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Information ratchets exploiting spatially structured information reservoirs

Richard E. Spinney,1, ∗ Mikhail Prokopenko,1 and Dominique Chu2

1Complex Systems Research Group and Centre for Complex Systems,
The University of Sydney, NSW 2006, Australia

2School of Computing, University of Kent, CT2 7NF, Canterbury, UK
(Dated: June 19, 2018)

Fully mechanized “Maxwell’s demons,” sometimes also called information ratchets are an impor-
tant conceptual link between computation, information theory and statistical physics. They exploit
low entropy information reservoirs to extract work from a heat reservoir. Previous models of such
demons have either ignored the cost of delivering bits to the demon from the information reservoir
or assumed random access or “infinite dimensional” information reservoirs to avoid such an issue.
In this work we account for this cost when exploiting information reservoirs with physical structure
and show that the dimensionality of the reservoir has a significant impact on the performance and
phase diagram of the demon. We find that for conventional 1-dimensional tapes the scope for work
extraction is greatly reduced. An expression for the net-extracted work by demons exploring in-
formation reservoirs by means of biased random walks on d-dimensional, Zd, information reservoirs
is presented. Furthermore, we derive exact probabilities of recurrence in these systems, generaliz-
ing previously known results. We find that the demon is characterized by two critical dimensions.
Firstly to extract work at zero bias the dimensionality of the information reservoir must be larger
than d = 2 corresponding to the dimensions where a simple random walker is transient. Secondly,
for integer dimensions d > 4 the unbiased random walk optimizes work extraction corresponding to
the dimensions where a simple random walker is strongly transient.

PACS numbers: 05.70.Ln,05.40.-a

I. INTRODUCTION.

Through frameworks such as stochastic thermodynam-
ics [1, 2] it has become clear that order can be treated as a
thermodynamic resource [3, 4], thus relating information
theory, computation and statistical mechanics [4–13]. A
useful theoretical tool to probe the connection between
information and thermodynamics are information ratch-
ets. These are mechanized Maxwell’s demons [14, 15],
that extract work from a single heat reservoir while ran-
domizing reservoirs of low entropy, so-called information
reservoirs.

A pioneering model of an information ratchet is due to
Mandal and Jarzynski (MJ) [16]. Their ratchet contains
three internal states and is in contact with an external
tape that contains 1s and 0s and slides past the demon
at a constant speed. At any one time, the ratchet is in
contact with, or bound to, a symbol on the tape. The
demon also performs thermally driven internal state tran-
sitions, which are coupled to flips of the symbols on the
currently bound tape element. Due to the motion of the
tape, the demon will occasionally get into contact with a
new tape element, which may take it out of equilibrium
and induce a cyclic sequence of state transitions. This
can be exploited to extract energy from the thermal en-
vironment and store it as work in a work reservoir while
randomizing the tape. Barato and Seifert [4, 17] (BS)
(alongside other extensions [18–21]) later simplified the
MJ model to a fully stochastic 2-state model with two
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crucial differences: They replaced the 1D tape of the MJ
model by an infinitely large, spatially unstructured (ef-
fectively infinite dimensional) information reservoir be-
having as a perfectly mixed symbol gas. A consequence
of this assumption is that the demon can transition from
any reservoir element to any other reservoir element in
one step, thus removing the need to assume constant mo-
tion of a tape. They also simplified the demon to a two
state model, such that at any time the demon is ther-
mally fluctuating between a high and a low energy state.
These transitions are again coupled to flips of the symbol
associated with the currently bound element of the infor-
mation reservoir. As the BS demon gets in contact with a
new element of the information reservoir, the system may
be taken out of equilibrium and the ensuing relaxation
process can be exploited to extract work from the system
while randomizing the outgoing reservoir elements.

In this contribution we show that the long-term work
extraction rate of a demon is crucially dependent on the
geometric properties of the information reservoir. We
find that information reservoirs without spatial struc-
ture, as with the BS model, are optimal for work ex-
traction. In contrast, low dimensional reservoirs, such
as the canonical case of a one-dimensional tape, support
work extraction only for a small range of demon param-
eters, and even then the best possible net-gain of work
is small compared to what is achievable in the unstruc-
tured case. Specifically, by considering the resultant dy-
namics and thermodynamics of the implicit mechanism
which enables exploration of the information reservoir,
we will demonstrate how the performance of such a de-
mon varies between information reservoirs represented as
d-dimensional cubic lattices, ranging from 1D tapes to
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infinite dimensional structures which attain random ac-
cess. We find two critical dimensions that separate qual-
itatively different regimes for exploitation of information
reservoirs. As such our results provide powerful insight
into the physical and geometric factors which will arise
in systems which use a persistent physical substrate to
encode information.

The understanding of such machines is not just of con-
ceptual value. Examples of information reservoirs can be
readily found in biology. Already in the 1980s Bennet [22]
suggested the possibility of biological information ratch-
ets that extract work from correlations between polymers
such as DNA, mRNA or amino acid sequences; a concrete
design was recently proposed by McGrath and coworkers
[23]. Yet, there is no known example of natural cellular
processes that extract work from correlations. Instead,
when no longer needed, biomolecules are typically ac-
tively broken down at a cost to the cell. This suggests
that the low entropy contained in those molecules is not
exploitable. At the same time, however, there are exam-
ples in biological systems that exhibit behavior similar
to that of a random access symbol gas. In particular
ATP/ADP stores, whilst behaving primarily as a store
of chemical energy, also exert an entropic force in the
manner of an information reservoir.

II. MODEL & WORK CALCULATION.

We introduce a demon based on that described in [17].
This is a device which is characterised by two states
{H,L} with energies ∆E and 0 respectively. This de-
vice is coupled to both a heat bath at temperature T
and a work reservoir. At any one time the demon is also
in contact with, or bound to, a single element of an infor-
mation reservoir, see Fig. (1). This information reservoir
consists of symbols in the alphabet {0, 1}. No energy
differences exist between these two symbols. We assume
that the information reservoir is intialised such that, for
each element, the symbol 1 occurs with probability ε. We
further assume that the states of the demon and the sym-
bols of the reservoir correspond to one another. When
bound to a given reservoir element the demon is always
in the {H} state when the current reservoir element is in
state 1. Correspondingly, the demon is in the {L} state
when the current reservoir element is 0. Consequently,
thermal fluctuations caused by exposure to the heat bath
induce the joint transitions {H, 1} ↔ {L, 0} such that the
symbol associated with the currently bound element of
the information reservoir is overwritten. These fluctua-
tions are characterised by excitations, {L, 0} → {H, 1},
occurring with rate k+ and relaxations, {H, 1} → {L, 0},
occurring with rate k−, related by k−/k+ = exp(∆E/T ),
which are accompanied by an exchange of heat with the
heat bath. (Note we set kB = 1 here and through-
out.) The timescale of such fluctuations is controlled
by k = k+ + k−. However, to operate upon the infor-
mation reservoir as a whole, and extract work from the

heat bath, the demon must change the reservoir element
to which it is bound.

It is here, and in contrast to the BS model [17], that
we insist that the information reservoir has a physical
structure. Specifically, we interpret the elements of the
information reservoir as sites on a lattice. For instance,
the reservoir might be one dimensional, i.e. a tape.

We now consider the ability of the demon to access
distinct sites in such a physically structured reservoir.
Consequently, we allow the demon to undergo spatial
transitions at some rate γ between neighbouring sites.
When this occurs the symbol associated with the reser-
voir site bound to the demon may change. If this hap-
pens the demon is required to change state, {H} ↔ {L},
also, with an associated expense, or recovery, of energy
either provided by, or stored in, the work reservoir. Such
behaviour is illustrated in the lower panel in Fig. (1).
The transition from C to D corresponds to a mechanical
relaxation of the demon due to the intervention of the
work reservoir as the bound symbol changes from a 1 to
a 0 as the demon changes reservoir site. Explicitly, in
this case, the demon moves one site to the left on the
reservoir, here pictured as a tape, changing the symbol
bound to the demon from a 1 to a 0. This is necessar-
ily accompanied by a drop from state {H} to state {L}
in the demon, providing an excess ∆E of energy which
is stored in the work reservoir. Similarly, the transition
from D to C corresponds to a mechanical excitation of
the demon due to the intervention of the work reservoir
as the bound symbol changes from a 0 to a 1. Explic-
itly, the demon moves one site to the right on the tape,
changing the symbol bound to the demon from a 0 to a 1.
This is necessarily accompanied by a raising the state of
the demon from {L} to {H}, requiring ∆E energy which
is provided by the work reservoir. Transitions to new
reservoir sites where the symbol does not change incur
no such exchange of work; see Fig. (1) for a summary of
the basic transitions that incur energy exchange.

To model this system we now assume that the demon
performs a biased random walk on the information reser-
voir in order to reach new sites. In 1D it steps to the
right with rate r+ and steps to the left with rate r− such
that the total rate of spatial transitions is γ = r+ + r−.
Because of this random walk the demon may, however,
transition to sites that have been visited previously.

Throughout this contribution we assume a separation
of time-scales, γ � k, which implies that the currently
bound reservoir site is equilibrated before the demon
moves to a neighbouring site. It thus extracts any in-
formational resource during the first interaction with the
site. This entails that sites that have been previously
visited have symbol 1 with probability ps, equal to the
equilibrium probability of the demon being in state {H}.
The statistics of the unvisited sites is different. These,
have symbol 1 with probability ε.

This allows us to formulate a mean-field model where
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FIG. 1: Operation of the demon: Four instances of the demon interacting with a work reservoir (drawn as a mass on
a pulley), a heat reservoir at temperature T and an information reservoir (drawn as a tape) and transitions between
them. Indicated work and heat flows are defined as on and to the system respectively. The transition from instance
A to B is a thermal excitation of the demon (with rate k+) accompanied by overwriting the reservoir site with a 1.

The transition from instance B to A is a thermal relaxation of the demon (with rate k−) accompanied by
overwriting the reservoir site with a 0. The transition from instance C to D is a spatial transition to the left (with
rate r−) resulting in the bound reservoir symbol changing from a 1 to a 0 whereby energy is captured by the work
reservoir. The transition from instance D to C is a spatial transition to the right (with rate r+), causing the bound

reservoir symbol to change from a 0 to a 1, whereby work is expended by the work reservoir.

all spatial degrees of freedom associated with the infor-
mation reservoir are replaced by a single degree of free-
dom concerning whether or not the currently bound site
has been previously bound to the demon. Each step of
the demon thus amounts to a random draw of sites, where
a site can be either previously visited or unvisited and
either contain symbol 0 or symbol 1, each with a time-
dependent probability. The demon thus has 4 pseudo-
states {{H,new}, {H, old}, {L,new}, {L, old}}. The la-
bels ‘old’ and ‘new’ indicate that the currently bound
site has and has not been previously bound to the de-
mon, respectively.

A crucial function for the remainder of this contribu-
tion is the function Pu(d, p, t), which denotes the proba-
bility that any given transition corresponding to explo-
ration of the information reservoir is to a previously un-
visited site. This probability is derived from the random
walk statistics which is dependent on the structure of the
reservoir and the dynamics of the walker. It depends on
the bias of the walk, p, the dimension of the tape, d, and
the time t since the demon first came into contact with
the tape (see Fig. (2)). The model then consists of vari-
ous transitions between the four pseudo-states, the rates
of which are detailed in Fig. (3).

