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Abstract. Swarm Robotics is an area of active research interest where
groups of robots coordinate and perform collective tasks. Existing ap-
proaches to Learning and Collective Decision Making amongst a group
of robots is complex. In this paper, we propose a simple model of learn-
ing and collective decision making in honey bees engaged in foraging
for suitable nectar-sites. Our simple model takes into consideration dis-
crete numbers of bees and considers affects of noise and randomness. We
achieve this by using an algorithm for exact stochastic simulation used
in physical chemistry. Using this model, we wish to understand the au-
tonomous learning and collective decision making process that a swarm
of robots might employ.

1 Introduction

Various eusocial insect colonies such as ants, wasps, termites and bees exhibit
remarkable problem solving behaviour. Although a single insect is quite limited
in its ability, complex behaviour is exhibited at the level of the colony that
emerges from the interactions of the individual insects [1]. This phenomenon is
called “Self-Organization”.

The foraging behaviour of honey bees has been extensively studied and is a
useful example of self-organization. A colony of the honey bee Apis mellifera,
includes forager bees, which scout for suitable flower sites to supplement the
nectar and pollen needs of the colony. A forager on finding a site, collects nectar,
returns to the hive and unloads its nectar. It may choose to advertise the visited
flower site by performing a waggle dance for the other followers in the dancing
area of the hive. The better the quality of the nectar source, the longer the
forager’s dance duration and the more lively the dance [2]. Bees that dance
for poor sites also tend to abandon their nectar sources sooner. Follower bees
choose to follow a dancer at random and they visit the site that is advertised.
The dynamics of the recruitment and abandonment result in a collective decision
whereby a greater number of forager bees visit the superior site.

We propose a simple three state model of decision making by bees while
visiting one of two foraging sites where one site is better than the other. The
motivation for our work is to understand the key characteristics of a decision



making process that emerges due to the dynamics of interacting entities in a
swarm. In order to facilitate understanding, the simplest possible model with
correct behaviour should be used. We show that our simple model is a suitable
model that reproduces the collective decision making in a swarm of bees during
foraging since large numbers of bees visit the superior nectar source and very
few bees are attracted to the inferior source. Thus, the bee colony learns which
source is better. We use a technique called the Gillespie algorithm that takes
into consideration discrete numbers of bees, is stochastic and well suited to
modelling real world biological phenomena. We propose that our current model
is a first step towards a suitable model for a collective decision making process in
a swarm of robots where the robots have to choose between several alternatives
having different profit. The robots could gather information about the various
alternatives and learn at the level of the colony, which alternative would be the
most suitable, over a period of time.

The structure of this paper is as follows. In Section 2, we study the vari-
ous existing models of honey bee foraging and discuss their characteristics. In
Section 3, we describe the Gillespie algorithm for exact stochastic simulation
of dynamical systems specified by coupled chemical reactions. In Section 4, we
describe our three state model in detail. In Section 5, we apply the Gillespie
algorithm to simulate Camazine’s seven state model and our three state model.
In Section 6, we analyze various aspects of our model and present our findings.
Finally in Section 7, we outline the conclusions of our work so far.

2 Related Work

Decision making in honey bees engaged in foraging can be analyzed at the level
of the colony or at an individual level. We discuss the existing work in both these
areas.

Several biologists have tried to study the collective foraging behaviour during
nectar source selection by bees [3,4]. Seeley’s work [5] was based on an experi-
ment in which a colony of honey bees was exposed to two different nectar sources
having different profit. The differential exploitation of the nectar sources was es-
timated by measuring the number of bees that visit the two sites. It was found
that a greater number of bees visited the more profitable source. Seeley con-
cluded that the collective decision of a bee colony to visit a better nectar source
is a process of natural selection as foragers from more profitable sources “sur-
vive” longer (continue visiting their site) and “reproduce” better (recruit other
foragers) than foragers from less profitable sources. Thus, the collective decision
of the bees is dependent on the dynamics of abandonment and recruitment of
foraging bees.

Based on Seeley’s observations, Camazine proposed a differential equation
model for foraging [6] that considers the decision making process as a function
of the quality of the nectar sources that in turn affects the abandonment and
recruitment of foraging bees to the nectar sources. The time evolution of the
numbers of bees in the various states of the model are expressed as a system of



coupled differential equations(given in Camazine’s paper).The parameters used
in this model were based on Seeley’s experiments. Sumpter and Pratt have also
developed a general framework for understanding social insect foraging [7].

