University of

"1l Kent Academic Repository

Linington, Peter F. (2005) Automating Support for E-Business Contracts.
International Journal of Cooperative Information Systems, 14 (2/3). pp.
77-98. ISSN 0218-8430.

Downloaded from
https://kar.kent.ac.uk/14273/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14273/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

International Journal of Cooperative Information Systems
(© World Scientific Publishing Company

AUTOMATING SUPPORT FOR E-BUSINESS CONTRACTS

PETER F. LININGTON

Computing Laboratory, University of Kent, Canterbury
Kent, CT2 7NF, UK

Received (16th November 2004)
Revised(28th February 2005)

If e-business contracts are to be widely used, they need to be supported by the IT
infrastructure of the organizations concerned. This implies that the interactions between
systems in different organizations must be guided by the contract and there must be
sufficiently strong checks and balances to ensure that the contract is in fact obeyed. This
includes facilities for the unbiased monitoring of correct behaviour and the reporting of
exceptions.

One of the ways to provide this support is to generate it directly from the agreed
contract. This paper considers the steps necessary to provide sufficient automation in the
support and checking of e-Business contracts for them to offer efficiency gains and so to
become widely used. It focuses on the role of models, taking a model-driven approach to
development and discussing both the source and target models and the transformational
pathways needed to support the contract-based business processes.

Keywords: monitoring; contracts; model-driven development.

1. Introduction

In the real world, business activities during which organizations cooperate are reg-
ulated by contracts. These are agreements on the patterns of behaviour needed to
achieve mutually agreed goals, and often include contingencies and sanctions to be
applied if the expected behaviour is not performed correctly and on time. These
contracts are governed by rules or laws established by the society in which they are
agreed. It is highly desirable for the ICT infrastructure supporting business activi-
ties to be controlled directly by some expression of these contracts, so that correct
operation is assured with a minimum of human intervention.

However, each participating organization has its own agenda and, although the
contract represents a mutually acceptable outcome for all the parties involved, it is
not generally the most advantageous outcome for any of the organizations if they
are considered separately; each must therefore have some assurance that the others
are keeping their side of the bargain, and not deviating from the agreement to
maximize their own gains. Reflecting this division of interests and responsibilities,
the infrastructure will itself also consist of parts serving each organization and

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

possibly of other parts operated by third parties; each party will need some way of
checking that the others are indeed operating according to the contract.

Previous work has proposed an architecture for contract management within the
ICT infrastructure!®, for expression of the contract as a set of policies'® and for a
monitoring component that can be used to check adherence to the contract?. Work
on the Business Contract Language (BCL)!? has proposed a language for expressing
such contracts in a form suitable for a checking component to operate on. However,
the proof-of-concept prototypes constructed in the course of that work were hand-
built and hand-configured. A better solution is needed if electronic contracting is to
be cost effective; one option is to use the approach of Model Driven Development,
based on effective integrated tooling to support software construction, and this is
the approach discussed in this paper.

The remainder of this paper is structured as follows. Section 2 gives some back-
ground to Model Driven Development and section 3 outlines the ways in which
contracts are used. Section 4 analyzes the requirements for expressing and ma-
nipulating contract support. Section 5 outlines features of the Business Contract
Language. The next two sections address the requirements for the main metamodels
and their interpreters; the notification metamodel is described in section 6 and the
monitoring metamodel in section 7. Section 8 provides an overview of the transfor-
mation process, section 9 discusses other previous work in this area and section 10
draws conclusions.

2. Model Driven Development

The key to the flexible evolution of ICT systems is automation, particularly to re-
duce the amount of human intervention needed, and this applies strongly to the
automation of the production of implementation detail. What is needed is a way
to establish an implementation style, expressing it as a transformation template.
This template is then used in each specific case for elaboration of the high level
design. Future modifications to the business design can then be carried through
mechanically, with the minimum of human intervention and duplication of effort,
into changes to the detailed implementation of the infrastructure by reusing the
same transformation template. This is the concept behind the model driven devel-
opment movement. Much of the interest in this style of development has arisen from
the OMG’s definition of its specific version, the Model Driven Architecture!®.

In the model driven approach (figure 1), the system designers have two kinds of
task to perform. Firstly, they have to generate a design in terms of a model that ab-
stracts away from the details of the supporting infrastructure; that is to say, a model
in business terms. They will create this model using a suitable domain-specific lan-
guage, or metamodel, using appropriate tools that are aware of the metamodel to
manipulate their model correctly. Second, they will need to define a transformation
from their model to a running solution that uses available infrastructure compo-
nents. If the business metamodel is stable and reasonably well known, these two

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

gource transformation target
metamodel i metamodel i metamodel

=) =

source domain target domain

Fig. 1. A transformation between models.

design tasks can be performed by different specialists within the team; the source
metamodel needs to be developed by business specialists, the target metamodel,
which is also needed, will be supplied by infrastructure providers and the transfor-
mation between them will be defined by infrastructure specialists who are aware of
business constraints and conventions.

In model driven development, it is assumed that the source and target meta-
models are comparatively stable, so that transformations expressed between them
become reusable, and the tools generated to perform these transformations are
then themselves long-lived. The transformations are likely to be constructed from
reusable component transformations which take the form of broadly accepted tem-
plates or patterns. Thus any contract expressed in the contract language can be
mapped to the reusable checking components by using the transformation meta-
model to construct a specific transformation, without the designer having to inter-
vene in the transformation process on a case by case basis.

However, to apply this style to any particular domain, we need to have available
suitable target metamodels, and encouragement of reuse dictates that these should
have as broad a scope as possible. They are likely to be produced to reflect the
properties of the available platform architectures or of general-purpose components.