The transitions indicated in Fig. (3) are sufficient
to formulate a master equation which, in the limit of
timescale separation γ � k, yields the steady state prob-
ability for the demon to be in state {H} as simply the

FIG. 2: Visited and unvisited reservoir sites: Shown is a
demon exploring a 1D information reservoir (tape) at

different times since initialisation. Previously unvisited
sites are lightly shaded with statistics ε = 0 (all 0s).

Darker sites are previously visited sites with different
statistics, given by ps. At time t = 0 all sites are

previously unvisited and all transitions will be to an
unvisited site. At subsequent times, dotted outlines

indicate the location and transitions required to arrive
at a previously unvisited site. At time t2 > t1 more

sites have been visited, but still only two
transition/location combinations will result in becoming

bound to an unvisited site. This causes Pu(d, p, t) to
reduce over time.

thermal equilibrium distribution

ps = P ({H, old}) + P ({H,new}) =
k+

k+ + k−
. (1)
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FIG. 3: Transition diagram for the spatial demon. The
transition rates relating to exploration of the

information reservoir are indicated on the transition
diagram with solid arrows. Additionally, there are

thermal transitions with rates k− and k+ indicated with
dotted arrows.

We now calculate the average work extracted when tran-
sitioning to new, unvisited, sites:

〈Ẇnew〉
= (ps w(→ {L,new}) − (1− ps) w(→ {H,new})) ∆E

= (psγPu(d, p, t)(1− ε)− (1− ps)γPu(d, p, t)ε)∆E

= γPu(d, p, t)(ps − ε)∆E. (2)

Here, w(→ {L,new}) is the transition rate to the state
{L,new} from the states P ({H, old}) and P ({H,new})
and can be read off from Fig. (3). The work extracted
from the visited tape elements is analogously given by

〈Ẇold〉
= (ps w(→ {L, old}) − (1− ps) w(→ {H, old})) ∆E

= (psγPu(d, p, t)(1− ps)− (1− ps)γPu(d, p, t)ps)∆E

= 0, (3)

which vanishes since the the distributions characteriz-
ing the demon and visited reservoir sites are identical.
The mean work extracted per tape transition, 〈Ẇext〉 =

〈Ẇnew〉+ 〈Ẇold〉, then reads

γ−1〈Ẇext〉 =
(k+ − ε(k+ + k−))Pu(d, p, t))T

k+ + k−
ln

(
k−

k+

)
=

(1− ε(1 + e
∆E
T ))∆EPu(d, p, t)

(1 + e
∆E
T )

. (4)

As in the MJ model, the device can operate in three
phases characterized by (i) positive work extraction, (ii)
a reduction in entropy of the tape (an information eraser)
and (iii) no extraction or erasure, a ‘dud’. In this contri-
bution we discuss only work extraction, but note similar
arguments for information erasure follow.

An optimal demon maximizes work extraction, which
is achieved by choosing ε = 0 and ∆E = T (1 +W(e−1))
(shown in Appendix A 3) such that

γ−1〈Ẇmax〉 =W(e−1)Pu(d, p, t)T

' 0.27Pu(d, p, t)T (5)

where W is the Lambert W function. This is the maxi-
mum work extraction rate using an information reservoir,
but note that this excludes any cost associated with op-
eration of the demon. In our model operational costs
arise due the biasing of the random walk performed by
the demon that enables exploration of the information
reservoir.

A. Cost of operation

In order to obtain an understanding of the net-amount
of work that can be rectified from the heat reservoir in
conjunction with the information reservoir, the cost of
driven exploration of the information reservoir needs to
be accounted for. In the MJ model such a cost was not
considered, whilst in the BS model no such cost was in-
curred because their model permitted random access to
sites due to the implicit assumption that the information
reservoir was organized as a perfectly mixed gas; hence
there was no spatial exploration to drive.

To understand the costs of driven exploration of an in-
formation reservoir, we first consider a 1D structure, i.e.
a tape. As we assume that transition to the right occur
with rate r+ and to the left with rate r− and require
γ = r+ + r−, in characteristic time γ−1 we can expect a
transition to the right with probability p = r+/(r++r−),
which characterises the bias of the walk. An unbiased
walk corresponds to r+ = r− and thus p = 1/2. Any bi-
asing, however, comes at the expense of energy input, in
the form of work. Consequently, assuming exposure to a
heat bath at temperature T , and a local detailed balance
relation [24, 25], the work rate required to explore the
(1D) reservoir (per transition) is given by

γ−1〈Ẇtape〉 = T
r+

r+ + r−
ln

(
r+

r−

)
+ T

r−

r+ + r−
ln

(
r−

r+

)
= T (2p− 1) ln

p

1− p , (6)

where the transition probability along the tape is inde-
pendent of the energetics of the demon/tape coupling
with the changes in energy achieved through the inter-
vention of the work reservoir. Importantly, for the op-
timal demon, both 〈Ẇmax〉 and 〈Ẇtape〉 have a simple
linear dependence in the temperature T allowing for tem-
perature independent results, provided the thermal and
spatial transitions of the demon originate in heat baths
at the same temperature.
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III. EXACT TRANSIENT SOLUTION FOR A
DEMON AND 1D TAPE.

Here, we utilise the work calculations detailed above
and investigate the net performance of such a demon op-
erating on a 1D information reservoir by computing an
exact expression for the probability to encounter an un-
visited site at time t under a bias p, Pu(1, p, t).

To do so we first consider the probability that a discrete
time random walker will arrive at an unvisited site on
its n-th transition, Pu(1, p, n). A complete derivation is
given in Appendix A, but the structure of the derivation
is as follows. We identify the probability of arriving at an
unvisited site on the n-th transition as the change in the
expected number of visited sites, S(n), between times n
and n−1. By considering the generating functions of first
passage probabilities and their relation to the generating
function of the probability of general site occupancy of
a biased walker [26] we find the generating function of
S(n) to be

S(z) =
(1 + 4zp(1− p)) 1

2

(1− z)2
. (7)

The probability of visiting a new site at time n, S(n) −
S(n − 1), is then derived by considering differences be-
tween standard usages of the generating function

S(n) =
1

n!

∂n

∂zn
S(z)

∣∣∣
z=0

. (8)

Further manipulation then allows us to write:

Pu(1, p, n) = |1−2p|

+
(4p(1− p))mΓ

[
m− 1

2

]
2F1

(
1,m− 1

2 ;m+1; 4p(1−p)
)

2
√
πΓ [m+ 1]

(9)

where 2F1 is the hypergeometric function and
m = d(n+ 1)/2e. This gives the long term limit
limn→∞ Pu(1, p, n) = P su(1, p) = |1 − 2p| independently
of the time basis. For p = 0, 1 this probability is always
1, whilst for p = 1/2 in the n→∞ limit the probability
vanishes. Intuition can be gained from Fig. (2): for an
unbiased, diffusive walker, the probability of being at the
edge of the domain of visited sites eventually vanishes,
but an entirely biased walker is always at the edge of
such a domain and steps away from the visited sites. In
particular, for p = 1/2 we have

Pu(1, 1/2, n) =
Γ[m− 1/2]√

πΓ[m]
. (10)

Conversion to a (Markov) continuous time process gives

Pu(1, p, t) =

∞∑
n=0

Pu(1, p, n)
e−γt(γt)n

n!
(11)

which leads to an exact form for the work extraction
rate by substituting into Eq. (4), provided γ � k holds.
An asymptotically exact solution exists for p = 1/2,
Pu(1, 1/2, t) ' (2/(πγt))1/2. Convergence to the t→∞,
steady state, behavior consequently follows a power law
for p = 1/2, but exhibits increasingly fast exponential
tails as p deviates to 0, 1. A numerical example can pro-
vide some intuition for the behavior of Pu over time. In
the case of no-bias — p = 1/2 — the probability of dis-
covering a new site has dropped to around 0.025 and
0.008 after ∼ 1000γ−1 and ∼ 10000γ−1 seconds respec-
tively. Consequently, the unbiased walker experiences a
steady reduction of its work extraction rate as its opera-
tion time increases, illustrated further in Appendix A.

For the remainder of this paper we shall be concerned
exclusively with the steady state net-extraction rate of
work, given by the difference

γ−1〈Ẇnet〉 := γ−1〈Ẇext〉 − γ−1〈Ẇtape〉. (12)

We now come to the key insight of this present contribu-
tion: A fair assessment of the performance of any such
demon must take into account the statistics of 〈Ẇnet〉
rather than 〈Ẇext〉, which has normally been considered.
And, importantly, both terms that form this difference,
〈Ẇext〉 and 〈Ẇtape〉, are dependent on the bias, p. For
instance, in the undriven regime (p = 1/2) both the work
extracted and the work required to bias the exploration of
the information reservoir are 0 — a purely diffusive tape
requires no work to drive it, but equally the probability
to find new sites Pu → 0 goes to zero for the unbiased
walker, hence no work extraction is possible.

In order to gain insight into the work extraction rates
possible for biased explorations of tapes (p 6= 1/2), we
expand the work extracted (Eq. 4) and work expended
(Eq. 6) around p = 1/2. This analysis yields a linear de-
pendence in (p−1/2) in the extracted work, but quadratic
dependence in the work spent driving the tape

γ−1〈Ẇtape〉 ' 8T (p− 1/2)
2

+O
(

(p− 1/2)
3
)
. (13)

This result implies that it is always possible to extract
net positive work from the 1D tape in the limit of small
(but non-vanishing) bias, i.e. |p−1/2| & 0, provided that
the random access model is capable of work extraction.

However, as the bias is increased further, the work re-
quired to explore the information reservoir rises faster
than the resultant increase in the incoming rate of unvis-
ited sites. There is thus a critical bias pc > 1/2, beyond
which no net-extraction of work is possible. We find this
critical bias to be given by (for details see Appendix A 3)

pc = (1 + eW(e−1))−1 ' 0.569. (14)

Furthermore for a 1D reservoir, there is an optimal bias
popt where the net-extraction of work is optimized; we
find that it fulfils (see Appendix A 3 for details)

popt = (1− popt) exp[W(e−1) +
1

2

(
p−1

opt − (1− popt)
−1
)
].

(15)
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The value of popt needs to be determined numerically.
We found it to be a rather modest bias of popt ∼ 0.535.

Next, we ask what impact the spatial structure of the
information reservoir has on the performance of the de-
mon. To understand this, we use the performance of the
BS demon, that always samples unvisited reservoir sites
with zero expenditure of work as a reference. We thus de-
fine the efficiency parameter η as the ratio of the net work
extraction of an optimally set up demon, with respect to
model parameters and bias popt, to the total work that
can be extracted from an optimally set up BS demon.
Note that the work extraction of the BS demon is the
work extraction of our model in the case when the demon
is perfectly biased, i.e. p = 1 (or p = 0) in our model.
As such this reference work performance, in the γ � k
regime, is given by γ−1〈Ẇmax〉p=1 = W(e−1)T ' 0.27T .
In Appendix A 3 we find the efficiency parameter to be
given by

η = (2popt − 1)

(
1 +W(e−1)−1 ln

popt

1− popt

)
' 0.035. (16)

This shows that the performance of a demon operating
on a 1D tape is dramatically reduced.