In both models, it is possible to have fractional numbers of bees in differ-
ent states. Bee population levels should be discrete values and we believe that
a model that considers the time evolution of the bee populations as discrete
values, is required. These models also assume smooth behaviour as there is no
noise term in the models. The plots produced by the models are smooth and
do not have a random component. Seeley’s experimental plots had a degree of
randomness and were not smooth. These models also have quite a few states.
Our motivation is to have a model for decision making that is as simple as pos-
sible with the minimal number of states. We start with the smallest number of
states and only if the correct decision is not made and the observed behaviour
not matched, do we introduce added complexity in the form of additional states.
This methodology for modelling self-organization is advocated by Bonabeau et
al. [1] and is consistent with Occam’s Razor.

De Vries et al. proposed an individual-based model in order to simulate the
collective foraging behaviour of honey bees [8] consisting of a set of behaviour
rules for every individual bee that are necessary and sufficient to explain the
collective foraging behaviour. The problem with such an individual-based model
with a behaviour control structure specified by rules is that the number of rules
required to specify the actual behaviour is large and they are only able to con-
vincingly simulate one day of foraging behaviour. Since the model assigns mem-
ory to an individual bee, this introduces additional processing overheads for a
colony composed of a large number of bees. Hence, the model does not scale well
if a colony of bees is of the order of thousands.

An approach based on Markov chains can explain the time evolution of state
based model such as Camazine’s as shown by Martinoli et al. [9,10]. However,
one of our interests is to study the importance of bee memory(short and long
term memory) and the role it plays in the decision making, for which purpose,
a Markov chain approach would be unsuitable.

In the next section we discuss the Gillespie algorithm that is used to simulate
the time evolution of stochastic dynamical systems.

3 The Gillespie Algorithm

The Gillespie stochastic simulation algorithm is used in physical chemistry to
simulate the time varying behaviour of a spatially homogenous chemical sys-
tem [11]. The time dependent evolution of such a system is specified by a system
of coupled ODEs (ordinary differential equations) of the form

dX1/d; = f1(X1, ..., XN)

dXN/df = fN(Xla aXN)



where X7 ... Xy are the various state variables. The Gillespie approach
treats such a system as a discrete stochastic process and therefore lends itself
suitable for computer simulation that consists of various reactions and the asso-
ciated propensities of the reactions, which are also called hazard rates. A discrete
stochastic approach is a more accurate representation of such a process and the
ODE system arises as a large-n limit(where n is the value of the overall popula-
tion of entities or individuals that participate in the process). In order to answer
the question as to which reaction will occur next and what time will it occur,
we generate a random pair of the form (7, 1) where 7 is the time when the next
reaction will occur and p is the reaction that is selected to execute. We arrive
at a probability distribution function P(7, u) as follows

P(r,p)dr = a, eXp{—TZCLj}dT (2)

where a,, dt = Probability that a R,, reaction will occur in (¢,¢ + dt)
given that the system is in state (Xi,..., Xn)
at time ¢t (u=1,2,..., M) (3)

The probability distribution for the reactions is given by
Pr(Reaction = p) = a,,/ Z a; (4)
J
The probability distribution for times is given by
P(r)dr = (Z ij)eXp{—TZaj}dT (5)
J J

Detailed derivations of the above distributions and the various terms is given
in Gillespie’s seminal paper. The above distributions lead to the formulation
of the Gillespie algorithm explained in [12], which has the advantage of being
exact and requires very little memory. It does not approximate infinitesimal time
increments d¢ by finite time steps d¢. This is of benefit when population levels
can change sharply in short time.

4 Simple Model of Collective Decision Making

We have developed a simple model for collective decision making in bees in order
to match the observed behaviour in Seeley’s bee experiments. In our model, there
is a choice between two alternatives nectar sources, which are of different quality,
which is equivalent to the situation in Seeley’s experiments. We are interested
in studying how bees react to changes in quality of the different sources, when
the two sources are swapped as in Seeley’s original experiment. Essentially, in
our model, the bees are gathering information about the nectar sources over a
period of time and learning, which source is the better one.



Our model as shown in Fig 1 consists of three states labeled A, B and D. State
D is a single state that is an abstract representation of all the states in the hive
in Camazine’s model. State A represents all the bees in the A loop(equivalent
to bees dancing for A, unloading nectar from A and bees at nectar source A in
Camazine’s original model) and B represents all the bees in the B loop (sim-
ilar to A). D is regarded as a decision making state where the bees are unde-
cided(equivalent to state F in Camazine’s model where the bees may be following
dances). With the passage of time, bees move from one state to another. The
are four possible transitions that the bees can make: (1) D to A, (2) A to D, (3)
D to B and (4) B to D. These transitions are governed by four rate constants
k1 ...k4 respectively. These rate constants are inverse of t1 ...t4, i.e. the vari-
ous times it takes the bees to move between the compartments. These rates have

the dimension Time!.