One way of looking at the process is to see the target metamodel or metamodels
as defining a virtual machine on which the source behaviour is to be executed. If
some required behaviour is expressed in terms of rules for the interpretation of a
series of tokens by progressively testing and updating a body of contextual state,
we can generally think of the set of rules as defining a virtual machine; the rules
and the set of input events are interpreted to check validity and to generate a set of

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

N

contract contract .
notary . . arbiter
repository momtor

Fig. 2. Different uses of electronic contracts.

outputs, which, in this case, will be reports of successful completion of the contract
or of violations of it. If the behaviour we are interested in can be considered at
a number of different levels of abstraction, then we can think of a corresponding
family of virtual machines, linked by refinement relations.

In the case of the monitoring of a contract, we can consider an abstract virtual
machine that polices the general form and framework of the contract; this machine
can be refined as necessary to capture the negotiation of specific options on differ-
ent occasions, and a corresponding, more specific, virtual machine is defined and
instantiated to monitor each variant as it is negotiated. These specific definitions
and their instantiations can be short lived, lasting for just as long as the negotiated
agreement holds.

Although this paper concentrates on the application of model driven devel-
opment to contract support, it is being applied to a progressively wider range of

problems including test generation*, performance analysis?® and security support'!.

3. Use of Electronic Contract Support

Before turning to the application of these ideas to electronic contracts, we must first
identify requirements by looking at the ways in which electronic contracts can be
used. It is possible to identify a number of different uses and corresponding different
ways in which the representation of a contract will be applied (see figure 2). These
contract representations can be used:

(i) to record the results of negotiation between the parties involved, or their agents,
thereby creating a contract defining some activity that is to be undertaken
either immediately or at a later time; this can be on a one-off basis, supporting
just a single activity, or it can result in a contract that will be applied more
than once. A common example is the call-off agreement, which is negotiated
and then holds for a specified period, during which time the agreed terms may
repeatedly be invoked for the supply of specific goods or services;

(ii) to steer the performance of activities while carrying out the contract; the con-

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

tract is used in identifying obligations and in scheduling resultant actions or
identifying situations where a specific response is needed to violations;

(iii) as a basis for run-time monitoring activities, which may be carried out by
components or organizations separate from the parties directly involved in the
contract;

(iv) during subsequent arbitration of disputes arising from the contract; this is likely
to be based on the audit trail established by the participants, together with
non-repudiable statements lodged by them with a mutually agreed trustworthy
repository.

A single model should be able to represent the contract in each of these cases,
but, each time, a specific model and metamodel for contract processing will be
needed; this is because the actions to be taken will be based on an interpretation of
the contract that will differ in each case, and so specific corresponding actions will
need to be defined for each field of application.

Consider, for example, the supply of telecommunication services, governed by a
service level agreement. The agreement needs to be negotiated, probably by selection
from a proforma and completion of specific detail, and the agreed choices need to be
recorded. Some aspects, such as time-varying constraints on the load the customer
can generate, need to be made available to the customer at run-time; the active
parties and the monitor all need to be aware of any obligation that might be placed
on the active parties to provide periodic performance information; some statistical
constraints may be checked by the monitor but not supported at run-time by the
customer systems; and, finally, longer term properties, such as availability, may need
to be assessed from extended historical records in response to customer complaint
to a regulator or other independent body. All these activities are still taking the
same negotiated contract as their basis.

4. Requirements on the Metamodels

The description of contact monitoring can be divided into two parts, each with its
own metamodel, corresponding respectively to the collection and interpretation of
significant events. This subdivision helps to separate the different parts of the target
domain, the resulting metamodels being:

(i) the notification metamodel, which encapsulates requirements that apply to the
infrastructure for the contracting parties, including how they are to supply re-
ports on key events, and the information content these reports must have. There
will be two kinds of information, covering the generic information common to
all reports, such as the event type, a timestamp and the source and destination
of the report, and further details of the nature of the event reported, such as
description of goods and their value, the definition of which will need to be
imported from the contract description.

(ii) the monitoring metamodel, which describes requirements that influence the de-

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

cision process to be carried out by the monitor, in which information about the
actions taken by the parties is used to determine whether the activity conforms
to the agreed contract or not. It includes the interpretation of the contract-
specific content of events, when parties are obliged to report them, and the
acceptable behaviour of the parties in terms of these events.

The support for the contracting parties will consist of some message generation
mechanisms, consistent with the event definitions in the monitoring metamodel,
and a general message transport mechanism, consistent with the generic notification
metamodel. The implementation of a monitoring component will interpret contract
descriptions in a way that is consistent with the monitoring metamodel.

4.1. More detailed requirements

To clarify the roles played by different metamodels, let us consider the monitoring
process, and the environment in which it is carried out, in rather more detail. Suffi-
cient detail need to be considered to justify the metamodels proposed as being well
fitted to their purpose, allowing accurate decision making and providing sufficient
information to allow the efficient engineering of reusable monitoring components.

We assume for simplicity that a contract has been negotiated, and that it has
been signed by a notary and lodged in a trusted contract repository. From there,
it is accessed independently by the contracting parties to guide their activities and
by the monitor to verify that the actions taken are consistent with the contract.

The contracting parties need to be able to determine at any point which actions
are permitted, which of them are definitely required to fulfil some obligation, and,
for these obligations, how soon action is required and how severe the penalties for
failure to comply with the contract would be. They also need to identify which
special actions participants are obliged to perform to demonstrate progress, and to
whom the progress information is reported. The reporting actions are likely to be
distinct from the significant business steps, and may exist solely to enable monitor-
ing, although they may also be necessary to form part of some subsidiary customer
service, such as order tracking. For example, the main business process may be in
terms of a physical dispatch-of-goods event, but the contract may require the gen-
eration of a corresponding electronic counterpart in terms of an event notification
or the posting of a state change to the customer progress system.