Finally, we note that the consideration of net extracted
work not only has an effect upon the maximum possible
performance of such a demon, but also the phase diagram
of its operation. By considering the net work balance we
must come to redefine the phases such that the work
extracting phase corresponds to sets of parameter values
where 〈Ẇnet〉 > 0 and the ‘dud’ phases correspond to sets

where 〈Ẇnet〉 < 0 and the entropy of the reservoir is being
increased (|ps−1/2| < |ε−1/2|). The consequence of do-
ing so has a dramatic effect and is illustrated in Fig. (4).

Only in the limit p → 1/2 (where 〈Ẇtape〉 is negligible

compared to 〈Ẇext〉) does the phase diagram replicate
that of the BS and MJ models, but, of course, the net
work extraction rate here approaches 0. For higher val-
ues of p the combinations of demon parameters that will
successfully lead to net work extraction is significantly re-
duced, until for p ≥ pc no net work extraction is possible
at all.

IV. GENERALIZATION TO d > 1
INFORMATION RESERVOIRS.

We now generalize from 1D tapes to information reser-
voirs with d > 1, thus bridging the gap between the
1D MJ and random access BS models, which we asso-
ciate with spatially structured reservoirs of infinite di-
mension. We can characterize such situations by consid-
ering a demon that performs a random walk on arbitrary
d-dimensional simple cubic lattices, Zd, for which, as be-
fore, each site is in a state corresponding to the symbol
0 or 1. If the rates governing exploration of the reser-
voir in each positive and negative spatial dimension are

FIG. 4: Phase diagram in 1D. Black indicates an
information erasing phase, white areas work extraction
〈Ẇnet〉 > 0, and gray areas ‘dud’ phases where there is

no information erasure and 〈Ẇnet〉 < 0. The x axis is ε,
whilst the y axis is X := (e∆E/T − 1)/(e∆E/T + 1).
From top left to bottom right we utilize p = (1/2)+,
p = 0.51, p = popt ' 0.5348 and p > pc ' 0.569

respectively. Red lines indicate contour of optimal ∆E
given ε. Blue points indicate coordinates of maximal

performance. We set T = 1 and k = k+ + k− = 1.

r+/d and r−/d then both the timescale, γ, and the work
rate associated with driving such a random walk is in-
dependent of the dimensionality. To proceed, we will
first derive an expression for the steady-state probability
P su(d, p) that a random walker in d dimensions with a
bias p will encounter a previously unvisited lattice site
in its next transition. Mirroring section III, we will then
use P su(d, p) in order to understand the scope for work ex-
traction using higher dimensional information reservoirs.

In order to derive P su(d, p) we adapt the derivation
given by Montroll [27] to compute the probability of re-
currence for a random walker subject to a uniform bias
in all dimensions. Full details can be found in Appendix
B, but we provide the salient aspects here.

We concern ourselves firstly with the probability,
P (x, n|o, 0), of being at a lattice site x = {x1, . . . , xd},
with dimensionality d, at time n, having started at the
origin o at time 0. We may then consider the following
generating function

G(x, z) =

∞∑
n=0

P (x, n|o, 0)zn. (17)

By considering a system with periodic boundary condi-
tions and taking the infinite size limit, this generating
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FIG. 5: Multi-dimensional information reservoirs.
〈Ẇtape〉 is in black. 〈Ẇext〉 in dimensions 1-5 is also
shown. Finally the dashed line indicates the n→∞,

random access, limit. 〈Ẇnet〉 > 0 occurs when the
extraction curves lie above the cost of driving. This is
maximized for given p. We use ∆E = T (1 +W(e−1)),

T = 1 and ε = 0.

function may be expressed in the general form

G(x, z) =
1

(2π)d

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

exp[iθ · x]

1− zλ(θ)
dθ1 . . . dθd,

(18)

where θ = (θ1, . . . , θd) and λ(θ) is a so-called structure
function

λ(θ) =
∑
x

P (x, n+ 1|x′, n) exp[i(x− x′) · θ] (19)

which, here, encodes the one step probabilities of the ran-
dom walker. For the d-dimensional simple cubic lattices
we are considering, the structure function is of the form

λ(θ) = d−1
d∑
i=1

p exp[iεiθi] + (1− p) exp[−iεiθi] (20)

where p ∈ [0, 1] is the bias parameter, with p = 1/2 corre-
sponding to no bias, and εi ∈ {1,−1} specifies the direc-
tion of the bias in dimension i. This allows computation
of the generating function. It is possible to relate such a
generating function to the generating function concern-
ing first arrival at a given site which, in turn, allows an
expression for the probability of ever encountering such
a site through the consideration of 1 − (G(x, 1))−1 [27].
Setting x = o allows us to compute the probability of
eventual recurrence to the origin, Pr(d, p). This is re-
lated to the rate of encountering new sites in the long
time limit by 1 − Pr(d, p) = limn→∞ dS(n)/dn [28, 29],
where, again S(n) is the expected number of visited sites.

Further manipulation allows us to find the following ex-
pression for such a probability in terms of the dimen-
sionality of the lattice and bias of the walker along the
axes (importantly, noting independence in the εi terms
controlling the direction of the bias)

P su(d, p) =

[∫ ∞
0

e−x
[
I0

(
2x

d

√
p(1− p)

)]d
dx

]−1

,

(21)

where I0 is the zero-th modified Bessel function of the
first kind. We note that for all d, if p = 0 or p = 1
then the integral reduces to

∫∞
0
e−xdx = 1 indicat-

ing an escape probability, and thus P su(d, p), of 1 at
total bias (complete irreversibility). For d = 1 and
d = 2 Eq. (21) can be evaluated exactly, thus recover-
ing the 1D result P su(1, p) = |1− 2p|, and the 2-D result
P su(2, p) = π/(2K[4p(1 − p)]) where K is the complete
elliptic integral of the first kind. It should be noted
that Eq. (21) concerns only simple cubic lattices, how-
ever, analogous forms for body-centered cubic and face-
centered cubic structures exist, related to the well known
Watson integrals. For details on the extension of such lat-
tices to d dimensions and triangular lattices in 2D, with
the addition of biasing, see Appendix B 2. The formulae
for recurrence on these lattices, however, cannot be ex-
pressed in a way that makes further analysis possible and
so we proceed with simple cubic structures and Eq. (21)
only.

In full analogy to section III we can now use Eq. (21) to
calculate the net-amount of extracted work numerically.
The resulting extracted work for an optimal demon oper-
ating on simple cubic reservoirs of dimension 1 through 5
for varying bias, and the corresponding cost of exploring
the reservoir at that bias, are shown in Fig. (5). We find
that as the dimension increases, the work extracted also
increases, approaching that of the limiting case of the BS
model. This implies that net-extraction of work by the
demon becomes increasingly efficient as the dimension of
the information reservoir increases, reproducing the ran-
dom access model in the d→∞ limit as expected.

We note that Eq. (21) has continued the domain to
d ∈ R+, where it remains analytic for p 6= 1/2. We
discuss the behavior of such a function with d ∈ R+ in
order to understand better the case d ∈ Z+, but remain
agnostic on its physical significance.

Firstly, we note that P su(d, 1/2) = 0 for d ≤ 2, re-
flected in the specific results P su(1, 1/2) and P su(2, 1/2).
However, for d > 2 P su(d, 1/2) is positive. Based on this
we identify a critical value of d = 2+, separating the in-
teger dimensions d ≤ 2 and d > 2. When d > 2 work can
be extracted in the limit t→∞ at 0 bias and below this
value (d ≤ 2) no work can be extracted. This behavior,
continued into d ∈ R+, is shown in Fig. (6), but can also
be observed in Fig. (5) where work extraction is only zero
at p = 1/2 for d = 1 and d = 2. We also note the recovery
of the random access limit limd→∞ P su(d, 1/2) = 1. Note
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FIG. 6: Behavior of P su(d, 1/2), popt ≥ 0.5 and η varying
with d with integer d marked. P su(d, 1/2) separates from

the axis at the critical value of d = 2+, leading to
distinct behaviour for integer dimensions d ≤ 2 and
d ≥ 3. The approach, popt → 1/2 at critical value

d ∼ 4.0369 is shown inset, leading to distinct optimal
behaviour for integer dimensions d ≤ 4 and d ≥ 5.

that this first critical dimension mirrors the critical di-
mension separating recurrence and transience in random
walks due to Polyá [30]. It is instructive to emphasise
that the underlying behaviour behind this classification,
the probability of escape to infinity, is the central rea-
son for differences between dimensionalities. Intuitively
as the dimensionality increases, the probability of escape
also increases due to the increasing multiplicity of pos-
sible paths. Similarly, as the dimension increases the
walker simply has more physical space in which to diffuse
that avoids its previous locations. Indeed a walker that
never resamples visited sites would trace a self-avoiding
walk which, for similar reasons, are superdiffusive on low
dimensional topologies, but recover simple random walk
diffusive behaviour in high dimensions [31].

Finally, we turn to the question of determining the op-
timal bias that maximizes work extraction from the in-
formation reservoir. To understand this, we consider the
response of 〈Ẇnet〉 to small perturbations about p = 1/2.
Since the above integral is not analytic at p = 1/2 this
requires a careful asymptotic analysis, performed in Ap-
pendix C. We find a second critical value of d ∈ R+,
dependent on model parameters, must lie in (4,∼ 4.037)
which divides two distinct behaviours. For integer di-
mension, d > 4, the optimal demon is unbiased, explor-
ing the reservoir diffusively. However for lower integer
dimensions (d ≤ 4) a small bias is always optimal mir-
roring the dimension at which walkers become strongly
transient at zero bias on such structures, detailed in Ap-
pendix D. Note, however, that for the case of d = 4 our
analysis predicts an exceptionally small, indeed numeri-
cally undetectable, bias, such that for all practical pur-
poses we may state that all bias is detrimental to work

extraction on hyper-cubic structures.
The complete behavior of the quantities that charac-

terize the performance of work extraction as d varies is
illustrated in Fig. (6) for an optimal demon. The first
critical value of d can be observed in the behaviour of
P su(d, 1/2) which departs the axis at d = 2+ leading to
distinct behaviour in the integer dimensions d = 2 and
d = 3. The second critical value of d can be observed
in the behaviour of popt which is non-zero only below
d ∼ 4.037 leading to distinct behaviour in the integer
dimensions d = 4 and d = 5. And finally, optimal perfor-
mance is captured by η which increases markedly with
increasing d, recovering η = 1 in the limit d→∞ where
random access is achieved for a purely diffusive walker,
thus returning the behaviour of the BS model.

V. DISCUSSION AND CONCLUSION.

In this work we have investigated the thermodynamic
consequences of modelling an information ratchet ex-
ploiting an information reservoir treated as a physical
entity in its own right, possessing a defined spatial struc-
ture. Crucially, by treating the exploration of the reser-
voir as a thermal process we have identified a requirement
for work input in order to efficiently acquire access to the
low entropy resource. The required work input and the
effectiveness of such a strategy has been found to depend
heavily on the dimensionality of the information reservoir
when modelled as a d-dimensional cubic lattice, charac-
terised here by the existence of two critical dimensions.
In particular, performance on one dimensional informa-
tion reservoirs, the classically envisaged tape encoded
with bits, is especially poor.

