivatives in steps 1 and 2 and v are
practically zero.

Note, however, that if we wanted to fit the Bingham dis-
tribution, i.e. ¥ is assumed to be zero, then there is no need
to implement step 3 above as the optimal O in this case is
simply the one for which A = 0 that is OAO T is diagonal.

5.3 Numerical evidence

In Nakayama et al. (2011), the authors illustrate the gen-
eral methodology of holonomic gradient method by focusing
on two data sets: one from the area of astronomy and the
other one from the magnetism. We revisit the first data set in
order to confirm that our method gives the same MLE results.
We also want to make use of our different parametrization
which deals with the sub-classes of Fisher—Bingham family
to perform statistical inference to choose the most appropriate
model. The second data set considered is previously used in
the paper of Arnold and Jupp (2013) where a statistical model
of orthogonal frames is introduced. Particular recordings of
three orthogonal axis related to individual earthquake events
in New Zealand are grouped in three data sets. Each triplet
of orthogonal axes in R3 related to a particular earthquake
event gives rise to a direction orthogonal to the horizontal
plane. Observations of these directions can allow modelling
by Bingham distributions c.f Arnold and Jupp (2013). So we
have three classes of directional data where Bingham distri-
butions are considered appropriate. In particular, a Bayesian
modelling approach to fitting Bingham distributions to such
data is also considered in Fallaize and Kypraios (2014). We
will show below that in fact the best modelling choice among
the sub-classes of Fisher—Bingham family is indeed the Bing-
ham distribution.

Astronomy data

For this data set in our parametrization, the components A
and B are as follows:

0.312 0.029 0.071 0.006
A =1 0.029 0.360 0.046 B = | 0.005
0.071 0.046 0.327 0.076

Fitting the Fisher—Bingham distribution to these data, we get
the following MLE values

0 0.122(0.124)
0rs = | 0.708(0.576) | 7 = | 0.087(0.087)
1.416(1.469) 0.197(0.196)
. (—0.511(—04510) —0.612(—0.613) —0605(—0.604))
Opg = | —0.490(—0.489) 0.785(0.784) —0.380(—0.383)
0.706(0.708) 0.102(0.100) —0.700(—0.699)

where the values in brackets are the MLE estimates using
the saddlepoint approximation for the normalizing constant.

@ Springer
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The optimal likelihood value rescaled by —n as defined
in (16) is 2.457746 = log11.67846 which is same as the
value reported in Nakayama et al. (2011). The correspond-
ing quantity for the saddlepoint approximation is 2.463414.
We fitted to this data set the Kent distribution and the MLE
of the corresponding quantities using HGM (and saddlepoint
approximation) are

0 0.099(0.098)
Ok = | —0.703(—0.783) | px = 0
0.703(0.783) 0
. ( —0.461(—0.463) 0.774(0.775) —0.435(—0.429) )
O = 0.493(0.495) 0.631(0.628) 0.599(0.601)
—0.738(—0.735) —0.062(—0.066) 0.672(0.674)

with 2.465478 and 2.471299 being the corresponding values
of function (16) at these optimal points. Since the difference
in the number of parameters between these modelsis § —5 =
3, we can apply the log-likelihood ratio test, under the null
hypothesis of the Kent model

Hy : 2n (log L(@ k) — log L(OFp)) ~ x3

where log L is (the rescaled log-likelihood by —n) defined in
(16) and Ofp and O g represent the MLE estimates for the
full Fisher—Bingham and Kent, respectively. The sample size
is n = 168, and the value of likelihood ratio statistic is there-
fore 2 x 168 * (2.465478 — 2.457746) = 2.597952 which
suggests that there is not enough evidence supporting the full
Fisher-Bingham distribution model here. The same conclu-
sion holds for the saddlepoint approximation quantities.