The reporting requirements are likely themselves to form part of the contract,
and may imply a requirement for the implementation to provide reporting either to
a specific entity or to a well-known channel, defined so as to make key events visible
to some or all of the participants on an opt-in basis. Depending on the nature of the
event being reported, this may require additional procedures by human operators
to ensure that significant state changes are accessible to the IT infrastructure. This
may need to include reports of disruption of the contractual processes, or of the
infrastructure, or of instances where the terms of the contract are set aside by
Force Majeure.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

contract participants -
| B C -
[NEl

lm infrastructure

«-E—TP

¥ ¥
| event channel

netification metamodel

Fig. 3. Outline of the Monitoring Architecture.

An example of this can be found in many commercial ports, where port fees
are payable by the minute from the time a ship is first moored to the time the
last rope is released on its departure. These events are the result of an essentially
manual process, and are not easily determined by the electronic parts of the system.
Attempts to report them automatically in a robust way have had little success and
the definition of the terms of the contract cannot easily be varied because of the
importance these events have come to have in many interdependent regulations and
agreements. Manual entry of reports is then the only viable alternative.

A typical monitoring architecture is illustrated in figure 3. This shows the sys-
tems of three contracting parties A, B and C, together with a separate monitoring
component. The contracting parties are supported by a distributed infrastructure,
which might be an object or service oriented middleware or a more loosely coupled
message queuing and passing system. The parties can discharge their reporting
obligations in a number of ways (so long as the necessary information is visible —
before, for example, any message encryption needed to protect communications).
C incorporates explicit reporting in the application implementation, B uses inter-
ception services associated with its access interface to the infrastructure, and A,
which might be a less accessible legacy system, relies on interception rules in the
core of the infrastructure. These pieces of function are shown in the figure by the
small rectangles labeled NP (for Notification Point); they relay the events detected
to the monitor using some form of event channel, which might, if appropriate, be
integrated with the production infrastructure, but might be a separate, more easily
auditable, overlay service.

The monitor, being a separate system, is based on independent design choices,
and so makes a minimum of assumptions about the nature of the infrastructure and
the event channel. The monitor receives a stream of low level events which are first
pre-processed (see below) by an aggregation and correlation element, labeled Cor-
relator in the figure, which recognizes events at the level of abstraction appropriate
to the contract and passes these higher level events to the correct instance of the

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

monitor’s main matching engine. Depending on the closeness of coupling between
the monitor and the parties being monitored, the monitor may then generate in-
teractions with the parties to report violations; it may also re-insert events into its
own event stream to signal progress or violation to other contract instances.

The monitor needs to be able to determine whether observed actions are valid at
the time and place where they occur, or not, and what effect they have on the state
of, and progression of, the contract. The monitor needs to record enough information
about the state of each activity to be able to perform this kind of validation.

So why is the distinction between the Monitor and the Correlator made? It
exists because a contract will generally leave the participants free to determine the
details of their supporting system designs independently. There may well then be a
mismatch between the events observed and the actions declared in the contract. This
can occur because the contract is expressed in more abstract terms than the actions
reported, so that the monitor has to match patterns representing the more abstract
events to the input event stream in order to recognize the abstract events. These
patterns need not be fixed in the contract, since contracting parties will generally
have autonomy in determining how they are to perform contractual actions and
what infrastructure they are to use, but the way significant events are reported
must be communicated by the parties to the monitor in some way. This can be
done by declaration of the method to be used at negotiation time, or during run-
time initialization; it may be by selection from a set of foreseen optional formats,
or by specification in a generally accepted schema language, such as one of those
associated with XML, or a service definition language (although the expressive
power of many of the solutions currently on offer is rather limited).

Another reason for there being a non-trivial mapping between observation and
contractual action is that there may be delegation, for example to a sub-contractor,
so that there would again be flexibility as to how the contractual action is to be
achieved in detail by the sub-contractor. In this case, the details of the required
event representation must be provided by the sub-contractor.

In any of these cases, a mechanism is needed to support the dynamic binding of
detailed behaviour to the contractual actions. What the binding actually is might
be determined by pre-registration or by inspecting the parameterization of initial
exchanges in the contract, where details are being negotiated.

The combination of the freedom to declare reporting formats and the ability to
re-inject events to the generating monitor, or to one or more other monitors, leads
naturally to the ability to federate monitors and so to handle dependencies between
separate contracts. It would also be possible to link monitors to other consensus-
building tools, such as reputation servers, and then use the information obtained
to optimize the monitoring process.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

4.2. Correlation Requirements

Another area where significant flexibility is needed is in identifying when new in-
stances of the contractual behaviour begin, and which of the instances of the con-
tract subsequent actions are to be associated with. This is particularly important
where several instances may be being executed concurrently. The situation is quite
similar to the problem of identifying correlation sets in a choreography language
like BPEL?*, but with the additional problem that hierarchical interpretation may
require several steps of binding from basic to more abstract actions to be interpreted
before the key information for identifying the correlation set is available.

In simple cases, the correlation requirements might be met by ensuring that all
the messages monitored included key items, such as the initiator’s identity and order
number. This information could then be used to dispatch events to the appropriate
monitor instance. Although this is straightforward if the message formats were
designed with monitoring requirements in mind, it is more complex if designers
have chosen to exploit the creation of some form of session between parties to
eliminate common information from messages, and instead using a local handle as
a reference. If this is done in a way that is not completely visible to any observers,
it may be difficult for them to track the session life-cycle.

Thus, in more complex cases, this can lead to a need for the monitor to carry
forward a number of possible interpretations, and to prune incorrect guesses when
further information becomes available. Consider, for example a contract that in-
cludes a sequence of actions involving some part of the infrastructure that, for
legacy reasons, does not support the correlation identifier used in the initial activi-
ties of the contract instance (see figure 4).