As such we conclude that treating an information reser-
voir only through its statistical properties, i.e. its en-
tropy, is not sufficient to characterize its potential for
exploitation. The practical usefulness of an information
reservoir as a resource depends crucially on its spatial
structure. Only as the dimension becomes large do we
approach a random access limit where the entropy is an
appropriate characterization of its potential. We conjec-
ture that this strong dependence of the net-extraction
of work is the underlying reason why biological systems
are not able to exploit polymers as information reservoirs
which would have allowed them to recover some of the
cost of synthesis.

It is important to note the various idealisations made
in this work. Firstly, our model has assumed that at each
visit the demon equilibrates with the symbol on the cur-
rently bound site of the information reservoir. It may be
interesting to relax this constraint in future work, how-
ever such an idealisation does not detract from the main
conclusions of the paper as such a limit corresponds to
maximal performance, where all of an information reser-
voir site’s thermodynamic resource is consumed in one
visit. Whilst resampling of sites with partially consumed
resources, which would occur outside of timescale sepa-
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ration, will indeed contribute to work extraction to some
extent, they too will be eventually consumed if new reser-
voir sites are not visited such that the delivery of new
sites will remain the major performance bottleneck.

Secondly, we have concerned ourselves with specific
structures of hypothetical information reservoirs in this
work, namely simple cubic lattices where the difference
in structure is captured by the dimensionality. Gener-
ally, however, not all variation in performance between
arbitrary structures would be characterised exclusively
through their dimensionality. Despite this, we do expect
the qualitative performance on any physically realisable
crystalline structure to be heavily dependent on its di-
mensionality as the general properties of random walkers
with respect to recurrence and transience, which are di-
rectly implicated in the ability to extract work, are robust
with respect to individual lattice structures. That said,
more exotic structures, such as graph structures that al-
low for arbitrary coordination numbers, those which re-
strict loops and so on, may be poorly characterised by
their dimensionality and thus may have non-trivial de-
pendencies in this regard. It is unclear whether such
structures might be physically realisable.

Finally, throughout our analysis we assumed that the
demon samples from visited and unvisited sites according
to the average statistics of the random walk. The model
thus captures the mean behavior of the demon. When ob-
served over finite time-windows then the net-extraction
of work will fluctuate even as t→∞. These fluctuations
are not captured by our model, but they will disappear
as the work extraction is averaged over sufficiently long
time windows.

More broadly, our results have implications for the
thermodynamics of generalised information ratchets and
models of information processing devices based upon
them. This is because such ratchets only obtain maximal
performance when operating upon information reservoirs
without spatial structure. But in this limit only a bias
of symbols in the reservoir’s alphabet can be exploited.
However, it has been suggested [32, 33] that spatial cor-
relations are exploitable by demons. We conjecture that
this is difficult. In order to detect reliably such corre-
lations, directed motion is essential, leading to a cost of
biasing the exploration of the information reservoir. In
addition demons that exploit spatial correlations would
also have to bear the cost of “computing” a prediction
of future symbols based on previously encountered ones
[34, 35]. This computation comes at a finite cost and
leaves only very limited scope for net-extraction of work.
More generally, information processing utilising a specif-
ically encoded set of instructions or upon specific data
appears difficult to conceive of unless encoded upon a
physical, spatially structured, substrate. Indeed such no-
tions are most easily conceived of using one dimensional
structures; precisely where performance is least optimal.
We anticipate such a cost may, therefore, be prominent
in broader microscopic models of computation and infor-
mation processing more generally.

Appendix A: Treatment of the 1D tape

1. Full transient solution

As described in the main text, Pu(1, p, n) is the prob-
ability that a random walker transitions to an unvisited
site on the nth transition. This is simply related to the
expected number of unique sites, S(n), during a ran-
dom walk of length n and the first passage probability
F (x, j|0, 0) at site x and time j, having started at the
origin 0 at time 0. To do so we have a fundamental re-
lation between the expected number of unique sites and
first passage probabilities

S(n) = 1 +
∑
x 6=0

n∑
j=1

F (x, j|0, 0), (A1)

where we emphasise that F (x, j|0, 0) is the probability of
arrival at site x (from another site) at time j such that
F (0, 0|0, 0) = 0, and where the sum over x (less the ori-
gin) is over all lattice sites, Z. Alongside the occupation
probability P (x, j|0, 0) to be at site x at time j having
started at the origin 0 at time 0, we define the generating
functions

H(x, z) =

∞∑
k=0

F (x, k|0, 0)zk (A2)

G(x, z) =

∞∑
k=0

P (x, k|0, 0)zk. (A3)

A crucial relation we shall utilise is that between the
above two generating functions [36]. This arises from the
property that the probabilities of occupation and first
passage P (x, j|0, 0) and F (x, j|0, 0) are related by

P (x, j|0, 0) = δx,0δj,0 +

j∑
k=1

F (x, k|0, 0)P (0, j − k|0, 0),

(A4)

since all occupation events can be represented as first
passage to the relevant site followed by net movement of
0, assuming a time homogeneous process. Recognising
the convolution and the properties of generating func-
tions/Laplace transforms we therefore have

H(x, z) =
G(x, z)− δx,0

G(0, z)
. (A5)

Considering ∆k = S(k + 1) − S(k), adapting [26], with
generating function ∆(z), we have, since F (x, 0|0, 0) = 0,

∆k =
∑
x 6=0

F (x, k + 1|0, 0)

∆(z) =

∞∑
k=0

∆kz
k

=

(∑
x

z−1H(x, z)

)
− z−1H(0, z). (A6)
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Eq. (A5) then gives

∆(z) =

(∑
x

G(x, z)

zG(0, z)

)
− 1

zG(0, z)
− G(0, z)− 1

zG(0, z)
,

(A7)

which along with normalisation and
∑∞
i=0 z

i = 1/(1 −
z), z < 1, allows us to write

∆(z) =
1−G(0, z)(1− z)
z(1− z)G(0, z)

. (A8)

Consequently, by considering

S(n) =

{
1 +

∑n−1
i=0 ∆i n > 0

1 n = 0,
(A9)

and recognising the more general
∑∞
i=k z

i = zk/(1 −
z), z < 1, we can write the generating function of S(n)
as

S(z) =

∞∑
j=0

S(j)zj

= S(0) + S(1)z + S(2)z2 + . . .

= 1 + (1 + ∆0)z + (1 + ∆0 + ∆1)z2 + . . .

=

∞∑
j=0

zj + ∆0

∞∑
j=1

zj + ∆1

∞∑
j=2

zj + . . .

=
1

1− z +
z∆0

1− z +
z2∆1

1− z + . . .

=
1

1− z +
z∆(z)

1− z (A10)

allowing us finally to write

S(z) =
1

G(0, z)(1− z)2
. (A11)

Now, for the discrete 1d random walk we have [36,
Eq. (1.3.11)]

G(x, z) = (1− 4p(1− p)z2)−1/2

(
1− 4p(1− p)z2

2z(1− p)

)|x|
(A12)

with G(0, z) = (1−4p(1−p)z2)−1/2. By substitution one
can then evaluate

S(n) =
1

n!

∂n

∂zn
S(z)

∣∣∣∣
z=0

(A13)

which after repeated differentiation yields a geometric
expression in terms of Pochhammer numbers which may
be expressed

S(n) =

d(n+1)/2e∑
i=1

(2i− n− 3)

2
√
π

(i)− 3
2
(4p(1− p))i−1,

(A14)

where (a)k is the Pochhammer symbol

(a)k =
Γ[a+ k]

Γ[a]
(A15)

and Γ[·] the gamma function. We then compute the dis-
crete derivative dS(n+ 1)/dn = S(n+ 1)− S(n) finding

dS(n+1)

dn

=

d(n+2)/2e∑
i=1

(2i− n− 4)

2
√
π

(i)− 3
2
(4p(1− p))i−1

−
d(n+1)/2e∑

i=1

(2i− n− 3)

2
√
π

(i)− 3
2
(4p(1− p))i−1

=

d (n+1)
2 e∑
i=1

−Γ[i− 3/2](4p(1− p))i−1

2
√
πΓ[i]

+


((2dn+2

2 e)−n−4)

2
√
π

Γ[d(n+2)/2e−3/2]
Γ[d(n+2)/2e] n odd

×(4p(1− p))d(n+2)/2e−1

0 n even

=

d (n)
2 e+1∑
i=1

−Γ[i− 3/2](4p(1− p))i−1

2
√
πΓ[i]

, (A16)

such that

dS(n)

dn
=

d (n+1)
2 e∑
i=1

−Γ[i− 3/2](4p(1− p))i−1

2
√
πΓ[i]

. (A17)

We now write m = d(n+ 1)/2e and consider the expres-
sion as the sum of two contributions

dS(n)

dn
=

∞∑
i=1

−Γ[i− 3/2](4p(1− p))i−1

2
√
πΓ[i]

−
∞∑

i=m+1

−Γ[i− 3/2](4p(1− p))i−1

2
√
πΓ[i]

=

∞∑
i=0

−Γ[i− 1/2](4p(1− p))i
2
√
πΓ[i+ 1]

−
∞∑
i=0

−Γ[i+m− 1/2](4p(1− p))i+m
2
√
πΓ[i+m+ 1]

. (A18)

We may now utilise the following identities

∞∑
i=0

Γ[i+ n/2]

Γ[i+ 1]
zi =

Γ[n/2]

(
√

1− z)n (A19)

∞∑
i=0

(a)i(b)iz
i

(c)ii!
= 2F1(a, b; c; z), (A20)

where 2F1 is the hyper-geometric function.
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By Eq. (A19) the first term in Eq. (A18) is identifiable

as
√

1− 4p(1− p) = |1−2p| which equals the entire sum
in the n→∞ limit. We may write the second as

∞∑
i=0

−Γ[i+m− 1/2](4p(1− p))i+m
2
√
πΓ[i+m+ 1]

=
(4p(1− p))m

2
√
π

Γ[m− 1/2]

Γ[m+ 1]

×
∞∑
i=0

−Γ[i+ 1]Γ[m+ 1]Γ[i+m− 1/2]

Γ[i+ 1]Γ[m− 1/2]Γ[i+m+ 1]
(4p(1− p))i

= − (4p(1− p))m
2
√
π

Γ[m− 1/2]

Γ[m+ 1]

×
∞∑
i=0

Γ[i+ 1]

Γ[1]

Γ[i+m− 1/2]

Γ[m− 1/2]

Γ[m+ 1]

Γ[i+m+ 1]

(4p(1− p))i
Γ[i+ 1]

= − (4p(1− p))m
2
√
π

Γ[m− 1/2]

Γ[m+ 1]

× 2F1(1,m− 1/2;m+ 1; 4p(1− p)) (A21)

identifying the form in Eq. (A20). Combining the two
expressions and appreciating that the probability of en-
countering an unvisited site, in this 1D system, with bias
p at timestep n is identical to dS(n)/dn we finally have

Pu(1, p, n) = |1−2p|

+
(4p(1− p))mΓ

[
m− 1

2

]
2F1

(
1,m− 1

2 ;m+1; 4p(1−p)
)

2
√
πΓ [m+ 1]

.

(A22)

The above result is valid for a discrete time random
walker. To convert to a Markov, and thus Poisson, con-
tinuous time process we write

Pu(1, p, t) =

∞∑
n=0

e−γt
(γt)n

n!
Pu(1, p, n) (A23)

where γ = r+ + r− is the escape rate of the continuous
time random walker and p = r+/(r+ +r−). An appeal to
the central limit theorem for large n yields Pu(1, p, t) '
P du (1, p, n)|n=γt.