Earthquake data

The three axes of interest for an earthquake event are the
directions of compressional axis P; tensional axis T, while
the null axis A is defined as A = P x T. For these data
sets, the first two axes tend to be horizontal, and therefore,
the third axis points vertically. These axial data are shown in
Fig. 1 and are split into three groups of particular interest. The

Froih ,f WAt

»’ / NAAZ
h PA et A AAA AA;}\ R
A V&WP % & rA f‘:
m \ A‘p
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Fig. 1 The planar projections on the horizontal plane of the frame of
orthogonal axes (P A T) related to earthquake records. The left plot
shows the data for earthquakes in Christchurch prior to 22 February
2001, the middle plot those recorded post 22 February 2001, and the
third plot refers to earthquake records in South Island. The point +
in each plot denotes the mode of the Bingham distribution fitted to
directions of axis A

o l
A

¥

'Q:‘;
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§b<
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key assumption in modelling these data sets is that observed
directions of axis A follow a Bingham distribution on the
sphere of dimension 2.

The MLE:s for the Bingham distributions parameters fitted
to the three data sets of directions of axis A shown in Fig. 1
are as follows:

. 0 0.008 0.054 —0.999

0p = | 5.059 Op =] 0.428 0.902 0.052
3.804 0.904 —0.428 —0.016

. 0 0.044 0.012 —0.999

0p = | 5.094 Op =10.522 0.852 0.033
2.941 0.852 —0.523 0.031

. 0 0.583 0.808 —0.087

0p =] 0.784 Op = | —0.750 0.494 —0.439
—1.025 —0.312 0.321 0.894

We also fitted Fisher—Bingham distributions to these
three clusters of directions, and the corresponding values of
the corresponding X32 test statistics and their p values are
0.4889717(0.9213075), 3.885764(0.2740667) and 1.630983
(0.6523852). These results suggest that the Bingham distri-
bution assumption is reasonable for these data sets. One of
the referees mentioned correctly that the Bingham distribu-
tion is in fact appropriate for axial data. This means that if
the data points undergo independently some axial rearrange-
ment, (namely independent sign changes to each individual
coordinates), the likelihood will not change under Bingham
but will do so for the Fisher—Bingham case. Therefore, the
model choice that we perform here is to only illustrate numer-
ically that our HGM implementation here works for a given
axial arrangement of these data points, and alternative mod-
els like the matrix Fisher distributions as suggested by the
referee could be better modelling strategies for these orthog-
onal frames.

6 Concluding remarks

In this paper, we provide explicitly the Pfaffian system for the
normalizing constant of the Fisher—Bingham distributions
including the degenerate cases. Such explicit expressions
have not only theoretical interest but also improve on the
implementation of the current methods used for the MLE
of these models. We reduce the dimensionality of the ODE
equation as we need to operate at a dimension not more
than twice the number of distinct values of ;. The standard
HGM so far does not account for multiplicities among 6;’s
or y; = 0. We can also perform exact MLE inference by
using gradient optimization methods for the optimal orthog-
onal component O as in weighted Procrustes optimization.
Note, however, that optimization in O shown in Sect. 5.1 is
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only local and rank(B"y) = 1 might imply many optimal
solutions. For the Bingham distribution, namely y = 0 case,
the optimal matrix O does not depend on @ as that is defined
suchthat )| Ox; (Ox; )T is diagonal. The numerical exam-
ples indicate that when carefully implemented, the method
is highly accurate and performs well in real applications.
Its implementation can fail sometimes since the correspond-
ing ODE does not perform well numerically. This can be
addressed by changing the ODE, namely, by altering either
the starting point and/or the integrating path as discussed in
the last paragraph of Sect. 4. The default choice of the curve
which is used in our implementation in R works well in many
tests. As indicated in our first real data example, the MLE
using the saddle point approximation is with some excep-
tions, not far from the our MLE. One can start the HGM
from this solution. This hybrid approach could in princi-
ple reduce the regions of the numerical search and could
be seen as a way of calibrating the saddle point approxima-
tion. Our proposed method clearly generalizes that given in
Koyama et al. (2014) since it offers explicit expressions for
the Pfaffian equations for all Fisher—-Bingham distributions
including those with degeneracies in the parameters. Finally,
since the saddle point approximation method is numerically
stable, practically accurate and immediately available, the
HGM could be used as a refinement to this approximation.
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7 Appendix

The results of Theorem 1 rely heavily on Lemma 1 which is
stated after some initial remarks.