This figure shows a situation where the initial exchanges use as the correlation
identifier a value ID, included in the initial message by party A. However, the
legacy exchanges between party B and party C cannot convey this item, and so
correlation is based on the value I D x originated by party B; this is not a problem for
party B, which maintains a local mapping between I D 4 and I D x, but this mapping
cannot be inferred with any certainty by an external observer, particularly when
concurrent instances of the contract are in progress. The observer can correlate the
final exchanges between parties A and B with the initial ones, but can only correlate
exchanges involving A-B and B-C if there is some other suitable data item, such
as D, which can safely be used as a correlator between the subsystems. Thus the
monitor needs to track multiple possibilities, and may never, in fact, be able to
resolve the situation completely if there is no single, complete chain of correlations.

Other factors, such as event timing, can be used to determine the most likely
interpretation. For example, the monitor might be able to be pro-active, consulting
a known tracking service to resolve ambiguity; however, this kind of solution is likely
to be application specific, and so difficult to generalize.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

10

A 3] El

| Correlation on ID,,

| Correlation on IDy

Data item D Data item D
| DataitemD

I Correlation on ID,,
S

Fig. 4. Combining different correlation domains in a process.

4.3. Continuous Quantitative Constraints

Some contracts, such as Service Level Agreements, express a mixture of discrete
behaviour, in terms of actions, and continuous quantitative measures and activi-
ties, and this illustrates another way in which processing decisions may need to be
devolved to the monitor. Although such detail is largely concerned with the im-
plementation of the monitor, it is important that the monitor metamodel includes
the necessary control information to allow there to be an efficient implementation.
Requirements for quantitative constraints of this kind might be found in the energy
supply industry or in telecommunications, but it may be easier to think in terms of
a more physical case. Consider, for example, a supplier of a raw material, such as
orange juice. This is shipped as concentrate by road tankers to a packaging plant,
and the telemetry on the receiving dock reports the flow of juice into holding tanks
within the plant. The supply contract requires a lower bound to be placed on the
rate of supply of juice, averaged over a three-day period. It does not commit to any
particular size or number of tankers.

The average could be calculated whenever a telemetry message was received
from the dock, but this could place a significant burden on the monitor and the
notification infrastructure. Considerable savings could be made if the monitor were
to operate in a pull-mode, in which the flow was integrated locally and the monitor
then queried the packing plant system about the result of deliveries over a suitably
chosen recent period. The problem is then how to choose this period.

If, at some point in time, the monitor updates its historical records of juice flow,
it can calculate whether there has been a contract violation in the last three days,

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

11

window size

T possible zero

earliest start for violation recalculation point

Fig. 5. Selecting the next review point.

or not. It can also make a worst case assumption (see figure 5) that the juice flow
might have stopped just after this report and then remained at zero. The monitor
is then in a position to calculate the earliest time at which the contract could,
in these circumstances, have been violated. What it does is to calculate the total
volume needed to achieve the required average rate throughout the assessment time
window, and then to integrate the observed deliveries backward from the current
time to determine the time in the past since which that amount has been delivered.
By shifting forward from that point by the time-window size, it can determine
the earliest possible time at which a violation might occur. The earliest possible
violation time can then be used as a deadline for the next reassessment of the
situation. If further deliveries have, in fact, been made, the process can be repeated
and a further re-evaluation scheduled in the same way. If the supply has indeed
dried up, a violation can be signaled.

Note that this technique can only be applied to a required maximum usage rate
if there is a known upper bound on the flow rate, for obvious reasons. However, in
telecommunications, such a bound will often exist (on bandwidth use, for example).

Although the precise details of this example are not likely to be found in many
different contracts, the need to assess rolling averages subject to domain specific
constraints, and to apply constraints on rolling averages, is likely to be found quite
often in a variety of supply contracts and service level agreements. A monitor meta-
model should therefore be able to support declarations of evaluation functions and
provide a framework for this kind of efficient assessment of continuous conditions.

The requirements can be quite complex. One example found in the SLA for
the UK academic network?® is for assessment of network availability. This network
supports some hundreds of institutions, and availability is a major concern. A metric
is needed that can be met with current technology. This means that the targets
need to be averaged over a long enough period and number of sites to prevent
many spurious violations, but with stronger guarantees than a simple average over
all institutions could give. The solution is to place a series of constraints on the
distribution of percentage monthly availability over all sites — for example that more

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

12

than 96.5% of sites should see at least 99% availability. The target for acceptable
performance is, in this case, defined by four such reference constraints at different
points along the availability distribution. Calculating conformance to this kind of
SLA requires flexible constraint expressions for rolling averages and rankings in the
contract language.

5. The Business Contract Language Framework

Previous work by the author in collaboration with Milosevic’s team at DSTC has
proposed the main features of a contract monitoring language'?. This language
supports the structuring of contract definitions by using the Open Distributed Pro-
cessing (ODP) Enterprise Language concept of communities®. A community in ODP
is a configuration of collaborating objects, representing entities, that is formed to
meet some goal, and so the parallel between relations of entities in a community
and the structure of participants in a contract is quite clear. In the ODP work the
modeling is generally assumed to be object based, and so the contracts are expressed
as collaborations of objects. Some commentators have questioned the applicability
of object-based methods when modeling more abstract, socially based situations,
but this is not a serious limitation when considering business contracts, because the
parties must be reified at least to the degree necessary to assign obligations and
responsibilities to them, so the same style is practically always appropriate. Indeed,
stating that something is a party can be taken to imply that it can be modeled as
an object.

The idea, then, is to identify nested or overlapping communities as correspond-
ing to contracts, subcontracts or more broadly applicable bodies of regulations. In
future, for example, a business contract might be defined in the context provided by
a formal re-statement of the local tax laws. Community definitions are expressed by
declaring a collection of roles and stating the behaviour that these roles are involved
in. The roles are the formal parameters of the community, and we can think of the
community type as a template that is instantiated by filling the roles with suitable
objects. There is then a correspondence between these objects in the representative
model and the parties to the contract.