2. Particular results and asymptotics

A particular solution follows for p = 1/2. Since for
p = 1/2 we have the form 2F1

(
1,m− 1

2 ;m+1; 1
)

= 2m
we may simplify

P du (1, 1/2, n) =
Γ[m− 1/2]√

πΓ[m]
, (A24)

again with m = d(n+ 1)/2e. Furthermore, since we
may represent the Gamma function with large argument
Γ[z] '

√
2πzz−1/2e−z it follows that for large n we may

FIG. 7: Asymptotic approximation of Eq. (E3)
contrasted with explicit expression Eq. (A23) with

γ = 1.

FIG. 8: Behaviour of Pu(1, p, t)− |1− 2p| ranging from
p = 0.55 (top) to p = 0.9 (bottom) in steps of 0.05 in p

with γ = 1.

write

P du (1, 1/2, n) '
(
π

⌈
n+ 1

2

⌉)−1/2

'
√

2

nπ
. (A25)

When combined with the continuous time conversion for-
mula, Eq. (A23), we find the asymptotically exact result
for p = 1/2,

Pu(1, p, t) '
√

2

πγt
, (A26)

which demonstrably exhibits power law decay with t.
The accuracy of such an approximation against Eq. (A23)
is shown in Fig. (7). The behaviour for p 6= 1/2 is shown
in Fig. (8) demonstrating exponential decay with increas-
ing speed as p→ 0, 1.
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3. Optimal and critical parameters for the 1D
reservoir

As shown in the main text the work extracted from the
heat reservoir has the form

γ−1〈Ẇext〉 =
(1− ε(1 + e

∆E
T ))∆EPu(1, p, t)

(1 + e
∆E
T )

. (A27)

This is trivially maximised with respect to ε by setting
ε = 0 leaving

γ−1〈Ẇext〉 =
∆EPu(1, p, t)

(1 + e
∆E
T )

. (A28)

This maximises with respect to ∆E when

e
∆E
T ∆E

(1 + e
∆E
T )T

= 1, (A29)

through simple differentiation, which has solution corre-
sponding to maximal work extraction, in terms of the
Lambert W-function

∆E = T (1 +W(e−1)) (A30)

which upon substitution back into Eq. (A28) is simply

γ−1〈Ẇext〉 = Pu(1, p, t)TW(e−1) ' 0.27TPu(1, p, t).
(A31)

The critical bias, for this optimised demon, is then
achieved by solving for p when equating the work ex-
tracted from the reservoir and expended driving the tape
along with Pu(1, p, t)→ P su(1, p) = |1− 2p| such that

|1− 2pc|TW(e−1) = T (2pc − 1) ln
pc

1− pc
(A32)

which has solution (p > 1/2)

pc = (1 + eW(e−1))−1. (A33)

The optimal p = popt is achieved when the difference

γ−1〈Ẇext〉 − γ−1〈Ẇtape〉 is maximised. Again, through
simple differentiation of the relevant expressions, we ob-
tain the relation

popt

= (1− popt) exp

[
W(e−1) +

1

2

(
p−1

opt − (1− popt)
−1
)−1
]
.

(A34)

The ratio η characterises the relative performance of a
demon on a structured reservoir in contrast to one with

random access and is defined as

η =
maxp,∆E,ε

[
〈Ẇext〉 − 〈Ẇtape〉

]
max∆E,ε 〈Ẇext〉

∣∣∣
P s

u=1

=
〈Ẇ p=popt

ext 〉 − 〈Ẇ p=popt

tape 〉
〈ẆP s

u=1
ext 〉

∣∣∣∣∣
∆E=T (1+W(e−1)),ε=0

=
T |1− 2popt|W(e−1)− T (2popt − 1) ln

popt

1−popt

TW(e−1)

= (2popt − 1)

(
1 +W(e−1)−1 ln

popt

1− popt

)
, (A35)

with the last line corresponding to the p > 1/2 solution.

Appendix B: Calculation of P s
u(d, p) for high

dimensional reservoirs d > 1

1. d-dimensional, Zd, cubic lattices

Following Montroll [27] we consider the discrete time
random walk in dimension d on Zd (linear, square, cu-
bic and hyper-cubic lattices). We consider the points
x = (x1, x2, . . . , xd) on a lattice with Nd points in total
such that x1 ∈ {1, 2, . . . , N}. We then write the proba-
bility of being at lattice point x at time n to be P (x;n).
Our random walk, characterised by a uniform bias in all
dimensions, is then given by the difference equation

P (x1, x2, . . . , xd, n+ 1)

=

d∑
i=1

p

d
P (x1, . . . , xi − εi, . . . , xd, n)

+
(1− p)
d

P (x1, . . . , xi + εi, . . . , xd, n), (B1)

where εi ∈ {−1, 1} controls the direction of bias along
each of the dimension axes. This is then solved, sub-
ject to periodic boundary conditions P (x1 + m1N, x2 +
m2N, . . . , xd + mdN,n) = P (x1, x2, . . . , xd, n) where
mi ∈ N. These equations can be solved in a linear basis
of terms

bn(l)N−
d
2 exp

[
2πi

N
(l · x)

]
(B2)

where l = (l1, l2, . . . , ld) is a lattice point such that li ∈
{1, 2, . . . , N}. Directly substituting into Eq. (B1) gives
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P (x1, x2, . . . , xd, n+ 1) ∼ bn+1(l)N−
d
2 exp

[
2πi

N
(l · x)

]
=

d∑
i=1

d−1pbn(l)N−
d
2 exp

[
2πi

N
(l1x1, . . . , li(xi − εi), . . . , ldxd)

]
+ d−1(1− p)bn(l)N−

d
2 exp

[
2πi

N
(l1x1, . . . , li(xi + εi), . . . , ldxd)

]
(B3)

giving

b(l) =

d∑
i=1

d−1p exp

[
−2πi

N
liεi

]
+ (1− p) exp

[
2πi

N
liεi

]

=

d∑
i=1

d−1 cos

(
2πli
N

)
+ iεid

−1(1− 2p) sin

(
2πli
N

)
(B4)

such that

P (x, n) =
∑
l

a(l)bn(l)N−
d
2 exp

[
2πi

N
(l · x)

]
(B5)

where we note that the sum over l is shorthand for

∑
l

≡
N∑
l1=1

. . .

N∑
ld=1

. (B6)

a(l) is then determined by considering an initial condition
P (x, 0). Writing

P (x, 0) =
∑
y

P (y, 0)δ(x− y)

= N−d
∑
y

P (y, 0)
∑
l

exp

[
2πi

N
l · (x− y)

]

= N−d
∑
l

{∑
y

P (y, 0) exp

[
−2πi

N
l · y

]}

× exp

[
2πi

N
l · x

]
=
∑
l

a(l)N−
d
2 exp

[
2πi

N
(l · x)

]
(B7)

shows

a(l) = N−
d
2

∑
y

P (y, 0) exp

[
−2πi

N
l · y

]
, (B8)

where the sum over the lattice points y follows Eq. (B6).
This then allows us to write the probability of being at
a lattice site x having started at some other point x′, at
time 0 as

P (x, n|x′, 0) = N−d
∑
l

[
d∑
i=1

d−1 cos

(
2πli
N

)
+ iεid

−1(1− 2p) sin

(
2πli
N

)]n
exp

[
2πi

N
l · (x− x′)

]
. (B9)
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Letting N →∞ allows expression as a d dimensional integral

P (x, n|x′, 0) = (2π)−d
∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

[
d−1

d∑
i=1

cos (θi) + iεi(1− 2p) sin (θi)

]n
exp [iθ · (x− x′)] dθ1, . . . , dθd (B10)

where θ = (θ1, θ2, . . . , θd) = (2πl1/N, 2πl2/N, . . . , 2πld/N). Relabelling x−x′ → x then allows consideration of having
started at the origin, o, viz.

P (x, n|o, 0) = (2π)−d
∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

[
d−1

d∑
i=1

cos (θi) + iεi(1− 2p) sin (θi)

]n
exp [iθ · x] dθ1, . . . , dθd. (B11)

Using the above and the property
∑∞
n=0 a

n = (1− a)−1, 0 < a < 1, we can express the generating function

G(x, z) =

∞∑
n=0

P (x, n|o, 0)zn (B12)

as

G(x, z) =
1

(2π)d

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

exp [iθ · x]

1− zd−1
∑d
i=1 cos (θi) + iεi(1− 2p) sin (θi)

dθ1, . . . , dθd (B13)

or, since we can write (1− y)−1 =
∫∞

0
exp[x(y − 1)]dx, 0 < y < 1,

G(x, z) =
1

(2π)d

∫ ∞
0

e−x
∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

eix·θexzd
−1(cos(θi)+iεi(1−2p) sin(θi))dθ1 . . . dθd dx

=

∫ ∞
0

e−x
d∏
i=1

[
1

2π

∫ 2π

0

eixiθiexzd
−1(cos(θi)+iεi(1−2p) sin(θi))dθi

]
dx. (B14)

The generating function with x = o, G(o, z), then con-
cerns the probability of being at the origin at time step n,
having started at the origin at time 0, P (o, n|o, 0). One
can then consider the probability of returning to the ori-
gin for the first time at time n, P fr (d, p, n) = F (o, n|o, 0),
with corresponding generating function

H(o, z) =

∞∑
n=0

P fr (d, p, n)zn. (B15)

Crucially, from Eq. (A5), these generating functions are
related as

G(o, z)− 1 = G(o, z)H(o, z). (B16)

By then considering the probability of ever returning to
the origin being

∞∑
n=0

P fr (d, p, n) = H(o, 1), (B17)

one finds the probability of ever returning to the origin,
the probability of recurrence, Pr(d, p), to be given by

Pr(d, p) = 1− (G(o, 1))−1. (B18)

Here we appeal to the fact that 1 − Pr(d, p) =
limn→∞ dS(n)/dn, where S(n) is the expected number
of sites visited at least once at time n, stemming from
the more general property 1−Pr(d, p, n−1) = dS(n)/dn
originally due to Dvoretzky and Erdös [28, 29]. This can
be seen by considering the occupation of site x at time n
as the sum of n i.i.d. random vectors vi, i ∈ {1, . . . , n}
such that ym ≡ {x = y, n = m} =

∑m
i=1 vi. Using this
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description we may write

dS(n)

dn
= P

{
n∑
i=1

vi 6=
j∑
i=1

vi, ∀j ∈ {1, . . . , n−1}
}

= P


n∑

i=j+1

vi 6= 0, ∀j ∈ {1, . . . , n−1}


= P

{
n−j∑
i=1

vi 6= 0, ∀j ∈ {1, . . . , n−1}
}

= P

{
j∑
i=1

vi 6= 0, ∀j ∈ {1, . . . , n−1}
}

= P {xj 6= 0, ∀j ∈ {1, . . . , n−1}} , (B19)

which is the probability of not returning to the origin
between times 0 and n − 1, i.e. 1 − Pr(d, p, n − 1), and
where we have assumed time homogeneity in going from
line 2 to line 3.