Remark 1 One can easily notice that

1 2 9C(0,y)
Ay, 0)e'dt = ——7-
/(91' +1) Y Yi 0V
iR+1
and

C4ni 0C(B.y) 4 9CO. )

I
Ay, 0)e'dt=

/(0i+z)2“4(" e N AT

iR+1o

and therefore, these elementary functions

1
—A ,Oetdt r=1,2
/ G+ ?
iR+t

are actually representing the first-order derivatives %
and w l

In what follows, we will show that based on the theory of
partial fractions, 30;2.,;») and 3650?") can be used to express
the integrals above even for r = Z%l, 4 which will then derive
the expressions for the second-order derivatives. This is the
basis of the following methodology for obtaining the Pfaffian
equations.

For example, using (8) and (9) the second-order deriva-
tives generate these expressions:

Fori # j
0°C@.) _ / nmoo 7
36,00, 200, +1) 40 +1)?
iR+
n 2
J J t
,0)e'dt
X <2(9,- T a6, +t)2) Al 0)e
(20)
9°C0.») _ / VY Ay, 8)edr Q1)
0y 0y, " 40; +1)(0; +1) '
1IR+79
PCO.y) _ (5 4
8)/1'89]' B 2(9]' +1) 4(9]' +t)2
0
—Vi t
— Ay, 0)e'dt 22
x 2(9i+t)A(y )e (22)
and fori = j,
92C(0, p) :/ 2ni+nr Q2+ n)y? v
326; 40; + % 40 +1)3 1606 +1)*
iR+
x Ay, 0)e'dt (23)
’C6.y) __3C@O.y) ni—13CO.y) o
Oyi 96; Vi Vi
0%C@.y) / (eit2n W
3yi06; _.R 40 +07 8B +1)°
1R+
x Ay, 0)e'dt (25)

Remark 2 Ifi = j itis clear, however, that nonzero terms y;
give rise to

1
—A ,Getdt r=3,4
/ G+ ®
iR+1o

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Stat Comput

in the second-order derivatives, while for y; = 0 such terms
vanish.

vatives LC0.y)  3°C@.y)
Remark 3 The second-order derivatives 36,96, > a7,

9%C(0.y)
and =575
pair of basis functions

for i # j can be given in terms of only this

1
— Ay, 0 'de =1,2
/<9i+r>f . 0)edr v
iR+1

which from Remark 1 are obtained in terms of acg# and

aca(_(;?y)_ This is easily seen if applying the integration with
respect to A(y, 0)e’dr and by using the following basis

decomposition:

Lemma 1 If6; # 60, and y; # 0 # y;, then

A, B c ., »
0i+1 G +02)\0;+1 (0 +1)?

a b c d

= + + +
0; +t (9i+t)2 9j+t (9]' +t)2

(26)

and

A B c D .
/ (9i +1 * (9i+1)2> (9j+l * 0; +t)2)A(y,0)e a

iR+1

4b9CO.y) _ 4d 9CO. )

y2 06 y2 00
(a2 ) 200n (2 ) ace.p
Yio v Y Vi ¥; Y
where
b B(C®; —6)+D)  BC L _BD
0; —6,)? 0; —6;  (0j —6;)>
g D(A®; —6))+B)  AD N DB
B 0 —6))? S 6—06; (6 —0))?
LA (C®; —6;)+ D)+ CB —2b(0; — 6)
6; —6;)?
_AC n AD — BC BD
S0 =6 (6 —6)? 0 — 6
A BC 2b
iy s - 27)
B @; —6;) ©; —6;)
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and

_ C(A®; —6)) + B) + AD —2d(6; — 6))

€= 2
6 —0))

__AC__ BC-4D BD

S 6—0;  Gi—6)> TG -6

_C,,_AD 2d 28)

D (6 —6)2 (6 —0))

ie.
a = —c¢C

Note that expressions on the right-hand side for @ and b in
the statement of Lemma are valid if B # 0 # D.