Fig. 1. Simple Model of Decision Making

We set up the model with the initial condition that the quality of nectar
source A is better than the quality of nectar source B. We use two parameters,
Q. and @y, to indicate the difference in quality between the two sites. The value
of the parameter @), is set to twice the value of @ to indicate the difference
in quality. The parameters are constant in the model but can be changed by
external intervention. In order to indicate a swap in the nectar sources, the
parameters are swapped midway through the simulation such that @y is set as
twice the value of Q,. Our objective is to witness the change in the distribution
of the bees at the nectar sources. In the next section we study the result of
applying the Gillespie algorithm to our simple model.

5 Applying Gillespie Algorithm to the SimpleModel

An event or a reaction is a transition a bee makes from one state to another,
which has a hazard rate associated with it. The change in the population levels
for a transition is affected as follows. Every time a bee makes a transition from
state X to state Y, we decrement the number of bees in state X by 1 and we
increment the number of bees in state Y by 1. The different possible transitions
in our model along with the associated hazard rates and changes in the states is
documented in Table 1.

The hazard rates for the transitions from the decision state D to the sites
A or B are directly proportional to the terms P;, and Pg. These two terms
affect the probability of a bee in decision making state D choosing either A or



Table 1. Reactions in the Model

State|Reactions| Hazard Rates |State Changes
D D—-—>A| a = kl*Pda*D -1D +1A

D — > B| a3 = k3*Pgp*D -1D +1B

A |A — > Dlaz = k2*(1/Q.)*D| -1A +1D

B |B—-—>Dlas = k’4*(1/Qb)*D -1B +1D

B respectively. As can be seen from Eqn 6, the probabilities are proportional to
the population of bees in states A and B respectively.

A B
Pla= -2 pp=—2
da A+ B b A+ B (6)

As the number of bees in either state A or B increases, the probability of a
bee making a transition to that state increases and vice-versa. The hazard rates
for the reverse transitions from A or B to D are inversely proportional to the
parameters (), and @y respectively. Thus, the greater the quality of a state, the
lesser is the hazard rate out of the state and the greater is the resident time
in the state. Since our model is initially set up with Q, = 2*Qy, the net effect
is that the hazard rate of the transition from D to A increases with time and
the hazard rate for the reverse transition from A to D decreases with time. For
the B loop, the hazard rate for the transition from D to B decreases with time
and the hazard rate for the reverse transition from B to D increases with time.
There is thus an implicit positive and negative feedback process embedded in our
model. A positive feedback for one nectar source serves as a negative feedback
for the other(nectar sources are encompassed by states A and B in our model
as described before). This highlights the fact that the competition between the
two sources drives the collective decision making process.

The time evolution of the stochastic framework specified by the reactions
in our model is done by using the Gillespie algorithm. We swap the nectar
sources during the simulation to replicate the phenomenon of swapping the nec-
tar sources in Seeley’s experiments. This is done by swapping the parameters
Q. and Qp in the model as described previously. The Gillespie method has the
condition that the probability of selecting the next reaction is not dependent on
the previous reactions that have taken place. In the next section we describe the
results of applying the Gillespie algorithm to our model.

6 Analysis

6.1 Plots of the Models

We first use the Gillespie algorithm to simulate our three state model, which
is done in Matlab. Fig 2 shows a simulation of our model with the given set of
parameters. The values of the parameters have been set to match the observed
behavioural patterns from Seeley’s experiments and are not actual empirical val-
ues measured in an experiment. We then use the Gillespie algorithm to simulate



Camazine’s model of foraging as proposed in [6]. Our motivation for recasting
Camazine’s model is to enable comparison between that and our simple model.
We model the transition between states in the Camazine model in a similar fash-
ion as our simple model, which was described in the previous section. As in the
original model, we switch the quality of the sites midway in the simulation in
order to investigate the change in distribution of bees due to swapping of nectar
sources.

Fig 3 shows that our plot obtained using the Gillespie algorithm closely
match the curves obtained in Camazine’s simulation of their differential equation
model [6].

Forager Group Size (Bees)
Forager Group Size (Bees)
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Time Elapsed Time Elapsed
Fig. 2. Computed solution of our three Fig.3. Computed solution of Ca-
state simple model using the Gillespie al- mazine’s differential equation model
gorithm. The curves show the distribu- using the Gillespie algorithm. The

tion of bees at the two sites before and
after the switch in quality. We use the
following intitial parameter values from
the original model. Initial State Popula-
tions A=12, B=12, D=101. Time values
t1=10, t2=30, t3=10, t4=30. Quality pa-
rameters Q, = 2 and Qp = 1.

curves show the distribution of bees
at the two sites before and after the
switch in quality. We use the following
parameter values from the original
model. Initial State Populations A = 11,
Ha = 0, Da = 1,B=11, Hb = 0, Db =
1, F=101. Probabilities P,q = 1.00, P,z

= 0.00, Pyq = 0.15, P,, = 0.04. Time
values t1 = 1.0, t2 = 1.5, t3 = 2.5, t4 =
60, t5 = 3.0, t6 = 2.0, t7 = 3.5.