Now, by definition dS(n)/dn is also the mean
field probability of discovering a new site, Pu(d, p, n),
such that limn→∞ dS(n)/dn = Pu(d, p). Conse-
quently, through Eq. (B18), we finally have P su(d, p) =
(G(o, 1))−1, where we now introduce the explicit quan-
tity u(d, p) = G(o, 1). Despite being derived in discrete
time, in the t → ∞ limit the distinction becomes irrele-
vant and thus, consequently, we have the expression for
P su(d, p) = u−1(d, p), for our continuous time walker,

(P su(d, p))−1 = u(d, p)

=

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

(2π)−ddθ1 . . . dθd

1− d−1
∑d
i=1 cos (θi) + iεi(1− 2p) sin (θi)

=

∫ ∞
0

e−x
d∏
i=1

[
1

2π

∫ 2π

0

exd
−1(cos(θi)+iεi(1−2p) sin(θi))dθi

]
dx.

(B20)

Since εi(1−2p) must lie in [−1, 1] we may define cos(iδ) =
(1−(1−2p)2)−1/2, sin(iδ) = iεi(1−2p)(1−(1−2p)2)−1/2.
Since (cos(b))−1 cos(a + b) = cos(a) + sin(a) tan(b) we
have, letting a→ θi, b→ iδ, cos (θi)+iεi(1−2p) sin (θi) =
2(p(1 − p))1/2 cos(θi + iεiδ). Considering then that the
rectangular contour integral z = x + iy = iεiδ → 2π +
iεiδ → 2π → 0 → iεiδ contains no poles, (P su(d, p))−1,
corresponding to the first edge must be independent of δ
(since cos(±iδ) = cos(2π ± iδ)) allowing us to set δ = 0
and thus recognise

(P su(d, p))−1 = u(d, p)

=

∫ ∞
0

e−x
[
I0

(
2x

d

√
p(1− p)

)]d
dx

(B21)

where I0 is the zero-th modified Bessel function of the
first kind, which follows from the integral representation

I0(x) = π−1
∫ π

0
ex cos(θ)dθ. We note that for all d, if p = 0

or p = 1 then the integral reduces to
∫∞

0
e−xdx = 1

indicating an escape probability, and thus P su(d, p), of 1
at total bias (complete irreversibility).

The above integral has known solutions for d = 1 and
d = 2

(P su(1, p))−1 =
1

|1− 2p|

(P su(2, p))−1 =
2K[4p(1− p)]

π
(B22)

where K is the complete elliptic integral of the first kind
and where the 1D result agrees with our result in the
main text.

2. Expressions for alternative lattice structures

For completeness we derive expressions for P su(d, p) for
alternative lattices. We can once again follow Montroll
[27] in such cases where the preliminary theory is essen-
tially identical to the simple cubic case and recognise the
more general form for the generating function

G(x, z) =
1

(2π)d

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

exp[iθ · x]

1− zλ(θ)
dθ1 . . . dθd

(B23)

and thus

(P su)−1 =
1

(2π)d

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
d times

1

1− λ(θ)
dθ1 . . . dθd (B24)

where λ(θ) is a structure function given as

λ(θ) =
∑
x

P (x, n+ 1|x′, n) exp[i(x− x′) · θ] (B25)

and where x′ is arbitrary and can be chosen as the origin
such that P (x, n+ 1|x′, n) = P (x, 1|o, 0).

Different lattices then have different structure func-
tions. For simple cubic (sc) lattices they are defined by
walkers that must move one step in only one dimension
at each time step resulting in the form in the previous
section.

a. d-dimensional body-centred and face-centred cubic
lattices

d-dimensional bcc lattices are defined as two perfectly
inter-woven d-dimensional simple cubic lattices such that
a walker transitioning a fixed distance between nearest
neighbours would do so along 2d−1 un-signed directions,
or axes, (giving coordination number 2d). These 2d−1

different jump axes correspond to a walker which must
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move forwards or backwards one step along every dimen-
sion in every time step.

d-dimensional fcc lattices can be defined as a simple hy-
percubic lattice with additional lattice points at the cen-
tre of every possible square face on that hypercube. This
gives d(d−1) axes for a walker to transition thus giving a
coordination number of 2d(d− 1). These d(d− 1) differ-
ent jump axes correspond to a walker which must move
forwards or backwards one step along exactly two dimen-
sions in every time step. I.e. there are dC2 = (n/2)(n−1)
planes a walker can transition in, each with four nearest

neighbours corresponding to the coordination number of
2d(d− 1).

According to these definitions there is no distinction
between sc, bcc and fcc structures for d < 3 except for
the nearest neighbour distance which plays no role here.

We assume that when bias is introduced to the walker,
it is introduced such that a) it transitions along one of
the 2d−1 or d(d − 1) axes with equal probability and b)
it transitions in one direction along such an axis with
probability p and the other with probability (1− p).

Consequently the structure function for the d-
dimensional bcc lattice is given by

λbcc(d, θ) = 2−(d+1)
∑

a1∈{−1,1}
. . .

∑
ad∈{−1,1}

[
peiεa1...ad

(a1θ1+a2θ2+...adθd) + (1− p)e−iεa1...ad
(a1θ1+a2θ2+...adθd)

]
(B26)

where εa1...ad ∈ {−1, 1} specifies whether bias is directed forwards or backwards along each jump axis. We note the
double counting of each axis, and thus prefactor 2−(d+1), since, for instance with d = 3, the axis corresponding to
ε1,−1,1 is the same as ε−1,1,−1 such that we also require εa1...ad = −εa−1 ...a−d where a−i = −ai.

Similarly, the structure function for the d-dimensional fcc lattice is given by

λbcc(d, θ) = 2(d(d− 1))−1
d∑
i=1

d∑
j=i+1

∑
k∈{−1,1}

[
peiεijk(θi+kθj) + (1− p)e−iεijk(θi+kθj)

]
. (B27)

where εijk ∈ {−1, 1} specifies the direction of bias along the axis θi + kθj and where the double counting has been
explicitly avoided.

Importantly, unlike for the simple cubic structure, because the jump axes are not orthogonal, the resulting integrals
retain dependence on the specific choices of εa1...ad and εijk. Indeed for the same reason it does not follow that
P su(d, 1) = 1 under total bias for all choices of εa1...ad and εijk.

Choosing d = 3 for illustrative purposes, multiple applications of the sum and difference trigonometric formulae
reveals that the structure function for the bcc lattice is given by

λbcc(3, θ) = cos(θ1) cos(θ2) cos(θ3) +
i(2p− 1)

4
[ε1,1,1 sin(θ1 + θ2 + θ3) + ε−1,1,1 sin(−θ1 + θ2 + θ3)

+ε1,−1,1 sin(θ1 − θ2 + θ3) + ε1,1,−1 sin(θ1 + θ2 − θ3)] . (B28)

Utilising the particular choice ε−1,1,1 = ε1,−1,1 = ε1,1,−1 = 1, ε1,1,1 = −1 allows the simpler form

λbcc(3, θ) = cos(θ1) cos(θ2) cos(θ3)− i(1− 2p) sin(θ1) sin(θ2) sin(θ3). (B29)

The structure function for the d = 3 fcc lattice is given by

λfcc(3, θ) =
1

3
[cos(θ1) cos(θ2) + cos(θ1) cos(θ3) + cos(θ2) cos(θ3)]

+
i(2p− 1)

6
[ε1,2,1 sin(θ1 + θ2) + ε1,2,−1 sin(θ1 − θ2) + ε1,3,1 sin(θ1 + θ3)

+ε1,3,−1 sin(θ1 − θ3) + ε2,3,1 sin(θ2 + θ3) + ε2,3,−1 sin(θ2 − θ3)] . (B30)

Choosing ε1,2,1 = ε1,2,−1 = ε1,3,1 = ε1,3,−1 = ε2,3,1 = ε2,3,−1 = 1 yields the simpler form

λfcc(3, θ) =
1

3
[cos(θ1) cos(θ2) + cos(θ1) cos(θ3) + cos(θ2) cos(θ3)]

+
i(2p− 1)

3
[cos(θ3) sin(θ1) + cos(θ2) sin(θ1) + cos(θ2) sin(θ3)] . (B31)

It should be emphasised that upon the choice p = 1/2 the resultant integrals reduce to the known Watson triple
integrals with well known relation to the sc, bcc and fcc structures. These have known results and so for the
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unbiased p = 1/2 case we may establish that in contrast to the simple cubic result P s,scu (3, 1/2) ' 0.65946, we have
P s,bccu (3, 1/2) ' 0.71777 and P s,fccu (3, 1/2) ' 0.74368 indicating that for d = 3 and p = 1/2 fcc structures outperform
bcc structures which in turn outperform sc structures. It is unknown to us, and beyond scope, as to how to reduce
the d dimensional integrals as with the simple cubic lattices and thus we consider only simple cubic lattices in all
further analysis.

b. Triangular lattice

Using the form in Eq. (B24) it is straightforward to calculate the expression for P su for the two dimensional triangular
lattice by mapping it to a a square lattice with additional diagonal connections along only one of the diagonals. This
gives an expression

(P su)−1 =
1

(2π)2

∫ 2π

0

∫ 2π

0

dθ1dθ2

1− 1
3 [cos(θ1) + cos(θ2) + cos(θ1 + θ2) + i(1− 2p)(ε1 sin(θ1) + ε2 sin(θ2) + ε3 sin(θ1 + θ2))]

(B32)

FIG. 9: Illustration of P su for the triangular and square
lattices for any choice of bias direction other than

ε1 = ε2 = −ε12 in the triangular lattice.

with εi ∈ {−1, 1} corresponding to the three axes that
make the triangular lattice. This integral has no obvi-
ous simplification, but is numerically tractable. For the
particular case ε1 = ε2 = −ε3 the bias is symmetrically
pointing in/out of any given lattice point (alternating bi-
ased and anti-biased directions towards each of the six
nearest neighbours around the lattice point) such that
the system becomes frustrated and the walker becomes
recurrent for all values of p such that P su = 0 for any
bias. For all other choices the behaviour is independent
of the values of εi and exhibits the behaviour shown in
Fig. (9) which is qualitatively very similar to the square
lattice, in particular demonstrating recurrence (and thus
zero long term work extraction) at p = 1/2.

Appendix C: Asymptotics and identification of
critical dimensions for hyper cubic lattices

Proceeding with the simple cubic lattice structure and
the expression in Eq. (B21), we recognise that the mod-
ified Bessel functions of the first kind, I0(x), can be
asymptotically approximated for large x to be I0(x) ∼
ex/
√

2πx. Consequently we may test convergence of
u(d, p) with a simple p-test [37]. Noting that we can
write the integral involving Bessel functions as

u(d, p)

=
d

2
√
p(1− p)

∫ ∞
0

e
−xd

(
1

2
√

p(1−p)
−1

) [
e−xI0(x)

]d
dx

(C1)

we have

lim
c→∞

d

2
√
p(1− p)

∫ ∞
c

e
−xd

(
1

2
√

p(1−p)
−1

) [
e−xI0(x)

]d
dz

=
d

2
√
p(1− p)

∫ ∞
c

e
−xd

(
1

2
√

p(1−p)
−1

)

(2πx)
d
2

dx (C2)

which demonstrably diverges for d = 1 and d = 2 when
p = 1/2 with convergence otherwise indicating the first
critical dimension, d = 3, where work extraction can oc-
cur at zero bias.