The behaviour of the contract, seen as a community, will generally consist of
some straightforward basic behaviour, representing the expected course of normal
execution of the contract, and a set of supporting clauses detailing responses to
various exceptions and violations The general shape of the behaviour description is
similar to many existing process algebra-based notations, with the ability to express
sequence, concurrency as interleaving and guarded choice, with the outcome when
more than one action is possible being determined either by the object or by its
environment, as appropriate.

This basic behaviour is then qualified by a number of policies, generally express-
ing violation conditions, which either enable some required corrective behaviour or
report violations to some higher level at which failure of the contract can be handled,

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

13

either manually or by some over-arching procedure.

The BCL language'? also supports a flexible sliding window construct to express
rolling or periodic constraints. From the point of view of the behavioural specifi-
cation, this is essentially a special kind of iterator with support that allows the
iteration process to be driven by temporal constraints and it supports quite gen-
eral guards, which can be a mix of temporal guards and conditions over historical
behaviour within the window defined. It is, therefore, a generalization of existing
flow-based control structures and so integrates quite smoothly with the style of the
rest of the behaviour specification.

6. The Notification Metamodel

The aim of the notification metamodel is to provide a target for the generation
of calls to the infrastructure linking the contract participants to the monitor. It is
concerned with the transport of reports and with those pieces of information com-
mon to all reports, such as source, destination or timing information. The content
associated with specific report types is more specialized, and is derived from the
monitoring metamodel (see below).

The notification metamodel is quite straightforward, and similar in style to any
of the commonly used publish and subscribe messaging services (the JMS model®
might be taken as typical). The main additional requirement is for a more detailed
timing and quality of service model than would perhaps be the norm.

Detailed timing information is needed so that there is enough information for
the monitor to reconstruct the sequence of events from different sources. To do this,
it needs to be able to correlate source time stamps in the presence of variable trans-
mission delays and lack of synchronization of the various local clocks involved (note,
for example, that the JMS model does not name the source clock domain, making
clock synchronization and compensation by the receiver impossible). This attention
to the correctness of clocks is a particular requirement for contract monitoring be-
cause manipulation of clocks or introduction of artificial transmission delays can
form part of fraud by, or malicious attack on, the parties involved. Considerations
of this kind of threat have in the past, for example, led to the banks agreeing to
use an independent time signal from a trusted third party, such as their network
provider, to mark the end of the day for clearing purposes.

Even with detailed information about timing, there will still potentially be ambi-
guity about the actual sequence, and the monitor will need to take this into account,
allowing for some margin of measurement error before flagging any violation, and
considering the possibility of local reorderings. In order for it to do this, there is
also a need to know the quality of service properties of the notification mechanism,
so that allowance can be made for its properties in interpreting the data received.

Finally, the model needs to create the framework for classifying events and
naming recipients. A contract could express reporting requirements in terms of
reporting to a single named monitoring entity, but there may well, in practice, often

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

14

be multiple such entities covering different requirements. If, for example, the parties
are mutually suspicious and do not accept any single monitor as being sufficiently
trustworthy, there may be multiple monitors, each protecting the interests of one
of the contractual parties. If there is subcontracting, a single event may form part
of the checking of both the main contract and the subcontract, so the report may
need to be delivered to the monitors for each of them, so that they can perform
different interpretations. To meet these requirements, it may be appropriate to use
a publish and subscribe style with named channels used to classify the report types.
The notification metamodel therefore consists of:

(i) a message addressing and routing part, describing source and destination iden-
tity, message categorization and associated metadata; there will generally be a
need to link this with a broader-based security model;

(ii) a message specific model dealing with the identity and description of the event
being reported and with the timing and quality of service considerations men-
tioned above. It is important here for the identity and type information to cover
both the identity of the contract applied and identity of the event within the
contract, since there will, in general, be a need to track a number of nested or
overlapping contracts at any particular time. The model should also describe
instance identification data that can be used for message correlation, although
not all of the message transport mechanisms will provide this information, lead-
ing to the need for recourse to the kind of content-based correlation discussed
above.

7. Monitoring Metamodel

The aim of the monitoring metamodel is to provide a target for the transformation
of the contract specification into a form that is suitable for a reusable component to
interpret while matching the stream of action reports generated by the parties to the
contract. Thus the monitor takes a statement of the contractual constraints which
is an instance of this metamodel, and uses it as steering information, interpreting
it as instructions for matching the observed event stream.

Since, in general, the events received may be a local representation of the con-
tractually meaningful events, there will commonly be more than one recognition
step, even if the same technology can be applied to each of them. The first is a
transformation that sifts through the raw event stream (the Correlator in figure
3) to recognize the contractual events, and this is then followed by the contract
recognizer proper, which matches the abstract contractual events to the acceptable
patterns of contractual behaviour.

The target patterns for these different steps will typically originate from different
sources. The main pattern comes from the contract, but the pre-filter typically
comes from subsidiary interworking agreements between the pairs of parties that
need to interact directly. In simple cases this might reduce to the identification of
a transport mechanism and a concrete schema for the information conveyed.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

15

&

m instance I:>
locator
T

[1 I 1
constraint recogniser state timer
seanner factory manager manager

Fig. 6. Elements of the monitoring virtual machine implementation.

recogniser
engine

After the contractual events have been identified, the main items in the meta-
model are structured to follow the main components in the monitor implementation,
an overview of which is shown in figure 6.

The core of the monitoring virtual machine will be a set of event pattern rec-

11618 " and so the core of the

ognizers, similar to the structure described by Nea
metamodel will be the grammar for the event pattern language it recognizes. There
will be multiple instances of this recognizer, linked to reflect both the structuring
into subcontracts and the tracking of concurrent instances of contract execution.