Our plots show that the curves not smooth and are inherently noisy because
of the use of the noise model in the Gillespie algorithm, which is a more accurate
representation of the randomness in any biological phenomenon.

From Table 2 we can see that a major proportion of the bee foragers visit the
superior quality site (A in both the models) initially. Once the nectar sources
are swapped, the bees redistribute themselves and migrate to the new superior
quality source(B in both the models). The change in the bee population levels
in both the models is discrete. The quality of the nectar sources that affects



Table 2. Average Population sizes for A or B for 12 simulations of our model and
Camazine’s model. The simulations are run for 480 time instants. These numbers de-
pict population sizes before and after the sources are swapped midway during the
simulation.

Our Model|Camazine’s
A Bl A B
105 0{118 3
A Bl A B
2 105| 16 91

Before Swap

After Swap

the distribution of the foraging bees at the two sites and a collective decision
is reached for the colony. Thus, implicitly at the level of the colony, knowledge
that source A is better than source B is acquired, which constitutes the learning
process.

6.2 Evaluating the Resident Times

Although our objective was to design a simple model with lesser number of
states than Camazine’s model, it was important that our model had a strong
analogy with Camazine’s and the observations from our model were similar to
Camazine’s. We needed to juxtapose our model with Camazine’s by comparing
the time spent by bees in states A and B respectively, in our model with the
equivalent times in Camazine’s model, which is the average time spent by the
bees in the entire A or B loop(sum of the times spent in the states at the nectar
source A or B, dancing state Da or Db and the state representing unloading of
nectar at the hive Ha or Hb). We measured the average time spent in either one
of the two states A or B as follows: For each state, we multiplied the waiting
time between any two reactions(r as in Eqn 5) and the population of state A or
B during that time. We summed all such times and divided it by the total time
the simulation was run to get the average time spent in state A or B:

iggzdrt AxT
tmeA = ond — tStart 0
where tStart and tEnd are the starting and ending times of the simulation. Sim-
ilar calculation was done for state B. We performed the same set of calculations
for Camazine’s model except that we measured the times spent in all the states
involved in the A loop as mentioned above.

Table 3 shows the average of 12 such runs. We can see that in both the
models, the average time spent by a bee at the superior quality site is higher
than the time spent at the inferior quality site. The time measurements also
indicate a close correlation between our simple model and Camazine’s seven
state model. This is important because it corroborates that the mechanism that
drives the bees towards a superior quality source is similar in both the models
and is a result of the difference in quality between the two sources.



Table 3. Comparison of the Average Time spent in states A or B in our model with
the average time spent in the A or B loops in Camazine’s model. The A loop consists
of the times spent in states A, Da or Ha and similar calculation is done for the B loop.

Site|Avg. Time(s) in our Model|Avg. Time(s) in Camazine’s Model
A 99.16 91.32
B 4.70 7.07

This is also of interest as we can hypothesize that the time spent by a bee
at a site will be a good predictor of the collective decision of the colony as to
which site is superior. If a bee perceives that a nectar source is superior, our
model shows that it will spend more time at that site. Since this hypothesis was
not explored in Seeley’s original work, in order to fully validate our prediction,
additional investigation of bee foraging behaviour is necessary.

7 Conclusion and Future Directions

In the work done so far we have shown that the learning by bees and collective
decision made by bees can be reproduced in a model that encapsulates noise
and small and discrete numbers of bees. Currently, our model assumes perfect
communication, and under this assumption only three states were required. The
parameters used in our model are only the initial quality estimates @, and Qy,
the values of which need not be accurately known apriori. The Gillespie algo-
rithm used for stochastic simulation of our model needs only simple arithmetic
operations. On the basis of this, we believe that programming a robot swarm
to learn and make a similar autonomous collective decision should be relatively
simple. The next steps that we wish to undertake would be

— To investigate what other simple decisions can be made with the simple
structure as presented in our model. What kind of decision can we arrive
at when there are more than two sites or when the difference between the
quality of the sites is not stark.

— What would be the implication of introducing imperfect communication in
our model and how simply can it be represented?

— Can an individual-based simulation using rules indicated by this model i.e.
measure A, B, D and adjust P, and Py, be constructed and show useful be-
haviour? We are currently investigating this and our results will be reported
in a future publication.
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