Looking towards the critical behaviour in whether zero
bias is locally optimal, we consider the local behaviour
in u(d, p) and thus the work extracted in the region
p = 1/2. We might naively attempt to approximate
by a truncated Taylor series where we would note that
du(d, p)/dp

∣∣
p=1/2

= 0 for d ≥ 5 and undefined elsewhere

since the limit limp→1/2 du(d, p)/dp diverges and that the
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second derivative at this point is similarly given by

d2u(d, p)

dp2

∣∣∣
p=1/2

= −4

∫ ∞
0

ze−z
[
I0

(z
d

)]d−1

I1

(z
d

)
dz

(C3)

which by similar logic to the above can be shown to con-
verge for d ≥ 5 also. Attempting to expand the work
extracted around this point gives

γ−1〈Ẇ 〉 = γ−1〈Ẇ 〉p=1/2

− 1

2

(1− ε(1 + e
∆E
T ))∆E

(1 + e
∆E
T )(u(d, 1/2))2

d2u(d, p)

dp2

∣∣∣
p=1/2

(p− 1/2)
2

+O
(

(p− 1/2)
3
)
. (C4)

The speed of growth in p maximises for ε = 0, ∆E =
T (1 + W(e−1)), where W is the Lambert W-function,
such that

γ−1〈Ẇ 〉 = γ−1〈Ẇ 〉p=1/2

− W(e−1)T

2(u(d, 1/2))2

d2u(d, p)

dp2

∣∣∣
p=1/2

(p− 1/2)
2

+O
(

(p− 1/2)
3
)
. (C5)

For d = 5 the quadratic term ' 0.324T , d = 6 it is
' 0.177T and decreases monotonically as d increases.
This may be sufficient for d ≥ 5, but fails for d < 5 and
moreover requires confirmation for d ≥ 5 as faster terms
may contribute from a proper asymptotic analysis.

To achieve this we note that Eq. (C1) is in the form∫∞
0
h(λx)f(x)dx where h(t) = e−t and λ = d((4p(1 −

p))−1/2 − 1) reducing to a Laplace transform, i.e.

u(d, p) = (λ+ d)

∫ ∞
0

e−λx
[
e−xI0(x)

]d
dx (C6)

for which standard asymptotic integral techniques can
be used where the limit p↘ 1/2 corresponds to λ→ 0+

[38–41]. To proceed we require the following asymptotic
forms

fd(t) =
[
e−tI0(t)

]d ∼ ∞∑
s=0

cst
−ks = (2πt)−

d
2 t→∞

h(t) = e−t ∼
∞∑
i=0

pit
ai =

∞∑
i=0

(−1)i

i!
ti t→ 0+ (C7)

and follow [38] in constructing the h-transform (here the
Laplace transform) as the integral across the real line∫ ∞

0

h(λt)f(t)dt

=
1

2πi

∫ r+i∞

r−i∞
M [h(λt); 1− z]M [fd(t); z]dz

=
1

2πi

∫ r+i∞

r−i∞
λz−1M [h; 1− z]M [fd; z]dz (C8)

where r lies in the strip of analyticity of M [h; 1 −
z]M [fd; z] and where M [g; s], is the Mellin transform

M [g; s] =

∫ ∞
0

xs−1g(x)dx. (C9)

By constructing a contour that extends the line integral
to an infinite rectangle around the analytic continua-
tion of the integrand where it is no longer holomorphic,
but meromorphic, along with the ability to disregard the
other line integrals either generally (at z = x ± i∞) or
in the λ → 0 limit, it follows that the asymptotic terms
are related to the residues of any poles of the above in-
tegrand contained in that contour [38]. Owing to the
(2πi)−1 factor the expansion is then expressed as those
residues contained in the contour multiplied by −1. Since
h = e−t it follows that M [h; 1 − s] = Γ[1 − s] such that
it is non-analytic at s = 1, 2, 3, . . . (i.e. at s = ai + 1),
whilst the p-test of f(t) indicates a pole in M [fd; s] at
s = d/2. Since we have the asymptotic expressions in
Eq. (C7) which describes the divergent part of the inte-
grals, we have the Laurent series for these poles which
can be expressed

M [fd; s]s= d
2

= − (2π)−
d
2

(s− d
2 )

M [h; 1− s]s=ai+1 = − (−1)i

i!(s− ai − 1)
. (C10)

If the poles in M [fd; s] and M [h; 1 − s] do not coincide
then the residues are of order 1 and can be expressed

− res
{
λz−1M [h; 1− z]M [fd; z]

}
= −M [fd; s]s= d

2

[
λz−1M [h; 1− s]

]
s→ d

2

−
∞∑
i=0

M [h; 1− s]s=ai+1

[
λz−1M [fd; z]

]
z→ai+1

= λ
d
2−1(2π)−

d
2M

[
h; 1− d

2

]
+

∞∑
i=0

λai
(−1)i

i!
M [fd; ai + 1]

= λ
d
2−1(2π)−

d
2 Γ

[
1− d

2

]
+

∞∑
i=0

λi
(−1)i

i!
M [fd; i+ 1]

(C11)

which is always the case for odd n. For even n there are
values of ai for which M [h; 1−z]M [fd; z] is a double pole,
namely when z = ai + 1 = d/2. For this case the residue
is written
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res
z→ d

2

{
λz−1M [h; 1− z]M [fd; z]

}
= λ

d
2−1 res

z→ d
2

{(
1 +

(
z − d

2

)
ln (λ) + . . .

)
M [h; 1− z]M [fd; z]

}
(C12)

which is a second order pole and a first order pole respectively (followed by higher order terms in the expansion which
do not lead to poles), such that we then write

− λ d
2−1 res

z→ d
2

{(
1 +

(
z − d

2

)
ln (λ) + . . .

)
M [h; 1− z]M [fd; z]

}

= −λ d
2−1 ln (λ) lim

z→ d
2

[(
z − d

2

)2

M [h; 1− z]M [fd; z]

]
− λ d

2−1 lim
z→ d

2

d

dz

[(
z − d

2

)2

M [h; 1− z]M [fd; z]

]

= −λ d
2−1 ln (λ)(2π)−

d
2

(−1)
d
2−1(

d
2 − 1

)
!
− λ d

2−1 lim
z→ d

2

d

dz

[(
z − d

2

)2

M [h; 1− z]M [fd; z]

]

= −λ d
2−1 ln (λ)(2π)−

d
2

(−1)
d
2−1(

d
2 − 1

)
!

− λ d
2−1 lim

z→ d
2

[((
z − d

2

)
M [h; 1− z]

)
d

dz

((
z − d

2

)
M [fd; z]

)
+

((
z − d

2

)
M [fd; z]

)
d

dz

((
z − d

2

)
M [h; 1− z]

)]

= −λ d
2−1 ln (λ)(2π)−

d
2

(−1)
d
2−1(

d
2 − 1

)
!

+ λ
d
2−1 lim

z→ d
2

[
(−1)

d
2−1(

d
2 − 1

)
!

d

dz

((
z − d

2

)
M [fd; z]

)
+ (2π)−

d
2
d

dz

((
z − d

2

)
M [h; 1− z]

)]

= −λ d
2−1 ln (λ)(2π)−

d
2

(−1)
d
2−1(

d
2 − 1

)
!

+ λ
d
2−1

(−1)
d
2

(
γ −H d

2−1

)
(2π)

d
2

(
d
2 − 1

)
!

+ λ
d
2−1 lim

z→ d
2

[
(−1)

d
2−1(

d
2 − 1

)
!

d

dz

((
z − d

2

)
M [fd; z]

)]
(C13)

where γ ' 0.577 is the Euler Gamma constant and Hn =
∑n
i=1 i

−1, (H0 = 0), is the n-th harmonic number.
Manipulations come from directly substituting the relevant terms from the Laurent series, differentiating by parts,
applying lim a ·b = lim a · lim b and then recognising M [h; 1−z] = Γ[1−z]. These terms then replace the corresponding
omitted terms corresponding to z = ai + 1 = d/2 in Eq. (C11). Importantly, when paired with the pre-factor from
Eq. (C6), for even d > 4, all terms from this contribution are slower than (p− 1/2)2.

Having established the asymptotic forms for even and odd d, we wish to consider the leading order term for each
d. To so we first consider the leading term in Eq. (C11) which only contributes for odd d. In these cases we find
(assuming p ≥ 1/2 for brevity)

(λ+ d)(2π)−d/2Γ[1− d/2]λ
d
2−1 =

d

2
√
p(1− p)

(2π)−d/2Γ[1− d/2]

(
d

2
√
p(1− p)

− d
) d

2−1

=

(
d

π

) d
2 Γ[1− d/2]

2

(
p− 1

2

)d−2

+O
((

p− 1

2

)d)
(C14)

allowing us to identify contributing terms in u(1, p) ∼ (1/2)(p − 1/2)−1, u(3, p) ∼ −3
√

3π−1(p − 1/2), u(5, p) ∼
50
√

5(3π2)−1(p− 1/2)3, . . . .
Next, for even d we must consider the contribution from the double pole at ai + 1 = d/2. The leading order

expression is that which contains the ln(λ) term which is finally

(−1/(2π))
d
2

(d2 − 1)!
(λ+ d)λ

d
2−1 ln(λ) =

(d/π)d/2

2(d2 − 1)!

(
p− 1

2

)d−2

ln

[
2d

(
p− 1

2

)2
]

(C15)

where we note a term of order (p − 1/2)d−2 also con-
tributes.

Next, we address the sum in Eq. (C11) and note that

M [fd, 1 + i] =

∫ ∞
0

xi
[
e−xI0(x)

]d
dx (C16)
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which by the above asymptotic arguments only converges
for i < (d/2) − 1 which is to be interpreted as its valid
domain, which by comparison with the double pole con-
dition z = ai+1 = d/2 ensures that it contributes, where
it exists, for all d, odd and even. Considering the leading
order contributions from this sum we understand that we
have, again including the relevant pre-factor,

(λ+ d)λi =
d

2
√
p(1− p)

di

(
1

2
√
p(1− p)

− 1

)i

=



O(1) +O
((
p− 1

2

)2)
, if i = 0, n > 2

O
((
p− 1

2

)2)
, if i = 1, n > 4

O
((
p− 1

2

)4)
, if i = 2, n > 6

O
((
p− 1

2

)6)
, if i = 3, n > 8

. . .