These recognizers will be fed from an event-distributing component, the instance
locator, which takes the incoming contractual events and finds the corresponding
recognizer on the basis of the available correlation information associated with the
events, and then passes each contractual event on to the correct recognizer.

If an event results in the contract reaching a significant state, such as the recogni-
tion of a goal, for example completion of a transaction, or an intermediate sub-goal,
for example completion of a delivery, this will need to be signaled to the outside
world. This may be as a report or event notification, by either an infrastructure
signal or as a human-oriented message via, for example, e-mail or text messaging,
or even the generation of solicitor’s letters. Such outgoing event production is dele-
gated to a separate event generator. Another option is to re-inject the events into the
input stream of either this monitor or of others, so as to couple the interpretation
of different contract instances.

Finally, figure 6 includes a number of supporting components that provide ser-
vices to the recognizers, and the metamodel will contain corresponding structures
to invoke them. Those illustrated are:

(i) @ recognizer factory: if the instance locator discovers a new instance, or if be-
haviour within an existing contract requires creation of a new contract or sub-
contract, this factory produces a new recognizer instance to track it. The in-
stance locator must be updated as a result so that it can direct relevant events
to the new instance in future;

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

16

(ii) a state manager: many contractual steps need to change the context in which an
instance operates, and the state manager centralizes these changes, preserving
consistency between instances where necessary; it can create new instances of
some or all of the state, enabling recursion to be used where it is necessary;

(iii) a timer manager: it is very common for the receiver of an event to be obliged
to respond within a specific time. The timer manager maintains the necessary
set of time-outs to police this behaviour, re-injecting exceptional events into
the recognizer if a timer is not canceled before it expires;

(iv) a continuous constraint scanner: where continuous constraints on timeliness, or
other service level properties, are required, the recognizer instantiates separate
activities to maintain an ongoing test of the event stream for these properties;
this can be optimized by using the techniques outlined in 4.3.

7.1. Event Patterns

The event pattern part of the specification will concentrate on the construction of
patterns by the composition of atomic events or smaller pieces of behaviour by us-
ing behaviour composition operators. A formalization of the BPMN specification?’
would be a good starting point for this (the block structure in BPEL?* enforces a
unique initiating action and strict nesting of fork-join pairs and so is too restric-
tive to meet the requirements, since there may well be a requirement to describe
rendezvous or for staggered fork-join structures).

The matching engine intended here would be a recognizer of behaviour expres-
sions in a process-algebra style, similar to CSP® or LOTOS®, in which a behavior is
defined as a recursive composition of behaviour fragments, ending with individual
actions as primitive pieces of behaviour. The set of operators would include, as a
minimum:

(i) sequential composition, in which completion of one piece of behaviour is followed
by the start of another;

(ii) concurrency by interleaving, in which two pieces of behaviour can be in progress,
but without constraint on which should be the next to perform an action;

(iii) guarded deterministic choice, in which the various branches of the choice are
determined by the state of the contract, as established by previous actions and
their parameterization;

(iv) guarded non-deterministic choice, determined eventually by the environment;

(v) asynchronous exceptions that override some default behaviour, providing, for
example, for asynchronous cancellation. Exceptions of this kind represent a par-
ticular problem for monitoring because they are inherently unsafe and subject
to race conditions, making timing variations in reporting problematic.

Other variants seen in languages like BPMN;, such as compensating actions, need
not be distinct in the primitive behaviour of the recognizer, but can be constructed.
The internal structure of the monitor is essentially a recognizer for the grammar

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

17

of a set of token sequences derived from the behaviour specification, and most prac-
tical cases can be handled by transforming the specification into a state machine.
This machine signals recognition of correct behaviour on reaching its final state
and it may also be useful for it to recognize key intermediate stages or progress
points within the defined behaviour. However, the main function of the recognizer
is to signals violations on detecting any event pattern that is inconsistent with the
given behaviour. These violations may be omissions or detection of events in the
wrong context. Rather than just signaling the fact that there is an exception, the
behaviour definition will include clauses associating exception events with particular
predictable departures from the defined pattern — behaviours to catch the excep-
tion. Examples are the penalty clauses associated with failure to meet deadlines,
where behaviour continues, but costs are modified.

The basic recognizer will report omissions either by detecting a subsequent event
or by time-out. It may seem inconsistent to divide the handling of time into two
areas, covering simple timeouts and the more complex service target monitoring
described in 4.3 respectively, but in fact they require quite distinct detection strate-
gies and different scopes of observation, and making the distinction allows them to
be handled by different implementation mechanisms.

7.2. Event flow and Configuration

The distinction between instance location and recognition has been made so far in
terms of the linkage of just two components. However, we may need to specify more
complex ways in which the recognizer inputs can be bound to message categories,
possibly providing for the specification of name translations to reduce the depen-
dence on application specific details. The actions taken on pattern matches may
also generate inputs to the lower level recognizer.

In cases where the application reports events with finer granularity than the
contract, the hierarchy or recognizers can be extended downwards so as to con-
struct the abstract events referenced in the contract. Since this may need to be
done dynamically based on the observation of negotiation, the monitoring virtual
machine must support dynamic binding of recognizers. A dynamic approach also
allows the tracking of contracts that depend on short-term sub-contracts or the use
of delegation. Similar hierarchical organization can be used to position contracts in
appropriate local legal of regulatory frameworks, and this style, in particular, em-
phasizes the need to load contract information from multiple sources and interpret
the structure to achieve late binding of names and inheritance of behaviour from
separately defined contracts defining local context.