Proof of Lemma 1 The identity (26) is a direct consequence
of the theory of partial fractions. From (26), we see that

A +1)+BCO; +)+D
6; +1)? (9j+l‘)2
_a(i + 00 + D>+ bO; + 1) +cO; + D30 +1) +d6; +1)*
B 0 +12(0; +1)?

or

(A@®; +1)+ B) (C; +1)+ D) (29)
=alt; + 00+ 1> +b0O; +1)°
+c@ + 02O +1) +dG; +1)?

and, applying this equation for t = —6;, t = —6;, we have

b(O; — 0;)* = B(C(0; — 6;) + D)
d6; —6,)* = D (A —6;) + B)

which establish the explicit expressions for b and d. After
differentiating with respect to ¢ both sides of (29) and then
substituting t = —0;, t = —0; consecutively, we have the
following pair of equations

—a(®; —6;)* —2b(0; — ;) = —A(C(O; — 6;)+D) — CB
—c(0; — 0,)* = 2d(6; —0;) = —C (A(6; —0;)+B) —AD

which confirm the remaining expressions for @ and b of the
lemma including the identity a = —c.
The second result of the lemma is direct cogsequence
: 1 tq, — 2 93CO.y)
of the first, while .Rit W.A(}’, 0)e'dr = i oy and
iR+17

1 4n; 3C (8, 4 9C(,
[ G A O)¢dr = —Hp IS0 - LIS g
0 1 1

Ay, 0;
iRG-1 ' Y '
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Proof of Theorem 1 Applying Lemma 1 to Egs. (20), (21)
and (22), we obtain the following three identities:

_ n; V,’z
o f 2(9i+t)+4(9,~+t)2

iR+

39*C(0, y)
96;96;

2

Yi .
2(9 +t) 4(9j+t)2)«4()’,0)e dr

2
Vi aC(0, y)
2(9, 4(9 —6;)? 0;
vi | 9C@.»)
2(9, 2w - 02 96;
n;vi viv; 3C(, y)
40 — 91)2 40, — 6,3 97i
niy; vlvi | 9C®,y) 30)
36— 602 36 —6)°) oy
7o\
2(0, = 10,6, a6y
o 2 aC(0.y)
_ 200, T 40,6, 30, ”
- n;Yi ViV dc(o 9CO.y) ( )
a0,-07 T a0, o7 36(0,),)
niy; V,—2)’/ 3y,
2007 T 3Gi—0))°
since the corresponding terms are
oy niy; —njyi vivi
40; —6) 86, —6)* 8 —6)}
with
2.2
_ iyt Vv
80, — 6) 160, — 0;)?
and
2 2.2
niy; ViV
c=-a with d=—"1 s
8 —0;) 16(6; — 9j)2
’C@,y) / Vi
00;0y; 2(0; +1)
iR+t
n 2
J J t
X Ay, 0)e'dr
(2(9,- 0 a6+ z)2) .0
2
_ Vi ac@.y) nj n Vj
20 — 0, 99; 200, — 6;) ' 40; — 6,)?
aC(, y)
X—
i

vivi  9C(0,y) (32)
46 =0/ By
Vi T
| o
_ nj _ Vj 36(0 y) (33)
2(0;—6;) 4(6,—6;)2
T iy ©= BC(0 3C®B.y)
4(0;—0;)? Ty
since
2
be0 de__ TP
8(6; —6))
and
o njvi viv}
a=—c=— — 5
40; —6;) 8O —6)
dyidy; 40; +)(0; +1) ’
iR+
vi 9C@O,y)  yi 9C#,y)

(34)

20, —-6) Ay 200; —6;) Oy

Vi aC(0,y)
2(0;,—6;
:<_(j)’i) ) <8C(0y)> (35)
2(0—0;) ayj

The corresponding cases of i = j, are obtained after
applying 5 i on both sides of (6) and separating the term

adg(g ¥) whlle using (32)
920, y) XZ: ce.y) _26.y)
371 00; Byl 00;0y; yi
l
- A (7]
52,200 —-0) 00,

1
= vivi  9C@.y)
eyl 40, —0;)> y;

1
nj Y aC(@, y)

) ==77

' i;é] (2(9j —6;) " 4(0; _91')2> Y

Similarly, after applying % on both sides of (6) and using
J
(31) we have

’c@.y) 9’C@8.y) aC®.y)
020; iyl 00;00; 20;
Ay (o)) een
el 200, — 6;) 40 —6;)? 20,
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1N

+’ ( y? )%ww>
Ml 2(6; — ) 4(9 —9)2 89j

! Yinj n )’il/jz aC@,y)
40; —0)*  40; - 6,)° dYi

+

i#j=1
Vili

36 —0)2

+

vivi | 9C@.y)
16 —0,°) oy

C(9 )')

Vi

Finally, the equation for

92C(0, y) _ / 1 N Vi2
a2y 200, +1) 46 +1)?
iR+t

- 3

00; Vi Y

)A(y, 0)c'dt

with singularity at y; = 0 if n; > 2.