(C17)

revealing that the sum of such terms only contribute at
most quadratically in (p− 1/2), less a constant that ap-
pears as expected for n ≥ 3 when u(d, 1/2) 6= ∞. One
can use this to then confirm the form of u(d, 1/2) and
the correctness of the quadratic approximation for d ≥ 5
from the above. The O(1) term in (p − 1/2) here, con-
tributing only for d ≥ 3 is given by

u(d, 1/2) = dM [fd, 1]

= d

∫ ∞
0

[
e−xI0(x)

]d
dx

=

∫ ∞
0

e−x
[
I0

(x
d

)]d
dx (C18)

which is the Montroll extension of the Polyá result as
expected [27]. In turn the quadratic coefficient in u(d, p)

from the above analysis and is found to be

2dM [fd, 1]− 2d2M [fd, 2]

= 2

∫ ∞
0

e−x
[
I0

(x
d

)]d
dx− 2

∫ ∞
0

xe−x
[
I0

(x
d

)]d
dx

= 2

∫ ∞
0

e−x
[
I0

(x
d

)]d
dx−

[
2e−x(−1− x)

[
I0

(x
d

)]d]∞
0

− 2

∫ ∞
0

(1 + x)e−x
[
I0

(x
d

)]d−1

I1

(x
d

)
dx

= −2

∫ ∞
0

xe−x
[
I0

(x
d

)]d−1

I1

(x
d

)
dx (C19)

since (d/dx)I0(x) = I1(x) which then matches the naive
Taylor expansion result in Eq. (C3), confirming its suit-
ability for d ≥ 5 (though it does not confirm the validity
of the Taylor series expansion), with the quadratic coef-
ficient in work extracted for the optimal demon in turn
being given by

TW(e−1)
(
2d2M [fd, 2]− 2dM [fd, 1]

)
(dM [fd, 1])

2 . (C20)

Finally, we can use these asymptotics to consider the
leading terms in p − 1/2 in the work extracted (less
O(1) terms). In summary, for both odd and even d
there is a contribution of order (p − 1/2)d−2, whilst
for even d there is an additional contribution of order
(p − 1/2)2 ln(

√
2d(p − 1/2)). In addition to these con-

tributions there is an O(1) and (p − 1/2)2 contribution
for d > 2, with an additional (p − 1/2)2 contribution
appearing for d > 5.

Since P su(d, p) = u−1(d, p), for d = 1 and d = 2 where
there are noO(1) terms the leading order term in P su(d, p)
goes as the inverse leading order term in u(d, p), whereas
for d ≥ 3 the leading order terms go as O(1) followed by a
term proportional to the (negative) next leading term in
u(d, p). To summarise we have the following asymptotic
behaviour in u(d, p) and P su(d, p), abbreviating ∆p = (p−
1/2)

d u(d, 1/2 + ∆p) P su(d, 1/2 + ∆p)
1 O(∆p−1) O(∆p)
2 O(ln(2∆p)) O(1/ ln(2∆p))
3 O(1) +O(∆p) O(1) +O(∆p)

4 O(1) +O((∆p)2 ln(2
√

2∆p)) O(1) +O((∆p)2 ln(2
√

2∆p)
≥ 5 O(1) +O(∆p2) O(1) +O(∆p2)

This finally allows us to conclude that, because near
p = 1/2 the cost of biasing the exploration of the storage
medium can be approximated as 8T (p − 1/2)2 and that
from Eq. (C4) we have established that for the quadratic
term for d ≥ 5 is well below this value, deviations in p
around p = 1/2 are always sub-optimal for d ≥ 5 and
that, conversely, for d ≤ 4 there is always a deviation

away from p = 1/2 which is beneficial so long as the
demon has been properly set up (such that the random
access model is capable of work extraction) demonstrat-
ing the claim of a second critical dimension d = 5.

Finally, we remark on the case d = 4. Numerically
computing u(4, p) indicates an optimal p of 0.5 down
to machine precision, however the asymptotic analysis
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points towards a maximum away from p = 0.5. The
mathematical, if not numerically significant, maximum
can be illustrated through explicit expansion of terms.
For d = 4 we have

u(4, p)

∼ 4M [f4, 1] +
8

π2
ln
[
8(p− 1/2)2

]
(p− 1/2)2

+

8M [f4, 1] +
8

π2
(γ − 1)− 32 lim

z→2

d

dz
(z − 2)M [f4, z]︸ ︷︷ ︸

c


× (p− 1/2)2 (C21)

where γ ' 0.577 is the Euler Gamma constant. The
last limit term, c, is not obtainable analytically and dif-
ficult to numerically estimate with much precision, but
simulation points towards a bound c < b ' 0.1. By dif-
ferentiating the maximum net work, W(e−1)T/u(d, p)−
(2p− 1)T ln(p/(1− p)), and expanding to O((p− 1/2)2)
we can solve for its stationary point, the optimal value
of p = pdopt, which gives

p4
opt '

1

2

+ 2−3/2e[−
1
2 (γ+π2[M [f4;1]−4c+16(W(e−1)−1(M [f4;1])2])].

(C22)

Choosing c = 0.1 (which corresponds to a maximum es-
timate of p4

opt) gives p4
opt ∼ 0.5 + 6 × 10−13 which is far

below a value which can be distinguished from the d ≥ 5
result computationally.

Appendix D: Relation of the critical dimensions to
transience of random walkers

Here we make explicit the connection between the tran-
sience of the random walker to the critical dimensions.
Initially we consider the first critical dimension which
concerns work extraction at zero bias. Since the long
term ability of a random walk to discover new sites is
related to the transience of a random walk the first di-
mension directly follows the well known result that at
zero bias, for d < 2 random walks are recurrent and for
d ≥ 3 random walks are transient [30, 42].

Next we consider the second critical dimension. Here
we consider whether, at zero bias, a random walker is
strongly transient, which is to be understood the mean
return time to the origin is finite [42]. This occurs when
the following limit

lim
z→1−

d

dz
G(o, z)

∣∣∣
p=1/2

(D1)

converges. We note that we may write

G(o, z)|p=1/2 =

∫ ∞
0

e−x
[
I0

(xz
d

)]d
dx (D2)

from Eq. (B14). The first derivative then has the ex-
act same convergence properties as Eq. (C3), i.e. the
random walker is strongly transient when P su(d, p) is an-
alytic in the limit p → 1/2 which occurs when d ≥ 5.
Since the leading order terms, when it is analytic, and
the work spent driving the tape are equal (quadratic) it
then follows that any random walker that is not strongly
transient has an optimal bias popt 6= 1/2. Having then
demonstrating that the quadratic coefficient in the work
spent driving the tape is greater than that extracting us-
ing it for d ≥ 5 the general result follows: dimensions
where unbiased walkers are strongly transient have op-
timal bias p = 1/2 whereas dimensions where unbiased
random walkers are not strongly transient have optimal
bias p 6= 1/2.

Appendix E: Generalisation to d ∈ R+ and
approximate expressions for optimal p

By recasting Eq. (B20) in the form found in Eq. (B21)
we note that we have extended the d-domain of P su(d, p)
to the entire positive real line, perhaps opening up the
possibility of exploration of tape symbols on fractal struc-
tures [42], though this is beyond scope here. However, a
simple generalisation of the above yields results for the
regions of d for which the distinct behaviour associated
with each side of the critical dimensions occurs.

In this general picture, work cannot be extracted at
zero bias for d ∈ [0, 2] whilst it can for d ∈ (2,∞) such
that we recognise the first critical value of d ∈ R+ to
be d1

crit = sup[0, 2] = 2. Similarly, if the random access
demon can extract work at zero bias, the interval in d
for which some bias is optimal is d ∈ (0, 4 + δ) where
0 < δ < 1 such that d2

crit = sup(0, 4 + δ) = 4 + δ. For
an optimal demon δ takes its maximum value when the
quadratic coefficient in Eq. (C20) equals the quadratic
coefficient in the cost of driving the tape, i.e. it is the
solution to

8 = 2W(e−1) ((4 + δmax)M [f4+δmax
; 1])

−2
(4 + δmax)

× ((4 + δmax)M [f4+δmax ; 2]−M [f4+δmax ; 1]) (E1)

from which we estimate δmax ∼ 0.036949 and observe
that as a demon is made less optimal (but still capa-
ble of work extraction), δ approaches 0, but never passes
it. This goes some way to explaining the asymptotic
behaviour at d = 4 as it is demonstrably the infimum
in d2

crit that divides the two qualitative behaviours, i.e.
d2

crit ∈ (4, 4 + δmax]. These two critical behaviours are
illustrated in Figs. (10) and (11). It is also worth noting
that achieving these plots is generally not feasible numer-
ically directly, and so approximation strategies typically
need to be employed. For instance for 2 < d . 2.7 the
integral that defines P su(d, 1/2) is dominated by a fat tail
which makes convergence difficult. As such one can re-
produce such behaviour, for d > 2, through the following
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FIG. 10: Illustration of the first critical dimension
through variation of, P su(d, 1/2), as a function of

dimensionality d, d ∈ R+, with no work extraction
possible at zero bias for d ≤ 2, but work extraction

possible for d > 2.

approximation

∫ ∞
0

e−z
[
I0

(z
d

)]d
dz

=

∫ c

0

e−z
[
I0

(z
d

)]d
dz +

∫ ∞
c

e−z
[
I0

(z
d

)]d
dz

= lim
c→∞

∫ c

0

e−z
[
I0

(z
d

)]d
dz +

∫ ∞
c

e−z
[

e
z
d√

2π zd

]d
dz

= lim
c→∞

∫ c

0

e−z
[
I0

(z
d

)]d
dz +

21−d/2c1−d/2dd/2π−d/2

d− 2
(E2)

since I0(x) ∼ ex/
√

2πx for large x. This then replicates
the behaviour well given sufficiently large values of c.
Similar strategies can be employed in the computation of
Mellin transforms of fd.

Moreover, in keeping with the generalisation to d ∈
R+, we can approximate closed form analytical solutions
for pdopt, as opposed to the ad hoc (albeit more precise)
approximation utilised in Eq. (C22), in different domains
of validity in order to then describe them for given (inte-
ger) d. For instance, by taking leading order terms in the
work extracted less the work spent on driving the tape,
differentiating and solving for the maxima we find the
following approximations (noting that logarithmic terms
at d = 2, 4 would require further individual treatment),

for 0 < d < 2

p0<d<2
opt ' 1

2
+
W(e−1)

8

[(π
d

) d
2 (d− 2)

Γ
[
1− d

2

]]d−1

, (E3)

FIG. 11: Optimal value of bias, popt, as a function of
dimensionality d, d ∈ R+, close to the second critical

dimension. To the right of the dashed line the optimal
bias is always 0 (p = 1/2). Behaviour calculated with

the approximation in Eqs. (E3)-(E5)

for d < 2 < 4,

p2<d<4
opt ' 1

2

+

[(
d

π

) d
2 W(e−1)Γ

[
2− d

2

]
16(dM [fd; 1])2 + 4W(e−1)dM [fd; 1]

] 1
4−d

,

(E4)

and 4 < d < 4 + δmax

p4<d<4+δmax
opt ' 1

2

+

 W(e−1)(d− 2)d
d
2−2π−

d
2 Γ
[
1− d

2

]
M2[fd; 1]

(
2W(e−1)(2d2M [fd;2]−2dM [fd;1])

(dM [fd;1])2 − 16
)
 1

4−d

,

(E5)

with pd>4+δmax
opt = 1

2 for d > 4 + δmax. The first approxi-
mation performs well until d ' 1.1 where the optimal p
becomes too large to be described by leading order terms.
Similarly the second and third approximations perform
well from d ∼ 2.9 to d ∼ 3.9, below which it fails in the
same manner as the first expression and above which sec-
ond leading order terms in (p−1/2) in the extracted work
cannot be readily neglected since leading order terms be-
come very similar in magnitude. This behaviour is illus-
trated in Fig. (12). Fortunately they well describe the
regions around d = 1 and d = 3 allowing us to express
the following approximations

p1
opt '

1

2
+
W(e−1)

8
' 0.5348

p3
opt '

1

2
+

3
√

3W(e−1)

π (144(M [f3; 1])2 + 12W(e−1)M [f3; 1])

' 0.5120. (E6)



23

FIG. 12: Optimal value of bias, popt, as a function of
dimensionality d, d ∈ R+, with approximate forms.
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