The event flow structure of the recognizer is thus specified in terms of the static
and dynamic wiring of a number of primitive pattern recognizers. It expresses the
basic structure of the contract into phases and sub-cases, but it also connects ex-
ception events to penalty or compensating structures.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

18

7.3. Continuous conditions

Finally, the condition checking part can be expressed by defining constraints on the
acceptability of the results of given assessment functions. This may include the re-
sults of applying assessment functions across defined intervals within the historical
record; if such assessment functions can reference the time or age of the element,
they can apply any required weightings internally, so a wide range of conditions
could be applied by defining a map from the trace items to a result that is accumu-
lated by one of a small set of built-in accumulators such as minimum, maximum or
average values. The tactics for steering the polling of continuous values discussed
in section 4.3 are subtle and best encapsulated within the virtual machine.

The sliding window mechanism discussed earlier is needed to control the basic
timing mechanisms, defining which parts of the contract’s history are within the
scope of particular constraints, but apart form this the constraints required are
expressed in a declarative constraint language relating terms in the contract that
can be estimated from the observation of discrete events and continuous quantitative
properties of the services being delivered.

7.4. Managing Ambiguity

The virtual machine implementation of contract state should also manage the track-
ing and pruning of alternative interpretations arising from ambiguous event se-
quences. Ambiguity often arises because the patterns representing different contract
events share a common prefix. The implementation described by Neal'® showed that
this can be done efficiently without excessive space costs if alternatives are repre-
sented in terms of differences from the state at the point of divergence of interpre-
tation. The implementation maintained a concise single representation of system
state for periods sufficiently far in the past for all ambiguities to have been re-
solved, but generated a set of records for those parts of the system state affected by
divergence whenever potential ambiguity was identified by the event pattern recog-
nizer. Thereafter, the different branches were analyzed in parallel by the recognizer,
with separate state records associated with each branch wherever state differences
resulted.

Whenever a branch proved inconsistent with further observations, it was pruned,
and the intermediate records merged and discarded if no ambiguity remained. The
alternatives were also merged if they subsequently converged so that they repre-
sented a single state of the system reached via different routes. Duplicating only
those parts of the state description where there was divergence has proved to be ac-
ceptably efficient in usage of both space and processing resources, and reconciliation
could be carried out incrementally without sacrificing the real-time responsiveness
of the implementation.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

19

N
contract (implementation
of parties
business > < platform
process add-ins
platform monitor
model attern
J \ p

Fig. 7. The multi-way transformation applied to the support of the monitoring proccess.

7.5. Combining the pieces

The separation of the contract description into basic behaviour, with a monitor
component that matches event patterns and re-injects abstract progress or exception
events, configuration of a sequence of such matching recognizers, and constraint
monitoring engines operating over a progressive moving windows on the contract’s
history leads in turn to a modular monitoring implementation.

Thus some quite complex matching mechanisms can be driven from straightfor-
ward contract descriptions, with the bulk of the complexity encapsulated within the
reusable monitoring components, steered by descriptions produced by transforma-
tions of the contract originally negotiated between the parties, which was expressed
in business terms.

However, the real test of the effectiveness of this approach is to apply it to a larger
number of more complex contract examples, and increasing the level of integration
will speed the process of investigating different contracts and contract styles. It is
to be hoped that wider experience with a range of contractual styles will aid the
selection of the basic set of common monitoring features that need to be included
within the target metamodel, and will allow features of limited applicability to be
discarded, leading to a tight and efficient reusable core.

8. An overview of the contract processing

This is an interesting application area for model-driven development because a more
diverse set of sources and targets is involved than in traditional code generation.
This is indicated in figure 7. On the input side there is a need first to ensure that
the business processes of the individual parties do indeed refine and extend the
original contract. These statements of behaviour then need to be combined with the
platform models (which may be subsumed into the transformations to be applied)
to generate partial implementations of the application support for the parties and
infrastructure add-ins to provide local coupling to the notification mechanisms. This

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

20

process delivers the components necessary to convey reporting events in a way that
matches the available platforms but is consistent with the notification metamodel.

At the same time, a distinct transformation applied to the same inputs is tar-
geted at the monitoring metamodel, and results in the steering process that de-
scribes the particular contract monitoring task in terms of the re-usable matching
component described above.

In summary, it is useful to review the processing flow from the negotiated con-
tract through to the run-time monitoring. The steps are:

(i) the contract is parsed and converted to a model consistent with the input
language metamodel;

(ii) the basic behaviour and policy or exception clauses are unified with this to form
a complete graph of the behaviour to monitor;

(iii) a filter is applied to remove detail of only local significance, leaving just the
behaviour that the monitor is expected to track; much of the structure aimed
in the original contract at simplifying negotiation can be removed at this stage,
although the hooks that provide tracability on violation need to be retained;

(iv) this filtered graph is marked with actions needed to create or cancel timers,
to update local stored state, and to launch additional recognizer or constraint
tracker instances where necessary;

(v) constraints are compiled and tracker tactics applied to give the necessary tracker
behaviour;

(vi) the graph is transformed into a structure which is optimized for traversal on
the basis of events received, so that actions can be derived directly from the
matching of the event from the set of events allowed in the current state, and
detection of violations is straightforward;

(vii) storage resources for dynamic state are optimized and allocations made, so that
the monitor actions are in terms of simple accesses;

(viii) the resulting monitoring task specification is output to the repository, in form
suitable for input to the reusable monitoring component.

9. Other related work

The idea of using a well-connected tool-chain to automate aspects of software de-
velopment has been an objective for system development for a long time. It was
one of the motivators for the viewpoint and transparency concepts in the ODP
Reference Model”, and can be traced back for many years before that. However,
the concept was given additional impetus with the OMG’s proposal that models
should take centre-stage?3, followed by their promotion, via the MDA guide'?, of
model driven architecture as their preferred solution to automation. Since then, the
technology has been maturing, and Bézivin' gives a good example of the richness
of transformations currently being considered.

Model Driven techniques have been applied to two contracts in two senses. First,
contracts are often used as a metaphor, as in Eiffel, for example, and development

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

21

books, such as Frankel? now discuss this style. Weis discusses associated metamod-
eling issues?.