Explicit expressions for the Pfaffians For P; only the rows
i and i 4/ will have 2/ nonzero entries, while the remaining
2(I — 1) rows indexed by j € {1,2,...,I|j #i}and j + !/
will have at most 4 nonzero entries as indicated in (10):

nj vi
200, —6i) 40, —6;)?

2
n; _ Vi

206; —0j) 46 —0))?

Pi(j.i) = -

Pi(j.j) =~
n;yi Viyjz
40; — 0> 40; —6:)°

nyi Vi
40— 0,7 46 — 0,0

Pi(j,i+D=-

Pi(j.j+D=—

and for the [ — 1 rows j 4 [ using (11) (with i and j inter-
changed) we have only 3 nonzero entries:

. . Vi
P; li))=—"—"—
i(J+10) 2(9j —6)
2
. . n; Vi
Pi(j+1,j+1)=— — !
AL+ =500y " 46 =6,
. . YiVj
P +litl)=—21
l(.] + 1 + ) 4(91 _ ej)z

The ith row of P; can be obtained by rewriting (14):

d2c(®, !
#:— 1+ > PG | g
0% i#j=1
l
- > Pi.jg; -
i#j=1
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1 1
— Y PiGi+Dgi— Y, Pl j+Dg
i#j=1 i#j=1

and therefore, the nonzero entries of P; (i, :) are:

1
Pii.i)=—|1+ Y Pi(j.i)
i#j=1

I
Pii.i+D)=— > Pi(ji+l)
ij=1
PG, j)=-Pi(j, ), Pii,j+1) =-Pi(j,j+ 1]
jefl,2,...,1]j # i} and for the i 4+ [th row. Please note
that Eq. (13) implies that

9°C(o, Y _

— P l,
96:07; Z /(l+ ])g]

i#j=1
l
—|1+ > Pii+Li+D | gy
i#j=1
1
- Z Pii+1,j+Dgju
i#j=1

and

Pii+1,j)=— Y Pili+lj)
i#j=1
PGi+1j+D)=-P;G+1Ij+1)
l
Pii+lLith=—|14+ Y Pii+Li+])
i#j=1

Similarly, one can show that for the second type P;; the only
nonzero elements in the rows j and j + [, for all j # i are

. Vi
P Vi) = —
i+1(J> J) 20, —0)
Pi(i+l) =l Y
HETO T 00— T 46— 62
. Yi¥i
P , N =—"9
i+1(j,J+1D 40— 6,7
L Vi
P; Litl=-—" —
i (J+1Li+1) 20; — 6)
L Vi
Piy(j+1Lj+D= _2(9‘—l—9')
J L
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as seen from (11). For the ith row

I
Pipi+D)=—1— Y Pig(i+l)
i#j=1
Piyi(i, j) = =Pinu(j, ) PipC, j+D) =-Pipy(j,j+1)

and for the (i + [)th row

l’l,'—l

Yi

PipG+1i)=-1 PigG+Li+)=—

Proof of Proposition 1 Now, for a given O and some direc-
tion v, we can define a curve in the space of orthogonal
matrices which start from O: O(t) = €O where v is

skew symmetric. Such curves clearly start from O since
log L(6,0(t),y) _ _ tr(AO diag()0O+yBTOT)
at - at

e'"|;—o = I Since

and %h:ﬂ =0, —v' = v we obtain

dlog L(6,0(1), y)
ot =0
3tr(AOT e? ' diag(0)e” O +BTOTe? 1y)
ot =0

—tr(AO v e? diag(8)e" O
+ A0 ¢" 'diag(@)ve” O
+ BTOTUTevTIy”[:O
= —tr(AO " v " diag()0+AO " diag(6)vO

+ BTOTva)
—tr (v(diag(O)OAOT — 0AO diag(8) + yBToT))

This derivative is zero for any skew symmetric matrix v only
if

A = diag(9)OAO " — OAO "diag(§) + yB' O

is symmetric, i.e. A = AT.
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