Secondly, there is application to contracts in the legal sense, and a growing
amount of work has been reported in this area. It dates back to Leel®, and the
model driven approach is now becoming of growing importance?. There has been

21 22 14

particular interest in the application to Service Level Agreements , where

generation of checkers for quantitative constraints is particularly attractive.

10. Conclusions

The main thrust of this paper is that before a model driven approach to the sup-
port of contracts can be successful, we need off the shelf components capable of
supporting the monitoring of a large range of contracts, and that the key to reuse
of such components is to define a family of metamodels for the event distribution
and monitoring functions. If such models exist, they can provide the targets for
transformations from the models representing the contracts to the models repre-
senting steering information guiding the monitors.

Based on the previous hand-built systems, we know what functions are required,
and analysis of them to give the structure of a suitable target metamodel has been
described here.

This is a general requirement, in that application of a model driven approach
in other areas will also depend for their success on the creation of a supporting
commodity market in components and in the corresponding target metamodels.

These automated transformations of control structures, together with the kinds
of transformation from business logic to executable processes already given more
prominence in model-driven code generation, should make the support of a wide
range of different specific contracts tractable at reasonable total cost.

References

1. J. Bézivin, V.Devedzic, D. Djuric, J.M. Favreau, D. Gasevic, F. Jouault, An M3-
Neutral Infrastructure for Bridging Model Engineering and Ontology Engineering, in
Proc. Interop-ESA, Geneva, February 2005.

2. Keith Duddy, Michael Lawley and Zoran Milosevic, Elemental and Pegamento: The
Final Cut - Applying the MDA Pattern, in Proc. 8th International Conference on
Enterprise Distributed Object Computing (EDOC’04), Monterey, California, USA,
September, 2004.

3. D. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing,
John Wiley, November 2002

4. Alan Hartman, Kenneth Nagin and Sergey Olvovsky, Model Driven Testing and MDA,
Proceedings of Workshop on Model Driven Development (WMDD2004) in ECOOP
2004, Oslo, Norway, June 2004.

5. C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

6. ISO/IEC IS 8807, Information processing systems — Open Systems Interconnection —
LOTOS: A formal description technique based on the temporal ordering of observa-
tional behaviour, 1989.

February 28, 2005 17:48 WSPC/INSTRUCTION FILE pfl'coala’j

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

ISO/IEC IS 10746, Information Technology — Open Distributed Processing - Reference
Model — Parts 1-4, 1996.

ISO/IEC IS 15414, Open Distributed Processing — Enterprise Language, 2002.

Java Message Service 1.1, Sun Microsystems, April 2002.

. R. Lee, A Logic Model for Electronic Contracting, Decision Support Systems, volume

4, 1988

P. F. Linington, A policy-based model-driven security framework, Middleware2003
Companion, Workshop Proceedings, 1st International Workshop on Model-Driven Ap-
proaches to Middleware Applications Development, Rio de Janerio, June 2003.

P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni and S. Neal, A uni-
fied behavioural model and a contract for extended enterprise, Data Knowledge and
Engineering Journal, 51, 5-29, October 2004.

P. F. Linington and S. Neal, Using Policies in the Checking of Business-to-Business
Contracts, Policy 2003 Workshop.

Molina-Jimenez, C., Shrivastava, S., Solaiman, E. and Warne, J. Run-time monitoring
and enforcement of electronic contracts, Electronic Commerce Research and Applica-
tions, Volume 3, Issue 2, pp 108-125 Elsevier B.V., 2004

Z. Milosevic. Enterprise Aspects of Open Distributed Systems. PhD thesis, Computer
Science Dept. The University of Queensland, October 1995.

S. Neal, A Language for the Dynamic Verification of Design Patterns in Distributed
Computing, PhD Thesis, University of Kent, 2001.

S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson and S. Kulkarni, Identifying
requirements for Business Contract Language: a Monitoring Perspective, in Proc.
7th International Enterprise Distributed Object Computing Conference, Brisbane,
Australia, September 2003.

S. Neal and P. F. Linington., Tool Support for Development using Patterns, in Proc.
5th International Enterprise Distributed Object Computing Conference, Seattle, USA,
September 2001.

OMG MDA Guide Version 1.0.1, omg/2003-06-01 ed., The Object Management Group
(OMG), June 2003.

Service Level Agreement for the Operational Production Services Provided by UK-
ERNA, http://www.mu.jisc.ac.uk/slas/ukerna/2004-05/ukernasla2004-05.pdf, July
2004

J. Skene and W. Emmerich, Generating a Contract Checker for an SLA Language,
in Proc. of the EDOC 2004 Workshop on Contract Architectures and Languages,
Monterey, California. IEEE Computer Society Press, September 2004.

J. Skene, D. Lamanna and W. Emmerich, Precise Service Level Agreements, in Proc.
of the 26th Int. Conference on Software Engineering, Edinburgh, UK. pp. 179-188.
IEEE Computer Society Press, 2004.

R. Soley et al., MDA, Model Driven Architecture, November 2000.

S. Tatte et al., Business Process Execution Language for Web Service Version 1.1,
BEA Systems, IBM and Microsoft, May 2003.

Tom Verdickt, Bart Dhoedt, Frank Gielen and Piet Demeester, Incorporating SPE
into MDA: Including Middleware Performance Details into System Models, Fourth
International Workshop on Software and Performance (WOSP 2004), Redwood City,
California, USA, January 2004

T. Weis et al., A UML Meta-model for Contract Aware Components, in Proc. 4th
International Conference on Unified Modeling Language (UML 2000), Lecture Notes
in Computer Science volume 2185, Springer-Verlag, 2001.

S. A. White et al., Business Process Modeling Notation, BPMI.org, August 2003.

